diff --git a/actions/identify-neurons/data/00-identify-neurons.html b/actions/identify-neurons/data/00-identify-neurons.html index 7d55d9412..1bf4000b9 100644 --- a/actions/identify-neurons/data/00-identify-neurons.html +++ b/actions/identify-neurons/data/00-identify-neurons.html @@ -13129,7 +13129,7 @@ div#notebook {
-
In [20]:
+
In [2]:
import os
@@ -13160,6 +13160,28 @@ div#notebook {
 
+
+
+ + +
+ +
+ + +
+
13:25:38 [I] klustakwik KlustaKwik2 version 0.2.6
+/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject
+  return f(*args, **kwds)
+/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject
+  return f(*args, **kwds)
+
+
+
+ +
+
+
@@ -13183,6 +13205,7 @@ div#notebook {
output = pathlib.Path('output/identify_neurons')
+output.mkdir(parents=True, exist_ok=True)
 
@@ -13276,7 +13299,7 @@ div#notebook {
-
In [9]:
+
In [ ]:
sessions = []
@@ -13358,7 +13381,7 @@ div#notebook {
 
-
In [10]:
+
In [ ]:
sessions.query('stimulated and frequency!=30')
@@ -13374,7 +13397,7 @@ div#notebook {
 
 
-
Out[10]:
+
Out[ ]:
@@ -13761,7 +13784,7 @@ div#notebook {
-
In [11]:
+
In [ ]:
sessions.to_csv(output / 'sessions.csv', index=False)
@@ -13771,6 +13794,41 @@ div#notebook {
 
+
+
+
+
In [ ]:
+
+
+
all_non_identified_units = []
+for action in sessions.action.values:
+    for ch in range(8):
+        for unit_name in data_loader.unit_names(action, ch):
+            all_non_identified_units.append({
+                'unit_name': unit_name, 
+                'action': action, 
+                'channel_group': ch
+            })
+all_non_identified_units = pd.DataFrame(all_non_identified_units)
+
+ +
+
+
+ +
+
+
+
In [ ]:
+
+
+
all_non_identified_units.to_csv(output / 'all_non_identified_units.csv', index=False)
+
+ +
+
+
+
@@ -13781,7 +13839,7 @@ div#notebook {
-
In [12]:
+
In [ ]:
# save graphs
@@ -13816,7 +13874,7 @@ div#notebook {
 
 
 
-
Processing 1849
+
Processing 1833
 
@@ -13831,13 +13889,115 @@ div#notebook { -
+
+
+ +
+ +
+ +
+ + +
+
+Processing 1834
+
+
+
+ +
+ +
+ + + + + + + +
+
+ + +
+ +
+ +
+ +
+ + +
+
+Processing 1839
+
+
+
+ +
+ +
+ + + + + + + +
+
+ + +
+ +
+ +
+ +
+ + +
+
+Processing 1849
+
+
+
+ +
+ +
+ + + + + + + +
+
+ +
@@ -13867,7 +14027,7 @@ var element = $('#81153850-5a51-4ec0-94c3-57325356ad9e');
-
In [16]:
+
In [ ]:
unit_comp = TrackMultipleSessions(actions, data_path=f'output/identify_neurons/1833-graphs')
@@ -13880,7 +14040,7 @@ var element = $('#81153850-5a51-4ec0-94c3-57325356ad9e');
 
-
In [30]:
+
In [ ]:
unit_comp.load_graphs()
@@ -13893,7 +14053,7 @@ var element = $('#81153850-5a51-4ec0-94c3-57325356ad9e');
 
-
In [31]:
+
In [ ]:
max_dissimilarity = .05
@@ -13910,7 +14070,7 @@ var element = $('#81153850-5a51-4ec0-94c3-57325356ad9e');
 
-
In [32]:
+
In [ ]:
unit_comp.remove_edges_with_duplicate_actions()
@@ -13935,7 +14095,7 @@ var element = $('#81153850-5a51-4ec0-94c3-57325356ad9e');
 
 
 
-
@@ -13955,7 +14115,7 @@ var element = $('#81153850-5a51-4ec0-94c3-57325356ad9e');
-
In [13]:
+
In [ ]:
max_dissimilarity = .05
@@ -13996,7 +14156,7 @@ var element = $('#81153850-5a51-4ec0-94c3-57325356ad9e');
 
-
In [14]:
+
In [ ]:
unique_units = pd.concat([
@@ -14009,35 +14169,10 @@ var element = $('#81153850-5a51-4ec0-94c3-57325356ad9e');
 
-
-
- - -
- -
- - -
-
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:3: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
-of pandas will change to not sort by default.
-
-To accept the future behavior, pass 'sort=False'.
-
-To retain the current behavior and silence the warning, pass 'sort=True'.
-
-  This is separate from the ipykernel package so we can avoid doing imports until
-
-
-
- -
-
-
-
In [15]:
+
In [ ]:
unique_units.to_csv(output / 'units.csv', index=False)
@@ -14057,7 +14192,7 @@ To retain the current behavior and silence the warning, pass 'sort=True'
 
-
In [16]:
+
In [ ]:
identify_neurons.data['sessions'] = 'sessions.csv'
@@ -14071,7 +14206,7 @@ To retain the current behavior and silence the warning, pass 'sort=True'
 
-
In [21]:
+
In [ ]:
copy_tree(output, str(identify_neurons.data_path()))
@@ -14081,67 +14216,10 @@ To retain the current behavior and silence the warning, pass 'sort=True'
 
-
-
- - -
- -
Out[21]:
- - - - -
-
['/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-units.csv',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-units.csv',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/sessions.csv',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-units.csv',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-0.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-6.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-1.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-3.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-4.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/units.csv',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-0.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-1.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-2.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-5.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-4.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-2.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml',
- '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-units.csv']
-
- -
- -
-
-
-
In [18]:
+
In [ ]:
store_notebook(
diff --git a/actions/identify-neurons/data/00-identify-neurons.ipynb b/actions/identify-neurons/data/00-identify-neurons.ipynb
index 468b15ebb..cba5918a1 100644
--- a/actions/identify-neurons/data/00-identify-neurons.ipynb
+++ b/actions/identify-neurons/data/00-identify-neurons.ipynb
@@ -12,9 +12,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 2,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "13:25:38 [I] klustakwik KlustaKwik2 version 0.2.6\n",
+      "/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
+      "  return f(*args, **kwds)\n",
+      "/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
+      "  return f(*args, **kwds)\n"
+     ]
+    }
+   ],
    "source": [
     "import os\n",
     "import expipe\n",
@@ -58,7 +70,8 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "output = pathlib.Path('output/identify_neurons')"
+    "output = pathlib.Path('output/identify_neurons')\n",
+    "output.mkdir(parents=True, exist_ok=True)"
    ]
   },
   {
@@ -122,7 +135,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -200,7 +213,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": null,
    "metadata": {},
    "outputs": [
     {
@@ -648,13 +661,40 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
     "sessions.to_csv(output / 'sessions.csv', index=False)"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "all_non_identified_units = []\n",
+    "for action in sessions.action.values:\n",
+    "    for ch in range(8):\n",
+    "        for unit_name in data_loader.unit_names(action, ch):\n",
+    "            all_non_identified_units.append({\n",
+    "                'unit_name': unit_name, \n",
+    "                'action': action, \n",
+    "                'channel_group': ch\n",
+    "            })\n",
+    "all_non_identified_units = pd.DataFrame(all_non_identified_units)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "all_non_identified_units.to_csv(output / 'all_non_identified_units.csv', index=False)"
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -664,20 +704,86 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": null,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      "Processing 1833\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "93a0e7d7971a4e2d81e87adee47d91e5",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(IntProgress(value=0, max=378), HTML(value='')))"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "Processing 1834\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "da0225d67b7948e18d4b1bf5447156e4",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(IntProgress(value=0, max=300), HTML(value='')))"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "Processing 1839\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "963db44d08da4a8a990e631e9756aca0",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(IntProgress(value=0, max=78), HTML(value='')))"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
       "Processing 1849\n"
      ]
     },
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "6300f6db34594cd884fafdfb3ea48ad4",
+       "model_id": "0868adb93b4b4c92b75638b7bc2e6a32",
        "version_major": 2,
        "version_minor": 0
       },
@@ -724,7 +830,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -733,7 +839,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -742,7 +848,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -755,14 +861,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 32,
+   "execution_count": null,
    "metadata": {
     "scrolled": false
    },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAokCAYAAAAwwpPoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4VEXbwOHf2V6y6Y0SWoClFxEIRQHFAlIUUBQLKqCoiAU+u9heRRRerAgIvKCggjQbivQOUkKHJfQa0kiyJZtt5/vjBERpCaSQzdzXlYvs5pydWbI5++zMM89IsiwjCIIgCIIgCIJCVdYdEARBEARBEITriQiQBUEQBEEQBOE8IkAWBEEQBEEQhPOIAFkQBEEQBEEQziMCZEEQBEEQBEE4jwiQBUEQBEEQBOE8IkAWBEEQBEEQhPOIAFkQBEEQBEEQziMCZEEQBEEQBEE4j6asO3AxrVu3lqtUqVLW3RCuwa5duzJsNltMcT+ueG2UfyX12gDx+ggG4tohXEpJXjsE4d+uywC5SpUqzJ07t6y7IVwDq9V6pCQeV7w2yr+Sem2AeH0EA3HtEC6lJK8dgvBvIsVCEARBEARBEM4jAmRBEARBEARBOI8IkAVBEARBEAThPCWSg2y1WlsDo2w2W0er1VobmArIwE7gGZvNFiiJdgVBEARBEAThWhX7CLLVan0JmAQYCu76L/CGzWa7CZCAnsXdpiAIgiAIgiAUl5JIsTgA9DrvdgtgRcH3vwOdS6BNQRAEQSgfTu8Ge+pVnx4IyBzOcBIIyMXYKUEQzlfsAbLNZpsDeM+7S7LZbGf/iu1AWHG3KQiCIAjlQiAAU++CCTdDuq3Ip689kMHtn6yk4+jl3DZ2BUv3ni6BTgqCUBqL9M7PN7YA2aXQpiAIQrkmyzJnnB5yXN4rHyyUH5kpkJcFznT49h4I+At9aq7by9Dvk/H4Arx8Zz3UKomB0zYxe/PxEuywIFRMpREgJ1ut1o4F33cBVpVCm4IgCOVWrtvLfRPW0fy9RTR770+Gfp/M0UxXWXdLKA7HNyr/tn8Bck9A2u5Cn/rp4hQynR6+vK8+T9U8zbxBN9A2MZrhP25j1qZjJdRhQaiYSiNAHga8Y7Va1wE6YHYptCkIglAueXwBHpn8F1uPZfPibXUZdFMtFu0+ze2frGD8igO4vYUfcRSuQ8c34ZLMPJpsVW4f21Co0zIc+Uxbe5h36h6m8eyb4X9dMH/ZhP812c1NdaJ5ec52pq09jCyLvGRBKA4lUubNZrMdBpIKvt8HdCiJdgRBEILNz9tOsvVYNp/e34yeTSuDJPFYuxq8OX8nH/6+l0mrDtI2MZpIs45sl4cjWS7OOD2oJIlqUSa6NqpE96aVMerUZf1UhIvwH9vIJl8tkh3hpMnhmA+sxdxy4BXP+33HKcID2Tx46kOIqAad34at36Fd8DxTbn2PpzRteOvnXaw/mMnTHWvTsHIoKpVU4s9HEIJViQTIgiAIQtHJsqwEwLFeeiQPhJ83QkQNKnV6jUmP3MP6Q1lMW3uYjYezcLh9hBq1VI8yUbVqOP5AgD2n7Lw0ZzufLknhg16N6VA3pqyfknA+jxNV+m6S5Z4817kumxfWof3Rwo0g/7LtFCMts1D78uDeqRBdBxr1gbmD0C55k4md3+XLql0Zv+IAv+9MxaLXkBBpolKYgTpxFu5sFE/TqmFIkgiaBaEwRIAsCIJwnViVksGp1FPMDX8T6aQdWg6AI2th9mOwYzZJ3T8l6aEWlzxflmXWHshkxE876T/lL17oXJeht9YWQdH14tQ2JDnA1kBtxjSvwvRlDeji2giONAiJvfRpOXmcPLKX2/TLoN1zSnAMoNFB78mgUqNaPIJnb7bzyCsvsXDXaXacyOFkdh4nsvNYmZLO+BUHaFUzko96N6FGtLmUnrAglF8iQBYEQShuAT+c3gmxDUCtLfRp87ee4FnD7xjdaTBwMVS9Efw+WD8Olr4H41pDp9ehWT/QGi84X5Ik2tWO5rehN/HavB2MXbyPE9kuRvZqglpMt5e9HKXahNtSnUizDnX1JDg4Df+R9agb9rjkaX/sTOVu1Rrlxr/TMdQauGciaE2w8mPCTu/mvi6juK9lo3OH5Lq9zNtygtF/2ujy6SrGPXQDnayXDsgFQRAB8nXN5w9gO23nYLoTt9ePUaemUpiR+pUsmHTiVycI161d82DOADBGQJ8pkHjLFU8JBGS27d3PSOl3pIa9lOAYlACo3VCo3RkWDIffXoQ/34QqN4AxHHz5ypdGD1G1oUFPDAmtGXNvU6qGG/ls6X58AZnRfZqKnNSy5lBqFsdXrgZAzcZJ+A6oSN+3gUqXCZBX2tJ4R7cWqrWD8GoXHqDWQI/PIbY+LHkPPm8B1i5Q906o3obQ8Or0b1uDOxrGM/CbjQyatolP72/OXU0qlcjTFIRgIKKs60wgILMiJZ05m4+zwpaOPd93wTEqCZomhHNnw3j6tkwg3KQrg54KgnBJx/5SRvQ0BtgwoVAB8rbj2XTLX4BOmw8dXrnwgLgG8OhvcGgF7JoPaXsgI0VpQ2MAVxYcWqWMNickIfX4nBdvt6JRq/jvon3o1Co+uKexCJLLUH52KrKspXZCZQDa1K3KAbky+uPbLn2Oz4/90CaqqU9Ak5cu/eCSBG2egfrdYc1nsGsu7J6v/CysGjTuTXzLgXw/KInHp27k+ZnJhBm1tK8TXZxPURCChgiQryOLd5/m44U2bKftRJi03NWkEm0So7DGWzDrNDg9Po5l5bH9eDYr9qUz8ve9fLI4hUE31+LpjokYtGLVuiBcF1K3Q3xjJcVix2wlTUJ9+cvtsr1pdFOvx5fQFm1M3YsfJElQq6PydTH5Dtj+gzKKOOFm6P01Q2/tjtcf4POl+wFEkFyGcjNO4JbDaVw1HIAIs45NutrcmL3zkudsOnyGW+T1BCQNqgY9r9xIeDW4azR0GQXpe5Uc9v2LYc2nsGECllvfYtIjj9N34nqemr6Z+UPakRgTUlxPURCChgiQrwPp9nxem7eDRbtPkxhj5pO+zejauBI6zYVlquvFh3JbgziG3W5lb2ouXyzdz2dLUvh56wk+vb85TRPCy+AZCNfCH1Dqlooc0SARCEDqDmj6ANRoB5v/Bye3QEKry56WsmszdVUnoNHzV9+2PkTJUa3XDX54EGY+DF1G8eJtTwDw+dL9ePwBPu7TVLzeykDAfpp0wkiINJ27zxXVgIjTy5Ed6UghF1YdWZmSzj3qZOSEJCVlp7BUaohrqHy1GgRnjigpOn+8TNipbUx++EN6jPuLQd9s4qdn2mExFD5XXhAqAhEgl7HVKRk890My9nwfr3apx+Pta6JVF27/lnrxoXzR7wb6tcpg+I/b6P3VWt6/pxF9W14kR0247uxPc/Dm/J0kHzuDSpJoUjWM2xvE09EaQ81o87nKA2ecHg5nOknNcePxBwgzarHGW6gUduEiLeE6cOYQeBxQqQnUuFm579CKywbIOXleamcuVa7I9btfex8s8fDorzBnIPz+EpIrk2G3vYq2IN3C4wswtm+zQl9rhOKhcaWRIYdRJ+TvtDhTtWZwGtL3byK2WZcLztmzdzevSsfA+sS1NR5RHfrNghWjYPlIquTn8uUD/+XBKZv5vx+389VDN4hqJ4JwHhEglxFZlpm8+hAfLNhD7dgQvn8iibpxlr8PCAQgwwand4E7ByQV6MxgjFRyEUMrnzu0be1oFjx3E89+n8zLc3Zw/EweL95WV1zsStrid8DvgVtHKAukimDLwVOs/uZtxrEAyWjkcMgNfG7vybu/ZvHurxCi12AxaMjN8+L0XHzntFrRZro3rcyDSdWItRiK4xkJxeGUkk/qj2vMryluusY0QntwBdz8f5c8ZdPhLO5QbSQ3pgWhocW0cEprhHunwS/PKUGRM4OhXT/GoFXxwYK9eHwBPu/XHL1GpGaVFkN+JllSDUL0f7/1Vq3XGjZCesqFAXKa3U1CxmrQAnXvuPYOSBJ0fAUM4fDHyyTpzLx650v8Z4GNCSsPMrhD4rW3IQhBQgTIZcDnD/DmTzv5/q9jdGkUz+h7m2I+e8HMy4a/JsLmqZB74tIPEpag5CE26wfV2hBu0vG/R1vyxvydfL50P3a3j7e6NxBBcklx58LazyHgheMb4dEFV8wxPXeqx0fOjMcYyjryatyKMSSCZnt/Y7J/Ifbm97Ek5mG2OiKwu32EGjVUCTdSPcpMlXAjOo1EpsPDzpO5LNubxqdLUhi/4gCPtqvBM51qEyqmScte6nZklYb75+ew8dhJLPH1uOX4r+D3XrLk2y7bPm5VHcbb6JHi7YtaAz2/AHM0rPkE3Nk8cc8E9Bo1b/28i2dmbGHcgy0ums4lFDO/F6MvG5cu6h/X5To1qnFSjiJw8sKFeqv2ZdBJlYzHkoAu+hJ56VcjabAyy7H0PQa0Cie5UV8++mMv9SuFis1lBKGACJBLmdvrZ8h3W1i8J41nOiUy7DarsmAm4IeNk2HZ++DOhsRblXqnlZsX5J3J4HGCMx1ObYeja5WV7MnfQpUWcOsINLU6MrJXY0L0GiatPkRAlnmnR0MRJJeEg8uV4LhJX9g+E46thxrtC3Xqstnj6OJfx5Fmw6h+9wjlTvtpWD0Wy6bJ3L1nJnfX6gAJScrmAX4vnM6CIzmg1lI7rBqta7dlQLtWHMp08fnSFCauPMi8LScY0b0BdzWuJH7nZSl1J2dMtdh4zEnzauH8cqoyt6jdkLYbKjW96Cn+A8sA0NbtXPz9kSS47R3lOrL4Lci30//eqahUjXhz/k6GfLeFcQ/egEakW5QsZwYqZDzGf1aN0KhVHDdYScjZccEp62zH+I96F9p6/ZXfY3G6aRi4MpHWj2PszZEcyGjLs99tYd4zYtGeIIAIkEuV2+tn0DebWL0/g/fubsTDSdWVH6Tb4KchcPwvZVT4tveU/MWLia4D1dsWjAA4YfssWPVf+KYnNH0A6c4Pef2u+kgSfL3qEP6AzHs9G4lV68Ut5U/Qh8GdHyo1b22/FypAzsnOJsn2EQeNDanV4/W/f2CJgy4fQvvnYeMk2PubMi2OXHCABHqLktLhcyt3VW5OzZuG8d97u/FImxq8Pm8HQ75LZlbd47zXsyHVo8RuWWUi9ySpqlhCDRre6t6QZ8fZQA2c2HLRANmZ76NG9gac+gjMcY1Lrl/tnwdDmFJH+ZuePNxvFn5/A97+ZTcvzdku6iSXNGcaAH7ThRt05FdpTaWDa8k6dZjISjUApeSnZ/8KDHiUmsbFTZLg9vchLxvdypF8f9M7dF7bkMenbmT+0+2IMIvyoULFJoYMSkkgIPPs98msSsngo95NlODY74VVY2D8TZCZouyG9PD8SwfH/6Yzw42PwZCNcNNwJVj+qh3SkbW81rU+T3aoxYwNRxn+4za8/kDJPsGKRJYhZREkdgJTpBIY71tYqFN3/jGRCMkOt7+rrDL/N0s83PIGPL0OXk+FF/fCS4dgRCa8egzeOA3P74SuoyHfDjMfgmndaWZI46dn2vFW9wZsOXKG28eu5KvlB/CJ33vpc6Zx0htC3TgLTauGoY2sSa4UCic2X/TwzYczaa/agaPKTaAq4UvyjY8pecmntsHUbjzaxMSw2+oyd8sJxi7eV7JtV3QOJUBWWeIu+FF8k1sB2L/pz3P3bT2eTSvPX/jUxkLPThWZSqVsMFK/OxGr3mJuKxunctwM+mYTbu/F1z4IQkVRLgLkjxfuZeSCPWXdjWvyyeJ9LNp9mhHdGnDvjQnKG9TXt8CSd5XFF8/8BU37Xt00mtYAt74JAxeBRgfTuiGtGsMrd9Rl+O11mZt8goHTNmF3e4v/iVVEaXvAkQp1blNu171T+YCTeeCyp8mBAFVs0zigqU2t5rdeuR2tAUIrKUH4+cF0eIJStunpDXDXGKWk2Ph2aJa9y2M3RrP4xQ50qBvDqD/2cu+EdRzLcl3DkxWKJOBHdmVyMM9MnTgLkiTRrWlltvhr4j9+8QD54M4NxEg5hDe6vXT62KCHUs3gzGGY2pUhNxq5v2UCny/dz9wtx0unDxWQPzcVAG1Y/AU/S2yUhAMjngOrz903Z9MxblUnIyfeUuRFwEWi1kDvKVDnDqqve4NZrQ6w6cgZhs3aRiAgX/l8QQhS5SJA1qnVTFh5kOW2tLLuylVZnZLBZ0v3c9+NVXmsdSWliP/ETsq2o/d9C32/VXJNr1WVFvDkSmh4Dyx9D2nWIwxpF8/IXo1ZvT+Dnl+uYX+a/drbqegylQ0XiC+YDq97p/LvFUaRd6/9hRrycc40frx48gnVGqXm7ZCN0LAXrB4Ln99I/JGfmfDQDXx6fzP2pzno+ukq/tiZeu3tCVfmykKSAxz3hlA3TsnjbFs7mm2BRFQZe5W0qH9RH1oKgN5aAvnHl5LYCR6eC440pKl38W6nCJJqRfLK3B1sPZZdev2oQPLOnATAFHlhlRKVRssxc2MqZW8mEJBxe/0c2L6KSlIW2nolkF7xbxod3PcNJN5Csy1vMLX5fn7bcYoPyvnAlCBci3IRIA/uWIvEGDOvz9tJbjkbBc3z+Hlt3g5qRZt5r4MF6X93wqrR0PR+eGaDMppTnPQW6D0Z7hip5MVOvoMH6sKMga3JzfPS84s1/Lb9VPG2WdFkH1X+DVfqTQfCqkFkLTi08rKnuTdOJ1c20ej2R4u3PyGx0GsCDFisjDjPHYQ05XZ6xpzm9+duIjE2hMHTNzN6oU2MCJW0gjzTTDnsXNnG5tXC2S3VRpIDcHLrPw53eXzUyd1Amqm28rsrTdWSlJQuZya6GXfzVc+qxFr0PPntJjIc+aXblwogP/sUubKRyLCwix9Qox2JHOeXNVtYsOMUvX1/4NeYiv894lK0Brh/BtTqQIe9bzPaamPS6kNMWX2odNoXhOtMuQiQ9cve5fuEeaTm5vHqnB3Icvl5k/98aQpHs1x83taFfsotkHkQ+k6Hu8cVbVekopAkaPM0PDQbco7D17eQpD3AL8+2xxpv4ZnvtjBywR6Rn3q1so+CPpQ8lYUXZ22l5fuLcVRuo2zpGrh43p7bmUP97BXsibwVg7GEFs8ltISBS6Hnl8quWV/fQtW1bzLz0Qbc3zKBL5bt59kfkkVuYUkqyDPNkMOoUzCCrNeokRJaEUCCw6v/cfi2/ce5QbLhrt6p1LsKQNUWynUi9xQRs+9l8r21yHZ5ee6H5HM7PArFw5+rbBISY7l4uoS144MEUJG5eCyj5q6lp2Ydqqb3KwsrS4vWCPd/j1S9Hb2P/odXq+/lvd9288dOMagiVDzlIkDGFEXs7qlMabST33ac4tMlKeUiSE7LdTNlzSFerX2MhosfAXMMPLGseHbKKozEW2DgYtCFwNS7qGSbzg+DkngoqRoTVh6k39cbSM1xl05fgknOMQhLYMj3ycxLPoHd7eP7tBqQn3Nuk4h/27NsJiYpH1PLB0u2byoVNH8Int0ErQfDpinox7dlZJM0Xu1Sj9+2n+KRKX+R4ypfMzHlhjMDgHxDFDEhfwdCTerWZEegJp6Upf84PHXbInSSn5hmXUu1m/9QLQn6/QBnDmH982E+7FqNNfsz+eiPvWXXpyAUcGWRTQgxIRff1EcVUwd3/V48IC3kE/M0dHiRWg0q5V4COhM88ANS1ZY8kf4BA2NtPD9zK9uPi9QboWIpHwFymyGQeCs3HxjDcGsGnyxO4ZU5Ozide30Hd+OWH8AaOMCg0+8ou98NWARRpbxTUUxdGLRUKR+3YDi6WQ/wn1uiGdu3KTtP5nDXZ6tYsz+jdPtU3mUfxR+WwMqUdAa0q8nzt9Vh4tEqys8ukWah3TWLk8TQoHUpLcQyhCll4wYsBr0FaUZvnnRN5Mv7GrD1aDb3f71eTKOXhIIUi7Doyv+oRd2+djRrAo3QnNykVB8poDu0hDzJgDGxXal39R9q3gx9Z0D6Xu7Z9SwDWkYzYeVBftx0rGz7FUSk/FxyZTPRlkuXTzN1fg2D5CfJsw7aDlXeN8qCPgQe/BEpvgmvOT7kNoONgdM2cSonr2z6IwhloHwEyCoV9PoaKbwaz6S+wQfNs5m95TjtRy3lyW83selwVln38AJpdjfzNuxjivlLVKYo6PcjGMPLpjOmSHhgJtw5SgngvmzNPd7f+fnpNkSYdTw8eQNfLT9QLkbly5wsQ/ZR0tVxeP0ySbWiGNi+FurQeI5rq180QM5KPUJ91yYOVe6GWl3K2/pWbQFPrlBGkzeM5671/fj+7lAOZzjp89VaDqY7Src/wc6RhhcN5rCof9zduEoYe4wtUMk+JRUHOJyaSbv8lZyK7VCyVQoKq05npQTcya28nvM2nWqZeXXuDlalpJd1z4KCxpOLS2XGpLvM9gNRiUiP/Y707Ca4/b3S69zFGELhoTlIUYl8Kn+I1bOLx6duwpHvK9t+CUIpKR8BMoA5Ch6eh2SKpN+ep9lV41PmxU7h0YMvkjn5PtZMff2S+Z9l4fsNx3he+p4oz0m4Z4KyEURZUqmUzUWeWgNVmsOC4dSedxe/dJPp0rgSo/7Yy1PTt4iL35W4syE/lwPeSABuqB6BTqOib8sEFuY1QD68WtmG+jz7F09BLclU7vBYWfRYySvsMgoenA3OdFos7MUfNx3Anufl7i/XsHKfCICKjTOdLEKJ+tc0uiRJVGrcAbesJd+2CADbih8Il5yEtX28LHp6cfW6Qq+JqI6u42vDZ9SL0TP4283X5SBEeaPz2fFqQ698YLXWyqLf64EpEh75CVVYFf6nHYU+bSvPi/x0oYIoPwEyKPVfn1oHHV/FIHlpJB2gVbyKpsbTtDv8Bae+HQiBsl945vEF2LB+Bf01f0KrJ6BGGU+fni8qUVm5fu9UcGdj/K4nX6j/ywe3hPPn7lTu+XINhzIuLEUlFCioYLHNHkqtGDORBbtN3d8qgQWB1kj+fLAt+Pt4WSb24Fz2aOpR03rxbYZLTZ3b4Km1UL0t1de+xso631ErDB793198tiRFLNosBgFHGmmBUKJCLpxGv6NpdRYHWqDeOh1yTxKbMos0VSxRjUsp7aawGveB7p+iObiE2bFTiLdo6T/lLzYczCzrnpVfsozR78CrtZR1T4ouJBYe+RlNSDQzTR9zfO8mRon8dKECKF8BMigLCDq+ouTVDk1G/eRyIl/axjRtXyodmotv45Sy7iELd6XyeP50/FoLdHqtrLtzIUlSaiUP2QidXkdKWUy/jX1YmrSVbLuTHp+vZvHu02Xdy+tTQYC8Kt3EjdX/rkJSKcxIZN12nCIK34655+63bfidGoGjZNfpU+pdvaiQWHhwDtzyBuZ9PzFX8zpP1HPz30X76D1+naiTfY38dqVSQdRFtultnhDBVOMjBPw+7F92pLlvKydq3Vfyu+ddjRb94Y6RGFJ+5deE6VQO1fLIlL9YskdcF66KNw8NPny6QowgX4/CqkD/n9EZQ5hj+pDlq1YwadXBsu6VIJSo6/DKXHQ6jYqEXu+yPVAT56qvlDzRMpS89k86q5NR3/R8yZVyKw5aI3R4CYb8BbU6UiP5I9ZGjKB36C4GfrORsYv2ibq5/1YQIO/Oi6BF9X/+bp+6pQ6/+JKQDiwBVxbIMoGlH5BOBE27DS6L3l6cSgU3/58yderO4ZVjz/Bz0j6OZjjo+tlqJqw4IKZQr5YjjUzCiAq5MKdYpZJ4/t47GO/vidmdxq9hD9Kk71tl0MlCavM03DoC4965/BY3kcZxWp74djNzNovd9orMnQOArC+nATJARA2k/r9gMhmZbfqQ7xcs5oe/jpZ1rwShxJRKgGy1WlVWq3W81WpdZ7Val1ut1trF3UanenH8pu9KmGM/HF1f3A9faKdz3bQ5+Q0uTRiqpOsoKLqc8GrwwPfwwA9oCfC2/R1+j/6Mn5eu5OkZW3CKvOS/ZR/FpzGTg/ncRhBn3VAtgmMJPZDlAO75z7H9z2nU9+xgf90nMJmvw6nVmjfD4NWQ0IomW99mQ9VPebhGDiN/30vvr9ay+2TulR9D+Jsso87LvOQIMkD7OtG0enQUHzT8mY5Pf4Zae+mKBteFm4ZB19HoDixkpvZdulXzMuzHbeLDc1GdDZANZbRQu7hEJSL1/wWLQcts00gmzv+T70WQLASp0hpBvhsw2Gy2NsArwJjibkCSJPz178EuG/FvnFzcD19oy9as4Tb1ZvKbPQ66EtoQoqRYu8DT6+H296nn3cNiw8s0s43lwXFLOJJ5/eYl5+SVYk1fx2mcumhAokqE8YIf39+9C58E+mLY9zNN1j3HYVUCze95rvT6V1SWOCUnvdsn6DJ288bxwaxOnI4600b3L1bz/m+7xQekwnLnoAp4SJdDLzqCfFZSYjRv3HczIfrLVDO4nrQaBA/8gPrMIT7JeY63ah/i0yUpPPOd+PBcaAUBsspYipt+lJToOkj9fyZcr2KO8X0mzfuDL5ftF1WQhKBTWgFye+APAJvNth64sUQaaVidhYGW+FMWl1maRWjyBDxoiej4TJm0f800Omg7BOnZzaib3MdgzS9MzHmSSZ+9y29br7+Rgm3Hsmnx3iI2HymlVfbODHJVYeg1qn9sBHFWw8ph3P3MKH413cPCmAFEvbC25HbOKy4qFdz4GAzditT+BaqmrWBO4AV+ifqSbasXcPt/V7B0b/nMPf1j5ym2HSulDQ5cyiK2LDn0kiPI5Zb1TnhiOVJ4dR47/jp/1vyedbv20/urtRw/4yrr3l33PM4zAGhM5XwE+azY+kiP/kq4Qc3PxndZ+ed83v55l0jNEoJKaQXIoUDOebf9Vqu12IdPkmpFsV2qhy7/DGSV/gKClEOHuSV/KUeqdIeQmFJvv1iFxMI9X8GAxYTF1eQ9aTyN5t7KnM9fIv3U9RMo14kLoYrRy9hFKaXToDODTDmMKuHGf2wEcb7acWF0e2kqdzzzXyyWcpRzaAyHzm/B8zugwys08O1mlv49JvleYfo3ExkyYzNp1/nmPP/2vzWHeX3+jtJpzK0E4nYphDCjtnTaLE1RicpmRzcNp27qAjaEvU7d7JXc/eUathw9U9a9u6657coHeK35Ol6TUlSx9ZEGLMIUWYnvDB+g/ms8z0zfLLayF4JGaQUCbxlyAAAgAElEQVTIucD5SZgqm81W7HNzBq0auWpL5caxv4r74a/o5NLxGCQv0bc9X+ptl5iElugHL8V/73S0EVXonTmBiAlNOTGuJ/KeX8BftlsWm9K3szQwAOeBdfx16CKjyOn74LPmMKv/uQV218SVQarffNH0iqBhjoJOr8ILu+CuMdQLcTNFN5pn9j3Gp6Pf5uulu8j3lY83wcfj9uM9uZOU06VQnaOg/rVkCEWluviHp3JPo4Nb34RBS9GHxfEZHzNK/oRnJi7k1+0ny7p31618h3Jt0ocEUYAMEFkTaeBi1NYujNB+y30pw3hq/ALS7WKXTqH8K60AeQ3QFcBqtSYBJTakE1G9MXbZiO/ohpJq4qJkn4f6x2ax03ADETXKuN5tcZMk1A27U/mF5Rzvt5xfzX3QnN6KNPMhfP9tBNlluB1tjBWVIZSXDXMZ8dPOf45eZB7AN6UrbnsWgX1/wLTu11YnOxAAVybH881UCQ/iAPksnQlaDkQaugXu/orESB3vq76i94rbmTnqSVYnby/rHl5Rp4wZfKSdyPytJy7688wtP5E2rT8cWXftjRXkmaqDZRr9cio3g0HLoNPr3CJv4E/tcJbP/IQxC/eIxXsX4XUqswtGS2QZ96QEGMKg73S4cxQdtHsYmzGY8Z/9hz0nc658riBcx0orQJ4HuK1W61pgLPBCSTVUr3I4yYHaeA+XbiWLQytnEEsmOU0Glmq7pa1q3eb0GDaRZV2WMZSX+C63GYdzy/ANUWdGav8cSfI2TKc38/5ve/D5A9jtuZyceC+5rjzucrzOCP9AOHMYTmy6+rbyzoAc4LinggTIZ6m10KwfuqEbof8vBKom8ZB3Nq3nd2TDRz048lfZzyRciq5hd5qqDpK8ecMF+ZE79+xG9/NgYg/Nh//dCSmLr62xggBZa64AATIoo8kdXkIavApzlXqM1k6g05qH+GDSDOzu6/P1UFb8rmzcspaQkOt8PcLVkiRIGoz6qdVo46y86f2M3Al3smbd6rLumSBctVIJkG02W8Bmsw222WxtbTZbG5vNVmLb8NSLt7BFroMhywb5pbTpgSxj2DiO/XIVmt5yb+m0WYZUKon7k2rx5rDheG4fSWx85bLtUMuBEBLHxNApzF+/h04fLWHpx/2onH+AJfXeY9STffhLl4QXDfLun66+HVcGAJlyaHCnWFyKJEHNm4keNAff05vZW+1+6rk2UX3BQzjer0naxHvwLf0Ads6B07vAex3kKze+l4Ckpr1rMT9v+3sU+WiGkzM/PIUGP8OjxmGXjWRtnn1tbeUrKRbGkCAcJbyc2PqoHv8Tuec46hvO8NqJIawecz9Hjx4u655dNwJ52eRiJtQQhLnp54upi3nwYnI7f0wD1VFa/dGDLROfIuASOepC+RMUG4Wcr3qUmT1SbSQCypt0KfAdWEHlvH1siH+AEEOQrV6/jBiLnoE31cKkK+NyVToz9JlClPckqyp9yjjep6dqFaktXuTeBx7nxhqRPHF7c1b6G+PdMf/qK5w40wHIJJSqEaZifALljy42kcYDxsELe/m1/miWyjfiOL4b1YqPYPbj8FVb5A8qweK3y7ajIbFItTtzn3YNn/+5G68/gNcf4JtvJnCTtJX8m1/j9cfvZV2gAepDK66t+o07B78sYQ4NglJeRaVSITV/EOOLWznVYACdvcuInJLEvjnvgkdUucCdQ65sIjQYF2/+m0pFaPsn0D6fzKaILjQ78T3O0U3JWzb6XJ6+IJQHQRcgq1USUnTBPiSlVMnC/udI0uUwKrXvXyrtCRdRoz1Sj88Jx05jeT/cMZL47n/vUnZLvVgWBlqicxyH1KvMnXUqI8hZFXUE+SLCwkLp1ncQXd6Yy5F+q3ij4Z/0lT7mWc8QvvTdw085xb4nUJFJrQYRLWdyc+4vPPHNJh6csIb7s7/GEVKD8A7PEGHWYTPfSFj+yWu6Zvhc2dgxERViKMbelzOGUKr0HUPGw8vZpWtC3R1jcIyqT96iD8p2rcLFONLwbZh8besSCkmVn0supuAfQT6PISyWpOem81ub70n2Vce44j18YxrAknfBkV7W3ROEKyonleqLJrJSbXxnVKgzD1Dia8kPLicibT2jVI/xQv2qJd2acDnN+ilfsqykA5wn0qwjr3ISpE+EU9uh0lUspCwYQT4jhRFnufRGEBWRVq2iU71YOtWLxee/kU1HzrBsbxrqqtfBaGrtzsg1O/DKsZ+443B7nmQOtVUnodt3Sn414Kp6M+yfgHxgGVJU4lU143GewS6biDSL10alxCZEvvQ7M+b+SMLOL7l5zShYMwpfpRvQ1O8KdW6HuMZKDe4ysmvTShouf5EsUwKRjW+/8ABfPix8DVRaqN8darS76rbUnlzsmDFog25M6rIkSaL7nV3Y2bgtg2fMood9Fneu+i/Sui+RmvRV0uPiG19wvRaE60FQ/rXWqRLJiUA0+Wn7S7ahQADvonc5KUfha/YoOk1Q/neWP5e42DZr3IR8WUPu8d1X97gFG0HoQqLQqMXv+lI0ahVJtaJ4tWt9ujUp4/x0AElCuuN9DAEny1VP0U9aCG2fBWvXc4ck1G7McTkal23pVTfjd2WTi4lwU8UZJbwcvUbNg/fdT9zTC3g1YTofefuy+2QOLP0PTLgZPmkMjrQy65+5XidyZBPpq6de/ICVH8PGSbD5fzD7sWsaadZ5c8lTh1yydnqwa1QljE9eeJwtrT/lNs/HzPe3x7f1B5hwE4xLgj9ehW0z4cSW0ls7JAhXEJQjyIkxIRyR44jKOFCyDW34Cu2pzYz2DuappKsbdRJKT9s6cRxaXInwk3u4qu07nOk4VBYiQoN0JXowi28MT65CSv4WjJFw8/B/fJBqVi2CPYHqtErbd9VNyHk55MpmLIagvKxeNWu8hZEDumNL7cjk1QdZu3UXrQLbaOPL5vaAgbKaY6gRH8Ufpo50PL0I2Z2DZDivJ6k7kVeP5WjVHhjq3Ubc4mfh+Eao1vqq2tL7HeSrLVc+MIgZtGre6NaAHs0q8+ZPDXj72H08GraF+wPJxG+aguQ7b1FvSBx0fAVufLzsOixUeEF5Ja8SYWSNHE9SzvqLTrcXi6MbkBe/w1pNK47E9qBOXMW++JUHtWLMLJEr0Sb7KmcWnBmcISz4thGuKOIawJ0jL/qjunEhbJJiMTj3XPU1Q8rPxU4IcRUoz7QorPEWPurTlOyu9Zmf3IblR85wh66Mc/mbPoBh/QJOrJ5Blc5PK/fJMvz+EnkqMz3334V8QMUWgwb13l+uLkCWZYx+B16jeI8AaFI1nPlPt+X3namMW16ZT0/cjEnt566qbjrHZNPUkE6s7xSqUJGyKJStoJwnrhJu5Igch85nB9dFdle7Fo50WPERTL2LPGMczzke4+E2NYq3DaFE6DVq0g01CHOfUPILi8qZQYYcSlSIyDENNhq1Cn9oAvqAS6l3fRXUnlxyESPIVxJu0vFou5p82e+GMl+0lnTTHWyXEzGtHwvePOXO3T/BkTW8n9ebzi3q07RODdYFGiLv+fXqqpx489Dgw68TAfJZkiTRtXElfhnSnvnPtOPhdnXY7o7nyU1VSFrdjMZbuvFtlrWsuylUcEF5JTdo1WTpq0IAZVW6OeraHzRlMawarWxhLfuRrV15MrM/hggd3ZpUuvbHF0pFfnhtVOkB5XURW79I58quDNL8oUSLADko+UOrggNlS3JT0WsZa7x2cmUTFjGCXG6Em/X8Uu9FmtieIXPhKKJaP4D/t//jgFyNA1V7822vxizbm8aCAzfS/sxkyNwP0XWK1khBTq0sAuQLSJJEs4RwmiWE82rX+qTlull3MJPko9lUFZWChDIWlCPIAJ7Q6so3xVHqbd04mNFHWVDS/gV4egPrW33BquN+nri5lliwVY5o45RRCX+arcjnyo500gMWokNEikUwUkVUA0DOPlL0kwMBtD4ndkxiBLmc6dbjPpbILYnaNBZ5XBty8zwMl4fycd8b0KpVtK0dzW5qKgenF/26gccBgKQPKcZeB6fYUAM9m1Xh7R4N6WSNLevuCBVc0EZ26qiaBJAg6xoX6mUfhT/fAGsXGLwabn0Tf7SV//y2m0phBu5tkVA8HRZKRURCAwCyj+0s2omBAJL7DFlYiBIBclDSxyhBkCvtcNFPzs9FQsYpmTFo1cXbMaFERZh1ZHf5ild9T/CbryWPBN5iSN/uJEQqmwGF6DVEJRRM91/NgEtBgKw2iBFkQShPgnaoIy4yjPT94cTmHLu2Wsjrv1IW7HT9GHTKBXPWpmPsOpnLZw80x6gTb4blSc3KsZyQo+BUEUeCPHYkOUCObKa5SLEISlFRsdhlI/nphyhynRJ3DgBerQiCyqPeSXVonvgWc7YcZ1zLaueC47Na1KvFmVMh6NP2U9Q9ND15dnSARizSE4RyJWhHkKuEGzkth+PNPnX1D5J3BjZPg0Z9IExZUXsow8n7v+2hVc1Iuovc43InMTaEU3IUcu7Jop1YEADlYiZKbAQRlOLDTRyXo5HPHC36yfnKFrp+3VUVEBSuA7ViQvi/O+pdEBwD3FAtgiNyHPmni14Bx+1Qrh1aMYIsCOVK0AbIlcONnJYj8OemXv2D7FsIXie0fgKAPI+fp6ZvRqOWGNu3WYUt+l6eheg15Gqi0LqKuEFBXjYAubJZ5CAHqcphBk7I0ajtV7ElcsEHqIAIkINStUgTR+Q4tDmHi3yux6Us0tOYxGtDEMqToA2Qq0QYSZfDUTlPX/2DHFkDhjCo1BxZlnl9/g5sp+2M7duMKuFihW155dbHEOLNLOJJZ0eQTUSKOshBKSpEz0liMLmKOLsA4FZGkDFcB1trC8UuLtTAMeIx5Z0Cn6dI53rzlNeGVqRYCEK5ErQBctVwE2mEo8/PAr/36h7kyDqo1gZUKuZuOcHcLScYeksdsbq2nPOaYzHLTvC4Cn9SQYAs68NE1ZIgpVZJ5OgrY/A7il4LueD1IRnFKGEwUqskHKYEVAQgp2gzDL48ZQRZJ0aQBaFcCdp3+lCjhhx1Qf1jRxGn08+ek5kC1duS5/Ez6o+9NK8WztBbi1gDU7juyCHxyr/2IqTfuJUUC7U5oiS6JFwnfKY45RtHetFOLAiQ1cbwYu6RcL3whtdQvsk6VKTz/G4lQDaaRYAsCOVJ0AbIkiThMcYoNxxXkYd8dJ3yb7W2/G/tIdLs+bzapT5qlcg7Lu+0YcriSlfW8cKfVBAA6USAHNQ0lmjlG1cRU3AKFulpzCJADlba6FrKN0Us9RbId5AvazAai1r/QhCEshS0ATKAz1SQCnE1I8hH1oLWhC+uMZNWHaKjNYZWNYu+u5Zw/TFGVgHAnl60ADmAhDlUBMjBzBSmfKiWXRlFOi/gziFP1hFiNJREt4TrQGRsVZyynvz0otXWD+Q7cGHArBclQQWhPAnqABmLMpVOUabSzzq1DSo15a+jDrKcHu5vKTYECRahMcrv0pV5ovAnuXNwYCQqRARAwcwcqaRYuLKLlmLhddlxYCBUbDMdtBIizaTJ4eSdKVrpUMnjwIkBsz5otx0QhKAU1AGyNixe2U3PUcRKFrIMabshtj5/7ErFoFXRoa5YmBcsomPiyZc1eLMLX60g4DpDTsBMhKhgEdRCwpW/87ycogXIPrcdp2wU20wHsYRIE1mE4rMX7bUheZw4ZQNmnXhtCEJ5EtQBcmSIiSzZQqCoI8j2U8qUekx9Fu5KpWPdWLFjXhCJCzOSTjhyET44+VzZ5GIi3ChGCIOZJTQMt6zFV8RFen63Mo1uESPIQatalIlMORTJWbTXhsrrxIUBgzao324FIegE9V9sVIiedDkcX1F300vbA8ABqRqnc/O5s1F8CfROKCtGnZpMKQKtq/ABst+VTa5sJswkAqBgFm7UkoWFgDOrSOfJ+Xac6AkVI8hBK9Sgxa4OQ5dftNeG2ufELRnFxlKCUM4EeYCsI00OJ2C/ugB5vV1ZsNO2dlRxd00oY3ZNFEZ3EUaC3DnkYCZMjCAHtXCTlmzZUvQqFh4nTtlIqHh9BLU8XSQmXzYEAoU+R+Nzka8SG0sJQnkT3AGyWU+aHI5U1Bzk9D1gjuWvNBWVwwzEWsTCrGDjNsRg8RU+CJLys8mVTSJADnLhRh1Zcghqd9FGCZWFWHqRgxzkvPoo1PjP1UUvDK3fhUctSrwJQnlT7AGy1Wq9x2q1fnfe7SSr1brBarWusVqtbxV3e5cTY9GRTjjavAxl4V1hpe2B2HpsO5ZN0wRR1zQYeY2xWGQHeN2FOl7jySUXESAHO4tBwxksaPOLtpOeyufCJYsc5GDnNxbMJhZhhkEfcOEVAbIglDvFGiBbrdZPgZH/etzxQD+gPdDaarU2L842LyfKrCdTtqCSfecK+V9RIABpe3FHWDma5aJJVREgByN1iLIhhN9ViJFCvw+Nz0WObBZT6EFOpZJwqcMweHOKdJ7G58KBqGIR9MwFm08VYaGePpCHT2MuoQ4JglBSinsEeS3w1NkbVqs1FNDbbLYDNptNBhYCnYu5zUsKM2rJlsKUG85CFv7PPQFeJ0dVVQFoWjWshHonlCWtRRkJsmcVIv2mYBe9XJGDXCG4teEY/Hbw+wp3giyj9TvJVxnQqoM6a63C01qUADlQ2M2n/F50eAloRYAsCOXNVQ13WK3WAcAL/7r7MZvNNtNqtXY8775Q4PyhWztQ62ravBoqlYRPHwF+lCmxqMQrn5Sl7JK0Mz8WSYJGIkAOStoQJUB2ZGdwxTmCgnzDPLUZvUaU+wt2Hn0EKq+s/N7N0Vc+we9BLfvxiWn0oKcPVzaSyctOo1Ahr8cBgF8EyIJQ7lxVgGyz2SYDkwtxaC5gOe+2BSj86oZiEDBGgYPC54xlKgHyhpxwakabxM5YQcpQsKWwO7cQMwsFI8h+XWhJdkm4TvgNEQXXjKzCBcgeJ4CYRq8ATAUbybizUwsXIOcrAbKkE68NQShvSnQ+0Gaz5QIeq9WaaLVaJeAOYFVJtvlvZ3NNC51ikXUQNAY2ZRqoG2u58vFCuWQOU14XHnvhA2RZL/LRKwLZGKl8U9gP1fl2APwiQA56kZYQsmUz3txCplgUfHiSdeK9RBDKm9JImBsMzAD+ApJtNtuGUmjzHG1owaKKIowgByJqcviMm9qxISXXMaFMWSKUqVKvoxCL9ApSLCSDCJArAtXZUePCXjMKgqCAVqRYBLtIs45MORS5kAMucsGHJ5VefHgShPKm2Jdc22y25cDy826vB5KKu53CsljCyZN1GF2FHUE+gMtSC39AFgFyEAsLDSVf1iAXJghyK2n0KpPIR68INAX56X5nJoXKOC/IM5V14noR7KJCdBwhFHMh30/yXbkYALVRjCALQnkT9DWJIkzK1rHxjowrv9kF/HDmMGmRNwOQGCPe8IJViEFLGiGQV4iU+IJRIJ0IkCsEfcGsU35uGoUaEy4IkBF5pkEvwqRjixxKortwswv5TiVA1hhEgFxSNm/eHKvRaCYBjQjyzc+EYhUAdvp8voEtWrS4aM5U0AfI4WYdWbKFaEf6lQPknGPg93BIjgcgMVa84QUrSZJwSBY0hdkQoiAAMpjFIr2KICQkFI+sxuM4U8gAWUmxkPTiA3Ww02lU2NVhGDwphTrem6d8uNYYxLWjpGg0mknx8fH1Y2JizqhUqiLsCCZUZIFAQEpPT2+Qmpo6CehxsWOC/tNWhElLlhxKwFGIKbGCCha786OpEm7EpAv6zw8VmlMditZz5Q0h/O5cHLKBUJPYcrwiCDPrsGPC4yrkZiEFlQpUejFKWBHkayMw+nILtTurJ09Jz9KZxIenEtQoJiYmVwTHQlGoVCo5JiYmB2Xm4eLHlGJ/ykS4UUcWFqTC7JiWdRCAjfYIEkX+cdBza8Iw+q4cBHmdOTgxEGYUH5gqgnCjFodsJJBXyAC5YIZBYxTXjIogoA9FReDv1JrL8LuVEWS9mH0qSSoRHAtXo+B1c8k4OPgD5IIRZE1hcsayjyCr9WzK0JEYI9Irgp1XF4bJf+UtyH15OThkI2EmURO7Igg36XBgRHYXbnv6QL6SYqEW0+gVg75gLUIhXh9+t/La0ItFeoJQ7gR9gBxRkIOs8TnBl3/5g7OP4bdUweWVqSUW6AU9nyEci2y/4lSp323HjlFsM11BRJi02DEhFSzOvBJfXi4BWUJvEB+qKwKNuaDco/vKMwyBfCduWYvZqCvhXgllbf369eY+ffpYz95OTk429ujRo94999xjHTp0aA2/3w/AhAkTYrp161a/e/fu9X/88ccIAIfDoerfv39i7969rX379q17/PjxC95sXC6XNGDAgMRevXpZH3roodppaWkagJkzZ0Z279693t13311v2LBh1fx+P36/n2HDhlXr2bNnvT59+lhTUlL0AH369LGe/WrdunXTt99+u8ql+r9582ZT9+7d6/fq1cv68ssvJ5zt/8WMHj06/oknnrhgl+Rvvvkm6vw2AJ544olay5cvv+Qnxtdeey3hyJEjuszMTPUPP/wQ+e+fL1myxNKzZ896vXv3tg4YMKCW0+lUAfTv3z/x7rvvrtenTx/rgw8+WOf8c3744YfInj171rvkE7iEoA+Qw41KFQvgynVNs4/iMFYGoEaUqGka7GRDBHq8yF7X5Q9023HKIkCuKCwGLXbZiMpbyADZbceJAZNBpOBUBBqTEiDLhQmQPS5c6DGL9SxBbezYsXEjRoyo7vF4pLP3ffbZZ5UHDx58at68eTav1ystWLAgLD09XTN79uzYuXPn7p0xY4btk08+SQgEAkydOjW6fv36rjlz5tjuuuuuzC+//DL+321Mnjw5tnbt2nlz5861de/ePXPs2LGVXC6XNG7cuMo//PDDvvnz5+91OBzqBQsWhP3888/hHo9H9dNPP+0dNmzY8f/85z9VAWbPnm2bPXu2bdSoUYeio6M9w4YNO3Wp/o8YMaL6K6+8cnTu3Lm2kJAQ/8yZMy8IVgF+//330NWrVxfbJgEffPDBserVq3t27NhhWrp06QWP+/7771efMGHC/jlz5tiqVauWP23atGiAEydOGObOnbt39uzZthkzZpxbRbtlyxbj3Llzo+VCrBn4t6D/qzXp1ORKBVNizgwIrXzpg3OOkVlQ4q16pBgNCnYqk/L37szOIORyFUs8dhyEEicC5ApBrZLIU5nRelMLdby/IEAWQVDFoC4o9+hxZqO/0sEeJy4MmHSFqqgtXKNpaw9Hzd1yvBD7wxderxuqZvRvW+Oyo2vVq1fP/+KLLw4MHz685tn7rFarKzs7Wx0IBHC5XGqtVivHxMT4FixYsEur1XL48GGdVqsNqFQqhgwZkubz+QA4efKkzmKxXDBcm5ycHDJo0KBUgDvuuCN30qRJlfV6vTxz5sy9ZrM5AOD3+yW9Xi+vX7/e0r59+xyANm3aOF988cV/vMG9++671V588cXjFoslcKn+Z2Rk6Nq1a+cEuPHGGx2LFy8O79ev3z8Wc6WkpOhnzpwZM2TIkBOzZs2KKcr/6zfffBO1atWqMLfbrTp58qS+f//+qY888khmnz59rO+9996R8ePHxx88eNA0efLk6AEDBpyrsjB9+nRbfHy877znG0hNTdU4HA51//79azscDvWAAQNSu3XrlpORkaEeM2ZM1TfeeOPYG2+8Ub0o/YMKMIIsSRJefYRy43IjyN48cKZzUo5Go5KoHC4qFgS7sxtC2LMuv22s2uvAgZFQgwiQKwqP2ozOf+VFWAB+twOnbMAogqAKQWtW3k/c9kKsa/G6yJP1mPXiw1Mw69WrV7ZWq/3HEGXNmjXzx4wZU61z584Ns7KyNB06dLADaLVaxo8fH9OvX7/6d95557kXkUaj4b777qs7Z86c2C5dulxQf9TpdKrDwsL8ABaLxe90OtVqtZqzweJXX30Vm5eXp+7cuXOu0+lUh4aGnguyVSqV7PV6Adi2bZvR6XSqb7311nNTZBfrf6VKlfKXL18eArB06dLwvLy8f1zg7Ha7asSIEdU+/PDDIxpNkV/fMoDD4VB/++23+7/66qv9U6dO/ceo+eDBg1ObNWtmPz84BqhcubIXYN68eeGbN2+29OvXL9Pj8Uj9+vU7PWXKlP3jx48/MHr06ITU1FTN8OHDa7z++uvHLvaBozAqxF9twBgFDpQR5EvJOQ7AQV8kVSKMaNRB/9mhwtNblIEGZ076ZY/TeJ3YZSMWESBXGPmaEAwep5KfLkmXP9jjFNPoFYguRAmQ851X3mRI5cvDgQ69RryflIb+bWtkXmm0t7SMGTMmYdq0aXsbNWrknjBhQsyIESMSPv7446MAgwcPTn/ssccyHn744TrLli1zdOrUyQ4wa9asfXv27DEMHjy49qRJk1JeffXVGgDdunXLNJvNfrvdrgKw2+1qs9nsB/D7/bz99ttVjx49apg4ceIBlUqF2Wz2OxyOcwGtLMuSVqu8f82ZMyeqd+/el3/TAz788MND7777brVx48ZJzZs3d2i1Wnn8+PExixcvjgTo3bt3elZWlnbIkCGJDodDnZWVpR0zZkz8sGHDzk29GQyGgMfj+ceLPy8vT2U0GgMAdevWdQEkJCR4vF5vof9IPv/889glS5ZETp06NcVoNMrx8fG+xx9/PF2r1RIXF+erU6eOa+/evYYTJ04YzqaOHD161Pjaa68lfPDBB8cK206FuKIHzNFKgHy57UGzjwCw2xVOtUiRf1wRGMOUEeT83MtcK2QZrd9BnmTEoBVvchWFX2NG7fErM0u6K1wP8u04MWLSixHkisBoUQJkbyECZLXPRb5kQLrShywh6ISEhPjOjuLGxcV5k5OTQ/bu3av/6KOPqk6aNOmAVquVdTpdQJIkecyYMfHx8fGeBx98MCskJMSvUqmoU6dO/uzZs21nHy83N1e9dOnS8NatW7sWLlwY2rRpUzvA8OHDq2u1Wm8juXIAACAASURBVHnKlCn71WrlGtSiRQvHsmXLwu+9994z69atM9esWTPv7ONs2rTJMnTo0FNX6v+iRYvCP/vss4PR0dH+l19+OaFDhw65Xbt2zRk8ePC5N8wHHnggC2D58uWW7777Lub84BigSZMmrq+//rqy3W5XWSyWQGZmpvrw4cPGBg0auG02m/FyfxeSJMkXyxv++OOP4/fs2WP+7rvvbCaTSQZl4d6MGTNip0+fvt9ut6sOHTpkbNiwoXvRokW7AA4dOqR77rnnahUlOIYKEiDrzBH4UaG+3AhytvL/lpxroXUtkX9cEZjCYwHwOi4z4ODLRy378WrM4k2uAvFpCxb25tuvGCBLXidO2UCEGEGuECxmM25ZS8BViADZn4dHJQZcKqJ33nnnyNChQxPVarWs1WoDI0eOPFKzZk1P3bp1XXfffXc9SZL+n737jpOquvs4/pnetxeWvrQLFopgFAWViF2KKBoNEisPSbDHmieKYmKJxPIYW0SJLVawG1CQYkdARMpQl872Mr3e54+ZhV22gDDLuNzf+/XKK+ydO/eexcOd7/zuuecwdOjQ2tNOO83bt2/f4M0331w8e/bs/Hg8zrRp0zbve7yrr766/IYbbuh+wQUXKCaTSX388cc3LV261P7JJ5/kHX300d5LLrlEAZgwYULpmDFjar788suMsWPH9lVVlQcffLCk/jjV1dWmvLy8/Q456N69e3DChAmK1WqNDx482HPuuece4MTwe/Xt2zc0fvz4svHjx/e12+2xaDSqu+2227bWj31uTc+ePUObNm2yPfnkkwVTpkwpA9i9e7dx5syZHXv27OmfOHFiH4AzzzyzatKkSeWLFy/OHD16dF+9Xs911123Iz8/P/pz27svTVzRsxxWasgg19dKpbB2G6rOwMaAi4tlBgtNyMhOPFMQba0SlJzqK2qUaf+0JG6uD8h14CpsdV9dxI+fDHkQSyMyrCbqcBzQQjLGWJCwvtmH/8URpri4OPz++++vrf95+PDh3uHDh6/dd7877rhjF9CogtuhQ4foa6+91ur65Q6HI/78889varitqKgounbt2qXN7T99+vStzW3/+uuvfzyQ9o8aNap21KhRBxSKTzvtNM9pp53W7LQ/kyZNKp80aVKT8DVx4sQ9lSmbzaYuXrx4JSRm2qjfPm/evFUN39OhQ4foqlWrljV3ntaqw/v+bgdKE/eMM+0mytUM1FaHWGwj4igihkGGWGhEhtNFWDWgBps8D7FXKLEYQNwsAVlTrA0C8n4YkxVkeRBLG+qnATyQeZBN8QARve0wtEoIkWqaCMjZdjOVcRdxT+sV5DpL4iHKbrkyxEILjEYDHpzoWlsRK1lBVs2yEpaW6KzJqSEPYLEQQ8wvU3lpSIbNSB0O9KH9B2RzPEjUIAFZiPZIIwHZRCUZqK3OYrGDSkNiTGqXHLmgaYVP78AQbiUgh5NTfVkkIGtJ/bLR+10MQlUxxYIEdVaZqUAjbCYDHuwYDmAhGXM8SNwonydCtEeauKJn2sxUqhnoWhpiEY+DZxe71Wyy7Cbs8rCNZvj1LkyRVkJQsoJYH5iENuhtiQpy1L+fIRaxMHpiRAwyU4FW6HT1C8nsJyDHY1gIE5MKshDtkiYCcrbdRKWakagURsNNdwhUQTzCjlgWRZlyMdOSoNGJJdrKghDJgGy0SQVZSyyOREDe71y3YR8AcQlBmhIyurBE9xOQk0vYx03yTIsQ7ZE2ArLDTBXJCmBzVeS6nQBsDLroJCvoaUrE5MLayoppan1ATi4vK7TBlPzvHfHvZ4hFfQgySgjSkrDRhTXu289Oib6BBGQh2iVtBGR7YogF0Pxqep7E3Nbr/E6pIGtM1JyJI95yJag+INVXFIU2OOw2AqqZ2P4CcjIEqRKCNCVqcmFWwxAJtrxT8ssTZnnoWwu++eYbx0UXXaTU/7x8+XLb6NGj+15wwQXK9ddf3z0WS0w9/Oyzz+aff/75/UaNGtXvrbfeygbwer363/3udz0vvPBC5ZJLLumzffv2Jsu2+v1+3dVXX91z3LhxyoQJE3qVlZUZAd54442cUaNG9R07dmzfW265pWssFiMWi3HLLbd0HTNmTN+LLrpIWb9+vQXgoosuUur/d8IJJwyYOnVqp5bav3TpUvuoUaP6jRs3Trn99tu71Le/oUWLFjlHjRrVd/To0X3vueeeTvu+/tJLL+U2PAfApEmTeixYsKDFW7J33XVXly1btpgrKysNr7/+epM5EufOnZtxzjnnHHXBBRcoDz/8cFH99unTp3cYM2ZM33PPPbffzJkz81o6/s+hiYCcZTdRqSb/ezQ3F7KnvoKcQZFUkDUlbs7AqSaXFG5G2FdLTNVhs8sQCy1xWYx4sRFrbYYTgEhyiIUEZE2JmZMFl9amAUwGZN3+VmIU7d6jjz5aWL+kcf22J554ouPkyZN3zZ492x2JRHQff/xxZnl5ufHtt98umDVr1tpXX33V/dhjj3WJx+PMnDkzr1+/fv533nnHfd5551X+85//7LDvOWbMmFHQq1evwKxZs9yjRo2qfPTRR4v8fr/uqaee6vj666+ve/fdd9d6vV7Dxx9/nPn+++9nhcNh/Xvvvbf2lltu2X7//fd3hsQcw2+//bb7oYce2pyXlxe+5ZZbdrXU/rvvvrvbHXfcsXXWrFlup9MZe+ONN5qE1QcffLDL448/vun9999fu3r1aseyZcsOucL4t7/9bVu3bt3CK1eutM+fPz+r4WuxWIx7772325NPPrlh9uzZ7pKSEuvixYudCxYscK1YscI5a9astW+88YZ7165d5kNtB2hkoRCTQU/Qkvxv629m1bRkBbmcLDpKBVlTdLZMzLoYoYAHi73pg3jRQC1ebLhsTb7QiyOYw2KkTrXj2F9ATlaQdRKQtaX+od1gHTgLmt0lGvRiRALyYfXdc7n88J+UVA/3GHhpBb+a1Mpyq9CtW7fQk08+ufFPf/pTcf02RVH8NTU1hng8jt/vN5hMJjU/Pz/68ccfrzKZTJSUlJhNJlNcr9czZcqUsmg0sfDbzp07zS6Xq0m5dvny5c5rr712N8BZZ51V9/zzz3e0WCzqG2+8sdbhcMQBYrGYzmKxqN98841r2LBhtQBDhw713XzzzY1uY9x3331db7755u31K9o11/6KigrzySef7AMYMmSI97PPPsu67LLLqhoe57333ltjMpnweDx6n89ncDqd+10hr95LL72Uu3jx4sxgMKjfuXOn5Xe/+93uiRMnVl500UXKtGnTtjzzzDMdNm3aZJ8xY0be1VdfXZFsk9HpdMZ69uwZBhg4cKD3u+++c3q9XkOvXr0CV111VU+/32+47bbbth9oO1qjiQoygGpP/ptproJct5OwNZcIRooypYKsJXpbNgDemqpmX48GPHiw47Rq4rukSHJaExVk3f4WCqmvElrkNrqW6JKznLS2WEjQn3i2wSB944g3bty4GpPJ1Og2ZHFxcWj69OldR44ceXRVVZXx1FNP9QCYTCaeeeaZ/Msuu6zf2WefvSd4G41GLr744j7vvPNOwTnnnNNk9Sqfz2fIzMyMAbhcrpjP5zMYDAY6dOgQBXj66acLAoGAYeTIkXU+n8+QkZGxJ2Tr9Xo1EokAsGLFCpvP5zOcfvrpe8YWNtf+oqKi0IIFC5wA8+fPzwoEAk0mejeZTHz99deOc8899+icnJxI586dm5kFoVkqgNfrNbz88ssbnn766Q0zZ85sVDWfPHny7oEDB3rqwzFAfn5+NBQK6desWWONRqN88cUXmYFAQF9TU2Ncs2aN/bnnnts0bdq0LbfffnuPePyAs3qLNPOpb7JnE/UbMLYwBtlnTiw73DFLKshaYnAk7uD46irJ7di9yetqyINXtZEhAVlTnBYju1QbReFWZjiBPbNY6GWcqaYYkl+sY4EaWloeJhKonyJSVuE8bH41qXJ/1d7DZfr06V3+/e9/rz3mmGOCzz77bP7dd9/d5e9///tWgMmTJ5dfeeWVFZdffnnvzz//3DtixAgPwJtvvrluzZo11smTJ/d6/vnn1995553dAc4///xKh8MR83g8egCPx2NwOBwxSAw7mDp1auetW7dan3vuuY16vR6HwxHzer17uqaqqjqTKXEX9J133sm98MILW1k1LeHBBx/cfN9993V96qmndIMGDfKaTCb1mWeeyf/ss89yAB577LFNnTt3jgwdOtS3ePHildOmTev42GOPFd111107649htVrj4XC4USE2EAjobTZbHKBPnz5+gC5duoQjkch+C7Z6vZ4HHnhg8913393VZDKpPXv2DGRnZ0ej0aiuuLg4aLFY1L59+4ZMJlO8vLzcWFhYGN3fMVs936G8uSFFUTIVRflAUZSFiqJ8rSjK0OT2ExVF+VZRlC8VRbknVef7ubIdZmp1mS2OQa425KHTQWGGVJC1xOxIDL3x17VwTQ3V4cOKyypDLLTEaTHixY5xf3PdRgIAGKwSkLWkflabkKf5O08AkWDiy5VJ+oYmOZ3OaH0Vt7CwMOLxeAxr1661XHXVVT3j8Tgmk0k1m81xnU6nTp8+vcOrr76ak3xfTK/X07t371D9mOErrriiYuDAgd76Mblz5szJGDBggAfgT3/6U7dQKKR/4YUXNtQPtRg8eLB30aJFmQBff/21o7i4OFDfru+//951xhln7HcZyE8//TTriSee2PTmm2+uq6mpMQwbNqxu8uTJ5fVt6tixY2TcuHFKVVWVAcDhcMT1en2jKnT//v39S5YsyagP9pWVlYaSkhLbUUcdFQRanTtep9OpajPPBi1cuDDjlVdeWf/KK6+s3759u+XUU0+tGzJkiPerr77KiMfj7NixwxQKhfS5ubmHFI4htRXkm4F5brf7MUVRFOA/wHHAM8CFwCbgI0VRBrnd7uUpPO8BqZ/qLbeFCnK5uTt5TgtmWQ1LUyyuREAOt/BBpwt58ao2OkoFWVPsZgNebBgj+6kgJx/SM1ikSqglZmfizlPQV0tLI4wjwUTfMFrlAV8tuvfee7dcf/31PQ0Gg2oymeIPPPDAluLi4nCfPn38Y8eO7avT6Rg6dGjtaaed5u3bt2/w5ptvLp49e3Z+PB5n2rRpm/c93tVXX11+ww03dL/gggsUk8mkPv7445uWLl1q/+STT/KOPvpo7yWXXKIATJgwoXTMmDE1X375ZcbYsWP7qqrKgw8+WFJ/nOrqalNeXl7TKSn20b179+CECRMUq9UaHzx4sOfcc89tFKr1ej1XXHFF6RVXXNHbZDKpubm5kenTp5c03Kdv376h8ePHl40fP76v3W6PRaNR3W233ba1fuxza3r27BnatGmT7cknnyyYMmVKWf32goKCyJgxY/pZLJb4OeecU3nMMccEjznmmOB3333nGj16dL94PM6dd9651Wg89M/sVH7qPwqEGhw3qChKBmBxu90bARRFmQOMBA57QM6xm9kdz6K3d3fjF6Jh8JWzw5BFRxl/rDn2jERAjviaDPkCwBipo44iqSBrjE6nI6y3Y4r5W90vFvJhAIwyzlRTbMmAHPa1XIiL1VeQbfLlSQuKi4vD77///tr6n4cPH+4dPnz42n33u+OOO3YBuxpu69ChQ/S1115b39rxHQ5H/Pnnn9/UcFtRUVF07dq1S5vbf/r06Vub2/7111//eCDtHzVqVO2oUaNarTSPHj26ZvTo0a2upjRp0qTySZMmNbl1P3HixD23bW02m7p48eKVkJhpo377vHnzVu37vquuuqriqquualLpvO+++1LyYF5DBxWQFUW5Grhpn81Xut3uJYqidABeAW4EMoCGT7l4gB4Hc85Dle0wsy2WjVr7E42K+t5SAErCGRTly/hjrXFkJh7ejPqbD8imiAcPvXCYWxppKI5UEaMdc8yfmAKwhVuBkYAXA2CySUDWEntyXvRooJWAHEpUkC2yCqcQ7dJBBWS32z0DmLHvdkVRjgVeB/7kdrsXJivIDa8OLmA/a7e2jRyHmR1qHjpfeWJyd1OyWpxcRW9D0EVhhiUdTRNplJGVC0C8hQ86S9RL0OBodayUODJFjQ4MsRhEg2Bq/stzLOQjpJqwWlIy7aZoJ1x2K17VSizQ8iwn8ZCPuKrDapXCixDtUSof0jsKeAu4zO12fwLgdrvrgLCiKD0VRdEBZwGLU3XOnyPbbmKXmghD1O3Y+0LNFgDWhXIokAf0NMdktuBTreiCzXxviwQxqmHCxqbzI4sjX8yUvDUeankccizkxY8Fu9xh0BRXchrAeCvzZKthf6JvWOT5hTYWj8fjUsEQP1uy37Q4HjqVT6Q9AFiBxxVFWaAoynvJ7ZOBV4HvgOVut/vbFJ7zgGXbzewkGZBrGwxVqU4E5O1qPgUuqSBrkVfnQN/cfLfJbVGTjCHUItWUHDYRbnkmi1jIhx8LNpMEZC1xWo14VRu6VvoGER8BLNjNEpDb2E/l5eWZEpLFzxGPx3Xl5eWZwE8t7ZOyf7lut3tMC9u/AU5M1XkOVo7DzM5mK8glhG35BIMWmeJNo/x6J8ZwMwE5uQjAnmVlhaao5v1XkNWQj4BqwSYhSFOcFiPbsZHd2jzZkQB+1UKWfHlqU9Fo9Jrdu3c/v3v37mPQ0OJn4pDFgZ+i0eg1Le2gmat6tsPMbjW53PQ+FWSvrRNUyxzIWhUwujBHmwvIyW1WCchapLMkH59oNQT5ZYiFBlmMenzYyGulb+iSfaNI+kabGjx4cBkwOt3tEEcezXzbyrKZCGHGb8qB2m17X6jeQpW5I4AMsdCosNGFLdrMrdLkuOT65aiFtuit+68gE/YTkCEWmqPT6QjqHZiiLfcNfdRPEKvMrS9EO6WZf7lGg54Mq5FqUwHUJodYxCJQt51SfSFmg54su8x1q0VRcxbOeMtjkOtXzRLaok/eOVBDLY8z1UX8+FULNqkSak7I4MAU9bX4uiEaIKSXoosQ7ZVmAjIkxiGX6wv2DrGo3QZqnK1qPvkui0zlpVExazYZqod9l7WM+hMVZItTKshaZEzOXxttZaYCfSwgQyw0Kmx0YIm3HJCNsQBhnQzbE6K90lRAznaY2U1u4iE9Vd0zg8XGSJ7Mgaxl9hxsujB+X+PbpSFvYvEQCcjaZLQlKsgRf8sVZEM0QAArdpNmHucQSTGjE1s8uZBMM4yxAGG9zIEsRHulqYBc4LJQEslOPHQTqN4zB/LqYA4FLvmmr1UGR2J2k7qq0kbbw95qYqoOp0uGWGiReU9AbrmCbIgmhlhYzZq6lAogZnaiJw6R5pcjt8T9hA2ywqIQ7ZWmrupFmTaWhhIP5LHtO6guAb2R1V6nVJA1zOhMLDftrW68XHzEV4MHOxl2WSVNi+w2K0HVRKyVIRbGWJCgzoLZoKlLqQDi5uQsJy2MUbfEA0SN9sPYIiFEKmnqql6YYWVhsDeq2QHr58CmhcTz+1ETjMsqehpmzUwE5EBtWaPt8UAtdaqdLJs8vKlFdosBLzZiLc1iEY9hUkNE9VZ5fkGLLK0E5HgcqxqUgCxEO6apgNwh00IYE77Op8CPb8HOZdQo4wGZ4k3L7JkFAIQ8jSvIajBRQc6UgKxJDrMRv2pBDbYwBjl5az1qkHGmWlQ/ywnNrcIZSTy8FzPKEAsh2itNBeT6hUB2F5ySWD7WYGFT0fmNXhPa48xOBOSop7LRdl3IQ53qIEuGWGiSw2LAhw21pQpyOBGQY0YJyFpkSAbkaKC5KSKTfcYsAVmI9kpTAbkoM/FBti5jaGJDv/Mp8Scqx11y5FaYVmXkJAJy3F/VaLshXIcHGxlWmaFAixxmI16s6CItBOQ9VUK5dmiRIfkQZ8hb0/TFcKJv7FmuXAjR7mjqk79Dskq8OeSCS9+AogFs/daDTgedsqQKpFVGsxUvNnSBxgHZFPUQ0HfCKA9gaZLdYsCn2tCHW5jrNllBViUga5LJkZjdJuirpUmdOJwYlqO3SEAWor3S1Ce/zWwgw2qktC4IytmQUcS2Kj8dM22yHKjGeXQujKHqRtssUS9ho3zAaZXTkqggG1paLS05Blk1SUDWIktyhc2Iv7bJa9Fg4q6Drv5BPiFEu6O5VNgh08ru2uCen7dW+emSI9VjrfMZMrCEG9wqjcexxP1ETBnpa5RIK6sxMQa5xeWE62+jm2ScqRZZnYmAHG0mIId8iW1Gq3zBFqK90mBAtrG7bm9A3lblp6uMP9a8oDETa6TBB12oDj0qMYsEZK3S63WE9a0E5GQFWW+R64cWOez2FufJDiVXXzTZ5fohRHulvYCcYdlTQQ6EY5R5QnTJlg84rQubs3DEG3zQ1U/dJAFZ08IGB6Z4oPnlhEP1t9GlSqhFLqsRDzbUZgJy/eqLRpsMsRCivdJgQLZS7g0RicXZXp2oAHXNlYCsdVFrDq54g/luvYk5keP23DS1SPwSRI0O9Kh7hlM0Ek7ObiHjTDXJaTHhVW3NLhQSTc6dbXXIF2wh2ivNBeSiLBuqCrtqgmytSgRkmeJNYMshU+cjGAoBoNbtSPy/qyidrRJpFq1f6CHczFRvyW0yzlSbnFZjYvabZubJjgYSAdksQyyEaLc0F5AHdM4CYElJFduSAVnGIAu9IweAuqrEctPh6kRA1mV0TFubRPrF6x/AayYExZIhSAKyNtlNBjzYMUSaDrGIhzwEVRNOmyxAJUR7pbmA3LeDi2y7ia83VVJS6cduNpDrkJXStM7oTAyl2BOQa3YSUQ1YMgrS2SyRZnsWegg3cxs9UIdXtWI1y1LkWqTX6/DrnJjCTQOyGvLiw4rDoqmlBoQ4omjuX69er+PEHrl8uaGCSEzlhOIcdDpdupsl0syR2xmAurItcPRgwtXbqSOLPJdMAahlav0DeM1VkJMhyG7W3GVUJAUMLizRzU1fCPvwqVYcZsPhb5QQIiU0V0EGGNozl121QSq8Ia4aVpzu5ohfgNwuCgDBso0AxGt3Uqpmy/h0jdObkw/gNfMgVjzowavasEsI0qyQ0Yk11rRv6MI+qSAL0c5pMyD3SNxOVwpdDOuVl+bWiF+C7MKuhFUjVJcAYPCVUqpm0zlbKsiaZkssBrFn2r8G1JAXPxZsEpA1K2xyYVWDEIs02q6PePFhw2aSviFEe5Wyr7eKojiA14BsIAz8zu1271AU5UTgcSAKzHW73fem6pwHq1eBk3GDOjFqYEcZXiEA0BmMlBoKsXi2AmAPllFj7CsVII0zJAOyGqylyZUi7JEQpHFRcyb4gGAtOPYWWwxRPyGdFb1ePl+EaK9SWUG+FljqdrtPAV4Bbktufwa4DBgGnKAoyqAUnvOg6HQ6/nHJQEYo8gCW2Kva3JGM4A4IebHGfYRshelukkgzgz0x601zywkT9uFVrTLEQsNUS/IOQ6Cm0XZT1EdQL8OzhGjPUhaQ3W73Y8Bfkz92BWoURckALG63e6Pb7VaBOcDIVJ1TiFQKOLtQGNsNnt2JDTIHsubZbDZCqomIv6bJa/qIL1FBloCsWTpb4gsUwcZfoEyxABGDBGQh2rODun+sKMrVwE37bL7S7XYvURRlPnAscAaQATQcvOcBehzMOYVoa/Gs7mRU+PBtX4kDMGV3SneTRJrZzUbqsGFtpoJsiHjxqRacMgxHs+rvMKjBmkZDcMxxPxGzBGQh2rODurK73e4ZwIwWXvu1oih9gY+AQUDDdVhdQNNSjBC/AOa8HrABqlZ/jgNw5nVJd5NEmjktBjyqHXOguYCcqCDLOHXtMiYXGAp7q7A02G6NB4hKBVmIdi1lQywURblTUZTLkz96gZjb7a4Dwoqi9FQURQecBSxO1TmFSKWMot4AmLd/BSRmthDaZjcb8WBvOotFPIYpHsSHVSrIGmZxZgMQ9FTt3RgNYSRK3CQrLArRnqXyyv4C8O/k8AsDcGVy+2Tg1eS2uW63+9sUnlOIlMnv1geAQv961sS7UlSQn+YWiXRzWIx4VFvTgBz2AeDHhsWoydkyBWBxJaYMDXsbBORk31DNjnQ0SQiRIikLyG63uxQ4u5nt3wAnpuo8QrSVzMxs1tOFmriN/wnfzBcyB7LmuaxGyrCjD1U1fiGcWFkvYnTIVJEa5nI4CalGIr4GIweTfUM1SUAWoj2Te4NCJOl0OiouncuHqyq40GKUJYQFTosRj2rHENnS+IXk0tNxo4wz1bIMu4k67MT91Xs3JvuGziJDLIRozyQBCNHAUKUjQ5WO6W6G+IVwWRNjkI0Rb+MXklXCmIwz1bRMm4k61YG5wTRv8WAdekBvcbX8RiHEL54MnhNCiBY4zEY82DDH/BCP7X2h/ja6WQKylmVYTdThQB/cO8Qi7CkHQLXnpqtZQogUkIAshBAt0Ot1hA3JENzwQb3kbXTkNrqmuaxGalUHhvDevhGuKwNA78xr6W1CiHZAArIQQrQiYkreKg82CMjJCrJeKsiaZjTo8esdmCJ7+0a0LlFBNkhAFqJdk4AshBCtiNYH5FAzAdkq40y1LmjMwBL17Pk57i3Hp1qw2qVvCNGeSUAWQohWqJZmKsjJIRYGm4QgrQsbXdhiHlBVAOK+CqrUDDJspjS3TAhxKCQgCyFEK1RLZuIPzVSQTTYZYqF1UXMGBuJ7FgjBV0ElLnId5vQ2TAhxSCQgCyFEK3S2ZEBuUEGOBT14VStOi4QgrYvXf4EKJOZC1gcqqVIzyJGALES7JgFZCCFaYbA1rSBHAx78WHFYZCp5rQvbCxN/8OwCwByqoooMsuwSkIVozyQgCyFEK0z2+gry3sUg6ivIDoshTa0SvxQRZ6fEH2q3gapii1TjN2Zh0MsS5EK0ZxKQhRCiFTabg5BqIhbYG5DVQDV12KWCLFAzEgE5Vr0Vwl5MapigOSfNrRJCHCoJyEII0QqX1UgdNqL+vaul6XxlVKiZEpAFNlc2taqdSNVW8FUAELNJQBaivZOALIQQrXBajdSpDmINArIhUEmFmolTArLmbAaduAAAIABJREFU5TjM7FTziFZtA38lAKpdFgkRor2TgCyEEK3IsBqpIBPVm1hCmHgcU7CSCjJxmCUga13HLBs71NzEGORkBVnvyE9zq4QQh0oCshBCtMJpMVGmZmHw7U5sCFSjV2PJIRbykJ7WJQJyHmbvDqLexDLT5kwJyEK0dxKQhRCiFU6rkVI1G6O/LLFami9RSa5UM2QMsqDQZWE3eZijHkJlGwCwZRamuVVCiEMlAVkIIVrhqg/IUT+EPOBLVAkrkDHIAowGPT5bEQDqzh8IqiYyMrLS3CohxKGSgCyEEK1wWRIBGQDPbkiORa4iC4tRLqECYq7OANh3fMkmtSM5TkuaWySEOFRydRdCiFa4rCbKqA/Iu/ZUkP3mHHQ6WQxCgCmnKwD6eIRp0QnkOWUVPSHaOwnIQgjRCqtJTznJeW2TFeQYBmLmzPQ2TPxiOPM6UqU6WdPpIr6OH02OQwKyEO2dDKATQohW6HQ6ApY8UNlTQfYYsrBbJQSJhI7ZLk4L/YMzM/qg0+0kyy59Q4j2TirIQgixH3qri6Denqgg+8qp1mWRIyFIJHXMslKHk683V5PrMGPQy9AbIdo7CchCCLEf2XYzVfpc8OwEbxnlagZ5LgnIIqFztg2AHTUBLh7SJc2tEUKkQsqHWCiK0hf4Fih0u91BRVFOBB4HosBct9t9b6rPKYQQbanAZaGsNpuOyQry7lgxeTJTgUjqmJUIyMV5Dq4/vXeaWyOESIWUVpAVRckApgOhBpufAS4DhgEnKIoyKJXnFEKItlaQYWFnLAvqdqF6y9gVdUlAFnvYzUbuPv8onvrtcVhNsrqiEEeClAVkRVF0wHPAXYA/uS0DsLjd7o1ut1sF5gAjU3VOIYQ4HPKdFrZFMlBrt6GLhShTs8h3SUAWe101rJh+RRnpboYQIkUOaoiFoihXAzfts3kL8Lrb7V6hKEr9tgygrsE+HqDHwZxTCCHSJT/Dyhfx3qi2HCq7n8us5SfzsFSQhRDiiHVQAdntds8AZjTcpijKBuDqZHjuAMwFzgdcDXZzATUH11QhhEiPApeFOfHjWfXbmyj3Bqle/r0sBiGEEEewlD2k53a7e9X/WVGUEuDM5EN6YUVRegKbgLMAeUhPCNGuFCSHU5R5glR6wwAyBlkIIY5gh2OhkMnAq4CBxCwW3x6GcwohRMoUZFgBKPOEqPIlArKMQRZCiCNXmwRkt9vdvcGfvwFObIvzCCHE4ZCfrBaX1YWoCYRxWowyW4EQQhzBZKlpIYTYD7NRT7bdRJknSG0gIuOPhRDiCCcBWQghDkC+y0K5J0RdMCLjj4UQ4ggnS00LIcQBKHBZKfOEqPCGJSALIcQRTgKyEEIcgIJkBbnCG5IH9IQQ4ggnQyyEEOIA5GdYKK0LEo2rUkEWQogjnFSQhRDiAAzonAUkxiIfX5yd5tYIIYRoS1JBFkKIA3DusUWcc0wHdDpdupsihBCijUkFWQghDpCEYyGE0AYJyEIIIYQQQjQgAVkIIYQQQogGJCALIYQQQgjRgARkIYQQQgghGpCALIQQQgghRAMSkIUQQgghhGjgFzkP8qpVqyoURdmS7naIQ9KtLQ4qfeOI0CZ9A6R/HCHk2iFa0mbXDiH2pVNVNd1tEEIIIYQQ4hdDhlgIIYQQQgjRgARkIYQQQgghGpCALIQQQgghRAMSkIUQQgghhGhAArIQQgghhBAN/CKneWtIURQ98BQwAAgB17jd7g3pbVV6KIqyDKhL/rgZeBZ4HIgCc91u973pals6SN9oTPpHY9I/9pK+0Zj0jcakfwjR1C8+IANjAavb7R6qKMqJwHRgTJrbdNgpimIFdG63+7QG234ALgQ2AR8pijLI7XYvT1MT00H6RpL0j2ZJ/0D6RgukbyRJ/xCiee0hIA8D/gvgdru/URRlSJrbky4DALuiKHNJ/HebCljcbvdGAEVR5gAjAS1dxKRv7CX9oynpHwnSN5qSvrGX9A8hmtEexiBnALUNfo4pitIegn2q+YFHgLOAycCLyW31PEBmGtqVTtI39pL+0ZT0jwTpG01J39hL+ocQzWgPF4Q6wNXgZ73b7Y6mqzFptA7Y4Ha7VWCdoii1QE6D111ATVpalj7SN/aS/tGU9I8E6RtNSd/YS/qHEM1oDxXkL4FzAZJjxVamtzlpcxWJcXIoitIRsAM+RVF6KoqiI/Htf3Ea25cO0jf2kv7RlPSPBOkbTUnf2Ev6hxDNaA8V5NnAGYqifAXogCvT3J50mQHMVBTlC0AlcVGLA68CBhJPGn+bxvalg/SNvaR/NCX9I0H6RlPSN/aS/iFEM3Sqqqa7DUIIIYQQQvxitIchFkIIIYQQQhw2EpCFEEIIIYRoQAKyEEIIIYQQDUhAFkIIIYQQogEJyEIIIYQQQjQgAVkIIYQQQogGJCALIYQQQgjRgARkIYQQQgghGpCALIQQQgghRAMSkIUQQgghhGhAArIQQgghhBANSEAWQgghhBCiAQnIQgghhBBCNCABWQghhBBCiAaM6W6AEEK0JUVRDMANwGUkrnlm4APgbrfbHVIUZSbwk9vtfiSNbbwCuMjtdp+frjbsj6IopwAPAzagFrjC7XZvSm+rhBCibehUVU13G5o44YQT1E6dOqW7GeIQrFq1qsLtduen+rjSN9q/tuob0Hz/2LlzJ7FYjI4dO2IwGIjH42zfvh29Xk/nzp3ZsWMHFouFvLy8tmjSAamurqauro5u3bqlrQ2tiUQibNy4kW7dumGz2aisrMTr9bZJe+XaIVrSltcOIfb1i6wgd+rUiVmzZqW7GeIQKIqypS2OK32j/WurvgFN+8e2bdsYNWoUX3zxBU6nc8/28vJyli9fzplnnskdd9yB1+uloqKCiooKevfuzfTp07Hb7bz99tu88cYbRCIRamtrufbaa7nsssuYNWsWn376KXq9ni1btmAymXjooYfo06cPl19+OQMHDmTZsmXs2rWLwYMH89BDD6HX61m2bBmPPPIIgUAAnU7Hddddx4gRI5g1axZz5szh2WefbfT7xGIxHn74YebPn4/L5aJ///5s3LiRl19+mcsvv5zMzEw2bdrEpZdeyhlnnMHUqVPZsWMHqqoyduxYrrnmGrZv386oUaNYvnw5QKOfZ82axUcffUQ8Hqe0tJTCwkIefPBBCgsLG7Vj5syZ/PTTTzzySKLIHgqF2L59Oz179kz5f0O5doiWtOW1Q4h9/SIDshBCpMLq1avp1atXo3AMkJ+fz5lnnrnn59LSUl566SXMZjPjx49n7ty5nHHGGbz11ls899xzZGdn88MPP3DllVdy2WWXAbBkyRI+/PBDOnTowLRp05gxYwYPPfQQAFu3buXll1/G7/dzzjnn8N1339GvXz/uvPNOZsyYQefOnSktLeXiiy9GUZQW2//WW2+xatUqPvzwQ3Q6Hb///e8bvZ6RkcHHH38MwIQJEzj99NO58sor8Xg8/Pa3v6WoqIgBAwa0+ne0bNkyZs2aRXFxMY888gh//etfeeKJJxrtU1JSgt1u56abbmLz5s0UFRVx11137edvXwgh2i8JyEKII5Zerycej+93v5EjR2Kz2QDo3bs3VVVVOBwOnnnmGRYuXEhJSQlr167F7/fvec/RRx9Nhw4dADjqqKP49NNP97w2YsQI9Ho9TqeTbt26UVtbyw8//EB5eTl//OMf9+yn0+lwu90ttmvhwoWMGTMGi8UCwCWXXMLLL7+85/UhQ4YA4Pf7WbZsGS+88AIALpeLcePGsWjRov0G5JNPPpni4mIALr74YsaMGdNkn2g0yueff86rr75K9+7deemll5gyZQrvvfdeq8cWQoj2SmaxEEIcsfr378+mTZvwer2NtpeWljJp0iSCwSAARuPeWoFOp0NVVXbv3s3YsWPZsWMHgwcP5sYbb2x0DKvV2uQ9rb0Wi8Xo2bMn77333p7/vfHGGwwbNqzF9jdsFyQCf0N2ux2AeDzOvs+TxONxotFok7ZFIpFG+xkMhkbvafhzvYKCAgYNGkT37t0BuOiii1i7du2evz8hhDjSSEAWQhyxCgsLGTVqFHfdddeekOz1epk6dSpZWVmNguy+fvrpJ3JycvjDH/7A8OHD+fzzz4HEuOCDMXDgQLZs2cKSJUsAWLNmDWeddRZlZWUtvufUU0/l/fffJxwOE41GmT17drP7OZ1OBgwYwKuvvgqAx+Ph3Xff5aSTTiIjI4NIJMKGDRsAGlW6Ab755htKS0sBeP311xkxYkST459xxhksW7aMbdu2ATB37lx69+7d6t+fEEK0ZzLEQghxRLvnnnt46qmn+M1vfoPBYCAcDjNy5Eiuu+66Vt938skn8/bbb3P22Wdjs9no378/OTk5bNlycM8J5eTk8MQTT/Dwww8TCoVQVZWHH36Y1mZWGDduHJs3b2bs2LHY7XY6d+68ZyjIvh555BHuu+8+Zs2aRTgcZtSoUYwbNw6dTsett97KtddeS05ODmeffXaj9xUWFnLrrbdSXl5Or169uO+++5ocu1+/fkydOpUpU6YQjUbJyMjg8ccfP6i/ByGEaA9+kdO8jRs3Tm3XTxtHAlC+FgqOAqMl3a1JC0VRlrrd7iGpPm577xu1oVo2Vm6iZ24PMi2Z6W5OWrRV34D23z/29cUXX1BZWblnXPD999+PxWLh1ltvTcnxW5o9I53k2iFa0pbXDiH2JRXkVNvwGXx4E9RsBZMDTv8LnPj7/b9PHPFeWvQm6z/wUODpykfOVfS/oIAxJ5+5/zcKzerduzczZsxgxowZxGIx+vbty9SpU9PdLCGEOOJJQE6lsrXw+m8huzuM/j9Y8wH89w7wV8Kv/zfdrRNpNHvFB+x620CuvgM5x0NkZQZbXoHZ4blcMEJCsmheYWEhL774Ypsdf9y4cYwbN67Nji+EEO2VPKSXKrEIzLoWzA6Y+D4cNxEufR0GTYBFf4fV76e7hSJNaoI1fP/6DmwxJ5eMDvHb3Nlcc946gs5atrwV45uVy9PdRCGEEEI0IAE5VX58E3b/COf9A1zJVaj0BjjvUeh4HLw3BWq3p7eNIi2e//wVOlb3oW/PVXRYcCX+hR9jnfM3Ls/+K1FjmIUzN+Dxe/d/ICGEEEIcFhKQUyEeh6+egMJj4KgxROIRFmxbwHM/PsfXZUtRL5wBsXBiuIXQlHJ/OTu/DBI3hBmy7nHWftSdLZ/Y2PhhIZ6PgxxrfQanL5d//UvuMAghhBC/FCkfg6woyjKgLvnjZuBZ4HEgCsx1u933pvqcabd+bmLWinH/IhQPc8sHU9i2eiVeW5Qns0IM6nAc/zfsejIWPATrP4XeZ6S7xeIweXfFhxRXDKCn6VNKFzoosefw+ennM8geRZn7Bl3/u5kNv56HZc3pfLjoc84/pekctEIIIYQ4vFJaQVYUxQro3G73acn/XQk8A1wGDANOUBRlUCrP+Yvw/QxwdUQ9aix/fXQSXV/fySkr8jj3mw5cueh4vCvrmORZgSe3F3xyO0RD6W6xOAxUVWXFNyXoMdBx2Zeszi9gRd8OdPF/h70wSuG/niaYUcBpn79PyFjG6neq2VaxI93NFkIIITQv1UMsBgB2RVHmKooyX1GUUwCL2+3e6Ha7VWAOMDLF50wvbzlsmAf9L+bt2U+TuaQSk6kPrvwJFGQPQw3UcdIyPdZlLm7t2oNo1Ub45ul0t1ocBktLl5K3vQc2dTPrrXpKCpx06tqZvkOHs/WnH3j7/x7Gcc9dqFY7J614EVvIxQtPf0IkFtn/wYUQQgjRZlIdkP3AI8BZwGTgxeS2eh7gyFodYdVsUGPszDmJknc+BVMXcjNO5VeLHmXw4lcYtmYT+jgcu8ZD3Uo7T/QclJjVom5nulsu2tgny+eR7+tCxs5FbM3LxDzgVCbc9xBnTJrCVY89R27nLnz4wlPo77yVjJoddCv9kLwdPXj8Py+lu+lCCCGEpqU6IK8DXnG73arb7V4H1AI5DV53ATUpPmd6/fgGFB7Lu+/OBp0Rq/0cjvr6Mb49+kQuOnsq1/76NvR1FnRqkCGrzXxS5eAbow7m/DndLRdtKBqPsmOFFzXuZ6e5HL/excQbpqDTJ/7JObKyGf+Xv1HYoxefvv0apttupdeaT7EF12L6shMvLPxPmn8DIYQQQrtSHZCvAqYDKIrSEbADPkVReiqKoiNRWV6c4nOmT8022PE9W7NGEFi3HbNlKN23LuLz4mN57qjz+d+Lf8XzN5xJ9R/+jC9agBrbxXlL+3Nvfm9q1rwLG+en+zcQbeT70u/pUN4Lg+9zIkY9pnOuINNha7SPxW7ngtvvwZWXx6cL52D//dUMXjoTU8zP7ll63vvpozS1XgghhNC2VAfkGUCWoihfAG+QCMzXAK8C3wHL3W73tyk+Z/q4PwFgzopdxAxmLAYFg28Nrx97Lq9deyKXndCV47vnMHX00Yx86AF0sWxioZWM+OoU7inqgvrBDRD2pfmXEG3hs1ULyfMWEAqvR41a+M25w5rdz56Rydjb7iEej7Fg2yZyRp/KcT88T2Ywm69f3sKCLYsOc8uFEEIIkdJp3txud5jEjBX7OjGV5/nFWPsh5dZ+1K3Zjdl6Mp12fcPfjx7Dw5cch9LB1WjXob3ycDz4EPPvvA48a2H9ibxV+BEXz7sPznkoTb+AaAuxeIxNP5YxIPQjMX2ckl5n0D3P0eL+OR07MerGO3nngbtZMuA4fjW0K74Vr0PfCfxn5jyc/+NgSIfBh/E3EEIIIbRNFgo5WIEa2PIl3/h6E9fpMJmOoSxWRs+TjuP0foXNvqV/r44MmXQTqAG67zDzevxoSpY+D5sWHN62izb1Y8WP5Jd2Jx78AVcwzMBzz9zve7r1H8jpV01m8/LvWXvssfQ9WqXz9s/pv+tU/v7SDJbtluWohRBCiMNFAvLB2vAZwYjK+o21GE0KedXr+U+PE/nzef1afduwM4bR7fgziEdL+PWKX/GXnG5EZv8eAtWHqeGirc3b8DlFlU7iqodqQwHn9+94QO8bcMa5DBk1jhWffsLWEWdyXKcScqpWM3zTBfzlzYdwV7nbuOVCCCGEAAnIB2/DPNYFu6HG4hgtgwgFt6EMH0K33JZvpde78JYpOLO7E4qs4ISvfs2jpiB8cAOo6mFouLbUlPr56Kkf2bam6rCcT1VVflqxCUJrMcRhW/+z6ZBpPeD3n3LZFRw1fARfvfUqZedfwAnWL3H6yjhr9QT++PYdVAQq2rD1QgghhAAJyAdHVWHjfFb4uxI32DDFnczNKeR/TulxQG/X6XRc8Y+HMRichKJbCf90Mv/d8iks+3cbN1xbFn49j5fuW0jJjxUs/3TLYTnnuup1OHfkEwuvI9/j55jTft7we51ez1m/v5HeJ5zEgldeoPbSSzkh8B6WiMpZK8bxu3evIxwLt1HrhRBCCAESkA9O2Rpqq6opq4hhNvUnp3oloRNOon/nrAM+hMVu57K//Q3UMA6PmQ8rjmXlvP+FsrVt2HBtmf/BD8TVKO68b9m2poqgr+1XqJu3ZT5dS51AhCpzLmcc3eFnH0NvMHDe9bfS47jjmT/zOSLXTGRg+dvYo0X0X3os1396d+obLoQQQog9JCAfjI3zWefJA0BvPob1+jAXn1j8sw9T0L2YM676I/F4GX22Hc30UBcq3rkCIsEUN1h75n75MvmVR9N921JGL1oAqo7NK9p+eMJ3q37AFNiOMaZjTfFp9Mx3HtRxDEYTo266k279B/HZzOdw/WE8xbs/o7P3RGqW7+KFH95JccuFEEIIUU8C8sHYOB93oDOqwYklpuPLTsWc17/ooA7V/6wzOPqks4jE1nPCmpHc7asjPG9qaturQYv/uxidzkxRVjXZdVvRxarYuLysTc+5zbMN3SYb8chmCuv8dDt9+CEdz2g2M+aWP1PUpy9zXnqeXhMHkVm7kVM2X8yLXz7NqrKNKWq5EEIIIRqSgPxzxaJ4Ny2l1GPGZDwKW52bAacOxm4++Cmlz7zuD+R37I0/toKBSy/k/tVvom78PIWN1paNm1dQtGMg1kA5gx66nbLuGeRUrWbXhradKWT+1vkU784GosQxceoxnQ75mCarlQtuu5vsoo7M+eBtBgyuwxBXGb/iUq758EYCkdChN1wIIYQQjUhA/rlKf2JjVWJWAr1FYaM+woWDOx/SIfV6AxffPw2rNQOPuo6ipWN47uM/QLA2FS3WnI9n/wPV1Buno4R161YTO6ofWXUVhANxwoFom513wbrFuOpqMMQNLM0fwuBu2Sk5rtXp5MK77sNsd/DVhhX0M36FQV/Mr1f2ZeKsaSk5hxBCCCH2koD8c239mg2eXNBbMMadrOzRk+O6HnoQsjqcXDztfnSECah11P5wPB+8dWUKGqwtkWgMy0ojsch6dtd9y5ynH8PR50SswUoAPFVtM767zF+GZ32UeKSEfG8Y47BTMRlS98/LlZvHhXdMJRIKsdFeRYe6b+noPwv9xp94ZNEHKTuPEEIIISQg/2zRzV+x1Z+F0VCMzbeJX502CL1el5Jj53ftznk33ooaK8Ucyue778J8t/DJlBxbKz6d8yZmfz8ivrnkd+9BbueubFq+jLA+EZDrKgJtct55W+fRe0chECHL5+FXv2p9wZiDkde1O6Nv+TM1u3cT7lqGNVDKrzdO5IMV01m4cVPKzyeEEEJolQTkn0NV2b7qR+KqHp2lL6V4GTPwwFZJO1DKiSdx/OiLiUXcFNScyBtzXmfT5h9Seo4jVSyuUjP7n9SYq4EY5/zxJoZd+jtqdu9kR16iclxX2TYV5Hkl88mvjqBXjax19eJUJb9NztP1mP6c/fsb2Ll5Pa7CpcR0Nn6z7BJun3MD26p9bXJOcfh5wh4isbafllC0D6qqsnPdGj6b8TRvTbuHN6fdy7wXXmS7ew2qLDAlRJs4+CfLtKi6hC2VOkCH3tiFko5GlEJXyk8z/NIJlG3cyJZV39Jnyxj+76X/4Z5bPiPLmfpzHUnmzFuIZdcxxJwr6fWrEWQXdSKrQ0fsmVn4fSH0sRC1pZ6Un7c2VMuW9bvoF64iO6Bn1VEnkue0pPw89foNH4GnqpLFr82kU26MithofrOslAn8mfev/DuZNlObnVu0nZpgDS+89gzBrzZg8fnRAXqdCVemg2GXjKLPqWej06XmbpVoP/x1tfz3qcfZvPw7wIjOkA1qjG0/fc8Pc97BZM2j55CzGTLqbAq6ZUofESJFpIL8c+z6gc2+bPT6bGzBSrr+ekibXIx0ej1jbruTrPyOeKNfceyacUx7YjTBSNs9YNZeBUNh5ry/mJc++wnno7eyI9MOwK+vmAgkVi0s6N6DqM6MLVhF6aadKW/Dkt1L6LOjM6ghOlaV0fnUk1J+jn0dP/pCBp0zih2VG8mKfIjJeApn/6gy4eWnCIRjbX5+kVpfrf6G5ybfgTrnCyyeKsxxCybVRjwepaZqKx8+/QzPXnIl3/7zMeJhWUlRK+oqynnpthvZvHwpRtvJxAqHEHaCXQ2RGc/CZuhMLBxh7Rev8OqdU3jqD0/x+RtrqNjuTXfThWj3jpgKsrptCSXvXUvXE2/AMKRtHm7zbVhCZciBydKHUGQnZx57TpucBxLTe11871/595+upzqwnIHLR3D/w1cz9Y4XMabw4a/2rmTRYvLvvofOoUo2dhlGJLaeLoOH48rN27NPfvcelPy4DEusnLqK1Ffhv9n1DZ0qTIABv8HG8GO7pPwc+9LpdIyYeC0hn4/Vi+aTE/sEbGMY8uPrXPXyK7w4cQJWk6HN2yEO3Xufzmbji+9hiFWSH3TRy7aJkmIDmRlGuka3UFVp5cfKnvjCpXyxaD4/fL6CHv0KGHHTHRhzUjNTivjl8dfW8Prdd+CrqcXkGknx5vfptWM7AJWZTkI2I6aQn+yaMLuz81jXwUCw6hOWzf6CHz8ZjK3DAIaMVDhqaBFWh9xVEuLnOiIC8qrVb3HPl3fjdpq4/Kv7uC23JxSfkvLzbF/7EwA6czG7jeUM6nLgS0sfDFduHhffcz+v/flPlOs2cMySrjzwwB3ceeeDEpKTvC4d3554H0RLCQcWQ0zPOddc3Wifgm7FoII+tINwUEl5G5Zs/Z5TvFacETvLivowqnNmys/RHJ1ez1mTbyAWjeL+ahGZMR15jovpt+wVrlH1PDfx0kOan1u0vY/mv8vGF2ajxus4KuJnwfDRdDrvMcb3yd8zC0rcU4ay6F/s/moVi7f3wRus5Md1lWy69kZyOjk57+57sOcVpPk3EakUi0aY/dD9eCorsdnO5KTv/k15lh7Pdbcy6NIL6Nfgi1EsGIQvP6Duo5eJrC3FawhTqy7Au/lLFr00gK/fHkCvoT0YfkE/7BnmNP5WQrQv7T5l+cJebv72fnS+3lz13UMES+7jg9f+nfoTqSo7tpUDOnSGAsyD+qZs9orWFHTvwYV/vheoY6d9J8oSMw/dcy/BiNxGB+g/ZBiRY5bji31JPLqVkdf8AVdObqN98rv3ACAeKyeuWgj5U/fw007vTizr9aB6KajzYzj+xMP65UVvMHDulFvoe/Kp1EZWY/R9Qk7ktxyz5FOufu5fVHplIZFfqmWrv2Pdv95DjdfQ0xSg7LrHeODmazi9X2GjKQL1rgI6nPdnBt67gCm3nMd5xxmx2HLxGmvYWrqVmb+/k+evvJoS9+o0/jYilRa+/CK7N67FbPs1x655G/fl53P6gi/51R+vwrTPXQOD1cqxp4/nwn+8zyUffcdJT9xPVk8zjmA1seASglUvsOazV3nhT2+x6OXPicfiafqthGhf2n1AfmjejcS8nRn241lQNZP80s1s2XohwarK1J6odhs7PGb0+iwsoSr6Dz82tcdvRZejjmXsbf8L8Qq2O3bS58c4j994p4QfoHrbNmKLP8fgL+GECy5mwMizmuyTXdQRo9mM31gHpHYmi293fUv30kTFuKB6N8rzJKqyAAAgAElEQVSw41J27AOlNxg4Z8rN9D/9bLwRN3r/ezjV33LS90u48amHWdcGDyaKQ1PpqWTR/c8Rj5fTyaon+87n+d2IY1v/0m00o+s/nr63z2LKI3cx/sKhOJwFBPSV1PpL+eCeJ3jxt79jzZfzD98vIlJu+9pVLP/v+xgsA+hSupKyv1zDJbf+Bb1+/x/XOp2Oo4p/xdV/m8WVs+Yy+Dfnk0UANbiKUO1/WPrfWTz7x8dY9e5rEJWx7EK0pl0E5Fi8+Wlsvti+mA92Lef8ZccT9X2CLu7DH/kONVbFwv+k9kMiXLKEsqATg7GYcHQXJ/fK2/+bUqjHoCGMvf1uUCvZ5iih+w4br1/xP6zcUnVY2/FLk9+tO5f9dTp/eP41hv1mYrP76PUG8rsWEzAmvlD4qlP3xWJV5Spya6IYddlsyixiWJ/ClB3759DrDYy89o8MvehSApES8L+JznwRI7+v5Kknr+OTlbvS0i7RlKqqvHbj/xKL7SbP4KDT7Y9z6tE/c9x6Xm+6XnwHk2fMYNLfppLdoRthtZSqaCWf/t9/+M+Fl+H+z/MyBdjBUlWItM2UkK2JRSPM+edj6HROssMFlF7SgQvPv+ygjmU2mDlt3O+5+s3PGHvTTRTFo+hDm/FXz2fOm/P5943Xs+u9v4KvIsW/hRBHhnYRkF+6+lpeGDee0uq9T+bWhmr584LbOXft6cT8P5ATs3DV35/EnOEg7vkvW1bGU/rhsPPHbwAdmIupc+rJbcNpvFrSY9AQxv/lfnR6L9utbjLVHrj/n703D4+izN6/79p6X7JvZN86YZEgm0AQREAEgiQEUGQEjTIZR9GBcURnjCIo8I75gSgCCg7iIAohUUcRR0QUGQHFiChJJxCSELJ10knvW3XV+0cIXyAJWWjIVp/r4rqSylPPc7ro7jp1nnPOvXghdv73V3BtPET0dUiSQnCsBlKl6rrjfMPC4aSarpHd4rkUi6KKM6AdjVA6JTgbOQxhPjKPzd1ZCILA2LkPYtrjf4GLq4fb+m8Y1WMwUpuI3997ANmf5YMVtle7nT2vrYbTfAESwg9+TzyH8QMjbmg+ZUwSHnl9Ex7f/j7844bBBT0qaSO+/OQo8mbMgXb5Y7AXCukXHaKxHLr/PImPN4zA1rX34/P/9xdYygpu2fL5Bz5DY20VGOkkVMYdxR8Xe0ZKPmrsZCzYewAPLF2GSCcHytWAOl0Fdn9YgD3PZKB2ZwZQcbLpwUBAQABAL3GQ7bJEQDEHHz+aiZ9KdDA6jVj42SPwq4qG30ULCJ7DjKVPQhURidumTgfLN8LJKT3a6qby3HkAAEkHQzUo3mPzdpawgUOwcM160GIeNXQ+GoJGI/yFp7BsbQ4qG2+OSlxfQOnrD54gwfNu2IyeiSCzHAvidxMAHgEGE1Qjhntk3htl0IS7MS/rVYgVNFzm3aiT0fCpzoDy4+V47q13UGu89ZGxnsrZhrPIPfMB/vPzZpgsupu+XsX5Ilw8eRokoYLynsmYMTbJY3NLFQo8tHoV/vzu+/AeMgYuWHBe6cQXFSZ8/JeVyL97PHRvrANbJ0QML2PWAfrzgPYLlO5diOffnYl1h5w498u9sJ0djvOFd+Pt7N9RdvrcTTfFajTg6O6dIOlIsEwZ/vTcFo+vEXDnJKTlfo4HHstAGKsAyXG4UO/Gv/eb8EHWK6hdMwLswdVA/c1/vQICPZ1eUeI+Zpwc3x+ygBI/iJ/+sRZPj/sFwZZI3FkwFE72vxgek4iAOycCAKIGJuEnYi84dxW0Rwrhv2CkR2yoqTWCIFSgOB4Jd93mkTm7in94JB5ZvwnvvfA3GOt+xK+xI5D6+S68WlSIKU8/gvuSBnSrfT2Ry23f3EYYq/QAIm94zlJDKYJqZQBc8GusBOlBZ+dGGZAwEH9Y+zoObN6A0l++gZEaAIb/I4Z++w3erfoUI+5/C5Nvu7HIZW+F4zl8e+Ew3vvxTZhLfBBTNww+tiD8KMnBsKhapGZmATdJbCHvH6vB83ZIAyOwcNGDN2UNiUyGR/7xdzhsdvz7rbfRkH8SF1X1uAgfKA6fRtSe+YjydSEgdTaUc5eAlCluih09He3JHOR+8hpYkoPV4Q2m3g8+higQuAgeVWB5Dqz9BFjibnyyVYKMV0IhV9+8ncP//ftfYF0sxIo74D9XDy+Zz01ZhyAIBEydjnlTp0P3y0/44q330GA0o8qiw/unIqH+TYtJPinwTwyEfGgqSM09gF/8TftMCAj0VHqFg3yxzgS37QhkoqGwqWbggdMzwHM2uKzvwkskw/jVay6PDY7VgAfAO8tR9asc8ISD7GZRYwRowg+Uoxq3x0y+8TlvEKWPH/70+la8l/0SGn4+hZPh3kjW61Gz4hk8df+T+Mec2+GvvPVpID2V5s4WlEsHw0W5R+Ys0BdAbeJBUQGokFtxZ8ytzUtvD7mXN9KefRG/fn0A3/77X7CbP4BLPgIDziWg7tX7sfGOuZj38OMIUku629Sbxn/m3gnG4IY1XgxmwhgUqa04WJkPVY0Go85PB2W9AN55DOAskDKRuNg4CYff3oGJf/R8L/Wv3loHJ6uHmA7H/Fdfu+ldcMRSCTKWLwXrZpHz8Uc499//AYZqnA6R4jeo4b3vB4Ru34fQYB5BMybAe8IsIHgoIOq+NKFbycnD1RBp/SACIAMAwg4pQhBfUYKQ+nJYpGL8HB4Am/4rwDsSedsPYOGy+26KLUZdLX799mtQ4kGoDTqNP09ee1PWuRb/pBF46O0RMJnq8clrG1FfVAGDuwZ5uhgwdYEI/OEXDPT9HAMCG6BOGA4qfBQQOhIISARIoc+6QN/mljjIGo2GBPAWgKEAHAAe1Wq1Zzt6/sSHHkX12SJYDb9jKHsctoYglJBGuGgO0194BRT1fy+DkUggCVCCqy2FqSHWI/ZbL/wGCysCI46AkzT1GClfimbwyLOvYP/BD3B6Rw4uShvAKKIx9d+vY8XREZjw8BwsGB0h9EwGoLgUQSZdepgbfdsZ3TEKqk5D5LBCQoThfMggpCt7nqNJkCSGTpmO6OGj8N2//4XCo9+ilpCAYWYg7tNfcfrrCfjy/hcxd+7UPtkz+aw0ARxtgqgxBpI8byioENxLx8LtKgbn+hgcD/iCgkgmQ6VVC6axEr/9/CgST51B4NCBHrPDaTHht2+PgyB9EDlvNnxuYQ0DTdG4f86DwJwHcaZMiy93fQxXUTn0qIJe6o1fATD/0UKdtwYDxDXwHyBC+OgR8L5tMhA+BrhJkczuZs78VBwtrIRRb4TcbkEQYYLPQCUUD/4ZstGjQfv6wi93Hz7euxO0/kMYipbgYkk9BkR75vvjSg5v3gieJ0BKkjBzoe8tl4tWKn2xcOVK8DyPL/Z/iMJ9X4G1GFDhsqGimgFRGwf6DAEf0RGEynIQoypFUFwsmKixQPhoYMBwQOx5ESYBge7kVt0RZwOQaLXaMRqN5g4A2QA6/Cgu9/JG+j9W4z/r1+JESTFA60ExDFL/+iKC4xNajA/RxON8zc+wu1Xgef6Gv2xqfzvW9AMTDKIH3iumT16AxKGjsG39i/A+V4pCX2Bk41ko/vEX/E2TjHGL5yBleAREdP91lJtTLAh3Ixw2z/SQvqD9HZEAlHYe1tHDPDLnzULp44cZS5/BiJmpOPz+DlScOYYzARLIMB4D33wdR3a9hoaFz2LmnLuhEPcdR3nmE5n4/qPd0FecghM84AbgBGiCxpDEJIxc9AjUUU19sgsPH8TnmzdAZPsJX+0JwkIPOsgfvvA0ODghlQRh5n1TPTZvZxkYocHA55+Fg3Xgs2Nf4tThfIjKzSCtDtRROtTx/kAFgIpiiPYWwYdbB5nEDbevEqYB/jBFh4EZEAmV2htqiRQqsQpRqiiEKkNvuVN3o4hDB2DSO69ed0zUvPnQlJ5HwcnvwbA1OPjZUSxaOsujdugvVqD4t19ASW5HXWghRg18yaPzdwaCIDB9xgO4d/r9+LnmZ3yVtwWi76sgt7lgp3WocdlRYyFwUhcFnONA0ccBxWE41HqYvTk4/WSgvHwhlftCrQpGmO9ADAwchlivWFBCxFmgl3Gr7oTJAA4AgFarPabRaEZ0dgJ1QCAWrH4NBd8fBud2I0STCN8BrbdGirltLM4fOQk3rDA3OKD0ubHIXs3ZpipmkgpA0PCeKe0a5R+Ll1fvxIfHd0L7/iGgvhLn/YGE2tNQ/GU/tgTEw/vuSZg8byqCA2+uAmBPRCSVgWRo8A4jWNYzX9TceQMAAj5mM8RjPZPrfrMJjI7F/BdX46K2AF+9+x7qS3/DT+ESSLkBiNm8Hj++vQrnZzyKyY/MRbivZ1JRupO4UbcjbtTtsFvMuFh4BqzTAYW3L4LjNCCpq98Hmgl348T+T1Bf+gMadUvQWG2GV9CN5+c2XiyD7mItKEaDSSv+fMPzeQIxLcac5FmYkzwLOqsOh0u/xW8F5+A6ZYdPlQKMiwfrrkENWwWebQRqANQ0gDjZANL9KxrAoYZxwShzodbLDYMXi2AJhUEqBcb4hSDeJwakKhiQ+QKqUMA7ounnXuZEA8Cdjy1BwcnvIW34GsaCdDjtLEQSz906D2/MBgESpCQJ983399i8NwJBEBgeNBzD//QOrI9akV/5I8oO7weO/gyqQgw3FQSDTAU7HOAMOtCNFLzKms7lSR4sU4dKeSV+UR/Fv9QOsBIHImQ0hnoFYph3LGJ9EuEjDwIh8waUQYBqAEALKYECPYtb5SCrABiu+N2t0WhorVbLdmYSkqIwaMLd7Y4LDo8DAPCcAbVn66AcFdqZZVpQW1EFghCB5EkMnTjohua6mVAkhQfHPAzbyPux6+B2VOb9AjTW4bcwGcScCV65/0bVllX4KcQf1O2jMPy+2QgYNQIE3Xcihm1BEASk3l5wV1nAczf+RWxn7VDXEiAoP9CuRgwbeGPvsVvNAE0iFq9bi5rzZfh4yzswl53BbyE0CATA+7v/4PT+7TiQMBoBD/0RU4dH9fr0C4lcgZjho647hiAITFr8R3y0cgU453mc+lyKCRmTbnjtnLXPAaAhFXshQdPzCiP9Zf6YOzAdcwcCmAOYnCb8UvYbygp1sJcT4C7ycNY1wO1qAO9ugIszgOeM4DkzlBYrlBYAF5vm0gP4HDp8RpoAshAExQAEc8kx5uEm3eB4J8A7wFEuzH9hFWIie+53KgAovH0QkTQKFSePg+YI/PR9EcZO9szuQn15Kc6fLwItHg598DkMT0jzyLyeRMbIMC5iAsYtmgAsaurjbTDXwaD9Ha7fy2A8Z0FNjQ06iw1m3gYnYQPJNsBfr4e/XgpAenkuC3h8T1bgCFkDnqSb3hskBRA83CQPF+kGR9jBwwL5kAA88+TW7nvhAv2eW3XXMwK4MkGJ7Kxz3BnUAUEAmhzksvwyxNygg1xTZwZFBIF21SEmsOfnWUlpKR6d9gTYqSwOH9mL33L+B0edDkUBHIoC4yGGD4JOVeP8oRdwwVmFi/EhCJg8DSPSF4Hx9Xx+XU9B6esPfXUpeEJ6w6k3VZYqqCwESCoQjaJziPbrndHWwKgI/HHdajTqG/Hvbe/A+ns59EQl9DI1UF8I/v9bhhzeCXvcEESmLcbEkQP7dKpOSEIiSJoCZfsVRfl+mHCD89WVlcBQawQlHokJT8z3iI03G6VIifFxYzA+7v+O8TwPp42FxeCE3eKC3eyCzeyErUoHS2kpjBfLYK7TwWkzwgUnXCQLlmDBsXbwMIMHBx6XbjiECCAVIEglLIUVQA93kAFg5MxZKPvlBMSWU/jlqMVjDvJ3b24AARKUdBQmz+wdxZEEQcBL6Q+vEROBa/aCeZ6Hq8EA/Zly1J+tRmNFFYy1NTAZ9LA6bHCxNrAcC5bgwBFOcLCABwseHEiwuLK6R3GcBp68la9MQOBqbpWDfBRACoA9l3KQT9/MxcQyGTiaA+msha70xpTmWJcLBhsBER0MDqZelWdHkzQmT3gAkyc8AMf5k/jpvX+hsNSARrsOZWoWZWo5SPpOSN1i2P9zFqbdT8CusEI5PAlD0+fBe/DAXvV620PlF4BaoggigoLTxkIs63qxZWl1MRiWAy1SQB8U1uuvk5ePF5742zOotdRi6xfvwXCsDiE6ESx0NczuGqC8EKc3rEAhT0AqZeCjSUDiuIkIihsElX8AaKZnFK7eKCRJIX7MeBR99y14lw+sRidkKlGX5/vv1nUAGMhIJRKGdV//9BuFIAiIZUwrn5kBAK5ub8jW18NVUQG2vh6c1Qbe4QDAAxQF4pJcMkfQ4H0D4DO209l23UJo4iCQFA3aegaOqtvAutygmRtL1WqouoiS0mIwzGAYvKqQPPIxD1nbfRAEAZGPF4KSvRCU3LIdKs/z4AwGsHr9pfeGHbzTCRAkeJ4Hy7rgdFGwuMUIGtGyvqg1Tp48GUDT9DYAg9FLtB0EegwcgN9Yln10+PDhtdf+8VY5yHkApmg0mv8BIAB4vofSNRAKEnxjA6yNNyYKYSgvBkCAF4WAUPTez544ajjGvTQc4/TnwR5/F9pvv0FhnReqbTWw8A5Y5ECFHAAhAVlUgYJVG8G43eDFDGhvP8iCQiEOCgLj7Q1K6QWKJMGDg8JLjHEjNd398jqEt18QOLjB8xzsFtcNOcgXSrUAAJmTBzewd7z+jhAgD8AL6c+galoV9hbk4KeT9VBduA2RtT5gXCzcbA1MzmoYT/2K0lO/Xj6PIQGJmIZCrYBU5QVSogAlVSJ+3ETEjx7Xja+o8ySOm4DCI4fBsRdw4bcqaMZ2LS3CqKtF1bmLoCSjEHZHlIet7LnQvr6g+9hOFEUzCLttGCp/+gkkz+BcYRU0Q25sZ/LY22+BAAFSPg63je8fCnYEQYDy8gLl5bk6GJqmtwUFBSX6+/s3kCTZPy6kgEfgOI7Q6XQDq6urtwFoUX17SxxkrVbLAci8FWs1I/OSw9logusGC7L055qC3QTlDa+w3rEFdl18okDfuwqD7nFj0IUTwNmvYCs8jJqycpRbAlHu8EOd0wobz8JG2Jqq/usuoKEuH/ittQkJVE5Jx9xHF93iF9J5lL5+TY9nvAU2swvqG6iH0V0oBQAo7A4wQxI9Yl9PIlgRjKUjnwQ/gkehvhDfVnyLY+Un0HDOgtjKUIQ03A4RqwQPJ3jOCI63wMLaYK01gajWg+BrQPAu2H8/2esc5PDBSQB4wFGMwiPBXXaQTx/IAQCIyShMzUjxoIUC3UHs7SNRlv8jxGwdTh5z3ZCD7LRZoT1zCmIiGHYRh2n3zvSgpf2OwYJzLNAVSJLk/f39DdXV1YNb+3vvrry5Dt5+fqgsLYcLshvKN9WXFQNocpDDb2+9a0avhKSAiDFAxBhI785CpMuGyOrTQPWvgE4LGCpQ22jGiUYKVWYJHEYKvJ0E4SIgcvFg3BwojgBNcZg6KqS7X02HaG71xnMm2M2uG5rLUlkLORjIHFaEDvNcO7CeBkEQSPRNRKJvIjKHZsLpdqK4sRhF+iKUGktR39AIW5kZdJkL8kYp5PZYiDk/kIQfeEqJCrqgu19Cp6EZBmJfL/C6MlSXda1Uguc4nPz6vyDpMEilelBMn/2q7TdEDr0dACAyn4T+t+sXfLbH6f98DDcAUnEnVPFGMP2gUPomQgrOsUBXufTeaTU9oM9+KoMGRKPypzLwhB02k6vLeYQNVRcB0CB5GkPG9t4cwnZhpEDYqKZ/lwgA0CKuwfMAawdsjYCtoelYYO9wEOVeTS36eM4KW4P1hubia8wgKF9wsEEzoGe2/rsZiCgRBvkOwiDftgur3JwbJqcJVXW1CPMdfQut8xwxt49GwX//C8IthcXg6LTE8IUzp+GysWDkQzBs2tCbZKXArcQrMAhStRp8XRkIxzQ4bCzE0q7dQvP3fwoJKwJPh+De2UM8bKmAgIAn6L1Jte0QGtVUOMJzRpjqu+4M6XX1oAgFaFc9FLKuF+v0GQiiyZlWBTc5xr3EOQYAqVIFAOB5G0y1hnZGXx+RkQVJ+cIhJSEVCQ3wr4QiKXhJvJAYGg+FtHd294geNAw8AfBuHXRlxk6fX/z9VwBIiBCAwdPv8LyBAt1CWOIQOCgLAKC4qLxLc9RXlMNgM4OTDoRTXYPQ8ABPmijQTRw7dkyenp5+uSAlPz9fOmvWrITU1FTN0qVLI93uJoGqrVu3+s+cOTMxJSUlce/evd4AYDabyUWLFsXMmTNHM3/+/PiKiooWBTJWq5XIyMiISUtL0yxcuDC2traWBoA33ngjYMqUKYPS09M16enpmsLCQnFbY0+cOCFLS0vTpKamajIyMqJtNtvlrfVr7T958qQsJSUlMS0tTfPss8+GNdt/Jd99950iJSUlYdasWQkvvvjigGv/vnPnTt+XXnrpquNLliyJPnz4cJvtwJ5//vmwsrIyUX19PfXhhx+2Ks3GsiwyMjKiDxw4oLryuMViIadNmzaw+XhJSYlozpw5mrS0NM3jjz8eZbFYOuXz9lkH2Te8KdrLuw0wlOm6PE99oxUk6QsQnb9JCvQsmh1kcFYYahq7PE9DYy1ETh4E5QOXV89v+yfQeYJjm+4THFuFC6fLOnUuz/M48+P/QFFhkJKVoGjhAaqvEByngYsEeM6CgpOFXZrjzGefAAAI2UjEjQj0pHkC3cT69esDs7KyIpxO52WHc+PGjSGZmZlVeXl5WpfLRezfv1+t0+nonJycgNzc3MJdu3ZpN2zYEMZxHHbs2OGXmJho3bdvn3bGjBn1mzZtCrp2je3btwfExsbacnNztSkpKfXr168PBoCCggL5mjVrzufk5GhzcnK0CQkJjtbGchyHrKysyHXr1pXm5eVpk5OTjWVlZaK27M/KyopYsWJFeW5urlahULg/+uijFs7q2rVrw15//fWSTz/9tPDMmTPyn3/+WXrtmM7y6quvXoiIiHCePn1adujQoRbVnGfPnhWnp6cnaLXaFtGXFStWhF+ZTvvKK6+Ezp07V5ebm6sdOXKkadOmTZ36wPXZFAuVf9N14DkDdOd1iJ8Y184ZLbGZTXA6AVoSDFIqpDj1dmixGDzBg3QbYanv+gNP8bmm7g0E6QME35hKo0DPROnnD4ImQDrO48LpSLRo+HodGqoq4TQ7QUtjED+q/3Sv6A8ExTYFXmirFvUFXYv8Fh47CikrAU8qMeHuMZ40r9/z3v9KfXN/rvDz5Jxpt4fWLRobWX+9MREREY4333zz3F//+tfLH3iNRmNtbGykOI6D1WqlGIbh/f392f379//OMAxKS0tFDMNwJEniiSeeqGXZpnqHyspKkVKpbBGuzc/PVzz22GPVAHDPPfcYt23bFgIAWq1Wtnnz5iC9Xs8kJycbli9fXt3a2KKiIrFKpWLffvvtwJKSEmlycnJjQkKCoy376+rqROPGjbMAwIgRI8wHDx70WrBgwVV9cz/55JMChmFgMplIi8VCKRQKrqPXdefOnb5HjhxR2+12srKyUrxo0aLqhx56qD49PV2zatWqsi1btgSVlJTItm/f7peRkVHXfJ7ZbCZfffXV0s2bN1/1EPH6668HDhs2zHzlsbKyMunUqVPLAGD06NHm1atXd6qQrM9GkGmRCBztBu82oL6ya85QQ2WTPBRB+ULhL0QKezsEQQAiEnCbYTfZuzxPdXUpAIDhaCiiepeCnkDHIAgCitAQcO4aGBs71w7w/M8nAAAUHY5hc25UakSgJxEYGdPUqsx+Dm5j52XIG2uqYbSZwUk14LzroPK94YCbQA8gLS2tkWGYq6JoUVFRjuzs7PDJkycP0uv19IQJE0wAwDAMtmzZ4r9gwYLEadOmXXa8aZrGvHnz4vft2xdw7733Nly7hsViodRqtRsAlEql22KxUAAwZcoU/dq1a8s//PDDovz8fMVnn32mbm1sXV0dXVBQoHj44Ydrd+/eXXTixAnVoUOHlG3ZHxwc7Dh8+LACAA4dOuRls9labIUxDIMffvhBPn369EE+Pj6u0NBQZwcvGQ8AZrOZev/9989u3rz57I4dO65yeDMzM6uTkpJMVzrHAJCUlGQbOHDgVTfwr7/+WllWViZ55JFHrhobGxtr/fzzz70A4MCBA152u71TPm+fjSADAC/mQdqMsDR0zRkyXCwFABCUFwKjbqAnmECPgZAygMMGl73rQo4NtVUAAKmThV9MpIcsE+hpRA0dgV/PfwKKF3eqUK/o2CGQhBJypwESX1X7Jwj0GhiJBL4hITBf0AGEFyyNdsi9Or6LdO7INwAAXno74oe32EUXuEEWjY2sby/ae6vIzs4Oe++99woHDx5s37p1q39WVlbYP//5z3IAyMzM1D388MN1f/jDH+K++eYb81133WUCgD179hQVFBRIMjMzY7dt21b83HPPRQLAzJkz6+VyudtkMpEAYDKZKLlc7uY4DpmZmbVeXl5uALjzzjsNv//+u6y1sb6+vu7g4GB7s3M5duxYw6lTp2STJk0ytWb/2rVrz7/88svhb731FjFs2DAzwzD8li1b/A8ePOgDABs2bCgJDQ11jRkzxnLkyJHTq1atCtmwYUPw888/X9k8h0Qi4ZxO51VOqc1mI6VSKQcA8fHxVgAICwtzulyuLgds9+7d61ddXS1OT0/XXLhwQVJUVCQLDAw8n5WVVfHCCy+Ef/LJJ37jxo1rVKvVnbrx99kIMgCQMhI8Z4LN2rX0COPFcwAAglQi8rZID1om0F3QChl43g7W1fWUGXN9PQAGUocJwfGRHrNNoGcRETMIIADeXQ9deav3kBZwbjeqSkpBMFGQyjt2jkDvIlgzGE7SBp7n8dtvRZ06t/j7I2DcJAjSC8PvaKk0J9B3UCgUrEqlcgNAYGCgy2QyUYWFheJHHnkkhuM4MAzDi0QijiAIPjs7O2jXrl0+l85zkySJuLg4R3Ne8eLFi+uSkpLMzTm5X375pWro0KEmo9FIzZgxY5DJZCI5jr8QmcwAACAASURBVMPx48eVQ4YMsbY2Njo62mGz2aji4mIxAOTn5yvj4+PbjB5+9dVXXhs3bizZs2dPUWNjI5WcnGzMzMzUNdsUEhLiSktL0+j1egoA5HI5d227vdtuu836448/qpqd9fr6eqq0tFTa7KRfr/0uQRA8z3fsPr1ly5bzH3/8cWFOTo521KhRhr/85S8Vw4YNsx06dEj1zDPPVOTk5GgpisKYMWM6lU7QpyPIYpkILG+Hi+3ayzTVVAAgQYBG2OA+1AO5HyNVqWCFDm531wun7PV6EKQSNGvEgMD+0+Ktv+EfEQkA4Nw61JTUI3JI+6mNuvJS8G4epGQAEkZ0TWBEoGcTEBWD0yAA3oTzJ3QY3YqkcmvwHIeaqgtgyECwEgt8B3Q+RUOg97By5cqypUuXxlAUxTMMw61Zs6YsKirKGR8fb509e3YCQRAYM2aMYeLEieaEhAT7smXLovLy8vw5jsOqVavOXztfRkaG7qmnnopMTU3VMAzDv/766yVeXl7uxx9/vOKBBx7QMAzDjRw50jR9+nSDxWIxXTtWLBbzK1euLF22bFk0z/MYMmSIecaMGW22c4qMjLQvXLhQI5FIuOHDh5umT59+1ViSJLF48eKaxYsXxzEMw/v6+rqys7NLrxyTkJDgmDt3bu3cuXMTZDKZm2VZ4m9/+1u5UqlsN1c5JibGUVJSIn3zzTcDnnjiiRYy0B0hNjbWvnz58miGYfioqCjbunXrOtV6pk87yAqlDHrCBBck4DkeBNk5sRBDnQ4kIQXtMoBmhEr0voDcywdmXIQbXZeZZhvNEFGhAGwQ0X16E6Zf4xUQBBA8SEcFLvxyDqPva19SvLLwDACAJIOgmTbyZpso0A34RzTVMdHWszCUtdqFqlV05aVgwYOQDURQnKjL4lUCPZOoqCjnp59+erm1yfjx483jx49v0epkxYoVVQCqrjwWFBTEfvDBB8XXm18ul3Pbtm0rufb4gw8+qH/wwQf1HRk7adIk06RJk1pVb7rW/pSUFENKSsp1+6HOmjWrcdasWddtCbVkyRLdkiVLWrQSe+ihhy6nwkilUv7IkSOnASAnJ0fbfPzrr7/+va1533jjjdL2jt9xxx2Wzz//vMtqVX367q5SeQHgAYKFw9b5nNOGxkaQhBIkL2yV9hXkXn7gCfcNOciEyQWCVIITC51N+jIESYLxUoBgq9FQ6+jQOaWnfgBBSCC3N0A6QGjh1RfxD2/aGSBcZeCsHY8Cl3x7CABAimKQNEZIrxAQ6On0aQfZx6epDQ/PWWExdOwGdyVmkwME6Q2K6WhhpkBPR+XlCwDgCB6cu8MdaS7jtNtAufgmB1kpVKD3dQLiNXDxRjhcCrCulo3yr6VcWwiSDoNE1KIIXaCPIJLKoPb1hhs6cKQPnB0s+D174jgYNwOQckQkCkXfAgI9nT7tIPv7hzf9wFlg7aRymsNqgdvFg2f8IOmiTLVAz0OtbnKQed4Gp719h+daTHVNO0UEqQIRJChg9XWiNUngSDcAGxqqrq/IaazTgbU6QdChGBAnOEB9Gf/IWLCEGSBIFPx6pt3xPM+jXlcFkg4EoTJALOv6DpaAgMCtoU87yAFB0QAAnrfCVNm5iI7xCkfId0DH88wEejbe3pe2vTkbnF1IuzHommoFCFIJVUQLZU2BPkZwVJPAEOfWoa7i+qlW1eeaOhqQdBASxw+56bYJdB/+UbFw8Tx43oWSY7+2O76huhIsAbglsQiPFwp7BQR6A33aQVYERwJokgXVV3dOWvj/IoVKBMcFe9o0gW5CoW66OXU1gqyruQAAIAg5fKKEHNO+jl94ZNMPrhqUF1Rdd2xVUQEAAhKWge+IQTfdNoHuwz88CgAB0nkR+nPtd44q/+5bAABJh2Hg7cJ7Q0CgN9CnHWSJ7wDw4MFzFhh15vZPuALj5UihCqEJglpaX0GqbBJu4Hkb7Mbrb5m3Rl1NBXgAIhbwEyLIfR6pQgmCIUA6K1Cjrbzu2JLTP4IkfSBzVoKUCBLkfZnmThak4yzc5vZrEYqP/QCSJ0BQvggRIsgCAr2CPu0gkzQDjnGDdBtgaexckZ6p+sKln6RQRQq5pn0FifKSZDhng72+891JGupqQBBiiFwWBIQKEeT+gCzQB7xbB4uRRluN63mOg/5iFQgmFApV12XMBXoH6oBAMCIGHF8JNxkElr3+bpSushQU4QNKaYJUIdS09EWOHTsmT09Pv9wLMj8/Xzpr1qyE1NRUzdKlSyPd7qb3yNatW/1nzpyZmJKSkrh3715vADCbzeSiRYti5syZo5k/f358RUVFiyR1q9VKZGRkxKSlpWkWLlwYW1tbSwPAiRMnZGlpaZrU1FRNRkZGtM1mI9xuN5YvXx5+3333JaSnp2uaxUGKi4vF8+fPj58zZ47m/vvvj6urq7vcv7a4uFg8derUgc2/l5SUiObMmaNJS0vTPP7441EWi6VNf/H5558Pe+edd1oUXhw+fFi5ZMmS6CuPvfTSSwN27tzp29Zc2dnZQcePH5fZbDbiX//6V5vN569cMz8/X5qenq5p/jd48ODbDxw4oDKbzeSf//znyLS0NE1KSkrC8ePHZW3N1xp92kEGAF7EAW4THNbO5ZsaaypAEGIwbjNoWuiB3FdgRGLwBA+et8Og77yDbGlsAEFIQbktUMg6Jj0s0LsJGTgUTsIGN0/DVN+686uvvAiwHEgqCHFJUbfYQoFbDUGS8AsNBUc0gKPEKP755zbHOmxW2HgOnDgKEXGC9HhfZP369YFZWVkRTqfzcnPrjRs3hmRmZlbl5eVpXS4XsX//frVOp6NzcnICcnNzC3ft2qXdsGFDGMdx2LFjh19iYqJ137592hkzZtRv2rSphQ759u3bA2JjY225ubnalJSU+vXr1wdzHIesrKzIdevWlebl5WmTk5ONZWVlok8//dTL6XSSn3zySeHy5csrVq9eHQoAf//73yOefvrpi/v27dPOmzdPV1RUJAGAXbt2+Tz99NPRBoPhsmP+yiuvhM6dO1eXm5urHTlypGnTpk0tIkK1tbX0gw8+GHf06FG1p67l8uXLq0ePHm2trq5m8vLyWjjIra05bNgwW7PC3/333187fvz4hmnTphnfeOONoOZrtnr16rKzZ892amuvTwuFAAAlAXiLFc5Odnkz1NeChBSUW+iB3NfgqabCTUtdp1QnAQAOowEEIQfFdT49Q6B3Eh2fhOL/HgLP6aErN0Hl13JL/XKBHumHiA4qqwn0bvyjNKg9fw40z6Pou3wkjmpdGObC4W8AggDJhCFuWOIttrKfceJtX/yyu33Jy86Q9EAdRi2pv96QiIgIx5tvvnnur3/96+WnY41GY21sbKQ4joPVaqUYhuH9/f3Z/fv3/84wDEpLS0UMw3AkSeKJJ56oZdmmIF5lZaVIqVS22JLIz89XPPbYY9UAcM899xi3bdsWUlRUJFapVOzbb78dWFJSIk1OTm5MSEhwvP/++/7JyckGABgzZoxl2bJlcqvVSjQ0NDAHDx70ys7ODk1MTLS8+OKLFQCgVqvdH330kfbuu+++XF1cVlYmnTp1ahkAjB492rx69eoWcsJms5l88sknK7/55ptOO8iHDx9WvvPOO0E0TXNVVVXiKVOm6J955pnqJ598MnLGjBn6L7/80ru8vFy6du3a4EviKu2uaTabyS1btoTs3r1bCwDHjh1TTZkyRf/AAw/EyeVy9yuvvNIpJb0+H0EWSWlwsIHtpLSwsVkkhLDdJMsEugueBsA7YGvo/MOPy2gBQSpBEkJv7P5CUGQMAIBna3HhbOvdcMoLTgOgobKaIEuIu4XWCXQX/pHRcPMk4G5Aw9m224ie+fprAABJBSEkvs2dZYFeTFpaWiPDMFflX0VFRTmys7PDJ0+ePEiv19MTJkwwAQDDMNiyZYv/ggULEqdNm3bZ8aZpGvPmzYvft29fwL333tvii8ZisVBqtdoNAEql0m2xWKi6ujq6oKBA8fDDD9fu3r276MSJE6pDhw4pLRYLpVKpLjvZJEnytbW1THl5uSQ5Odm4Z88erdFopHbt2uULADNnzjQoFIqrhAFiY2Otn3/+uRcAHDhwwMtut7fwF6Ojo5133HGHpbPXq1lFsqamRrRt27Zzubm5hR988MFVUfOlS5dWhYeH2650jttbc+fOnX6TJk1q8Pf3ZwHAYDDQRqOR3r17d/HEiRMNL7/8cqcKyvp8BFkmE8EAJ1h0Lu/LZraBotSgBbW0PgcvJgCzDY5OFulxnBu8zQWI1SCIzouMCPROvIMHAOBB20tR8dsFYF5Lyelzv/4Ekg6GlKsGQff5r1UBAP6XOpxQjiJwzrZbgdaUFoGiZGAULOReQlrWTWXUkvr2or23iuzs7LD33nuvcPDgwfatW7f6Z2Vlhf3zn/8sB4DMzEzdww8/XPeHP/wh7ptvvjHfddddJgDYs2dPUUFBgSQzMzN227Ztxc8991wkAMycObNeLpe7TSYTCQAmk4mSy+VuX19fd3BwsH3gwIF2ABg7dqzh1KlTMrlc7jabzZejgjzPEwEBAS6pVMo1r3XXXXcZjh49qgLQ6vXKysqqeOGFF8I/+eQTv3HjxjWq1Wp237593rt37w4AgBUrVlwYMWLEdW+iEomEc7lcV2mqW61WSiKRcAAQHR1tYxgGDMNwIpHohp2tL774wmfTpk3nmn9XqVTs1KlTGwFg+vTpjTt27GiRunI9+nwEWa6QA+DBkVSHlLAAwGW3g2N58LQXpCrhC62vQUhogLfDaetcFNhuMoHgAYKQgZAIjf77CxRNQ6SWgHdVw6RztijUc9qssNc3gqAHwD9YeF/0F5pbAPJ8GVxMCJzWlkEtt8MBG+8Gz4QiIqpT9UECvRyFQsE2R3EDAwNdJpOJKiwsFD/yyCMxHMeBYRheJBJxBEHw2dnZQbt27fK5dJ6bJEnExcU5mvNqFy9eXJeUlGQ+dOiQFwB8+eWXqqFDh5qio6MdNpuNai7Cy8/PV8bHx9uHDx9u/u6779QA8MMPP8ijoqJsMpmMHzBggP27775TAMCJEyeUsbGxbW6RHzp0SPXMM89U5OTkaCmKwpgxY4xz5sxpaLapPecYABITE21nz56VVVZWMgBgs9mIU6dOKZKSkto9lyRJ8DxPtDeumcbGRsrlcpHh4eGu5mNDhw41f/3112oA+P7775WRkZGdSgnwWKhDo9EQACoAFF869INWq31Oo9GkAMgCwAJ4V6vVvuOpNTuCSqFEJQwAZ4PN5ILSp/1UC3OjHkBTr1vfIEEkpK9ByCXga+xgO9kH2dLYtOtFkHIQqs73UBbovQQmDsTF//0ChhPBWGeH2v//8pCrzhaBAEDSIUhIFjqb9BfEMhnUvj5wmXRgGQVOH/gcw9PmXTXmwsGDcNEUaCYckcPiu8lSge5g5cqVZUuXLo2hKIpnGIZbs2ZNWVRUlDM+Pt46e/bsBIIgMGbMGMPEiRPNCQkJ9mXLlkXl5eX5cxyHVatWnb92voyMDN1TTz0VmZqaqmEYhn/99ddLxGIxv3LlytJly5ZF8zyPIUOGmGfMmGFwu904evSoavbs2Qk8z2Pt2rWlAPDKK6+Urly5Mvy1114jgoODHS+++GJdW/bHxsbaly9fHs0wDB8VFWVbt25dp/J3AUCtVnPLli278Oijj8aKxWKOZVly/vz5tXFxcY6LFy9ed1s/ICDA5XK5iBdffHHAypUrL7a3VlFRkTgoKOiqarOnn3666plnnom87777Emia5l977bUW1/V6eHIvMAbAz1qtNqX5gEajYQCsBzASgAXAUY1G86lWq63x4LrXxUvtC6ACPG+D1eiA0qf9IkZLQ5ODDFKOoEhBMravwSgVcEMH1tW5NAmLoUlshiBkEAUIrZr6E5qkZFw4lg+e0+NiUcNVDvKFgt8BAHIHCZ9RQ7vLRIFuICBGg4s/fw8AKPnmtxYO8q+ffQoAIOlghA3p1O6uQC8jKirK+emnnxY2/z5+/Hjz+PHjC68ddymn9qq82qCgIPaDDz4ovnbslcjlcm7btm0l1x6fNGmSadKkSQVXHqMoCtnZ2S0c2qSkJFteXp62rTWOHz9+qvnnO+64w/L5558XtDX2Sp577rk2m8SnpqY2pqamtlBqmzhxomnixImXC4Ga137jjTdKm48dOHCgTR33a9ccNWqUddSoUeeuPObr6+t+9913z6GLeDLFYjiAARqN5huNRrNfo9FoACQCOKvVahu0Wq0TwPcA7vTgmu3i49MU0eF5GyxVHZObvjJS6BcjfKn1NaRKBQA3XGznUp6sl94XIOVQhgjFNv2JMM1gAABhP4/i01cHXX7/6X8gSF/4mEvADBDEY/oTwfGJsLIU4KqHq+bq4AvPcTCWFQOgIVczkKuFdD0Bgd5ElyLIGo0mA8Bfrjn8ZwBrtFrtXo1Gkwzg35fGXFneawLgsX55HcHP91LRIm+DqYNy080RZIJQQB0tyEz3NWQqb5gBuN1djCCTMviFC+Ix/Qnv4BAQBA/GVozKMyPA8zwIgoCbZWGqqABND4Svv+VydbZA/yA4tiltguDy4ZAMQeO5QnjFJAAAzD/+BKOIAcmEIT7hlt72BAQEPECXHGStVrsdwPYrj2k0Ghma8oyh1Wq/12g0IWhyiJVXDFMC6JiX6iEUfk0RHZ6zoaGm7VY8V2Ju0AMgQLk5iJXty4gK9C6kqqa8chadiyBbGvTgQYDgKQTFhdwM0wR6KARBQBakBluuA5wEGqqt8AmW42Lh7yDcblCiUCTeJewq9DcCo2NBEASk5DlYxZPx697duHPFSgDAT++9C5uYAU1HIHxkQjdbKiAg0Fk8mWLxIoCnAUCj0QwFcAHAGQBxGo3GR6PRiNCUXvGDB9dsF4lPMHjwAGeBqb5j7frMdVUgIAIjiIT0SRTqJkfG3UkH2dCgA0EwYFgrfAMFZ6i/ETd6Euw0C56z4uwvtQCAk98eAUDC1+yAOnls9xoocMthxBL4h4WBcTftOlq/Pg+32QLnhQuw//pL0xhREEIShVQ9AYHehicd5LUAJmg0mm8B/D8Ai7VarQvAMgBfoskxfler1bZbjehJCJkP3LQbpNsEm6ljbb0a66pBEDJQvPkmWyfQHSiVXgAADnyLll3Xw9RQD4IQg3JbQVF9vkOiwDXcNm4yQBBgjN8h/6sLcDlYnDt+BCQdjiDTz2DCWghNCfQDgjWDoXeKwMEMk2IwCl56BsV/ewZ1CilASKDRyEGLOidUJSAg0P14rIuFVqttADCjleP/AfAfT63TaURycIwbsJvhsHasNZdRXw+SVIGiOqlPLdArUF5KseDhgtvFdfjmZTE0goQMFG+/meYJ9FD8wyMhEgMwngFrnYaD7/8PhMMCKRmHmMG0kH/cTxmgScSpr/Yjnv4S5QH3If7LHDAuE6qT4kDT4Ui8e3B3myggINAF+n4YjCBAiDjwvBWuDupC2EwW8JQajFhQS+uLqNV+AACed8DZiV7IdoMBJCEDKTjI/ZaY0aNgFgNw/orCb/YCYBB/4Qz873+wu00T6Caibh8JkiLBuH4FCBpvT78br6QrQfIclPJgBA+N7W4TBW4Bx44dk6enp1+W2czPz5fOmjUrITU1VbN06dJIt7vpXrN161b/mTNnJqakpCTu3bvXGwDMZjO5aNGimDlz5mjmz58fX1FR0UJxyGq1EhkZGTFpaWmahQsXxtbW1tIA8MYbbwRMmTJlUHp6uiY9PV1TWFgobmvsiRMnZGlpaZrU1FRNRkZGtM1mu/xUf639J0+elKWkpCSmpaVpnn322bBm+6+FZVlkZGREHzhwQHXt33bu3On70ksvXdXaZ8mSJdGHDx9WXju2meeffz6srKxMVF9fT3344YetClG0tWZxcbF46tSpA68d/+abbwZca0dH6PsOMgBaxIODAyzXfsDczbrAOVgQpBIydfs9kwV6H97qS72teTucdtf1B1+C49xgLTYQhBIE2bFzBPoeyfP/BILnwRr/C449D1+LBYHSWkhHjOhu0wS6CYlcgcjbhqHcIkWAohyJ1qkYU5MMQIRxdwYLOwv9gPXr1wdmZWVFOJ3Oy//ZGzduDMnMzKzKy8vTulwuYv/+/WqdTkfn5OQE5ObmFu7atUu7YcOGMI7jsGPHDr/ExETrvn37tDNmzKjftGlTi6T17du3B8TGxtpyc3O1KSkp9evXrw8GgIKCAvmaNWvONyvcJSQkOFoby3EcsrKyItetW1eal5enTU5ONpaVlYnasj8rKytixYoV5bm5uVqFQuH+6KOPWjirZ8+eFaenpydotVq5p67lq6++eiEiIsJ5+vRpWbNyYEfW3LVrl8/TTz8dbTAYLj9cWK1W4k9/+lNUTk5Ol9pOeVIopMciEpFwwwk32hd3sDRearJByuEdJBRi9UUUEiV4NEWQHXoTEND+Z9tuvpSPTilBUjcsGS/QS1H5+WP6Q4vw/Za3wVI8Rp6tRMjKlYIT1M/RjJ2AkvyTmMBvwGnv1SjTnkeASoHE+fPaP1nAY+wu2O376blP/Tw556yYWXUPJD5Qf70xERERjjfffPPcX//616jmYxqNxtrY2EhxHAer1UoxDMP7+/uz+/fv/51hGJSWlooYhuFIksQTTzxRy7IsAKCyslKkVCpbhGvz8/MVjz32WDUA3HPPPcZt27aFAIBWq5Vt3rw5SK/XM8nJyYbly5dXtza2qKhIrFKp2LfffjuwpKREmpyc3JiQkOBoy/66ujrRuHHjLAAwYsQI88GDB70WLFigv9Ims9lMvvrqq6WbN2/udBXqzp07fY8cOaK22+1kZWWleNGiRdUPPfRQfXp6umbVqlVlW7ZsCSopKZFt377dLyMj43Lz+bbWVKvV7o8++kh79913D2k+ZrfbydTU1PoxY8YYS0pKOh3x7BcRZKmEAgcX3ISo3d631ivU0oIihFZefRGSIMGTAHg7rPqOdSqxGY0AAJ5WgxILBTf9mYSZ83D3kMGY2OiA/6MZ8Eqd3d0mCXQzMSPuAC0W40RDIKiLrwBwYdKskQAtKG72B9LS0hoZhrkqchIVFeXIzs4Onzx58iC9Xk9PmDDBBAAMw2DLli3+CxYsSJw2bdplx5umacybNy9+3759Affee28LVTOLxUKp1Wo3ACiVSrfFYqEAYMqUKfq1a9eWf/jhh0X5+fmKzz77TN3a2Lq6OrqgoEDx8MMP1+7evbvoxIkTqkOHDinbsj84ONhx+PBhBQAcOnTIy2aztbjxJSUl2QYOHNiVnEMeAMxmM/X++++f3bx589kdO3Zc5fBmZmZWJyUlma50jq+35syZMw0KheIqB8/Hx8c9depUYxfsA9BPIsgKqRhGcACcsJtd11U0uuwgk3KoQ4UIcl+Fo5oiyCZ9xzqV2IyXemgTUjAy9iZaJtAbiFqzobtNEOhBiGUyzPrLc/g0ezVqXQzuum8qBqQs7W6z+h0PJD5Q316091aRnZ0d9t577xUOHjzYvnXrVv+srKywf/7zn+UAkJmZqXv44Yfr/vCHP8R988035rvuussEAHv27CkqKCiQZGZmxm7btq34ueeeiwSAmTNn1svlcrfJZCIBwGQyUXK53M1xHDIzM2u9vLzcAHDnnXcafv/9d1lrY319fd3BwcH2Zudy7NixhlOnTskmTZrUapRo7dq1519++eXwt956ixg2bJiZYRh+y5Yt/gcPHvQBgA0bNpSEhoZeN99QIpFwTqfzqkCszWYjpVIpBwDx8fFWAAgLC3O6XK4eF7DtcQbdDJSKpi10nrO12+rNYrj04EbIoIoMvNmmCXQTHMUDvB2Whg46yKamh1CCkILxUtxM0wQEBHohUcNGYP7Kf2LGU3/D7QsE57i/o1AoWJVK5QaAwMBAl8lkogoLC8WPPPJIDMdxYBiGF4lEHEEQfHZ2dtCuXbt8Lp3nJkkScXFxjua84sWLF9clJSWZm3Nyv/zyS9XQoUNNRqORmjFjxiCTyURyHIfjx48rhwwZYm1tbHR0tMNms1HFxcViAMjPz1fGx8e3Gf396quvvDZu3FiyZ8+eosbGRio5OdmYmZmpa7apPecYAG677Tbrjz/+qGp21uvr66nS0lJps5N+vdQ0giD4zrRhvRn0iwiyt0INwATwNtjqzUBomwWUsF7KQaZ4BmLfFkWZAn0ENwPwLgdsDR3bfbFeiiATpBQS37Z3IAQEBPovQTFxCIqJ624zBHoAK1euLFu6dGkMRVE8wzDcmjVryqKiopzx8fHW2bNnJxAEgTFjxhgmTpxoTkhIsC9btiwqLy/Pn+M4rFq16vy182VkZOieeuqpyNTUVA3DMPzrr79e4uXl5X788ccrHnjgAQ3DMNzIkSNN06dPN1gsFtO1Y8ViMb9y5crSZcuWRfM8jyFDhphnzJjRprxwZGSkfeHChRqJRMINHz7cNH369I5JEV9BQkKCY+7cubVz585NkMlkbpZlib/97W/lSqWy3RZhMTExjpKSEumbb74Z8MQTT9R2dm1PQHS3h94aaWlpfG5ursfmK9j7D+zP+QWMYjamzBuHxHsS2xz7zY638fMXn0MtW4BH/zXfYzb0NzQazUmtVuvx0n5PvTdefnw65A1eGDh4Nu79e/uFNMdyP8LRj96H2Gspht+jxpi00TdsQ3/lZr03AM9/dwjcenr6d4dA99Hae+PUqVOlQ4cOrWvrHAGB9jh16pTf0KFDI6893i9SLPx9LuV+czY01Fz/Icigr7uklibITPdlOCkJcHa4zLYOjbcZDeAJAgRBwyek1daMAgICAgICAn2EfuEgK32CAQA8b4Oh7vo5p/q6apCEHDRhvRWmCXQThEIEwAmntWPqMTaTEcSlj4tfuP9NtExAQEBAQECgu+kXDrJI7Q+O4EGwRlgbr9+RxNKoB0gFaEaQme7LkEopAMDl6Nj/s9VoAIimlH21X9s57AICv5xDEgAAIABJREFUAgICAgK9n37hIBMyH7gZN0i3CXbz9QsvnWYLQKkgkd4i4wS6BYmiqROFu4P641aTASREIDgnaJHQB1lAQEBAQKAv0y8cZEi9wDEseM4Cp6PtokQ3ywIOFwhCBpW3IDPdl5EpmzqUNKsXtYfVYADFi0G5O5azLCAgICAgINB76R8OssQLBMOC521g2bZf8mUxCFKGgBCPqlUK9DBkSm8AAMu3UPRsFbvJCBJSkHxXRIMEBAQEBAQEehP9w0EWyUHTbnBwwM0zbQ6zXCEz7R0ZequsE+gGZOomlUR3Bxxkl8MOt8sFkpCDhJCbLiAgICBwNceOHZOnp6drmn/Pz8+Xzpo1KyE1NVWzdOnSSLe76V6zdetW/5kzZyampKQk7t271xsAzGYzuWjRopg5c+Zo5s+fH19RUdHCUbFarURGRkZMWlqaZuHChbG1tbU0ALzxxhsBU6ZMGZSenq5JT0/XFBYWitsae+LECVlaWpomNTVVk5GREW2z2S4rdVxr/8mTJ2UpKSmJaWlpmmeffTas2f7WeO2114KWLFkSfe3xnTt3+r700ksDrjy2ZMmS6MOHD7dZyPP888+HlZWVierr66kPP/yw1ZZRLMsiIyMj+sCBA5fFKhYtWhQze/bshPT0dM2DDz4Y17xW83UZP378kNZsvB79w0EmCIhFPDjCCTchBse1nmZxpcy0KjrsVloocIuRqZo+dxzfbr9y2IxNYiIkoQBJdixnWUBAQECgf7B+/frArKysCKfTednh3LhxY0hmZmZVXl6e1uVyEfv371frdDo6JycnIDc3t3DXrl3aDRs2hHEchx07dvglJiZa9+3bp50xY0b9pk2bgq5dY/v27QGxsbG23NxcbUpKSv369euDAaCgoEC+Zs2a880KdwkJCY7WxnIch6ysrMh169aV5uXlaZOTk41lZWWituzPysqKWLFiRXlubq5WoVC4P/roo1ad1S+++EL1/fffe3nqWr766qsXIiIinKdPn5Y1qwFeydmzZ8Xp6ekJWq1WfuXx/5+9Ow9sqkofPv69WZuk6UJpy1roeguCgLghHRUVFQFZ3RBFrEt1FP2B46gzoiiOONphFBVEUIQBEaHojPKKIqCIAg52QBEuS2lZSzfaJk26ZHn/CMVCQQRKI+T5/GNzc3Lv03JMnpz7nHP27t0blpOTs2XhwoXa3LlztwFMnz49b+HChdr06dO322w277PPPrv7ZGIJiZ30ACwmHZX48APVzjqsEaZGbQ4nyH4z4QmtmzlC0ZzC7YH/77zKb0iQD20zjd6OznDi9kIIIZpf2b/mxlR8/HGT1kdGDhpU0mLk7aW/1qZDhw41r7/++o7HHnsssf6Yqqqu8vJyvc/nw+Vy6Y1Goz82NtazZMmSTUajkfz8fJPRaPTpdDoeeuihovr5MPv27TPZ7fZGw7W5ubnh9957byHAddddVzljxow2AJqmWadOndqqrKzMmJGRUTFu3LjCY7XdunWrOSIiwjN9+vT4vLw8S0ZGRnl6enrN8eIvKSkx9e7duwrgwgsvdC5btixqxIgRZQ1j2rZtm/mDDz6Ifeihh/YuWLDgpNY/nT17dsyqVasiq6urdfv27TOPGjWq8M477ywdPny4+vzzzxdMmzatVV5ennXmzJktMzMzD28E43Q6dX/729/yp06devhLRGFhocHpdOpHjRqV4nQ69ZmZmYUDBgw4vOnF3//+9za33nprUZs2bU64PXZDoTGCDNjCDn0X8LtxO449ClhVfhAAk9eLLky2Ez6X2cMDNcg+TlxiUb/NtNcQhd4sK1gIIYT4xdChQ8uNRuMRt6YTExNrsrOzE6655przysrKDFdccYUDwGg0Mm3atNgRI0Z0uv766w8n3gaDgZtvvjlt0aJFcf369Tt49DWqqqr0kZGRXgC73e6tqqrSA/Tt27ds0qRJu+bPn781Nzc3/JNPPok8VtuSkhLD5s2bw0ePHl30/vvvb123bl3E8uXL7ceLv3Xr1jUrV64MB1i+fHmU2+0+4sPP4XDoxo8fnzBp0qQCg+Gkx1r9AE6nUz9nzpztU6dO3T5r1qwjRs2zsrIKu3fv7miYHAN0797d3blz5yMmA9XW1iojRow48M4772yfNm3ajldeeaX9gQMHDAAHDhwwrF+/PmLkyJEnvdtiyIwgR1rD2E9gs5CqMhcxbcMbtXEcLAP0GH2ySci5zma0AXp8nHgVi/oRZJ8hCpO16gxHJoQQ4lS0GHl76YlGe5tLdnZ2+/fee29Lly5dqt96663Y8ePHt3/55Zd3AWRlZRWPHj265I477khdsWKFs0+fPg6ABQsWbN28eXNYVlZWyowZM7Y9+eSTHQEGDBhQarPZvA6HQwfgcDj0NpvN6/P5yMrKKoqKivICXH755RWbNm2yHqttTEyMt3Xr1tX1yeVll11WsWHDButVV111zG2DJ02atPO5555LePPNN5UePXo4jUajf9q0abHLli1rATBs2LDisrIy40MPPZTsdDr1ZWVlxuzs7Fbjxo0rrD9HWFiYr7a29oiBWLfbrbNYLD6AtLQ0F0D79u1r6+rqTnnAtlWrVp6777672Gg0Eh8f70lNTXVpmhYWHx/v/Pjjj6Ovvfba0lNI4kNnBDnKFkiI/T43jv2NvpwBUFpchKJY0Ptlm+lzndVoxa/o8FOHp+bXk+T6GmRFsWCJkk1ChBBC/Lrw8HBPRESEFyA+Pr7O4XDot2zZYr777ruTfT4fRqPRbzKZfIqi+LOzs1vNnTu3xaHXeXU6HampqTX1dcV33XVXSffu3Z31NblLly6N6Natm6OyslLfv3//8xwOh87n87F27Vp7165dXcdqm5SUVON2u/Xbtm0zA+Tm5trT0tKOuyzTF198EfXaa6/lLViwYGt5ebk+IyOjMisrq7g+pttuu61s6dKlPy9cuFB74okndnfv3t3RMDkGOP/8813ff/99RH2yXlpaqs/Pz7fUJ+mKohzr0hx6zu/3H39Z3oa+/PJLe1ZWVhIERrZ37txp6dSpUzXAmjVrIq666qrK33Sio4TMCHLLiGjABX43pXuPnSCXlRShKOEYdDJKeK6zGqz4dYCvmupyJ+Hxx59jcLgGWTFjibEdt50QQggBMGHChIIxY8Yk6/V6v9Fo9L344osFiYmJtWlpaa7BgwenK4pCr169Kq688kpnenp69dixYxMXL14c6/P5eP7553cefb7MzMziRx55pOOQIUNUo9Hof/XVV/OioqK8Dz744J7bbrtNNRqNvosuushxww03VFRVVTmObms2m/0TJkzIHzt2bJLf76dr167O/v37VxwrdoCOHTtWjxw5Ug0LC/P17NnTccMNNxy37fGkp6fX3HTTTUU33XRTutVq9Xo8HuXxxx/fZbfbTziZJzk5uSYvL8/y+uuvxz300ENFv9a2X79+latWrYq88cYb03U6HQ8//PDe2NhYD8Du3bvDkpKSTmn5KeW3ZujNaejQof6cnJwmPefB//yVd/71P4xhV5LYuRsD/9y3UZvJ998BVbEkWOwMe3tCk14/1Kiqul7TtAub+rxN1Teq6qqYMnokJl9L7vjrX4nt3OG4bb94+3U2Lv+MsMixXHRDDBff2O20rx/KzlTfgDPz3iGa1+/9vUMEz7H6xoYNG/K7det20vWlQtTbsGFDy27dunU8+vhpjSCrqjoEuEnTtBGHHl8KvAp4gM81TZugqqoOeBPoBtQA92iatv10rnsqIqLjAdB5K6gqP/ZdBa/TgUHfEVu4rFRwrrMYLHgMYKqpobK4kl+bfut2VKIQuBUU3arJVrMRQgghxO/UKdcgq6r6KvDiUeeYBowAMoBLVFXtAQwGwjRN6wU8AWSferinTh8eg0fvRfE4qHE1rjmtq65G8XhQdDaiY6xBiFA0J52iw6v34ffX4Cj79ZrzQIIc6OYRcZHNEZ4QQgghguh0Jul9CzxQ/0BV1QjArGnaDk3T/MBS4BoCyfJnAJqmrQHOyK3VEwqLwmPygs9J3TFWeXOWB5b3UxQbsa2imzk4EQweox/81bgO/nrNubuyEt2hmy2WcFn+TwghhDjXnbDEQlXVTOD/jjo8WtO0D1RVvbLBsQig4UxBB5B06HjD4m6vqqoGTdNOvL5WU7JE4Td68eHG6238a9evgYzORlTCMTeMEeeYOnOglKaqtOxX27kdlej8gT5jsoTMvFYhhBAiZJ3w017TtJnAzN9wrkqg4RpYdqAcsB51XNfsyTFAWBR6Yx1eqvEqZvx+/xFLjFQdDCTIOsKwJx9/wpY4d3gtgf9Wl5cft43f78ftqCTMH4UfMIXJRiFCCCHEua7J1kHWNK0SqFVVNVlVVQW4DlgFrAZugMOT+H5sqmueFEs0JmMtPqUOv2KgrvrIHdScBwNri5s8HgytEoIRoWhmXlvgC1Kt8/g1yDWuKvw+Hzp/GIqvGp0+ZJYOF0IIIUJWU3/aZwFzgXVArqZpa4HFQLWqqt8Ck2lcrtE8LFHYDHX48eH3e6iqOHJZvNLiUkDB5KlCsUgNcijwRQZuoNRWu4/bpn4NZIPfis5/3DXVhRBChLA1a9bYhg8frtY/zs3Ntdx4443pQ4YMUceMGdPR6w0Myr311luxAwYM6DRw4MBOH374YTSA0+nUjRo1KnnYsGHqLbfckrZnzx7j0ed3uVxKZmZm8tChQ9WRI0emFBUVGQCmTJkS17dv3/OGDx+uDh8+XN2yZYv5eG3XrVtnHTp0qDpkyBA1MzMzye12H76NfnT869evtw4cOLDT0KFD1T//+c/t6+Nv6Msvv7QPGjQofdiwYWpmZmZSVVXVETnl7NmzY5599tm2DY/dd999SStXrjzujltPPfVU+4KCAlNpaal+/vz5x6x39Xg8ZGZmJn322WcR9cdGjRqVPHjw4PThw4ert99+e2r9v8HQoUPV4cOHq7fddltqYWHhSdVInlaCrGnaSk3Tbm3weI2maZdqmnaRpml/OXTMp2lalqZpl2ma1kvTtC2nc81TZrQQYQxUdvh9VVSWHpnslBQFdtEzUg46GSUMBUZ7oMbCU3OMWZuHVDsCo8s6xYrCKa01LoQQ4hw2efLk+PHjx3eora09nHC+9tprbbKysvYvXrxYq6urU5YsWRJZXFxsWLhwYVxOTs6WuXPnav/85z/b+3w+Zs2a1bJTp06uRYsWaf379y994403Wh19jZkzZ8alpKS4c3JytIEDB5ZOnjy5NcDmzZttL7744s76He7S09NrjtXW5/Mxfvz4ji+99FL+4sWLtYyMjMqCggLT8eIfP358hyeeeGJXTk6OFh4e7v3ggw8aJasvvPBCh7feemv7okWLtISEhJr33nuv5en+Lf/2t7/t7tChQ+2PP/5ord8NsKHt27ebhw8fnq5p2hG7du3duzcsJydny8KFC7W5c+duA5g4cWLC008/vWvhwoXa1VdffXDKlCmN/q6/JqRmHLUI07EfwF9F2a4yOpwXc/i5spIi0Nkx6o+9y54494SFhwOVeLx1x21TP4KsU+wouuO3E0IIEVwbV+yJ0dbsP+0krSH10tYl5/dpV/prbTp06FDz+uuv73jssccSD79OVV3l5eV6n8+Hy+XSG41Gf2xsrGfJkiWbjEYj+fn5JqPR6NPpdDz00ENFHk9gAG/fvn0mu93eaLg2Nzc3/N577y0EuO666ypnzJjRBkDTNOvUqVNblZWVGTMyMirGjRtXeKy2W7duNUdERHimT58en5eXZ8nIyChPT0+vOV78JSUlpt69e1cBXHjhhc5ly5ZFjRgx4ogZ7f/617+0Vq1aeQC8Xq9iNpt/8yYSs2fPjlm1alVkdXW1bt++feZRo0YV3nnnnaXDhw9Xn3/++YJp06a1ysvLs86cObNlZmbm4Y1gnE6n7m9/+1v+1KlTDye7hYWFBqfTqR81alSK0+nUZ2ZmFg4YMKBiypQpeW3atKlrEN9J7YwXUkOlcdawwA/eSooKjtx4p/pgKYrOhtXkDEJkIhgs4YG7M17f8eeM1ifIfr0dnUE2kBFCCHGkoUOHlhuNxiOSr8TExJrs7OyEa6655ryysjLDFVdc4QAwGo1MmzYtdsSIEZ2uv/76w4m3wWDg5ptvTlu0aFFcv379Go3UVVVV6SMjI70AdrvdW1VVpQfo27dv2aRJk3bNnz9/a25ubvgnn3wSeay2JSUlhs2bN4ePHj266P3339+6bt26iOXLl9uPF3/r1q1rVq5cGQ6wfPnyKLfb3WiGen3yuXjx4qj169fbR4wY8atfJBrwAzidTv2cOXO2T506dfusWbOOGN3Nysoq7N69u6NhcgzQvXt3d+fOnY8oAaitrVVGjBhx4J133tk+bdq0Ha+88kr7AwcOGOrjW716tW3BggVxWVlZB35jfECIjSC3iQiUvejqSinbV3nkk85KFEM77JG/uuW3OIdYI1rgBby+xrVV9dyVgRUKvYZI9ObjtxNCCBFc5/dpV3qi0d7mkp2d3f69997b0qVLl+q33nordvz48e1ffvnlXQBZWVnFo0ePLrnjjjtSV6xY4ezTp48DYMGCBVs3b94clpWVlTJjxoxtTz75ZEeAAQMGlNpsNq/D4dABOBwOvc1m8/p8PrKysoqioqK8AJdffnnFpk2brMdqGxMT423dunV1fXJ52WWXVWzYsMF61VVXHXOW+qRJk3Y+99xzCW+++abSo0cPp9Fo9E+bNi122bJlLQD++c9/5rVr165uypQpcV9++WWLWbNmbbNYLEck2WFhYb7a2tojBmLdbrfOYrH4ANLS0lwA7du3r62rqzvlAdtWrVp57r777mKj0Uh8fLwnNTXVpWlaWHx8vHPBggXRM2fObD19+vRtcXFxJ7WCWmiNIEfE4FP86OpKcVX8Unda46pC8dah6CKIaxlS3xlCms3WAjDg4wQjyAp4DREYLabmC04IIcRZKzw83BMREeEFiI+Pr3M4HPotW7aY77777mSfz4fRaPSbTCafoij+7OzsVnPnzm1x6HVenU5HampqTX1d8V133VXSvXt3Z31N7tKlSyO6devmqKys1Pfv3/88h8Oh8/l8rF271t61a1fXsdomJSXVuN1u/bZt28wAubm59rS0tOPOPP/iiy+iXnvttbwFCxZsLS8v12dkZFRmZWUV18fUrl27updffrlVbm6ufd68eVpsbGyjD9Lzzz/f9f3330fUJ+ulpaX6/Px8S32S3nCp3aMpiuL3+39bRcSXX35pz8rKSgJwOBy6nTt3Wjp16lQ9b968FvPnz4+bN2+elpycfPzJRscRUtmgLjyWGvNBwqsqqav55btBZXFg1FjRRdKmQ8zxXi7OMVazHYdixMuvjCA7KtHpwWu0Eia7TAshhPgNJkyYUDBmzJhkvV7vNxqNvhdffLEgMTGxNi0tzTV48OB0RVHo1atXxZVXXulMT0+vHjt2bOLixYtjfT4fzz///M6jz5eZmVn8yCOPdBwyZIhqNBr9r776al5UVJT3wQcf3HPbbbepRqPRd9FFFzluuOGGiqqqKsfRbc1ms3/ChAn5Y8eOTfL7/XTt2tXZv3//imPFDtCxY8fqkSNHqmFhYb6ePXs6brjhhiPaFhYWGmbNmtUmOTnZdeedd6YBXHvttWX33XdfcX2b9PT0mptuuqnopptuSrdarV6Px6M8/vjju+x2+wnrFZOTk2vy8vIsr7/+etxDDz30q7f2+/XrV7lq1arIG2+8MV2n0/Hwww/vjY6O9mRnZyfExsbW3n///SkAF1xwgeOpp57ad6Jr11N+a4benIYOHerPyclp+hMvm8CED74mpjwWpcU9PDD1anQ6he3fr+HjVyZiDRvM/ff50PW+r+mvHWJUVV2vaVqTbyvelH1j8bbF7Bz/AXrsPPL+28ds8/ErE8n/33cYwseRfKGB6++5vEmuHcrOVN+AM/jeIZrN2fDeIYLjWH1jw4YN+d26dSs53muEOJENGza07NatW8ejj4dUiQW2ligmDx6lBhQdVeWBZbv27tkLgNnjQdeidTAjFM3IYrTgV/T4Of7qFK7KSpRD3yFjWjXp5GghhBBC/E6FVoJsbYnBWIdXCSREjrLABhG7d+0F9Bi8DrDFBjFA0ZxsBht+nQ6fvxZfzbHXOHZXlqM7lCBHxskGMkIIIUQoCK0E2RaDxRio0/b7PezbFSipKd1XiKKLwuzfA1YZJQwVVqMVrx781OCpOHYplquiAr0v8L9JWLhM0hNCCCFCQWglyNaWhBsCI4V+n4N92woBqC4pRNHZCTPkg00S5FBhNVjx6AF/DZUHyho976mtpcZVhd4XWP7RZAmpOa1CCCFEyAqtBNnWkniTCwCjK4/S/EO7pLnKUfSRRNnzkKUKQofVaKX20NroRbsLGz3vOrQGst4bGDk2S4IshBBChITQSpCtLUnTB5Jik3sH7nIFV6UTna8Wg89Im7g6+JV1+cS5xWqwUm0KLPF2cF9xo+frNwkx+M0AmK3G5gtOCCGEEEETWgmyMYwkgwmnpQ6/pwi/X0/uOg0Aa0017Vq1CHKAojnZjDZc5sDa5pUljTdfqqoI7PZp8NoAMFka7bQphBBCsGbNGtvw4cPV+se5ubmWG2+8MX3IkCHqmDFjOnq9gcGYt956K3bAgAGdBg4c2OnDDz+MBnA6nbpRo0YlDxs2TL3lllvS9uzZ02g0xuVyKZmZmclDhw5VR44cmVJUVGQAWLdunXXo0KHqkCFD1MzMzCS32614vV7GjRuXMGjQoPThw4er9ZuDbNu2zXzLLbekDRs2TL311ltTS0pKDn+obdu2zXzttdd2rn+cl5dnGjZsmDp06FD1wQcfTKyqqmqUL+bm5lqGDh2qDh8+XL3ttttSCwsLj7jNunLlSvt9992X1PDYs88+23b27NnH3XAiOzu71dq1a61ut1t59913j1vz+tRTT7V/++23j1hVoaioyNCnT58ubrdbASgvL9ffeeedKcOGDVMHDRqU/u2339qOd75jCa0EGTBZY3DbvbhNgQ1kln76HQAGXxWW8LhghiaamcVgoSossKKJu/xgo+ddFfUjyDbw12EwSoIshBDiSJMnT44fP358h9ra2sO3oF977bU2WVlZ+xcvXqzV1dUpS5YsiSwuLjYsXLgwLicnZ8vcuXO1f/7zn+19Ph+zZs1q2alTJ9eiRYu0/v37l77xxhutjr7GzJkz41JSUtw5OTnawIEDSydPntza5/Mxfvz4ji+99FL+4sWLtYyMjMqCggLTv//976ja2lrdxx9/vGXcuHF7Jk6c2A7gL3/5S4dHH31076JFi7Sbb765eOvWrWEAc+fObfHoo48mVVRUHE7MX3jhhXY33XRTcU5OjnbRRRc53njjjfijY5o4cWLC008/vWvhwoXa1VdffXDKlCmN4j5Z48aNK7zkkktchYWFxsWLFzdKkIuKigy333576urVq4+oh126dGnEqFGj0g4ePHj4d3jzzTfjL7744spFixZpL7300s6JEycmnEwsoVdUaY1BH+6lRq8Q6SoiqqoAv2JBMewFSZBDiqIouG2BDX1qnJWNnndVlANgIByF4+7IKYQQ4ncg97NPYn7++ssmnWnf+fKrS3pcP6DxLcYGOnToUPP666/veOyxxxLrj6mq6iovL9f7fD5cLpfeaDT6Y2NjPUuWLNlkNBrJz883GY1Gn06n46GHHiryeAJ3M/ft22ey2+2NtnfNzc0Nv/feewsBrrvuusoZM2a02bp1qzkiIsIzffr0+Ly8PEtGRkZ5enp6zZw5c2IzMjIqAHr16lU1duxYm8vlUg4ePGhctmxZVHZ2drtOnTpVPfPMM3sAIiMjvR988IF29dVXd62/XkFBgeXaa68tALjkkkucEydObH90TFOmTMlr06ZNHYDX61XMZvNv3nlu5cqV9rfffruVwWDw7d+/39y3b9+yP/3pT4UPP/xwx/79+5ctXbo0eteuXZZJkya1fuKJJ/bXv87pdOoefvjhfStWrDgiQdbpdMyZM0cbMmTI4VHwBx544IDZbPYBeDwexWQyndTOeCE3goytJXZrHaAQUZ6L37OXiBoFxf4jRLQNdnSimdVEBBLkOndVo+dcFeXoDQa8BjuK7qS3cRdCCBEChg4dWm40Go9IvhITE2uys7MTrrnmmvPKysoMV1xxhQPAaDQybdq02BEjRnS6/vrrDyfeBoOBm2++OW3RokVx/fr1a3RLs6qqSh8ZGekFsNvt3qqqKn1JSYlh8+bN4aNHjy56//33t65bty5i+fLl9qqqKn1ERMThJFun0/mLioqMu3btCsvIyKhcsGCBVllZqZ87d24MwIABAyrCw8OP2P45JSXF9emnn0YBfPbZZ1HV1dWN8sX65Hj16tW2BQsWxGVlZR34LX8v5dBcrwMHDphmzJixIycnZ8u8efOOGH0eM2bM/oSEBHfD5BggKSmp9tJLL230gd23b9/Kli1bHvHFIjo62mu1Wv379+83/OlPf0p69NFH9/yW+OqF4AhyS1qZt1NKFBbnGrDYaVdcQoVaC5GSIIcafbge8FNX23ijEFdlBUazEU+dBcXgaf7ghBBC/GY9rh9QeqLR3uaSnZ3d/r333tvSpUuX6rfeeit2/Pjx7V9++eVdAFlZWcWjR48uueOOO1JXrFjh7NOnjwNgwYIFWzdv3hyWlZWVMmPGjG1PPvlkR4ABAwaU2mw2r8Ph0AE4HA69zWbzxsTEeFu3bl3duXPnaoDLLrusYsOGDVabzeZ1Op2HawL9fr8SFxdXZ7FYfPXX6tOnT8Xq1asjgGP+vcaPH7/n6aefTvj4449b9u7duzwyMtKzaNGi6Pfffz8O4Iknnth94YUXuhYsWBA9c+bM1tOnT98WFxd3xAdlWFiYr66u7oiVD1wulz4sLMwHkJSU5DYajRiNRt/Jju7+Vhs3brSMGzcuaezYsbuXzHtMAAAgAElEQVSvvPJK58m8NgRHkGNIohSPzkderB2AtWoN0S1qIKJdkIMTzS3MagIlDK+38XbTropy9HoFj8GK7rffORJCCBHiwsPDPfWjuPHx8XUOh0O/ZcsW8913353s8/kwGo1+k8nkUxTFn52d3Wru3LktDr3Oq9PpSE1NrVm4cKG2cOFC7a677irp3r27c/ny5VEQqLft1q2bIykpqcbtduvrJ+Hl5uba09LSqnv27On8+uuvIwG+++47W2Jiottqtfrbtm1b/fXXX4cDrFu3zp6SkuI+XvzLly+P+NOf/rRn4cKFml6vp1evXpXDhg07WB/ThRde6Jo3b16L+fPnx82bN09LTk5udJu1U6dO7u3bt1v37dtnBHC73cqGDRvCu3fv7jrR30+n0+H3+09rWbFNmzaFPfroo0kvv/xyXr9+/RrXUZ5ASI4gJ9ZWMalHCX03tkHn95GTUccDe2QEORSFhZlQFANeX+MRYldFOTq/F4/BgsEaet8lhRBCnJoJEyYUjBkzJlmv1/uNRqPvxRdfLEhMTKxNS0tzDR48OF1RFHr16lVx5ZVXOtPT06vHjh2buHjx4lifz8fzzz+/8+jzZWZmFj/yyCMdhwwZohqNRv+rr76aZzab/RMmTMgfO3Zskt/vp2vXrs7+/ftXeL1eVq9eHTF48OB0v9/PpEmT8gFeeOGF/AkTJiS88sorSuvWrWueeeaZkuPFn5KSUj1u3Lgko9HoT0xMdL/00ku7Gj7v8XjIzs5OiI2Nrb3//vtTAC644ALHU089ta++TWRkpG/s2LG777nnnhSz2ezzeDy6W265pSg1NbVm7969v7o1bVxcXF1dXZ3yzDPPtJ0wYcLek/zzA/D3v/+9bV1dna5+cp7NZvO89957O37r6xW///c3MjZ06FB/Tk7OmTn5/+bh+egBeqekcUXUZRSW7sYf5mDO5nXw+E6wylJvTUFV1fWapl3Y1Odt6r7xf19kkfCuF6O3ioc+mHfEc9Oy7sRQV46PewjvpDDisYFNdt1Qdqb6Bpzh9w7RLM6W9w7R/I7VNzZs2JDfrVu34yZ6QpzIhg0bWnbr1q3j0cdDb1gsKgEDcHuby/l/pcvJZRvXGGPAYAFLdLCjE83MaopEUUx4/UeWWPh9vkCJhacWj8GCLUZ2WBRCCCFCReglyNEdAbjLlozdFKhB7ltLoLxCdtELOeFhUYEaZI4sn6qucuL3+dDVefEreuySIAshhBAhI/QSZHtr0JuIqCzkzxf9mdvSb6ONs0SWeAtRNqMNdCb8ipca1y/zBqoOlgFQv3iF3W4NRnhCCCF+nc/n88noljglh/qO71jPndYkPVVVhwA3aZo2osHjV4Ddh5o8A6wC3gS6ATXAPZqmbT+d654WnR6iEuBgPoP6PseglEHwzRxI7hO0kETw2Iw2KvSBjXccB/ZjTkwGoKK4CABjXWClnAj7Se1QKYQQonn8VFxc3Dk2NrZCp9P9/iZVid8tn8+nFBcXRwI/Hev5U06QVVV9FbgO+F+Dwz2BxzVNW9Sg3VAgTNO0XqqqXgpkA4NO9bpNIjoRDuYHfvZ6wFkIEW2CGpIIDpvRRqlBhx4oLyig5aEEubI4sN65qS6QPFttYcEKUQghxHF4PJ57CgsLZxQWFnYhFO+Ki9PhA37yeDz3HOvJ0xlB/hb4CLi/wbGeQA9VVR8F1gF/BjKAzwA0TVujquoZmb1+UqI7wp51gZ+dheD3SYlFiLIZbdQawQKU7t5NyqHjFUUHMJjMmMoDd+7M1tBbEVEIIX7vevbsWQTcGOw4xLnnhJ/6qqpmAv931OHRmqZ9oKrqlUcd/4JA0rwTmAZkARFARYM2XlVVDZqmBW9rsuiOUF0B7oNQdmi5wahG24yLEGAz2nCZPYEEed/h5RupLC4iIjYO/f7AjpYmiyTIQgghRKg44ae+pmkzgZm/8XzvaJpWDqCq6sfAMALJsb1BG11Qk2M4vJIFB/Nh1xpAgbY9gxiQCJZwYziusBpiFCuVJcWHj1cUH8Aa3QLl0DrhYVZjsEIUQgghRDNrsnodVVUVYKOqqvX7NV8NrAdWAzccanMp8GNTXfOUNUyQC76B+PNkDeQQZTPacJrdKDo7zoryw8cri4swGYx4DIHVK0wW/fFOIYQQQohzTJMlyJqm+YF7gBxVVb8CrMDbwGKgWlXVb4HJNC7XaH7RHQL/3b8Rdq+DDpcFNx4RNDajjUqLC0UXTo3LCUCNy0W104HB58FjsOBXatDpZe6HEEIIESpOq7BS07SVwMoGjz8HPj9G06zTuU6TM9shqQ98+xr4PNChd7AjEkFiM9pwm6pRdG2orc0HoLIksMSbocaN29ACv77uV84ghBBCiHNN6A6LXT/pl59lBDlk2Yw2avQuFJ0dn99LrdtFRVFgiTdjlYM6gwXF7A1ylEIIIYRoTqE7NT8uHa74M+xdD+FxwY5GBInFYKHOUI2iC8wjrSwpPrwGssF5EI/Bit4q9cdCCCFEKAndBBngiseDHYEIMkVR0Jt9KPp4AHb9tIEDO7ZhttnQVZZSa7JhjDAFOUohhBBCNKfQLbEQ4hCDRYdOH43JZ2LL6q/Y9v0aUi++DJ3TSa0pnDC7LPEmhBBChBJJkEXIC7OYwe/D5olg/zaNumo36b2vQOdy4zGEYw03BztEIYQQQjQjSZBFyLOZwgEXVl/LwOOoaNqf1xVdtREUPeERYcENUAghhBDNKrRrkIUgsJKFT3Gj17WkZdv2pPbKQKfTgyewSUhkZHiQIxRCCCFEc5IEWYS8cFM4Hp0br8FG/7sepuX5nXG5a/FjAyA60n6CMwghhBDiXCIlFiLkRZojcRvd1BkslBfsAaB49348hsDIcWSUjCALIYQQoUQSZBHyosxRVIa58BisVGzPA+DAph+pNQZGji3hssybEEIIEUokQRYhL8ochcPswmO04NyxEwDnTxuoMwZKLCx2SZCFEEKIUCIJsgh5keZIag3VeAxWfLsLAFDytlBjCsen82Awyf8mQgghRCiRT34R8iJNkdQYXPh0RsyHtpk279+D0xaO11yDoihBjlAIIYQQzUkSZBHyosKiqNG7ATBXVeP3eLCWHqTKGo4/zBvk6IQQQgjR3CRBFiEv0hwYQQbw682UbtmByVlDtSkcxeILcnRCCCGEaG6SIIuQF2WOotpYBUCtKYJNH3+G4gePPhyDVcorhBBCiFAjG4WIkBdhisBpOghAtTka36qvAdARjtkmJRZCCCFEqJERZBHyDDoDyqFEuMYSTdv8n/Epeox+C2HhxiBHJ4QQQojmJiPIQgDhViteoxt9Bys/2LqTatsEQESkLciRCSGEEKK5yQiyEBxaCznMQW1YFCMe7My+1AgAWsZEBTkyIYQQQjQ3SZCFIDBRzxXmwOltifLzR5R62wDQvn18kCMTQgghRHOTBFkIAiPIDnMFTm9LKN2O03w+Pry0ad0y2KEJIYQQopmdUg2yqqqRwL+ACMAEjNU07TtVVS8FXgU8wOeapk1QVVUHvAl0A2qAezRN294k0QvRRKLMUewwFlPjv4DarqOo2ZIIlkoMRn2wQxNCCCFEMzvVEeSxwJeapl0B3AW8cej4NGAEkAFcoqpqD2AwEKZpWi/gCSD7tCIW4gyINEdSqg9sM+287EWUCjN1EVVBjkoIIYQQwXCqCfJk4K1DPxuAalVVIwCzpmk7NE3zA0uBawgky58BaJq2Brjw9EIWoulFmiNxmgNrITvLqjE57ShRdUGOSgghhBDBcMISC1VVM4H/O+rwaE3TvldVtRWBUotHCZRbVDZo4wCSDh2vaHDcq6qqQdM0z2lFLkQTijJHUWUqB6AwrwKDz4glRkr0hRBCiFB0wgRZ07SZwMyjj6uq2hWYDzymadpXh0aQ7Q2a2IFywHrUcZ0kx+L3Js4adzhBzt9cAkBEnCWYIQkhhBAiSE5piExV1c7Ah8AITdP+H4CmaZVAraqqyaqqKsB1wCpgNXDDodddCvzYFIEL0ZSSo5Lx6Xzo4mopznMCENc6MshRCSGEECIYTvUe8otAGPCqqqorVVX9+NDxLGAusA7I1TRtLbCYQI3ytwRql48u1xAi6FqEtSDaHM2BK/5LeAcFh7mUVrGyxJsQQggRik5pmTdN0wYd5/ga4NKjjvkIJM5C/K4lRyWzrWYz3Yd35R/fvMCI8H8HOyQhhBBCBIHMQhLikOSoZPLK8yh2F+HTeYm1xgY7JCGEEEIEgSTIQhySEpWCs87JR9s/omNERywGmaQnhBBChCJJkIU4JDkqGYBdjl3crN4c5GiEEEIIESySIAtxSEpUCgAWg4VBKccssxdCCCFECDilSXpCnIuiw6LpGNGRjLYZRJgigh2OEEIIIYJEEmQhGlh04yL0ij7YYQghhBAiiCRBFqIBk94U7BCEEEIIEWRSgyyEEEIIIUQDkiALIYQQQgjRgCTIQgghhBBCNCAJshBCCCGEEA1IgiyEEEIIIUQDkiALIYQQQgjRwO9ymbdNmzaVqKpaEOw4xGnpcCZOKn3jnHBG+gZI/zhHyHuHOJ4z9t4hxNEUv98f7BiEEEIIIYT43ZASCyGEEEIIIRqQBFkIIYQQQogGJEEWQgghhBCiAUmQhRBCCCGEaEASZCGEEEIIIRqQBFkIIYQQQogGfpfrIDekqqoOeBPoBtQA92iatj24UQWHqqo/AJWHHu4E3gJeBTzA55qmTQhWbMEgfeNI0j+OJP3jF9I3jiR940jSP4Ro7HefIAODgTBN03qpqnopkA0MCnJMzU5V1TBA0TTtygbH/gcMA/KAT1VV7aFpWm6QQgwG6RuHSP84JukfSN84Dukbh0j/EOLYzoYEOQP4DEDTtDWqql4Y5HiCpRtgVVX1cwL/bs8CZk3TdgCoqroUuAYIpTcx6Ru/kP7RmPSPAOkbjUnf+IX0DyGO4WyoQY4AKho89qqqejYk9k3NBbwCXAdkAe8eOlbPAUQGIa5gkr7xC+kfjUn/CJC+0Zj0jV9I/xDiGM6GN4RKwN7gsU7TNE+wggmircB2TdP8wFZVVSuAFg2etwPlQYkseKRv/EL6R2PSPwKkbzQmfeMX0j+EOIazYQR5NXADwKFasR+DG07Q3E2gTg5VVdsAVqBKVdVkVVUVAt/+VwUxvmCQvvEL6R+NSf8IkL7RmPSNX0j/EOIYzoYR5MVAX1VVvwUUYHSQ4wmWmcAsVVW/AfwE3tR8wFxAT2Cm8dogxhcM0jd+If2jMekfAdI3GpO+8QvpH0Icg+L3+4MdgxBCCCGEEL8bZ0OJhRBCCCGEEM1GEmQhhBBCCCEakARZCCGEEEKIBiRBFkIIIYQQogFJkIUQQgghhGhAEmQhhBBCCCEakARZCCGEEEKIBiRBFkIIIYQQogFJkIUQQgghhGhAEmQhhBBCCCEakARZCCGEEEKIBiRBFkIIIYQQogFJkIUQQgghhGhAEmQhhBBCCCEaMAQ7gGO55JJL/G3btg12GOI0bNq0qUTTtNimPq/0jbPfmeobIP3jXCDvHeJ4zuR7hxBH+10myG3btiUnJyfYYYjToKpqwZk4r/SNs9+Z6hsg/eNcIO8d4njO5HuHEEeTEgshhBBCCCEakARZCCGEEEKIBiRBFkIIIYQQogFJkIUQQgghhGhAEmQhhBBCCCEakARZCCF+Lzy14CwOdhRCCBHyJEEWQojfg40fwms94JUU+NcwKNsZ7IiEECJkSYIshBDBtnc9LL4PwmMhYyzs+R7mDAZnUbAjE0KIkCQJshBCBJO3Dv49BsLj4c6P4ZpnYGQOOA7AB3eAzxvsCIUQIuT8LnfSE0KIkPHjh3DgJ7jlX/j1Vta++R7FixYTFt6T3u3XYk6fir73Q8GOUgghQookyEIIEUzfz4CWKn61P9+M/iMt166kOiKOiGIH+VtjiXdNwph4HRFtUoMdqRBChAwpsRBCiGDZ+0Og/viiTHZMf5eWa1eyOmMIEf9+lV1zHqM8qR1F34az42+Z1Hik1EIIIZpLk44gq6pqBN4BOgJmYCLwMzAL8AM/AX/UNM3XlNcVQoiz0vpZYLTiadcXV+YQNrTpzJ47w3l16R0AmAf7+ftsA61XHeDDNyczcsxjwY1XCCFCRFOPII8ESjVN+wNwPfA68A/gr4eOKcCgJr6mEEKcfbwe2PIJqDew7e356Dx1rLu1DYvy5nOn+Y9kW2bzqPUV5gxKodqnQ/1oJjnrZOk3IYRoDk2dIH8IPH3oZwXwAD2Brw4d+3/ANU18TSGEOPvs+g5cpXjaX01dzoes7pjKav13ZO4dj3VlGjtWllOxysSF28fw9eWjMRdZ2DX9EXaVuoIduRBCnPOatMRC0zQngKqqdmAh8FfgFU3T/IeaOIDIprymEEKclTb/BwxhHMitxFhbzbKrK+mffy+m0hb0vjmVrle0xe2oY8OXu/nfl7Dm4gR6bJrG07Nn8+4j96PTKcH+DYQQ4pzV5JP0VFVtD6wA5miaNg9oWG9sB8qb+ppCCHFW8fsDCXLy1RR+9CnbWsSAP4VWxalcNjSFble1R6fXYYsyc9mwFIaM64nOHsPm8x6j19ol/HPl98H+DYQQ4pzWpAmyqqrxwOfAnzVNe+fQ4VxVVa889HM/YFVTXlMIIc46B34Cxz6qbRdizd/Ot+eHcdmuIbRJjaTbVe0bNW+dHMnN4zMw69347Q+ybekU1u/eH4TAhRAiNDT1CPJTQDTwtKqqK1VVXUmgzGKCqqrfASYCpRdCCBG6tn8JQMmGCjyKjqI2nTB5wrhsaCrKcUonImIs3PxkTyw1RXQ9eDsT5k+kwu1uzqiFECJkNHUN8iPAI8d46oqmvI4QQpzVdizHH9uJ0g9Xs7FdNGpJH+JT7MQnRvzqy2wdk+jfew6ffKPn2u03MHr2X/jw3pfR6/TNFLgQQoQG2ShECCGaU20V7PqO2vCLMBXuZWtaMuG1UVx4beJvennsvX/lD+4ZhNVW03tjBg8ufB6/33/iFwohhPjNJEEWQojmVPAteGup2GMBwGPrjsEGCV1iftvrdXoSJ03iAm0K1loz7b5L5sWvpp7BgIUQIvRIgiyEEM1p51egN1G8bhtaqxa0dpxH+kVtTmrZNn3KJaTe1oWuP80g2tWKg0s9/OunD89g0EIIEVqatAZZCCHECRR8hyeyGzptCz9f3ptIvwH14tYnfRr7g5NJ/uoi3NsXoqTewvLFn9Mxqi0Z7S47A0GLoKp1wY4v+c/i+RTnbiXM6WJ/jJk91/bgrn5j6BbbLdgRCnHOkQRZCCGaS20V7P8fVcaBwF5qbOdjMisnnJx3THoj8S+/TdXNI3AUJ9CTa5n8wbvEjW5JWou0Jg9dBMmBTXjfv5OVX1cQs7cT5YmjOZiQSpiip9NKB8tWL+Ojy1fw2PB7sZltwY5WiHOGlFgIIURz2fNf8HmoLPBSbgmjRU0aqd1aoSintiueLvEi2j08kHTtfWzVu7l8+3DGffA8pe7SJg5cBEVZHv53+/P1Sic1VQPJ7fF/1LVKpnvEZ1wUvpAI327sdcm0XHU+U578lO++/UkmbArRRCRBFkKI5rLrO/x+hYoNO9iYmozBZ6Jjl9jTOmXYbS/Q5g8KPda/jtFbzeWbhnPfh49T461poqBFUNQ4Yd6t/LRNj6t6ADsTB5J6cRx3/v0aej9+Pxd3WMstSRPoE/8F5/38DpEVXn6YXcSsV76kqkL+7YU4XZIgCyFEcyn4lhpDOvqDBymKSwe9n7Zq9Omd02gh6vE3iO9YyMX/nUyYx0z33Ku576Mn8fl9TRO3aH5fv0z17m2UbD2f/A796NAzir6jz8Ng0kNsGmR+gdKuJ6lh81Cvj+HybydiLvuYyp0e3n1mJTt/Lgr2byDEWU0S5Gbg9/spL3JRvMtBVXmN3AITIhT5fLD3B6ocgQl5el1nWqdGYjQ1wSYfiZcTP3ogcZG76LlhKlHuWNqtSef/PntB3m/ORiXb4Ls3WLktne0pI9FHerhuVLcjS3GsLWBkDiReQeva92g56lp6b/yciN3TOKgU8+lrG1m5ZKP8+wtximSS3hnkrfPxw+cFbFq1j6ryX255hUebSekZR9cr2xHR0hLECIUQzaZ0G9Q6cO7xUhAbQ2RtK5K6xDXZ6ZV+L9Buyxd4P8uj67Z5KKkj2f1VLc+apzDhqjFNdh3RDJY9S6nDiq/qUmrjohlyb49jf5EyWeG29+H9W4nfOQtl9N1c+u4SVtfOZ+sF16L8W8e+vSu4NbPPSS0jKISQEeQzpqq8hgUvfs+6/+ykZbtwrrxdpV9WV/5wSyot29vZuHwPc59Zw6oFW6l1e4IdrhDiTNv7A34fOLbsYVvHJIDTL69oyBKNbuCLtO+1h3a1P9N512ISyjvj+gL+8e07TXcdcWYd2ARbPuHb7ckUJFxLRJJCm9Rf6SdGC9w6DxIuI676HWJGXU/vgh2oa79ke5v1HFwPr7+cQ3Wt1CULcTIkQT4DXJW1fPzPXByl1XQaGc6eP3zHMttCtkatp8NlEfR/8HzueKEX6b1as3HFHuZNWEvBTzLrXIhz2t711FRFoHe5KY9Kw2BRaNk2vGmv0WUYhvP7ktBrF+0O/hd13yd0PNiFwn9XMX3d/Ka9ljgzvn6FyupwdK7u+PRm+t9x8YlfY7LB7QugQ2/iat4h7vYruGzfVi5Ytoq8DpvQ74zmn88tovigfM4I8VtJiUUT8/v8LJv1M5Wl1eRnfMWUHQsB0Ct6vH4vFoOFwSmDubvL3fQZmU7n3m1YPmczn7y+gc4Zbeg9PAVTmPyzCHHO2bueKncHoBSTotIuNQalqW97KwoMeh3TvstI6OfD/8lqUMBPf3Z9uJP3lIWMumh4015TNJ2KvfDzR6za1YV9bf5AWOs6WrT+jWsbm2xw+0JYlEnMlvdRbulHzwUbMX/i4bsBFhJ3JfDOxBUMeKAb56WkntnfQ4hzgIwgN7GNK/aw++cytqZ/zY+7FjLiiyQy53Xj2o/60KXwPlJtvflw64f0z+nPi2tfxB/n4uYnL6LHtQn8vHofH0xcR8Em+ZYvxDnFUwMHfsJRZKQgNorw2hjapkWdmWuFx8HgaYT5NBLu7Un7/as5b/dC4hwJ7J5Xy3vffnBmritO3//m4q3zoS/sSK05iquH9jy51xvD4ObZcOkfaaH8P9oObsN5Fbvpt2g2P7XIw1Br4ovJ21m67LszE78Q5xBJkJtQVUUNa/6dhzN2F1G5H/DyTA+D1m/lmtLNjP75M/767lQueaOElgWPcmHLa1igLeD6Rdfzp9WP4bukkIGPno9Or+OTKRv4aHIuuzaV4vfJDGQhmpTfD3vXw7q3oWR781zzwCb8nlqceWXs6BAYvWub1oT1x0dLvQYuvg/L3rkkTLifNiW59NgxG1t1FMXzwnjr8zln7tri1Ph88MMc1jg6URZ7GZjcdDgv5uTPo9PD9X+Dga8Sackl8UYTbanmgY+nUuD4LxW2ErYvdPPOlM+orqpr+t9DiHOEJMhN6L+f5uOprcO0811u+saHKc1K2ggPXQZsJ2W0nZZDr+KafblMXPgG5fNjuNz6CrekjWBd4ToeWPYAt/0wiA1XLCb8iipK9lXynykbmP2Xb1nxry1s++8BWfxdiJO0RztIUUHlkQeXPQNvXwVLHoMFd4C3GZKEA5uodejRu2o5GJmMwawjpl0T1x8fre9zEN8Vy/+eocPkZ4h35dNr4+v4fV6qF8fy2uJ3ZAmw35OdK6FiF8WahYNRqXS7KuX0SnB63gV3LMZqLyLtRgfh6ck8sOZDEtblsK3l9zh/1jP9qS/ZsKpABmKEOAZJkJtIRbGbTav24FRWcf1/i9h55Q0kf/xfDH/RYPg7GC11xJvmkPTH7rRMaMWza9+l/cy5LPm8K090nsvkKydzZfsrWVe8lldqn2JK50dY3XkBey072LR2N5/P2MSsP69m1hOr+eytH9m4Yg+Vpe5g/9pC/K5t+HI3i15az09f7QkkAV+/AqtfDSQPg96Aop9hzdQzH8iBTbjL7QDodSqtk6PO/LJbRktgCTBDGGFrxtHxzReJDfdxzbd/p85XhrK0Pa/Me1s2E/m9+CmH/Z4IzL6uoOjo2jvh9M+ZeDnc9SlGi4eUC9YTe/9tXFyax+3//oCd/hyKjXv4Zu4O5kz8hj3awdO/nhDnEJkN1kQ2LvkJn99Ln7VL2dwhlQGvTQos6q4o0GUYqP1hVTZhq14hsU9HirvdQP8Pl9CzPJ+X9gwn/tILeXrAE0zsHc7Oyp38cOAHfiz5kdzS/5BfXkBERSzxzkQS3CqVW5PYkVvMqgXQoUsMF1zXgTYpZ6ieUYiz2DV3JPP5O3V89f5WflryA138a9ElDOFhbRCmHQbea3UlcV+/DJc+CPoz+HZ44CcqnTGUW/3Y62JpnRx55q7VUFR7uCMHZg/G9PloOr76Lntffo/rvvk7Ky4Zg3VVCn9zTePPd9+LUW9snphEY9462PIJ3xS1wRl/CeFxEBnbRGvktz4fMj9H+dcwWjqmYX/zNQpe+5D7Vq4kt9U2Vl6RTHLptXw8OZcO58fwh5tSiYy1Ns21hTiLSYLcBGpddWxaV4LZuQF9nZOUl+ZgMh31YWMMg6v+AklXoMu5j3jjLGwPj8Dw4U/8Y9XrLNvbi+E/9SXjwjRuuziBwclDGZ4WmG3u8XnYWbGT3KJc1uxfwwf756NUmOlUdinebZdT8GMpCefFkHFTCtGtfuOMZxFUHp+H/c79OOuctLO3w26yBzukc9Jrc67G7t3PFS0uZGPFjXzlfQDfj35uVEr4unUY/yjvyiRWQvFmaNX1zATh98OBnzhYGM3WjkkoKLRKaqYEGQK/192fwZyh6BfeRPuxb2P8VOWqWZP5rsf9RK/vzHPVb/Jk1r1YjZIYBUX+N/jdBzHlp+JKas3lV6U17flbJMLo/wfvDcT81UOkPhau1dQAACAASURBVP06B38cRNfsyZy/4Bs+P18jt1N3PJuuZ9emUi7un8QF1yWg08tNZhG6JEFuAps/WobXa6aHtoJ119zMA91/ZQmdjhnwwGpY8jjhP84maVA6xQeupu9/VnDVrv+yYktPspd1oSA+meSOcSTG2GgdFUabSAvtoq/iiQtupEW4gfUH1vNp3qfM3zGRpD098Wj92PVcCT2uT+CSG5LRG+SN7feosKqQtze+zecFn1NeU374eGp0Ktd2uJaBHW4k1hyH3qiTf8MmkPZ1OBRZmd9pGyb3W1yQH4HP0pM9bS9n0Lb9bNT5IQnYve7MJciO/XgryjEWWTiQnoRNgfjEiDNzreNpmQr3LIP3b0X58A5aX/8i+uTnuGT8s2zofAdsuoDnXp3Kn/54FzGWU5gYJk7Pzx/zQ10kRqUr4CepR2zTX8MeD3d9Ch+MRMnJpEWfvxDxxWfkvTyZ6z7O4fKfl/N5r40cbHED/n/D9g2F9LunW9ONZAtxlpEE+XR5PfxvXQlmVx2VuhJueOLRE7/GEg3D3oYuw9Av+ROtwmYTPeZGSnfE0feLFVyT9x1+RaEkKp6d9lbkm6PZZo2myBLNAWs04a3juOC8BPp0+iOPXDCOpfmfkrPxXdr92BOWKPywZitX3dmJzulJZ/73F7+J3+9nvjaff/z3H3j9Xvp26Msl8Zei2xvO/s0OKjd7qP7Mzke+LcAWwI8t2kyb5CjadWpBhy4x2CLNwf41zjpX3fcUec8/Q9qXJcBBCtvXsb33DrZ4/z97Zx4eZXn1/88z+2QmmWyTfQ9kkgAh7PsuLkBQAmpVlCotpX15tVXbqtdbWotV+lZ+uFXBQl9ccAGEVi1qZVNE2SN7JgkhCdkzk2X2/fn9MWJlUwIJS5jPdeWSeea+7+fM+Mw8Z859zvc0YKi9iyHmJkz+CCJrdiMbMrd7jGg6gqtNjgB4FbnEJmqvjNb5KQdp/U/h48eI63cHkuUv4njwt5z0uoCRPL10JQt+cTuZkZmX377rFVGEso853BQL+kKik5Td91nX6mHOB/DBQ7D1T8hsTeQ89QyW+2az44k/MePzvbgUq9g2+CCNJ+/kzT/uYNK9+eQOTeoee0KEuIq5JhzkQ9tqcdm9DLw5HelVtuVj3rYemyuZnLo1HLhxDpPjOxEZMtwcLKLY/izKHS+QpI8i4Y3ncbRqcR48RISxlOTyCoaeOAy+09tR+wUJHQoNOzRRRKSl8z8DRuAdqOaD1i/QHuzL5ueO837frcy4cwwGfRdv14XoFN6Al9/v+D0fVH7AIP0IEtx34f5MSmWTD7UPRGkUKalaovtJqXCXcrjtEB6nj2h3Iu2HDZTvbQYgJl1NVr94ErMiCY9RodLKEUURj9OP2+HFYfHgtHpwO4LXSphOQVS8hugkzXUbjQ6fOJGCcePwNTYiqFTkRkczQRCot9WzauEbSAL9OVzTi6FRu7vvy7DpMO3tCkQEtIEUEjIvY3rFmSjC4I434IslsOVPxNbvR/bqYiwP/z/kPhcwkeeff5c5P7uJAQkDrpydl4GjtUZef/8faAwimkgFUkGKXq1nWvY0IhSXMcLffBSvtQFNbSFNGSmMGtkFxXnfh0wRLFDVxMCXL0LdfiKmv8DNG15n7btbMK9cyeSv9uJUH2fnoPvZ/HcJBw6WM3POaGRyaffaFiLEVcQ14SD/q+wjwvdnU3GogWnzBhIerbrSJgXx+9i15WsQJ+DwGrn5Z4s7v4YiDCYthL6zYN0DSNbdhXbwXLTzFgU7IwGi34/PZMZbV4e3oR6/yYTb3Iqnsg51ZTUq4yGUX29HCdwF2NN7cTjzJiSH83mvfB+NA1YxdGgfbkifRIImoUvfghDfj8fv4ZFtj7CtdhujXLeQvEJCvLYRb1g8uvZyYpt3cULiYaOlDx2K4cwcNoJnCoupsBzk0+pP2drwKh0NLtLb+pJh6ofpQztCJ8VnJDKBpF6RpPeNIbO//rrbMhWkUuTJyacdS9ImETU1lsBaBa3tAwmzrABHK4RFd70BzaU02yIwxcYhC8iJy7jC+eYSCYz9NaQOh/XziPzoHsb8aREfLN1FWs2/gRt564VNNP2kmZuzbrqytnYjokVOysFBBA4FaFMdxu/dh9VxkCdjFjE+K5OiuWu//Q7uVso/ZaegRuvrSxOQVdgN6RVnIpHAjU9BylD44EFYNgah/13ccfPj7B72Eo8u/zdTDnzMhC+fpzKziFpu4KWyfzL9v4aSlZ7S/faFCHEVcE04yBOL+rPU+XeGld3KG09+waR78zEM/s6Wj6kcvlgKpR9CeBIM/QkM+Um32yUe3sAJ80BizEcpGXoLt6ZcgpJEfD7M2wpbnoKv/gpV22HGckgeGLzBx8chj48D/hPVSfzmvza3j817Kti/eTe+g19jaKmk4Iu/4QjPxphzJ7qdN9C2o4pnw3+Fc4CPkYNu5abMm4lVx17S6w/x/fgDfp744gl2Ht/Kbz5NJKWpntLcexECTkbYVpIcacYfHU9GyQnG79mH9fA/WL99JDcZxjB5WG9mDvw5jw99Aoung6OtR6nqqKLGVEJrnR1Hmxe3w4fb78YuWHDLnDjlVpxyK26ZAxCI8unpTV/SnAYCTYnUlraxY10Fsalaeg+Op9egOCJiry9n+bvcNmwKb6/9B21Rw/E6/468bn+wwUZXY67Aa5ZQk5IOQFz6Zc4/Ph+ZY2D+F/DeXNSbf8PMO27lzd0a0o98CExj9/NHKLurnJ8P/RlySc9TuPB/tZGRO9/hZMoE1PoBeJSFSCUuBh34BMmuzRgtkzA8uh26W92jYhOHzbHoYvqgjRQu72cyf3rwOvj82WDjnENrGTpoDm/8Yh4//1cabx2t4LfmL+l3aBnHcmez8elDxI7bxx0/KkIiuT53pUJcP1wTDvJXR6KQRhaxd+S/yCoZyKYVEj7a9gXZN0aSbPycgqPL8QtS6uInkk490n89CkkDIXlg9xklihz79B3gv5DbPmb4vX+49DXlarjpT9D7Rlg/D/42AfJvhYm/CxbZnAetUsato3O5dXQudvfdfFFh4oPSBiy7dpNk/JT0Vi0d0SPJdPwU5eZW1Gv28LHwJo7YDhL7DWPMlJ+gyzIgyK+9m2CjvZH/3fO/DE8czi2Zt1xVahDP7n2Wo7s/5q9roCMii6P5d5IY0czNo8sIcwBVR8H1FYlTw7GLA2g9HGDOgY+5+/hWPjk8lF9sGY2YkMSkvHjGG7K4MX0QsXln5yaKoojL78LsNNPmaqPN3UaTo4nqjmoqOirY2v4ODVENhLtiyGotoLd5EKYNNr7acBx1vEBijo4sQwIp2dGEhfkQJDKQKYMShT2YRG0i3qRGXPUGWtpSiDeVI+1qB1kUCTSWo2nT0Jbfm3CFhKjEq0hpRhMDs9+DHc8j3fon7ovTsjfpNjyb/oGQXkRgZTO/OvpfPDzzMbJ0PaumwTBjFhVVh0hzN5CRHYfakEvFUS+VsluJau2FZPNf0Q1/jYRx3Rhscdvw1uxEXZ1Ke3wv+g++AtFZdVTwvjP850FHed9r6PesZE3vyXw4YjyPHrqF/BQrDzZupNFWgPnzXF7d8TqTfzaM7IK8y29viBCXiWvCQR5Qtw/Pli95K3ok+2MbGaHZT2FFf45VW1mZdpRodQo1ztlUnMhlSIKUdzX/jeTDX8FPtwTbbnYHFZvYfjIdQfSzNzGORX27sIghaxz81y7Y+XIwmnzsQ8ieCGnDICwWZCoQ/eC2gcMErg7wOiDgRwPc5OrgJksdRB6HATYA3KzhYPsNnPAPpSHpBhBuQuVsRvrxLqr+by5yrwUxUoY2XktYghZFtBpppBZpZAyK5ESkyVkI0RkQm9M929AXiaPVT+QnhWxTlPJW5IeEp2voHzOI0ape6NUKklMzUUUl/vBCXcwa4xr2fPoGz7zrx6LvT1nvO8nsF8WN88b9J4/P54aKzQhlH6Et34Q2rx5XsprW2kymHdnB1ONfUJ1dwHvHB7DgKwNeqRydWo4+XIlaLsXrD2D3+HB6/Hh8AWRigAxPO7luE5nWRvLsJoZ77KiIRSZG4ZX6satqaVMc56RMoF2aidLUF1tTOpXbg4oaAYkdibSRcGk9ifIG8iLNxERrQJMQ3G7WRCFoYxF0CQiRyUjjEpFqu7kjXDeSNLI3lnVQZu+HrLacuK4+gaMVZ5MDiaghoMhCnxbe/Q1COotECmMehpybET5+jCEnVlE4XMO2o2ZOaG+nz1fFrNn9F5J+MpDZg+YiEXpG5FAZnUCfRctPO5YzPljz8vk7EGEtomXD/yNhzP3ddx85uZMSmYTkjt6UJcpI73cFd/V0KVD0XDD9Zu/fkXz9FtOt/+aWqHjWi+N5RjoIg0rH2IpPaVOO4pOXatFJtjDqzsFkTBh25ewOEaKbuCwOssFgkAAvA/0BN/ATo9FYcaHzc7YtR7+rkWl8iixSRKbw0SZP5UDyT5h8fAGZJ/5FUu0KmseN4HFxKi/F38uDDUvgxOeQPaFbXpNt58sEbDPROipJnn0Xsq4uHlRHwoQnYMhP4asXg05yxadnjxMkoIwAeRhIvvnfqYoAbXwwxzA+HxILUcb3ZYhUxhDAZfNSvruaQ58HOKEuojLzFrz+/USaPiOnoYooYxuCKJxxGhG51oc62ktYupawIQNR9B8H+jxIH3nFoo3Wdhfxdg8x7YPp0zQaf5mXE9GH+H/6/+U+bwlZdgft0hh8udOJnfRQUA+0mznQcoA3PvgTf1zjR4yI5VDOXBIyI7hxXsHpRS4yJeROCf6JItTvR3VoHUnHPkCfUU9bhQZ5zSEeqTjAIyolbVn5NEYn0S4Lw+/zofJ70LrsRFhb0ZkbULebkHzTOjiAQFuYDrNCi08ixS9IkQd8RHjtpHptGNxuBI4DmwgIUqzaVCwR6dg1iTjVcdg0/SlTjKHMCsryVmJajxLVbiSqrRSF137a65XIQRauQB6rRZEYjTI9FUVmJoqMLGQFExA0V88PqjPp27cPO9+toymQS7bp664/gbmCWouKgCBBLeqJy7hK0ivORXw+zHkf6vYh37eKSaoP6Gjcyb/NDxLQ3A5Lyvh7RDG3PLKQ5Jxu3J27wvQdl8wJYx3V4k2oj++go2Q9ukG3d8/Jqr+kxK4lLqIPEkng8jWQ+T50yTDpd8H7T8Vm5LuXc8fxtdypfJcaMYEv03NxiR2oG5KxSAfxr3ftRKxaTrZBTuGPJhGWlX6lX0GIEF3C5Yog3waojEbjCIPBMBxYAtx6oZPj//oekZvfxLb1M5zHG/F7BWLDtdyQauQgWk4wlbqUKIZtW83S3ibmi/eyIFyJpOzj7nGQzcd5v6KGgDyJZmEn94zu1fXnOIVWD5P/GPzzOsHZBj4XCNJgRE8d1enohkorp9/EXvSb2Iv2JgeHPqvl6A4FjvihfJp9koPxm+nwtaBo6U28PZkxShe5ATOxLSexHa+io8oFn+1Frt1JeJIL/XNrkWQN76Y34PspiPORHHgZl0dKCznUCgUoWvrSyzyQ4/5jPBX7KUPkNiYefh3/0TeQDPsZwqSFwcYt3UC7q53fb/wVj6/xopKIbB/4MEq5ipt/1u/7K8AFAZIHBf9uehp581Hiyv+N3vgp9r37sZ1UoGzcT3T5AURvsDWwoFAgjYxEFh+PYuRQFImxyHWg1LpRhruRuFvwt9fi76hDcFuQeSwIoh8AH0patQNoihhOu6YfEr+UKK+baL8Pp8tNk9NIk8OKw67ApojBrh5EfdJoRAJ4hBZEsQmNz0S0sw2d24ra60Hu9MBBN7K9RhSePci9dsIHxpD61vZuea+7gtzYXHYEvsAuz0Zmeb/rT9B6HLNFgScqCYkoJS796kkBOi/fXIeSac8R1WJk9JEvKHn/39T6R+Hnv9j564+Ik/4PBXffTfj0O5AoFFfa4i5FEAQm/aiQVfs/wyreQOPmd7vNQRard9DRrEYelUtqTuTVpTYjkULOjZBzI4K1EUo/JNn4CTOqd6L0boM02BuIZU/TrdhloyipieLg00eIca4nJ1NCxpg8wvr1RZaYGOwqGyLENcblcpBHAx8DGI3GnQaDYXBnJgth0aiKHkRV9OBZz6WIIl+sLefglpG8f3MjMzdu5l7p5xweXkiB8SO4eXGXRzcDe1ZiqhuGVAbNhYUk6i5TUYVcHfzrQiLjwxhzRw7DirIw7mrk680q9MdTccsdlMXspTpjP8skGtos2fh1I1H0imCEzMqItgryaw7gbKol3BvNleq/5W4TadnqAb8fFfvpHVZK79jPqY3oT0XkKGJNP0OsXcOqvhOIUOziRzv/CpY6mPV/wUruLubpnX/iR+82EmkLsHfSbLweHRPnGDqnayoIEN8H4vsgjP4V2tk2tMc3w9H3EU9sB0sTCMHNAxThoDaDexfY2sH2zRoSOUQkIY1IRpo2BFS64I+p8ASI74ssaQBxctUFpxS02E18/vVuyg7U4awTCLdk4qeAlnBoOY/PJ4oinshWHr7wV37ZUcvUuCKaEJx9EFrsPzyhs5gr8Frk1MWlAqBPvQYc5FNIpBCfT3J8PskT4Wh5I9tW/ItGBtMkDqF11RdkLB6Dvn8K4bfegeam25Aoe4ZWt0anRJ5uodE/nOyvNwR3eLrayfM6OdF0gNT6bFpT9aQWxHft+l1JeAIM+QnSIT9BKooE2k9iPLSHxmP76S3bT4q4lm2evtjNowhoBtBsUlPyZgMptb8jyVGKJrc3qtxclL17IU9NCxadp6YiSEOycSGuXi6XgxwBdHznsd9gMMiMRqPvfBMuFEEQGDWrN+Y6OxyfwecFh5l2bBvrs8dRoNkFLUaIy73U0/wHn4cdR9eisz+IQ2Vi8rRxXbf2FUShltFvfAp9xyZTfcRM6VcNqA+G0a9xLAB2eQc2ZRsupRkvMvZFJvGpOov27AiWauLoph5kP4gqN5ecnV+B348kLAzhm2hWLjC0sYN3nt1EpfResg68jy8qnqezfsQTR9+BbTnB1t9dyKbqTbBuI/0rRTyDdNiF0WQURNNr0CVmtiq1wWLN/FsRRDF4TdfuBrsJbE3BHHSFBqKzIS4P4vJBG9elN3S9JpaZo6bAqODjRnsjh+qOUl5fSX17I2anGZfHjcPpwuvwo/BoUHu1JPW+BGWXy4QkRwYHwNyWToLLEkxR6irMFWjaJLSmZCCXS9DFXbutnPN7J5D/57mUGJvZ8OZHBCRjqE0eSWr9Z6T9z1LU//N7wvNi0A7vh2b8FKT5E4PX7jXKiFv78/mLJ6lyDyGn7hDKlIKuPUHdPnZJpMQ6cmgFUgxRXbt+dyEISKLSyBubRt7YmYiiSK2pgz67P0BydB0O79/Z5RuJteUG7Jp7MAZsJHbsJfO9jahsLf9ZRilHlZ6AIjsLdeFAwkZNQJHdKxRtDnHVcLkcZAvw3dCJpCuc428XkwhMvj+f1X/YSVNGMbKDr+CtEqAPUPZR1zrIFZvY0SRHp+1Ns9DKTw2XQbPyMiJIBDL6xZLRLxaPy0d9eTvNNRZO1jXS0qLE2eFF7JCh9P0nkh2wNANXzhGShp87KheRoOOBZ25j6ZK3qWQ6WZXvk1PSyMahY7jli6UI/X8EMdldYoPT5+RvnzzFE58FUCe6+CznWcQmkVEzuzj9RhCC13NXXtMXQYImgYScBCbnTDzn8x6/h0Z7I/qwq//zkTgwi9YD0OhNI7+9BiGhb5et7aktQ+MEjyqdhGTN1VegdxEMMMQxYNEcth44yMZ12wkIk6hJnojecZCs8o/RHvgMlm9DFeVD0ysCzeCBqCcWIzGMuzy6wl1E3/xefB74GpukH/V7PiCzqx3k6q+o6VCj0OWgUIhEX03qJp1AEARS9ZGkTr0Xpt6Ly2ElYddHNJZu5mDrR7RZhxKQjKF+8FhE5TFyvV/Rx7YXSbsNd7sN2+YqOj76DFiKNExAnRGNOicV3b0LkPcZdaVfXojrmMvlIO8AioA13+QgH+rqE2gilfQdm4z3Ux/H0vSMqzlIY2EKCSd3d+l5mr5+jdhKA+4YBWGDc7q+OO8qQqGSfessD+U/Ek+iKNJgbeTrmkPUWmrJ6jXkClr5/cjkUub9cjrPLF4FTKfvkRXs3a9n0lA5yo8fh3vWdMl5Vh3+P279RzNyRA4MHk2gSU2/cclExl+7EcNLQSFVkBbRzR3Buoj8rP7s9FZhFhOxNlUS0VUOsihSW1uPiAa5NJ7YlGsoveICmNC/gNH98nhx6/9Rtr0eQ/MwTP0H4Jc7yZOWk3xiM669FZj37EBY/gVhcV40efFoxoxDOboYIbFft9UCdAWCIBDQNdERyMG/61mY0bU7Tv7avXhNStoic0gxRCH0gB9PAKqwcPpNuIN+E+5gMlBjtrPqiy3UH6gg1ZxEWeAnGMMewBrdgRjuQqfxkkgbieaTRNQcx3uykbayMrzmxST+7YMr/XJCXMdcLgd5AzDZYDB8CQjA/d1xkv6TUvl6Sw3Het9A8ea3OdqcRLz6IF32teNsY2P1TmKds6kVfUy9sRuL865iBEEgKSKRpL6XXz7tYtCpIph8X1+2vXwCSZ85jNv1NO/WjeO+wEdQXwJJl9ZS1+w0U7JhBb+qFIksdGCJm4/0pJdBt2R0zQsI0a1kRGSw27cbp5BAe/1xIvp30cIOM40doFZGIhUVxKZcu+kG50MukfPwpHmcGHyC/93+PB2HfRiah1HmKKAssQChl4SECC9RbaXIK75GsacG1fZPUEjWo030k/h/HyFNOr/G+5VGOyACx+dq2k7KuzwP+WjLAdIa47AmRZHat8sFBq8a0mI0LLy1CG6FOouZN7b+m7pjjYS1q4i0xBJoiaOBNBroD1EE/wBrtp3HrqjlIa53LouDbDQaA8D87j6PRqckZ3A8h/cMJiCswVynRIiq7bIWsuKxD6mpVyOJNGBX+MhPu/rzK0MEmZg5gbdHriF6SwKlBfeTvPdveKarUez+G9z28iWt/frBv3PXJ04EnY9tBbOxVLoZMDmNsIieVd3fU9EpdfgFE26pAbdpW9ct3HESq1WBKyLY/KEnOsinyNRl8sq05zg8/DArD61iS9mbJLf1JrGjF+3mVCI8+QgpfeCbPhiC6EPttzDTreYqFr6jz8h89nzWTr2nL/62aqTRGV2zsKWBPQEbiY5hWIGE7OvjXpIcEcNjt94FtwZ3Ik0OM3vrjByvbqbJ1Iat3Y7X6cHls5Dbr2vS30KEuFiuiUYhnaHXwHiMO5uoyMhF1dIWPNhwoEvk3g4ffZdcoxZTehKReVevtmuIsxEEgQWj5/Onir8yvvIuEsNz2HlCw1jJuqCEnubiBPrbXe20vL2ahHbQjPWjipyFrMHCgMnXRnpBiCABtRW/GImvpa7rFu2ohQ4pjbFBBYuYHuwgn6JvbF+WTngWx2gHO+t38knlF3zWtJZWRzMapwKdOxatOwq1NxxfIIzBshFXrMD3QuiX0oc9/rfoUOTTUr6HhGEZXbNw/X6q7Uqi1RnIpAGik67N/ONLQRAE9JpYbsmJhZwrbU2IEGfT4xzklLwoBIVIdWIBY3avRQyA0Hjw0h1kZzvba47Q1zYUkyBhzKgr0BI0xCXRX98fctuxtDZS2es2+ux7mkCqG0nJGzD6Vxe15poDr1P0uRsh3sNX/X+B+UgHfcYkow4PRY+vJYQoP2IruJr9XbdoRy2aNoHK+FTCopQoVD3u6/a8hMnDmJg+kYnp/ynidPvdHG6u4FBTFUdNRtrczaTpr+b4cVAG0Ktqwi4MpO3gv0kY1jV6yGLdfvwtCjoiMolLCesRxZtXin379sXJZLIVQF+g5xYFhegOAsBhn8/3k0GDBjWf+WSP+8aWyaUk5oZTfagApe8d6lv1JDccvOR1xdKNtNcqaYvsTUAQMeRfwZagIS4KQRAozinmjcoNTG2fj1PXh+pmkcySN2HULzudX+gL+Gh/YzWRDpCMUBIVNRWT2EjhDand9ApCdBfKFDXOVnB1dF0kz2mqJMoi4FEmknIdRgjPRClVMiixD4MS+wBTr7Q5F4w0VSBwQoHzaG2XrdlUv4eEJiW2yGQM+Vex/vE1gEwmW5GQkJCn1+vbJBKJeKXtCXHtEAgEhJaWlvzGxsYVwPQzn++Rv7byB6UhFyPoiEjlZGM0Yhc4yGWl6+ldIaE5OhdlQhhSeY9863o8U7Om0hxTiS/aRmXmLTQelCKaKqBmZ6fX2lH2KRO+sOBM9fD1iEep2t1M9kA9EbGXqXFMiC5DZ0gAoMPTdalTJ6uNCAhIpTFEXaMSXiFA1y9YQGdt7bomKAfMpSRY00CQkpB1FbSXvrbpq9frLSHnOERnkUgkol6v7yC4+3D285fZnstCck6w4KEuMQe3WQatFeB1XfyCfi+f1x6gd4MKtzqR3IKrX9s1xLmJUEQwOmU0+5M+xaOMwU8i9rYIKHmj02tVvvocWhe48vSkx07E4/LTf1IoenwtEt87D6WrFWsgHnzuLlmzuaERlyoaASlR16ncX08go29vhICHNl8y2M2XvqCthaMBN2p/BgAJmSEH+RKRhJzjEBfLN9fOOX3hHukga6NUBDQeWqLTULe7EMQAtFZe/IInd9NeI8EWnokgCGTlx3SdsSEuO+NSxvG1ZjsytUB18jiqT6TB4fXgbLvgNUymk/TdUkNTup/jN/yRsh0NJGRFhG521yjJujRkXhMO4nB1NHXJmh0mC46w4PZ5KIJ87ZIdnY3EW4dVyMBy8tJ3I2k5RoNNgV2ThiYsgEorv/Q1Q1xxdu7cqZk1a5bh1OOSkhL19OnTc2fMmGF48MEHM/z+YH3D8uXL9dOmTcsrKirKW7t2bRSAzWaTzJkzJ3vmzJmGO++8M6e2tvasi8LhcAhz587NLi4uNsyePbtXc3OzDODFF1+Mmzx5cp9Zs2YZZs2aZSgtLVWeb+zu3bvDiouLDTNmzDDMnTs3f1CBYQAAIABJREFUy+l0fptXeKb9+/btCysqKsorLi42/Pa3v009Zf93+fzzz7VFRUW506dPz/3973+ffObzr7/+eswf/vCH047Pmzcva9u2becVhX/iiSdSq6urFWazWfrOO++cc0vP5/Mxd+7crI8//vi0Ioby8nLljTfemP/dtU69LxMnTuwzffr0TnXY6pEOMoA2RYJHmUm404nPLQFT2UWvZTF+SFy1hIbY3iBAXHrPEvy/3hiTMoaAxE/A0Ep7TB9cJwN4rW74+u0LXuPQ0sfRuqCibzaDk/tjaXFSMDEUPb5WSdIm4acdjySK9paGS1/Q68Jt8WHVfOMgJ4QiyNcqiZpEXNI67KpUmo8fueT1Ak3HwCzHGp5KXNrVXaQY4sJYunRp/MKFC9M9Hs+3DucLL7yQNH/+/IYNGzYYvV6vsHHjRl1LS4ts3bp1cevXry9dvXq18bnnnksNBAKsWrUqNi8vz/Hee+8Zp06dav7rX/+acOY5Vq5cGderVy/n+vXrjUVFRealS5cmAhw7dkzzzDPPnFi3bp1x3bp1xtzcXPe5xgYCARYuXJjx5z//uWrDhg3G0aNHW6qrqxXns3/hwoXpjz32WM369euNWq3W/+67757lrC5evDj1+eefr3z//fdLjx49qtm/f/8l5xc+/fTTJ9PT0z2HDh0K27Jly1n6hxUVFcpZs2blGo3G06IOq1evjv7lL3+Z1dHRIf/uWuvWrTO+9dZbZRqNxv/UU09Vd8aWHlekd4rUXrEYjTLcCh2uNjNaU/lFr7WncjN9q+DLgXlEJWquq2r0nkisOpb8mHz2O7ZQKMykOW4I5mYfCXtXwvCf/2Cxnt9mQ/evfRzNAv+Nf6LiywbCdAqyBoRSb65VlFIlAYkVr1SHpbWRs+5OncVSh2CT0qZLRB4mQ60NqZpcq0gECa5IC3Kbmo5Dxy+5vrCucT/JzWpcOj3xuT23QciV4LUvq2LW76/t0gr64oEppjkjM743tyY9Pd390ksvHX/00UczTx0zGAyO9vZ2aSAQwOFwSOVyuajX630bN248IpfLqaqqUsjl8oBEImHBggXNPp8PgPr6ekV4ePhZ4dqSkhLtT3/600aAm266ybJixYokAKPRGPbKK68ktLa2ykePHt3xyCOPNJ5rbFlZmTIiIsL36quvxldWVqpHjx7dnpub6z6f/SaTSTFq1Cg7wODBg22bNm2KvPvuu1u/a9M///nPY3K5HKvVKrHb7VKtVhu40Pf19ddfj9m+fbvO5XJJ6uvrlXPmzGm87777zLNmzTIsWrSoetmyZQmVlZVhK1eujJ07d67p1DybzSZ5+umnq1555ZXTvqZ1Op3/3XffNU6aNOks5cjly5fHDRs2zFJQUOC8UPugB0eQ8/IzAOiIyKClTXfxEWS7mbIaE2qPAKokUntfH4LuPZ2xKWPZ5dxORKqaquQxtBwREVsqoGLzD86t/cvDqF3wef8MpuT1ouZIK33HJiPtwW3HrwdEhRNRIsPa1HLpi3XUorJKsGkSr9t24z0JWUYwKOWo79T99ZwcMx0jqSO466xPC+1G9gSKi4vb5XL5aXnQmZmZ7iVLlqTdcMMNfVpbW2Xjxo2zAsjlcpYtW6a/++67826++eZvHW+ZTMYdd9yR895778XdcsstZ+X72e12qU6n8wOEh4f77Xa7FGDy5MmtixcvrnnnnXfKSkpKtB9++KHuXGNNJpPs2LFj2vvvv7/57bffLtu9e3fEli1bws9nf2Jionvbtm1agC1btkQ6nU7pmTbJ5XK++uorzZQpU/pER0d7U1JSPBf4lokANptN+sYbb1S88sorFatWrTrN4Z0/f35jYWGh9bvOMUBhYaEzPz//rKKyadOmdZzLQXe73cKGDRv0CxYs6HTuXI8NhSakR+KX+GjW9yKi9Ri+ZuPFvdjqHfjqFVi0iUgIVRz3FIYlDGPZgWVo+jqxnIzBIcZgMdnQffk89L7hvPMCbS1Y/rmdQ1kC6hG/pGpnIxKpQP7opMtofYjuQND6wQ32xgvPRT8f7vZqIi1QqYwnNiTxds0TlZ+C6zA4rJe4EyCKHLc3kOYvAECfGnKQu5I5IzPMPxTtvVwsWbIk9bXXXivt27eva/ny5fqFCxem/uUvf6kBmD9/fsv9999vuvfee3tv3brVNmHCBCvAmjVryo4dO6aaP39+rxUrVpQ//vjjGQDTpk0zazQav9VqlQBYrVapRqPxBwIB5s+f3xwZGekHGDt2bMeRI0fCzjU2JibGn5iY6DrlXI4cObLjwIEDYRMnTrSey/7Fixef+OMf/5j28ssvCwMGDLDJ5XJx2bJl+k2bNkUDPPfcc5UpKSneESNG2Ldv335o0aJFSc8991ziE088UX9qDZVKFfB4PKdFjpxOp0StVgcAcnJyHACpqaker9fbLRGmzZs3R/Tv39966j3qDD025CWVSfDpbLRFJiO2gWAuB7Hzha6mys1kVQuUJQej9iEHuWfQT98PpVRJRWwJogQqUsZjOhEPJz6Huv3nndf25/9G5oJ/DtOyYPhIjn3ZQK9BcWh0XScBFeLKIIsOOj+uZvslr3WyuRSNWw0SDZFxoQjytU56tgGZ14bNF3VR95FvsTXRbPPjDEtFrfSHGgr1YLRarS8iIsIPEB8f77VardLS0lLlAw88kB0IBJDL5aJCoQgIgiAuWbIkYfXq1dHfzPNLJBJ69+7tPpVX/OMf/9hUWFhoO5WT+8knn0T079/farFYpFOnTu1jtVolgUCAXbt2hffr189xrrFZWVlup9MpLS8vVwKUlJSE5+TknFfe69NPP4184YUXKtesWVPW3t4uHT16tGX+/Pktp2xKSkryFhcXG1pbW6UAGo0mcKaaSEFBgWPPnj0Rp5x1s9ksraqqUp9y0oXvSWcUBEEUL+Wz9g07duwIHzt2bMfFzO2xEWQAuV7E3ZqAyuZBcDnBUg+6swotv5eDx3eQ0QjHMvOI0sqJiFV1k7UhLidKqZL++v7sad3JnfmTqPcNwLX9LRyGKMK2PAWz3zsrF9l/ZBOmjSUcSpfi6D0W86F2vCFptx6DOiEMRwN4OryXvFZ9TSUqVVDtRqcP6WJf66SEp3DC9wUOIQHR1oQQfpFZ6i2luDvkWLWp6BND10VP5sknn6x+8MEHs6VSqSiXywPPPPNMdWZmpicnJ8dx22235QqCwIgRIzrGjx9vy83NdT388MOZGzZs0AcCARYtWnTizPXmzp3b8tBDD2XMmDHDIJfLxeeff74yMjLS/4tf/KL2rrvuMsjl8sCQIUOsU6ZM6bDb7dYzxyqVSvHJJ5+sevjhh7NEUaRfv362qVOnntdxzMjIcM2ePdugUqkCgwYNsk6ZMuW0sRKJhB//+MdNP/7xj3vL5XIxJibGu2TJkqrvjsnNzXXffvvtzbfffntuWFiY3+fzCb/5zW9qwsPDfzBXOTs7211ZWal+6aWX4hYsWHBWl7sLpbq6WjVr1qyL2lXo0Q5yVJKajjIVXrkGj1WKylTWOQfZbqb+RCuJKJFp0olLj/jeXzwhri0GJwzmla9fIX9UNE2HW6lNGoq2uob0yM1w9B/QZ8Z/BttaaP3TfxPwSFg9QcKcgikcfOckCVk64tJDleg9AW1yDOb9AZyus1LtOk17YxM6VdCJigg5yNc8SdokfDTjlOXSXmskKu/iHGRPSymKdiWOsDj0vUNFvT2JzMxMz/vvv1966vGYMWNsY8aMKT1z3GOPPdYAnCaVk5CQ4Hvrrbe+V0lAo9EEVqxYcZZe7T333NN6zz33tF7I2IkTJ1onTpx47ELsLyoq6igqKvreyOv06dPbp0+f3v59Y+bNm9cyb968swo77rvvvm+dVrVaLW7fvv0QwLp164ynjm/evPm8sjEvvvhi1bmO79q168B3H7/55psV32ff99FjUywAUtKCX0B2TRLuDjmYO/k+1XyFv1mOUy5H7leE5N16GEPihyAiUh9VjqiWciD9RhzHarF7c2Hjb8B8PDjQ68Sz7E7MB0T2ZuuoSlRT4M7DYnKFosc9CF1SGgqPBY/30h1ap9mCUx0spg91Vrz2iVBE4FSY8CoiaS4/p39xQVQ0HyKpLR4ECTFpoYLvECGuZnq0g2zolQGARZuMvUPVaQfZW7sbfZ2E0pRcEEP6xz2NAn0BSqmSfc17yR4Sh1oRS4c+k8ZdGvyeAPzfFPj3/yC+NIz6f1Thlyv520QphbGDOby1nvAYFVmFXaooFOIKEp2YgdLdji9w6Z9zX4cLpzoWqUqKUt2jN+quG9yRwXTN9mOdklI9DaOpnGhHUBs7OlS8GSLEVU2PdpAT9LG45HZaY9Jp7wgj0EktZOPxHaQ3wcm4YMVxaCu9Z6GQKijQF7CvaR8jJ6cjIPB+wf146ptoqB1PQBmL+OUyGreD06RkxdAptMVauCFsEg0VHRRMSEESknbrMcREJCD1teMVdFxqcYjEFsCqiUUTE6pZ6ClIUk5JvZ23rukHOWlrRCEmAmKoeDNEiKucHn13FwQBl64DqzYRr0WKr6UTEeSAn5qyaiSAJDqfMJ0CTWRIqaCnMSR+CKWtpQg6H5oMLZGBaFrvnod165dUfqClctdQ2o96OTn1R3yYGcxNVR1IQamRhaTdehgxqhhEsR2vEInd4bj4hXweFHZwqWOJDjlBPYYwQyyIAVy2i7wPBPzY2+041YmEawJI5T369hsixDVPj/+EymJ9eOVxyGx+pK0nwee+sIktpTibBHwS0MhiQtHjHsrghMGIiJQ0lTChKAuNKLDKX0jSq68ii4lBnppC5JOL+I1uBPGJNeT7B9Fc6qDwhrRQR8UehlwqJyBYCEg1mOrrLnodv62RMJsErzyamFCTkB5DTFoWCnc7Dt9FSn1a6vC1S7FrEokJtR4PEeKqp8c7yBFxSgSUeJQ6vFYJtFVd2MTavaibpJzQaxGtfvSp2m61M8SVoV9sP+QSOXub9pKeH4MiRklGk5f3SCLj7bdIWbacJz2ZWJwuPLIyhtcUoQyTUTA+5UqbHqIb8MtsALQ1XHyvAVNrORpPJAjSkIJFDyIlIhWp34SDaPBfhBSg+TgSixKnWk9MVqh2IUSIq50e7yDHJQUrhR1hCZ1SsvBU7ySxSaAiMR+A2FDHox6JSqaiQF/AnsY9CILAzbNziQxI+PQfx3l5WwW/ee8gHx9pZM5ECSmNuSgaoxh+WzaKUOFVj8SvCjo+VvNF6coD0NhsRCqEFCx6GsnaZHy04pLF4mur7fT8tuYjRFkTggoW6SEFi57Gzp07NbNmzTKcelxSUqKePn167owZMwwPPvhght8fbOS2fPly/bRp0/KKiory1q5dGwVgs9kkc+bMyZ45c6bhzjvvzKmtrZWfub7D4RDmzp2bXVxcbJg9e3av5uZmGcCLL74YN3ny5D6zZs0yzJo1y1BaWqo839jdu3eHFRcXG2bMmGGYO3dultPp/Fa39kz79+3bF1ZUVJRXXFxs+O1vf5t6yv5z8eyzzybMmzcv68zjr7/+eswf/vCH07R1582bl7Vt27bzOlRPPPFEanV1tcJsNkvfeeed6HON8fl8zJ07N+vjjz/+dmt/0aJFyUVFRbnTp0/PPbV+fX29/I477sgpLi42zJkzJ9tisXTK5+3xDnJaelCv0qpJxG2RwQUW6p04vBeVFxxx/QHQp4Uc5J7KsMRhHDUfpc3VRmpeDEn5UYxwyVj1YRn/KKnjgVGZRMlqGVlVTGy6hj6h3OMeixAeLM5ztHyvtOf30lJbhuubJiERoSK9HkOSNgmX1IxHHkVL7fFOzy9rOEik8xsFi8SQgkVPYunSpfELFy5M93g83zqcL7zwQtL8+fMbNmzYYPR6vcLGjRt1LS0tsnXr1sWtX7++dPXq1cbnnnsuNRAIsGrVqti8vDzHe++9Z5w6dar5r3/961lC2ytXrozr1auXc/369caioiLz0qVLEwGOHTumeeaZZ06c6nCXm5vrPtfYQCDAwoULM/785z9XbdiwwTh69GhLdXW14nz2L1y4MP2xxx6rWb9+vVGr1frffffdczqrH330UcQXX3zRZb/4nn766ZPp6emeQ4cOhZ3qBvhdKioqlLNmzco1Go3ffoj279+vPnTokOaf//xn6fPPP1/5zDPPpAK89NJLCdOnTzevX7/emJub63zttdc6tXXT48NgWQlpbJfW0RaditWsRm+u4AdbfXhdNFaZiEOFOtKAyi5HGxUq0OupjEoaxctfv8zOhp3cknkLN96Xz7o/7+UnHhkjZ+QQoZGz9m+JyCQybry/L4Ik1CympyKLVkADuE2Wi16jo74WlSodENGEvjd6DGqZGqfaglaE5tITJBZ2bv7xthOo/f1oQwx1V+wudr8aw9dvd23+SuFdJobO+96cq/T0dPdLL710/NFHH808dcxgMDja29ulgUAAh8Mhlcvlol6v923cuPGIXC6nqqpKIZfLAxKJhAULFjT7fD4A6uvrFeHh4WeFa0tKSrQ//elPGwFuuukmy4oVK5IAjEZj2CuvvJLQ2toqHz16dMcjjzzSeK6xZWVlyoiICN+rr74aX1lZqR49enR7bm6u+3z2m0wmxahRo+wAgwcPtm3atCny7rvvPq0hSXl5ufLdd9/VL1iwoG7NmjWd6nzz+uuvx2zfvl3ncrkk9fX1yjlz5jTed9995lmzZhkWLVpUvWzZsoTKysqwlStXxs6dO9d0ap7NZpM8/fTTVa+88sq3PyIGDhzoXL16dZlEIqG6ulqh1Wr9AE899dRJURTx+/00NjbKBw4ceIFFaEF6fAQ5WhWNJcyELTweV4ccX3PZD09qPoKnRUarFiLESGJTtaEOej2YPjF90Cl17KjbAYAmUknRfxeikEv5bOVRPnjhAKJXQD29haiEUOSnJxMeHwWAy9Kp79HTsLaYcCujkCgEpCEZwB6FJzLoxFiON/zAyLNpbm/GL49HJfchU1x6t8YQVw/FxcXtcrn8NG3IzMxM95IlS9JuuOGGPq2trbJx48ZZAeRyOcuWLdPffffdeTfffPO3jrdMJuOOO+7Iee+99+JuueWWtjPPYbfbpTqdzg8QHh7ut9vtUoDJkye3Ll68uOadd94pKykp0X744Ye6c401mUyyY8eOae+///7mt99+u2z37t0RW7ZsCT+f/YmJie5t27ZpAbZs2RLpdDpPu2itVqtk4cKFaYsXL66WyTodaxUBbDab9I033qh45ZVXKlatWnVa1Hz+/PmNhYWF1u86xwCFhYXO/Pz8s7QW5XI5ixYtSn7ooYd633rrrSYItsP2+/3CTTfd1KekpCTi1P+DC6XHR5AFQcAXYcdjTUGwiQSaLsBBbjiAplmKMSEMX6sHfWF89xsa4oohlUgZnjicr+q/QhRFBEEgOknDvX8aQc1hM7vqd7O48fesLnzzSpsaopvRJiYj3evE4wxc9BreVisuZRTyiLPSCENc40iSldAGrpZO/oASRVztDhzqOKKiQ9dFtzF0nvmHor2XiyVLlqS+9tprpX379nUtX75cv3DhwtS//OUvNQDz589vuf/++0333ntv761bt9omTJhgBVizZk3ZsWPHVPPnz++1YsWK8scffzwDYNq0aWaNRuO3Wq0SAKvVKtVoNP5AIMD8+fObIyMj/QBjx47tOHLkSNi5xsbExPgTExNdp5zLkSNHdhw4cCBs4sSJ53QaFy9efOKPf/xj2ssvvywMGDDAJpfLxWXLluk3bdoUDTBz5syW1tZW+YIFC7JtNpu0tbVVvmTJkoRHHnmk8dQaKpUq4PF4TosSOJ1OiVqtDgDk5OQ4AFJTUz1er/eSowm/+93v6h566KGGmTNn5o0cOdLWq1cvt0KhEDdt2nRk06ZN4Y888kjme++9Z/zhlYJcF+ENeYwIhOOXqhBbrGD//s+Pr3w3UR0CJ+PzCfhFYtNCChY9nVFJo2h2NmNs+89nRyqVkNlfzzb5ByRExJMfk38FLQxxOdDok1B4rPi8Fx/hE6weXKpItDEhKa+ehjo7FiHgw23vZGzJboIOCY6wOKKSQ5Kh1wNardYXERHhB4iPj/darVZpaWmp8oEHHsgOBALI5XJRoVAEBEEQlyxZkrB69erob+b5JRIJvXv3dp/KK/7xj39sKiwstJ3Kyf3kk08i+vfvb7VYLNKpU6f2sVqtkkAgwK5du8L79evnONfYrKwst9PplJaXlysBSkpKwnNycs7b9ebTTz+NfOGFFyrXrFlT1t7eLh09erRl/vz5Ladsuuuuu1o/+eSTo+vWrTM+9thjJwsLC63fdY4BCgoKHHv27Ik45aybzWZpVVWV+pST/n0784IgiBfasGnLli3hv/71r9MAVCqVKJVKRYlEIv76179O27p1a/g372tAIpF0qgNUl0WQDQaDDngTiAAUwMNGo/Erg8EwHHge8AH/NhqNT3bVOS+U8LhgHqAjLB63pQGVyQiakecd33JgPwC+uAJoA31IwaLHMz51PDKJjA+Of0BudO63x81OMzvrd3J/3/tDaTbXAeGxSSi8x3D5Lj53WGH1Y4+NIjk25CD3NHRJGeBuxSV0MtWqrQq5NRK/Uk10SOLtuuDJJ5+sfvDBB7OlUqkol8sDzzzzTHVmZqYnJyfHcdttt+UKgsCIESM6xo8fb8vNzXU9/PDDmRs2bNAHAgEWLVp04sz15s6d2/LQQw9lzJgxwyCXy8Xnn3++MjIy0v+LX/yi9q677jLI5fLAkCFDrFOmTOmw2+3WM8cqlUrxySefrHr44YezRFGkX79+tqlTp55XricjI8M1e/Zsg0qlCgwaNMg6ZcqUTkv75Obmum+//fbm22+/PTcsLMzv8/mE3/zmNzXh4eE/uEWXnZ3trqysVL/00ktxCxYsaP6+sWPHjrVu3Lgx6rbbbssNBALccccdzVlZWZ4HHnig+Xe/+136yy+/LAqCwJNPPlnTGfu7MsXiYWCz0Wh8zmAwGIC3gYHAMmAmUAn8y2AwDDAajSVdeN4fJD4pknbApknE3XEYWoyQfh4H2eehqaoFuaAiQpeLzCZBF+qG1eOJUkUxLmUc/6r8F78c9EvkkuA26CdVn+AX/UzJnHKFLQxxOdDFJiP37sEhdqre5FtEUUTtVGGVqogNfW/0OBLCE2nxVeGUR4MowgX+aLY2lxJhi8OjhKikUMClJ5KZmel5//33S089HjNmjG3MmDGlZ4577LHHGoDTktgTEhJ8b7311vdKbGk0msCKFSsqzzx+zz33tN5zzz2tFzJ24sSJ1okTJx67EPuLioo6ioqKLsgpHj9+vHX8+PHnTNWYN29ey7x581rOPH7fffd9u5WvVqvF7du3HwJYt27dt9u4mzdvPnK+c7744otVp/4tk8l49tlnz3J+8/LyXN9dr7N0ZYrFUmD5N/+WAS6DwRABKI1G43Gj0SgCnwA3dOE5L4i0lAT8gh9zdDrODiWYvicPuekwbpOMk7EQ448mOkmDJKRacF1wa/atmF1mvqz7EgBfwMfasrX0jupN76jeV9i6EJeDSE00gt9KoLMRwm9weO2ovMFCv5DEW88jPiwev9iKUxaLaDf98IRvqGg4RLgnDoDI0A+nECGuCS4qgmwwGOYCvzrj8P1Go3GPwWBIIJhq8UuC6Rbf1UuyAmeJSXc3aZFpfKbagVaXhL1Ggb+5lPNlGIq1e1G2SKkwyFC1+oktDOUfXy+MThmNXq3n+ZLnGZo4lPXl66lor2Dp+KVX2rQQl4lwRTiiaMUvaBEDYqcl/cwdNSj9QelObVTIQe5pJGgS2CUzgyyC9roTRBkubKeh2lSOIpCHgB9tdOi6CBHiWuCiHGSj0bgSWHnmcYPB0A94B3jUaDR+9k0E+bv7SeHAxSvwXyRJmiTa1c1Eu1IRbOCtNZ7XQfYc2IHSLVCTkEG63UdMSmg77HpBLpGzaNQifr7p58z5aA5VlipGJY1iUtqkK21aiMuERJAQEGwgSHHYvGgiFJ2ab2qtQBCCEeSQdnrPIy4sDquyjXCgvqyKKMPQC5pnNtejVY4jTOkN7UiGCHGN0GUpFgaDIR9YC9xtNBo/AjAajRbAYzAYsg0GgwDcBGzvqnNeKHKpHF+4g4AYQUCQEKhrAY/9nGMdBw4A4IkfAEBsSiiCfD0xKnkUvxz0S9rcbYxKGsXvR/w+VJx3nRGQBr8bTGZHp+e21VfgUUYBATS6zjnXIa5+FFIF9vDg9dFWXnfB89ytFhxqPdGxoehxiBDXCl1ZpPcMoAKeD9bo0WE0Gm8F5gOrASlBFYtdXXjOC0YRIyJUS3GpYnC1tRLWdARSz/j177LQVt2GTRVGrDYo6RUTcpCvOx7o+wAP9H3gSpsR4goRkDkBMLXYSc/sXAfVjoZqRFU8EokHSahJSI/EGyeBKnA02S5sgs9DoMOPUx1LZLKuW20LESJE19FlDvI3zvC5ju8EhnfVeS4WXUKwtWerLo3E9iqo23+2g9zwNQ6TgrJkgSRfPPJYJUp1j++lEiJEiO8QUASlQdtb2oDkTs21NjUgVxqQKTsltxniGkKWpkOo9OO+0G7kHScRbLGIKjnRmRenjhIiRIjLz3UT4khIigbAHG/A3q6G+v1njfEbtyNtl2FMFpC1y4kN5R+HCHHdIYQFJTrtLWd1e/1BXK1tuBU6FOGh/OOeijY1DaW7DY/7wtIlAq3VKJzfKFiEJN56LDt37tTMmjXLcOpxSUmJevr06bkzZswwPPjggxl+vx+A5cuX66dNm5ZXVFSUt3bt2igAm80mmTNnTvbMmTMNd955Z05tbe1Z7RYdDocwd+7c7OLiYsPs2bN7NTc3ywBefPHFuMmTJ/eZNWuWYdasWYbS0lLl+cbu3r07rLi42DBjxgzD3Llzs5xO57f5g2fav2/fvrCioqK84uJiw29/+9vUU/afic/nY+7cuVkff/zxWR1wXn/99Zg//OGRm9yEAAAgAElEQVQPp0UZ5s2bl7Vt27bzfhCeeOKJ1OrqaoXZbJa+88470Wc+X15errzzzjtzZs6cafjRj37U22QySQEWL16cWFRUlHfbbbfl7tq1q0ukYq4bBzlNn4xDbsERlYS3XYK/Zu9ZY5xfbQXgRKIOq8lDbGoovSJEiOsNqU4CYgCXqdO6+PjbrXgUOlSxoW5pPRV9ZBIybysu8cLSJerqjhDmCUaO/z979x0eVZX/D/x9Z+ZOL+k9hJCQmyBNERAEAbsCSrOhgsqum3X9qV9c27qiLAq6mkWwgQu7iIsFKbZlLVixAIqAlHADhARCEtKTqZly7++PAAZIaCaMJO/X8/iY3Lkz55Nwnpv3nDn3nIg4U3uWRmEye/bs+GnTpqX5/f7DgXPu3LlJubm5ZStXrpQDgYCwatUqR2VlpW7ZsmVxK1as2LFkyRL5+eefT1UUBYsWLYrJycnxLF++XB45cmT1Sy+9lHB0GwsXLozLzMz0rlixQh49enT17NmzEwEgPz/fMmvWrD2HdrjLzs5ubOlcRVEwbdq0rs8880zRypUr5SFDhjQUFxfrW6t/2rRpaQ8//PDeFStWyFarNfT2228fE1Z37dplmDBhQrYsy6e3LmYLZs6cuS8tLc2/ZcsW86HdAJt79NFH0+677779y5cvl6+//vrKgoIC44YNG8w//fST7b333sufM2dO4YwZM9LaopZOM38g1ZaKL01fwaaNg6AA/sK9MPnqAePBi1ywEe6tuxDSmKDGnAcc4A56RJ2RISoSuiovGuu9p/xcwRVC0GCGPZ4BuaOKt8SjSv0ZXk13QAkBmuNvS150YDsMSiwENQiLg58stKc389+Mfn/3+226VeE1GddU3ZRzU/XxzklLS2t88cUXd//5z39OP3RMkiRPXV2dVlEUeDwerSiKamxsbHDVqlXbRFFEUVGRXhRFRaPR4O67764IBoMAgNLSUr3NZjtmuHbjxo3W3//+9+UAcMUVVzQsWLAgCQBkWTa/8sorCTU1NeKQIUPq77///vKWzi0oKDDY7fbgq6++Gl9YWGgaMmRIXXZ2dmNr9VdVVekvvPBCNwCcf/75rtWrV0dMnDjxiA1JXC6XZubMmUWvvPLKMYH+RBYvXhy9Zs0ah8/n05SWlhomT55cPmnSpOoJEyZIM2bMKJ43b15CYWGheeHChTFTpkypAppG0Wtra8XVq1dH5OXlpeTk5Lgff/zxkldffTVu4MCBDRqNBmlpaf5QKCRUVFTo4uLigqdaV3OdZgQ51ZaKGlMZQkErVACeCj1QuumXE0p+gHu/DnKyBunacwAAMQzIRJ2OJTYeYsCFgKfxlJ+r8zZ9shcdy80gOqp4czwaNbVo1EXCX1d+wvMPVO5BSIyDUd94yutq09lh3LhxdaIoHnHjQXp6emNeXl6XSy+99JyamhrdsGHDnAAgiiLmzZsXO3HixJwrr7zycPDW6XS4/vrrs5YvXx531VVXHTO/y+12ax0ORwgAbDZbyO12awHgsssuq3n66af3vvXWWwUbN260fvjhh46Wzq2qqtLl5+dbb7/99oo333yzYP369fbPP//c1lr9iYmJjV9++aUVAD7//PMIr9d7zDvBvn37env06OE7jV+ZCgAul0v7+uuv73rllVd2LVq06IiQnZubW963b1/noXAMADU1Nbq9e/cahwwZ0rB06VK5oaFBu2TJkmiXy6Vt/qbCbDaH6uvrj//O9SR0mhFki2iBz9EAHNCiJLY7rAe2ILpkPdBtGAAguOkTNNaJ2NgXSAmkQG8TYYngMk1EnY0lJhFiwA1v46mN9qmqCtFvgx9ALANyh5VgToBbXwODoEHpzkJ0HXj8Gzm9FQcQNMXCEXXMtFJqYzfl3FR9otHeMyUvLy/1tdde29GzZ0/f/PnzY6dNm5b67LPP7gWA3Nzcyttvv73q1ltv7f7FF1+4RowY4QSApUuXFuTn5xtzc3MzFyxYsPORRx7pCgCjRo2qtlgsIafTqQEAp9OptVgsIUVRkJubWxERERECgIsuuqh+27Zt5pbOjY6ODiUmJvoOBdrBgwfXb9682XzxxRe3uEX0008/vedvf/tbl5dfflk499xzXaIoqvPmzYtdvXp1FAA8//zzhSkpKYHj/Q6MRqPi9/uPGIj1er0ak8mkAEBWVpYHAFJTU/2BQOCEA7ZRUVFBk8mkHPp9jRgxov7bb7+1p6en+9xu9+Hnezwe7aHfya/RaUaQAcAQ1/QGqTJjIFyVRiiblwNq0zHXV6sBAJvTBRhqbYhJsXL9W6JOyJqQDjHghho8tfEDZ8AJQ7BpaoWNm4R0WHGWONSZmgb4KnbsOeH5wVovvKYYxKYcM4WTOjCr1Rq02+0hAIiPjw84nU7tjh07DHfccUeGoigQRVHV6/WKIAhqXl5ewpIlS6IOPi+k0WjQvXv3xkPzim+77baqvn37ug7Nyf3444/tffr0cTY0NGhHjhx5jtPp1CiKgnXr1tl69erlaencbt26NXq9Xu3OnTsNALBx40ZbVlZWq6O/n376acTcuXMLly5dWlBXV6cdMmRIQ25ubuWhmk4UjgGgd+/enh9++MF+KKxXV1dri4qKTIdC+vEyliAIqqoeuRqQ2WxWk5OTfV9//bUVANavX2/LzMz0DhgwwPX99987QqEQiouL9YqiIDY29ldNrwA60QgyAMQdXINS7dIDwlrAJ++CuXwLEArAvX0/XCYb9sVq4dugIqY3p1cQdUb2pAyIge1Q1C6n9LxqbzX0SlNA5lzTjsugNcDl8CC+Fmgoqjr+yX43BJcDqkFEVDcu8daZTJ8+vfiee+7J0Gq1qiiKyqxZs4rT09P9WVlZnjFjxmQLgoBBgwbVDx8+3JWdne2bOnVq+sqVK2MVRcGMGTOOeec1ZcqUynvvvbfr2LFjJVEU1Tlz5hRGRESE7rrrrpKbbrpJEkVR6d+/v/Pqq6+ud7vdzqPPNRgM6vTp04umTp3aTVVV9OrVyzVy5MhW70Tu2rWr75ZbbpGMRqPSr18/59VXX33Kdy1nZ2c3XnfddRXXXXddttlsDgWDQeHBBx/ca7PZlBM9NyMjo7GwsND04osvxt19990Vh44/9dRTRdOnT+/y3HPPCYmJiY2PP/54lcFgUM8991zXmDFjslVVFf7617/uPdVaW9KpAnK32K4o19cg0p4IBYCz1ALzT68hdGAfnPtNWJ8ZiS6BFCghFXFpvMmGqDNyRCVCF3RDwamtOFDrq4VWdQBqCEYLP07vyIJJeqBGgbfaf9zz1NpiCN4EwABEpp7apjN0dklPT/e///77Ow59P3ToUNfQoUN3HH3eww8/XAagrPmxhISE4BtvvLHzeK9vsViUBQsWFB59/Oabb665+eaba07m3Isvvth58cUX559M/aNHj64fPXr0SYXiF154oai1x+68887KO++8s/Lo45MmTTo8FcZkMqlr1qzZAgDLli2TDx3/7LPPth39vL59+3pXrlwpH338kUceKQVQejL1nqxONcUiIyIDNeYy+BoC+CG5N6p3WRH6diFqVn0LNShg1UAR5yjnAQDi0xmQiTqjCGMEVLgAQY+A/+SnsdVV70VIdEALN2/G6uD0XRJgaKyD33v8N0KuA4XQBZruPYqI47x0orNJpwvI1eZSeKtCqB57KwS/gpL9F6OmMAYbErNQklSLRHc6LA49rJxDSNQpiRoRIcENAPC5TjjN7jDn/t3w6+3Qak7npm46mzhiU6BvrIYvdPyBlPL9O6BTYiGofpgdvOmb6GzSqQJygiUBTlsloAgYOrgfvk7qDc+6fHihx+LeA6EgCENVBOK7OXiDHlEnppxOQD6wr2kXPf0Jp9fRWS7emgBVrYJXiDp8o3dLSkt+hqqLhyh6+DeF6CzTqeYgawQNTCkqIAPG+iA+G5OLNwr3ocwUhf69i1HrtiBYp0F8V06vIOrMFK0HAOBqaEQsTu6GXXfFAQh6O2wWjiB3dPHmeFRodsAvRqKxrgqGyJZvwGsoLYTHPBLWCIZjorNNpxpBBoCUxAR4DA0o212PZyYOwPAR5+GScxLRPbUBSe4MAEBCNwZkos5M0TXtoldXd/Kbhfhr6hHQ22CI4HbCHV28JR5OQ9M9RiX5Ba2eF6yqh9cYjRjeoEd01ul0ATkjIgP7rTtRurMWXaPNmH5tT7xySz+UeHajR+P50GgFxHZhQCbqzFRD0yhwXd3JjwarDU3/t8QzDHV08eZ41JibAnL59t0tnxQKIuhyAIIGSVmntmQgEYVfpwvIPaJ7oNy2B576AJw1TX/8AkoAWyq3ILG6O5KzIiAafvUOhUR0NjM2rV7hrD35gKzxNK1oYE+Oa5eS6Lcj0ZKIMkdTQHYWt7xxm1JbjJAnHgAQ3TXmjNVG4bF27VrLhAkTpEPfb9y40XTNNddkjx07Vrrnnnu6hkJN15T58+fHjho1Kmf06NE577zzTiQAuFwuzeTJkzPGjx8v3XDDDVklJSXHLI/i8XiEKVOmZIwbN0665ZZbMisqKnQA8MILL8Rddtll50yYMEGaMGGCtGPHDkNr565fv948btw4aezYsdKUKVO6eb3ew3N/jq5/w4YN5tGjR+eMGzdOeuihh1IP1d/cZ599Zrv22muzx48fL02ZMqVb893sAGDx4sXRTzzxxBFbTd55553dvvzyy1bnrf3lL39JLS4u1ldXV2vfeuutFnfXCQaDmDJlSrePPvroiNHMnTt3Gi6//PIeh74vLCzUjx8/Xho3bpx01113pR9d34l0uoDcJ7YPqhxNa0iX725a4m9r1VbonGZo681I68ULGVFnJ1gM0AXc8NS6Tvo52samqRUxybyGdHRGnRHuBB00IT98tS1v2FW7Lx9CIBEAl3jr6GbPnh0/bdq0NL/ffzhwzp07Nyk3N7ds5cqVciAQEFatWuWorKzULVu2LG7FihU7lixZIj///POpiqJg0aJFMTk5OZ7ly5fLI0eOrH7ppZcSjm5j4cKFcZmZmd4VK1bIo0ePrp49e3YiAOTn51tmzZq159AOd9nZ2Y0tnasoCqZNm9b1mWeeKVq5cqU8ZMiQhuLiYn1r9U+bNi3t4Ycf3rtixQrZarWG3n777WPC6lNPPZU2f/78XcuXL5e7dOnS+Nprr/3qi9/MmTP3paWl+bds2WI+tBtgc7t27TJMmDAhW5ZlS/PjS5Ysibrvvvu61dfXH35z8dRTT6Vcd911lStWrJD79+/vfOmll+JPpZZOdZMeAJh0JiSnxSCw3YfCTVXIGpCAtaVrkVZ3DgCga6/oMFdIROEm2i0Q61zw1Z38co9iwIpGAHFxlhOeS2c/Q2oKjD/UoFFpuY/U7suHgCRoVCc3jjlDav6zJLr+vffa9B2q49prq6JuubnljwkOSktLa3zxxRd3//nPf04/dEySJE9dXZ1WURR4PB6tKIpqbGxscNWqVdtEUURRUZFeFEVFo9Hg7rvvrggGm95olZaW6m022zHDtRs3brT+/ve/LweAK664omHBggVJACDLsvmVV15JqKmpEYcMGVJ///33l7d0bkFBgcFutwdfffXV+MLCQtOQIUPqsrOzG1urv6qqSn/hhRe6AeD88893rV69OmLixIlHbEjyn//8R05ISAgCQCgUEgwGw0kv4bN48eLoNWvWOHw+n6a0tNQwefLk8kmTJlVPmDBBmjFjRvG8efMSCgsLzQsXLoyZMmXK4S0rXS6XZubMmUWvvPLKEW8iHA5H6O2335YvueSSXoeOFRcXmy6//PJiABg4cKDrySefTD3Z+oBOOIIMAP0Tz0d+zFoUbqqEp8GPtWVrcY7zAkQmmOGI5Tt9os7OYI+EGHAj4Dq5m/S8QS90StOnhlZuM90pxEWlQPRXwKdGtvh4Q9HP8JkSoTO6z3BldKaNGzeuThTFI9b7S09Pb8zLy+ty6aWXnlNTU6MbNmyYEwBEUcS8efNiJ06cmHPllVceDt46nQ7XX3991vLly+Ouuuqq2qPbcLvdWofDEQIAm80WcrvdWgC47LLLap5++um9b731VsHGjRutH374oaOlc6uqqnT5+fnW22+/veLNN98sWL9+vf3zzz+3tVZ/YmJi45dffmkFgM8//zzC6/UeM/c0KSkpAAArV66M2LBhg23ixInHfSPRjAoALpdL+/rrr+965ZVXdi1atOiIwJubm1vet29fZ/NwDDTtpNejR49j5r6NGjWq3mq1HhHQMzMzPf/9738jAOCjjz6K8Pl8p5R5O90IMgAMSBiAt+IfQe+y4di8pgi1OwOIqE5C9tjEcJdGRL8BlqhouANuuH0nNyBS66uFTrVDG3JDq+uU4w6dTpI1CSG1HG5dDwS9LuhM1iMed+4thNt8MyITGsJUYecTdcvN1Sca7T1T8vLyUl977bUdPXv29M2fPz922rRpqc8+++xeAMjNza28/fbbq2699dbuX3zxhWvEiBFOAFi6dGlBfn6+MTc3N3PBggU7H3nkka4AMGrUqGqLxRJyOp0aAHA6nVqLxRJSFAW5ubkVERERIQC46KKL6rdt22Zu6dzo6OhQYmKi71C4HDx4cP3mzZvNF198sbOl+p9++uk9f/vb37q8/PLLwrnnnusSRVGdN29e7OrVq6MA4Pnnny9MSUkJvPDCC3GfffZZ1KJFi3aaTKYjQrbRaFT8fv8RF0Sv16sxmUwKAGRlZXkAIDU11R8IBNr8wjlt2rSSxx57rMt7770Xc+GFF9Y5HI6W50O1olNeyfvE9UHA5oIzphwb/leMi3bdCFOsBn0uOaXRdyLqoGwx8RADLijBk7tht9ZXC0GwQ6e0+LeGOqAkSxIaDOVQNToUb956zOO+Gg0UrR4xWbxpszOyWq1Bu90eAoD4+PiA0+nU7tixw3DHHXdkKIoCURRVvV6vCIKg5uXlJSxZsiTq4PNCGo0G3bt3bzw0r/i2226r6tu3r+vQnNyPP/7Y3qdPH2dDQ4N25MiR5zidTo2iKFi3bp2tV69enpbO7datW6PX69Xu3LnTAAAbN260ZWVltXoX8qeffhoxd+7cwqVLlxbU1dVphwwZ0pCbm1t5qKaUlJTAs88+m7Bx40bbG2+8IcfGxh4TPnv37u354Ycf7IfCenV1tbaoqMh0KKQfb/McQRBU9Tib8JyMzz//3P7AAw+ULFu2TNZqtRg0aNApvVvtlCPIBq0Bj17wKJ52/QP9cRUyXX1w5aS+HPkhIgCALTYF+kA+VOXk5o7W+mqgaO3QCid/Ux+d3ZKsSdhiL0diCCjZkI+MCy745UFPDRq9cYAe6Nqze/iKpLCZPn168T333JOh1WpVURSVWbNmFaenp/uzsrI8Y8aMyRYEAYMGDaofPny4Kzs72zd16tT0lStXxiqKghkzZuw5+vWmTJlSee+993YdO3asJIqiOmfOnMKIiIjQXXfdVXLTTTdJoigq/fv3d1599dX1brfbefS5BoNBnT59etHUqVO7qaqKXr16uUaOHFnfWv1du3b13XLLLZLRaFT69evnvPrqq484t7y8XLdo0aKkjIwMz6RJk7IA4PLLL6+58847Kw+dk52d3XjddddVXHfdddlmszkUDAaFBx98cK/NZjvhR3MZGRmNhYWFphdffDHu7rvvrji1336TzMxM3/33399NFEU1PT3d+8wzz+w9lecLvzaht4dx48apK1asaPd2nv3hWWyq3IR/XvZPmEXOPW5LkiRtkGX5/LZ+3TPVN6j9tFffANquf5Tu/Bo/37UMuzPG4M65wyDqjz+S/N/NS3HgHyr0hgO45dV7fnX7ndnZcu0orCvEY7PHY/CBPHSx/ITReX8+/FjN1k/x2fQPURF9LX4/eyj0Jt6k1xZa6hubN28u6tOnT1VrzyE6kc2bN8f06dOn69HHO+UI8iEP9H8g3CUQ0W+QIy4dmlDTaLDPFYAYdfyA7KzYD78+G1Zx/5koj34DEq2JKI4P4OKiKvhCR/4prSxYj5CaBEGpYTgmOktxTgER0VHMlngoaFp9wOcKnPD8htIyhLQGGLjLdKdh0pmgjYqC0VcOT+jIJWJDO36E15QK1dTqJ9hE9BvHgExEdBRBp0dI0zSC7HX6T3i+r6zp3g+DnaOFnUmSNRmKUAGPLh4h7y/LuamFZfBYEiB2+e1NYSSik9PmUywkScoGsA5AvCzLPkmSLgAwB0AQwCeyLE9v6zaJiNra4YB8EiPISm0QWgDGaG4S0pmkO9LRYCgDNCLkb75Bj8uugOr3oMqZBEQCsf2Swl0iEZ2mNh1BliTJDiAPQPPV9ecBmAhgCICBkiSd25ZtEhG1h5DYNCLodZ14BBmupkupJZk7cXYmGREZ2BMhAwCKvtwMAKjc8R2qlRwIih8552SEszwi+hXaLCBLkiQAeBXAXwB4Dh6zAzDIsrxblmUVwMcALm2rNomI2osi+gBVgbP+xAFZ26gHAESkxLd3WfQbkhmRiY3pdTB7yuE60DQBvfqb1+A0dEdQ3YNuUekneAUi+q06rYAsSdIUSZK2Nv8PwIcA/ivL8uZmp9oBNF+Y2QnAcfrlEhGdGYpRA13QDWf9ibeb1gYsgKogNokBuTPJjMxERaQAq3cnqjWZqCr4EZFb1sJlSYHHUQ69Vh/uEukMWbt2rWXChAnSoe83btxouuaaa7LHjh0r3XPPPV1DoRAAYP78+bGjRo3KGT16dM4777wTCQAul0szefLkjPHjx0s33HBDVklJyTE3M9TV1WknTZqUOX78eOnaa6/N/u677ywAsHPnTsMNN9yQNX78eOnGG2/sXlVVpQWAp59+OnH06NE5Y8aMyV63bp0ZAA4cOKA71M6YMWOyd+3aZTj0+hUVFboRI0b09Hq9AtC0qcctt9ySOXbsWGny5MkZBw4caHVK7osvvhj3xBNPJB99fM+ePfprrrkmu/mxf/7zn7GzZs1qde7R4sWLoz/44AMHAMybNy/2ZNv84IMPHKNGjcq59tprs//1r3/FAEAwGMQjjzySOmbMmOyRI0fmfPjhh6eUP08rIMuyvFCW5Z7N/wMgAZgiSdKXABIAfIKmcGxr9lQbgLrTaZOI6ExSTSL0fhdcDccPyCElBJ1ihRh0wh7V6vWcOqBESyJMOhN8sdVQNAaULZwOuWoEIGjgPrf1XcKoY5k9e3b8tGnT0vx+/+F/9Llz5ybl5uaWrVy5Ug4EAsKqVasclZWVumXLlsWtWLFix5IlS+Tnn38+VVEULFq0KCYnJ8ezfPlyeeTIkdUvvfRSwtFtvPzyy/EDBgxoWL58ufzMM8/sefLJJ7sAwKOPPpp233337V++fLl8/fXXVxYUFBg3bNhg/umnn2zvvfde/pw5cwpnzJiRBgBPPvlkyqhRo2qWL18u33vvvftlWTYCTbvtTZ48Oau2tvZwMH/++ecT+/bt61q5cqV86623VsyaNeuYAOzxeIQ//vGP6cuWLWuz7SInTZpUPXr06HoA+Pe//31MkG6pTb/fL+Tl5aUuXry4YOnSpfKKFStiy8vLdW+88UZ0MBgU3n333R3z58/fVVRUZDj69Y6nzW7Sk2U589DXkiQVAbj84E16fkmSMgAUArgCAG/SI6LfPK3FALHKDW+997jnOf1OaGCHNlQPjYE36XUmGkGDDEcGdudUI/5nPzZVjoHHHo9gaDsSzuGbpTPt5y9KouW1ZTFt+ZrSBYlVvUekVB/vnLS0tMYXX3xx95///OfDc2okSfLU1dVpFUWBx+PRiqKoxsbGBletWrVNFEUUFRXpRVFUNBoN7r777opgsGmn5tLSUr3NZgsd3cYf//jHAwaDQQGAYDAo6PV61ePxCLW1teLq1asj8vLyUnJyctyPP/54yauvvho3cODABo1Gg7S0NH8oFBIqKip0W7ZssWZlZXlvuOGGrMTExMYnn3xyHwBoNBq8/vrr8tixY3scam/Pnj3GqVOn7geAwYMHu2bOnNnl6Jp8Pp9m7Nix1YMGDWooLCw0nsrvdc+ePfr77ruvW1xcnH///v2GHj16uJ977rm9s2bNSoqJiQnU1dVpXS6X9oEHHujy7LPPHt4Br6U28/PzjUlJSY1RUVEhAOjdu7frm2++sX377bf2zMxM7y233JIJAE888cS+U6nxTCzzlgtgCYD1ADbKsrzuDLRJRPSraK1m6AMuNLqOP4Jc21gLCA7olHpA4KhhZ5MRkYGvY/ejb8OncOlSENQZ8Vn395ARwRv0Ootx48bViaJ4xJp+6enpjXl5eV0uvfTSc2pqanTDhg1zAoAoipg3b17sxIkTc6688srDwVun0+H666/PWr58edxVV11Ve3QbkZGRIbPZrJaVlekeeOCBbvfdd19JTU2Nbu/evcYhQ4Y0LF26VG5oaNAuWbIk2uVyaZuHbLPZHKqvr9dWVFTo7XZ78O233y5ISEjwz5kzJwEALrvssoaYmJgjQnlWVpb3k08+iQCADz/8MKKxsfGYvBgVFRW6/PLLG44+fiKCIKgAsH//fmNeXl7R+++/n7927VpHWVnZ4UHbBx54oNxqtYaah+PW2mxoaNBardbD9VsslpDT6dTW19fr9u7da1y8ePGu3/3ud+UPPfRQ11Ops1120pNluWuzr9cCuKD1s4mIfntMdjvUgAtB7zGDOUeoa6yDorNDDJacocrotyQzIhPv7X4PWQseQvz7P2Ldvs3YE1+O8+LOC3dpnU7vESnVJxrtPVPy8vJSX3vttR09e/b0zZ8/P3batGmph8Jebm5u5e2331516623dv/iiy9cI0aMcALA0qVLC/Lz8425ubmZCxYs2PnII490BYBRo0ZV33bbbVU///yz6f777+82derUfcOHD3d5PB7BZDIph54/YsSI+m+//daenp7uc7vdhwOtx+PRRkREhGw2W2jkyJF1AHD55ZfX/eMf/zhm2sQh9913X9mjjz7aZfz48dKFF15YHxsbG1izZo11zhSR1DQAACAASURBVJw5yQBw++23l48cOfK4O+GYTCYlEAgcEaw9Ho/m0Eh4YmKiz263KwAQFRUV8Pl8pzVoa7fbQx6P5/Bz3W631m63h+x2e2jEiBF1Go0Gw4cPdz300EOnNMrNjUKIiFpgjYqCGHBBDQhQ1dY3fKhxViMg2qA/uG4ydS79E/oDAL4u/xbdbr4aH/XZhpyoHMSZ22xaJp2FrFZr0G63hwAgPj4+4HQ6tTt27DDccccdGYqiQBRFVa/XK4IgqHl5eQlLliyJOvi8kEajQffu3RuXLVsmL1u2TL7tttuqtm3bZrzvvvu6Pfvss4VXXXVVAwCYzWY1OTnZ9/XXX1sBYP369bbMzEzvgAEDXN9//70jFAqhuLhYrygKYmNjgz179nR+/PHHDgD4/vvvbd26dfO1Vv+aNWtsN954Y+Xy5cvlrl27+nr37u0aOnSo61BNJwrHABAXFxf0er2abdu2GYGmm+bWrl1r79u3rwcAhBN84na8625zOTk5vpKSEmN1dbW2sbFR2LRpk3XgwIGu8847z/nVV185AGDTpk2muLi4k1iz8xftMoJMRHS2i4iOhytQC0ADvzcIg7nlXfLq9x8AhEToda3+raEOrEd0DyRbk/Fx8ce4uMvF2Fy5GXf0vCPcZVGYTZ8+vfiee+7J0Gq1qiiKyqxZs4rT09P9WVlZnjFjxmQLgoBBgwbVDx8+3JWdne2bOnVq+sqVK2MVRcGMGTP2HP16f//735MDgYDm0M15Fosl+Nprr+1+6qmniqZPn97lueeeExITExsff/zxKoPBoJ577rmuMWPGZKuqKvz1r3/dCwCPPfZYycMPP5z2zjvvxFksltALL7xQ2Fr9WVlZvgceeCD92WefRUxMjD8vL6/oVH8HGo0GM2bMKHrkkUe6ajQaBINB4aKLLqobMWKEc8+ePSdc4iUtLc171113pb/88svH/D6a0+v16v33379v8uTJWYqi4Nprr61KSUkJ3HbbbVUPPvhg2jXXXJOtqiqeeOKJ4lOpXzjZhH4mjRs3Tl2xYkW4y6BfQZKkDbIsn9/Wr8u+cfZrr74BtG3/2Pfly9j5+Drk50zGzX+7ABFx5hbPW/zWXDi/7Ils7XJc8tJLbdJ2Z3Y2Xjtmb5iNxdsW48EBD2Lmupl4/arX0Teub7u01Zm11Dc2b95c1KdPn6pw1URnv82bN8f06dOn69HHOcWCiKgFkXFp0Aeapk34jrPdtPuABwBgsvAGvc7qiq5XIKgGMXPdTMSaYtErple4SyKiX4lTLIiIWmCxJyCkNgVkr7P1qWv+Gj90AIyRLU/BoI4vJyoHt/a4FQatAWMzx0Kr0Ya7JCL6lRiQiYhaIJgiENI0rSbkaWg9IKvOpmlqpnjrGamLfnsEQcCD/R8MdxlE1IY4xYKIqCUGO0LaEwdkwStCF/TAlMBtponCQFEUhfOb6LQc7DtKS48xIBMRtcRoR9AQhCbogqe+9YCsDZog+htgjjlmd1gian9bKysrHQzJdKoURREqKysdALa29DinWBARtURnQNAAiMEGuBta301Po1ghButhcWSfweKICACCweDvysvLF5SXl/cEB/3o1CgAtgaDwd+19CADMhFRKxSjAH1jA9x1LY8g+4I+CLBDp+yB2R59hqsjon79+lUAuCbcdVDHw3dbREStUI0amHwNcLUyglztrYaidUCv1kEwRZ7h6oiIqL0wIBMRtUJjEmFsbICvwd/itqcHaqoBjR5G1ACmiDBUSERE7YEBmYioFTqTHnp/A5SgioAvdMzjFQdqAABmVAF6LvNGRNRRMCATEbXCYDFD729a6s1df+w0i9oDdQAAi64OEHgTPRFRR8GATETUCrPDfjggt7QWsqe06TGb3nVG6yIiovbFgExE1IrI6OjjBuTGykZolADMlhbXmSciorMUAzIRUSvi4pJhOBSQW9gsJFgvwOCrhRBhP9OlERFRO2JAJiJqRURMEoSQB1BDLW837TXA0FgLTSSXeCMi6kgYkImIWqExR8BtViEoLnhauElPCFphbKyFLiYmDNUREVF7YUAmImqN0QGvSYU2WAtnje+Ih5SQAkG1QQzUQB+dEKYCiYioPTAgExG1xmiH36TC4KtAfaX3iIectV4IggY6pRYmR2yYCiQiovbAgExE1BpjBBSTCrO7Aq7aRgT9v2wWUnqgCgAgCtUw2jnFgoioI2FAJiJqjSkSglFBhKsCAFBf9cso8oGypl30TJoKCObosJRHRETtgwGZiKg15ijoDCE4nJUAgPqKXwJyZYkTguKHTVsOmKPCVSEREbUDBmQiotaIZuiNgMl7MCA3m4dcX+aF1V0Oiz4ImBiQiYg6EgZkIqLWCAJMZhFi0AtBFzoiIDdWqLC4S+HQBziCTETUweja6oUkSdIC+AeA8wEYADwhy/KHkiRdAGAOgCCAT2RZnt5WbRIRtTebzQIVPkDnRn2FBwDgcwcArx4WdxnEGAAG7qRHRNSRtOUI8q0ARFmWLwRwLYDMg8fnAZgIYAiAgZIknduGbRIRtavoiKZd8hS19vAIck2pGwBgdZdCsZgBQQhbfURE1PbaMiBfAWC/JEn/BfBPAB9IkmQHYJBlebcsyyqAjwFc2oZtEhG1q8jYg2scByrhqvEh0BhC9X4XAMDiLgUibWGsjoiI2sNpTbGQJGkKgP876nAlAB+AUQAuAvBvNI0cNzQ7xwmg2+m0SUQUDrrIODSKgMa7A6rhfBRuqkTVfidU1QPRXwdNdFK4SyQiojZ2WgFZluWFABY2PyZJ0lsAPjw4UvyVJElZaArHzYdXbADqTrNWIqIzzxQJj0mFsX47dDlGbPmyBDVlLmj8BWi0ADo710AmIupo2nKKxTcArgYASZL6ANgry3IDAL8kSRmSJAlomoaxpg3bJCJqX6YoBKwqoupdkAYm4MCeBgT8CmLK3wesCoyOuHBXSEREbawtA/I/AQiSJK0F8CqA3IPHcwEsAbAewEZZlte1YZtERO3LFAnYgoivCyH5PAsEAbD3DSGp6gBMlgB0Fo4gExF1NG22zJssy40A7mjh+FoAF7RVO0REZ5Q5CiZrCDY3UOLbjesf7Y8Py99GpBNwpPm5BjIRUQfEjUKIiI7HFIUosx8AsGvLD4hJsaG+dBc0ACzmIGDmCDIRUUfDgExEdDymSMSbmgJy9a58AEB98W4AgGgJcZtpIqIOiAGZiOh4zFEwW4MAgND+vQiEAqgv2gngYEDmFAsiog6HAZmI6HhMkdDqVbiNAswVVdhavRWRtX4oAiCaQ4CVq1gQEXU0DMhERMejMwCiBQ0OHSJr3Pi65GvE1QFekx6CBoAtMdwVEhFRG2NAJiI6EXMUdDY9EmoV/GvLQvTcp0VjpAGqKRIQTeGujoiI2hgDMhHRiVhiEWfTIKYBkPYqiHQGoUvRQrBxm2kioo6IAZmI6EQcyYhM8UGjAg//zwQFAmK7+AE7p1cQEXVEDMhERCdiT0FsRBXWxefAVOOCHNkFieZ6zj8mIuqgGJCJiE7EkQJNwI2tw66CAgE/JveA0V/NgExE1EExIBMRnYgjGQBw6bCu+NOIqfBfMgyCqnCKBRFRB8WATER0IvYUAMCweD/M2RJu7H1w5QrepEdE1CExIBMRnYijKSCbvGVYde9QnB/pazrOEWQiog6JAZmI6ESscYBGB9Tvb/reWdb0f44gExF1SAzIREQnotE2heH6kqbvnWWARgTM0eGti4iI2gUDMhHRyXCkAA0HR5AbyppWsNDwEkpE1BHx6k5EdDIcyUD9vqavyzYBsVnhrYeIiNoNAzIR0cmwJzeNHDvLgcodQNeh4a6IiIjaCQMyEdHJSOwDKAHg8xlN36czIBMRdVQMyEREJyN7JGCOATb+B9DbgIQ+4a6IiIjaCQMyEdHJ0BmA825t+jptMKDVhbceIiJqNwzIREQnq9/tgFYPdL8s3JUQEVE74hAIEdHJikwD7t0MWOPDXQkREbUjBmQiolNh5+55REQdHadYEBERERE102YjyJIkOQC8BcAKoBHALbIsl0uSdAGAOQCCAD6RZXl6W7VJRERERNTW2nIE+TYAW2RZHgrgbQAPHDw+D8BEAEMADJQk6dw2bJOIiIiIqE21ZUDeAsB28Gs7gIAkSXYABlmWd8uyrAL4GMClbdgmEREREVGbOq0pFpIkTQHwf0cd/hOAyyVJ2g4gCsBQNAXlhmbnOAF0O502iYiIiIjOhNMKyLIsLwSwsPkxSZJWAPi7LMvzJUnqDWA5mqZV2JqdZgNQd5q1EhERERG1u7Zc5q0WQP3BrysA2GVZbpAkyS9JUgaAQgBXADjhTXrbtm2rkiSpuA1rozMvrT1elH2jQ2iXvgGwf3QQvHZQa9rt2kF0NEFV1TZ5IUmSkgAsQNMqFiKAabIsf3pwFYvnAWjRtIrFo23SIBERERFRO2izgExERERE1BFwoxAiIiIiomYYkImIiIiImmFAJiIiIiJqhgGZiIiIiKgZBmQiIiIiombach3kdiFJkgbAywD6AGgE8DtZlneFt6rwkCTpJ/yyM+EeAPMBzAEQRNMSeidcY7ojYd84EvvHkdg/fsG+cST2jSOxfxAd6zcfkAGMAWCUZXnQwTWV8wBcG+aazjhJkowABFmWhzc7tgnAeDRtwvJfSZLOlWV5Y5hKDAf2jYPYP1rE/gH2jVawbxzE/kHUsrMhIA8B8BEAyLK8VpKk88NcT7j0AWCWJOkTNP27PQHAIMvybgCQJOljAJcC6EwXMfaNX7B/HIv9own7xrHYN37B/kHUgrNhDrIdv2xhDQAhSZLOhmDf1jwAnkPTdt25AP598NghTgCOMNQVTuwbv2D/OBb7RxP2jWOxb/yC/YOoBWfDBaEBgK3Z9xpZloPhKiaMCgDskmVZBVAgSVI9gKhmj9sA1IWlsvBh3/gF+8ex2D+asG8ci33jF+wfRC04G0aQvwVwNQAcnCu2JbzlhM0daJonB0mSkgCYAbglScqQJElA07v/NWGsLxzYN37B/nEs9o8m7BvHYt/4BfsHUQvOhhHklQAukyTpOwACgNvDXE+4LASwSJKkbwCoaLqoKQCWANCi6U7jdWGsLxzYN37B/nEs9o8m7BvHYt/4BfsHUQsEVVXDXQMRERER0W/G2TDFgoiIiIjojGFAJiIiIiJqhgGZiIiIiKgZBmQiIiIiomYYkImIiIiImmFAJiIiIiJqhgGZiIiIiKgZBmQiIiIiomYYkImIiIiImmFAJiIiIiJqhgGZiIiIiKgZBmQiIiIiomYYkImIiIiImmFAJiIiIiJqRhfuAloycOBANTk5Odxl0K+wbdu2KlmWY9v6ddk3zn7t1TcA9o+OgNcOak17XjuIjvabDMjJyclYsWJFuMugX0GSpOL2eF32jbNfe/UNgP2jI+C1g1rTntcOoqNxigURERERUTMMyEREREREzTAgExERERE1w4BMRERERNQMAzIRERERUTMMyO1I9bmhOquAUCDcpRARERHRSfpNLvN2tivduQ1fvLwEDa4BULR22LSV6NurHj0n3QiN2R7u8oiIiIjoOBiQ25CqqnjnzYXYkb8PikMP2DYhsbQRqjMdazZlYnfB27j8jwNg6d4n3KUSERERUSs4xaINff75J9heUAJdIAYpQRsyzslAWYoBtVEbkblrMQ54UrH8+R2o++mbcJdKRERERK1gQG4j+/fvx5qvv4PJbUeiKxqT//JHXHlxPK64Qged5MWOHiLO2ToXAcWIFQsqUf3DmnCXTEREREQt4BSLNvLhf1dCF1RgdvXEkPFubM6fjPr6nwAAOT0Af6YRJZHJOOerecg/50689+9KjBXXIrLvBWGunIiIiIia4whyGygpKUFZaRWsDXGIMpShxr4QLlcBMrrPwkVDN6Bv39eg0yUgbthu1F9Thh6lbwGCFu//cx+c238Md/lERERE1AwDchv4+puvoQ0EoQ1K6HbFZ3C58jFnw80Y/pIFj72yHdVrE9HfvBA1VQOg6+tE44hN6Kv9Gn7VjA9e2QFv0fZw/whEREREdFCbTrGQJEkE8C8AXQEYADwJYDuARQBUAFsB/EmWZaUt2w0nj8eDnXIBomr1MFtL4NZ/h9XFw5Adcwke9/kRUxoESkvhApAjTMb3XQV067kOHuF9DGpMxze7u+PD2Wtx7aNW6OO6hPvHISIiIur02noE+RYA1bIsDwVwJYAXAfwDwF8PHhMAXNvGbYbVli1boKqAihwk9X0PfkWHnMQ7kVvkQkS9Fz97v8W/6t7HPcFiaAZnIK1mDAoKLoCvh4L6qNdx0QA3Khu74H9//wghV224fxwiIiKiTq+tA/I7AB47+LUAIAigH4CvDh77H4BL27jNsNrw0wZYnD4YjSp08duwy3UpBqyvguoKYovmW2gkA6IC+3Hhvrfwj0/eQK/cq6ELXITCggvh61qFevMiXJ4egsvbHZ/OfAdKgLvuEREREYVTmwZkWZZdsiw7JUmyAVgG4K8ABFmW1YOnOAE42rLNcKqtrUXFgQpYG2yI6PoFIAD96/rD5nGgPrkBo2b+FVfe9X+488UFSL1gBHIqfsDLf/0rRo4dhQNV3VFYOBCemG2oTH8BQx0K4holfPf0O1BV9cSNExEREVG7aPOb9CRJSgXwBYDXZVl+A0Dz+cY2AHVt3Wa4yLIMAFCELNjT18EZyEHk1kh4tC70ums0BEEAAOhNZlz/f/cj4tIbYa/ajbeemYkhgwdjf0kW9uzoBk9UPvb2m4UoYyO6uFKw/e8fQVUYkomIiIjCoU0DsiRJ8QA+AfCQLMv/Onh4oyRJww9+fRWADrNDRv6OfJjcXpjiaiBa6hGxrxusYiSir86CRjz2/sc7fnczKgbciEBlCbYtW4L42FhUuS5B3dcONDr2YN/w2XCJlXDUWlH03DdQA6Ew/FREREREnVtbjyD/BUAkgMckSfpSkqQv0TTNYrokSd8D0KNp6sVZz+v1Ym9xMRz1Wti7rEVI0cOR3wcBMYCoC7q1+BxBEPDYn67Hd1nXo77BCe9P38Hf6Icz408Q3tPDry1A3VVvYJ9SAl21iv1zfoTiC57hn4yIiIioc2vTZd5kWb4XwL0tPDSsLdv5Ldi9ezdUFRBCqbAl/xeahq6I13eH+aJECFqh1efZjSKe+sMo3DpXjzE1n0JfVowiRUHchQ8h+u2ZcN2wCZYxBuS/PRbZlfEof2UzEnL7QGPipodEREREZwI3CjlNhYWF0ISC0MbpoTO5IOxMgwoFjsFpJ3xuz2QHHr1+EF6LGoVgYg9o3U78sL0QBxLHwPqBFm7fOkRe8y42eZwIlrtRsWALR5KJiIiIzhAG5NO0Z88e2Ot8sCVvgqoKSK67BNp0C7QW8aSeP6FfCn4/rDsWerJhO+8KCIKATV4FWyt6QPedDg3CWiQNfQ0/uv0I7HeiatE2zkkmIiIiOgMYkE9DXV0damtrYfZYYEvaBKU6DlY1AZFDup7S6zx0ZTbG9E3C85sDiOk7HIrJiqrYZPy0JQPBAhG10RuQKP0bG9whNBY1oHrJDqjBDrMJIREREdFvEgPyaSgqKgIAaM2RMESUwlCWDUVUYZSiTul1NBoBf5/QB5dkx+Hv6zyISOkOb0Qs7N1ysP2bdASqdKjv8QMsUe9isycI344aVL+5A2qIIZmIiIiovfDOr9Owa3chNEE/9Cn1AICE+mEw94yFoDv19xt6nQYv3Xwe7nx9A17aGcId0Q7UWq3IEjTY9YmCrLGF8A9djcb/dcE2X1+cs60aNW/JiLox+7g3AxLRWUxVoR7Ih6swH559ArR+OzS6GKgwAkLTNqUQBEArQGPWQRdphJhogT7VBkHLcQ8iol+LAfk05O8qhK3BD2vmTigeI8yedFjPTTjt1zOKWrx6az9Mee0HvFPYiGuNO1CTdQ5yamqx6+MgMkYXA5e+jtL/JsOgxCNzSxVqhB2IuoEhmaijCRV+hw0r/o1aRwBmRxW0uhDEQDTEqu4wV/SCUXBANJkBjRZqUIXiDQIHp14JBi1MPWNgGZgAQxd7mH8SIqKzFwPyKaprcCLkdcHiMcASvx1ieSagF2DI+HU7aBtFLRZM6o/fLxawZo8HatEeJI2ZgMx/voy9Xyah66X7kTw8DztW/w2GRBtSf65CrbYAkddlQdAwJBN1BM7PX8aa3athOG8zxJAOGndXqEYRLkc+lKTvUZWjgXP/uXAXDEZ3cwC9RveDqedwKM4A/Puc8ObXwLu1Cp4NB6BPt8NxWRoM3SLC/WMRtZsNGzbE6XS6BQB6gtNG6dQoALYGg8Hf9evXr+LoBxmQT9HKb34GABiiNNAafIiuvQDmXnFt8rGmSa/Fgsnn4w+vC5ALXcDatRh73wMITX8MZfZYJA6ohDRgFn5a/wTMWTZgYwUgAJETGJLPNp6Kvdi7/k246ndDFwzBrjUjOaELDBkDgdSBgM4Q7hLpDPN/vwDfHFgOQ0YRbMWXIMI5GjVxdbBHpyAhozt0tgaUl63Efs3bsKduQEVlBpa/qyD1nR9x3tgBsJ83HKaeMVCuyYD7h3I4vy5B5atbYMyJQsSobtBFm8L9IxK1OZ1OtyAhISEnNja2VqPRqOGuh84eiqIIlZWVPcrLyxcAuObox8/agBzYvx8V/5gN1e+HY/w42IYPb/c2VVXFd5sLkKwq0CfVAQBstX1gHhnbZm0YRS1endQPd72uoGLPGrz75Ve49cFHEXxqGqrtDkRn70d2/Vx8I9+DK/rHAT9VABoBkeO6MySfBXwuF757dyqC0d9Da/YA5qbj1QB2NVrg/2wdHGUOZCREI3HgAAjSFYDBFtaaqf1596zDR7vfhD2pCAXyIBw4kASNbw3E/GqIdZUQFAUmixm9LxuF7IFvIiD+gGJxIcyxr8JTl4x3VylIWrkN5988HBHZ58A2JBnWgQlwfVeKhs/2onz2BtiGpcI+PBWCyEG2jibk9CNQ7kawxodgtQ/Bai9CdY1QfUGoKqAx6yDGmWFId8CYEwWtVR/ukttST4ZjOh0ajUaNjY2tLy8v79nS42dlQA45ndiXm4vGkv3QGgzwbd8O69ChELTadm33h6JaaL01MHp9MEtbgLpYaGGDMaNtP8I06LR4+db++H+vBeDa+zXe+GkjJv/uT/jpXy+hYbIFtt5bkOZZjk9/HIfRFyXD8+MBaAxaOEZ1gyAwJP9WVRZux48//Qn6pL3AgTRoQv1g1/WESWdBCOVwCuvgTfsR/m5+yHXpKPnMhqg3NTCKRoh2G7SxUdAnW2GUoiCmWPlv3UHUVJRj5aoX0TWnCA2Fg5G6Zyjc9d+jISIaSnwq/DEJSCwsgFhejXUr38a6d5fCEhGB1HNGITKzAdqIr5A8+J9orE3Gu2+EkG7biAG/uwamSDtsw1Jh7huHulV74PxsL7ybKhAxJhPG7pHh/rHpVwrW+eD6rgy+bVUIVvt+eUAnQBdlhDbCCE1s06cGiisAX0EtPD9VABrAKEXBOigJhu4RHeE6omE4ptN1sO+0OGpw1gVkVVFQ+ucHsEUQsOWaq5HlKUTmp/lwffklbJdc0q5tr9iwFzGCG3aPCnPMftj3XQxzTsxprV5xIgadFi9MHoz/t7AR+tLv8J+Katw8+jr8tOQdeO4IwTTgY0Q3xuOjdUMwalAyXN+WQmMRYb+4S5vXQr9e7f4y/LgpFzr7ARxY0x22kguQZj8fFrFp7rqqxsGu7QmYboUzeS1q4j6Fs88iOAMm6PYPhGX/BYjMT4Yh34qG1XuhizXBOjgJ5n7x0Ojb940htZ/Gxka8/Z+5SO+xAUptIs7bdRuW13+IjD/8DSlRFmzIL8SOH7+F2l1EUAmix/bvEFPqQrnThV3uBgS/VQDBgcgMAYkDKpE6fA5qS7rirZlenDtAQq9xQ6B1GBB9UzZ8/eNR9+5uVC3cCvP58YgY1Q0a41n3J6DTU4MKGj7bC+dXJQBUGLtHwnJBIsQkK3QxJmht+hY/TVRVFYEyN7ybK+HecABV+VshJlpgG5EKU88YfgL5K61du9by3HPPpSxbtkwGgI0bN5oef/zxNK1Wq6ampjbOnj27SKvVYv78+bEffPBBjCAImDRpUvl1111X63K5NH/605/SXS6XTqfTqXl5eXtSUlICzV+/rq5Oe88996S73W5tMBgUHnrooX2DBw92f/LJJ/bZs2enGI3G0KBBgxoefPDBslAohAcffLDLrl27zKIoqrNmzSrq3r1747vvvhsxe/bslNjY2AAA3H333fuHDx/uaqn+DRs2mJ944ok0URSV7t27e2bOnLlP28og5HPPPZdQUFBgfvXVVwubH1+8eHF0YWGh8Yknnth/6Nidd97ZbeLEiZXDhw93tvRaf/nLX1L/8Ic/HLBaraFPP/3UceONN9YcfU4wGMQf/vCHbtddd13VlVde2QAATz/9dOK3334bodVq1UceeWTvwIEDPa39G5yss+6ztpp/L8La6ipsPO881Bqc2GbJwI8XnI+a1xa1a7u+QAjfbCmETlBgjfBBo1Ngq+0FU8+YdmvToNNi7h0jUBHbD56GOrylNeLcgZdAed0Of4OIiAtfh8G0Has3V8DQKwYNnxTD/WN5u9VDp8ffGMR3X/0Bor0Uu346HyWhochPMuATw2Z8VfMuftwxF19ufhwrdj2LZVvn4qtvtsGzdywihamw2QYhmPYd6i98GvKAp/FN9GfYFdoHv7sBde/tRvkz6+H8ah8UP3dZPBt9uPIdWGM3Qafzo1v+n7DVJyN3zt8x9rxU9O8ahdyrzsdzf/l/iO99ERSNAdvPGYYfxk1ArD6Iy3/ciT779kDIMsDY61rgwBTUbO0Gc9xepFz+DPJLnsfbj7yFMrnp3hNjZiTi7/3/7J13fFRl9oefO72XlEkvkx5qQg+gIGKhKVLUtaHL6qKiu+KyuuWHYi+LuC7uWnAVCzaKbUX8PQAAIABJREFUrApWmnSBEAik994zvc/8/mBxLaiUUM3z+eSPTO4977kld773vOc9JxfNmHice1poWbwHd0X3GT4DvRwPAYeP1hcLsG2owxXhpiW3nebkJiwR3YRM0h8VxwCCICCL1aCfYCbm/mEYZ6QT8gfpXF5My+I9OPNbCQV7A7EnwuLFi6MWLFiQ5PV6vzn5zz33XOycOXOaVq9eXeLz+YS1a9fq29raJCtWrDCtWrWq+K233ip59tlnE4LBIK+99lpEdna2c+XKlSWTJk3qeP75539QFuuf//xn1LBhw6wrV64sefLJJ6seeeSRxEAgwMKFC5OWLFlSvnr16pLq6mrFV199pfnPf/5j8Hq9ojVr1hTfe++99Y888kg8wIEDB1S/+93v6lesWFGyYsWKkiPi+Gj+L1iwIOn++++vXbVqVYlGowm8++67R230sG7dOt2WLVt6bBr9scceq0tKSvIeOHBAtX79+h/YLS8vl8+YMSOrpKREfeSzPXv2qPbu3atds2ZN0d///vfKhx9+OAmOfg2Ox5dzI3wQ8IPfRefb75G/fDnl43OJi95HpMLLwfZoGkPxdK1eQ1xXFxLjqZk6/OxQC3KfDWQgi2qGoAilJQNF5qmdqlRIxTx32+X87kUfQvs+3o6MY0bKYPa/sQfRLZ1EXfAcNRv+ytZGBSNT9XStKkdsVPR42kcvJ85X7z2EIu4glRWD6XZmExvQYvM0YVGJaY/RIMT2RfC5iastJa6ykS6NnRLr5xzcdPhNVyxLxtTfR1hGJ5GD38TrUbCt7CLUtpEMkMVjWVeNbWsjunEJqIdEn5IZjV56nuLiYsqq9zJkSBnymiGELGFc8JcJqBTfbVcvEYu4fdo4qkYM4KXlK/DZm/k890qyL1Iy4KO3mfBeEYcSinjpciXRA4YxVrgMbedaTAML8JiLWLtsN0mJMxh53RBUOhmGCWaUfcPper+U9qUHDucmX5LUWzLyLCdg99Lw7E5CNj87Wj+kvqoUdn57CwFBFIZEFo5KpcMYpiEyPoLYAX2I6ZuBSq//Jp1CkIhQD4lGNSgK14F2bBtq6Xy3BMmGOvSXJ6PIDjsnUy+WbasOX7W3vkejVtMGxbfPGpnc8VPbJCUleZYsWVLxhz/8wXzks8zMTGd3d7c4GAzidDrFUqk0FBkZ6V+7du1BqVRKdXW1TCqVBkUiEXPnzm31+/0ANDY2yrRa7Q8iHrfffnuLXC4PAvj9fkEmk4Xa29slGo0mkJqa6gXIycmx79q1S9PZ2SkZPXq0BSAvL88xb948NUBxcbG6pKRE9eabb0b16dPH8cADD9RLpdKj+t/e3i4bNWqUA2DIkCH2L774wnDdddd9J5pbVlYmf/fddyPnzp3b8N577x3XYqzXX389/KuvvtK73W5RY2OjfNasWc033XRTx4wZMzIffvjhmhdeeCG6srJS9corr0TMnj27/ch+drtd9Nhjj1X/61//+uYlYufOnZrhw4dbRSIRSUlJ3kAgILS2tkqOdg2Ox8dzQiC3/GECrfvr6RIZqLk2lsHJHyISAgS8coZHllJamkddQgLppaVIhg8/JT5sKG4lTu5GCAZRmaqRWRJRmWMQyU/9KVTKxDw3ZwrzXwJa9/G2OZurXS4OvnkQ1axOEsc8SvWXD3HA0Ie+EQo63izCdGcO0ojeVetnmvKvd+GPeg97dxSGirFcGEgi+jeD0GfGAOD1ejlUUspnG7dSL1VQkTIQ3G3klucTX2bDLZVRGy6lvkxPU3MWWlE7EdktRPZbRyD9C7YcvIxwLqSfPIHuDyqwbapHNz4JVa6pd8r0LMbtdvPRh2tISdpHKCAmoeZ6PLladJE//mJrjo3gsXt/y3827mLXV+tp6Gpn28jruMDnZujnb/PoUidbhu9l8YgtBDRKrrPmkS3KJ3n8GrortrH8gVmMuHIyfS+MR56ow3RXLt3/qcC2sQ5vrZWw67LOt8Vb5w1Br5+qZzYhsYvZYf2cNlE6cv04whUV6JUlgAWXM4jF7sbuqcLS6cPSCdXlwMbDNsRiOeExCWRfNI6+Y8ai1OoQRAKqgZEo+0fgKmzH+lkNHa8fQp6iRz8pBVmc5gwe9bnDtGnTuquqqr7zz2M2mz1PPfVU4tKlS2PUanVgzJgxNgCpVMoLL7wQuXTp0rgZM2a0HNleIpFw9dVXZ1RVVSlfeuml0u+PYTQaAwBNTU2S+fPnp9x33321kZGRfo/HIyoqKlKkp6e7t2zZos/IyHA6HA6xTqf7RmSLRKKQz+djxIgR1okTJ3aZzWbvH/7wh6RXXnklcs6cOW1H8z8mJsazceNGzdixY+3r1683uFyu7+Qm2Gw20YIFCxIXL15cVVxcfLxiIwRgt9vFb7/9dllpaal8zpw5aTfddNM3LyJz5sxpXr58eeS3xTFATk6O6/vG7Ha72GAw+I/8rlKpAhaLRfxj1+BYOScE8s6hMtRTvEArybRiaU6iebOagEdE0mUVJCbupyZpJJ6CXahPgUAOhUJsr+jgYoUXVacTVXgXmtoRKPufuvSK76OQinlmzhU88KoE6nbzelp/rt3voOytEOobO0ka+yBlGx5CP3IgscUddCw7iOn2gYhU0p833sspwe8NsLd4IcaYAKL8yxga6kPU3EHIk/7XwEEmk5HTvx85/ftRXVvL+//5BEd7iK/7TeSTnGgu8ZbRd/sWhn9Vg0NRw6a+AjsM4QyyZhEfXkz0oI/wWNfzef61ZOmHkCxX0fV+KbbN9YcjQVnnZiTofGfLli34Ay2EmWpRlI/C71WQcfWIn91PEASuvGg4l+UN5P2PPiNUmE+FVGDtxb9mYvVBRu/cyKhDKvKnZrEkoRh3QOC3zljSkprQJjzDvp1fcGjLbYz/9WjCYtWEzchAbtbTtbqc1uf3EXFzX6RR6p/1o5fTy6HFH2NwhvG1bQ9WTTb9st5EktiAV/K/xXlyIFJqRK3OQK3oj8ilxVXvp6PITWu9jXZrkLbGNlrfeInNby4lPmsQF9x4AzGpaYeF8oBIlH3DcexqxvpFDa1L8tHkxaK7LBmR/NxY5zBrZHLHz0V7TxeLFi1KWLZsWXG/fv3cL774YuSCBQsSnn766VqAOXPmtN1yyy3tN954Y/qGDRvsF110kQ3gvffeKy0qKlLMmTMnbenSpWV/+tOfkgEmT57ccfPNN7fv379fee+996bMmzev7kh6xOOPP161YMGCRKlUGkpNTXUZjUa/y+US2e32by5aKBQSpFIpN9xwQ/sRoT1+/PjuTz/99EffyJ944omqhx56KPGf//ynkJuba5dKpaEXXngh8osvvggDmD59eltnZ6d07ty5qXa7XdzZ2SldtGhR9L333vtNnqdCoQh6vd7vTGm6XC6RUqkMAmRkZDgBEhISvD6f74SnPjUaTcDhcHyzv9PpFBsMhsBPXYNj4ZwQyNW2EUitBmRSL5LuGNp3VRKdmU3YpF8TrFqGQvUerhQR1gN7OWqSzElS0+Gk2epCpraiV3QiiEMoujJQZoefgtF+HKlYxKOzJ/H3FUo6CrfwVlYuV+1z07Q8iOqGbpIuXMjXGxcydtxAtF8307G8mIhb+va2nj1DfPT2EsLii+mqyCbPNw7DlanfEcffJzkxkflzb6OsvIIP1n6GurOOfJGWlaNuYYxRzcWlW5iweSMT97RTlNjBZwMlZNn7kBpdQeKYf9Nc9wlFB24ir28OhrYgHcsOITPrMExO7Y0EnUV0dXWxffs2shIPQFBEfMMM1OMSjys1RqFQcOOMK+gcN5qP1n2CtKyU0uwE1kb/lmv3fMbg13fzqtlMybWDeZbNSBuV3KoSETN0H67Oeax69gr6jLiFoZNTUQ+OQmpS0f76IVr/VUD4DX1QpPWmaJ0tFC5fh6ErjHJXKaGB+aSmb8EXEnPQ0h+rPx2jLp4+MToSDS7c7hrs9lKaWlcRDLpAC8JwMUljk+inTEdoCafhawOlZQrqigpY/ufdGKMyGH39LWQM748gFqHJi0WVY8LyWTX27Y24ijsJuzoDefLJNcP6paHRaPxHorhRUVG+/Px8TXFxsfypp56KX7p0aYVUKg3JZLKgIAihRYsWRUdHR3uvv/76To1GExCJRKSnp3uOLJgDOHjwoOL3v/99yjPPPFP57Sjqpk2bdG+++WaZVCoNzZ49O/Waa65pLy0tVWzYsMEwc+bMru3bt6vNZrMrGAwyefLkPu+8805xQkKCb9u2bdq+ffs6f8z/zz//3PDcc89VRkREBO67776EMWPGWCdOnGiZM2dO25FtfvWrX3UCbNy4Ubt8+fLIb4tjgAEDBjhffvnlWJvNJtJqtcGOjg5xdXW1sk+fPu6SkhLlTwVvBEEIhULHlhExbNgw+1NPPRV/9913t9TX18uCwSCRkZH+o12DYzL4X84JgWwvdyJtcCAK+IFKvBl5PBfKJWp1NQ2iQTxx0QpMUdXUbw+RfArG317ZgUbwEAr4UIW1QUhApxyIWHv6pyMFQeD3My9mlSmM3es/Ys2AIVyaH8T6ThDlrywkXriQDV8+yOVj+sHuFrpWl2Ocnt4bRTzNNDe04le/j98nI6fqN8jMOtQjYo5p3/S0VP5w1xwqKytZ9+VGVI11tHQJPBKWheHX47jGVkWfTR+T/WETndoKPhsswZwbTWxSHZrYJ9l3MAeJZSajRw/Gn99O65J81EOj0V2WjFjdO6Nwptm4cSNSiQ1DbDXy2kEQ1BBxUdoJ2QoLC+Om6687fK+sW4ci1Eb+lAmsLbVwff46Mh9fwYsDcyiYOoZF3nUMqtNyRbgL8+XvUV+8hdL/+zUX33IlCVlhmO4cSPurB2l/tRDj9HTUg6J6+Mh7OV4aDxUj3RukW1GD68Jl6I0N7Gi6gBZuIiTSUmNpoKSsGX+oE51SxAjzAMamX86gAbGosSN463E6S7HbS+i2FeCRNCPOg/6jtci6I6nfr6G+tJIPn/kTSk0Sgyb9iqFXjESslGC8Mg3VgEg63y+l7cX96MYnob0ooTd16xhZuHBhzd13350qFotDUqk0+Pjjj9eYzWZvRkaGc+rUqVmCIJCXl2cZO3asPSsryz1v3jzz6tWrI4PBIA8//HDV9+099dRTcT6fT/TII48kAqjVav+yZcsqTCaT78orr8yWy+XBCRMmdPTr18+dnZ3t3rp1q27q1KlZoVCIJ554olokEvHAAw/U3HHHHWkymSxoNptdN998c/sPPT9McnKy+4YbbshUKBTBwYMH2yZOnGg53nOQlZXlmTlzZuvMmTOzVCpVwO/3C3/84x9rtVpt8Of2TU1N9VRWViqXLFlimjt37g+63H2bIUOGOHNzc+3/PV7hr3/9ay0c/Rocj//CsSr008m0adNCq1at+ub3wlf30lncwgZnDc3yKMZIDOQJEsQhsEsEijMfQR5Zh+OFFKav/KDH6yH/7p18KstKGBwoJidtLeFaJQO1b5zxkmq7i6p5/713kAU95OXvxW+qQ3mNFU+nmvqtDzBpeDbCgXa0FyeivyTptPqWmZm5p6SkZEhP2/3+vXE2EgqFePEf80nvtxrRgTGktd5CzLwhJ9zJrKWlhU1bt3Oo8AAEA3QFlTQL4VwgDzH2wAbE+fm4pbB9uBzTBVKMCZ147TJa9o0nKXwa/WPice9uRqSUYJicijIn8oy+MJ2qewPO/vujvb2dJc8/T5/YHYSZy0jZ+hTGUTkYx6ectO1AIMCuXbvYuHEjPr+fYHgaXV8d4JqiLzC6bZCWys48LS9H7memWky/KAd+j5imXYOIibmTsTeOQCYW6HjjEJ4KC9qLE9FdnHjaBdEv+dnxbTxOBzv++hpJmkRKBz+KoOzCpn0QmddB5YY1BMurULqCCCHwi8EtA7sCurQCrXqojxDo0gpo5XpMqkjCFGEkqXRkKSVECe0IzkJ8vk6EkBhvvYG6Qh3WOjlSWTL9x01jxIwLUGpkBN1+uj8ox7mvDXm6gbBrMs9YrvrR7o2CgoLqgQMH/qjQ66WXn6OgoCBi4MCByd///JyIIKeNTKazyUeK8N/ouEqCZlAUsngNwuc1xHblYYsroyFRg7e2FrnZ/NMGj5OvqzoZrQ9CRwBNpAVV80AUQ09FMsfxMSQ7mejbb2PJy8vYmZtLdrES0fslyGdaiRv5EOu2/5VJA7KwfVmLWCVBMyruTLvc81gb4aN5BLxgP9iIpbwLpwV0RimG6dNQXffX0+7S1u27McVvxe9SkN1yPfqLk06qzW9UVBRXT5uKe+Ll7N+/n+2792ForafdC6+kD0DVZwSDOyoZsnUL2i129o/Ror7ER8LotdjbNvPRngkM7j8DU4eYzndLUBS0YbwqDbG+t5316SQUCvH6qnWIBTeGhCqkjdlIfOHoL+iZF22xWExeXh79+/fnk08+obCwkMRhJlaP/hPWr/K5snorw9+oYKhCzsFBRt7IDTA5LkjimK+x1s3l9T9PYPSM28m6ue/hBZ9f1uJvdWKckXHO5KCeT2xb+iZmeRqVuY8hUnUSaLgE3WuPE9fsIxXwKaSE9DrEEimCL4DgdCPYHfx3/RMA3QoZRTFQbnZQleHj08hy3vcfLkQgFgQuDM9kpE5CZFINKQlVhFwyWgq72L+xgoIv15Ax5GIuuPEyjNdkIk8x0PWfclqeyyf82izkKb0pF72c35wTAlmRGUbM/KF4620IEhHSaPU37VIFmRjnB8nYgEBcCM+hwh4VyBaXj0aLmzCdB5m8HUHqR25PQxpzdixkiTeF8cC9d/D0y29RnA0x9VriV+5BMd1CzKiHWLfjL0zIyKL7w0oQC2hGxJ5pl3uUxrJdHNAfwO+W48pV4+yfiM0eTqBUTe6/1pFraUdz+7OnzR+7083XO/7NgJxW9PuvRKrXoB0T3yO2FQoFw4YNY9iwYdhsNr7O38+2/ELcXS3sNxjYP2kykmCQ6MZ6VK+10NGvHe3IbhIufp+K+i/Y13g5o7KvQijvpvmZPegvT0Y9POYXOWXqqaig4rlnEDndhA/IJeLOOxBEpy5Xv8Xq5o/Lt5HUVEEf0wHEMh9xdVejG5PU45VwNBoNM2bMIDc3l08++QR1WwFxI01sHHcP/9xby/jKnYzblU//bUFKsjVsv9zB0GQnyRNXsHvT1+R/dB2X3jkTfZQKy7oq/G1Owq7PRhqp6lE/e/lxqvJ3o6lQ0jz0NYK6epq39KO7FZxDx1Oo1xEdl0R4fDwajQa1Wo1Go0Gr1aJTqxFZrXhranGXlRHcuZecvXvIW18H66FNqSc/ZiAtA+KwD1HSLVTzdPUBAsEAA1UqLjHKiBnaQtTgFizVLdQd2s/Suz8lJWMIo2+eiumOHDrfKqLt5f1ox8SjG5/UW1ayl/OWc0IgAwhSEXLzD99YFVlhiETJhEIgC3fiLdoLk6b02LjlrYergoi8NnSqw7npYVHDzqqcXqVCzv/NvYXXVn9KdWgHdouGrBVbUUzvJGb0Q3y67R4uNQ+h+4MKQp4Amgvjzyr/T4aCGhvN3aloNR3IVTZ0qmbiJEFciRp2x49AeGMbw4d+jHTIpFPuSyAYYuFLqxiRXEDApcTUOgnDDWmn5AtEq9Uy7sJRjLtwFE6PlzXbDrG1oARHRzP2OBn18YejkvIdDuIjC4jMqkEb/zb5VZ8TDExiuP5SutdU4NjZhH5iyvnScvaHNB+AoB9icwEIOS2UPnwv67sktERHgxGiDxxgzEOPkf3gqZltKGyw8OvXvibdW4ZEHMCQVI2oNRmZOwnd6J55eToaqamp3H777RQWFrJ582ZUjbsZl2nAM+Iq7q+cTM7+LUyt3Erm4hAVA7V0X+UgbmQ1zrZnWLV4B5mZMxh8/WBsq8po/Uc+himpqIZEnZ/3yVmEw2Zjx4uryewrxhq7i5qqHBp82SijQySk98Pn9dFmsVC6fTvB4A9TORUKBUajEaPRSMRVk4i54zdEicX49+Tj+XwDF+39GmnlHvxrRBSFm8nrNwHJkHDaIxx86DhAl7WIYWoPw5KspKVY8Vhb6Cjay/KHthBhGMKISaPQd+ixbazHXdyJcXoGsgTtGThTvfRyajlnBPKPIYgEjCPMVNrCUWltdBSU0ZPF10pb7AiEcNu60Sd0IfKq0Wf068ERegZBELhl2uVsN8ezbs0q9svH0e/tTciubid27NN8+tWvGZ8wHsu6agIWL/pJKedFYwBzxhg0y1RY/RYsfg/tHghFNhA+/D9k99/EVtvFRC96jLS3T61ADoVC/GXFHqICWzAYWgg/NBNFcgSK7FOfiqOSy/jVRTn86qIc2u0ePjvYzPqCSupqa+jrqcHfPpTq3UOIjzlIbEIR4uRlfF39MQrrVAZYLqD934XIknXoLk5EnnZ+CeXd22/CK+4iwqFGsMqodYFliJxEhYMom5zWqiSaY/uzt+QQsg8/JXXKZT06vtPr54639qIU/GRJO8gwFiNVuYgtmoH+wiREylP7CBaJRAwYMIB+/fpRVFTEjh07qKvexzARqMem897oXESFJUws3ETKg04ax6kQT/SQNmU97eX7ePvlyYwYlEe0K4qulWW4DnVgnNqbnnOq2FvbxXvPLGZidDTtWUuwdUYj+TJI7m+SmDLu1u9sGwwGcbvdOBwO7HY7NpsNq9VKd3c3XV1dNDc3U1RUxJF1RiaTiZSrp5J4z52YLFaav9xMwqbN9N+4EjZCEIGRBhOuhEEEsqPpyhRRGFZApKyclOFtxAzdhLVmDxu++BIs4xieHofBKqb1+X2oBkehvzSp977o5bzinBfIAJpUI5Itsai01ZRaDGT2oO2yFjvhUj/BYBCN0YLSmoLigrO3BFJebj8So8L596vLyJdezMA3tyG9uoGEcS+zYXsdo6KuhW2N+NqchF2bdc5XNYiKjqAzPJY+FhPSEKCGQKAftTv74xy7gLSB+WwqjiJmzyeoB19+yvx44pNiKvbtJDfnICGvAmPjxRjvTjvtYjNCI+e64UlcNzwJi9PHp4eaWVtQj7DnK+QNSTQ1ZBKTWExsfAkS81Lym95DWnsp2fWX433FijRajWZULKqcSATpuZ93WrwxCsNgP85YJ0KUG79fimAX42yUoYp0kTZ0H+wNUJaZg/rt5T0ukBd9Vkptp5PHRkop3etDE1OKqNuEwtoH7ejTtyZAJBLRt29f+vbtS0dHB0VFRZSUlOCsryGULGdj8mUIfoGY6mqy/1aE60Ir+tFdGMyvU1Synm0VkxmT1A/KRDQ/swft2Hg0o+IQyc7he6SzEjY8BrGDILofqCNBJAWRGDRRIFMRCoVO+f9ws8XNusIm1uxrpKO0kNsR05nzJsqgCMlyL+r5k5iS95sf7CcSiVCpVKhUKiIjj97EzOfz0dzcTE1NDRUVFezevZsdO3YAhwVz7N2/xSWT4ahvxVZWA1VVhDXWEVu6j4RAgIHBIN1xGTgH63H1b0QRW0+SeR8BXwHF9dG4rKPIFA0iem8IZ0ErmpGxaC+IPyMVnnrppac5LQI5MzNTBPwTGAh4gN+UlJSU95R9aYwapT2JgOkAtdKePaSyVhuZBhA5fEi13Uiq8s56URkXG8Pv7rqD119/k3zJhWR+cAD1JcUkXLiO3ftLSZTOJqlSoGXxHowzMlBmnfkFhyeKMULFyPvzCPmD+Dvd+FqcuEs6SdoNbcXXIen7Oo2DUjj47NMMe+PUCOSP9zfx702lzDZUEB5eT3jFZLQ5CUijz2yeul4l5eohCVw9JAHr9UNYX9TK1q0FOPdKaajJJiq2kriYImTDV1Bk+w/BqqEkdkzEt9JB90eVKPuGoxwYiSLNeM7ONlSr8vBXBKESxCIvotYOlBYdYuVgFIlKYtJfIDX3IB07UmlWSbA1NKONi/55w8dAu93Da9uq+dXQeFoq1pMS2YTCYMdUeC3GseZTHj3+McLDwxk9ejSjR4/G7XZTX19PbW3t4R8ZNKYlInd7SHvrEOoBNYQPqCcs80UOlMXhcE8gV9WP0KcB7Nsa0Y1LRD0s+pystV5duYFS5WZE1ZuRHwDBBR6nFGe3gmCHhKBEzmrjBAwDLuf+CVnEGnq2M6nbF+C5L8t4cXMlgWCIvpEypgcP4c6pJ0rXjndlONW3Xc7vjiKOjxWpVEpCQgIJCQmMHj0av99PQ0MDVVVV1NXVUV5ejt1uP7yxGuiXfPjnCKEQIn8AhceDcpsBgzUGjbGVYGY36qRWDOYVdPtX0dSUgqFtDIlbBmPdXI87MUhwpAGV2YheYUAn051XM1O9/DI4XU/oqYCipKQkLzMzcwSwCLiyp4wLEhEStxlBgEDEz5bXOy5KW2xcZPSjEXUiCCFU0owetX+q0Ol0/Pa3t7Ju3Tr2AsadMSQnb8M0sIL2pkeo+XoqFygvoeO1g6iGRGGYnIJIce5OKAgSEVKTCqlJhap/BKGMMPzLvXSmr8BkrqN0l5JslwetsmenAJssLv68+gDjda3ExRdBUIy+bgz6a0++bFdPolNImZobx9TcODz+y1hfUM3u9Z/T0JBFeEQD8VEH0Q3YSktwKzWNJjSNFxC/bwyKva24FT5smSGUgyKJN6egkZ07TUfGxwyjvr2ZTr8Hv12BKjyMzIEm0sPCEdx+PBELOMRNJETup8o7gp0vv8H4B+f3yNgfFTQSCIa4JD7E5gMWklMLENxqVG1D0Iw6OxbLKhQK0tLSSEs7XIfZ5XJRXFzMgQMHOKRUELLlYtjURmJsPsa0BsIyX6ayzkBp1YUk2y4ido2P5g0liMeZSByahbiHS2yeSg5UxeNoikcd1UIwyYNYGgICqHAT8Itpa4yn/75ytOufZkbVr1l3zxj0yp4JjoRCIX73Tj6fHmxhxuB4bh+byp53XqIuKUBicgH+4kQ+GxrJU5f+X4+MdwSJREJSUhJJSf8r++nz+bBarVitVhwOB16vF7/fj9frxe124/Z4aemw0N7UTKfTQkhIhzbptEdXAAAgAElEQVSQNniIkNWgi6nHEFeDL+EVygKvQnsKms6ByD5Oo8ahYYu6kK8j9qLVaUmOTGZI/BDyYvNI0CacV6J5x44d6r/97W/xR5p75OfnKx944IEksVgcSkhI8CxevLhaLBbz4osvRn744YcRgiBw0003Nc+cObPLbreL7rzzTrPdbpdIJJLQokWLquLj433ftu90OoW77rorpaurS6JSqQLPPPNMtclk8u/atUv1xBNPJIRCIcLCwnxLliypkslkoT/+8Y+J5eXlKqlUGnr88cer09PTPWVlZfK//vWvSX6/X5BKpcElS5ZURkREBADKysrkd955Z+pnn312CKCyslI2f/58cygUIjo62vv000/XqNXqowqsP//5zwlms9l96623tn378yMNRF566aXKI589+OCDcSkpKe5vt5X+NosWLYoePXq0dcCAAa533nkn/JZbbjlqCb/vj7lu3Trdv/71r9hQKERWVpbzySefrLVareK7777b7HA4xH6/X7jvvvvqRo4c6TjWa3q6FNFo4BOAkpKSHZmZmT1e41KlycYCiCL8hHw+BOnJP8gsLh8tVg/GcDc69eHrHpE6+qTtni6kUilXXHEFaWlpfPjBB+zrmkzWxl0YR1agvOwdvtyxHbPvelL3gKe8G+PMDBSpZ2/6yPEQPiCCyh0mDA0XIiR/yn7zKDa9u5zJN9/So+Ms+qwUr89HgqiKKFMl+uYR6IemIdadvVOMcomYCYNTmTA4FbvdzscbtnHgwD5klc1ER5djMlUSiF9JVXA11i4T1q4ErHVxBIoikSCiW2XFGx8iOcXMQPNA0o3p6OX6s/LLbtC00ZhXl+NrsIOSw/NXFT48da2IVFKCBwJoBg8jOnkvNW3DaDuQ32Njf7CvkaxoLa1VxRi1TrSx7YRVXknYuMyz9mVUqVSSm5tLbm4uDoeDQ4cOUVhYyP6aSKRdLuKiioiKLUeW+B863euorzej77iQsDX9qPp4P7v6lBA7IIUxCWNI0p3e2uvHi17cjrV8CuXVcpxyF0FlJ1KZC6XCTkR4LVHx5egiuigsHMeM+jUsXKXjmeuH9cjYr2yp4tODLfx5Yha3XZjK9i8+o6SzncGDt4HLwIfdTv466zmkolM/WymVSgkPDyc8/Oc7wwaDQdrb2zlQWsmhgyW0NGloakiHJtDp2oiIqMEY1ogoaiVOAL+UXLuRDKcBp1WCq9VC1e7tFHq24pZ60URoiUlOwpyUQVpUOvHaeKTis3uG9mgsXrw4at26deEKheIbAfncc8/Fzpkzp2nixImW22+/3bx27Vr9iBEjHCtWrDB9/PHHh9xutzBhwoR+06dP73rttdcisrOznffff3/T66+/Hv78889HP/7443XfHuOVV14xpaWluf70pz81vvvuu8bFixfHPProo3ULFixI/sc//lGRnp7uefXVVyNqampkRUVFSq/XK1qzZk3x9u3b1Y888kj8smXLKv7yl78k3XPPPQ15eXmOVatWGUpLSxURERGOt956K2z58uVRFovlm5P/6KOPxs+cObPt2muv7Xz11Vcjnn/++ag//vGPTd/2qbW1VXLPPfeY6+vr5Waz2U0PcKQbX1VVlWz16tUR3xfIRxvTarWKnnnmmYTly5eXREZG+hcvXhzV3t4uWbp0qWnYsGHWuXPnthYXF8vnzZuXsnbt2qJj9eV0PaV1wLe7sAQyMzMlJSUl/p4aINKcQWNAQKoP4G9rQxp78hGaIxUspF4b+rBuJK4wwob1PWm7p5s+ffqQnJzMl59/Tn6+CNnePvRN2UTCmCq6mxaxeW8uuV3XEXj5AOq8GPSXm8+LuqdpV6ZQteQiSP4EQ0Y3ns/eJzTr5h4TcnWdTlbnN3BjopNwUSViiR9NTR7GP54794hGo+GaKZcSnDSetrY2qqprKKmuw1Gfj16yF314A4lpXwNf4/fKcFqj0VgjsLSF01wdpNlTw1pPEy5xO+gE5HFG9Ilmokxm4rTxDIoahE724+21TzWyeC2mO3PwNTnwNtgQycRIIpRIYzUggGtfG65PLsUxfCeRxnJaI8Lw2x1INCeXHlPd7mBfXTd/vCSFsm2bSIvORwgJqBpGob3p3KhHrlarGTp0KEOHDsVut1NeXk5lZSUlxRWIpUWYTFWEpZRDWiktPjmdnbHoOuNoXuXldU8xTlk3uqgwkjOzGWDOISMuA6nk7BE/cYmD2Wh8lxCgE6vQSxIJFyKRuwy0FYSoLS0ldtTf6Zv+JfnuyRjzV7NjaAIjMo6tI+aP0e308rfPShifbeLWC1IoLy3hs6+2kJ1WgFxppWh9JlfdNo9odc+k+vQkIpEIk8nExSYTF48eARyOQJfUNlNY1UhNVQOlO2uRO8uIMNRhCG9HF+FDF1mNEOv9ji2/X4rHo8Jt0dC0U0uVXYPXosRl0xD0SYhLNnLDnQ8cn4O7Xgpn39s9uU4fcn7VzrDbjhrtPEJSUpJnyZIlFX/4wx++qTGbmZnp7O7uFgeDQZxOp1gqlYYiIyP9a9euPSiVSqmurpZJpdKgSCRi7ty5rX7/YTnU2Ngo02q1ge+PkZ+fr7n11lubAS677DLr0qVLY0tLS+U6nc7/0ksvRVVWVipHjx7dnZWV5XnjjTciR48ebQHIy8tzzJs3T+10OoWuri7pF198YVi0aFF8dna244EHHqgH0Ov1gXfffbfk4osv7n9kvJqaGuWll15aAzB8+HD7I488kvB9n+x2u+iuu+5q3LBhw3EXxd64caP25ZdfjpZIJMGmpib5JZdc0jl//vzmu+66K3nSpEmdn376qbG2tlb5xBNPxNx///3fCPOjjbl9+3ZNSkqKc+HChfGNjY3yq666qt1kMvlvv/32FrlcHgTw+/2CTCY7rs54p0sgW4Fv14ER9aQ4BtBnRRLYq0am8uCprewRgVzbebhNucvaiSbRgtgWi+QMdRA6WVQqFVOuvJJRF1zA9o0b2bdfS1h3OclJ+9BM2sah+hI0JRfRZ9skugsaib6mH8rMczc3GcAYpeZraTwiWyyGyBbcHh3lrXbSo3qmJNELmyoQCwLarlJi+5Ugt5jRJZjOyYVLIpGIqKgooqKiGDF8GDD9m7+1WWo5VPQRrsYPUKgbSUqp/eZvAY8Gu0OP3aXF5dTh6pTir2qh0dpOq2cLe7WvMu/xZWfgiP6HIBKQxWmQxf0wNUSVa8JQOJQGt4FwfRNFxjQqvtpJ5oRxJzXmxpLDnVGzFDa+CnoJi6tD05aLemSfc/LlU6PRkJOTQ05ODnC4a5/D4cBma6Op+kOaWz4k3FBPVNThDrk+pwGbLYxuu5HmfW1UbCnE75Mh8bkREUQsEaHSqbj59nlo1WemRFjqkCzuN8/HubMZT4UFf6uTkO+/AUAJ+OW57NpzG+F5z5MWuYGy0Hg2v7mMEQ/df1Ljvvt1HW5fkHsvzaS+vp7lb7+DSd9AeFwx3qKRtFyexNyki3vgCE8PUqmUfqkJ9Ev9rn6ye/zUdjgpbejg4P79aGoL6S8OEKaT4Vd0YRHX4pc1oNTYMEQ3I5b8TxP63HI6q7NP96GcMNOmTeuuqqr6jjgwm82ep556KnHp0qUxarU6MGbMGBscPl8vvPBC5NKlS+NmzJjRcmR7iUTC1VdfnVFVVaV86aWXSr8/hsPhEOv1+gCAVqsNOBwOcXt7u6SoqEjz4IMP1qalpXlmzZqVtn79eqfD4RDrdLpvTqhIJAq1trZKa2trFaNHj7b+5S9/abjnnnuS3nrrrfBZs2Z1TJ48+QdtpNPS0pwff/yx4cYbb+z45JNPDG63+wcLDVJSUrwpKSne4xXIR4JULS0tsnXr1h30eDyiCy64YMD8+fObj2xz9913N1VUVCi/LY5/bMzOzk7Jvn37dB988MFBjUYTvPrqq7OGDRtmz8zM9AA0NTVJ5s+fn3LffffVchycLoG8FZgCvPffHOQDPT2A1KQm5NEjVTqxFhWgGXHyqRCN3W4kBPD73UjV3dCS0wOenlnCwsKYNG0al06ZQvHu3Rzc8CmeiHyik0uQxK9gb/cGFLUjCb3uois8SP9bxiAznrsNAkx5MdirB0DKp9REpbE1v5T0yweftF23L8AH+Q1MzVAgdDSgUltR75tE7N1X9YDXZxeR+kTGjLgDRtwBgNfbSUX5BioObkDkrkSv6kYfVQmS/0WIQiHw++R0VZxdudhHwzgxBfXafvgidxOsEFP+1faTFsj5dd1E6xQ0VZcRHVGDROFDU3gBMdPOjTUMP4dYLEan06HT6YiL+z2M+j2hUIDOzr1U7H4Du7WYSH0nYVHfpB7icSpwWvW4LTo8Vg3eNg1FB/YwbMTYM3YcsnAVsomH79FQKETIEyBg8eCptGD9spYRruHsq9hNVMZOLOXFtOqzObRvP31yBpzQeIFgiNe31zDcHEa42M0rr72JJGglK2svgjWetwUH/xx+cgL8bEEjl9AnVkefWB0MNXNk2ZG9qZv6dUXEVbqR+yX4Qj4aXBW0BPdhU1UgNliQGzwIHSewXmTYbR0/F+09XSxatChh2bJlxf369XO/+OKLkQsWLEh4+umnawHmzJnTdsstt7TfeOON6Rs2bLBfdNFFNoD33nuvtKioSDFnzpy0pUuXlv3pT39KBpg8eXKHWq0O2Gw2EYDNZhOr1epAeHh4ICYmxt2nTx83wMiRIy0FBQUqtVodsNvt37yJh0IhwWQy+ZRKZfDIWBdddJFl69atOuCo52vBggX1//d//5e4Zs2aiFGjRnXr9Xr/ypUrjW+//bYJ4P77768bMmSI86fOgUKhCPp8vu9M2TqdTvGRVJSUlBSXVCpFKpUGjze6+22MRqM/MzPTERMT4wfIycmx7d+/X5WZmenZv3+/8t57702ZN29e3dixY+3HY/d0CeTVwCWZmZnbAAHo2URQDkeJcOmR6+toLiihJ5bANFlcxCiDKFVWBFEQsc/UA1bPDqRSKf3z8uifl0fA4aDk3WWUt32AuE8LkgEfUh5Yh7c9Dcdr2+iwmYi9YhTDBuaelXmmP0X60Gh2bB+AkPoJ8tQgzg2roAcE8raKdhzeAEmWQ+ijKhD8cgRr4BfRVUomCyO7z3Sy+/wvyhwMBukoLaP14D7cnWUEaQOZnchQTxZdPDVIwpXogkOwyrag0XTSXviTz/xjIr+2m0HxGioqKuiXXorEFY5TnnxORo+PFUEQEx4+lPDLhgIQ9ARo2bCHrqJd+JQNuDRVyNVVhEzlCKIQoSBEqm48w17/D0EQEBQSRAoJ0ig1iswwWl8oIL35V9Qn70KfUYa9IoFPV646YYG8pbydhm4X941PZvny5QS9XoamFBKUOSj6+jLu+u30c2oR7ImgiTGQ9es8QoEQnspunAVtyA8pSXZmARDygrvbg3rsuZGK9GNoNBr/kShuVFSULz8/X1NcXCx/6qmn4pcuXVohlUpDMpksKAhCaNGiRdHR0dHe66+/vlOj0QREIhHp6emeIwv+AKxWq3j9+vWG4cOHOz/99FPdwIEDbSkpKR6XyyUuKyuTp6ene/Lz87XTp09vT0pK8mzYsMEwc+bMru3bt6vNZrNLpVKF4uLi3Js3b9ZceOGF9l27dmnT0tJcP+b/+vXrdfPnz6/PysryPPfcc1F5eXnW6dOnd02fPr3rWM9Bdna2q7y8XNXY2CiNjY31uVwuoaCgQHPrrbe2NDQ0/OR0vEgkIhQKHZPgyM3NdT766KPKtrY2icFg8BcWFqqvu+66toMHDyp+//vfpzzzzDOVOTk5P3qsP8ZpEcglJSVBYM6pHifkNiCLLKGutZVBPWCvsdtNvDqEWnX4ftCHnR/Rn+8jVqvp8+s7yA78FuumTRxcv4SWhDYUSVX4oorRhgQ6Kt9n1ZYoSpokuFRppKUOol+fvmSlJ6Hu4coQPYnaIMct9EXul6GL6sS/w4Ld40dzku19Py1sQSsXY+tqID2rBlXTEPrcfE0PeX3uIRKJiMzKJDLrf4I45A/COVIeLiJ+LPWhvxNmaMAuCSMUCCCcYEWGDruH2k4n01MEbCIXush2tNUTSLv23Fng2xOI5GJiLh9G9KVD8VR049jdgmtPO8GgB6+qCYe0k+ibzr6mS0eQhCkwXpFK8E0vwephRKXtxHKwhFbNYKorKkhOTT1umxuKW1FKBdoPbMJmsxEf2IM4oRxx8RU4R+sZGj30FBzJ2YkgFlCkG1GkGwkFQ/ga7Hiqrfga7chaHKjFx53WelaxcOHCmrvvvjtVLBaHpFJp8PHHH68xm83ejIwM59SpU7MEQSAvL88yduxYe1ZWlnvevHnm1atXRwaDQR5++OGq79ubPXt22+9+97vkq666KlMqlYb+/ve/V8rl8tDChQur582blxIKhejfv7990qRJlkAgwNatW3VTp07NCoVCPPHEE9UAjz76aPXChQsT//a3vwkxMTGeBx544KgVIgDS0tLc9957b4pUKg2ZzWbXk08+eVzpCQB6vT44b968ut/85jdpcrk86Pf7Rddcc01renq65+cEsslk8vl8PuGBBx6IW7hwYcNPbRsVFeWfO3du/axZs9IBxo8f39W/f3/3rFmzUn0+n+iRRx5JBFCr1f5ly5ZVHKv/wpEuO2cT06ZNC61ateq491v30j3I0v5D/Xv9mfXCByftx+XPbiZLaCLH8CYJcaXkxH5IeJ/zUyR/H39HB52r36Kw7AvazKCIaUKj7QTA7VLT1RFLd1sE9lYNgy6bwaXjxn9n/8zMzD0lJSU9Xq3kRO6NLe+W4gn9AZe2htY3kjAvXMpFmSc+G+APBBn22JeMM3kx+98jK3sL0i8mcuFj/zhhm78kTtW9ASf+7PA2Odi1cwrtPg9Fu/K48ze3ocs8sf/1L4tamL1sNwsGuvF1ryQtcyfaLfcwbMHcE7J3PhH0BvBWW/FUWvB3uTFelfaDih5n07MjFArR/u9CuhpLqBt1H0UFBqytlxJvMnHTPfcctw/j/raRAaI6DNYKUpUBYvuuQRYw8FnhOP58330oJT1ba/l842j3RkFBQfXAgQN/VOj10svPUVBQEDFw4MDk739+dtYaOkEkwuHECl8PzVA1WdwM11nRqLuR2KIxZBx/xOBcRRIejuk3dzOOuwn5fbg2vsuBLfvoMLoQmyqIjqkmJr6MYFCE1nNKtE6PEZdlpHJzJkrTQewRWg7Udp6UQC6o76bT4SXeVkZkYg0itwFT1A8WHfdyDiGNVqFwpqAO245HpaJqdyEDT1Ag59d2IxYJWFrqSI6tQuqIxm06f9KzTgaRTIwiw4giw3imXTkmBEFAMzIWz7JufB3hJMQ76dhTSaVMhsViQa8/9ihnbYcTR0czBnkF/fv2JdTwLCidBLbO5Yob+vaK4156Ocs4rxImjdrDiy0khpMvJeTw+LG4fMi9NjTqbrBGI5acv/mDP4UgkaIafwPDF/yNiXf8nbF9/oK56C+EfX0X4QdvwKw9u1cbx6QZcHYeboQgTRRj3b31pOztqTmccuOyt2I0NiKu60vmNXeetJ+9nDkEQUCtyEQkcyOTu6guOnjCtgrquxkQIcZhb0Eb3oameQgDfnVJD3rby+lEkRGGSCtF25KHJtxFc3QlCAL7th7fc2RjSQsjpDWotTrCy7dh6NuGtnEkxTIHQ1NGnSLve+mllxPlvIogG03pWACx9uS76TVZDudzi3zdSOVOArZzI+JxyhFLUPS/gNT+Fxz+PRgE0dn9nqVQSwlIswmFBBQRVgwbNwOzT9jenpou+mq9aPRNiMQBXNVihKg+PedwL2cEfXhfGgOg1nTRXms9YTvlrXYuNLowyJoRhBCe5mQM+t7nx7mKIBZQ5UYRs2ssVXyELMOHfl8r+/LzuXDChGNeuLxvz9cYRS4mjBpL+e7fokUgWHwFV8/95eQd99LLucTZrWyOE118PMGgGKnGQ9Dn+/kdfoLG7sNNYaSyw9HCkOfM1Oo86znLxfERwtOiwR6FRteBwmuh1XpiTX9CoRB7a7vJFTUQEVGL4FWTqA/COVbdo5cfoos5XJlAo+7CFTyxMu1Or58mixtD0EKYoQGRT4lDOLmmI72ceVQDIpC5I/B3GDHrg+ja6ujy+aivrz+m/d1uN8qOUnyqSPjoNTRZdoz147BKHYTFnN0dB3vp5ZfKuaFujhFNjIaAW4NE5cLV3PTzO/wEjd0uJASQqw6XzZOIz48WzL9UTEk6hK4UtNp2vAo5Bxp+UBf9mKjvctFm86DydhBmbIKGPmRNvLKHve3lTKCKj0LqjESn6sKtUBEKHv9MVGWbA4CQtQWjsQlVZx8SJuT2tKu9nGaksRoEhRhZZya6MCfVYdWI/X7yd+48pv2/3LQFKX5SI+Kol2xBEEBVPZ4hU34Zi7576eVc5LwSyAqNlIBbh1ThwFZT+fM7/ASNFjdawY1SeXiqNSz2l7NA73zElKTF15GGVOolFKVmf23nCdnZW9uFhAAyVTsSqQdPgwohbWzPOtvLGUGkkiJzJqLRWHCrNfgaG4/bRkWbHSU+xEITMqUTcWsWGYPO7kWsvfw8gkhAnmIg3DoIkThE4wA/8fX1FB46hO9nZiudTid7d++iOmBk8Pa1iIZ6ULcOxOoSEzZoxGk6gl566eV4Oa8EsiAIBD0aJDIXHZU/6NR4XDR1u0iRuw4LZLeO2P7nfhe9XzIGkwq7zQyANNpP04GSn9nj6OTXdpMuakdvPNwRU+Wygurcbsndy/9QitKQqroJKkR0Hio67v0r2xyYxDYMhsP3h6s19pxrrtPL0ZGn6tF39ycUhBSdkvDWerzBICUlP/0s2bFjBwGflzaLDLdnM2JlAGPdJRhT3L2pWecRO3bsUM+YMeObQvD5+fnKK664Iuuqq67KvPvuu5MDgcOVjl588cXIyZMnZ0+ZMiX7/fffNwLY7XbRrFmzUqdPn555zTXXZNTX1/+g0oDT6RRmz56dOm3atMwbbrghrbW1VQLwj3/8w3TJJZf0nTFjRuaMGTMyi4uL5T+27a5du1TTpk3LvOqqqzJnz56d4nK5vrkBv+//nj17VFOmTMmeNm1a5n333ZdwxP9v8+WXX2qvvPLKrOnTp2fOnj07xeFwfEdTvv766+EPPvjgdzq+3HbbbSkbN2780ZzVP//5zwk1NTWyjo4O8TvvvHPUL1e/38/s2bNTPvnkE92RzxYsWBB/5ZVXZk2ePDn73//+dwRAR0eHeMiQIQOPnJvnn3/+uMoJnVcCGSDoVSGRemitrTkpO602D9GCHYXShuCIRJfYmyd2LiOIBKT6dEIhAanehrrk2KZGv09Js40+0k6MhmawRTF0yNnfKa6XY0ery0QQQKmyUbb/+CtZVLY7SFG40WnbEHt0+DS/zMo35yOKVAPigJJAZxjpygBlYc2onE727t79o/s4nU527NiBQxXNNVU7sQ4XwKVB0p5B4sTe1JvzhcWLF0ctWLAgyev1fiM4n3vuudg5c+Y0rV69usTn8wlr167Vt7W1SVasWGFatWpV8VtvvVXy7LPPJgSDQV577bWI7Oxs58qVK0smTZrU8fzzz0d/f4xXXnnFlJaW5lq1alXJlClTOhYvXhwDUFRUpH788cerVqxYUbJixYqSrKwsz9G2DQaDLFiwIPnJJ5+sXr16dcno0aOtNTU1sh/zf8GCBUn3339/7apVq0o0Gk3g3Xff/YFYffTRR5NefPHF8pUrV5YkJiZ6li1bFnGy5/Kxxx6rS0r6f/bOPDyKMmv7d1V19b5l6U4nZN86YREQHWRTQMWFBLIgjMgqI5NxEB2QUZzXKIKCYkY2FRwYAQUUswgqLzgsjowK+GEGEZOGkIUle3d636vq+6NJXiAJBAUinfpdl9ekK0/Vc7omdN91nvPcJ857/Phx6f79+9vVtlZUVIgmTJiQZjAY2jZ3HDhwQHH27FnRjh07ygsLC8s3b96sM5lMVGlpqfTee+81td6bP//5z43XEktQuVgAAOeTQyDwoaml/lddx+jwIIoLZJC52iTQMt6j8lZHE6eB0xkKqcyMcGsVfAwLmrq2Z8RTjTb0hQMqVSP8lYMgvXvIDYqWpztQaJKBFkAsseFMRbtmVlelssmOfqQdSoUREksSdPem3YAoeboDQYQUpFQAoTEJVMr/ww96IXJKK3BcKkVDQwMiIiLanfPNN9/A6/Wi3C7H1PNH0JDqheLMcLhghSh2dDe8i+BmW9m2sJ2nd/5qkXYx45LGNT+a/qjxSmPi4uI8a9asOf3ss88mtB7T6/VOs9lMsSwLp9NJ0TTNaTQa/65du07QNI3q6mohTdMsSZKYM2dOo98f2BhcW1srVCgU7dK1paWl8ieeeKIeAB544AHr+vXrowDAYDBI3333XZ3JZKKHDx9umT9/fn1HY0+ePClSKpX+9957L6KyslIyfPhwc1pamqez+Jubm4XDhg1zAMAdd9xh37t3r3ry5MmX1CZ++OGHBp1O5wcAhmEIkUjU5Y0bmzdvDjt48KDK7XaTtbW1ounTp9dPmzbNOGHCBP3ixYtr1q5dq6usrJRu2LAhfNasWW2NYOx2O/naa69Vv/vuu20PEXfddZe9f//+TiBQScAwDEHTNPfjjz/KDAaDLDc3Vx8SEuJ75ZVXzkZFRXXZwSHoMsgcG8i4+7hrbrt9CUa7F0rSBqHQw1u8BQnaOCVg6wWpzAxSxKHG6Lym800OLyx2FyTKBpCUH746ARDzuxsULU93IAsP7DWQiG2weK7tM4TjOFQ32yFHM8QyK8iWOMTyNaZBA0EQoHvJobD3BUFycMZTiD1fAwHH4bvvvms33mKx4PDhw0hN74PbfzoEbz8GJAWENA6FNNrRDe+A50aRk5Njpmn6krbECQkJnoKCgtj77ruvj8lkEtxzzz02AKBpGmvXrtVMnjw5/cEHH2wT3gKBABMnTkwtKirSPvTQQy2Xz+FwOCiVSsUAgPqIekIAACAASURBVEKhYBwOBwUA999/v2nZsmVnPvroo5OlpaXyzz//XNXR2ObmZkFZWZl85syZjdu2bTt55MgR5f79+xWdxR8ZGen56quv5ACwf/9+tcvlarcc1io2S0pK1EePHlVMnjz5ig8SF8EBgN1upz744IOKd999t2Ljxo2XZM3z8vLqBwwYYLtYHAPAgAEDXL17977EhkoikXChoaGM1+sl5s6dG5+VldWkUCjY5ORk95w5c84XFRUZ7r33XvOLL74Y08X4AARhBpkkA6sAnPCXt9DmOA5GuxdyVeBv1GeXXpfYeLqX8Bg5qo7EQhJxHD65Aqeb7EjWdr3t4skGG7SEFQpl4N9rpN8KyPkOacGEWBsO6oQCMpENNkpzTec2WD0Q+BxQhAVW8fzGKBCCX9+0iOe3Ax0lR2hNP1gA9COk+CnBj4SaGhwXCHD33XcjNPT/VqH37dsHjuMQFtcHD1UvQ/04QOyQQWxJgmY8/51yI3g0/VHj1bK9N4uCgoKYTZs2lfft29e9bt06TX5+fszy5cvPAEBeXl7TzJkzm6dOnZpy4MAB+6hRo2wAsH379pNlZWXivLy85PXr159auHBhPABkZGQYZTIZY7PZSACw2WyUTCZjWJZFXl5eo1qtZgDg7rvvtpw4cULa0diwsDAmMjLS3Souhw4dajl27Jh09OjRto7iX7ZsWdUrr7wS+8477xADBw600zTNrV27VrN3795QAFixYkVldHS0b/Xq1dp9+/aFbty48ZREIrlEeInFYtbr9V6SiHW5XKREImEBIDU11QkAMTExXp/P96sStiaTicrLy0saNGiQbf78+fUAMHLkSKtUKmUBYNy4cea1a9dGXcs1gy6DLJYElrkIyS9/azaPH16GhVAc+LthGdF1iY2ne1GGS+C2RYMgOJA6AWqqrs2l4FSDDXFohlLRDDhD0Lv3Nf1b47kFIEUC0E4tpBIHPCIpuA42pnTG2RYnQgln4AGKI+BxKK9+Es8thTBKBqE3FH67CH1IDvtS3Ug79iMoADt27AB7wRrw2LFj+PHHHzFs2DB4v9wLJesAHeuHsCEdLsYJcdrt3ftGeG44crncr1QqGQCIiIjw2Ww2qry8XPT4448nsSwLmqY5oVDIEgTBFRQU6LZs2RJ64TyGJEmkpKR4WmtnZ8yY0TxgwAB7a03unj17lP3797dZrVZq7NixfWw2G8myLA4fPqzo16+fs6OxiYmJHpfLRZ06dUoEAKWlpYrU1NROGwL861//Uq9atapy+/btJ81mMzV8+HBrXl5eU2tM0dHRvuXLl+tKS0sVW7duNWg0mnbm8bfddpvz+++/V7aKdaPRSFVXV0taRfqVNjATBMFxXNcSnU6nk5gyZUpqdnZ283PPPdfm8fvss8/Gl5SUhADA/v37Fa2CvKsEXQZZoYqBCwAp+eXd9Ix2LwBAIAl4IEuk/BddMECSBDgq0I6cCnXCfMIAZHT9i+pkgx2xlB0qpRFMUwIk6fwmm2CE9kdALDsOj0QCb20dRDHRXTrvfIsLoaQTCnkzhPYoiCKD7uO1x0NHBVacWKMW6vAm/BRPgKaBwXY7DtbUoLi4GFqtFl9//TXi4uJwz4gR+P5/XkHl7wSQCHwINd0FSG23TIMlnl/OokWLaubOnZtEURRH0zS7dOnSmoSEBG9qaqozKysrjSAIDBkyxDJy5Eh7Wlqae968eQklJSUalmWxePHidhsgZs2a1fT000/HZ2dn62ma5lauXFmpVquZJ5988tyjjz6qp2mavfPOO20PP/ywxeFw2C4fKxKJuEWLFlXPmzcvkeM49OvXzz527NhOGwLEx8e7p0yZoheLxeygQYNsDz/88CVj6+vrBRs3boxKSkpyTps2LRUAxowZY5o9e3ZT65i0tDTPI4880vjII4+kSaVSxu/3E3/961/PKBRXb3eclJTkqayslKxZs0Y7Z86cK26u27Bhg6aurk5UVFSkKSoq0gDAG2+8UfX888+fe+655+I//vhjrVgsZt54441rcm8Iuk/wsIhEnHMApKTrmZ/LMdo9EHB+0GInOL8QuhjewSJYkIUmgWNJSORmmH+6Nhuvk/UW3Ca2gRbb4W5WAb34LFAwIqJiQYm/BWgC1qpKaLoqkM0uhBMOyGUtEJsGImFg7A2OlOdmIwiTgKBJCFtigbiz0JgTcbyvF7fv+RJDX3sNR344ip9++glJSUnIysqCY+9eqEwNODqCgZ4hoTT3g0hv7u63wXMDSEhI8O7cubO89fWIESPsI0aMKL983PPPP18H4JJOZjqdzr9169ZTV7q+TCZj169f367Bw2OPPWZ67LHHTF0ZO3r0aNvo0aM7/OK7PP7MzExLZmZmpwJap9P5T5w48cOVYgaA2bNnN10smluZNm1aWymMRCLhDh48eBwACgsL23wT9+3b16mV0OrVq6tbf37qqacan3rqqQ5F9CeffPKLPX+DTiArwiPA2kiQEi9YlgFJXrvNUrPdizDWApHIAc6lgi6Nt/IKFkKjQ2F0aCCVWiC2nwHHcV32qW1qbIAiJFB/LLHYAW3vGxkqTzchVySgmQDEYjvOnzoJzd13d+m88y1O6IQmCMUuEBYdwvr3u8GR8txsCJIAHSmDsrkvrPgGfSDDJ6l1uP1bBoNqz2PoM8/A7XYjPDwcnM+H0ytW4myIBKGRNjANOpCsCKHD+3T32+Dh4ekCQbfOI1OK4PdJQAo9cFmtv+gaRocH4az1gkBWQxF7TRsfeX7DhEXJQNgjIJFaQdMMjA5vl84zO70QesxQKJoBlkSKDADNW/8FI7KQQBmORGJDZfXpLp9X39wCtTyQyPFZwkEo+Q2cwQgdJUeY6zawDIE0xonTkQSsAxJhfH8jpBSF8PCAy1jL9u3w1dSg5GEvtEIWkqZ0eFgn6ETe+o+H51Yg6ASyWEaD8UpAidywN12TJ3QbRrsXas4REMjOEAhV7byqeW5RQqPkYG1REIvtYKTSLlu91RidiCQsUMnMgE0LXcJ1tdrk+Q0hDwtYvYnFVhgtXV8Ot7UYIZUFnG8Yp+qGxMbT/dA6GYScDB6jFNFyM+IUSdg5QgTGaETTmjXgOA7un39G09/fQl1KJPxpgb1LavOd4EQ2vnseD88tQtAJZKFEANYrBSl0wXT2/C+6hsnhRSTthlDoAesIAcFvqAgaZGohfK4okCQLLpxGbVXX/kaqjQ5EEjbI5S1gWrSge/HlFcGKWKMD6RdDJrLD2cW9vhzHwecwQyYzg/RJIZTw9m7BCq0NWLSxRg3ESjP6KIfhM3kF6PEPwbThnzj7xGycmfUHEAoFlj3oQgotA+OWIMSjhzKW76zIw3OrEHTKjyAIsF4pKKEbzWfP/KJrNNs9iJAFHCwYh+wqo3luJQiCACEIbJ4iQ9ww/dy1+v2qOiNkYgcokQOMRQ7o+PrSYIWSCyFwhUEicsJDd83i0ez0Qc45IJe2QGSLgTaa97kNVgQRgf9vaVMMCAGDOMRAQArw0fgQhM6YAW9lJcTpafjxhfGol9uQJvXAV6cFAQKKfvyGbx6eW4WgE8gAwHpkENAuWGvP/aLzjXYv5Bcs3hgnnwkKNoSqZACAWGqDo6prArm29jxkF5bPFQ4XEMEL5GCFIAgIvGEQi53wSKVg7ParnnPe7EIo4YBUZoHIHo1QPV+CE6xQMhqETACpNbB5m7b/iPHJ41Fy+lOQcx9H8v59EK9ZhlWmYsQRvSATuEDWBx7KhX35lScenluF4BTIPhkEAj/c1l/WUMfo8EB0QSD7ffySWLChjogEfBJIpFb4W7r2EGU3NUJ+QSBHER5Afm1d1nhuLQRMGGiJAwwthK2ynVtSO86aHNCKm0EJfCCsOihSEm9ClDzdhTBCBjWTBJ9TDIXvv3i87+NgOAYv/OcF1Nnr8MLBF+DyuxDrC2zwVrbcBh8coOTibo6c50Zx6NAh2YQJE9osr0pLSyXjxo1Ly87O1s+dOzeeudB0aN26dZqMjIz0zMzM9E8++SQEAOx2Ozl9+vSk3Nxc/aRJk1LPnTvXLjPndDqJWbNmJeXk5OinTJmS3NjYKACA1atXa++///4+EyZM0E+YMEFfXl4u6mzskSNHpDk5Ofrs7Gz9rFmzEl0uV1tB/OXxHz16VJqZmZmek5Ojf+6552KYDpomff311/LMzMy0cePGpb300ku9Lv/95s2bw15++eVLjs+ePTvxq6++UnR2H1944YWYmpoaodFopD766KPQjsb4/X7MmjUrcffu3W1NKvLz86PHjx+flpGRkf7Pf/4zHAAqKyuFubm5+pycHP2TTz6Z4HA4rknzXjeBrNfrVXq9/jO9Xv9vvV7/nV6vH3Lh+F16vf6wXq//Rq/Xv3S95rsSrD9g5u5nf1m/e6PdC4E4sHlLxDsVBB0hETKQdi0kEisIrmub9AiHCWqZFYRLiYiITv9t8wQJIlIHknaDonxoqLiiPSkAoKa2EXJZwDXHbw0FoeaX0oMZQYQUKjocjnoFVLIz0Emi8PLQl/F9/fcYUzQGh+sPY7r+L+ijOgOPXYtQLhkCVadNy3hucd56662I/Pz8OK/X2yY4V61aFZWXl1dXUlJi8Pl8xK5du1RNTU2CwsJCbXFxcfmWLVsMK1asiGFZFhs3bgxPT093FhUVGcaOHWt8++23dZfPsWHDBm1ycrKruLjYkJmZaXzrrbciAaCsrEy2dOnSqtYOd2lpaZ6OxrIsi/z8/PjXX3+9uqSkxDB8+HBrTU2NsLP48/Pz455//vkzxcXFBrlcznz88cftxOqyZctiVq5cWblz587yn3/+WfbDDz/8asH02muvnY2Li/MeP35c2toN8GIqKipEEyZMSDMYDG31rwcOHFCcPXtWtGPHjvLCwsLyzZs360wmE/Xqq69GP/LII03FxcWGO++80/b2229HXEss19MHeR6AfQaDYYVer9cD2AbgdgBrAeQCqATwhV6vH2gwGEqv47zt4QIChhO063x4VRiWQ4vDHcgeeWRQa/guesGGOkKK6mNayDRl8IvFcHkZSISdrxRYXV6EcBYo5Baw5ghIo3jbv2BHIg8siYtEdpyrOY2rOaE3NjZCJwkIZNYpB6igs5jnuQg6QgoBQcN9Xgl1YhMqan9CVnIWdDIdShtKMSp2FH6u5CBXvwS7IQ0KOgSK1K61zeX55Zg+3BJm2bHjutY3qcaPbw6d8tgVl6Pj4uI8a9asOf3ss88mtB7T6/VOs9lMsSwLp9NJ0TTNaTQa/65du07QNI3q6mohTdMsSZKYM2dOo98f0Cu1tbVChULRLl1bWloqf+KJJ+oB4IEHHrCuX78+CgAMBoP03Xff1ZlMJnr48OGW+fPn13c09uTJkyKlUul/7733IiorKyXDhw83p6WleTqLv7m5WThs2DAHANxxxx32vXv3qidPnnxJQ5IdO3aU0TQNm81GOhwOSi6Xd7mF8ebNm8MOHjyocrvdZG1trWj69On106ZNM06YMEG/ePHimrVr1+oqKyulGzZsCJ81a1Zz63l2u5187bXXqt999922h4i77rrL3r9/fycQKJFjGIagaZqrqamRjBkzpgYABg8ebF+yZMk1fXlfzxKLtwCsu/CzAIBbr9crAYgMBsNpg8HAAdgD4L7rOGeHUHTAYokQXns3PbPTC4nfCYHIAdatgC6u3aoBzy2OSiOB166DUGyHRyXDmeraK47/6fQ50CQDgdQIxqIGoeUbxwQ78tBAiYRI7EBjU8NVx9vMRkgkFpA+CSTCoKxc47mIVicLqinwfVtV+28AwF2Rd+FPA/6EtNA0NDb/BxTJwl8T+B4X6lO6J1ieG05OTo6ZpulLnoASEhI8BQUFsffdd18fk8kkuOeee2wAQNM01q5dq5k8eXL6gw8+2Ca8BQIBJk6cmFpUVKR96KGHWi6fw+FwUCqVigEAhULBOBwOCgDuv/9+07Jly8589NFHJ0tLS+Wff/65qqOxzc3NgrKyMvnMmTMbt23bdvLIkSPK/fv3KzqLPzIy0vPVV1/JAWD//v1ql8vVLotE0zS+++472cMPP9wnNDTUFx0d3bXGAgAHAHa7nfrggw8q3n333YqNGzdekjXPy8urHzBggO1icQwAAwYMcPXu3fuS5RiJRMKFhoYyXq+XmDt3bnxWVlaTQqFgk5OTnV988YUaAHbv3q12u93X9OH8i9Icer1+FoC/XHZ4psFg+F6v1+sAfAjgGQBKABd367ABuOHFeUJp4AGSEF77E7vF5UMIa4NQ6ALrDEP4bXwtYbBBCUhw/kD7YFLtxbnSn6BP7fzB8lTVGUgkVoBkQdspQJN+s0Ll6Sak6jjACUhpG1pcV68b9dvNkOosEDp1UITxmcJgRxARWN2VeWLhsynh8R8EMPeSMYTnO7hJGcTmSCAUEMaGdUOkPYvQKY8Zr5btvVkUFBTEbNq0qbxv377udevWafLz82OWL19+BgDy8vKaZs6c2Tx16tSUAwcO2EeNGmUDgO3bt58sKysT5+XlJa9fv/7UwoUL4wEgIyPDKJPJGJvNRgKAzWajZDIZw7Is8vLyGtVqNQMAd999t+XEiRPSjsaGhYUxkZGR7lZxOXToUMuxY8eko0ePtnUU/7Jly6peeeWV2HfeeYcYOHCgnaZpbu3atZq9e/eGAsCKFSsqo6OjfUOGDHEcPHjw+OLFi6NWrFgR+cILL7RlnMRiMev1ei8RpS6Xi5RIJCwApKamOgEgJibG6/P5flVmwWQyUXl5eUmDBg2yzZ8/vx4A8vPzz7344ouxO3bsCB82bJhZpVJdU1nBLwrIYDBsMBgMfS/773u9Xt8PwD4ALxgMhn8jII4vLthUALjhjehl6igAACH+BRlklw9qzgEh7QbnVkIWxWeQgxFKHA8g0C2t0dBha/o26mrPQSEJtKQPdZsBDZ9BDnakYVEgWAGkQidcuPpGXcprhVRqg9ChgyKWt3gLdlqdLFTCcFhroyEjfgLL+tp+7/e7ESn+f7C26KGmI8AQbpAK3hGpJyGXy/1KpZIBgIiICJ/NZqPKy8tFjz/+eBLLsqBpmhMKhSxBEFxBQYFuy5YtoRfOY0iSREpKiqe1rnjGjBnNAwYMsLfW5O7Zs0fZv39/m9VqpcaOHdvHZrORLMvi8OHDin79+jk7GpuYmOhxuVzUqVOnRABQWlqqSE1N7bQw/l//+pd61apVldu3bz9pNpup4cOHW/Py8ppaY4qKivLl5OToTSYTBQAymYwlSfKS7MBtt93m/P7775WtYt1oNFLV1dWSVpFOXKFpDkEQHMd1LdngdDqJKVOmpGZnZzc/99xzda3H9+/fr1ywYMG5wsJCA0VRGDJkyDW1V75uhXJ6vb43gE8ATDIYDMcAwGAwWPV6vVev1ychUIP8AIBF12vOzgjTxqPZAZCia69Btjh9COdcoIVuuFxK0Cr+qT8YkYYlwQNAIrHCZriyk4XTWI8ErR1gSWhJLyDtcGMtTxAhUEsgcIdCInbCLZKA47hOP8y9Xh/ksEIocYI+p4NqULv9NTxBiDBCBrU5AqfOhCJM70VT815EaB8CAJRV7YCMdsBcGQ+1UAtBKHtFMcATfCxatKhm7ty5SRRFcTRNs0uXLq1JSEjwpqamOrOystIIgsCQIUMsI0eOtKelpbnnzZuXUFJSomFZFosXL666/HqzZs1qevrpp+Ozs7P1NE1zK1eurFSr1cyTTz557tFHH9XTNM3eeeedtocfftjicDhsl48ViUTcokWLqufNm5fIcRz69etnHzt2rKWz+OPj491TpkzRi8VidtCgQbaHH374krEkSWLGjBkNM2bMSKFpmgsLC/MVFBRUXzwmLS3N88gjjzQ+8sgjaVKplPH7/cRf//rXMwqF4qq1yklJSZ7KykrJmjVrtHPmzLliW+QNGzZo6urqREVFRZqioiINALzxxhtVycnJ7vnz5yfSNM0lJCS4Xn/99WtqjnE9d5IsBSAGsDKwRw8Wg8EwHkAegC0AKABfGgyGw9dxzg4JC4lAg5UCIfSCZRmQZNet2swuLyLFDhAEB84l59uCBikhEVo02hWQie0w+l2djnO5XCC8dihldhCOMIRH8ps2ewIETULgDoVYbIJPLIarvh7SyMgOx1acrYVMGlil5GzhEOoSOhzHE1zQOhlUlWGwnqHgdyhQVf3PNoFcW7sNRocG1pMiqDThkCbxvtjBTkJCgnfnzp3lra9HjBhhHzFiRPnl455//vk6AHUXH9PpdP6tW7de0S5HJpOx69evb+c5+dhjj5kee+wxU1fGjh492jZ69OgOl0wvjz8zM9OSmZnZqYAGgHHjxpnHjRt3xaqA2bNnN82ePbvp8uPTpk1rK4WRSCTcwYMHjwNAYWGhofX4vn37TnR23dWrV1e3/vzUU081PvXUU+1EdGJioveLL7648hLxFbhuAvmCGO7o+CEAd12vebqCWCoE4xeBFHrhcTggUXRd1JidPoRKAvZwnJO3eAtWQnRSNP03HAqJA+dkEnAMA4Jq/yB1/vx5EABE8hZwZl789CQE3jDQ6rMAgKaTJxHXiUCuOlMHifSCg4VdDSijb1qMPN2HIEIKCgJI4IOj4ncQyPbBav0Rfr8NAuY4jtdmI4nzgiIFECVck7sUDw/Pb4Cg3G4tkgrA+EQghB64bB3Wn3eK2emD/IIHsr/9pk2eIEEdIQNj10AkscEhV8ByqqLDcVXVNSAJHzipEaxFwdcf9yCEnAak2AGCYHDmdLtEUBu19fWQigOJFoFHxlu89RDoCy2nlXQI6k8NhY+VovS/0/Dj8T+hydULdPM9UF9YvaSjZFe6FA8Pz2+Q4BTIEgFYvxgk7YHDek012bC4fBCLA0vurCcobw8PAImCht+pBSm2gaT8+PnQ9x2Oq6iqQRhlAggOAjvFC+QehFgYqCUWCR2ou0Lb+hZTM6QiMwSuMAh/wb4HnluTVqs3pTAcfpcdP383AQpFP9BCHZYdyUMvoxkhIg04goUgnN+4ycNzqxGUCpAWUWB9YhC0GybjtTm+WFw+0BcEMknymaBghSAIgAs0g5BIbKipPN1ujNfrRWPtOYSLAyU3alcLEM4L5J6CTBUop5HQZphsnXfldFlMkEpsEDojIFb5Oh3HE1yQUhqkQgi1KAIkexYhTVpIdG+jEu+Bc6rhbjEhRBgBSisCQfF7WXh4bjWCUiATJAHWKwYl8MBUe3WT/4sxOzwQiJ1g/EJIZaIbFCHPbwGhPOBxrRRaYbS332dQU1MDjmOhVrgBRoAowgrItTc7TJ5uQq5JBQDIaBtsXMcflU6nE5zXCbHMAdoZAXkk/1Ddk6AjZQiX9QJN1cPtTcQ/9xvwzlen8YBYCs5fjxCRDpIE3gmJh+dWJCgFMgCwPgko2gNHw7VlkG12OyiRC6xHBmUovywWzMgvlEuoxQ5YxBL4fZdm/yoqKkCwLCQqG0ibBmFRvKtJT0ISGg2wJGQiF5xiKVpbwV5MXV0dBAIPKKEXQmcEVMkh3RApT3ch7CWHDEr4fE4wnAD+oz+hwexGis0PNWkCTQohjFZc/UI8PDy/OYJbIFN+eEzNVx98ER6LGZTQBdYjR1gvzQ2Kjue3QIguHKQzFGqpCz6hEBXffnvJ70+fPg21qQmsshGsJQwCbVI3RcrTHdAhMgg8IZBKXOBIEs2V7VyTUFtbG+iyCAD2cAij4m9ukDzdijBaDgIEZIQaYdRRpLp6YS6phMfpgpxSXRjDC+SewKFDh2QTJkxoq8ErLS2VjBs3Li07O1s/d+7ceIYJNC5bt26dJiMjIz0zMzP9k08+CQEAu91OTp8+PSk3N1c/adKk1HPnzrXrKuN0OolZs2Yl5eTk6KdMmZLc2NgoAIAjR45Ic3Jy9NnZ2fpZs2YlulwugmEYzJ8/P3b8+PFpEyZM0Lc2Bzl16pRo0qRJqbm5ufrf//73Kc3NzW1OBKdOnRKNGTOmd+vryspKYW5urj4nJ0f/5JNPJjgcjnZ6sbS0VJKTk6OfMGGC/tFHH02pr6+/ZAntq6++UsyePfuSdsQvv/xyr82bN3e6rFJQUKA7fPiw1OVyEe+//347f8TO7uvq1au1mZmZaZmZmWnLli3r2HLoGglegewPWLQxrmtr3Mc4LKAvCGRNbOyNCI3nN0KITgrYtBArLCAZBmVHj7b9zmg0orm5GTE2MxixGaxFDlxYcufpGZByIWhXOMSSQLOp8+Xt7TTr6uogoy+sUtlVQEj8TYyQp7uhL4jfUKEO8SmNUJF1EJk9SBWsR4hIBwgICDT8SmSw89Zbb0Xk5+fHeb3etiXGVatWReXl5dWVlJQYfD4fsWvXLlVTU5OgsLBQW1xcXL5lyxbDihUrYliWxcaNG8PT09OdRUVFhrFjxxrffvvtdt2GNmzYoE1OTnYVFxcbMjMzjW+99VYky7LIz8+Pf/3116tLSkoMw4cPt9bU1Ah37typ9nq95I4dO8rnz59/bsmSJdEA8Le//S3umWeeOV9UVGSYOHFi08mTJ8UAsGXLltBnnnkm0WKxtAnzV199NfqRRx5pKi4uNtx55522t99+u51X4ZIlS2JffPHFM4WFhYZ77723ZfXq1b+6S9L8+fPrBw8e7Kyvr6dLSkraCeSO7uvp06eFu3fvDispKSnfsWNH+aFDh1THjh371T69QVswx/rFgf8lOt9cczkcx0HgsUEodMHjVkKm4+tNgxmVVgKfVQdBeAUU5mZUcFxbx7QjR46AAIdwuR8+ALSNA8J5gdyTIEgClDsUAnUtwHE4U12BQZeNOXe+FlqREeAIkG4RIOFLLHoSlFIIUk4jik1BpfkEcgfsgKumDAfdfRDLRYOOlPMb9G4iPx44F2Y4VHddu7Lo74psvm1U9BVrNePi4jxr1qw5/eyzz7YZ5ev1eqfZbKZYloXT6aRomuY0Go1/165dJ2iaRnV1tZCmaZYkScyZM6exx73D7wAAIABJREFUtYSrtrZWqFAomMvnKC0tlT/xxBP1APDAAw9Y169fH3Xy5EmRUqn0v/feexGVlZWS4cOHm9PS0jwffPCBZvjw4RYAGDJkiGPevHkyp9NJtLS00Hv37lUXFBREp6enO1566aVzAKBSqZiPP/7YcO+99/Zrna+mpkYyZsyYGgAYPHiwfcmSJTGXx7R69erKqKgoHwAwDEOIRKKu9YZGILv8j3/8QycQCNi6ujrR/fffb1qwYEH9U089FT927FjTnj17Qs6cOSNZtmxZ5IXmKp3e15iYGN/GjRtPCQQBScswDCEWi6/are9qBG0GGQg8tZOCrtsu2T1+aAknBAIfWLcSolBeIAczApoC64oCR/khlVjhEAhw6uRJuN1ulJaWQttUDyY28EAd6m7iBXIPROAPASR20F4XGkyXfke6XC5YLWZIxVbQrnAIaG83RcnTXRAEAWG0AmHSXjh/sgxszjtQ/mUXzplECKEjIIrnO2/2BHJycsw0TV8iDhMSEjwFBQWx9913Xx+TySS45557bABA0zTWrl2rmTx5cvqDDz7Y9qEiEAgwceLE1KKiIu1DDz3UcvkcDoeDUqlUDAAoFArG4XBQzc3NgrKyMvnMmTMbt23bdvLIkSPK/fv3KxwOB6VUKttENkmSXGNjI33mzBnx8OHDrdu3bzdYrVZqy5YtYQCQkZFhkcvllwjK5ORk5xdffKEGgN27d6vdbnc7vdgqjr/55hvZ9u3btXl5eV1yRWhtu97Q0CBcv3796eLi4vKtW7dekn2eO3duXWxsrOticdzZfRUKhZxGo/GzLIsXX3wxOiUlxanX6z1dieVKBG0GmaACS1+kqOu2S2anDxGiQMaZdclBSPgPt2CHFgXqitUKPxwmC3YWFyMmMRFerxf9jv4I/6AokB4ZYgT1/PJ5D0RMaACCgxjNMPkj21YYgED9MQCIFW7QzniIFO7uDJWnm6B7ySE0CEFxFCp+/BEkSUHJhoIECXEKv6JwM7ltVLTxatnem0VBQUHMpk2byvv27etet26dJj8/P2b58uVnACAvL69p5syZzVOnTk05cOCAfdSoUTYA2L59+8mysjJxXl5e8vr1608tXLgwHgAyMjKMMpmMsdlsJADYbDZKJpMxYWFhTGRkpLt3795uABg6dKjl2LFjUplMxtjt9rb6Yo7jCK1W65NIJGzrXKNGjbJ88803SgAd3q/8/PxzL774YuyOHTvChw0bZlapVP6ioqKQbdu2aQHg+eefP3vHHXc4t2/fHrJhw4bI995775RWq70kIykWi1mfz3fJEorT6aRas7uJiYkumqZB0zQrFAq7lH3u7L66XC7iL3/5S7xUKmXfeOONmq5c62oEbQZZIFYDAAhRu5WKTrG4fFCLAl30OJeEdyzoASiibgMAKEMI9P3vETjdbpw8eRL9/B6orGYQaiMIqxbqqDCA5Dsr9jSkkigAgIgywSug0dz8f5t+T58+DXAsaKULQocOUn5Pb49EFK8EOCAl5nfY//467H9/LZKiBgECAqIEPsnSU5HL5f7WLG5ERITPZrNR5eXloscffzyJZVnQNM0JhUKWIAiuoKBAt2XLltAL5zEkSSIlJcVTWFhoKCwsNMyYMaN5wIAB9v3796sBYM+ePcr+/fvbEhMTPS6Xi2rdhFdaWqpITU11Dxo0yP7111+rAOC7776TJSQkuKRSKderVy/3119/LQeAI0eOKJKTk12dxb9//37lggULzhUWFhooisKQIUOsubm5La0x3XHHHc6tW7eGfvTRR9qtW7cakpKS2i2hpaenuyoqKqS1tbU0ALhcLuLYsWPyAQMGOK92/0iSBMdx7URYR/eVZVk8/vjjyampqa6///3vNa2lFr+WoM0gSxWBenLyGgRyoM30hS56rqC9NTwXER4bA0etGlKFC3vSzBj75b8QOXUqXGtWY98dUvRR1gInB4GICu3uUHm6AUV4GgBAJXag2Q+cPn4cmtGjAQCnTp2Cyl8PkmYgdERBmS7vzlB5uglRogqkVIA7Esai8b9nYTcZERuSDjpECoLmH6p7KosWLaqZO3duEkVRHE3T7NKlS2sSEhK8qampzqysrDSCIDBkyBDLyJEj7Wlpae558+YllJSUaFiWxeLFi6suv96sWbOann766fjs7Gw9TdPcypUrK0UiEbdo0aLqefPmJXIch379+tnHjh1rYRgG33zzjTIrKyuN4zgsW7asGgBeffXV6kWLFsW++eabRGRkpOell17q1OYrOTnZPX/+/ESaprmEhATX66+/fubi3/v9fhQUFMRqNBrvH//4x2QAuP32220vvPBCbesYlUrFzps37+wf/vCHZJFIxPr9fnLSpEmNKSkpnvPnzwuvdP+0Wq3P5/MRL730Uq9Fixadv9J93blzp/r48eMKn89HfvvttyoAmDdv3rmhQ4d2fRNaBwStClSHxMINgBB6wbEsCPLqyXKzy/t/babdXa4157mFCe0lQ015BAiVCV/1FSP3qAOeVavgkBBoGdgfIP8N1iQGBqR3d6g83YA0Qg+iloZM6YPovAunT/yEu0aPRktLC5qampDqC6zkCew6iGN7dXO0PN0BQZEQp4fB9VMzJr/yJjxGOyzvGCD+XVR3h8ZzE0lISPDu3LmzvPX1iBEj7CNGjCi/fNyFmtpL6mp1Op1/69atp650fZlMxq5fv76d1+To0aNto0ePvsRih6IoFBQUnLl87IABA1wlJSWGzuY4fPjwsdaf77rrLscXX3zR3rrnAgKBAEePHv3vlWIGgOzsbHN2dnY7O7GRI0faRo4cabt87tWrV1e3Htu9e/fPl5/X0X1NSEjwZmVl/XC1WK6VoC2xCA3Vwe+nQQi98Lo7XUW4BLPTB6EoUEfIdT3xzHMLowqXwGeKgU9Rh+imIXhqJoM185Mx948kUujABj2VrQWI6H2VK/EEI3SYFLQzAhK1DwqzCWeMRrAsi4qKCgCAigqU7xG2MBBh8d0YKU93IukXDs7DgKl2wXfYDJAEJH2uq5kCDw/PTSZoBbJSKQfjE4GgvXDb7V06x+LyQSB0g2VJCGm+/rgnQJAEGEcSQHC4hxJCER6PM+HAA/o50KrrQTnDkESVA9o+3R0qTzdAhYghdOogUDpBOJrhAYGDBw/i8OHDkNEUEOYB4ZWC8xKAqp0LEk8PQZysBqUUwvRxOZxHG6AY0QuC8F9tw8rDw9ONBK1AFklpMH4RCNoDt6NrAtnq8oIUucF4JZAqgrb6hOcyJKp+AEcgKbQBY1QF+Cz7M/jNw0CFnAOMUQhVegA5b/nXEyFFFARODUi5HX7Gjoj6Ohw4cAAmkwlJNSfAaVkIHZGgaBtAtWt+xdNDIAQkNE8OAB0lhyBcAsW9fJMpHp5bnSAWyII2geywWrt0js3qACV0g/VJIFeLb3CEPL8VevVLBWWNgiS8Ebt/qgfHcTCcPgFWYgZjCgWh68M7mvRgaE84QLIgQwS467vDiFKrkfHAA0j67kfQYX6IHb0gktmufiGeoEagFkHzx9sQ8ZdBIIX85jwenlud4BXIEgFYnxiEwAOL2dKlcxwWMyihC6xXhlAt71/ZU+jVNwZscyyYkPM419CM//2pHqMl3wIAuFoBEPO7bo6QpzsRkwFHHJHMCafAi7v+ewjSqmPgJIBA4ofQEQV5ON8khCfQAIHvnMfDExwErUCmRRRYnxgU7YbZ1LUMsttmBkW7wXpkCIvidyD3FKRKIbzGKHACDyYo/ov5249B3+sHCE0JiMOPQMxd3R0iTzeiUsUDAMQqH767XQ360DG433wHdSmBLKHQEQVFPG/xxsPDwxNMBK1AJkgCnE8CUuCFu7lrGWTGbgZNu8F55JDr+JrTnoQIaaDcKoxO+xa/7+0ClHXw1iQiWVoOxNzZ3eHxdCPyqDiQXhnkoRxC7hwJsxQoD/eialhglUloiQYdF9+9QfLw8HQrhw4dkk2YMEHf+rq0tFQybty4tOzsbP3cuXPjGSZgjbVu3TpNRkZGemZmZvonn3wSAgB2u52cPn16Um5urn7SpEmp586d63RDw6effqrOy8tLaH29b98+xfjx49Nyc3P1s2bNSnQ4HCQALFu2LDIzMzM9Kysr7fDhw1IAaGhoELTOk5WVlVZRUSFqvU5jY6Ng1KhRfV0uFwEARqORmjJlSnJ2drZ++vTpSQ0NDe02ZtXW1tITJ05MzcnJ0U+fPj3JarVeoimrqqqE48aNS7v42D/+8Q/N0qVLO81Abt68Oeyzzz5TAcDatWs7bb+0Zs0a7csvv3yJt6bD4SCzsrLSysrKxADg9XqJvLy8hKysrLScnBx96/GuErQCGQAYnwQU5YfH1K6teYeIvVYIBH6wXgXEoXxjiJ5EjD4M/rKhYEOrMTL0NYCl4GsIBRGRDkj4cpueDBUVAZE9BhKNG9FEJD5+cwyYt/6GMAULwqEG5xGB0KZ2d5g8PDzdxFtvvRWRn58f5/V62+prVq1aFZWXl1dXUlJi8Pl8xK5du1RNTU2CwsJCbXFxcfmWLVsMK1asiGFZFhs3bgxPT093FhUVGcaOHWt8++23dR3Ns3DhwphVq1b1Ylm2bZ5XX301bt26dRVFRUWG2NhYz6ZNm8KPHj0q/eGHHxQ7duwoW7lyZeXixYvjAGDJkiXRGRkZpqKiIsPTTz993mAwiIFAZ77p06entrS0tAnzFStWRA4YMMBeUlJimDp1auPSpUvbGb2vWbNGN27cOGNxcbEhLS3NtWnTpl/tbTht2jRjZmamBQDef//9dkLa6XQSf/rTnxIKCwsvyWJ+//330okTJ+rr6uraRP/u3btVDMMQn376afmf/vSnujfffPOazOqD2qqB8wXuE+tu51HdISoEMs2sSwFKGXbD4uL57ZEwajC+/1cNeqX8FyQrBHV8DJLpfwMxg7s7NJ5uRhAug7QlBc4EAxqOn8KKJ1aBYfz48vQrELUMAEeYADXvWsDD092U7v487Oev911XA+red9/bPPDBDOOVxsTFxXnWrFlz+tlnn23L7Or1eqfZbKZYloXT6aRomuY0Go1/165dJ2iaRnV1tZCmaZYkScyZM6fR7/cDAGpra4UKhaLDTgwDBw60jxkzxrxt27a2zOqHH35o0Ol0fgBgGIYQiUTs4cOH5YMHD7aSJIm4uDgvwzBEY2Oj4Pjx4/LU1FTXpEmTUiMjIz1Lliw5CwTaOn/wwQeG7OzsNsP/qqoq8bx5884DwNChQ+2vvfZauw+5JUuWnOU4DgzDoL6+nr799ts9Xb2vVVVVwmeeeSZRq9V6z58/L+rdu7fjzTffPLN06dKo8PBwn9lspux2O7VgwYLY5cuXtzU9cbvdZHZ2tnHIkCHWysrKtoywx+Mh3n333Yp58+Ylth5LTk52MwxDMAwDm81GUhR1TR3grnsGWa/Xp+n1eoterxdfeH2XXq8/rNfrv9Hr9S9d7/muBOMP3DuWvbrNG8dxUNCBroScWwoI+ZrCngSl1mFochnO7MxCxY6ROOeKQ6zgOBA3rLtD4+lmKJUIYnMKCJKD010GlmFwtuIQhFI/FJY0CEQWgORdC3h4eio5OTlmmqYvEV8JCQmegoKC2Pvuu6+PyWQS3HPPPTYAoGkaa9eu1UyePDn9wQcfbBPeAoEAEydOTC0qKtI+9NBDHS57T5w4sYW4zFEpKirKBwAlJSXqo0ePKiZPnmy02+3UxSJbKpUyFouFamxsFCqVSv/HH398UqfTeVeuXKkDgPvvv98aHh5+iShPTU11ffnll2oA+Pzzz9Uej6edXiRJEgzDEA888ECf0tJSZet7vBoEQXAAcP78eXFBQUH1zp07yw4dOqSqq6trS9ouWLCgXi6XMxeLYwAIDQ1lxowZ025j2fDhwx2xsbG+i4/J5XKmvr5eeN999/V99dVX46dPn97Qlfhaua4ZZL1erwRQAODip4i1AHIBVAL4Qq/XDzQYDKXXc97OYP2BVt8EcfVOei4fA8WFNtOMQ8TbevVA4ob0Q1PtUUjHzEV602sgzocD6RndHRZPN0OQBESOaIAjINVYcerItzjTuBukApBaUiALbezuEHl4eAAMfDDDeLVs782ioKAgZtOmTeV9+/Z1r1u3TpOfnx/TKvby8vKaZs6c2Tx16tSUAwcO2EeNGmUDgO3bt58sKysT5+XlJa9fv/7UwoUL4wEgIyPDOGPGjObO5lq9erV23759oRs3bjwlkUg4uVzOtNYiA4DT6aTUajWjUCiYsWPHmgFgzJgx5r///e+dlhw888wzdX/7299ic3Nz9cOGDbNoNBrfwYMH5StXruwFADNnzqwfO3asRSgUcnv37j2xd+9exfz58xOKioraWllLJBLW5/NdIqydTicpEolYAIiMjHQrlUoWAEJDQ31ut/u6Jm3XrVsXMXjwYOtLL710/syZM/S0adP0//u//3tCIpF0KZN83YLR6/UEgPcAvADAeeGYEoDIYDCcNhgMHIA9AO67XnNeFe5CJyPB1S2YrC4/JBfaTLNuPhvUI0nPwB3yQvRufAXEqd3A754AaL4bFg8gCxWBtsZCFuXFkU8LYWn6D1ifACJ7NBTRoqtfgIeHp0chl8v9SqWSAYCIiAifzWajysvLRY8//ngSy7KgaZoTCoUsQRBcQUGBbsuWLaEXzmNIkkRKSoqnsLDQUFhYaLiSOF6+fLmutLRUsXXrVoNGo/EDwO9+9zv7d999p2IYBjU1NUKWZaHRaPx9+/a17dmzRwUA3333nSIxMdHd2XUPHjyo+P3vf99UVFRkiI+Pd9922232ESNG2FtjGjt2rGXBggWxBw4cUFyImyVJ8hLhqdVq/S6Xizxx4oQYAPx+Pw4dOqQcMGCAEwjYIl4Jjrumioh2KJVKRi6XM0Ag83yh3KLL2c9flEHW6/WzAPzlssM1AD4yGAzH9Pq2jZxKABenwm0AEnGTIMiAuCGF/quOtbp9ELUK5KsnnHmCEXUsMPhPwPfrAVoK3PmH7o6I5zeCOFYNWUsqPL3247zlZ0RE14Jr6AewJIQJHe6n4eHh6cEsWrSoZu7cuUkURXE0TbNLly6tSUhI8KampjqzsrLSCILAkCFDLCNHjrSnpaW5582bl1BSUqJhWRaLFy+u6soc9fX1go0bN0YlJSU5p02blgoAY8aMMc2ePbtp4MCB9qysrDSO44j/+Z//OQMAL7744rnnn38+7pNPPtHKZDJm9erVlZ1dOzU11b1gwYKE5cuXIzw83FtQUFB9+ZjHH3+88cUXX4x75513OIIgsGjRokvKIUiSxOLFi6sXLlwYT5Ik/H4/cffdd5tHjRplq6qqEl7t/cXFxbmefPLJhHfeeadL9+NynnzyyYZ58+bF5+Tk6H0+H/HnP//5vFwuZ7t6PvFrFXorer2+AsC5Cy/vAnAEQAaAQwaDofeFMU8DoA0Gw5tXulZOTg5XXFz8q2PatvptaPv8HbYfhyPrmU1XHPt9tQmV//oDwhJ/RGPRTEx+52+/ev6ejF6vP2owGO643te9Xn8bV8RpAjw2ICTuxs7TQ7lRfxvAjfv7cJ+oxbmSr1A9+BWAYMERLJT/XgKdR4y4vyQBun7Xfc6eyi392cFzQ+nob+PYsWPV/fv37zTDysNzNY4dOxbev3//+MuPX7cSC4PBkGwwGEYaDIaRAOoBjDEYDFYAXr1en3ShBOMBAAev15xXQyoPbGYlhD5w7JUfGqwuHyiRG36vGCJxhxtIeXoK0lBeHPNcAh0bDrE9Bsx/p4EgGZSdHY5wdxREgtOAtvfVL8DDw8PDc0txM2ze8gBsAUAB+NJgMBy+CXMCAJSqcPhZEhB64XE5IZZ17kxhsTtBCj1gfRJIZDcrQh4enlsBSiEEIbBDVXcX/vUfHShjJEQSAvIIB+9gwcPDwxOE3BCBbDAY4i/6+RACJRc3HXVIOOo9QpBCL9x2+xUFsrnFglChG6xPAqXyqqUxPDw8PQyR2g2tl0VobTx60YF9HsIUviU9Dw8PTzAS1J30lOowMH4RQHvgtl/Zns9mtoCi3WC9UqjDFDcpQh4enlsFOl4LISkHTfrQK9QLAm7QfQd2d1g8PDw8PDeAoBbIUqUCjE8EQnB1gWw3myGgXeC8UoTpOm3/zcPD00ORjbodAIdsXQ2ifDTEgmMgovp3d1g8PDw8PDeAoBbIQgkF1i8CQXvgsLZrvHIJHqsJNO0F65FDEXFdO1Xy8PAEAYIwCWQJZnic6QDrh2qwH6BuxjYOHh4eHp6bTVALZJFEANYnAUm7YTFZrjiW9hhBEBxYjwKiEPVNipCHh+dWQpk9BBTVBHV6NQQZz3V3ODw8PL8RDh06JJswYUJbE4jS0lLJuHHj0rKzs/Vz586NZ5iAO9a6des0GRkZ6ZmZmemffPJJCADY7XZy+vTpSbm5ufpJkyalnjt3ju5snk8//VSdl5eX0Pp63759ivHjx6fl5ubqZ82aldjaQW/ZsmWRmZmZ6VlZWWmHDx+WAkBDQ4OgdZ6srKy0ioqKti5HjY2NglGjRvV1uVwEABiNRmrKlCnJ2dnZ+unTpyc1NDR0mg346quv5MOGDbvt8uNVVVXCcePGpV187B//+Idm6dKlnW7e2Lx5c9hnn32mAoC1a9e2W86vqakR5ubm6nNzc/UzZsxIan2/n332mSojIyN9/Pjxaf/85z+vS5YzqAWysFUgC7xwmK5cYiFmAwKa9SghDAm7GeHx8PDcYlDaCOgWZ0E2fTbfjp6HhwcA8NZbb0Xk5+fHeb3etg+FVatWReXl5dWVlJQYfD4fsWvXLlVTU5OgsLBQW1xcXL5lyxbDihUrYliWxcaNG8PT09OdRUVFhrFjxxrffvvtDrsPLVy4MGbVqlW9WJZtm+fVV1+NW7duXUVRUZEhNjbWs2nTpvCjR49Kf/jhB8WOHTvKVq5cWbl48eI4AFiyZEl0RkaGqaioyPD000+fNxgMYgDYs2ePcvr06aktLS1twnzFihWRAwYMsJeUlBimTp3auHTp0g7bUp85c4Z+//33I/x+/3X5QJw2bZoxMzPTAgDvv/9+OyG9bt26iAceeMBUVFRkSEpKcm/evDnc6/USBQUFMZs3bz65fft2Q3Fxsaa+vv5XL+8F9fogLaLAeKWgBB64Lc4rjhWRdgAA55KBkITcjPB4eHhuQQgyqPMKPDy3LPZva8McPzRc1xpJ2e0RzfKhUcYrjYmLi/OsWbPm9LPPPtuW2dXr9U6z2UyxLAun00nRNM1pNBr/rl27TtA0jerqaiFN0yxJkpgzZ06j3x/o+FtbWytUKBQdNmMYOHCgfcyYMeZt27a1ZVY//PBDg06n8wMAwzCESCRiDx8+LB88eLCVJEnExcV5GYYhGhsbBcePH5enpqa6Jk2alBoZGelZsmTJWSDQ8e6DDz4wZGdnt5m6V1VViefNm3ceAIYOHWp/7bXXYi+Px+VyES+88ELcsmXLanJzc6/JEL6qqkr4zDPPJGq1Wu/58+dFvXv3drz55ptnli5dGhUeHu4zm82U3W6nFixYELt8+fK2Dn3p6enO+vp6Gghk3nU6HVdWViaOioryhIaGMgBw22232f/zn/8oJkyY0HItMV1OUH/SEwQBxicGQXDw2c1XHCsWBAQ04xICIt7FgoeHh4eHh+fq5OTkmGmavqQtcUJCgqegoCD2vvvu62MymQT33HOPDQBomsbatWs1kydPTn/wwQfbhLdAIMDEiRNTi4qKtA899FCHwm7ixIktxGUrV1FRUT4AKCkpUR89elQxefJko91upy4W2VKplLFYLFRjY6NQqVT6P/7445M6nc67cuVKHQDcf//91vDw8EtEeWpqquvLL79UA8Dnn3+u9ng87fTiwoULY2fNmtUQHR3tu5b7RRAEBwDnz58XFxQUVO/cubPs0KFDqrq6urak7YIFC+rlcjlzsTi+8H69RUVF2vvvv7/P4cOHVdnZ2Sar1UrJ5fK2+GUyGWOz2X61QX1QZ5ABgPVIAj/4r1xiIRK6A+OdAn7plIeHh4eH5xZDPjTKeLVs782ioKAgZtOmTeV9+/Z1r1u3TpOfnx/TKvby8vKaZs6c2Tx16tSUAwcO2EeNGmUDgO3bt58sKysT5+XlJa9fv/7UwoUL4wEgIyPDOGPGjE7baa9evVq7b9++0I0bN56SSCScXC5nWmtzAcDpdFL/n707j4u62v84/poZZoZlhh0EFdmEL65g7rlr5l6KW7uVN7Out71rdW+WectuZWZZmj/tmjcry6XbYllmlplbhqgog4qACMi+DMwMs/3+QIsMWwxE8fN8PHo85DvfOefznY7j2+P5fo+/v7/TaDQ6x4wZUw5w9dVXl7/44osNLpsAuO+++/L/8Y9/tJs4caLSr1+/ipCQEPu2bdsMixYtagMwceLEov379xtzc3M9X331Vcxms2bGjBkxy5YtyzzThpeXl8tut/8sWNfU1Kj1er0LIDw83Orr6+sCCAwMtFut1t+ctF2wYEHbuXPnZo0YMaLyk08+8bvvvvuiH3744ZM1NTU/vre6ulrj6+v7p7dEbtEzyADO2ro16G73uZdYOF1utPq6gOy0uM95nhBCCCHEbzEYDI4zIa1Vq1b2qqoqTXp6uv7222+PdblcaLVat06nc6lUKveCBQvCVq9eHXj6fU61Wk1cXJxt7dq1prVr15p+LRw///zzYSkpKca3337bFBIS4gDo1auXeceOHX5Op5Ps7Gydy+UiJCTE0blz56pNmzb5AezYscMYExNjPVe727ZtM1533XVF69atM0VFRVm7du1qHjBggPlMTddff33pli1bDp752WAwOOuHY4DQ0FCHxWJRp6WleQI4HA527tzpm5SUVAN1/8r/a9zuX+Yxg8HgPPO5hoeH15rNZo8OHTpYc3NzPUtKSjQ2m021b98+Q+/evc2/2vjv0OJnkJ2OuoCs8jjnOKAxbhO+AAAgAElEQVTKasdDb8Pl1KBSOS5UaUIIIYRogebOnZt9zz33xGo0GrdWq3XNnz8/Ozo6ujY+Pr5m/PjxCSqVir59+1YMHjzYnJCQYH3ggQeiN2zYEOJyuZg3b97x39NHQUGBx8qVK1vHxsbW3HLLLfEAV199demMGTOKunXrZh4/fnyC2+1W/fOf/8wBePzxx3MfeeSRyPfffz/Ux8fH+corr2Seq+34+Hjrww8/HP38888THBxcu2DBgqw/+hmo1WrmzZuX9eijj0ap1WocDodq4MCB5UOGDKk6fvz4b25ZHBkZabn77rujX3vttR8/jyeeeCJn7ty57V544QUVwJw5c7J1Op37wQcfPDFt2rR4l8vFtddeW/xHl300RNVQQm9uycnJ7vXr1zdKW//31Dxi+q+kas9Qxs/+vwbPySo2s/fTSXgH5VH56WSmvvJ4o/R9OVMUZa/JZOrR2O025tgQzaOpxgbI+GgJ5LtDnEtDYyM1NTUrMTHxnDOsQvyW1NTU4MTExKizj7f4JRYalTcAKr29wel6gJLSCtQ6Ky67F55ef3rZihBCCCGEuIS1+ICs0/oCdQHZbmt4mUVJcQkanRVXrRfePn/6xkchhBBCCHEJa/EB2cfoi9PpgUpnw2pu+EkW5aVldQHZ7o2vv77Bc4QQQgghxOWhxQdko68Bh10HOhtWc8M3NVaWluKhteK2GfAP8rvAFQohhBBCiItJiw/Ifn5+OByeqHTWc84g15QX4uFhx2XzxT808AJXKIQQQgghLiYtPiD7BgTW7aanPXdAVlmLAHBZ/fAKlBlkIYQQQojLWYsPyN5+frjsXqi0VmrKKxo8R+uqO+6y+uHp738hyxNCCCHEJW7nzp0+kyZNUs78nJKS4nXNNdckTJgwQbnnnnuinM66J2S9/vrrIWPHju0wbty4Du+//34AgNlsVk+bNi124sSJytSpU+Nzc3O1Z7dfU1Ojmj59emxycrJy0003tS8sLPSAul30hg8f3mnSpEnKpEmTlPT0dP25zt29e7d3cnKyMmHCBGX69OkxFovlx506zq5/79693uPGjeuQnJyszJ49O+JM/Q154YUXwmbMmBFz9vFVq1YFPfnkkz/brW/GjBkxW7duNZ6rrcceeywiOztbV1JSonn33Xd/8U/6n3/+ue+oUaM6TpgwQXnuuefCAWpra1V33313dHJysjJu3LgOH330UaPMdLb4gKz3NeKq9ULtYaWq+BwBWV0NgNPqi9Yv4EKWJ4QQQohL2MKFC1vNmTMnsra29sfA+fLLL7eeOXNm/oYNG0x2u121ceNGv6KiIo+1a9eGrl+/Pn316tWml156KcLlcrFy5crgDh061Kxbt840ZsyYkldffTXs7D5WrFgR2r59e8v69etN48aNK1m4cGE4wOHDh33mz59//MyOdgkJCbaGznW5XMyZMyfq3//+d9aGDRtM/fv3r8zOztadq/45c+ZEPvLIIznr1683GQwG55o1axpcf/rpp5/6fvvtt402s/jMM8+ciIyMrD1w4ID3li1bftau0+lk7ty5kYsXLz66YcMGU1ZWlue2bdsM77zzTqC/v79j/fr1ppUrV2Y8++yz7Rqjlha/k57exwOn3RuN1kZNyTkCsrZuG2pntRcqbwnIQgghxKVm9+7dQfv27QtuzDaTkpKKe/XqVfJr50RGRtoWL1587KGHHoo+c0xRlJry8nKNy+WipqZGo9Vq3SEhIY6NGzemabVasrKydFqt1qVWq5k1a1ahw1G3i29eXp7OaDT+Yro2JSXFcMcddxQAjBgxonL58uWtAUwmk/eSJUvCSktLtf3796948MEHCxo6NyMjQ+/r6+tYtmxZq8zMTK/+/fuXJyQk2M5Vf3Fxsa5fv37VAD169DBv3rzZ/4YbbiitX9ORI0f0a9asCZk1a9bJ9957L+SPfK6rVq0K2rZtm5/ValXn5eXpp02bVnDLLbeUTJo0SZk3b1720qVLwzIzM71XrFgRPH369OLTNXkYDAZnbGxs7en/N+bdu3cbZsyYUeh2u8ugbntqjaZxHtfb8meQvbW4ar1Rq53YqiobPEerq3s+st3sAZ6yxEIIIYQQv09ycnK5Vqv92U5k0dHRtgULFrS76qqrOpWWlnoMGjSoCkCr1bJ06dKQG264ocPIkSN/DN4eHh5MmTIlft26daGjRo0qO7uP6upqjZ+fnxPAaDQ6q6urNQDDhw8vffbZZ3PefffdjJSUFMPHH3/s19C5xcXFHocPHzbcdttthe+8807G7t27fbds2WI8V/3h4eG2rVu3GgC2bNnib7FYfpY6q6qq1HPmzGn37LPPZnt4/OG5VjeA2WzW/Pe//z26ZMmSoytXrvzZrPnMmTMLkpKSqs6EY4CQkBCHzWZTHz582NPhcPDtt9/6WSwWtdFodPn6+roqKyvVd911V+zdd9998o8W1JAWP4Os89TgrDUA4LQ1fJOeRm/F5VLjsjtA0+I/EiGEEKLF6dWrV8lvzfZeKAsWLIh488030zt37mx9/fXXQ+bMmRPx/PPP5wDMnDmz6Lbbbiu++eab47766ivzkCFDqgDee++9jMOHD3vOnDmz/fLly488+uijUQBjx44t8fHxcVZVVakBqqqqND4+Pk6Xy8XMmTML/f39nQADBw6sSEtL827o3KCgIGd4eLi1Y8eOVoArr7yyIjU11Xvo0KENBqNnn332+FNPPdXutddeU3Xr1s2s1WrdS5cuDdm8eXMgwMSJE4tKS0u1s2bNijWbzZrS0lLtggULwh588MGCM214enq6amtrfzYRa7FY1F5eXi6A+Pj4GoCIiIhau93+mxO2arWa+fPnH58zZ047rVbrjo2NtQQEBDgAcnJytHfddVf7KVOmFF533XWlv9XW79FoaVBRFA3wItAD0ANPmkymjxVF6QMsAhzA5yaTaW5j9fl7qDVqHDZPANzu6l+87nQ40OitOGq90KgtF7I0IYQQQrRABoPB4evr6wRo1aqVPSUlxZCenq5/7rnn2i5fvvyYVqt163Q6l0qlci9YsCAsLCys9sYbbyw1GAxOtVpNXFycbe3ataYz7VVWVmq2bNni37t375pNmzb5JiYmVlVWVmrGjBnT6bPPPjvo4+Pj2rVrl3HixIklXl5errPPjYmJsVksFs2RI0f0cXFxtpSUFOPEiROLz1X/F1984f/yyy9nBgcHO2fPnh0xaNCgytGjR1fMnDmz6Mw5119/fSnA1q1bjW+//XZI/XAM0LVr15r/+7//a11VVaU2Go2ukpISTVZWllfHjh2tJpPJS6VSnd3tj1Qqldvtdv/i+Ndff+371ltvHdFqte7p06fHTp06tbigoMDjtttui3/sscdyhg0b1vBM6HlozOnSmwGtyWTqpyhKG2Dy6eNLgYlAJvCJoijdTCZTSiP2+5ucpwOySmP7xWvVFRWo9Vactd7otBKQhRBCCPHnzJ07N/uee+6J1Wg0bq1W65o/f352dHR0bXx8fM348eMTVCoVffv2rRg8eLA5ISHB+sADD0Rv2LAhxOVyMW/evONntzd9+vSie++9N2rChAmKVqt1L1q0KNPf39959913515//fWKVqt19ezZs2r06NEV1dXVVWefq9fr3XPnzs164IEHYtxuN126dDGPGTOm4RuzgKioKOtNN92keHp6urp37141evToc557LgkJCbbJkycXTp48OcHb29vpcDhUf//733OMRqPrt94bGxtry8zM9Fq8eHHorFmzCs8cDw0NtV977bUd9Hq9a9SoUSWdO3e2PvrooxFms9ljyZIlrZcsWQLAqlWrMry9vX+ZsP8AVUMJ/XwoivIOcBC4ElABfwOKgF0mk6nD6XPuBXQmk+n5X2srOTnZvX79+kapC2DpnKeJG/wG1buuYtSDL6PV/bSddGZ6BgfTb4ZaHxw7B5H84hON1u/lTFGUvSaTqUdjt9vYY0NceE01NkDGR0sg3x3iXBoaG6mpqVmJiYnnnAkV4rekpqYGJyYmRp19/LxmkBVFmQ7cf9bhIsAKjAUGAv8BbgDq3xlXBfziWXlNzu4FgNrLQU15OX6hrX58qehUIR46K3ZzKD5/7i8bQgghhBCiBTivgGwymVYAK+ofUxTlXeBjk8nkBr5WFCWeunBc/4HQRqD8PGs9bxq3F243qLws1FT+PCAXnypAG2DBVmvAz09u0BNCCCGEuNw15mPevgVGAyiKkgjkmEymSqBWUZRYRVFUwAhgWyP2+bt46bTY7XrQW6mp+Hk+Lzt1Eo3GicvmS2CQ4UKXJoQQQgghLjKNOWX6f8ASRVF2UrcGeebp4zOB1YCGuqdY7GrEPn8XL4MOe60XHp7VVJf/PCDXVp8CwG3zw9imUXYnFEIIIYQQl7BGC8gmk8kG3N7A8Z1An8bq53x4+3lirfXBQ19NzVkBWeWs+9lp8cPL75zbgwshhBBCiMtEi99JD8DPaMBh80Gtq8Za/vPd9Dw86p6N7KwJxjNAdtETQgghhLjcXR4B2dcPp82IRldDbdlPm4W43W60XnXPPrZWBaMPlIAshBBCiD9m586dPpMmTVLO/JySkuJ1zTXXJEyYMEG55557opxOJwCvv/56yNixYzuMGzeuw/vvvx8AYDab1dOmTYudOHGiMnXq1Pjc3Fzt2e3X1NSopk+fHpucnKzcdNNN7QsLCz0AXnnlldDhw4d3mjRpkjJp0iQlPT1df65zd+/e7Z2cnKxMmDBBmT59eozFYvlxp46z69+7d6/3uHHjOiQnJyuzZ8+OOFP/2RwOB9OnT4/57LPPfM9+bdWqVUFPPvlkm/rHZsyYEbN169Zz/nP9Y489FpGdna0rKSnRvPvuu4Fnv37kyBH91KlT4ydOnKhcd911ccXFxT9ugV1dXa0eOXJkx4ZqOR+XRUD29jPitBlRaxzYKn961rWlsgIPbysup4baajUqn+BmrFIIIYQQl5qFCxe2mjNnTmRtbe2PgfPll19uPXPmzPwNGzaY7Ha7auPGjX5FRUUea9euDV2/fn366tWrTS+99FKEy+Vi5cqVwR06dKhZt26dacyYMSWvvvpq2Nl9rFixIrR9+/aW9evXm8aNG1eycOHCcIDDhw/7zJ8///jatWtNa9euNSUkJNgaOtflcjFnzpyof//731kbNmww9e/fvzI7O1t3rvrnzJkT+cgjj+SsX7/eZDAYnGvWrPlFWD169Kh+0qRJCSaTyaexPstnnnnmRGRkZO2BAwe8t2zZ8otZy3/84x+R991338l169aZpkyZUpSRkeF55rVHHnmk3a/tzvdHXRbPNdP7++Ow1N2AZ7f+tEV3VUkxGm8LdpsPaqrBO6i5ShRCCCHEn3Aid1VQQf6GRp3pCgufUBzR9paSXzsnMjLStnjx4mMPPfRQ9JljiqLUlJeXa1wuFzU1NRqtVusOCQlxbNy4MU2r1ZKVlaXTarUutVrNrFmzCh0OBwB5eXk6o9H4i+nalJQUwx133FEAMGLEiMrly5e3BjCZTN5LliwJKy0t1fbv37/iwQcfLGjo3IyMDL2vr69j2bJlrTIzM7369+9fnpCQYDtX/cXFxbp+/fpVA/To0cO8efNm/xtuuKG0fk1ms1n9zDPPZC1ZsuQXgf63rFq1Kmjbtm1+VqtVnZeXp582bVrBLbfcUjJp0iRl3rx52UuXLg3LzMz0XrFiRfD06dOLoW4WvaysTLt582b/BQsWtO3QoUP1E088kQuwaNGiVt26dTP/0Tp+zWUxg6z398NurQvIKq0VW03dMovKkiI0ntV1yy8wg04e8yaEEEKI3y85Oblcq9X+bKex6Oho24IFC9pdddVVnUpLSz0GDRpUBaDValm6dGnIDTfc0GHkyJE/Bm8PDw+mTJkSv27dutBRo0aVnd1HdXW1xs/PzwlgNBqd1dXVGoDhw4eXPvvssznvvvtuRkpKiuHjjz/2a+jc4uJij8OHDxtuu+22wnfeeSdj9+7dvlu2bDGeq/7w8HDb1q1bDQBbtmzxt1gsGs6SlJRk6dixo/U8PjI3gNls1vz3v/89umTJkqMrV678WcieOXNmQVJSUtWZcAxQWlrqkZOT49m/f//K9957z1RZWalZvXp10JdffmnMzs72vP322xt1R8XLYgbZ0+iJ3RIAgNrHRWleLuHtFaqKi/DQV2Mva4tWUwONODUvhBBCiAsnou0tJb8123uhLFiwIOLNN99M79y5s/X1118PmTNnTsTzzz+fAzBz5syi2267rfjmm2+O++qrr8xDhgypAnjvvfcyDh8+7Dlz5sz2y5cvP/Loo49GAYwdO7bEx8fHWVVVpQaoqqrS+Pj4OF0uFzNnziz09/d3AgwcOLAiLS3Nu6Fzg4KCnOHh4dYzgfbKK6+sSE1N9R46dGhVQ/U/++yzx5966ql2r732mqpbt25mrVbrXrp0acjmzZsDAV566aXMtm3b2n/tM/D09HTV1tb+bCLWYrGovby8XADx8fE1ABEREbV2u/03J2wDAwMdXl5erjOf15AhQyq2b9/uu2PHDt+CggL9pEmTlBMnTnhmZGR4t2rV6ni3bt0sv9Xmr7ksZpA9DVocNXXLZ9Tedsry8wAoLshHq6/BZfVHr/1Tn6MQQgghBAAGg8Hh6+vrBGjVqpW9qqpKk56err/99ttjXS4XWq3WrdPpXCqVyr1gwYKw1atXB55+n1OtVhMXF2c7s6741ltvLU5KSjKfWZO7adMm38TExKrKykrNmDFjOlVVValdLhe7du0ydunSpaahc2NiYmwWi0Vz5MgRPUBKSooxPj7+nLO/X3zxhf/LL7+c+d5772WUl5dr+vfvXzlz5syiMzX9VjgG6Nq1a82ePXt8z4T1kpISTVZWlteZkP5r64VVKpXb7f7ZpDbe3t7uNm3aWL/55hsDwO7du43t27e3LF269PgHH3yQvnbtWlOvXr0q7r///tw/G47hMplB1nioweKF261C5WWlLC8XgKK8Y4RFunBaAvHxbvgOTSGEEEKIP2Lu3LnZ99xzT6xGo3FrtVrX/Pnzs6Ojo2vj4+Nrxo8fn6BSqejbt2/F4MGDzQkJCdYHHnggesOGDSEul4t58+YdP7u96dOnF917771REyZMULRarXvRokWZ/v7+zrvvvjv3+uuvV7Raratnz55Vo0ePrqiurq46+1y9Xu+eO3du1gMPPBDjdrvp0qWLecyYMRUN1Q4QFRVlvemmmxRPT09X9+7dq0aPHn3Oc88lISHBNnny5MLJkycneHt7Ox0Oh+rvf/97jtFodP3We2NjY22ZmZleixcvDp01a1bhmeNPP/101ty5c9u98MILqvDwcNsTTzzRqMsq6lOdndAvBsnJye7169c3aptL/7qGyLHzcBW1x1XShzH3Psx//nkrUVd9R/Gem2nr0NDvH483ap+XM0VR9ppMph6N3W5TjA1xYTXV2AAZHy2BfHeIc2lobKSmpmYlJiY2WUgSLV9qampwYmJi1NnHL4slFgA6nR273ROVvoay/JOUnMhB511316i9OoRAf8/faEEIIYQQQlwOLpuA7OntxG7xRe1dhuVUBbnpaWgNdcsqbOZQvPy8mrlCIYQQQghxMbhsArK3UYO1KhgPr3K81d788Mn/8DDU4nKpsdb44+MvAVkIIYQQQlxGAdnfV4e1KhyV2kXruDDKT+XjYTRTazUCGryDzrnzoRBCCCEuTi6XyyXPaBXn5fTYafCmwcsmIPv5GbCVtwPA2N6PmO690PsWYq8IBbcTr8CAZq5QCCGEEH/QwaKiIj8JyeKPcrlcqqKiIj/gYEOvXxaPeQPw9jdgL2uH262iynGUIbc+yN6Db2ItCUNDBWrf+OYuUQghhBB/gMPh+EtBQcHygoKCzlxGk36iUbiAgw6H4y8NvXj5BOQAXzR2G1arAQ9NDsfSvgTAcao1OlU5GMObuUIhhBBC/BHdu3cvBK5p7jpEy3PZ/G3LMygAlVuDrcofvAsoKtqL262i+lQUXpoy8A5q7hKFEEIIIcRF4LIJyF7BdQHYUeGHh1c5Lo9DWKr9qXWH4etZA+rL5qMQQgghhBC/4rJJhV5+3gDYsoNQqV3o/U9iqwjGrjUQ5CvbTAshhBBCiDqXzRpkjYcajboG9fG27P1+DGHhx7AdCgTA1++y+RiEEEIIIcRvuGxmkAE8tRY0dgPq747zypE7CNtTAYCPbDMthBBCCCFOu6wCslFvp9rbl/a2cizVNfhafQDwCTQ0c2VCCCGEEOJicVkFZH9/F7X6UMIqzSzuWY1N7weAT0hgM1cmhBBCCCEuFo22+FZRFD/gXcAA2ICbTCZTgaIofYBFgAP43GQyzW2sPv8ov2A97hx/vMrdWA/sxqYLRIUDz9BWzVWSEEIIIYS4yDTmDPKtwAGTyTQAWAM8fPr4UuAGoD/QW1GUbo3Y5x8S0LpuxtjmFUrgRzso8w/GqClG5du6uUoSQgghhBAXmcYMyAcA4+lf+wJ2RVF8Ab3JZDpmMpncwCbgqkbs8w/xj6zbLW9Hx1Zoa53UGNsR7JEFxrDmKkkIIYQQQlxkzmuJhaIo04H7zzr8V+BqRVEOAYHAAOqCcmW9c6qAmPPpszH4RUcDpzAmXsEa70OEEEyw/mvQ+zZXSUIIIYQQ4iJzXgHZZDKtAFbUP6YoynrgOZPJ9LqiKF2BddQtqzDWO80IlJ9nrX+ah8GA0aOUMHMAg+//hE8XHiI40AoqVXOVJIQQQgghLjKNucSiDKg4/etCwNdkMlUCtYqixCqKogJGANsasc8/zN+rkopKHeY8OwAh0UHNWY4QQgghhLjINOYWco8DyxVFuRvQAnecPj4TWA1oqHuKxa5G7PMP8/ezk57nT/HRPDxVFfjEdm7OcoQQQgghxEWm0QKyyWTKA0Y3cHwn0Kex+vmz/IM12HM9yTxYRaj2OKq2Vzd3SUIIIYQQ4iJyWW0UAqAk+RCl343NpqaVZxaEdmjukoQQQgghxEWkMZdYXBL0V4xnzO7+FJ16F7/oSFBrmrskIYQQQghxEbnsZpDR+cCEZYTostFFXdHc1QghhBBCiIvMZTeDDEBET5j5Lfi3a+5KhBBCCCHERebyDMgArTo1dwVCCCGEEOIidPktsRBCCCGEEOJXSEAWQgghhBCiHgnIQgghhBBC1CMBWQghhBBCiHokIAshhBBCCFGPBGQhhBBCCCHquSgf85aWllasKEp2c9ch/pTIpmhUxkaL0CRjA2R8tBDy3SHOpcm+O4Q4m8rtdjd3DUIIIYQQQlw0ZImFEEIIIYQQ9UhAFkIIIYQQoh4JyEIIIYQQQtQjAVkIIYQQQoh6JCALIYQQQghRjwRkIYQQQggh6rkon4Ncn6IoauA1IBGwAX8xmUxHm7eq5qEoyg9A5ekfjwOvA4sAB/C5yWSa21y1NQcZGz8n4+PnZHz8RMbGz8nY+DkZH0L80kUfkIHxgKfJZOqrKEofYAFwbTPXdMEpiuIJqEwm0+B6x/YBE4FM4BNFUbqZTKaUZiqxOcjYOE3GR4NkfCBj4xxkbJwm40OIhl0KAbk/8BmAyWTaqShKj2aup7kkAt6KonxO3f+3JwG9yWQ6BqAoyibgKuBy+hKTsfETGR+/JOOjjoyNX5Kx8RMZH0I04FJYg+wLVNT72akoyqUQ7BtbDfACMAKYCfzn9LEzqgC/ZqirOcnY+ImMj1+S8VFHxsYvydj4iYwPIRpwKXwhVALGej+rTSaTo7mKaUYZwFGTyeQGMhRFqQAC671uBMqbpbLmI2PjJzI+fknGRx0ZG78kY+MnMj6EaMClMIO8HRgNcHqt2IHmLafZ3E7dOjkURWkNeAPViqLEKoqiou5v/9uasb7mIGPjJzI+fknGRx0ZG78kY+MnMj6EaMClMIO8ARiuKMp3gAq4rZnraS4rgJWKonwLuKn7UnMBqwENdXca72rG+pqDjI2fyPj4JRkfdWRs/JKMjZ/I+BCiASq3293cNQghhBBCCHHRuBSWWAghhBBCCHHBSEAWQgghhBCiHgnIQgghhBBC1CMBWQghhBBCiHokIAshhBBCCFGPBGQhhBBCCCHqkYAshBBCCCFEPRKQhRBCCCGEqEcCshBCCCGEEPVIQBZCCCGEEKIeCchCCCGEEELUIwFZCCGEEEKIeiQgCyGEEEIIUY8EZCGEEEIIIerxaO4CGtK7d293mzZtmrsM8SekpaUVm0ymkMZuV8bGpa+pxgbI+GgJ5LtDnEtTfncIcbaLMiC3adOG9evXN3cZ4k9QFCW7KdqVsXHpa6qxATI+WgL57hDn0pTfHUKcTZZYCCGEEEIIUY8EZCGEEEIIIeqRgCyEEEIIIUQ9EpCFEEIIIYSoRwKyEEIIIYQQ9UhAFkIIIYQQop6L8jFvQghxOTpRWsPLXx5h8+FTRAb5cH2vCKb0iEClUjV3aUIIcVmRGWQhhLgIFJtt3Lh8F58cyKd/XAi1Dhez1x3gkXUHsDtdzV2eEEJcVmQGWQghmpnb7eaut/ZSWGXlnTv60K1dAC6Xmxe/yGDxV0eprnXw0tQkPDQypyGEEBeCBGQhhGhmnx86xZ6sMp5N7kK3dgFgLkRtreShQeH4ennwzMZ0tBo1CyYnolbLcgshhGhqEpCFEKIZuVxuFn6RQUywD5M6eMOHf4Mf/gu4QaNnRsIY9P1v4YlvT+KpVfP0+C4SkoUQoolJQBZCiGb0lamQ9IIqXpncAY8110HePmrjbkHdLglN5WFUqe9wi2sjbZS7+ctuNy4XPJPcBY2EZCGEaDISkIUQohm9/30uwQYdY068SPXeVE5ldcX29hfAF+hiYgi580WMVe9z1dEX2dRmGOO/v5HqWgcvTklC5yFrkoUQoinIt6sQQjST0upavkw/xV/bl1Kz8T1ObAvF5dLicd8MHLNuxuF2cnL2E+Tvj8E14J8opV/xTfBzfL//INPf3IPZ5vcXrHIAACAASURBVGjuSxBCiBZJArIQQjSTD/edxO50MTH7NXK/C4SYSBbd2o5/FxaxIl/Lwt69+PrqXpR/9BFZL22jdvCrhNSe5Cu/eZRl7uX6ZTspNtua+zKEEKLFkYAshBDN5H+pedwclEH5xhO4PXS8OCCcmO3j6VYwjE7u7nQpGoizdhrrrr6TouJKjj+8iOqk5/HSa/nA61+EFG5n8tId5JbVNPelCCFEiyJrkIUQohnkV1hIySnnhZoPqD6l55NrOtAxaxKBoQbG3XkFAWE+1FodpGzNYs/HTr7rFkv7nDW4Hv4XYbPvJ6B6JcsLn+Mh8z1ct8zFO3f0ISLQu7kvSwghWoRGDciKomiBN4AoQA/8CzgBfAwcOX3aEpPJtKYx+xVCiEvNpoMFRJKPes9JLCEB1NomYPDSMfHeXvj46wHQeXrQe2R7Erq3Yd1rO8hx3UaxIYjez7yIffo0Qtp4s+DkIh6ywA3LYf1d/Qgx6pv5yoQQ4tLX2EssbgJKTCbTAGAksBjoDrxoMpkGn/5PwrEQ4rL36cECHjF/hLVMx6dXDMTPFsqo25J+DMf1+YV4cctjg2ib5EuN/zVs6TuV4hWrOHmoE+6wHjyvXkxM1V7+8uYeLLXOZrgaIYRoWRo7IL8PPH761yrAQV1AHqMoyjeKoqxQFMXYyH0KIcQlpcRsIyWrkIS0w5j9jXg5hhKk6InsFHTO93hoNVwzozuJw9ui0g/k00F3UP7Zl2RtDcBtiGGFfiHWvIM8+WHaBbwSIYRomRo1IJtMJrPJZKo6HYLXAv8EdgMPm0ymgUAm8ERj9nnRs1VR/dVCyhf2oXp+e8pf7E3pe3/DlbMb3O7mrk4I0Qy2pBcyumYH1nwN2xOHoHd6M3xq4m++T6VW0X9iPP2nxOGp6srGIbOoSDvCkU99cNUaec/4El9+f5APUk5egKsQQoiWq9GfYqEoSgTwFfBfk8n0NrDBZDLtPf3yBqBbY/d5sXIWmih5sQ8+Xz/J0TInn1R3ZH+ZFs+0NajfGE7u8/3I2fmBBGUhmklaXgXv7M654P1uPnyK63O34tB44PLoh2+ciqDWht/9/sShEVw9vTM+7ji+GHwfpeVVHP3MiLawilXGV3nyg33klMiTLYQQ4nw1akBWFKUV8Dkw22QyvXH68CZFUXqd/vUwYG+Db25hnCXHsS4dhstaybKYV/C8czPDHnmf1n/7lM9Hb+OdkHtxVxfR7rNppM0fxPe7v8UtQVmIC+ZUpZVpb+zm0fUH2GoqvGD9Wu1OfkjPIiCzlAOdr0TvNDBk7G/PHp8trmcrxtzVFaMrgu39HiRfpyFrSyCRJzJ4RLWS+9ak4HC6muAKhBCi5WvsGeTHgADgcUVRtiqKshV4AFh4+tf9qHuyRctmt1L8xnU4nE62XPkWM265hc5t/Agy6GkfamR8b4Xr//oUvg+lsi1uNm1qM0n6ZBz/e346e47kNXf1QrR4breb+9fso9rmpG2AF09+mIbNcWFubttxrISp+RtxWDScDO6PKthGm/iA82orqksw42YlYnS1IqXnw2QGGcjeFsLoE98Qlfshr3+T2cjVi+bmtLsoP1VDaX41DrvckClEU2nUx7yZTKZ7gXsbeKlfY/Zzscv76ClaV6ezot0z3NKtA8VLX6d6+3ac5eWovL3QtWmLd6+eGIcNY8CNj2GrvIOs92cz/sQ6jv53B6/EP8Vtkydg0MtjqoVoCvtzK/juWAlzxnYkOtiH21bu4fO0U4xLbN3kfX9x+BQTc/dRFhSJt7MNSYPDUalU591e24RArvlbNz5avI+MxL9jPfw8fOfmsZ6ruXVzFEOUUDq29m3EKxDNwVptZ9f/MsnYc4paS90W4yq1irAYX5TeYcT3DkOr0zRzlUK0HLKTXiNzlmYTvH8Zm9QDuaZ1e46MGU3RSy9x+OQ+dnrkcMiSRdHOryl4ci5HBg/hxF9n4Ug7SuztK7Bdv55QvZ2ZR+5k9cK/c6KkurkvR4gW6e1dOXjrNEzu0ZZ+7YPRqFWYCqqavF+3282+fYfxOVnDfmUATo2DHv3i/nS7reP8ufbebhjcgZzoOJsf2gdQtNvIosyX+Oea7Rdsdlw0jcLsSt6dt5tD3+ZhjDVi7xFASRcDzjgDxSUWtq42seqx70jdcgKXLKsRolHIFGUjy107m1C3Ci/jcIoeuI9jYR58OKkbkSFX4qHTkKk6zK7arYSXarg1J5LEXXswf/klupgYAq6bit/0zZR98jB3nljBlsUHKL95JV1i2jT3ZQnRYlRa7XyYmsf1nX0wFuwGn2Cigrw5Utj0ATktr5KxRz7Ajie1+m74dXCj82qcr+GwGD+uuTeJDxftoyjuUb7TPseVKcXMrn2cl+IjmD2mc6P0Iy6skpNmPly0D7VOzXcxHuwu2EFnyw5izXlUuNyUePpSaehJZ2cvrO8dYdfmHIbclEBcx3M/MlAI8dskIDei2oLDROR9xsaqq4lcu5QfEnpRFn0dScf1cLzunEQUevpMxBpXwNLE5VQnWvlbaV/67ijn1DPzKVzwIr6jRpEfF8ugE69z9M2RfJ+8mh6JXZv34oRoIdbvzcVoL+axzDvhcDlovekasYbUU+Ym7/uLQ6cYdPIQuRGJeLg9GTCsQ6O2Hxbtx/j7u/Hhy/swRz7KVu0LDE7NJ+n1v7IzYR19YoMbtT/RtKzVdj5enIpTDSs0BQzKWMLKvXn4/+wfF/MBE5Web3GofS8q3JPZ9PI+3gzT0WNsFKOSWqP3kKUXQvxREpAbUf5HTxNo0xOy4ygHlfFUhF5FWIiRK0ZGEtLOiMvhpjCnkqPfF5KV6mSq+jEssQUs813G4uRq7rn5egb/YKfq4424PqihOr4PAcFp+K69lr3WN+nee2BzX6IQlzSXy81/th/nFd+38HBaYcQzsOkxRql28r+STtgcziYNE/v3HmBkoZUjA/rg8qkmJiGs0fsIjfRlwgNX8OGifVSHPcIm3UuM2HOc7L9NpeydDwnw82n0PkXjc7vdbF2dTnWFjY2GbB7cvZBOJ+yUt1MT2L2YoEAH+LXGbvMkM7+aslN2lKzdGA/vxxQ3ARX9Obz8IK+GpDN+aDS3XhmFj9zXIsTvJr9bGomr5DhtT37Cl2kJ1Pr3pzT0KroMasOAqfGo1D/dgOPfypv4nmFUFltI+TyHQ9/BDa7HKY/OYrHfG6zq6s29Ux6lz95qyt5+m5LvfFAb3LTNvpHUqudJvOq6ZrxKIS5tX6YXEl++jd66HTD8KehzN3z/BleUb8Ll7sTx4moSwprmhraiKhu9U9Zi1QWgVscR2k31p27O+zVBbQwkP9ydDxelUOl8kA8GLGf8tn2kTBnDoPWfoPGRkHyxO/ZDEcd+KCLdUMl93y4gpNKJo18VfbsEwOCFkDAGPP3wADoBnWqrqT6+jS8+WYJ5+7t0PpBKRvyNTCg0kPvWVwz7NpJ/XNP5gtyIKkRLIDfpNZK8L16mvFiHV0lbsiNHEdcnhAHX/Twc1+cb7MWgGxRunteXTv3bEJAVzS37n+KKY6OYu+NFZgV9RuXKp2nzystoWsdRutuAzyOPk/7UX3G75CYMIX6Pf2w4wL8+PoTL5aam1sGiTQeZo38Hd3ACls4zOJVVRWXsNIJLvqetqpCMJlxm8U1GEb1PHiIrqgcq1Awd1r3J+gLwC/Fi4t97ENrWD1/NHXwwbAShOaf4btxQ7MXFTdq3+HPstU62rzuCw6BmzHdzCTQ7UV1VTpdRV8Nfd0PSDeDp9/M36XzwUUYy/oH/MeWdPWQ+Gk2R9t8Yyw/SRhvLrMOZfPv0q8xetQOzzdE8FybEJUQCcmOwmQkwrWH/gSjSEm7CKxSG3tjxd80OGQI8GXSDwo1z+6D0CKNdViK3ps4jdH9n7vzkbzyp/RT1qkUE/Hs+Vg9P3G9vwTSkN+Zt31yACxPi0tYmwIvl3x7nb++mcNdbP9CnZB0R7nxyE/7Fqsd3sfbf3/POZ12odvozQH2Qo6ea7ka9H75Pw7PYxomwntQGlxMa7t9kfZ3h7atj/APdaN8jFF/nNXwx7Ha8iy3sGTuErBT5DrlYpXyeg7nUhkfmm0SUWikeWk3X4TfCxBWg9frN93vrfLht7Avc/fIm8mbkc8L7HSoNkcQY+3DVf5byn5vu51DqkQtwJUJculpMQHa63Ow+XkpZde0F79u8ZzWlOVAacC0OrTfX3tkLD+0fW8foG+zFsFs7csOTfYjrHoZyoi+37puH/etAbnnvL7zo/x3mNW9QMDAGD3M5J+64k5zbb8V66FATXZUQl7672pfzZE8nGw/kYz36DY9q15AVdAcfr9egrzhJp9y1OO0u9tTcQJJ3MUcKm2YG2ely027b25i9W6NRtSWye2CT9NMQrU7D1dM70Wd8DDpnd3YPeBib2o+yW+5k/bKHqHVe+O9McW5Ws519m3OwaYoZemgne3s7GN5/OIx6Dv7gkhx/T39mD3ueO+Y8QtrgtZT4FJGhTKOVKwrLzTez/a4Hqc3ObqIrEeLSdkmsQT6cX4nT5aZzG78GX/8hs4C31q7DUn6KvdoruGdUN27qE3nB6qv5bgXpWVdQENeHuMH+BLUxnHdb/q28GX5bJ3qMiiLl8xzUu/qh5PflZJaJeaELMIzxI7xLX+7fvpWa73dyPHkixpEjCb3vXnRRUY13UUK0AKc+epORJ3Zyi9IK1ckfOK4ay6bDo/CqzCEi8xXKfWy0zg3hUJuhJPkvJ6/C2iR1HDhZwRUnDpDTbhguXAwb3LtJ+jkXlUpF95FRBLc1smm5BlPiI7TOeYMOL37Csn076Pv4S3QP73lBaxINS/kiB7vVyRWpyzgWDiN7BaG6djGoz38+K9Y/lsXXL+fLXp+zYe0mFNVQioMUYjM+JGPkaPyuHk7wjDvw6tSpEa9EiEvbJRGQl3+dwQep+cwcHMc9w+J+dpf519u3E/L53byoygIdmLQdmfTR3xkUH0JEoHeT1+bOS6Em/ST5rWaCRw1DJwxqlHYDwnwYeksHel8bw8GvT+L9rY626QnYjldzOHAX0wZ1pEPvbCbvrsW9ZTNVmzfjP3kSwXfeiTas8e+MF02kMB0yPoOCA7ir8nDU2qj1MFLjFU6NXxzu1kl4R3UnyM8PzTnWs4tz2+u4lazSCbQ9cAQ8byS3pBVeNSeIOrqY3Pk3syd3B7e+8Dkn2wzCZQ6hWGtrkjpS9h+ld2ENeUoP7OHl+AU0z01ykZ2DmPqPXnz8Wgon3LNw+X/CkK8+44ecaXx+fzKzBszGqDM2S20XE4fTxZFCMy63m47hvk12M+XZrGY7+7fmorFkEFRxkhPDbYROfet3Lav4LSqViqvaj6DfQwNZ/vli8r/yxR13HZkxV9Lp+w8wb5qEYfBggu+aiVdiYiNcjRCXtksiID+rXsI/Dd8w++sbGbl/ELf2iybMV0/h9lVMzFuAXaXnSLfl5GXrCc5dxTz9ShZ9GcMLk5v+N3nJN8tJyx9MVWQUVySHodU37iOifPz09L4mhh5josg+UEL6jnw8D/qQlD+UEuNJlnT7hsJ+e7lpey1XvreG8rVr8Z+QTND029FFXrhZdPEHuN3UHviM7A/XUpZtx1JroMZlwOaMRussJ0B9gna6fYT6rUXva8eh0ZDqjiHVsyflrQfSrvOVDO/cGl9PbXNfyUXvZP7TuLRdKfYaiNPuIKjoE5SMz3EtfpybBk3hipKrOfrGRPS1JVRZwyk3m3G73Y0eiDw2r8Hs3Ra1OoSYbs27ss0vxIupj/bmy7fSOLp7DNZ+7emw9y0i/rGOWVO3cv34fzIiasQFC4UXk+oKGz98X8Abe7L5uqwKlwpu6RvJU9demE1W9m/NxWFz0uvAe3zVHe4YPguC2zdqH14eXvxt9MOcGpDHW6tfx5mWyIEu9+B07qfX/k8wT70O7169CJp+Oz4DB16W40AIuEQCckHCTbjyc1lmX0iuZQ0pn7YjWnWCEeqTHPHpT6r6EU59aketAZfzboI9jvHN3jRyr4qjbUATziLbrZi/2cipkGdQaUvpPXhIk3Wl0aiJSQohJikEi7mWjF2nSPvWm6DMNrg0yeTEbmdj0k6G7MtjyLr3KXv/PTQ9uxE6bgLGoUPxCJJdlS4GRenZ7Fj2KSero3GpbgQNcNbkUBZwyFZGQE4GAaVp+LiO4eVtZqT+Y3TeH2L7yoPvPaMoDutOqwHX0ndQP3TaS+K38gXXQx+N1/o1VHqtQecA1Gp08x+h06ApAHQI7MD/rggkLjOTAn08rZ35VFod+Hk13l8+XC43EYd3UhDWCzcuBg9s/qUMHjoNI27vSkRCLt+8VcsPvR8l8vgHPPR/23n/8INsmPA+D/d5lPYBjRvOLjaWqlqcDjcFmRWk78wn+0AJAD2Anj4GTl7hy6od2fSNCWJUl/AmrcVuc7L/qxN4m004yKdtbyNeV97TZP21MrbmwZlzKc438c5/1uDO7cGerp2wsJ1+BzdTc+dMiIum9cxZ+I4cgUojm42Iy8sl8afqJ29k4LA8jC48l2H+uxjmSKFa054vfR7l0P4QXPYa0oM/YnfUdm7zmEHxToXx9h/47mgJU3o2XUB2pn/KgbwBWMJa0W1SIOoL9E/gXgYdicMi6Dq0LfnHKjj49Uk8ftATVjwUTasM3piYgn/+HgYeSMH1eAr5c57A1VUh7Jpk/EePxSMg4ILUKX5itznZtmwLh9M0eNjbElq0jeOBBzme4KD1FYm0DVPwIwBbqYvqHBuWTAf5Xl0pCOsNbheeNZmEFh0g7OghfKrzCKeQcD6FNZ9yVA0ufx88o2Mwdu2OZ+fOeHXujDYiAtWfWLfYElzxxAIK+w7D8uF7qHx8iJ0+C2P8T7vXqVQqAq8age8LxznVqieK6wjFZlujBuQjhVWEFhRzuHs3bCHl+PtfPEsYOl7ZlrbxgXz8wqccjb6BolbduXbPO5Sm72Tu0AnEDJ/AXUl3E+bT8pZtbd6ajendYz/+XOsBJzwLGeX/OVGOcraU/IUrDpWSHm7k6Y2HGdk5rElnU9N35GOrdtA94yM2X+lm9tiFoGn6P6KDwxX+9tgcCtN28/F/t6Iq78f3XXtTptlCn31fwoMPYvr3E7injKHrtPvwMjb901eEuBhcEgF5SEc1pv9t4aSzH58VTAYm//iaR20G3dLWcXVFLk4PNcuHLaaL90PoLO3Zc6yEKT0jmqyu3E9WUOR3M25VAX0HNt3s8bmoVCpat/endXt/LFPjSN9+koNfWGhfGI/aYzzb+x8jzzuD8Lxv6Z2ejmbeMxQ8PZ+yK6LQTxhHxzE3YvBsmk0RLgZut5v8CitZJdXEhhho5evZLHVUFFn48OnNVFq8aHPyS0yBn5Fz1zBu7PUMHQI7nPMPXZfLzamsClK/P0b2gWhyfNqTEzUBm6aKSu1R7KoT+NmLaFV2knalpwjI3Edtyn5Urrr2VJ56PNrHou/cCa+uXTF0SUQfE3PZzQSFXj2a0KtHn/P1/j2SKal5EIBop4OiKhuxIed/o+3Z0rd8TVtVCC5ta9p2dTZau43FN9ib659JZu+qdaTsimBXr38QWvAtf3//YzK+W8f9g/5Hx6GTmNZpGu182zV3uY2mZwcPKiJSyCjTolPnc7XXl3RRmXB7+qPqeA3u7D18kTaAuw3fM72iE4fyK+nUuuEbxf8st9vN/q9y8bLkYlEfp0vveLRR/Zqkr3MJ7dSL25/txfZNW8j6LAMPyygyuwwiXbeH6LTPiV+8hrTla8jqE0nwtcn0GnYj3jrZcEa0XJdEQFZm3EHk4AzSX5hPRZoFi2coKrcL/4oj+KrL8R85Cq/ERMo/+pA7Pt/Ju2M3EeaagfnQcSCpaYqylLE/1QeLXwjRI53Nvk7Ly6Cj24hokq6O4lTqYQ5/uJVj+REEmDvi9hjL3n5V7A84ieH4N3T9/hDG71/mh+deJnVgGzTjRzEg/mo6BXdCrbq0ZhxLzDZe2pRBVIgPccEGtC4X5VkZmI99j2dJCm3c6bjQstjVk1Ptr+PFG3piuIDbrRbnmtnwzDe4bBCWt5j1V1fx2LTVJAQm/OZ71WoV4TH+hMd0hylQVWolN72UrMNF5GYYqa3oBoDZCIeMYIupwaKtwkUVHvYyvC2lBJYX03ZzKn4fbEFvK8OhcVEUoqc61ABB/ugDgjCEReDfLo5W7bsQGNsRjWfz/EWiucQHKnzqlYfKVUug05Oiqsa9Uc9z6zpKAzsCMODKJvo++pNUahU9bp1Eh147+faNrziqGkJhq960y93CP1ZvJm37u9wzYA1hPfszKW4SgyIGoVVf2mvgS0/uoCx3GfHeVkLcDsoqQthSmoTPcTPa9duobRNCYHRnSvL86WzMYlNaXJMF5FxTGeWnauiQ9SVb+sITY15ukn5+j34jhtLrqsFsXP8FFdtPUGUdQF5sP4o7ZmAs2Yvy7S50Wxeyz/ASed3bETh6DN1H3Iyfp8wsi5blgiQFRVHUwGtAImAD/mIymY7+kTY84+NJWvYf7AUFWFL346qqRNvmRry6d0et0wHgO3oUqVOvZdSWg6T2stCmwkxhpZXQJpg5tO15nxLNKFSOQkaNndLo7Z8vlUpFWFJHwpI6MujkPk58+DY5RxzkmJMor+iMU9WZ1CvdGHyq8Tq5j6Tt+9F9uZqNXVYwp38wXToOZnDEYHqE9cBXd/HPLhcfOEjrL4qxouXAz15JApI4qaqlnfEQ92n/Q/7xr7lj2XMsu2MIxgtwg1vJSTMbnv4GlcWCruIVPvtLF5Zd+zyeHuc3Ho2BnnS4sjUdrqzbKtZabacsv5qKIgsVJTUUlZZRUWakpMSCvaItGp2OylA1h0LPtOBC7SpHW1uGp6UEQ04xHodLUVv2U2v5iiJbGYW4KQ7SUBzugzkiEGtMOJrYaPyj42ntF0GEMYIwn7BLPhzVp9VoqQj3xqcmF5U+kGJz4wbkoMzDHAq9Dqt3Fa3bhDRq243Np2MfRsyNo+tbT7I7LYbsdmPJbjuMmJNbmPfWlxzeuZMX+3/Lv9oFMy52HONixxEfEN/cZZ8XldWXPl+r0bjOLMOzYfYs5Hi0F2YfLZ3ScvG1fEVWVDL/1L/Kk2ldeGB401zrwa0n0Tiqcdf+QKe+3fEIjGqSfn4vrUbNtZNHYE92sfnz7yjb+gPVlVEUGTpSMeAaUGfiV5JK/Pa96L9+jQP/eo0jSSHYB/ekXd+r6BzShTaGNs0+cSTEn3GhptLGA54mk6mvoih9gAXAtefTkDYs7JyPMVN7etLu3ocovPseUJkIsMey63gJ4xLbnH/l5/DVmq+pNkyHyGOoNRfnrKu6TRKRdyURWXUKy953KNi1mtpSPQW1CierO1LocyWnuvYH3LQy5zHtfxkUb8lghfIJ90fV0j4wnm6h3egU1Ilov2gijBEEegZeVF96WqMVQ+UHOPUG0IJK40DrrEVf60Jl12PVtCHH3Zkc9UIGGl/jr0VzmftBIC9c16NJ66r5f/beOz6Kcu3//8zMzvaWbDa9t0koAgIiGpQiKIaWogioiBz55fEockDPI55HlCMKlhyQcgQFRRQbKYrKAQugyBGwRKQkm0Aa6Ztstved+f0RwhcIgYSElp3365WX7Ow9933tmOx85rqvYnZj+yt7AacHLsdq/DH7drw99eVevXZiGY2wRDXCEi/sufF5fThebsSRkha0Vp0C3VwHic0GgZuCWxqHuoCh4HB2uIUXFNsK2m2ExGFEQKkJoiNm0J4ToLx/wCg0okpigUHuhFNFwxekAq0NgSg4GLRKDalaC5k2DGqZBkqhEhKBBHGquMt+ILia+GLCoDiuh0mZiOZe9CC7vT6Imq2wxCdDGnuDNOSQaRA2bzWmHs1HVUEu/mi5C+VR6aiIHI/IxgP450e7UdcfWD90CzYf24ybtDdhasJUTIiZAPUN5EWMvW0CfD8fQMOvP8FkN4AMCkL/m0dhuKgtvGbvoW1QzH8D4KaBM4egxXEKpwz2Xi8f6rC4UXFYj8j6A/hxmA//l76qV+fvCTRFYuLENGBiGgyNDfgj73O0nnBD7+gPvXoIDKPuA4lqKA3HcdMvv0K6bwcM8h0oSCJwNEUCdkg/JIcNRJI6CQnqBMSp4vgygjw3DFdLIKcB2AkAOp3uAMMwV0ydBN45FuWBEsj1JTBrBuPw8SsgkB1GNJqGghJbkP3XB3p37iuBIgSS0QsQN3oBnC3VMO3NR0RJHu5yFsPtDUedJxXl9HDUy0aBJcbgtnoW4yqbwAobUaE8ibfDf0BNYCNAcFDQCsSp4hCjjEGkIhIxyhjcE3sPKPLaxLWqFFpEWo9AfcwAsYsDAHgowKQgYZVToDkW8UYpTiY+gj3sX3G36lUEHNmEL1PDMXlQ+BWxyedh8eXSXXC6BYB9Db6dmorCXhbHXYESUBiYrMHAZA2A8zxfXhfcDaWoK9GhrtqA1mYXbCYWbgcNj0cKuzQepgAFWAgvOLcYANnsAl1vg9BthshtBu0xAb4GNJMuVIlsaJW5YLhZgn/OX3vFP2tPkSQmQfx7CxrY4Wg2916zkPLf/4RVFAeQEqQOurJVEHoVggAGZiMm+R5EHFiPuu/+iWLLWJwIvR2nQu9AoKkUf/98P7gBHN4f2oqX9C9h+aHluD38doyOGo1REaMQIgu51p/iklAqFSLGpeNCd4jRt9yH7VO+Q+AfJSgmb8Pdgb/gt6rRvS6QS39pBMcBcuMBBN56M2hZUK/O31sEhoRi7F9zAACu6iM4tmMv6k660GhLQEtAKlpuzYKYbYTEdgopjaUYWVoO0We/ozzsd5REcNgZSqBaS8AZGoBoTTziVHGIVEQiSBKESHkkopXR0Eq015UDhse/uVoCWQnAdNZrH8MwAp1O5+3thQiKAjtpLPp/dgA/awBzhbm3l0DpV5thld0EjjuIIOVlOcKvGWJNNG7J+huAv0FX7xtOqAAAIABJREFUZ8TRX/eCKtuFQeZ1SEId6hwMig23oMmXCIc3HuHWQQgvBSivHRJXLUiiEQ5xExoUJdgTuAPloT7ETYtDP02/a/J5NDHJGLP9JwCAz+UC5/WAksrOfMlyHIfiql8hfGExlOYZ+IZbiEeCn8Nfdx7AvQMzrkjzjT1v7kazTQapcSPevZvGN9lvXn9f+gIRhJEDERs5ELHnveXxsagzOlDTake93g6z0QHWZAJpNoO0WCBwOUB77KAdDsDBweMWws0GwsZFwAMxvIQEIEjQAFJ///MafLjuo+k3BKTzWwAkXPrWXpvXtOcrGAIYcGAxYugN2KVMJIfgzqcRfWsOlP99Fyn7nofe3B9HiLtxTDUHlMuBKV8exmPRw3FkjBcFrYfwQ80PAICkgCSkRaRhWMgwDNIOgkp0ZeJ3ryTj5q/Atw8shSFwCiaQx7CnxohpQ3rX4VLyYzXklmocTKnHX6d+3KtzXylE0QNxc85A3AyAsxlQd/BnlP5SgZYmCkYqGWWKNh8Yxbogd9QgtaUKw6tqIXXoQbuNsIn/QF3g72hQ+VAtJ7BXChgUgFEjhiAqEkGKEMxImYEx0Vc/+Z2Hp52rJZDNAM7eVyGvhDhuJyY9G61bvgaFZohben8758C3zQABCEdfnwk3XYUJV4OZMg3ANLAsh/raStiPfI3U8l0YY9gKgduJekMMjltHoolNgl0QAbcoHiAoaGzAaBtwT2kzhCkccHUTri8IJRIBItE5xwiCQL/Y4WDe24X/PPYA7N7Z+E/LI8hkt+KbYyN7vbZp8c5j0J0gEaj/DmvuOomNkwsgEYoufeJ1BE2RiNHIEKORAd0pg8txgNMEztwAV3M9nPoayBNHXykze5XY5OGo8bSJE8rYewKZ/PMXtKruhktlhER+Y/0enINIDvWY+VDf+QQ8B77AoB83QGO0QWcdjXLtbah3iUBvN+NxIgqKJBlqUh3YRx/CB8c/wHtH3wNJkOiv6Y/hocMxLGQYBgcPviG22mXyABCpQsACSJwkKqqrAfTeg46h3obmBhcSGg+iODMeSnnwpU+6ziBkgYgYm46IsW2vOZ8XRl0Jqv4oRUOlCa0tUtTL0+DjztqN4lhI3XqE2ZoQX9cMsdMAkdsEocsEymtAs7IeFelKjHmaF8g8146rJZD3A5gM4LPTMchHLjG+R4QMGI56IQGBuxZKKhFeHwtBL8UJe112OHw3Q+I+jgkT/9Irc14PkCSBiKg4IOoJAE8AXhdQ9V9EnPweERX7gMZ8gPXAxwlg9IaiwZaIBns8rJQKlPzSFRmuNRRJ4d5/f4jtD/wdtSFTEcd9g00/HOtVgWxusmBffiXk9ga8m/Y1Hh6yEv1Cej/+/bqFIACJGoREDXFICq7/yOP/R4w6FsclBgCAyGLrtXkF1adgTo2FPOqK+QOuLiSJxNsygNsyUHFSB+G3b2FK/XxYLMnQuW5DAzkQtZVyoBIYysVgnPBeiNR2WJRN0Jl0yKv9CO+K3gUApASmYMP4DQgUB17bz3QJBkwdj9otXpRYBkLRcAhe3929dj85cagO4FjUKouQlX79hyJ1BYISIKDfAAT0+3/dB1mWg1nvgFlvg7WxGZYGI1obOBia1Wgwp8Lr6yhF4ioPXk2zeXg6cLUEciGA8QzD/BcAAWDOlVyMoCi0xAVAZqqHUzgQVXobEkJ7x1vxwyeb4aVT4CH/e2W79F1rBCIgYUzbDwB43UBrJShDOTStFdBY6tHf0gh4moG46zszvx1SJMLw+elofbcBJdz9CMdOlOtvRXwv1LzlOA7fLPsPfFDgQNQHkAfdh5xbx/aC1TxXA5qk4VK4QLBeSFxesCzX48Y/nMcDj10FjpQgNqnv1YuNS2AQl7AKLvdraPh5JzSHCzGseRMERhFqDKmoc6WglY6H0RkJVh+GCAzCTC4bYk8rhFQrPAEWUGOu/0qj8beNg3T9ZjjoZAzk9qK00Yp+4b1T4afsxxNQmWvwywAWc2OubOLwtYQkCahDpFCHSIEB594vOI6Dy+6FzeSC3eSGtdkKl74BUUPmXiNreXjauCrfTjqdjgWQczXWaocbwCBkXy0MWhKlZYZeE8jlB6ygvE7YRt7RK/PdMAiEgDa57ecGJmLMBARvfhaVxAQwgi/xXXEj5vWCQD7y4T40uoPAerbhl1gVdmU83QvW8lxNuCAVRC4D5GIKJocHAbILJyh2FWPJMVjlsQCAwf2ZXrDw+kQkFOLmO6cAd04Bx7KoPXEY1NHvEVdzEMNMhVBbmmGwRaDZFQODOwrNbAwsVDjYpkA4TtRCNfj6LidJkCTEChPsvn6IJ0txpNbYKwLZpLfDaBMh3FyEsLQHe8HSGxOCICCW0RDLaGjCASAQQN9pSMNz43L9P75fJoHDRoL7z1YAQE2lCRjV8zltDjs83n5QWg8jYeSjPZ+Q55pw60PjUfeRGZaWO3Diz8PAHQk9ms/aaMSBH0yQuhqx4faDWDR8CzTyGynAgAcAiGAtJGUtcMqD0Gp391ggtxz8EWZlLHykE8FXqMHE9QZBkohMHoLI5CH/76DbDlGtDuTJY5A16KAwFEFhyYfEawIdsuvaGdsNIgZFoeUPGk6zDMWnmoDhPRdwJ36qAACUaw7jsVHLezwfDw9P79JnBXJi2r2ocawCOA+MdfZemfOHHdvBUcFwCspxS+z1HTfH0zmBY0YjbN0/4BZOgFBfAINtEgJ7IIZ+WPElvGQo9sV/ilDxHDxw8w1YrYAHdGgoBEdaYPLFwOzsecyw/dgfMCvvgDfAAuIKVEu5YRBKoYkbAk3ckEuPvU5hxozEn3/o0GqNBlH3B4Ceh0NU/HgUMqsbxwYooZH4xwMUD8+NxPXZ4aIXUGkj0KoChJ56+Fp6RyCf+m8NSJ8btVFxUEn7Ticxf4OgKKSMigY4FoFOGXaXNF32XFXfH0alIwKsezeOB8uxZsqj119JN54uIQuLhNjZDBZStJp6XgvZXlUBizwC6pieh/DwXFuCksJBsB5wjkgEtRb1eD6v24cmuxpiewmS0/jdSB6e65E+K5ABwBIsgcRWC5HN1+O5WJaFzxwFlVkHwa339oJ1PNeSqGn3IMBYBqXpZhwoKb2sOViWxU8fHQXtNiJ/6HeYnrwYUYF9LxnLX1BFxkPsbCvx1trs6PF8bpMAICjEJ1yZhjQ8Vw+SJCAijBCw4Qj06WB392yHoe6PcnAEjQZ5KeYOn9RLVvLw8PQmfVog+yI0UJsaIfRRcNo8PZrrt9I/wVFaCNkSDE24cKtrnhsHUXw8gl3HQEMLc9U34Diu23Mcfe97GOkw1Eq/gg8ZWDCm72ah+wNBUQyE7rbGQmZjz9pNcz4ffJ62jmhJ8TE9to3n2qMMIOEWhYFja1HR3LNSgBU79oFgfSiPdkAhkvSShTw8PL1JnxbIdHwiFLZmAEDVKdMlRl+cP3YdAgA4RC0YHKXusW08156UkXEgfW5ozHJUdjMMx+f24tf9RggdtfiJqcTyiY9BKOjTf059ntDgOHBcm0C2G3vmQfZUV8MhaXuQ9pcEvb5ORFI4XOJAuI1AVWPPmslU1VCQWysgHD6xl6zj4eHpbfr0HV2dOgQShx4AUHvK2qO5XGVeSOxNOBbeH6EqvkJBX0Bzz13QGI4hxNQf3xR3L8ziz03fwiHUoDToa0QpF+H2xBujFjRP50hpKZxCCwCAM/Xsgdp55CDs0lB4KRNoEdUb5vFcY0IGxQMAfK3RMFYfvex53CYjLFQEnMQJZA3iBTIPz/VKn61iAQCh/YbB7FgHANDXX75AdnqcINxRkNsOw5zKN3/oK4gHDkSwZSX02iH47Y/dwKiuZdn7vD4U/WKG0OdCebwHy+/xs5rYfRiH3ANwXrDWnuUtGI/+Bpu0Pzzy3kkQ5rn2aKLbdgIEzgiwjUcBXF7scP233wFEIBqU9XgsJq4XLfRPfvvtt2CBQLARwAD0cacfT6/DAjjq9Xr/MnTo0A7Z+n1aIEfEDEAz5QTJmmHSX36jkIPFfwCkDBKcRGr09F60kOdaQpAk4pMlKHa5IW10g+O4LlWgOLp1NxxCLVqFmxAb9TSSQ3qnCQ3PtccTIAXtMcNp71kN5MYKHezScRAG8wK5r6AMkoDgvBB7w2AzHbnseaoPlQEYgbrYAL7iTS8gEAg2hoaGpmq12laSJLufTMLjt7AsS+j1+n4NDQ0bAUw5//0+/bQloARo0VAQupvhbL38pJuSgzoAAClswk18/HGfQn1POjQtRxFjSMXek1276RX9WAehUw9DkBf/39gBV9hCnqsJp1FB5DKDcLE9msfc4gZLCREWE9FLlvFca0iSgFTkBCgt3O6Tl5XYCwA1ejFETj2CB93eyxb6LQO0Wq2ZF8c83YUkSU6r1ZrQtvvQ8f2rbM9Vx6GVQGLTg7NcfhULe4kNQpcRlUo1borgE276ErK0NITof4OQVWL7j3suOf7o3l9ho6NAkt/DE/EY7z3uYwiCgyFyWUD2rIgF3M62VsQpSXzL3L6EWiOBQ6IFZTHA7LiMUm+WRliJaLC+KoxPuq33DfRPSF4c81wup393LqiF+7xA5sICoTI3g3Kx8Hm67xXysl4IrCFQmU5AFzG0x+1nea4vKLUakaoWkD4HuAo3fOzFY09//uxXUF47hEGVmDn6xu0MxnNhJCGRbaXevD2LPuN8bZ02Y2P4jpt9CU20Bg5JEDxmoK6psdvnm37+Fm5hAFokdRgezdfH7kscOHBAlp2dzbS/LioqkkyZMiUlIyODmT9/fqzP13Zv2bBhg3bSpEmpkydPTt22bVsAAFitVnL27NkJWVlZzPTp05Nramo6dCKz2+3E3LlzEzIzM5kHH3wwsampSQAAhw4dkmZmZjIZGRnM3Llz4x0OB+Hz+bBo0aLoqVOnpmRnZzNlZWUiACgrKxNNnz49OSsri3nggQeSmpubz2QQl5WViSZMmNCv/XV5ebkwKyuLyczMZB5//PE4m83WqV587rnnot55550Omep79+5VzJs3L/7sYy+++GLEli1bNJ3NlZubG3rw4EGpw+Eg3nvvvaCurFlUVCTJzs5m2n8GDBhw886dO5V6vV4wY8aMpMzMTGbevHnxF/sMF6LPC2RReBikDj0IEDC3dL90U3FNGUgiADJfObwRvCDqi6jG3oFg/WHEtKTi+4rOvcj7jxyA25eIQOsPOKKdilvjefHT15AGR0LkNgOcGCx7eU4pn9UGryAQHOeGXMU/UPclAuK1YEkanEUDY01Jt8+v2t92TrWGhJjmq5v0FVauXBmyZMmSGLfbfSaofPXq1eE5OTn1hYWFOo/HQ+zYsUOl1+sFeXl5wQUFBSVbt27VrVq1KoplWWzevDkoNTXVnp+fr0tPT29Zt25dh2YLmzZtCk5MTHQUFBToJk+e3LJy5cowlmWxZMmS2FdffbWysLBQl5aWZq6qqhJu375d7Xa7yS+++KJk0aJFNcuWLYsEgH/84x8xCxYsqM3Pz9fdf//9+tLSUjEAbN26NXDBggXxJpPpjDB/+eWXI++77z59QUGBbvjw4ZZ169aFnG9TU1OTYNasWUn79+/vta31RYsWNYwYMcLe0NBAFxYWdhDIF1pzyJAhjry8PF1eXp7ugQceaBo1alTrPffcY87NzQ2bOHGioaCgQMcwjP3dd9/tVHBfiD6dpAcAijgGAuePAABTkwMBod3rdHb0eCkABWT0KUSF8w1C+iLy9PsRsu1/0RB6Kwp2fYfx/zOuQ/KMh/Xgpy37oOAGIVm+F95ReXyCTR9EERwBh/swABIOixsylajbc3hqa+EUBYIlTfzvSB9DHdJ2/5Bbg2GpPwrgrm6dX13rASgWvpTkK2Adz/v/rdQU/F7TLRF0KTJvjmyefVtsy8XGxMTEuNauXXvy6aefPlOWhGEYu9FopFiWhd1up2ia5rRarXfHjh3HaJpGZWWlkKZpliRJPPHEE01eb1vITl1dnVChUHTYyiwqKpI/9thjDQBw9913mzdu3BheWloqUiqV3rfffjukvLxckpaWZkxJSXF98MEH2rS0NBMAjBw50rZw4UKZ3W4nWltb6e+++06dm5sbmZqaanvhhRdqAEClUvk+/fRT3bhx4wa2r1dVVSWZMGFCFQCMGDHCumzZsqjzbbJareSTTz5Zt2fPnm4L5L179yreeeedUIFAwNbX14vGjx9veOaZZxqefPLJ2PT0dMOuXbsCqqurJStWrAh79tln67uyptVqJdevXx/+8ccf6wDgzz//lD/11FP1ADBu3DjTG2+8EfHkk092qFbRGX3egxyUPBQSR1uzkObG7nc/ajrWAHAsWJEVDB9v2icRJSchmKuE0NOEoIp4HGo41GHM2z+/C7lpIEKaD+GH8Jsx7WY++aovogqOOtNNz9TqvKw57Cf+hFOsgY/uWe11nusPVbC07b9OLZpau1nJwuuGyRkE2t2MYYkjroB1PNeKzMxMI03T52w5xcXFuXJzc6Pvuuuu/gaDQXDnnXdaAICmaaxfv147c+bM1HvuueeM8BYIBLj//vuT8/PzgydOnNihE43NZqNUKpUPABQKhc9ms1HNzc2C4uJi+Zw5c5o+/vjj0kOHDil3796tsNlslFKpPCOySZLkmpqa6OrqanFaWpr5s88+05nNZmrr1q0aAJg0aZJJLpefE4OamJho//rrr9UAsHPnTrXT6eygF+Pj49233nprt4VVu+OgsbFRuHHjxpMFBQUlH3300TkeyPnz59dHR0c7zhbHl1pzy5YtQWPHjm3VarVeALDb7R2uWXfs7DUPMsMwKgAfAlACEAJYqNPpfmYYJgPAGwBOnR76gk6n+6G31r0UYcnDUO21ApwbjQ3dF8hsDSB1NKFCFYIRvEDukxAEAeWtNyHm2I9w09lY8+07GDhjIKR0283w14ZfceLrRiQhHoOIQlQO/hekwj6/+eKXBIZEo/60QNY3OxAe2/2dw5ay3+EUj4BX2mVHBc8NglwtAkmwoAgtTNYD3TqXa/gTTioSXtTjjli+QciVYPZtsS2X8vZeLXJzc6Pef//9kgEDBjg3bNigXbJkSdTrr79eDQA5OTn6OXPmND/00ENJe/bssY4ZM8YCAJ999llpcXGxOCcnJ3Hjxo1lixcvjgWASZMmtchkMp/FYiEBwGKxUDKZzKfRaHxhYWHOfv36OQHgtttuMx0+fFgqk8l8Vqv1jBjkOI4IDg72SCQStn2tMWPGmPbv368EcMHrtWTJkprnn38++osvvgi6/fbbjSqVypufnx/w8ccfBwPAs88+e2rYsGEXrWMpFotZj8dzzjaa3W6nxGIxCwDx8fEOmqZB0zQrFAp7nGj5n//8J3DdunUn219LpVKfxWKhpFKp12KxUHK5vFsF7nvTg7wQwPc6ne5OAI8AWHf6+FAAf9fpdKNP/1w1cQwAKmkgWpWAwGtAa1P3YpA9Pg8E9iDILdU4okxAYrD8ClnJc61RTJuF0PoDAOdGSEl/PL//eZhcJvxY8yOe/WoJEgwjEV6/H6eiJZg2aui1NpfnCqGQa4DT7aaNl5GzAACtlZXwCBUg1NLeNI3nOoAgCchlgEOihdfY3K1znX/sg1OshZE28vcSP0Aul3vbvbghISEei8VClZSUiB599NEElmVB0zQnFApZgiC43Nzc0K1btwaePs9HkiSSkpJc7XG1jzzySPPgwYOtu3fvVgPArl27lIMGDbLEx8e7HA4H1Z6EV1RUpEhOTnYOHTrU+uOPP6oA4Oeff5bFxcU5pFIpFxER4fzxxx/lAHDo0CFFYmJip19yu3fvVj7zzDM1eXl5OoqiMHLkSHNWVlZru02XEscAkJqa6jhx4oS0rq6OBgCHw0EcPnxYPnjw4EueS5IkOI7rcoya0WikPB4PGR0dfaZk2cCBA627du1SAcD333+vGjJkSLe29XrTDbYSQHtxJAGA9v3JoQCGMAyzAMAhAP+r0+kuoz7O5WNRkRC6WmDv5pbp8RpdW4KetwrWwBF8UkUfRnrHXRBLPUjQ/wcgpmJn0S+4o/oOEF4K03XPQOBzo5/jC2yPn40xWv7m1lchCAJuQVu7abPx8kIsLI0uQAXIgjrktPD0AdTBErQ0aMFZXADHAV2MM688VAwQg9CgoPh7iR+wdOnSqvnz5ydQFMXRNM0uX768Ki4uzp2cnGyfNm1aCkEQGDlypGn06NHWlJQU58KFC+MKCwu1LMvipZdeqjh/vrlz5+qfeuqp2IyMDIamae7NN98sF4lE3NKlSysXLlwYz3EcBg4caE1PTzf5fD7s379fOW3atBSO47BixYpKAHj55Zcrly5dGv3GG28QYWFhrhdeeKHTp7zExETnokWL4mma5uLi4hyvvvpqdXevgUqlYhcuXHjqL3/5S6JIJGK9Xi85ffr0pqSkJFdtbe1FM5iDg4M9Ho+HeOGFFyKWLl1ae6m1SktLRaGhoecU6Pzb3/5Wv3DhwriCggKtSqXyrFu3rsN1vRiXJZAZhpkL4G/nHZ6j0+l+YRgmFG2hFgtOH/8WwOcAKgCsB5ADYO3lrHu5uNQ0pPYWNHezFvJxXQUAGQLJcohDHr4yxvFcFxAkCfW4WxD1+bcoi7wHk6ofg115CorGMLgsFPoffwuCfjYMHnP/tTaV5wrjFnlBsG5Yze7LOt9lowEVEBDWIaeFpw+gjgxATZkWhJmAo+UUJEFdq3VdVcMBQsAeG3OFLeS5FsTFxbm3b99+prTJqFGjrKNGjepQ6uR0TO05cbWhoaHejz76qOxi88tkMnbjxo3l5x8fO3asZezYscVnH6MoCrm5uR0E7eDBgx2FhYW6ztY4ePDg4fZ/33rrrbavv/66uLOxZ7N48eK6zt7LyMgwZmRkGM8/Pnr0aMvo0aMt56+9Zs2ayvZjO3fuPN7VNW+55Rb7LbfccvLsY125rhfjsgSyTqfbBGDT+ccZhhkI4BMAT58VSvGuTqcznn7/CwBZl2nr5RMkh7KsBc0uFm6nF0Jx1z62/qQeFGRQSJoQG8qX9OrrBDy6AC2F+xFb+w5swxfD+0skCJkAqXWFiGB/x/cJU/CX/mHX2kyeK4xbJgDls8JpubxuIT5vW5OQ4DA+Z6EvogpTgKWEEBnV0Ff9ieiuCGS3DSZnMAiBC4mJAy89noeH55rTazHIDMP0A7ANwEydTvef08cIAH8yDBN5etg4AL/11ppdRRiigcRpAABYWrq+beqtckPkaoVBIUZsUPfKw/HceNBJAyEdoEFi8XE4AivwwPO3ID3+OMJKd0I2yI3Y8Tl82S4/gJWLIPBY4bV2P8SC4ziwRADA+RAeyofi9EWUQRIAQIBdg/KaX7t2UsNRuBAOwtuAgeH8QzYPz41AbybpLQcgBvAmwzB7GYb5QqfTcQD+AqCAYZgfAEgBvNOLa3YJeUQ0JM62RM3uCGTKLIfMWocyZSTigviEG38gYvmboGgWg995Bc2rXkHrmjehiHTga+ZhjBvC1y71BwilDCK3DT5799vTszYbPMJAAEZold2vocxz/aPUtAlkhSsIp1q71izEV/ErXKIw2MlWMPyDEw/PDUGvJenpdLqpnRz/BsA3vbXO5aBJ6A/WeRAAYO6iQG61G0H5tJA6j+F3UQymaHgPsj8gSBoG9fSbQRX+BveXhVDEOmAZrsakOc+BJHnvsT8gUCsharbB7Ox+LrGrqQFOcSBYwoQAKd9Fry+iCBK3/YPSwGA42KVz6n47ALdoDppIH2L4ewkPzw1Bn28UAgChSbeA8lgAzgNLF0s3HT2pA0HQkHKnUE9HQyPjb3b+QvAz70G9ZAaiMlvRMHEkhH/ZjmA1f1PzF+hADYQeK7juO5DRWl0Gl1AJH2XnH6j6KLSQgkQMOMUaOFs75B5dkJMnT5cODFCDpvzitsvDc8PjF90OgkL6oVQOkF4DjM1di/8qr6gDoIJGUA0ucAYfe+pP0BJoJv8TSH8Rw0j+ZuZvSILC4PTaAJ8ArI8F2Q1B01p1DG7hAPiEnSZ18/QBFBoRHPVB4Mw+wOsGBBdxoHhdaDGqAAUgjEm6ekby8PD0CL+4+xO0GGYlIHK3wKjvmgfZUNEKcCy04noEavmkCr+EF8d+iSwkBkKPDQABl717YRbGmhqwlBCslL4yxvFcF6jClHBINCDNJLjWyosPbiqG2xMOsF7ERodefCzPDcuBAwdk2dnZTPvroqIiyZQpU1IyMjKY+fPnx/p8bU3cNmzYoJ00aVLq5MmTU7dt2xYAAFarlZw9e3ZCVlYWM3369OSampoOXyB2u52YO3duQmZmJvPggw8mNjU1CQBgzZo1wePHj++fnZ3NZGdnMyUlJaLOxh46dEiamZnJZGRkMHPnzo13OBxnPH/n2//bb79JJ0+enJqZmcn87//+b1S7/efj9Xoxd+7c+J07dyrPf2/Lli2aF198MeLsY/PmzYvfu3dvpyV+nnvuuaiqqiphS0sL9cknn3QoH/bNN98oJ06c2C8jI4N57bXXzhFn53+GnuI3CsChICC1N8PaxRhkX60PUoceJoUYcXwFCx4ev0EZngDa09ZwyWHtXpyFtamtrCer6n6Lap4bB1WwDC5RAAKNFPR1RRcdy9UfBkuEAawe8SF8gl5fZOXKlSFLliyJcbvdZwTn6tWrw3NycuoLCwt1Ho+H2LFjh0qv1wvy8vKCCwoKSrZu3apbtWpVFMuy2Lx5c1Bqaqo9Pz9fl56e3rJu3boOT1KbNm0KTkxMdBQUFOgmT57csnLlyjAAKC4uli1fvryivcNdSkqK60JjWZbFkiVLYl999dXKwsJCXVpamrmqqkrYmf1LliyJefbZZ6sLCgp0crnc9+mnn3YQqydOnBBlZ2en6HS6XhNJr7zyyqmYmBj3kSNHpO2dA9vx+XxYunRpzNq1a08UFhbqKisrxfv27ZN39hl6il+EWACAT0VD2dCMFqcPTpskd03zAAAgAElEQVQHYtnFPTy0RQmZrRa1QUF8iTceHj9CHRaLOo8NAODspkB2mVhADNDKoCthGs91gjJIDBAktJYAlNT9huBB0zsdayr+L1zisbAQRsQH8QL5inLobQ3++Lh3//gGz2jGLfNaLjYkJibGtXbt2pNPP/10XPsxhmHsRqORYlkWdrudomma02q13h07dhyjaRqVlZVCmqZZkiTxxBNPNHm9bbtVdXV1QoVC0cFdW1RUJH/ssccaAODuu+82b9y4MRwAdDqd9K233go1GAx0WlqaadGiRQ0XGltaWipSKpXet99+O6S8vFySlpZmTElJcXVmf3Nzs/D222+3AcCwYcOs3333nXrmzJmGs22yWq3kK6+8UvnWW291e2tky5Ytmn379qmcTidZV1cnmj17dsPDDz/ckp2dzbz00ktV69evDy0vL5du2rQpaO7cuc2nbRLI5XJfQkKCGwAGDx5sPXTokHzUqFHWC32GnuI3HmRBgAwye1tXxUuVemuxGkCxGkgcdTgpieCzjnl4/AhVUMQZD7LT1j2B7HW0PXjTgZpet4vn+qG9FrLSGYQTzZ02JgMAlJUcg0OsQZMAiNfy95K+SGZmppGmae7sY3Fxca7c3Nzou+66q7/BYBDceeedFgCgaRrr16/Xzpw5M/Wee+45I7wFAgHuv//+5Pz8/OCJEye2nr+GzWajVCqVDwAUCoXPZrNRADB+/HjDihUrqj/55JPSoqIi+VdffaW60Njm5mZBcXGxfM6cOU0ff/xx6aFDh5S7d+9WdGZ/WFiYa+/evXIA2L17t9rhcHTojz548GBHv379ul8wHuAAwGq1Uh988MGJt95668TmzZvPEdk5OTkNgwcPtrSLYwDQarVel8tFFhcXi71eL3766SeVw+EgO/sMPcVvPMiyYM2ZWsjmZge00Z13uTp+8iQIgoQEdahCOO4L5Gsg8/D4C6RIBJY7LZC76UHmPG3CSRLEd97sy7QLZJ8wCHr9RUIsWB/q6gSAkIReGQSFmI9Nv6LcMq/lUt7eq0Vubm7U+++/XzJgwADnhg0btEuWLIl6/fXXqwEgJydHP2fOnOaHHnooac+ePdYxY8ZYAOCzzz4rLS4uFufk5CRu3LixbPHixbEAMGnSpBaZTOazWCwkAFgsFkomk/lYlkVOTk6TWq32AcAdd9xhOnbsmPRCYzUajS8sLMzZLmhvu+020+HDh6Vjx461XMB8rFixouKf//xn9L///W9iyJAhVpqmufXr12u/++67QABYtWpVeWRk5EW/IMViMet2u89xxDocDlIikbAAkJycbAeAqKgot8fjuaTDliRJLF++vGLJkiXRNE1zCQkJjoCAgO7X4+wifuNB1kREQXxGIF/8gaeqqq1NeiBVjXoyDEFyvsQbD48/4aPaQiwcVne3zuNYBQjWiQCV+EqYxXOdIFeLQJKAQ6yFo8UKcJ04rgzlcNjb8ojoMD5Bz5+Qy+VepVLpA4CQkBCPxWKhSkpKRI8++mgCy7KgaZoTCoUsQRBcbm5u6NatWwNPn+cjSRJJSUmu9rjiRx55pHnw4MHW9pjcXbt2KQcNGmQxm81Uenp6f4vFQrIsi4MHDyoGDhxov9DY+Ph4l8PhoMrKykQAUFRUpEhOTu5UDH377bfq1atXl3/22WelRqORSktLM+fk5OjbbbqUOAaAm266yf7LL78o28V6S0sLVVlZKWkX6RerDkYQBMdd4O/qhx9+UH744YdlH374YVlNTY3ozjvvNF/KjsvFbzzI2tgU2Lx7ADhhbr54JYuWU0YIOCnCRKfgVcXwJd54ePwMt9ALgnV3y4PM+XzgSBUImKHmq1j0aQiSgDJQCEdjELxmApy5DoQqouPA+sPgPOEAxyI0svNdS56+x9KlS6vmz5+fQFEUR9M0u3z58qq4uDh3cnKyfdq0aSkEQWDkyJGm0aNHW1NSUpwLFy6MKyws1LIsi5deeqni/Pnmzp2rf+qpp2IzMjIYmqa5N998s1ytVvsef/zxmhkzZjA0TbPDhw+33HvvvSabzWY5f6xIJOKWLl1auXDhwniO4zBw4EBrenq6qTP7Y2NjnQ8++CAjFovZoUOHWu69995Ox3ZGSkqK67777mu67777UqRSqc/r9RJ///vfqxUKBXupcxMSElzl5eWStWvXBj/xxBNN7ceDg4M9U6dOTRWJROzEiRNbBgwYcDkhHl3CbwRyaNRAHKMBwtcK8yWahXhqvVA69BAqvJBooq6ShTw8PNcLHjEF0meF1dx1D7JNXw+3UAXwAtkvUIUqoK/SQmUk0FxzAFpVVocx5qoDIBEKljUjPiT+GljJc7WIi4tzb9++/Uzv8VGjRllHjRrVoRf5s88+Ww+g/uxjoaGh3o8++qjsYvPLZDJ248aN5ecfnzVrlmHWrFmGrowdO3asZezYscVdsX/y5MmmyZMnd0kUr1mzprKz9+bNm6efN2+e/vzjDz/88JlQGIlEwu3bt+8IAOTl5Z0J6v/++++PnX/eo48+2vzoo482n3/8Qp+hp/hNiIVQFYVWJSB06S8ZYiEwySCz1aNVoURkIJ9UwcPjb3gkFAReK2yWrgvk5rpyuEUqcKQNKgkfltXXUQdL4RAHIcwA6Gp/vuCY0uKf4ZSEwAI7EoL5ChY8PDcSfiOQIQ+GXcFBam+CucUBjr1wzJjVYYPAGwipvR6nZFpE8Ql6PDx+BysRgvbY4OiGQDY2VMElVMJLOhHAe5D7PEqtBBwlQlirArqWCzjlvG7UVDXALg1Bo4BGopYXyDw8NxL+I5BFCrgVHFTmZrBeDjaT64LDjp88AYKgIPHWoZoKRmQAL5B5ePwOqRhilw3ObiTpmWtPgaVEcFE+qCS8QO7rqILbKllIfVqcNNR2HNB4BCZTCFiSRq1EgXC15CpbyMPD0xP8RyATBAglBbW5EQDQ2mC/4LDy8joAgJqoxCkuGFGB/JcaD4+/QcplELltcNu7nqRnbWgLA3TSNASU/3y1+iuq06XeHOIgWJucgO/c3xX21C8QWNsS9+ggGSiST/bm4bmR6LUkPYZhCAA1ANoDzX/W6XSLGYaZDGAJAC+Ad3U63Tu9tWZ3EaulkNkbAACtDTZEpXasVao/ZQbFqhAsrMUpbjwfYsHD44cIlCrAYwPr5sCyHMguiBunoS351yXlt9L9AYVGDBCAQ6KFsJWEo/YXSKJvO/N+edUPkDtDYQQQFM7nsvDw3Gj0ZhWLBAC/63S6ye0HGIahAawEMByADcB+hmG263S6xl5ct8uogrUQuitBkF4Y6i/sQXbX+aC11UOmcKNVGAYlX9idh8fvEKs1cHlsAAi47B5IulAL3WMFQAFeGS+Q/QFKQEIeKIalKRiReuDPkgKMaBfILIsjJ/+ATzQbHtaBuPALlIDj4eG5runNfcChACIYhtnDMMwOhmEYAKkATuh0uladTucG8BOAO3pxzW4RGRUHAgCIVrTW2zq8z3EcBEYF5NZaCJVecOqYq24jDw/PtUemCQHtbfuOcNm61qjJ52x7mPYpVFfMLp7ri4AQKUzySMToOfy37qxKFnW/o6HJA6s8Ai2kj69g4QccOHBAlp2dzbS/LioqkkyZMiUlIyODmT9/fqzP5wMAbNiwQTtp0qTUyZMnp27bti0AAKxWKzl79uyErKwsZvr06ck1NTWdeuY+//xzdU5OTlz76++//14xderUlKysLGbu3LnxNpuNBIAVK1aETZ48OXXatGkpBw8elAJAY2OjoH2dadOmpZw4cULUPk9TU5NgzJgxAxwOBwG0NfV48MEHEzMyMpjZs2cnNDY2dnCoVlVVCadPn56cnZ3NZGVlMSUlJaKz36+oqBBOmTIl5exj77zzjnb58uXhnX2+LVu2aL788ksVAKxfv17b2bi1a9cGv/jii2eePNesWRM8fvz4/tnZ2Ux2dvY5tpx/zbrKZQlkhmHmMgxz9OwfAA0Alut0ujEAXgHwIQAlgLPr6FkAXLO7R3gUA4cQoFx1aG3oKJBNrTYIfDLIrbVwK4XQaDr9f8PDw9OHUYZEgva0fUc4bV2LQ+Y8YoBjAWXAlTSN5zpCEy6DVxyEmCYCP7taAHfb74z3+OdwGcSwS0NRLaSRwFew6NOsXLkyZMmSJTFut/tMLNbq1avDc3Jy6gsLC3Uej4fYsWOHSq/XC/Ly8oILCgpKtm7dqlu1alUUy7LYvHlzUGpqqj0/P1+Xnp7esm7dugu2XVy8eHHU6tWrI1iWPbPOyy+/HLNhw4YT+fn5uujoaNf7778f9Ntvv0l///13xRdffFH85ptvlr/00ksxALBs2bLISZMmGfLz83VPPfVUrU6nEwNt3fZmz56d3NraekaYr1q1Kmzw4MHWwsJC3UMPPdS0fPnyDtsgr7/+evjMmTOb8vLydPPmzat/7bXXInt6LR9++OGW9vrL7733Xgchbbfbif/5n/+Jy8vLCz77eHFxsWz58uUV7Z3+UlJSXJ1ds65yWSEWOp1uE4BNZx9jGEaKtjhj6HS6nxiGCUebID67fZACgPFy1uwNBAGRMKo4iK2nYBUMgsPqPmfr9HhZW11tqasOdRINn6DHw+OnaMPj0doukLvYTY/jZKBYC0SKhCtpGs91RGC4HCAocJQWBkcLWsp2QdMvAwdOfIkQQygMkRQaBT7EBfExyFeDj4s/1mw/uT2oN+eckjCleUbqjJaLjYmJiXGtXbv25NNPP33GS8kwjN1oNFIsy8Jut1M0TXNarda7Y8eOYzRNo7KyUkjTNEuSJJ544okmr7dtp6qurk6oUCh8F1pnyJAh1gkTJhg//vjjM967Dz/8UBcaGuoFAJ/PR4hEIvbgwYPyESNGmEmSRExMjNvn8xFNTU2CI0eOyJOTkx3Tp09PDgsLcy1btuwUAJAkiQ8++ECXkZHRr33eiooK8cKFC2sB4LbbbrO+8sor0efb88ILL9SoVCofAHi9XkIoFF6yQ95Z8wsXLFgQHxwc7K6trRX169fP9sYbb1QvX748PCgoyGM0Gimr1Uo988wz0a+//np1+3lOp5PMyMhoGTlypLm8vFzcflyn00nfeuutUIPBQKelpZkWLVrU0Nk16yq9GWLxAoAFAMAwzCAApwAcB5DEMEwgwzBCtIVXXLii+tVAEQ6ngoPaeAoA0HpeHHJVeVsCn0JQiyqOL/HGw+OvyEPjIeimBxlQgGQtUEtFlx7K0yfQRLQJX6ssDAMqOfz8y2pAtwP/cVsQZDtdwUIjhEzkN01r/ZLMzEwjTdPnNFeIi4tz5ebmRt911139DQaD4M4777QAAE3TWL9+vXbmzJmp99xzzxnhLRAIcP/99yfn5+cHT5w4sfVC69x///2tBHGuIzQ8PNwDAIWFherffvtNMXPmzBar1UqdLbKlUqnPZDJRTU1NQqVS6f30009LQ0ND3W+++WYoAIwfP94cFBR0jihPTk52fPPNN2oA+Oqrr9Qul6uDXtRqtV6hUMiVlJSI/vWvf0UuWLCgrivXiyAIDgBqa2vFubm5ldu3by8+cOCAqr6+/swfyjPPPNMgl8t9Z4tjAAgMDPRNmDDBfP6c48ePN6xYsaL6k08+KS0qKpJ/9dVXqs6uWVfpzb/aFQA+ZBgmHW2e5Ed0Op2HYZiFAHahTYy/q9PpLlAw8iqhDAMn9yG4vA41sW2VLMKT1Gfebil3QOywIkDcgp85BkkBvAeZh8cfEQSFnolB7opAdngcYCkFSFj4NtN+REBYm0BuUsdjROVxbOjfgGHbHkKTKwxOSQRYsIiIUl9iFp7eYkbqjJZLeXuvFrm5uVHvv/9+yYABA5wbNmzQLlmyJKpd7OXk5OjnzJnT/NBDDyXt2bPHOmbMGAsAfPbZZ6XFxcXinJycxI0bN5YtXrw4FgAmTZrU8sgjj1ywvTLQFn/7/fffB27evLlMIpFwcrnc1x6LDAB2u51Sq9U+hULhS09PNwLAhAkTjP/61786zR5dsGBB/T/+8Y/orKws5vbbbzdptVrPvn375G+++WYEAMyZM6chPT3dtGfPHsWyZcuiV6xYUdEe1tCORCJhPR7POcLabreTIpGIBYCwsDCnUqlkASAwMNDjdDovy2nLsixycnKa1Gq1DwDuuOMO07Fjx6STJk3qUqvszug1gazT6VoBpF/g+JcAvuytdXqEIgximQ8qaytoMYHGSjP6j2r7/WBZDmy9GJrWPyBVulHDaTGG9yDz8PglhFAIH+EAOF+XQiwMzafgoRUgiWYo+CYhfgMtpCBSC9FgTcSdxQJUCVhMiorA7F0cLMpI6EkOqeF80qY/IpfLvUql0gcAISEhnqKiInlJSYnotddei9y4ceNJmqY5oVDIEgTB5ebmhoaGhrpnzZplkMvlPpIkkZSU5MrLy9Ndap3XX389tLi4WPbRRx/ppFIpBwC33HKL9bXXXoucP39+Y01NjZBlWWi1Wu+AAQMsu3btUs2aNcvw888/K+Lj452dzbtv3z7FAw88oL/99tttBQUFaqPRaB01apR11KhRZ2zas2ePYsWKFVGbNm0qi42N7dBVKTg42OtwOMhjx46J+/fv7/R6vThw4IBy3rx5DQBwKc8ux1244/H5mM1mKj09vf/OnTuPymQy9uDBg4qsrKwePyj5176PQASFggQBDlK1BTXFInAcB4IgoK+2gPLSUBvLIEr2opILRSTvQebh8VtcYoDg7F3yILfUVcItVEJIOKDkBbJfoY2Uo8wQDNrmwBOSSfhSeBxja834KTUOjQIOt4cpLj0JT59j6dKlVfPnz0+gKIqjaZpdvnx5VVxcnDs5Odk+bdq0FIIgMHLkSNPo0aOtKSkpzoULF8YVFhZqWZbFSy+9VNGVNRoaGgSbN28OT0hIsD/88MPJADBhwgTDvHnz9EOGDLFOmzYtheM44v/+7/+qAeD555+vefbZZ2O2bdsWLJPJfGvWrCnvbO7k5GTnM888E/f6668jKCjInZubW3n+mBUrVkR5PB6iPfY6Ojra+a9//auq/X2SJPHSSy9VLl68OJYkSXi9XuKOO+4wjhkzxlJRUXHJ2pkxMTGOxx9/PO7f//73Ra+HWq32Pf744zUzZsxgaJpmhw8fbrn33nt75D0G/E0gAwgNUsMGO3wuHaytcpibHVBppSg93haXHGA8AaHSA5M4ko8b4+HxY1wigPTZ4exCmTdjfQ1YKhYcXHztdD8jNFqJ6qMSeEkak4tlmHnXYhy3L4WXEOGUwI1+YcprbSLPVSAuLs69ffv2kvbXp72tJeePe/bZZ+sB1J99LDQ01PvRRx+VnT/2QowePdoyevRoS/t5x44d+/1C4xYvXlwH4JyY4NjYWPcnn3zS6Tr79u070v7vpKQk1+eff97B/rPZtWvX8UvZ29l1OP96tf/7tN0AgG3btpV2Nu/DDz98jod41qxZhlmzZhkuNPbsa9Yd/K4fqig4Ag4hQDb9AgA4VdwWC19R0giW1UPIWkDKASog6lqaycPDc43xiEhQXmuXPMjmurbvai/lhVLCP1j7E9ooBUgQ+GnQNBg//RQ1Tz0FS+KtAACDlECEmt+J5OG5EfE7gSxQR8Co4aCo0UEeIEJNiQEmvR2WExzkluMQh0nQSAUjIpDfFuPh8Wd8Ygq0x9YlgWzXtyVVOymK9yD7GREpAeAI4GDIbRAPHw6SpuG8ZRIcQgKREYoutSnn4eG5/vA7V4c4MBKEyouwKgLSfgqc/LkZJr0DLOFD/9JdkCaxKPUF8/HHPDx+jk8kgNBtg9PaIfekA+7WtlyXVqGQF8h+hkgigDhUgugmFo5XViFZQeHHfx5GBeHFkOiQa20eDw/PZeJ3HmRpUBQUKjeUDkDZvxGhCSo0n7KiKvAHKGwmiGStqGCDERnIV7Dg4fFnWIkIElfXPMiste2/zQIx5GK/8zv4PdH9AhHiI3G00ozmVsBl96KS9GE0E3zpk3l4eK5L/E4gEwFxiJC1leqrK9mPyU8OQlymEA77VwAAqdKMai4EcRq+8xEPj18jlUDsssHn4eB1X7Cx1RlYV5vX2C6UgOK31P2Om4a3dQY+/ksDDm0vB0sTqJECw2L5tuM8PDcqfieQERgPrbJty7Tyjx9B0SSKlD8gqYkDIRJCqPCiigtBjIb3IPPw+DOUVAG6i930OK8ElNcKt4hvCuGPhEQr4VYKoCm14VRxKw4rOQxL0kAkoK61aTw8PJeJ/wlkRRhYsQAWhQDa4w042nwUu6t3Y1CLDOK4UBAkUEuEIZzPPObh8WsoZQBob1s7+kuGWXAyCFgzWEngVbCM53qDIAmMyRmAcgELh5TEHq8DdzLaa20Wz1XkwIEDsuzsbKb9dVFRkWTKlCkpGRkZzPz582N9vrZdqA0bNmgnTZqUOnny5NRt27YFAIDVaiVnz56dkJWVxUyfPj25pqamQyKD3W4n5s6dm5CZmck8+OCDiU1NTQIAOHTokDQzM5PJyMhg5s6dG+9wOAifz4dFixZFT506NSU7O5spKysTAUBZWZlo+vTpyVlZWcwDDzyQ1NzcfOYJrqysTDRhwoR+7a/Ly8uFWVlZTGZmJvP444/Hnd2Z7+zPmJmZyWRnZzMzZsxIamhoOCe+bO/evYp58+bFn33sxRdfjNiyZYums+uYm5sbevDgQanD4SDee++9oM7GPffcc1HvvPPOmT+yd999Nyg9PT11ypQpKe1tpltaWqhhw4YNys7OZrKzs5l169Z1K+bJ/wQyScIsiYA3VIibKjj8feeT8DU2IqTCBFmCGixIICCa3ybl4fFzREoNaE9bcPHFuun5WB84QgGKNQMSfkvdXxkcH4gTjARraRv6R6kwZVD4tTaJ5yqxcuXKkCVLlsS43e4zwmH16tXhOTk59YWFhTqPx0Ps2LFDpdfrBXl5ecEFBQUlW7du1a1atSqKZVls3rw5KDU11Z6fn69LT09vWbduXej5a2zatCk4MTHRUVBQoJs8eXLLypUrw1iWxZIlS2JfffXVysLCQl1aWpq5qqpKuH37drXb7Sa/+OKLkkWLFtUsW7YsEgD+8Y9/xCxYsKA2Pz9fd//99+tLS0vFALB169bABQsWxJtMpjPC/OWXX46877779AUFBbrhw4db1q1b1yHjdNmyZdHPP/98dV5enm7cuHGta9as6WB3d1m0aFHDiBEj7A0NDXRhYWEHgdzU1CSYNWtW0v79+8+0qKyvrxd88sknwfn5+SVbtmwpW716dYTT6SSKioqk48aNM+Tl5eny8vJ0f/3rX5u6Y4tfZpM4FTEIiDgBlAHxpRbcS90CgvsZqgQf6prDEKHlvUA8PP6ONCAc8BQBABwXEcgmtwkspYQIFZBJ+Z0nf+bljAH445QRM26JBk35n//pWmP4cKvG9MUXnXodLwfV1KnNgQ/Oumjb4piYGNfatWtPtneUAwCGYexGo5FiWRZ2u52iaZrTarXeHTt2HKNpGpWVlUKaplmSJPHEE080eb1tDYnq6uqECoWiQ9JDUVGR/LHHHmsAgLvvvtu8cePG8NLSUpFSqfS+/fbbIeXl5ZK0tDRjSkqK64MPPtCmpaWZAGDkyJG2hQsXyux2O9Ha2kp/99136tzc3MjU1FTbCy+8UAMAKpXK9+mnn+rGjRs3sH29qqoqyYQJE6oAYMSIEdZly5Z1aA6xZs2a8vDwcA8A+Hw+QiQSda03NNq8y++8806oQCBg6+vrRePHjzc888wzDU8++WRsenq6YdeuXQHV1dWSFStWhJ1urgKgzdv+5JNP1u3Zs+eMQP71119lAwcO/P/Zu+/AqKr0/+Pv6ZMp6QkJAVIIuaGGJl0BKYp0sKKiqL9dXPnaXUVXkbWg67IrVlBRdAUVpdhQUEHpHUK/tFDSSe/JlPv7I6ChtwmR8Lz+0bkzOefJcLh85sy555ZYrVbNarV6oqKiKrds2eK3ZcsWu6qq9pEjRypBQUGuf/7zn4eP1Xsursi/wVpQLNFh2WhOf57M60Limkz8OnbA5N7Hdk8U0XKBnhBXPEtYQ8xVZ59Bzi0+gtvoxKgrxilbvF3R2jQKZHTXGAnHV5gRI0YUmEym48JhbGxs5eTJk5v07du3ZV5enrFnz57FACaTialTp4aNGjWq+fXXX/978DYajdx8880Jc+bMCR8wYED+iX2UlpYaAgICPABOp9NTWlpqyMnJMe7cudMxZsyY7M8++2z32rVr/RcvXuwsLS01+Pv7/x6y9Xq9lp2dbTp06JC1R48eRbNnz1aLiooMM2fODAEYNGhQocPh8NbsLz4+vuz7778PBPjxxx8DKyoqThrUx8LmihUr7LNnzw4fO3Zs1rm8Xzpd9UR7VlaW+YMPPtg3d+7cXbNmzTpu9vnBBx/MaNKkSXnNcAwQFxdX1aVLl9Kax4qLiw0Oh+P339dms3mKiooM8fHxFePGjUubM2eO2qdPn4Jnn332vO4Ad0XOIJvD47GpVZS264Dul8UARIy+HdTv2OFuR0yoBGQhrnTm8Eg87urzcHnx6fdCzk0/jMdoxaCV4i9bvAlRZ4LvuD33bLO9l8rkyZMbf/zxx7tatWpVMW3atLDnnnuu8WuvvXYIYOzYsUfGjBmTc+eddzZbsmRJSe/evYsBZs+evXvnzp3WsWPHxn/wwQd7xo8fHwMwaNCgXLvd7ikuLtZDdSC02+2ekJAQT2RkZEWLFi0qALp161aYnJxss9vtnpKSkt/XF2uapgsPD3f5+fl5j/XVu3fvwhUrVvgDp3y/nnvuudRnn322yddffx3avXv3goCAAPecOXOCPvvss3CAp5566nDHjh3LZs+eHTR9+vTI9957b094eLi7ZhtWq9XrcrmOW69aVlZmsFqtXoC4uLhyk8mEyWTyms3mc559PpHT6fSUlZX9/vuWlZUZAgICPJ06dSq12WxegCFDhhRMnTr1vNY9XZEfc52RzQDI6N+dxtM/oOGrrxDYrRk6NMagJJsAACAASURBVFStMTGyg4UQVzxzeBR6zQta2RmXWOQfrp7g0OnK8PeTGWQhBDgcDvexWdwGDRq4iouLDbt27bLcc889Tb1eLyaTSTObzV6dTqdNnjw5YubMmcFHf86j1+tp1qxZ5bG1s3fffXdO27ZtSxYvXhwIsHDhQv+kpKTiuLi4yvLycsOxi/A2bdrkTEhIqOjQoUPJ0qVLAwBWrVplj42NLbfZbFpUVFTF0qVLHQBr1651xsfHl5+u/sWLF/s/8cQTqV999ZVqMBjo2rVr0ciRI/OP1dSxY8eyWbNmBX/++efhs2bNUps2bXrSLELz5s3L9+7da0tPTzcBlJeX65KTkx1t27YtO9v7p9fr0TTtnC4G69ixY2lycrKjvLxcV1BQYDh48KC1VatW5Y8//njMvHnzgo7+Ps6EhISz9lvTFTndYYuoDsgV+Ydw3Hh79cFNnwIcDcgygyzElc4WGEqRWUOnlVBefPqAXJyZD0SBwYVTZpCFEMDEiRMPPvjgg00NBoNmMpm8kyZNOhgbG1uVkJBQNmzYsESdTkfXrl0Le/XqVZKYmFjx6KOPxs6bNy/M6/XywgsvpJzY3r333nvkoYceihk+fLhiMpm0KVOm7LdYLNrEiRMPPProo3GaptG6deuSgQMHFno8HlasWOE/bNiwRE3TeOWVVw4AvPTSSwcmTpzY5N///rcuMjKycsKECTmnqz8+Pr7iscceizOZTFpsbGz5q6++eqjm8263m8mTJzcJCwur+utf/xoP0L59++Knn346/dhrAgICvI8++ujh++67L95isXjdbrf+lltuyW7WrFllWlqa+UzvX3h4uMvlcukmTJgQNXHixLQzvTYyMtJ96623Zt90002JXq+XcePGpfn5+WlPPfVU6pNPPhnzxRdfhFutVs+//vWvg2dq50Q6TbvgWe3jKIryFHD90YeBQISqqhGKojwC3AccOfrcX1VVVc/U1ogRI7S5c+f6pK5T8rhxvRDBd36DGP7kjOpjPz6Na80HtPfMYPPzA2QXi4ukKMoGVVU7+rrdWh8botbV1tgA346PovIqdvZsw6bWjxHRsgPDHm1/ytd98uorFKd0IsjwCfq7/smtnZr4pP8rlZw7xOmcamwkJycfSEpKOm3QE+JskpOTQ5OSkmJOPO6z6Q5VVV8BXgFQFOU74O9Hn+oAjFZVdYOv+rpoBiMZjhY0Ld6Cx6tVh+HsHRw0NKZ5RJCEYyEEdosJlxkMrpIzLrFwFVQvuys2GWgsSyyEEKJe8PkaZEVRRgD5qqouOnqoAzBeUZTliqKM93V/F6o4oist2c/hjExwVaClrmN9VQxtogLO/sNCiHrPoNfhtugwuoopLzr9RXqeo9dT51hMssRCCCHqiQs6myuKci/wyAmHx6iqug4YD9xW4/jnwNtAETBPUZRBqqp+dyH9+pKlWU8Me6eSu30JMcWB6KpKWODuwMhGEpCFENU8Zh3WymLyS11oXg3dKb5d0iqMGD0l5BkC8Jdt3oQQol64oICsqup0YPqJxxVFaQEUqKq69+hjHfC6qqqFRx9/D7QD6jwgR7XuSeUCExxcDqVeqoz+rKpoycRGgXVdmhDiT8JjMeJXXkKeBhVlLvwcp7iuxG3F6CmiALvsYiGEEPWEr78P7Av8UOOxP7BNUZTmQClwLfChj/u8IH42O5sNCrGZiyCniu3ObljdVqKDZYs3IUQ1r9mEo6AYgPLi0wRkzYHJU0SB5pB9kIUQop7w9RpkBdh/7MHRmeOngSXAMmC7qqoLfNznBfutwWgqPUBlIV9WdqVVwwD0coGeEOIozWLBr/LY3fROXodc5ioDnROjVkQBDrmTnhBC1BM+Dciqqj6gqur8E479T1XVq1RV7aGq6gRf9nexmnYdTNeK13km5nNm5TVjWLvzusmKEKK+s9oxHb3d9Kn2Qj5SdgSPwR8zhZQZ/DEbr8h7LwlxxVu9erX9xhtvVI493rRpk9+QIUMShw8frjz44IMxHk/1nZCnTZsWNmjQoOaDBw9u/uWXXwYBlJSU6O+6666mI0eOVG655ZaE1NTU037Snj9/fuDYsWNjjz3+5ZdfnEOHDk0cOXKkcu+998aVlpbqAV555ZXIwYMHNx82bFjimjVrbABZWVnGY/0MGzYsce/evZZj7WRnZxt79+7dqry8XAeQm5truOOOO+KHDx+u3HXXXU2zsrJO+/XYW2+9Ff78889HnXg8JSXFPGTIkMSax95///2wSZMmnTZsffLJJyHffvttAMDUqVPDzrXPL774Injw4MGJw4YNS3zssceaeDweKioqdGPHjo0dMmRI4m233dZs9+7dltO1dypX9Nl8YOtIkhoFMnOXl/hwByPbN6rrkoQQfyIGvwDMrqMB+RRbvWXlH0EzWPAjF80q1y8IcSX673//2+C5556Lrqqq+v0r6DfeeKPh2LFjM+bNm6e6XC7dggULAo4cOWL86quvwufOnbtr5syZ6uuvv97Y6/UyY8aM0ObNm5fNmTNHHThwYO7bb78dcap+xo8f3/iNN96I8nq9v/fz0ksvRU+bNm3vnDlz1CZNmlR+/PHHoRs2bLBt3LjR+fXXX++cMmXK/hdeeCEa4MUXX2w0aNCgvDlz5qgPPfRQmqqqVqi+M99dd92VkJ+f/3swf/311yPbtm1bMm/ePPXOO+/MnjRp0kkBuKysTHf//ffHfvXVV+G+ei9Hjx6dO3jw4EKAjz766KQgfao+y8rKdO+8807Dzz//fPf8+fN3lZSUGBYsWBAwY8aMUD8/P+8333yza8KECYcmTJhwXpvUX9EL5nQ6Hc8MbMG9M9bxzMDmGA1X9OcFIcSJHIGYXLsAKC8+eYlFZloW4IdNn4/dz3qJixNC1LRlSWqIujoj1JdtKl0ic9r0bpR7ptdER0dXvvXWW/sef/zx32d2FUUpKygoMHi9XsrKygwmk0kLCwtzL1iwYLvJZOLAgQNmk8nk1ev1jBs3Ltvtrt5PPT093ex0Oj2n6qddu3Yl/fv3L/jss89+n1n99NNP1YiICDeAx+PRWSwW75o1axydO3cu0uv1REdHV3k8Hl12drZx69atjoSEhPJbbrklITIysvLFF188DNW3df7f//6nDh8+vMWxdlNSUqyPPvpoGkC3bt1KXn755ZPCZUVFhX748OG5Xbt2Ldq/f/95nQBTUlLMDz/8cFx4eHhVWlqapUWLFqX//ve/D02aNKlhaGioq6CgwFBSUmJ44oknmrz22mu/38XvVH1aLBbtiy++2GW327013gdt3759fj179iwESExMrDx06NB51XjFJ8JOscFseLYfvRWffQASQtQTbmcwes0D+spTziAXHq6+gZfNWCzrj4W4Qo0YMaLAZDIdd1vi2NjYysmTJzfp27dvy7y8PGPPnj2LAUwmE1OnTg0bNWpU8+uvv/734G00Grn55psT5syZEz5gwID8U/Vz88035+t0x18n1bBhQxfAvHnzAjds2OAcNWpUbklJiaFmyLbZbJ7CwkJDdna22d/f3/3FF1/sjoiIqJoyZUoEQL9+/YpCQ0OPC+UJCQnlixYtCgT47rvvAisrK0/Ki8HBwZ7+/fsXnefbhU6n0wDS0tKskydPPvDNN9/sXL16dUBGRsbvk7ZPPPFEpsPh8NQMx6fr02AwcOxDwrvvvhteXl5u6Nu3b1FiYmLZkiVLArxeL6tWrbLn5eWZj30QORdX9AzyMbJuUAhxKp6g6skojdJTziCXZ1XfJcRqLpebhAhRx9r0bpR7ttneS2Xy5MmNP/74412tWrWqmDZtWthzzz3X+FjYGzt27JExY8bk3Hnnnc2WLFlS0rt372KA2bNn7965c6d17Nix8R988MGe8ePHxwAMGjQo9+677z7t7bTffPPN8F9++SV4xowZe/z8/DSHw+E5thYZoKyszBAYGOhxOp2egQMHFgD079+/4D//+c9JyyaOefjhhzOeeeaZJiNHjlS6d+9eGBYW5lq2bJljypQpUQBjxozJHDhwYOGZ3gM/Pz+vy+U6LmCVlZXpLRaLFyAyMrLC39/fCxAcHOyqqKi44DDm8Xh4/vnnGx06dMj63nvv7dPr9YwePTpnwoQJfiNHjlTatGlTEh8fX2Y0nvt5WpKhEEKchjfo6FJArYDS/MqTnnfluUDz4rJ4ZA9kIcTvHA6H29/f3wPQoEEDV3FxsWHXrl2We+65p6nX68VkMmlms9mr0+m0yZMnR8ycOTP46M959Ho9zZo1q/zqq6/Ur776Sj1TOH7ttdciNm3a5Jw1a5YaFhbmBujUqVPJqlWrAjweDwcPHjR7vV7CwsLcrVq1Kl64cGEAwKpVq5xxcXEVp2t32bJlzltvvfXInDlz1JiYmIo2bdqUXH311SXHajpbOAYIDw93l5eX67dv324FcLvdrF692r9t27ZlUL3M9Uw0TTvj8zU9/vjj0ZWVlfoPP/xw77GlFuvWrbN369ataN68eeqgQYPyIyMjTz6Jn4FMeQghxGno/ENxmTRw5VKcd/K/Jd5iPdaqIgr9/WQPZCHE7yZOnHjwwQcfbGowGDSTyeSdNGnSwdjY2KqEhISyYcOGJep0Orp27VrYq1evksTExIpHH300dt68eWFer5cXXngh5Vz6yMzMNM6YMaNh06ZNy0aPHp0A0L9//7y//OUvR9q1a1cybNiwRE3TdP/4xz8OATz77LOpTz31VPSXX34ZbrfbPW+++eb+07WdkJBQ8cQTT8S+9tprhIaGVk2ePPnA+b4Her2eF1544cD48eNj9Ho9brdbd8011xT07t27OCUl5RSbyh8vOjq6/G9/+1vsO++8c8b3Y8OGDbYffvghtGXLliW33HKLAnDHHXdkde/evWTcuHFR77//fqTD4fD861//Oq/fQXc+Cf1SGTFihDZ37ty6LkNcBEVRNqiq2tHX7crYuPzV1tgA34+P75auJvKxu1ibOBTNOYCxb/U6bq/0Nx94n8B8A6bob0m5+mXG39DcZ31fqeTcIU7nVGMjOTn5QFJS0mlnWIU4m+Tk5NCkpKSYE4/LEgshhDgNkyMEr1XDWpGP5tUoKzz+Gzqdy465Kp8sfYCsQRZCiHpEArIQQpyGxeaPzuLFUVZ9UXlx3h8B2eP1oCMAo6eAPPxlFwshhKhHJCALIcRpOKwmNIuewOI8AEry/1iHnF2YA3o/zFo+eZoTfz+ZQRZCiPpCArIQQpyGw2oEs4HgwmMzyH8E5LSsbAAsulzycOK0yAyyEHXAW/POckKcj6Njx3uq5yQgCyHEaTgsRrxmE7bKCnQmLyU1tnrLyq7ebtWmyyNP85c1yELUjW1HjhwJkJAszpfX69UdOXIkANh2qufljC6EEKfhtJhwm6yAC6wVlNSYQc5OKwD8CdWnH11iITPIQlxqbrf7vszMzA8yMzNbIZN+4vx4gW1ut/u+Uz0pAVkIIU7DbjFQYrETTDFeY9FxM8glh8uxuPSEGHPJxykzyELUgQ4dOmQDQ+q6DlH/yKctIYQ4DaNBT7HVCYBLyzvuIj1PjgF7STp6m4kqTDKDLIQQ9chFTXkoijIcuElV1VFHH3cBpgBuYJGqqhMVRdED7wBJQCVwn6qqey+ubCGEuDRKbIEAuKoyKS9rQVWFG5PFgKHEH0fpNtxhNnQ6cJhlBlkIIeqLC55BVhRlCjDphDamAqOAHkBnRVHaAcMAq6qqXYGngMkXXq4QQlxapfZgACoqdgOQlVJEUW45eq8Ze2k6FXYnDrPxuDvsCSGEuLxdzBKLlcD9xx4oiuIPWFRV3aeqqgYsBPpSHZZ/BFBVdTVQK7eYFUKI2lDuCEHTa5jK9oIO0vcUkHrwCACO0nRK/QNkeYUQQtQzZ/1OUFGUe4FHTjg8RlXVLxRF6VXjmD9QVONxMRB39HhhjeMeRVGMqqq6L6xkIYS4dNzWIDSrhn9ZBbY4HWm787G6PQD4VWVQYG6K0yTLK4QQoj4561ldVdXpwPRzaKsIcNZ47AQKANsJx/USjoUQlwuvJRCT1UNQiYGKyFKyksFc4UHnLsDsV8ph/PGX20wLIUS94rNdLFRVLQKqFEVpqiiKDrgOWAasAG6A3y/i2+qrPoUQotb5BeNnc9OgAPKD0/G6NSpS9QTlLMLq5yLH65At3oQQop7x9TZvY4GZwFpgk6qqa4B5QIWiKCuB/3Lycg0hhPjT0tuCMTs8hBVqHLLtwGIzUt76MPEHl2O1ecj0SEAWQoj65qLO6qqq/gr8WuPxaqDLCa/xUh2chRDismO0BWC0eTB5IO/IXsa81oO757/BwHINk81DRpWdALlITwgh6hW5UYgQQpyBw89Mlb06ALvSUskqz+TIgV0AmGwe0qr8CJSALIQQ9YoEZCGEOAOHxUip3QpAUJ6LZ5Y/Q2ihBoDJ7iFTCybAZq7LEoUQQviYBGQhhDgDp9VIztG76bWsCmV91noUVwgARpuHLC1IllgIIUQ9IwFZCCHOwGk1kmEIweAH3fTNAEjyNAS9DoKDcWGUJRZCCFHPSEAWQogzcFhMZGrBmGwuQvLcvNzjZVq5G2B0GKi0RwAQaJOALIQQ9YkEZCGEOAOHxUiGFozZ7sKVeohBcYPwbtmBNQRKLA0AZImFEELUMxKQhRDiDJxWY/UMssODKyOLqr17caWmYg8vodAUDkCAzCALIUS9IgFZCCHOoHoGOQRbWBV4vWT849nq46GF5BqqL9aTGWQhhKhfJCALIcQZ2C3VM8j2iEosjUMpT07GFBWB2ekhWxeKn8mAxWio6zKFEEL4kARkIYQ4A7NRT7ExEK/eQEif6l0sHG2r/5vhDZYL9IQQoh66qFtNCyHElcBhNVOkCyOwqYGKe+4hsLkBNsAhT7AsrxBCiHpIZpCFEOIsnFYTecZQdKUZNPj7E1icVYCOgy5/CchCCFEPSUAWQoizCPAzcYQQKEqrPlCYCo5w8splD2QhhKiPJCALIcRZBNvNpGvBUJQOmgZZ2yC4KQXlVTKDLIQQ9dBFrUFWFGU4cJOqqqOOPu4DvAi4gGxgtKqqZYqifA2EHj1erqrqgIsrWwghLp0gm5m97gbgroADyyF9M/R+msIUF4E2c12XJ4QQwscueAZZUZQpwKQT2ngHGKaq6jXAHuC+o8ebAT1UVe0l4VgIcbkJtpv4urIt6PTw/aOARmV0LypcXplBFkKIeuhillisBO4/4VgvVVWzjv6/EahQFKUBEAh8qyjKckVRBl1En0IIcckF2y2kufzxxPSEnN3gF0RBYEtAbhIihBD10VmXWCiKci/wyAmHx6iq+oWiKL1qHlRVNePoz4wAegPPAmHAZGAKEAysUBRlraqq2RdfvhBC1L5ge3UILmw2nOCUJRDXm8JKLyAX6QkhRH101oCsqup0YPq5NqgoyiPAjcD1qqpWKIqSCUxVVdUNZCuKsglQqF6jLIQQf3pBR9cZZ0b2JbhBa0i6jYIyFyAzyEIIUR/5dBcLRVGeAa4G+qqqmnP0cF/gy6PPO4BWwE5f9iuEELUp2F4dkHNcZrh/OST0J6+0CvgjPAshhKg/fHYnvaNrjScAG4EfFEUB+EJV1XcVRblOUZTVgBd4ukZ4FkKIP72gowE5v6zq92PZxRUAhPtb6qQmIYQQteeiArKqqr8Cvx79/yzglFMpqqo+fDH9CCFEXQo+Okt8bNYYIKuoAoNeR4hdArIQQtQ3cqMQIYQ4C38/E3od5B8XkCsJd1ow6HV1WJkQQojaIAFZCCHOwqDXEWgzk3vCDHK4v7UOqxJCCFFbJCALIcQ5CLKZjl+DXFRJA6csrxBCiPpIArIQQpyDELvluDXImUUVNJAZZCGEqJckIAshxDkIspvIL63e+7jC5aGw3EVEgARkIYSojyQgCyHEOQi2m8k7usQiu6gSgHBZYiGEEPWSBGQhhDgHQTYz+aVVaJpG1tE9kGWJhRBC1E8SkIUQ4hyEOS24vRpHSirJLKwOyLLEQggh6icJyEIIcQ4SI/wB2JlRTFbR0RlkpwRkIYSoj3x2q2khhKjPWkRWB+Qd6UXkl1VhMerx95NTqBBC1EdydhdCiHMQYDPRKMiP7emFQPX6Y51O7qInhBD1kQRkIYQ4Ry0b+pOcWkBhmYveieF1XY4QQohaImuQhRDiHLWIDOBwXjlFFW5Gtm9U1+UIIYSoJRKQhRDiHLVsWL0OOdxpoXt8aB1XI4QQorZIQBZCiHPUMqo6IA9rF4VBL+uPhRCivrqoNciKogwHblJVdVSNx/8GDh99yQRgGfAOkARUAvepqrr3YvoVQoi6EBngxyf3dKJ9dFBdlyKEEKIWXXBAVhRlCnAdsLnG4Q7A31VVnVPjdSMAq6qqXRVF6QJMBoZeaL9CCFGXrkkIq+sShBBC1LKLWWKxErj/hGMdgHsURVmmKMpkRVGMQA/gRwBVVVcDHS+iTyGEEEIIIWrVWWeQFUW5F3jkhMNjVFX9QlGUXicc/wmYD6QAU4GxgD9QWOM1HkVRjKqqui+4aiGEEEIIIWrJWQOyqqrTgenn2N6HqqoWACiK8jUwkupw7KzxGr2EYyGEEEII8Wfls10sFEXRAVsURTm2OWgfYAOwArjh6Gu6AFt91acQQgghhBC+5rM76amqqimKch8wV1GUcmAH8D7gAfopirIS0AFjfNWnEEIIIYQQvnZRAVlV1V+BX2s8XgQsOsVLx15MP0IIIYQQQlwqPptB9qXt27fnKIpysK7rEBclujYalbFRL9TK2AAZH/WEnDvE6dTauUOIE+k0TavrGoQQQgghhPjTkFtNCyGEEEIIUYMEZCGEEEIIIWqQgCyEEEIIIUQNEpCFEEIIIYSoQQKyEEIIIYQQNUhAFkIIIYQQooY/5T7INSmKogfeAZKASuA+VVX31m1VdUNRlI1A0dGHKcA0YArgBhapqjqxrmqrCzI2jifj43gyPv4gY+N4MjaOJ+NDiJP96QMyMAywqqraVVGULsBkYGgd13TJKYpiBXSqqvaqcWwzMBLYD3yvKEo7VVU31VGJdUHGxlEyPk5JxgcyNk5DxsZRMj6EOLXLISD3AH4EUFV1taIoHeu4nrqSBNgURVlE9Z/b84BFVdV9AIqiLAT6AlfSSUzGxh9kfJxMxkc1GRsnk7HxBxkfQpzC5bAG2R8orPHYoyjK5RDsfa0M+DdwHTAW+OjosWOKgYA6qKsuydj4g4yPk8n4qCZj42QyNv4g40OIU7gcTghFgLPGY72qqu66KqYO7Qb2qqqqAbsVRSkEgms87wQK6qSyuiNj4w8yPk4m46OajI2Tydj4g4wPIU7hcphBXgHcAHB0rdjWui2nztxD9To5FEVpCNiAUkVRmiqKoqP60/+yOqyvLsjY+IOMj5PJ+KgmY+NkMjb+IONDiFO4HGaQ5wH9FEVZCeiAMXVcT12ZDsxQFGU5oFF9UvMCMwED1Vcar6nD+uqCjI0/yPg4mYyPajI2TiZj4w8yPoQ4BZ2maXVdgxBCCCGEEH8al8MSCyGEEEIIIS4ZCchCCCGEEELUIAFZCCGEEEKIGiQgCyGEEEIIUYMEZCGEEEIIIWqQgCyEEEIIIUQNEpCFEEIIIYSoQQKyEEIIIYQQNUhAFkIIIYQQogYJyEIIIYQQQtQgAVkIIYQQQogaJCALIYQQQghRgwRkIYQQQgghapCALIQQQgghRA3Gui7gVDp37qxFRUXVdRniImzfvj1HVdUwX7crY+PyV1tjA2R81Ady7hCnU5vnDiFO5POArCjKRqDo6MMUYBowBXADi1RVnXi2NqKiopg7d66vSxOXkKIoB2ujXRkbl7/aGhsg46M+kHOHOJ3aPHcIcSKfBmRFUayATlXVXjWObQZGAvuB7xVFaaeq6iZf9iuEEEIIIYSv+HoGOQmwKYqy6GjbzwMWVVX3ASiKshDoC0hAFkIIIYQQf0q+DshlwL+BD4BmwA9AQY3ni4E4H/cphBBCCCGEz/g6IO8G9qqqqgG7FUUpBIJrPO/k+MAshBBCCCHEn4qvt3m7B5gMoChKQ8AGlCqK0lRRFB1wHbDMx30KIYQQQgjhM76eQZ4OzFAUZTmgUR2YvcBMwED1LhZrfNynEEIIIYQQPuPTgKyqahUw6hRPdfFlP0IIUd94KyvJeettihctwhAaStBtt+E/8AZ0Ol1dlyaEEFecP+WNQoQQ4krirariwOjR7M92kB43mkpsBH64k4S5i2g99TX0ZnNdlyiEEFcUudW0EELUsZy33mZrqYKq3I6frRirI4X80ASWm4ey4N7JuAoL67pEIYS4okhAFkKIOlSxcye75q0ltVEvWtm+56fQMvb16c+WbuHYK9dz0N6ZLx6ZR0lGdl2XKoQQVwxZYiGEEHUoY+qH7G52MyGGA2wNqOCZcX8hOsQOwI7+Ldg4/iVKTD35/LnlDHmqO+FNG9RxxUIIUf/JDLIQQtSRqoMHUXdWUWkOoH3ADNrd/Dib8n/i5m9v5vo51/Nq8v9R+nAzIsvngUtj7r82sn9LRl2XLYQQ9Z4EZCGEqCM5Mz4hNaonUYYtbA7vwNdH3uXZFc/i1by0C29Hubuct7ZM4aXrNxFc+h7Wsjx+fHsLa5cdrOvShRCiXpMlFrVE0zQK580n/4vPcaWnY2kaT9DNN+G87jp0BkNdlyeEqGPeykr2rDxMZWx3WjnfZWbStfyQMotxbcfxlzZ/+X17t/0F+5m+bTovDfiWp758HV3wA6yfqSM1v4wRQ5rX8W8hhBD1k8wg1wLN6yXrpZfJePppvGXl0LU/mflmdj/zKim3jqJy//66LlEIUcdKFi/mcFBHHGSSHKxn3uEvGBw3+LhwDBAXGMdLPV7iq5Ffs+Jv7QhLfRNbSTqZCw4x5X/r8Hq1OvwthBCifpIZ5FqQO306+Z9+inbbAyyrSKQ0Xw+RQCRYKvOJHPcunf7vOsIG9K3rUoUQdSR9/iIKAwfT2f4pu2EGEgAAIABJREFUrze2Y9WsPH7V46e9MUhsQCz/HTSNn0Nn0uyhKexo8SjaShfjy5Yz8Z5uWE3yzZQQQviKzCD7WFVqGjlvv0PZtaNYkpmIVpiPMexzVinTWRb3OYeCMzjQZADzvixh1pNvUVLpruuShRCXmDsvj5QD1f9fFLCZ5Ko9jGk5hmBr8Bl/TqfT0a/rHTR5fRJtt76N3uWm4bZ0Hv5wGVVub+0XLoQQVwgJyD6W/eorFNujWENXAg0HWNDmP7wVv4qqeBdte8VhvamIza0+QtPyyC9swbSH3+aj31TcHvnHTYgrRdFPP5MV3pEwncqXEU78jH7c3vz2c/75xt36Ev/ieNpufQ9jVSCx6k4e+2ytLLcQQggfkSUWPlS5bx9FP/3Cjr4vY/IWM7vlh6Q7XEzuMZl+0f3++Oq0C6jqYjb94wdyQwaQO3s1N21cyyu3DUOJcNbtLyGEqHXpi9ZSar+BVs5v+Je1mEGxQ3CYHefVRtCAgSRk5VD28Wx2KbcTtPMHXv8pkEevS6ylqoUQ4sohM8g+lDdjBpmNulPi9udA1BwO2cuY1u89+sf0P2ldoaJcy00fPEOL9I9xVIZx9R4/Hpj+H77fkl5H1QshLgVPYSEHMwygedkWsoNKzcXIZiMvqK2Qu++i1YBEGqYvp0FeT1JWv8WCrbJPshBCXCwJyD7izs0l/5vv2dN0GAbLXr6J2sLjVz1B+wbtT/szhoBArv74da7K/gRnuZ7Bqe15Y8ErfLhizyWsXAhxKRX9soTs0CTC9Lv4OsRKfGA8rUJbXXB74U88TseWVdhL0ojP6Mesb/7FrswiH1YshBBXHgnIPlL4zbdkBbbCrfNjSfQi2gUlMCpx1Fl/zhgURNtPptI1/wscZWUMPHA9X658mf/8knwJqhZCXGrpP62hzBZBw4Dl7DVVcEPsDafdueJc6HQ6Gv1zAh3M6zB7LLTMTGDCp1MpLHf5sGohhLiySED2AU3TKJg7lwNNB+I1p7MjeDePd3vunP/RMwQG0vzTD+mhLcJRXswN+0aycMvLTFq4rpYrF+LKlZtWwralaRzclnvJ+vSWlXHwkBc0L7uCtwJwfcz1F92uzmSixRsvk1j4M/4uhfjsTJ757Hu5aE8IIS6QBGQfqNi+g+xsL2XmMNZG/UqfkFa0CWtzXm0YHHYSPniXHrZV2CrKGbxrFEt2vsBrP0tIFsLXSgsrmT1pHb/NUvnmrWTKSy/NbGvJsuUcCWpJoG4/3wabaBnSksb+jX3StsHhoPubT9CgYBMNC2/A78AM3vl5q0/aFkKIK40EZB8onD+f9Ibd8eoq2Ba2iXs7/f2C2tGZzTR7azI9G6pYqrwM23YXvyU/w+tLJCQL4UvrFx3E7fbya+Mf0AO/LL00d7fMXLicEkcjovyXs9/k4bqY63zavrlBA657fhh+lTnEp43m8KqH+GWHXLRX3+SVVrFqXy5r9ueSml+Gpsk3BUL4mgTki6R5veT/tISssPYcDtlAK6uT1g3aXnB7OoOB+Jf/wbWdyjBgYci2Maxe9TBv/rbSh1ULceWqKHWx7bdU9oZsIq3JWioN5axbt63W+9VcLg6qxQCkBFf31zfa93fTdCY2pf/diXgMdpqrI1n85Z3sSCv0eT/i0lt3II9bpq2i/Qs/MXrqcm55bzU9Xl3CVS/9wvi5W1i+J0f21BfCR2Qf5ItUvmkT6brGaHoTGyPW8lTre3zSbtP7b0c3dxkLfzRxw7a72ZQ3jjerJvF//Xw74yTElWb78nRww+aon/h08EdM3bmQkCMNcbk9mIy1d7vmsg0byXYo+GlZLAyqJDGoBY2dvllecaJGvdrS6fBK1qxoQevN+5j/wV04/28WjYNttdKfqF1er8abv+xh9f/mMSJ1Dc/kpmCqrKDKZuFIZDA7GkXwbVkMn29SCPNryG1XRXN7lyaEO611XboQly2ZQb5IRT8uJDOiE5WmI1TZDtCz5W0+aztuxNVce0sMxc5YuqTcgft/j/Ha/P/5rH0hrjSaprF+yUEyHAfo4AkhfPMhwhqYcLiczF66plb7zvt5KYWBTWloX8UOi54+0X1qtb8Od3QlOlZHbvhAmq8y8snb95NdVFGrfYraMWneJoyvTuS5tTOILtvH4paVfH6NniVKFZWlGfT5bRNvzJ3Hq2tfJcH1PO8mT6XHa9/w96+SOZBTWtflC3FZkoB8ETSvl5xfllMQ0Iwd4RsYHNQCk97k0z6UPgo9bownJ6wt0YW30njaJF788BU8cnW6EOctY18h7gI3ac7l3DdtC4fH3k+fWR8DsFPdV2v9appGysZ0NJ2B3JDNaDro06R2A7JOp+O6R64hIAiyGo2h1bJU3n7jcbIkJF9WPlu6m/j//oNeaRv54mo9Ex7wwzqgCX1btqZ3Uleib+iL6/8NoWRoHxKKnDzzWR5PLf+RqLCX+C79Tfq98S2v/LCLsip3Xf8qQlxW6sUSC03TKM6rwOPyEtjAdlF7ip6Pih07yaAR6PTsCdnMk22fqpV+kvrFUFHuZf0CiEz3cNWHn/Bcfirjx72Ow1Iv/giFuCRWLUyhSl9Bn6270WseQttWkJWcj4aX8oLyWuu3KuUAWURi1Er5NSiTaGc88YHxtdbfMSazgaF/78EXE5eRHfU32i19jdd1T/O3+1+U5RaXgV1pBbiee5IOOSm8NVhPi4AW3L+uKxlVrdhyin++jUkDCeMg8TuXMeX9LXzdeTXfddrE9K19WbCtH/++sT2dYoPr4DcR4vJz2acrr1fj3f/8AHur11o17R3M9bdc+EVy56Pkt1/JDm9PmTmTcEsWzWKvrbW+Og2OxevV2PgjhBsMXPfFLP5ZeiMP/G0m0aH2WutXiPoiL6OUjK15pPuv5PrFuQS3KCbo+VkcGTEWnbcAQy1u9Va8fCV5wS0INm9mnc3C6CZ9L9kHeWewlaGPd2HOK2soCH+Ajsv+y+vaU/zlvpdQIpyXpAZx/qrcXn588kWuy9zFx/3C6OC6lcrURIoCDST1jKJBnD/OYCtGk4GqChdFKSlkbtzK/gPhZDS/F0dVBj13fsOAzTuZ2/E7fmm9kVs/Hskd7Xrw5PWJ2GVyRYgzuqz/hmiaxpv//QbjXifJDVbhrLLj/bUVHbuXENrIUev95/62hoKgu9gRvpAbQpNqtS+dTkeXoXHoDTrWfw9uo4Xh8z9hiqcvQ279jF7NY2q1fyEuR9OW7sLfauG2TrF8N2sbLn0VLff+it7kJeSWQRgSr8EvqTX28lz8Kiy1Vsfh1XtwG69BC1mNRwfXNqm9D9OnEtbYycBx7fn2jY0YPffTcfWbvK17mNG3v0bHGJlR/DOaP+Nb+q3/niXtYmji/Stgo/cdCs27NUSnP/nDVURcOxL6tKNHlYt9P/7CuiVmtrb6K6GluxixZjZD16Uzp+tbzNu1ncXqEP59Y3u6xIVc+l9MiMvEZRGQN2ZtxKN5uCriquOOz/hkIcY9TjZFbGLCQ+N4+Ov/Erm+lB9nJXPH37vXak3unBzSso0QrCMlOJlJbcbXan9QHZI7D47DbDGyci54TA5u+u49PtYPYl/nZ7n3+ltqvQbhO56CAkpXr6YqJQVXdjbewiI0txtjaAiWxEScfftiDJbwcjF2L3sPV6WTLQva0yjTyd7QJTywJJfAll4MA18AwNGzN84f87AHNqOsqhyb2c+nNWhuN+lpbojwsjbkACHmwPO+kZAvNG4eTP/72rDwfR3B7v9H6w3v8T/D3ZQNf59rlAaXvB5xejlHCgib+gqHIiJxBz1AkAUGPdGdoMizf1uoN5toNuR6mg70sm3ectYuiWFdp6eJzV3EXT//yDDbz3x71UbGTL+Tmzr14InrFJxW3147I0R9cFkE5HnTZ3OkysKqPuv4a7d7MevMzJy5iLJVZtSgnTx863Ccvy7hmZIw3g9ahyWlF65KDyZL7W3ZVLJsOUfCkqg05NLYlEZETM9a6+tE7fo3wc/fxOJPYFfrv3P3t2/znnsiqYfn8/c7PsTPz7f/wAvfKlmxgrxPPqF0+QrwePDoTRSFxVHgCKPCaMO8+wjWJYcwT5lNZSMdxhv60mbY7YQE1P63IvVND7tCamoces3A1ojfGJqyCh0awePGgyMMAHv37ljnf4zNdRWb0vbSPba1T2uo2LGDPHscfqSx1AEDo/ui19XN9dHxHcKpKm/Okk91hB25m8T1HzHbMpj8ghkM7dyiTmoSJ1v29EvEVbpZ3OlvBBi8DBt/Lc6w81tKpzfoaXPjNcT3q2TFR0vZvesGcnu2plHaXEb/upvh1iksSPmGwRvH8PCwbgxt2/CSLfsR4nJwWQTk9laFtMNReGfBK99+hs0VgK08gF1BO+jS5yps4x8nY+dO/IB2bbviCtSTsa+AJi1q7+ujguWryQvqjRq2nOuCW8IlPrEkdonEEWjhh6lb2NJuPGN+eZ//XbOFh2Zcxbg2T9Om222XvCZxZp7CQjIn/pOiBQtwRcaxp8//cUizY3SHo9dO/1fR9nMGR+a9TErgAQ50asHVnYfSX0kg1FF7SwLqi+EP/YXDnz3Axv3r6V+Yhnutk4COjTD1+mO/cktcHNaKXHToSd67y+cBOX/pGoqcsQQ4vqdcr6NPLdwc5Hy06NEQV6WH5V9CeJaHpKWfMNNyE/tTn+XB4bdgOMXX9+LSSduq0nT5ApZ1HYtZczD4gUScYRf+4dgWYKHfw/1olpzF0k89bIt6iOhGv6FPXcAtG1MYsm0C83e2ZlaXe3l8eEe5iE+Ioy6LgDz80TGsf/dJDqZUUehuS4Ypj73OQ9zU9zq6T3uR8r17afTGG5StXUnXz+bx69W3sSU5pdYCsub1cnhHHlq0iQPB25jY/M5a6edsGiUGc9PTnVjwdjJb9OMYuX4uSwt/5WHTCzy0/nX69x6PX6shoK+9mXRxbir37yf1/r9RcqSIvYMmklEShK7KQIH9IN6gJcQEumkXGU5DpwG/0gN4M/ZRfKSQvVXNOEQ7jth64dAZ6bQqg5Jl7/JI44OkxnVmQNPrGdm2BU0v4h/Q+iz/88+xlXVgQLfOpL30NprTS/gbXx73Gr3djp+uBIDMQ77f6u3w1kzQNeVA+DbsOjOdIzr7vI/zldSnMR63l1XzIDwbhn3/MR8M/ieZ7/zKw3f8h8jAK3uHiyOZBaSkptK+XXOMhkt7/tw+4Z9UNekJ5pZcc00pYYkxPmk3JqkBUYnXsv77FDb/fA3m6E4Yms6gcP9WbtuyheLdj/Dphu6803sMj1zXnKTGgT7pV4jL1WURkHNnzKBJeQQtW69n5L4HWRV9P+aejxL5wRQKN2wgalRLnGvvwFZeSY6lMabKQ6Ts9NRaPZWqSo6pEV7KCbKoRCQMrLW+ziYw3MaN46/i5+nb2Ku7kaTspjT78Ute6l/C5t8eYezCZwm75kH07e8Ekyy9qAsVqsqhu8eQ45/A5q6P4SnV2Ba5DFPoKsb1uJvENi+fcrY/yFVBk8wtsG8JFeqb7N5lI9nVlzL7jXQtcBGwOJmM1S/xwtIMikKTaB59CwNatuWq2CAstXhHuMtJ1aHD5H30EdkARiNR/5mMMSjopNf5B5kBKMvz7S2ZNU0jK9eAPriKn0MyuDryakyGP8d6z/bXRYMOVs2F8Gwd4z/7mBdvXM5Ln/TkhvaTuaHHNXVd4iVXUepixluL8aRU/xn97LedbndF06ttl0vSf/pvKwlOSWV1pzsJCd5Pq1t8c2fWY0wWA11HxJPQJYJfP93F3v3306BlPjsSp2LYnMr9G5Zx+MAaJmzuT+hVN/H0DS2Ikw/f4gp1WQRknU5H7nvvUdauLQ069ecqdRrZ876hcLdGaKsS/HW/QdIoDF43Idu+ITJ7D4es0bW2DrlkxUpyg1uQ7r+b3n4RYKzbr7rNViMD7k9i008HWT1Pw1wZw4tz5jK7fTI3NYXnfnuO7otfwdznaQwd7gbDZfHHftGqyt3kpJaADsKbODGaL31orDpwgEN3jyE9rCPbGg4l35zOqvgZ/E3pyqA+i868DMZkhcadoHEnrL2epE1VKW0OrebIlh1sWeFir9YcP0NHeh7IJGjjGtKcL/Bt4wKmBLfCEj6K3koL+jYPJzrkyt0GsMGTf8dxdQ/Kt2whYMgQTA0bnvJ1/o3CodKLVu7bMeJKS6PAEomRw+SadFzbdLBP279Y7ftHA9Uh2WP24z8fT+fN68t4e+df2bWpC0NvmkzTiCvjK/eDe7P56u21mCrMbGqwEpcllLbpUSyZpdKtVXvMRnOt9q9pGvtefpl9Le/Aa3AxZGwfdPraWase0tDBiMc7sGt1Bqvn76esaDwNO2WxLeEjItYdZtLP37Hy0E/ct7s7Se1u5uHeHa/o84i4Ml0WSSn4rrswBIeQ9eKLHNhUCEQAGqFdnYSOug06joagGNA0bJvSCf5pH6mN+5NzuJjIeN9/TZS9ahuV1sHsD/mZ++Ku83n7F0Kn19H+uhiilGB+nraRPZZ7GbBjFTev/o5FLTVmRRt4+JfxRPz2Ht7BbxCReGlmRC61qgo3B7bmsH1lGulqAXirA6glUEe/O9sQ3fLSbWvkKSjg8F/HkhXQgm0Nh5IeoKLGfsDU3i/RRBlw/g2a7RDfh7D4PvQZAT2rPKjLD7JjYSVp9qHAUBIzM+m6cxtFxvc4sO4g4xs0pqpBb/q36s+AVnFX5M0h7N26Ye/W7YyvsTRuiGV7AaYK3+4LXLJpCyX2RnjsP6PXoHujHj5t3xfa94/GbDXy2yxwJT3JQ9++gdqkkI97ruPwl1cT5T+OkQNHE1vP9ltfvG8bzy59FcWZSMShSCL2NMJlqmR1yy28MfBOgvHy+Oy1JKY05qNv5/LX4bfWaj05i37GVRFKqaMpbTvswt6kdj9M6fQ6mndrSHzHBmz9NZXNP5kodz+FvmcmJRmf02HzHrrsWcwydQn37ozFFNmf21oNYHDrGILstfthQYg/g8siIAMEDB6Eo3dvir77Dq2qCmvrVtjatTv+RTodfgPvw/b1vwDIzizweUDW3G7S0j0QDVWObcS1eNKn7V+sBjH+3PLPq1n/3X42LtLIbdCW/jvmE/nLSnY1CmVpfBG9Zw1lreMGSrv9nQHtmxJou3xPdnkFhcz9bCkmlxVvkYGyDA08OkrM+WQGbEDHIUr8TDTO78u3b3kZ/kh7ohJO/ord1zRNI/3pZ8gpMrKl7a1k21NIjXmXD/q/TVCcb766NpoNtLw2jpbXxlGUW87+jVmkrNSRnhGGRl/C3eUkbtuF35pdZCz5mg8jj+COtBDnZyNJbyLOaMTPYsZs80cXGA0RbSCme/WHzSuMuVEjrBvy8KsI8Gm7GRtS0PTN2dVgHy0tYfib/X3avq+0uiYKe6CFnz/czvoeE2m+4yP+88EmNsXBkvZvMumTz/EGPs2NnZLo0zwck6FuduHwJXOpgX7briewPBiT18KBgH20iHHz6sI1FLz1PwqAcZ0UvgwchbbcizZMq7VdHjRNY+9/32JP/N1U2FK4+o4xtdLPqZjMBtr3j6Z1r0bsWJ7O5p8sZNofJrdPIeE5C+m0fT09t+1na/Q0Vmz9kA9+UXCE96RfbE+6N21Im0YBWE2ypEvUP5ckICuKogfeAZKASuA+VVX3nm87BoedoFvPvNevqcMAjIa/g+Zlz4FUknrEXEjJp1W5eze59qZU6bJpbShAFxzr0/Z9wWgy0GV4M5p1imTp57tR9beR2moE4Yd/pNdvS/DognE1W4lfzlAeX3g7hoSBDG0bxbWJ4ZfdiW7jqiWUbyqhTFeOhwI0zyGC8rdz1d69OCvdv79ud/RetifezzfvbuTO57rjCLLWal0FX35J3rK1bOn5T4oN+eyKe5e3r37ZZ+H4RP4hfrTtF0PbfjFUVbhJ3ZnP/pX7OLSrOUdc1R8ko4ryCDy8F483nWUBmcwMy6IkNAeH/RCJmauJ2foxcS4XfroIskK6UdiwJ/qYrgQHhxLmtBDqsNTbHQ5MUVGYXeuxusKp9FRiMfhm2VTWgSKwwrqQdO6LurQ3BzlfsW1CuWn8Vfz4/jaSPfcR26WAViveot1XGRwOzeanqx5hcnYHnvn6Zm7t2IzbO0fTMPDyva6htaGcYn0+usgqGvpXMHjVD5R+vQev3UN42xI8VRZy1+2iWYel5DhGkLx3J22b1c5WeCW//UauLgG3KYDefQvQWS79+2oyG0i6tjGtekaxd30225elsafiZvZ1uZEI1zZCD6/nnsW7Mbu2UmbeSoHjLTLNFpJtIZSGxWOJa09gt660bN6E5pH+9eJDlLiyXaoZ5GGAVVXVroqidAEmA0NrpSe9Hq1xMKaqPLJSfX+SKV2/kcKApqQGbuL6kJY+b9+XQqIcDHu0HQe35rLu+xRSqoaSFj0Mh2szjTd8R8iudHSNPmdr+TwmHe7Jk/M70y+hBTe0jqRHs9DLIix3ahJHw823oyt2gaYDvYbJ7sHWsApbWCVmh4fyPBO6rV6cZdPY1uoZfpu3g4H3tK+1mqpSU8l85V/s7PIQ5R49axLe55XmowlrdWnWn5qtRuLahRHXLgxN0yjMLufwjlwObTxM5gF/KlydMAJxpaAr8WB0FeOhhO3GEtZYy8i3lVLhKsKQ9xPmXZ9Qbs6nEAulWiAeXSB+xiBCTIE0sQUS4wgkyj8Mv4AILKExBDodBNnN2M2Gy2pPVVOjRphcv2Jxx5Kdf5DGoQkX3abm9ZJbakFvyqfcXEx3ZYQPKq1dgQ1s3PhkB9Z+m8Lmn3Wkd5hA8yblRCx6nXt+OEiO/3rmd9/EzO0dmLa6B/2atuP2zjF0axqC/jL78GTIyCDm27d/f1xh8RDewU3QTcPQdxkDDVrh+b+7SFixgZzOI1i6dFutBeSdb07nUOPbKQzcSPsBj9VKH+fKYNCjdI5A6RxBXkYpO1eks2edlXTj/2fvzOOjKLO9/6vqrt6701k66ex7OmFHUDaRAIKKBMgCyIgyrxm5URkuV2EGnIErw2AcGS5qQBFwgKgoEl9cWGSuRmZQATWERUw6CyF7Z+99r6r3jya8bCEJaUKW+n4+fD7p6vM8ddJpqk6d5zy/MwKIBnyIBkisF8FaLwHWGsS21COoog7k6X+D+egNFAX5YXfkMDSNfgRJCYkYEabEyDAlwnzF/e47wjG46a0A+UEAXwGAVqs9pdFoxt7Nk4lHj4fslyY0NQV6fe6GghK4qWRU+V3C+Lh7p17RVQiCQNSIAEQO90ddiR7nj9fg8rlRaB01EhKhCQHl/4uUY6cxSfpP/Gv41zhDibFcpwF5eCimhE9G+qgETIztu8GyYugIDPnxAlhjA3DpX0BLGQiCAWRBgG804BcNiUCKur3boN52AFrLCVT8NAVtsyzwVXu/ppJlWdSvXYvK4Klo4YXih6iP8axvMDRT/9Pr5+oKBEFAGSSBMkiC4VPDAQAOqwstNUY0n69Aa0k9zI02WPVOOMwC+Nh9obJI4aau37lOutvAczVB6GiAyNYIgaMEDr4eerEJZQoj7D5u0DIGZgUFM+UDOx0AKxmNqcMXYsX029f/9gWokBBQLgv4jAxVumKvBMiuunoYpeFw8y7DhwGSAkd5wdO7D5/iYWJaHDTj1Dj5WTnOXqBBJaxBzHQXFN++id8dLcMjqh/xQfLP+N7mj/xDSQjgD8PTI6diwZiEflOfKk1+BKFvUqDrLkHgy4N4eBLIqHHANSojAWuyoZ85A6T7MgzFdyera/vlImpd8WBIEtMeDepT+vV+wVJMyojHhLQ4NFWZUFPcippiX+guBcMtZgB/oDGSRim/CQ7oAGsrghqbMF9bB3HhqygLtuFkpAzv+/nBJPKHRByGMGUMhoYNRUJoKIIDfeAjE0Mm4ve7h2qOgU9vBcgKANfqJ9EajYav1WrdHQ3oCX4Tp0Py0ymQ1iivzsuyLOorzEAIoBQWQx77qlfnv5sQBIFQjS9CNb6wGp0o/akB2tM6VDnSUB2eCj9rKSaXnkbayfNw8s6gPLgQZcEf4GChGLk+wfBXjEJo4EMICItHjEqOqAAJgn3EfWbJnVAEAaMWdPj+8GUb8Nk5PSae+gr/enACfjikxeO/834W2fDZ52g4X43y+59Emf8ZPCA5h1m/+d7r5+kJQgmFkAR/hCRcv2GRsdvhKC2Fo6QE9opzMNS2wWBkYXRLYSZ8YOErYBFFwKy8vjzFl2Ug0JvBa7aBZNxg4QYLJwA3nMV7gX4QIJMiEUjSCYLgoa7+EjCs53OateWwi/zRJDuBoaTPPeued6f4h8ow+4WRaKoy4dw31SgraAQd/l/wH2JH4K+f4Q+fnkJDUBP2T2zD6bjvkXNpJ976NRzR0vuxaNhjWDjifvD78DI7wedD8cjM29pQoaFQPPIwIooKwfBToWtohjoowKt+lO3ch7rgZDT7ncT4KWu9Ore3IEkCQVEKBEUpMObRKNA0g9ZaC5prTGjTWWFoDIKhPhxGxoHmEBLNV8RiKJcew4w63N/QBLGtGWJ7FYT2c6DcH4ByWUC7bWjmMdCJAasPH4YAJfSBkWiKHoWRM9IxZXjMvf3FOQY1vRUgGwFcuz2cvFvBMQD4JA6H2PYlSFYMu8UFkdQ7uqPuujq08YLghh5D+BZAEeyVeXsbiUKAkdPDMXJ6OFrqzCg53YDSn8QoFidACwZBdDlUupNI/PksBC4rgHI0+pSjJvBTWPxZ/DNYgRJ5HC7TYxDkPxLbn5yEYJ++X4uYvOk1lCdPgMhUgIrCB+B20l6VfqNNJug2b0HxqOdgo8wwBn+EpzI+7TeyeqRIBPHw4RAP93SSU3dgZze7YGi2wWpwwGp0wtRshbm+DQ6DBW6jBS6LDW6nG26aQVJM77Vg7yl8iSeYa2pq8sp8LUW1AIJQHNCEaco4r8x5L1BFyPHw/xmCSfPjUHK6Ab9+X4ei8CdQHpWBkLp/4bl8VBO3AAAgAElEQVRD32IFWqCLIHBeXY1f/S7jk9o87Ppeggh5Iu4PewTTh85CnMqnX9alKmbNgerff8PlSOCnn88j5XHv1ZK7W1tRUikFG0Qj6UHfPpU9vh08HglVhByqiOtVX1iWhUXvRGudCS1ltWi5TKOtnocWYxQczM37PliWBgsTSNoMkcMOqd0BQbUJkZfa0KxdDbz7SW/9ShwcN9Fbd+7vAaQA+ORKDfKFu3kySh0Eod1zkzM02iCK9k6AbPv1V+h9YtEsuYRHVH27/rir+IfIMCFVhvHzYtBUZULpz40o+1kMHS8eZMQSqIMIBNDl4FV+jbjyIshKHSBhgllUiKLwsyiOIFCnexvBPn0/EFIqpaiZPBdDfirAuVGTcPlcA+Luv7Uu7p3Q/PY7qBSPgIkKxOmoXVgY/TxU6iivzd9XEMkoiGR9o9mFNxHJPDdwk9HslflaqtoABKHOpwFjQjte3egviGWeB+sR08JQX2bA+fxqXGKmozJoGgKZSgRX5mPGd2fxCMtcGWGCWfQT6vx+wr/9NuIzPwGKo6JhDJ6MOL8heCgqCbNHRPT5ZXXphAmQ2HVgWRsu/9IIeLGyrvbjQ2gIuh86nxN4/tH/9t7E9wiCICDzFULmK0TE0Osz7Q6rC8YWOyx6B+wWFxwWN2wmJ0x6GwwGM6w2O4xmO9xGN1gnBXXCyHv0W3BweOitAPkggBkajeYHAASAu6phQ/D5YHmtAICWuhYERXtHWqn1XAkcoiRU+ufjvohkr8zZVyAIAoGRCgRGKjAxNRYNl424VNiES+eaUNcYDYiehe90CYLCxJBYasGUfA9NcQFGnmhE5FPOe+1+l5mw4lk0zH4UDGtEwdenEXd/qlfmddXWov6TQ7g09mVc9r2AKIERaY95twsWx91FqpQCNsBq88732dDsBCgaFmEzhsbcfim/P0EQBELilQiJV8LUascv/65F8Q9CNJBREA3jIzJGgGBJG/wMxZBevgiitAhhFW2Q/OIA/l2My4HFOBNHYHcshTD/zzA6rO8pAV0LKZWCGHUf5KbLaGrwnkQky7Io+HctWEUQeMPsIMm+uc/DWwglFFQSCqpw72qNc3DcLXolQNZqtQyArN44Vzu0xAWwDGrLSzFkkncuwLqSZoAEROJySCKf98qcfRGCJKCO8YE6xgcT0+PQprOg8pcW1GjbUFFkgMMiAjAdiJ8OUkMgLPz+e+1ylwmMjcCZuKEIaDqDJnISXHY3KFHP/xs0vZWDkph5cJFAdfCnWDnrY27Hdj9DESAFqgGH3Tt/N4ONB5JsQiztgsS3bweBd4rcT4QJ82IxLiUaVb+2ouS0DuUXWqB1CAGMhG/wRATNl8M/TAY+awRz8jME/3gc807WIfUHByLn1gN9PEAGgICZMxCwrxAmxWNw2NwQint+zWj78QIa5KNh4v+IxY+t8IKXHBwc3qR/FEfeAW5VECiXEQ11dq/N2dzkBgIZxPOqgMAkr83b1/FVS+GrlmLUwxEAAJvJCX2DFaZWO1gW8Ans+/XH1+Lz8COQfXwErYHJqCv4BZGTeqYu4CgvR8W/i9E0ciYKQg8hUpqCsbHeK93g6B3kKjlQDTCOnpeP0EYjrHw/2HgNSIS839SW3ikkj0TU8ABEDQ+A20WjocKIulI9GiqMqLzYguJTuiuWE4GwiSAjALmcRGT4mHvqd1fxGf8AlO98CgIkLp39BUkTeq5IUvjxD2DIOJRFn0W8irtecHD0NQZsgMyLGgpRuRFmPeuV+dxNTbDw/OEkGjBcFgQM8OWw2yGWCyCWC9A/tygCI+Y/jop3c8CyNIp+LOxxgNz49rsojZ8Ps6AZtKwQL8z7q5c85ehNhH5KEIwbfHvPH/js5ZdgFavQKrmAOGm4F7zrP/ApHkITfK/rWGk3u2BossFqdMDc5oBZ7wDg0ezuDwhjYiC2VYNlGfxacK7HATLtcuOSIRA8pghRQ++g7TwHB8ddp39cne6AgNgktBTVw2j179y4C9iLimCSh6NNXIaRof2npIDjZqQhwWhSB0Foq0Bldc86pjkuVaD4rBGW+GD8HLkTQyNeRoS/xEuecvQmfH9fUK428F0ygGEA8s4VF1qLqsCSMugUjZgdmOhFL/sn/X1jJ8HnwxocCsrZgMb6nteolx4qgFOgRL3wAJ6ftNMLHnJwcHib/qe500WCNLEQOIyAS9a5cRfQnyuBQ+iLJt8qqMMneWVOjnuH4MHpCGksgcsaCkd9xR3PU79zDyqiZqFBWgoCNJY/0vfVPDhuDd/XFwKXGZRLBqeprkdztVZ7ZN9rfBuREMTtxh8IUEnDoDTWwmlS9niuX/LLIXDoURZjRIiPd+5RHBwc3mXABsiqhBgInQYQjAwM0/Myi4ayFgCAVFwBQj28x/Nx3FtiZ06Bb5sWBEjUfXdnjTxcDQ345bwDLkqGc5EHMXHkn+HXT7qIcdwMz9cXlMsCkVuGVv3lHs1lbLYBANziRvgFDgxJyMGO35hRUJjqwHf6w2kwdD6gA6wmBxqcKhCOHxEaMdeLHnJwcHiTARsg832VIBgTQJCwteh7PF9Do2dZLZxfCfhG9Xg+jntL4P2jIbFUgWVdKNE23NEc9bs/RE3wQ6iWn4GIDsV/PMQFQv0ZT4BsBsVIYTDV9mgui9ENgnEhlG0DlJFe8pDjXhI2fgxkFs/3ovnCnUv5l39bAhA8VPidRdoIL4oqc3BweJUBGyATBAGG8Aj+W+tqejQXy7KwOAVgmVZopD6DeoPeQIEUCqEPDYHQXoWqFjlAd6+xI2Oz4cKpNtA8AbQRXyF14p8h9mJXPo7eh5TLwXdbwGNlaDbW92gus40AQesRQZOAkFtCHwiIoqPAd3gepqu1ZXc8T9l35RDZmlERbMW4qP661ZmDY+AzYDfpAYCb79kpbayrh2rknZdFuBsaYBMGwsZrwMgB0kGPA5CMHofACxWolkwBXV0IXlTXN1+2HDqG6oDxaJSchS8bhfn3R909Rzl6BYIgwCOcICBGs75n7abttABugR4RPO80KeK49xAkCYOCD4KxoabOhHF3MIfD5ka9QQp/409ggh8Evx+23u5rFBQUBPL5/F0AhmEAJ/047goMgF/cbvfvxowZ03jjmwM6QHZeaf3e1NiA2B7M4ygvh1USBLPoFNTq+7ziG8e9J2rqJNi/24Ua9mE0FvyM4G4EyL8cughaPAEXI79B1rQd4HFNQQYEPD4DgiDRajDd8RyMzQYHpYCDV44hUi5DOJBwhERBYqlDq/7OpACrLjaDJXhoFp3D6MgXvezd4ITP5+9Sq9VJKpWqjSRJ7+i6cgwKGIYhmpqahuh0ul0A5tz4/oB+2qJ9PHJbrW13frMDAH1xFWi+CG55HQj1MG+4xtEH8HtgLHwMHgWLmhJdJ9b/H5u2BJcQBwfKESpQYvrQsLvlIkcv095V0WK98wZDzvp6OARKmAV6xPnFe8s1jj6AMCYJSmMdnDY1WIel2+OrfigDz22DNrgKD8dx6iZeYphKpTJywTFHdyFJklWpVAZ4Vh9ufr+X/elVeH4B4LvM0Ot7plvZVObJvEvENUAQV2IxUOD7+sLsQ4FwN6G0SQq4uhYUlez/F+xiFS6EHceiqf8NYoB3SRtMCKSeZSeL3XXHc5gqdGBJHgxiPUI4DeQBhVyjgcRaDzASWCuLuz2+tkwPpaEcl4MCMTzUt/MBHF2B5IJjjjvlynfnlrHwgA6QRYEhEDqNsJl6tnmqodYIAFALmgGJnzdc4+gjsEkj4NdWDr0jAWzNT53bMwxKiqwgaDN8lTqMT+ICoIGEWOEJkO2OO7/fGquaPXNIW0H5xnjFL46+QeDwJEitno16+tLu6adb9A6YnBIIbCWw+46DgD+gb78cHP2eAf0/VBkSBYHTCJejZ61jLVYSYGyIlPW8BS1H3yJs4kSoWsvB0groLxR0at/23U9olieiSVSAeWN+3wsecvQmEl8pAMB15wlkmHQejVxW2sJJvA0wwjRR4Dk8K4qt1d3byFmjbfOME5ViqOpOtvhx9GVOnTolzcjI0LS/LiwsFM+ZMycxNTVVs3z58iiapgEA7777rmr27NlJKSkpSQcOHPAFALPZTC5ZsiQ2PT1ds3DhwoSampoO205+9tlnyqysrOj2199884187ty5ienp6ZrMzMwYi8VCAsBrr70WnJKSkjRv3rzE06dPSwCgoaGB336eefPmJZaVlV1tJdvY2MifOnXqMJvNRgBAS0sLb/HixXGpqamaJUuWxDY0NHS4Z+348eOySZMmjbjxeEVFhWDOnDnXZZF27typys7ODulortzcXP8vv/zSBwC2b9+u6shu69atga+88kpo++v9+/f7paSkJM6bNy/xpZdeiqBpGrm5uf4ZGRmajIwMzZw5cxKHDRt2X1tbW5czpgN6k55faDgaHWVg6Jg7bh3LOBxw8HzhIhqQ4B93F7zkuJeoJz6A5rd2AQDqiurhe1OZ/vX8+nkBGDIRLeE/4qHxr9x9Bzl6FVmAAqgGYLvztsimFk+TEAXVBMjVXvKMoy8gFlJolgJgHKhvtKE72kjVZ2vBd1lRrqrF1Biu/vhusPeHy/7/90xNgDfnTLsvrHnJxKiW29ls2bIl6OjRo/4ikYhpP/bWW2+FZGVl1c+aNcvw3HPPRR85csRn/Pjxlry8vMDDhw//arfbiccee2xYenp62549ewKSkpKsq1evrs/NzfXftm2bOjs7u/rG86xZsyb89OnTiri4OFv7sY0bN0bu27evWK1Wu9evXx+6d+/egHHjxpnPnDkj//zzz4uqq6sFL7zwQuyhQ4eK/vrXv4bNnj27df78+W3ffvutXKvViuLi4hzHjh1TvPHGG2FtbW1XL3xvvPFG8KhRo8wrV67Uff311/Ls7OzQN954o/JGn6qqqqjdu3cHud1ur9QaPv3001c/6927d4dkZWVd9yRqtVqJl156KaqoqEianJzc1n7s7bffDjly5MivUqmU+Y//+I/oI0eO+Dz99NMt7fOtWrUqYu7cuc2+vr50V30Z0Blkv7BgCJ0GsKwCrPW23+8OcdXWwSoJgo1qQBjXEWvAIYyLA0m3gWWMKG+Q3LYOmaVpVOiEINz1uC8iBuBqjwcc0gA5AIB03nlHRLPRBYJxwh8WTgN5ANKqCoLY1oAmg7Bz42uo1zbBx1iOqiApRod3mBjj6IdERkY6tm7dWn7tMY1GY9Xr9TyGYWC1WnkURbEqlcp95MiRiwKBgNXpdBRFUQxJkli2bFnjypUr6wGgrq5OIJfLbxnEjR492rx27dqqa4998MEHWrVa7QYAmqYJoVDInD59WjZu3DgjSZKIjIx00jRNNDY28i9cuCDT6XSChQsXJnz++ed+U6ZMMQEASZJ4//33tXK5/GpDgIqKCtG0adMMADBx4kTz+fPnb7qY2Ww24uWXX47cuHFj1Y3vdUZFRYVg7ty5ic8++2zMrFmzklauXBkBANnZ2SE7d+5Ubdq0SW02m3mrVq2KuHac3W4nU1NTW5555pmrYvVCoZDdv39/sVQqZa75HK7Wyf3000+SiooKcWZmZnN3fBzQGWT/sCBQLjMAAVytOghk3b8o2auq4RD6ghY2gPRP9rqPHPcWgseDNTYGUnM56gQaoOoHIHbaLW0bj/8MozwaLcLPserRl3vZU47eQKj03ANI152XU5ntJAhKjwBS4i23OPoQzuBIKOsa0KKIAhzmLj0E2S0uGK0CRJoqcFkZjTBfrlzvbrBkYlRLZ9neu0FaWpq+oqLiuqfq6Ohox+uvvx6xa9euYKlUSrcHoxRFYfv27apdu3aFZmRkXG3jyufzsWDBgoSKigrxjh07Sm51ngULFrQdP35cfu2xkJAQFwAcPHhQWVBQIF+zZk1tTk6OWqlUXg12JRIJbTAYeI2NjQKFQuHev39/yWuvvRb85ptvqv/0pz/VzZgxw3jjuRISEmz//Oc/lffdd5/t0KFDSofDcVNCdc2aNRGZmZkNYWFh3SpKIwiCBYDa2lrR+++/XyKRSJjk5OTh9fX1V2PSVatW6fLy8oI2bdp0XfDt5+dHz5w505ibm+vffozH46H9IeGdd94JtNlsvIcffvjq7/TOO+8Ev/DCC3Xd8REY4BlkoVgIGh4pHnvznQn/t5V55L/44kbAvydqyhx9leAHkxHcWA7aHQjTuX91aPfjF2cBALzIUoiVoR3acfRfKB8FeG47SLeoy6omN2JnhWBgQADl42XvOPoCoohESKw6uGkVXHVdU7LQXfLUpVt4lyCSDOeUbwYBmzdvDt+7d29xfn7+xdmzZ7esW7cuvP29rKyspu+///7cmTNn5N9+++3VgPeTTz4pyc3N1a5YsSK2tLRU2F4/u2fPntuWjeTk5ATu3btXvWfPnlKxWMzKZDK6vRYZAKxWK0+pVNJyuZx+/PHH9QAwc+ZMfVFRUYdP8StWrKivra0Vpqena2pqaoQqlcp14sQJWbtPH330kd/58+fl27ZtC8nIyNCYzWbe0qVLr9uVLBaLGZfLdV2cabVaSaFQyABAcHCwXaFQMHw+H35+fi673X7HMSlN01i7dm3YqVOnFDt27Cgnr5TUtrW18aqrq0VTp07ttt7vgA6QAcDF80i82Vva7mi8rsKzIUMhbgD8uB3pA5HgKQ/Cv81zo6s63wCwNysYMAyDRoMPeI5SzHlwfm+7yNFLkHI5+LQNpFsC2Lp/zWBZFi5CDBdpglrMLaMPRBRxmqtKFobyrrWc1pUbAJZGvaIKGr+ku+keRx9BJpO5FQoFDQBBQUEuk8nEKy4uFj7zzDOxDMOAoihWIBAwBEGwmzdvVn/44Yd+V8bRJEkiPj7ekZeXp83Ly9P+9re/7bA0YNOmTerCwkL5vn37tCqVyg0ADzzwgPnkyZM+NE2jsrJSwDAMVCqVe9iwYaZjx475AMDJkyflMTExHWYBTpw4IX/iiSeaPv30U21UVJR9xIgR5smTJ5vbfVq0aFFrfn7+L+2vZTIZvWPHjkvXzhEYGOi22WzkxYsXRQDgdrtx6tQpxahRo6wAOn1QZG9xL+6IlStXRjocDvIf//hHWXupBQB89913sjFjxtyUIe8KA7rEAgCclGeVwdyqR+AdjG9pMAJ8QCW0AAKpd53j6BOIRowA5WgEwzSjpC0GQ5tLAVXCdTbFh36CXRQIG/+fGD525z3ylONuw5PLwXfbwWfEcFoaIVB0rxMeY7HARUnh4JkRquAayAxE/ONjILgSILdVNqErO8Lqf62H3FyLwiAX7g/hmk0NBtavX1+5fPnyWB6Px1IUxWRnZ1dGR0c7ExISrPPmzUskCAITJkwwJCcnmxMTE+0vvvhi9MGDB1UMw2DDhg1d0hDU6XT8PXv2hMTGxlqffvrpBACYOXNm69KlS5tGjx5tnjdvXiLLssSf//znKgBYu3ZtzerVqyMPHDgQKJVK6ZycnEsdzZ2QkGBftWpV9KZNmxAQEODcvHnz5e5+BiRJYsOGDZfXrFkTRZIk3G438dBDD+mnTp1qurEk5VZERkbann/++ei33377tp9HQUGB5OjRowFDhw41L1y4UAMAixcvbpg3b56+vLxcFBYW5uiu78AgCJAdIo+iR5vBcEfjbWYW8HEhVMHVjA1USIEAloRYKNvOo573IFwXj4JKvj5A/vHwefDoYKjGuQGyZ7raHH0XUi4Hz20DRYtgNNUiILh7agOupma4KRkclBnBflF3x0mOe0pwsB9q0QqwDFobOi/DYWgGjTU2qA2XUKuRY3GoV0UWOPoI0dHRzi+++OJqzc3kyZPNkydPvqkGZ/Xq1fUA6q89plar3fv27SvtynmSk5NNycnJpvZxFy9ePHMruzVr1tQBuK7uNioqyvnxxx93eJ4TJ05caP85Pj7e8dlnn3W5G87p06fP3ep4R5/DjZ9X+89X/AYAHDhw4Ja12MD1ahdjxoyxFhcX31KndcWKFQ23Ot4VBnyJBS33PKToTXf0AAE3LQLLtCGKk3gb0ERNnYGY6gtgWQGqvy/wyAJewaS3w8pGgG/7EfPTNt5DLznuNqRUCr7bBj4jhtFc3/mAG7DUea7ZjMAInoKTeBuIhCjFaJALwXM1o62t81toa70FboYHmekyymThSAiSdzqGg4Pj3jPgA2QoZCAYGkaTu3PbG6BNJjgpXzh5LVAHJHQ+gKPf4pc8BUpDGWhY8GtjIlD+zdX3vsg5DJakwARdgMQn/DazcPR3CJIEyTpAQgSjpbHb4y0NegAASRkBeZC33ePoA4goHhp9fCG16NBs8wdcttvaN1R4yh9tvAqQgljIRXeusc3BwdF7DPgAWeAXCMplhtXS/WVxV00N7CJ/uKlmkL5cR6yBjGjYMDgClJDq/4VKx3g0/e/HAMuipdECQ40U/k0/I/l3WffaTY5egIQbJMQwWLslmQkAsDZ5giG+0ADIuAzyQMXgHwylSQejOwRM4+1XxhsqjKBcJtT4tiBcym305uDoLwz4AFnsrwblMsPh6J6oOwBYq+rgEsgBYROgjOh8AEe/hSAIBM2ZhzG/5MNN2nGyeAhsB/+Ew69/CrAEaEk+EoY8cq/d5OgFCJIGCBHarK3dHmtttQIAKJERkHEZ5IGKOygKUosOLPgwXrq9koWupAkKYyUqgwho/OJ7yUMODo6eMuADZKU6FJTLDLdbAtDd0rJGa4VHO5kSNwDc0vqAx3/OHAjdNhiII6h2jsbuf06FyRSCuPKDGPfi6nvtHkcvweMDICi0Wc3dHmsxeAJkOd8ASPw7sebor4gihkJq9Wjkt17WdWjntLnR1uyCwliBShUPI9TRveUiBwdHDxnwAbJPUAgELgtoRgFYurdkWl/lCZB9RE2AnFsuHegIExIgGDYUM0/m41jEbtSLSjDk4lvg+5UibnTyvXaPo5egKM9l0Wjr3gM1AJiMns3AMj4NkAP+8jpo8Y1LhKRd6q2+4wephkojAAIK42VUKAMRF6joJQ85ODh6yoC/gvuoA0C5zGBZGdDNTTdtzZ7GK4EiJyftNQggCAKhG1+FwsVD1jfnkPzjVijtlZj4xt577RpHL0KJPeqXtjsQvrHZGJC0GQqq8/bDHP0XdZAv2iQukLQebS0dNztouGQAWAYMU4k2MgyxKk5Lf6By6tQpaUZGhqb9dWFhoXjOnDmJqampmuXLl0fRNA0AePfdd1WzZ89OSklJSTpw4IAvAJjNZnLJkiWx6enpmoULFybU1NTctJPTarUSmZmZsWlpaZrFixfHNTY28gFPF70ZM2YMbe9wV1xcLOzI9scff5SkpaVpUlNTNZmZmTE2m+3ql/dG/wsKCiQpKSlJaWlpmj/+8Y/h7f7fir///e/qG7voAUBubq7/K6+8cl3b2aVLl8bc2C77Wl5++eXwyspKQUtLC+/jjz/2u5WN2+1GZmZmzFdffXX1iXPDhg2hKSkpiXPmzElsn7+lpYU3duzYke2fzbZt27rVDmPA6yD7BvqD7zKDhRSMsRFkN3T/7RYWkNEIU3TYjZFjgCHSJCD4z2vBz8kBK6YQ+voGiEK5hg+DCaGYAmyA3d39dsBONw8gzfARKO+CZxx9hWAfMUqUYojs9Wi2+AFOKyC4+T5RV6qHzF6Han87BEwI/KSd9kbg6Ak/7vDH2Y+8KzQ9alEzHljacjuTLVu2BB09etRfJBJd1Qd96623QrKysupnzZpleO6556KPHDniM378eEteXl7g4cOHf7Xb7cRjjz02LD09vW3Pnj0BSUlJ1tWrV9fn5ub6b9u2TZ2dnV197Tnee++9wLi4ONuaNWvq9u/f77tly5bg7Ozs6qKiIml2dnbF2LFjre22OTk5QTfabty4sXrdunVROTk55fHx8Y7du3cHVFZWChITEx238n/dunWRL7/8ctWkSZMsGzZsCNm/f7/fb37zm5s2Zhw9elTx3XffKQMDA509+6A9vPrqq9UAcPz4cXl+fr7yiSeeuO6cZWVlwpUrV0Y3NzdTAJoB4MyZM+ILFy5IP//88+LKykpBVlZWXHJy8q+FhYWS6dOnt/7tb3+rvsWpOmXgZ5BlIjCsBSBIOFqaujWWdgsBxoAwTvB/UOG7cAESvjsBzTf5kD046V67w9HLiGSeIMbp7H7+wM0IQMMMXxHXDGIgE6oUo06ugLKtEm3ucLjrfr3JhqEZ6Mr1ULReQmUQECyJ6rS1Lkf/JDIy0rF169bya49pNBqrXq/nMQwDq9XKoyiKValU7iNHjlwUCASsTqejKIpiSJLEsmXLGleuXFkPAHV1dQK5XH5TurawsFCWnJxsAIBHHnnE+PPPPysAQKvVSt555x11amqqZvPmzeqObEtKSoQKhcK9Y8eOoPT0dI1er+clJiY6OvK/ublZMGnSJAsAjB071lxQUHDTslhpaalw//79qmXLltV29zPLzc31f/bZZ2OeeuqpuOnTpw/Nzc31B4CMjAxNUVGRaPv27eqzZ8/K33vvvesupmazmXz11Vcvjx492tR+7L777rN9+OGHJSRJorKyUiCTyWgAOH/+vFSr1UrT09M1v/vd72Lq6uq6pbE44DPIPJKAm/R0O7LrjehqPzyWZUETUjDQw98v9u45yMHB0aeQKMVAE8A6u6dXy7Is3KQEbrIBKk4DeUCjkgtRq/DH2LIq1IXx0VxUCnXU2OtsWmotcDlZKA1lqBxCIF7JNZu66zywtKWzbO/dIC0tTX9j6+To6GjH66+/HrFr165gqVRKT5kyxQQAFEVh+/btql27doVmZGRc7fLG5/OxYMGChIqKCvGOHTtu6iBnsVh4Pj4+NADI5XLaYvFo186YMaM1MzOzSaFQ0JmZmbGHDh3yuZVtc3Mzv6ioSPbKK69UxcXFOZYsWRKXn59vnTZtmulW/gcHBzuOHz8uS05ONufn5yttNtt1daYmk4lct25dxJYtWyqKi4u722qYBdw1pjcAACAASURBVACz2cz76KOPSktKSoRZWVlx13bHy8rK0u3bt0+VmZl53eaxUaNG3VJ4nKIobNiwITQvLy/wpZdeqgKAuLg4+4gRI2offvhh00cffeS3du3a8Pfee6/D9to3MuAzyADg5Hky/za9qRPL/w+t18MlUILmtYHgJN44OAYNcqWnTpTspjQkYzTCRcng5Jmh5LroDWh4JAG9XzgUpioAQNOlmzeA15V6msYoDeW4HCDAkEDuPjKY2Lx5c/jevXuL8/PzL86ePbtl3bp1V6WwsrKymr7//vtzZ86ckX/77bdX63E/+eSTktzcXO2KFStiS0tLhe21s3v27AmQSqW0yWQiAcBkMvGkUinNMAyysrIaVSqVWygUsg899JDh4sWLklvZ+vv708HBwfYhQ4bYBQIBO3HiRMO5c+c6rB997bXXKnbs2BG8YMGCBD8/P7dSqXRv375d1e7ToUOHlK2trdSyZctiX3vttfCzZ8/K2zPY7YhEIsbpdF4XZ9psNlIsFjMAkJCQYAWA8PBwp8vl6nE8unbt2toTJ06ce//999VlZWXC5ORkY3tb7jlz5ujLysq6VS87OAJkyrNaYTHYuzzGpdPBLlQC/FZAyUm8cXAMFqR+npVE0ikCWLbL41wtLXBRUjB8E0QK1d1yj6OPQKvjIXS0gQ8zGnXMTe/Xl+khYVpBMnrUStWIC+Q2bg4mZDKZW6FQ0AAQFBTkMplMvOLiYuEzzzwTyzAMKIpiBQIBQxAEu3nzZvWHH37od2UcTZIk4uPjHXl5edq8vDztb3/72+ZRo0aZ8/PzlQBw7NgxxciRI01Go5H3+OOPDzWZTCTDMDh9+rR8+PDh1lvZxsTEOGw2G6+0tFQIAIWFhfKEhIQOg6L//d//Vb711luXPvnkkxK9Xs978MEHjVlZWU3tPi1atKj12LFjv+bl5WlXr15dPWrUKNNLL710nebhiBEjrD/99JOiPVhvaWnhXb58WTxkyBA7gNuWHBEEwbJdvP7m5+fLV61aFQEAIpGI5fF4LEmS7MqVK6MOHjzo227THpB3lQFfYgEALqHnOaDN0vVt6ZZqHRieEKSwFfDhNmlxcAwWRH5yAC6QbgngNAPCDjdcX4et0QAQJFjKCILTQB7wyEOHwMUDhEwdmvQ+noepKzd8hmZQo21FgKEYlUEk3K4gxHAKFoOK9evXVy5fvjyWx+OxFEUx2dnZldHR0c6EhATrvHnzEgmCwIQJEwzJycnmxMRE+4svvhh98OBBFcMw2LBhQ8WN82VmZjb953/+Z1RqaqqGoij2zTffvKRUKunnn3++ZtGiRRqKopj777/fNGvWLIPFYjHdaCsUCtn169dffvHFF2NYlsXw4cPNjz/+uKEj/6OiouyLFy/WiEQiZsyYMaZZs2Z1aNsRiYmJjvnz5zfOnz8/USKR0G63m/jDH/5QJZfLb36ivIHY2FjHpUuXxFu3bg1ctmzZbSXIHnroIdORI0d8582bl8gwDBYsWNAYExPjXL16dc0f//jHqP379weKRCL69ddfr+yO/14LkDUaDQGgBkB7382TWq12jUajSQGwDoAbwD+0Wu1Ob52zq7iv7Bw2WDuWKbmRtsuNAFQQCpsBechd8oyDg6OvQfnIQdL1IN0iwG7scoDc3maapEyA5JbqRBwDiHA/FXS+BETWGrSSU+BquARK7dmvUl9mgMNKw6/+F/wYyYJ1BiHCjwuQBzLR0dHOL774orj99eTJk82TJ08uvtFu9erV9QDqrz2mVqvd+/btu23PcqlUyuzateum+tknn3yy9cknn2ztiu20adNM06ZNK+qK/ykpKYaUlJQuBcXJycmm9lKGG1m6dGnT0qVLb1JIuLbeWCwWsydOnLgAAHl5edr24998883Fjs6Zk5Nzuf1nPp+Pv//971U32sTExDgPHDhwUz13V/FmiUUsgDNarTb5yr81Go2GArAFwEwAUwAs1Wg0vb57hVAoQNIOmKxd/3Xrqjy18xKJGaBEd8s1Dg6OPgYpl4NPO8CjRYDD2OVxtjYLAIBPmbgueoOAEF8JqvxF8GsoAQsean74+ep7FeeawSNo+LYUo1xNwF8QDgF/UFQ0cnAMGLz5P3YMgFCNRvOtRqM5otFoNACSAJRptdo2rVbrBPAdgIe8eM4uwVOqQLkssNm7vulG3+zpjuQvcd8ttzg4OPogpFwOntsOPi2C03aT7GeH2PSeAFlEmQAxl0Ee6IQqRSjzVyK05iJEpAml5zz3DJZlcelcE4KIUvBpB8qDCUT7cEpIHBz9jTsqsdBoNJkA/uuGwy8AyNZqtQc0Gs2DAD64YnNtit4EwOdOztkTxH5quErMcLilgNMCCDpf6nJYWEDCIETBLYtxcAwmeHI5eLQdFCOE2dKEroa6ZoMZgD+kAq7EYjAQohSjTKkGydYjXFqFisY4uGwuNNVaYGqxI67tJFxCEvVKIR705zZ6c3D0N+4oQNZqte8BeO/aYxqNRgJPnTG0Wu13Go0mBJ6A+NoCPjkA/Z25eucogkJhdFXAQcsBS3OXAmS3SwCCMSLCj7uwcXAMJgiRCDzaAT4jhMXW9QDZYvTIc8r4DoDfPYk4jv5HsI8YZYooAIXwJWtRyg7FhcMF0P5KQCZxQnWhAGWhErgdasQGdq2OnYODo+/gzRKL/wawAgA0Gs1IANUAfgUQr9Fo/DQajQCe8oqTXjxnl/AJCgHlsoBmZYD1Zr3KW8FACpbVw9c/6u46x8HB0acgCAIk6wTJimC2dr3EwmpxAQBkg0IbiEMh4oMWRECnBPhNFVBTxTj5tRWtdRY86PMx3K0sCkPdYBzBiAngJN44OPob3gyQXwMwRaPR/AvA/wD4rVardQF4EcAxeALjf2i12m63JOwpiiAVBC4zWFYGWDpvssM4nXDz5WBJPQif0F7wkIODoy9BwAUSIpgdbV0e47CzIGgb5BRXljUYIAgCQZIwVKgJoLwKqRNPYYpyFyYMr4Sq6ijAAmci3WDswZzEGwdHP8RrAfKVjXiPa7XaKVqtdrpWqy2+cvxLrVZ7v1arHaPVard563zdQRmgBElbwEICxtx5Btnd2ASn0AcsTw/Ig3vBQw4Ojr4EARoEhLDYuy796XaTIBgLZALlXfSMoy8RoQzE5UAKogY9mMlrMcz3B9zXtAIWWywYsRBlIYCICUWgnCu5GeicOnVKmpGRoWl/XVhYKJ4zZ05iamqqZvny5VE07ZGZfffdd1WzZ89OSklJSTpw4IAvAJjNZnLJkiWx6enpmoULFybU1NR02Of+s88+U2ZlZUW3v/7mm2/kc+fOTUxPT9dkZmbGWCwWEgBee+214JSUlKR58+Ylnj59WgIADQ0N/PbzzJs3L7GsrOzqF7OxsZE/derUYTabjQA8TT0WL14cl5qaqlmyZElsQ0PDTWtjdXV11IIFCxLS0tI0S5YsiTUajdfFlBUVFYI5c+YkXnts586dquzs7A61c3Nzc/2//PJLHwDYvn37TR2XLl26JEhPT9ekpaVpnn/++ej23xcAaJrGk08+Gb9z506vdGoaFIuBSqkANKwAQcLR1orOmoY7dA1wUTKQlB5QcBlkDo7BBkGyYAkRTI6uB8g0wwcLGxQiTuJtsBDtL8OZkAAsQh3MP12EcsH7QO3PsHx/FK1DlKB51YhVxt22YxiH9/io6CP/L8q/CPDmnHNi5zQvSlp026XnLVu2BB09etRfJBJdbYDx1ltvhWRlZdXPmjXL8Nxzz0UfOXLEZ/z48Za8vLzAw4cP/2q324nHHntsWHp6etuePXsCkpKSrKtXr67Pzc3137Ztmzo7O7v6xvOsWbMm/PTp04q4uDhb+7GNGzdG7tu3r1itVrvXr18funfv3oBx48aZz5w5I//888+LqqurBS+88ELsoUOHiv7617+GzZ49u3X+/Plt3377rVyr1Yri4uIcx44dU7zxxhthbW1tVwPzN954I3jUqFHmlStX6r7++mt5dnZ26BtvvHFdo42tW7eq58yZ07J48eKW7OzskL179wb8/ve/v21Tj864Vh959+7dIVlZWddpKG/cuDFs/vz5TU888UTr7t27A7Zt2xb0hz/8of7Ke6Emk4nXk/Nfy6AQZlSI+HARni56dv0ttayvw1Dl+ftSgjZAwWWQOTgGGzweC5ACGO2WLo+hIQQDCxSyXpd657hHRAdIUKwMQbOSB+ORI0D0ZDjDUuGqrkZJnAhw+UMTyLUdH+hERkY6tm7dWn7tMY1GY9Xr9TyGYWC1WnkURbEqlcp95MiRiwKBgNXpdBRFUQxJkli2bFnjypUr6wGgrq5OIJfLb9nVbPTo0ea1a9de1xDjgw8+0KrVajcA0DRNCIVC5vTp07Jx48YZSZJEZGSkk6ZporGxkX/hwgWZTqcTLFy4MOHzzz/3mzJligkASJLE+++/r5XL5Vd1bSsqKkTTpk0zAMDEiRPN58+fv6mQ/q9//Wv1okWLWmiahk6no9pba3eFiooKwdy5cxOfffbZmFmzZiWtXLkyAgCys7NDdu7cqdq0aZPabDbz2ltIt1NZWSmeOXOmAQDGjRtnPnv2rAwAPv30U1+CINgJEyZ0Xby+EwZFBpkgCDh5TgCAzWiFbyf2uqo6AFEQiw1d7qLFwcExcOBRniSEye7qkj3LsmBIEViiDUI5FxANFiL9pWBcgfgukUHAyR/gbmtD846dIAQCfBVuhMsWjHgNt0Gvt1iUtKils2zv3SAtLU1fUVEhuPZYdHS04/XXX4/YtWtXsFQqpduDUYqisH37dtWuXbtCMzIyGtrt+Xw+FixYkFBRUSHesWPHLbu/LViwoO348ePXBSUhISEuADh48KCyoKBAvmbNmtqcnBy1Uqm8GuxKJBLaYDDwGhsbBQqFwr1///6S1157LfjNN99U/+lPf6qbMWPGTUFlQkKC7Z///Kfyvvvusx06dEjpcDhuSqiSJAmn00nMmjVriNPpJP/rv/6r/kabW0EQBAsAtbW1ovfff79EIpEwycnJw+vr66/GpKtWrdLl5eUFbdq06boHgri4OOvhw4eVTz31VMtXX32ltNvt5IULF0SHDx/227lzZ/nrr7/utdbHgyKDDAAOyrPyYTPaOrEEmus8G3Oksq7dHDk4OAYWlNATIFsdbJfsWbsdbr4UDGmFUMEFyIOF6AApaIcaPySRgJuGbt1/w/DZZxDMn4tiqgG0NQrxQVySZTCyefPm8L179xbn5+dfnD17dsu6deuuasZmZWU1ff/99+fOnDkj//bbb69+QT755JOS3Nxc7YoVK2JLS0uFGRkZmoyMDM2ePXtuWzaSk5MTuHfvXvWePXtKxWIxK5PJ6Gtrc61WK0+pVNJyuZx+/PHH9QAwc+ZMfVFRkaSjOVesWFFfW1srTE9P19TU1AhVKpXrxIkTsnafDh8+7AMAAoGA/frrry+uW7fu8ksvvRR97RxisZhxuVzXxZlWq5UUCoUMAAQHB9sVCgXD5/Ph5+fnstvtncak69atqzl+/LgyIyNDQxAE6+Pj4z5w4EBAU1MTtXDhQs2RI0f89+3bF/TVV18pOpurMwZNgOy88mynt3Qe9Fr0nnIMf2mHdfIcHBwDGErkSWR0MYEMt8EAF18MlmcBJeOahAwWQpRikI4oXA4C6meMgCk/H6RYjKLHhwAAaGsMEoK4DPJgRCaTudtLDoKCglwmk4lXXFwsfOaZZ2IZhgFFUaxAIGAIgmA3b96s/vDDD/2ujKNJkkR8fLwjLy9Pm5eXp/3tb3/bobrApk2b1IWFhfJ9+/ZpVSqVGwAeeOAB88mTJ31omkZlZaWAYRioVCr3sGHDTMeOHfMBgJMnT8pjYmLsHc174sQJ+RNPPNH06aefaqOiouwjRowwT5482dzu0+OPP25YtWpVRHuAL5PJGJIkr8soBAYGum02G3nx4kURALjdbpw6dUoxatQoK4BOa/NZ9uYERX5+vmLVqlU1eXl5Wh6PhwkTJhj/8pe/1Hz55ZfFeXl52lmzZrX85je/aXj00Ud7XGoxKEosAMAtoUAA0Fs7zwi5bCwgoRHi21kxBgcHx0CEkggAO2B3dy2H4GjWgyUpgG8BxNx1Y7DAIwmEK1WwEOH4ZI4vcv78DVi7HR/V7gZFSCFBGNQK0b12k+MesH79+srly5fH8ng8lqIoJjs7uzI6OtqZkJBgnTdvXiJBEJgwYYIhOTnZnJiYaH/xxRejDx48qGIYBhs2bKjoyjl0Oh1/z549IbGxsdann346AQBmzpzZunTp0qbRo0eb582bl8iyLPHnP/+5CgDWrl1bs3r16sgDBw4ESqVSOicn51JHcyckJNhXrVoVvWnTJgQEBDg3b958+UabZ555pnHt2rWRb7/9NksQBNavX39dOQRJktiwYcPlNWvWRJEkCbfbTTz00EP6qVOnmm4sSbkVkZGRtueffz767bffvvp5xMXF2V966aUYiqLY6Oho29/+9req283REwZNgMwoFKAsTphsFMCywG2eXGi3AARtRLB/dIc2HBwcAxehVAC0Aoy9a6tItiZPg1CSbwZEnMzbYCLaX4qL9hgUNv4MQuUPiuTjp4KfIHLHISJQwSlYDBKio6OdX3zxRXH768mTJ5snT55cfKPd6tWr6wFcV6urVqvd+/btK+3KeZKTk03Jycmm9nEXL148cyu7NWvW1AGou/ZYVFSU8+OPP+7wPCdOnLjQ/nN8fLzjs88+u8n/a0lKSrLn5eVpb2fT0edw4+fV/vMVvwEABw4cuKkWe/z48ZbDhw8XdXS+a8f3lEFTYkEqA0C5LLC5pIDj9koWLCsBCwOk/lybaQ6OwYhE4RGDZF2dJjkAAPYWMwCAT5kBMRcgDyYi/aUw6MNgdVuhbdVCZ9GhylQFkz4CScFc/TEHR39l0GSQhb5BoMossNM+gKUJEN26ftvTRU8BkE0gFEm97CUHB0dfQOJzRS3dJQLcDoB/+0YPllYjACUElIkrsRhkRAdIYDdFQaYGvq76GianCSTBg1GfgNER3HeBg6O/MmgCZJkqDKyzEhZG7gmQ/WNvaUc3NcEh9AHIUq6LHgfHIEXm58n8EW6xZ8WpkwDZpDcDUEIoMANCn17wkKOvMDxMCdatwAjlFLx34T0QBIExvo8j36nCfVyAzMHRbxk0JRY+gSEQuMygWQVg7rjRi0PXCDclA4/SAwqvyelxcHD0I2R+HuUBwi0CHJ1vhrYYPA1FxAIHQA6ayyoHgKEhCogoEjHIxAjVCCiFSvjYZ8NHTCEmQHqv3ePg4LhDBk0GWREUCLfTBIaVAxZdh3atl3UAhBAIWwGJVztWcnBw9BMEShkIxgAeLep0zwIA2K7IR0r5TCeWHAMNikdidLgvzlZZ8H9f2A2ry4qMbWdxX4QSJMlt0OPg6K8MmlSH0k8OkjaDJcRwGzqUFLzSRQ8QiK1cJoiDY5DCk8nAo+3gucWg7YZO7e12GmBpSK904OMYXNwf5YuLdQY4XATASFDaaObKKzg4+jmDJgJUSii44VkGtbV1vGTarPN00bumJTkHB8cgg5TJwKMdoGghrJamTu1dDoCkbZBTXP3xYGRslB8YFjhbpceRCx4Fr3Ex/vfYK47e5NSpU9KMjAxN++vCwkLxnDlzElNTUzXLly+PomkaAPDuu++qZs+enZSSkpJ04MABXwAwm83kkiVLYtPT0zULFy5MqKmpuUlf0mq1EpmZmbFpaWmaxYsXxzU2NvIBTxe9GTNmDG3vcFdcXCzsyPbHH3+UpKWlaVJTUzWZmZkxNpvt6hLHjf4XFBRIUlJSktLS0jR//OMfw9v9v5ZvvvlGPnfu3MT09HRNZmZmzLXd+wAgNzfX/5VXXgm99tjSpUtjbmyXfS0vv/xyeGVlpaClpYX38ccf37LrktvtRmZmZsyN3fIsFgv56KOPDmk/bjabyRdeeCEqLS1Nk5KSknj69OkOOwfeikFTYqGUCOAkPG2mbXoLOvrrWNucAAkEcOLuHByDFlIqBZ+2g2JEsNhaOrxetEPTPIC0QSbksoaDkdERSvBIAu+fuoxf640YGeaD+6O470Jv0/rBh/6Gzz/3am2kz9y5zX6Ln2y5nc2WLVuCjh496i8Sia7WWL311lshWVlZ9bNmzTI899xz0UeOHPEZP368JS8vL/Dw4cO/2u124rHHHhuWnp7etmfPnoCkpCTr6tWr63Nzc/23bdumzs7Orr72HO+9915gXFycbc2aNXX79+/33bJlS3B2dnZ1UVGRNDs7u2Ls2LHWdtucnJygG203btxYvW7duqicnJzy+Ph4x+7duwMqKysFiYmJjlv5v27dusiXX365atKkSZYNGzaE7N+/3+83v/lN67U+bdy4MXLfvn3FarXavX79+tC9e/cGPP/88x1v8uoCr776ajUAHD9+XJ6fn6984oknrjtnWVmZcOXKldHNzc0UgOvKAVavXh1xre54Tk6OOi4uzrZt27bL586dE//yyy/icePGWdFFBk0GWSrgwc5zAgCspo77xzptBMC4EOKr6i3XODg4+hiEQACSdoDPCGGxt3ZqTzMUwFohFXFtpgcjchGFPzyiwbGLDahutWH59HiuQcggIjIy0rF169bya49pNBqrXq/nMQwDq9XKoyiKValU7iNHjlwUCASsTqejKIpiSJLEsmXLGleuXFkPAHV1dQK5XH5TurawsFCWnJxsAIBHHnnE+PPPPysAQKvVSt555x11amqqZvPmzeqObEtKSoQKhcK9Y8eOoPT0dI1er+clJiY6OvK/ublZMGnSJAsAjB071lxQUHBTz/QPPvhAq1ar3QBA0zQhFAq7vAkjNzfX/9lnn4156qmn4qZPnz40NzfXHwAyMjI0RUVFou3bt6vPnj0rf++996574DGbzeSrr756efTo0ddtDnnzzTeDRo8ebY6Li7saAJ86dUpBURS7aNGi+JycnOCHH364W+2nB00GmSAIWAWev53Z3HH5BEMLQTJ6+PtF9ZJnHBwcfQ2CIEAyTpCsEGa7vlN7BkKwhBUCGbesPlj5jymxcNEMyhrNmJYYeK/dGZT4LX6ypbNs790gLS1Nf2Pr5OjoaMfrr78esWvXrmCpVEpPmTLFBAAURWH79u2qXbt2hWZkZDS02/P5fCxYsCChoqJCvGPHjps6yFksFp6Pjw8NAHK5nLZYLDwAmDFjRmtmZmaTQqGgMzMzYw8dOuRzK9vm5mZ+UVGR7JVXXqmKi4tzLFmyJC4/P986bdo00638Dw4Odhw/flyWnJxszs/PV9pstps2WISEhLgA4ODBg8qCggL5mjVrarv4kbEAYDabeR999FFpSUmJMCsrK+7pp5+++rfLysrS7du3T5WZmXldlnjUqFG2Gyf75ptv5JWVlaL/+Z//qfz9739/NZA3GAx8o9HI/+ijj0o/+OAD/7/85S9h27Ztu9xFHwdPBhkAbCLP37fZ1vGvzUAKsAZIA6N6ySsODo6+CAEXSIhgcXS+SY8mhWAJGygZl0EezCybFo83nhjNZY858P/Yu+/wKKr9j+Pv2b6bbCppEEoCZOgdpIlcFJVeBFREQUBFpVmwXlGuBX8qooCIKIooFkQQURAERBGlSJO6gKEEIZCeTd02vz8CGjpKkoXk+3oen5vMzM75Dpy7fHb2zDmTJk2q+uGHH+5ZtWrVzu7du6eNHz/+r6V5R4wYkbJ27dptmzdvtv/www9/jeCaN2/e3jlz5jjGjh1bc9++feZT44pnz55dKSAgwOt0OnUATqdTHxAQ4PX5fIwYMeJERESEx2w2ax06dMjauXOn7VzHhoeHe2NiYgrq1atXYDKZtLZt22Zt27btvGNyX3755QMzZ86MGTBgQEJYWJgnJCTEM2PGjIhTNZ0aJz116tTIDz/8MHr27Nn7rFarVvwcFovF53K5Tgtc+fn5OqvV6gNISEjIA6hatarL7Xb/6zz6xRdfVEpMTLT269dP3bBhQ/DkyZNjt2zZYg0KCvLceOONmQBdu3bNdDgc/2jexQoVkAvtQei9hWQXWotWxzqD5nbjMQSDkok+tJofKhRCXCkUvChYyHFdeJo3n8uFV28FJQ+zXQKyEAICAwM9QUFBXoCoqCi30+nU79mzxzx06NCaPp8Po9GomUwmn6Io2qRJk6Lnzp0bdvJ1Xp1OR+3atQvnz5/vmD9/vmPIkCGpTZo0yVm1alUIwLJly4IaN27szM7O1nfr1q2+0+nU+Xw+1q9fb2/YsGHeuY6Nj48vzM/P1+/bt88MsGXLFntCQkLB+er//vvvQ6ZMmZI4b968vZmZmfr27dtnjxgxIuVUTbGxse5XX301esuWLfZPPvnEERERcdZX840aNcrbuHFj0KmwnpaWpj948KC1Xr16BcAFP0gqiqJpmnbe/cXNmDHjwFdffbVn/vz5jlatWmU99NBDR5o2bZrfuHHjnJUrVwYD/Pzzz/YaNWqcdff5QirMEAsALSQSY7KTHE9I0Wp6wbGn7XenplJoDkbRZ5y1TwhRsSg6Hyhmct05FzzO53TiMdhAn4fZLkMshBAwYcKEQ6NHj66p1+s1o9Homzhx4qG4uDhXQkJCXu/evesoikKbNm2yOnbsmFOnTp2Chx9+OG7hwoURPp+P559//sCZ5xs2bFjKmDFjavTp00c1Go3am2++mRgSEuJ94IEHjtx+++2q0Wj0tWzZ0tm1a9es3Nxc55nHms1mbcKECQcffvjheE3TaNiwYU63bt3O+/VYjRo1CgYNGqRaLBZf8+bNnV27dj3t2OTkZMPs2bMr16xZM++uu+5KALjxxhvT77333r+m/alTp05h//79T/Tv37+OzWbzejwe5bHHHjtst9svOla5Zs2ahYmJidZp06ZFjhw58l89+Dd27Nhj48aNq9GrV686BoNBe+211876c70Q5VITelnq27evtmDBghI/76v/N43obVbcoTkMiBxj1QAAIABJREFUfaItVG152v6MDVv45P0MzIZ5DJ/yFuhkTtN/S1XVTQ6Ho0VJn7e0+oYoO6XVN6Bk+8fnd75Gqq0J9nb/x113fX/e4/L2JfLBpIMo+q944NF+ENehRNqvqOS9Q5zPufrGtm3bDjZu3Pj8ixsIcRHbtm2r1Lhx4xpnbq9QQywCIqtjcjnxeIMg++yx5McPHAHAYMmRcCxEBac3KKDocLouPCd6QVrRg9F6fQ5YQsqiNCGEEKWsQgXkkMpVMbqdeLVzB+TUI0UPlBoDzz8NnBCiYjCYij4k57ku/C1b3qmAbMwFq8x9K4QQ5UGFCsjBUREY3Dn4CELLOnrW/ozkoiE2AaGms/YJISoWg6XoEY1894W/TcpOK1p906zPBavcQRZCiPKgQgXk8CALPi0XFD2F6WcvH5uXUbSQSESYPIkuREVntBat9upyX/hZ5pyTS9ebjblgOmsufSGEEFehChWQKwWacCm5AOSmnT11k7vQiM6TTVREfFmXJoS4wpgCzQD4Co0XPC43u+g9xWR2g8x/K4QQ5UKFCshhAWbydUVTNjkzzn7wxusLRPGlEiQBWYgKz2q3AqC5LeA9/3MJBTlFc6pbTZe8yqoQQogrXIUKyCFWIzn6on/MsnP04Pt7uXPN58NjCAUljeCYOH+VKIS4QliCiwKy4rJC4fkXCynMK/qwHWCsUG+nQohi1q1bF9CvXz/11O9btmyx9uzZs06fPn3U0aNH1/B6i/LGO++8E9G9e/e6PXr0qPvFF1+EAuTk5OgGDx5c85ZbblFvvfXWhFOr1BWXl5enDBs2rGbfvn3VQYMG1Tpx4oQBilay69y5c/1TK9zt2bPHfL5jN2zYYOvbt6/ap08fddiwYfH5+fl/feV1Zv2bNm2y9ejRo27fvn3Vxx9/vOqp+ov76aefAnv06FGnZ8+edZ599tkqZ+6fM2dO+HPPPXfa9nvvvTd+9erV9jOPPeWpp56qeujQIVNaWpr+s88+O+d4V4/Hw7Bhw+K/++67oOLbc3NzdTfffHO9U9uPHj1qHDBgQELfvn3VwYMH18zOzv5Hb9IVaqEQnU4h16Ij0Och1VsJck5AUAwArhMpFJrDMCgbMYdX93OlQgh/CwwrGk+seKxQmA22cz+b4CrQUBQ3NtN5V20VQpSB3384Eu5Yd6xSSZ5TbR2T2ug/sWkXOmby5MlRS5cuDbdYLH99jTRlypTKI0aMONa1a9es+++/P27JkiXBrVu3zp0/f37kt99+u6ugoEDp0qVLg1tuuSVj9uzZlerWrZv3xBNPHJszZ074W2+9FT1x4sSk4m3MmjUrslatWvlPPvnk0c8//zx08uTJMRMnTkzavXt3wMSJEw+0aNEi79SxU6dOjTrz2BdffDFp/PjxNaZOnfpH7dq1Cz/44INKhw4dMtWpU6fwXPWPHz+++lNPPXW4Xbt2uc8//3zlzz//PGzgwIHpxWt6+eWXq06bNu2P+Ph4V//+/RM2b95sbdas2T9are5ML730UhLA6tWr7atWrQq57bbbTmtz//795kcffTQuNTXVCJw2//UTTzxRrfjqfNOmTYvu2bNn2qBBg9ImTpxY+cMPP6w0atSoS150pMLd8iiwh2EuzCDdG3naVG/pe5PQdHp0pgwwn/fDjRCiggiKKLo5ofdYLngH2evWofjyCTDLw71CVETVq1cvnDZt2h/Ft6mqmpeZman3+Xzk5eXpjUajFhER4VmyZMlOk8mkJScnG41Go0+n0zFy5MgTjz766DGAo0ePmux2+1m3a7ds2RLYsWPHLICbbrop+7fffgsCcDgctrfffju6T58+6qRJk6LPd+zevXvNQUFBnpkzZ0bdcsstamZmpr5OnTqF56s/NTXV1K5du1yAFi1a5GzatOmsJ5AXLVq0Oz4+3uV0OnW5ubn6wMDASx5nNmfOnPB77rkn/s4776x1/fXX158zZ044QL9+/dTdu3dbZsyYEb1161b7rFmzTvvAk5OTo3vppZcONm3a9LQ35TfffDOqadOmObVq1frrg8ILL7yQdPvtt6d5vV6Sk5ONp5b+vlQV6g4ygDekMpakDJzuiJMBuWhRnj/3HQDC0dku68OPEKKcCAwLAi0TnefCQyy8XgOKPh+zLBIihF81+k9s2sXu9paGvn37Zh44cOC0+WHj4uIKX3nllWrvvfdeTEBAgPe6665zAhiNRmbMmBHx3nvvVenXr9/xU8cbDAYGDBiQcODAAevMmTP3ntlGbm6uPjg42Atgt9u9ubm5eoDOnTunDxs2LCUoKMg7bNiwmt98803wuY5NTU017N69O/C55547XKtWrcLBgwfXWrVqVV6nTp2c56o/JiamcPXq1YEdO3bMWbVqVUh+fv5Z810ajUZ+/fXXgMceeyy+evXq+bGxsa5L/CPTAHJycvSffvrpvr1795pHjBhR66677vrr727EiBHJn3zyScSwYcNOu0vcpEmTs0LaypUr7YcOHbK8/vrrh0aNGvVXkNfpdLhcLqVr1671XC6X7qGHHjp2ifUVvf6fHFwuRCVgKUyn0BsB2X/PhZx6pOjvQB924SfWhRAVgzE4CIOnAKPXgisv/bzH+TQjaHnoA8LLsDohxJVs0qRJVT/88MM9q1at2tm9e/e08ePHVz21b8SIESlr167dtnnzZvsPP/zw11fW8+bN2ztnzhzH2LFja+7bt898alzx7NmzKwUEBHidTqcOwOl06gMCArw+n48RI0aciIiI8JjNZq1Dhw5ZO3futJ3r2PDwcG9MTExBvXr1Ckwmk9a2bdusbdu2nXdc2Msvv3xg5syZMQMGDEgICwvzhISEeGbMmBFxqqZT46TbtGmTu2bNmu2qqua98cYbMcXPYbFYfC6X67ScmZ+fr7NarT6AhISEPICqVau63G73v86jX3zxRaXExERrv3791A0bNgRPnjw5dsuWLVYAk8mkrVixYuf48eMPPvLII//oAbMKF5BNVWphKUjHq4XgTUn8a7szJQ80H0FRlf1YnRDiSqELtKP3FgXknLyz500/xYcZyMMQIEMshBBFAgMDPae+0o+KinI7nU79nj17zEOHDq3p8/kwGo2ayWTyKYqiTZo0KXru3LlhJ1/n1el01K5du3D+/PmO+fPnO4YMGZLapEmTnFWrVoUALFu2LKhx48bO7Oxsfbdu3eo7nU6dz+dj/fr19oYNG+ad69j4+PjC/Px8/b59+8wAW7ZssSckJBScr/7vv/8+ZMqUKYnz5s3bm5mZqW/fvn32iBEjUk7VVLlyZXffvn3V9PR0PUBAQIBPp9Odtuxoo0aN8jZu3Bh0KqynpaXpDx48aK1Xr14BgHKBaTEVRdE07cKrmJ4yY8aMA1999dWe+fPnO1q1apX10EMPHWnatGn+uHHjqp36ABIYGHhWfRdzWUMsVFXtA/R3OBwDT/7eGngT8ADLHQ7HBFVVdcB0oDFQCAx3OBz7L6fdyxEcVQmdJwMUHblHDnHqEciCXAWDkkWlmCb+Kk0IcQXR2axFAdlnJjc/lXPFX03T8OmsaEoqxsASfTZICHEVmzBhwqHRo0fX1Ov1mtFo9E2cOPFQXFycKyEhIa937951FEWhTZs2WR07dsypU6dOwcMPPxy3cOHCCJ/Px/PPP3/gzPMNGzYsZcyYMTX69OmjGo1G7c0330wMCQnxPvDAA0duv/121Wg0+lq2bOns2rVrVm5urvPMY81mszZhwoSDDz/8cLymaTRs2DCnW7duWeerv0aNGgWDBg1SLRaLr3nz5s6uXbuedqxOp2PIkCHHhwwZUttoNGrh4eHuSZMmHSx+TJ06dQr79+9/on///nVsNpvX4/Eojz322GG73X7Rsco1a9YsTExMtE6bNi1y5MiRl/xgXXFDhw498cwzz1SfPn26pigKEyZMOPxPXq9cakI/k6qqbwI3AVsdDsdtJ7dtBW4BEoFvgaeBOKCnw+EYcjJAP+lwOHpd6Nx9+/bVFixY8K/quphPNxzG+Mw4jsfdR5/IF6n83Peg0/HBXe/i1mm0fLQdTRvUL5W2KxJVVTc5HI4WJX3e0uwbomyUVt+Aku8fHw6cRZatkBtvTaJO54ln7ffl5/Peg8vw6bcy6MGmBDa54FubuATy3iHO51x9Y9u2bQcbN26cer7XCHEx27Ztq9S4ceMaZ26/nCEWvwD3n/pFVdUgwOxwOP5wOBwasAy4AWgPfAfgcDjWceqpOD+pHGIl03RyLuTCAMg8hM/rxWWMBOUElWJq+LM8IcQVRNHc6DULOQWZ59zvycrCY7Ch6HOxBMsYZCGEKC8uOsRCVdVhwENnbL7b4XB8rqpqx2LbgoDsYr87gfiT24vfmveqqmpwOBxnL2VXBmJDrfxshhDghDeaOsd3kHZEw2O0o5BEdIjVH2UJIa5ACm4U7DgLz/1NZGFKJprOgE6fi+E88yQLIYS4+lw0IDscjlnArEs4VzZQfAJhO5AJ2M7YrvNXOAaoEmIl2RZGldxjHDHWgeQd7N/rAYIpDEzHqK9wzy0KIc5DwYuiWHC6ss+5PyelaFYioyEHrDLNmxB+4PP5fMo/fQBLCACfz6cA5xwTXWJp0OFwZAMuVVVrqqqqUDQ+eQ2wFugKfz3Et72k2vw3LEY9OSHVCMncR5anDr5jOziyKwmd18WRqHh/liaEuMIoeg1NseD05J5zf8bxoqGPZr0TrKFlWZoQosiOlJSU4JNBR4hL5vP5lJSUlGBgx7n2l/RCISOAuYCeolks1ququhHorKrqL4AC3F3Cbf5jSnQCIVu+5c8qHUj94yhOZwAWVxJ50d39XZoQ4gqi0ytoOjNZrnMvIJSdngXYMRvzwCjDs4Qoax6PZ3hycvJ7ycnJDaiAU9eKy+IDdng8nuHn2nlZAdnhcKwGVhf7fR3Q+oxjfBQF5ytGULXa2LOLZppLctaiwFAFc+Faakd18HNlQogric6oA0VHtvvcsxLlZeYAYDJf6gJSQoiS1Lx58xNAT3/XIcqfCrfUNEDlSnb2V9JhLDzB5sJb0XQ6Mo0pJETZL/5iIUSFoTPpwAe5nrNWWQUg31k0z77V7C3LsoQQQpSyCvl1RNUwGz9Xrk/0ie24XRpVk1ax3ZKPGi0BWQjxN4Ol6B5CvuvcAdmdV/S8scVw7v1CCCGuThUyIMeGWlkb3oGaiV/R7qdxBKd+yaZKrakRHuDv0oQQVxCD1QSAx2UB99mrsroKNNB82E2Wsi5NCCFEKaqgAdlGuiWcpKo2TN5CFt90MzHh9TAZKuQfhxDiPEyBZgB8ngAoOHsuZI9Lh86bh9kiU7wJIUR5UjHHIIdY0Cmwt8e9hOmOsTHvWhrI+GMhxBksQUUzUyguGxRmgz3qtP0+rxFFnw9WWSRECCHKkwp5y9Rs0NO8eihLfXVoeM/THE7PQ5WALIQ4Q0Bo0bArndt2zjvIPs2EouVBQKWyLk0IIUQpqpABGeCm+tHsPpbNgi1H0DRkBgshxFmCIoIAMLkD8OSnnbXfhwXIRR8QXsaVCSGEKE0VOiADjF+0kyohVq5LiPBzRUKIK01w5TAUzYvVbcOZe+K0fZqm4dNZUZRcTEGRfqpQCCFEaaiwAblqmI26MUF4fRr/7VYXq0mmaRJCnC44qhIGdx4WtxVnbspp+7T8fDwGGzpdLuYg+YAthBDlSYV8SO+U0Z1qselQBjc3iPZ3KUKIK5A5JBiDJw+TwUb2GUMs3JmZeIw2rORiC4k6zxmEEEJcjSp0QO7SMIYuDWP8XYYQ4gqlGAzovAUYfTayCw+cti/7+Ak0RY9Bl0tAqAyxEEKI8qTCDrEQQohLofgK0WtWsgtPn8UiLTkZALM+B51NpnkTQojyRAKyEEJckAcFG9mF2adtzT6RCoDeUAD6Cv1lnBBClDsSkIUQ4kIUL+hsON3O0zbnpBbdUdabXf6oSgghRCmSgCyEEBeg6MGns5JdmHPa9ryMXABMVsUfZQkhhChFEpCFEOICFJMCip4cl++07YVZRXeOA2WKSCGEKHckIAshxAXoLEXji50uA2jaX9vdeUU/my0Wv9QlhBCi9EhAFkKIC9DbTAAUuAIgP+Ov7V6XEZ03B58t1F+lCSGEKCUSkIUQ4gIM9qI7xJ5CO+Sm/rXd57Og8znxWcP9VZoQQohSIgFZCCEuwBwaCIDmCkDLOfHXdh82dJoTbBKQhRCivJGALIQQF2ANtxf9r8tGdvZhAHxeL159IHolG31gJX+WJ4QQohRIQBZCiAsIjCoaY2wrtHEiqyggO9OO4TbaMeqyMNklIAshRHkjAVkIIS4gqHIYiubF6raRknMUgBNJ+/EYAzDrszCFVfNzhUIIIUqaBGQhhLiAoIhwDJ58zB4bJ/KKxiCnHj4CgE2XRVBEVX+WJ4QQohRIQBZCiAsIDrSg9+Rh9NpIKUwHIDO5aDYLvaGQSkEyD7IQQpQ3EpCFEOICAkwGdO5cjARz3JUNQG6KEwDNCDaTwZ/lCSGEKAUSkIUQ4gJ0OgXNl4eOUFK8+QC4MouWmXbZrP4sTQghRCmRgCyEEBfhVjx4DSGk+DwAeHKLlpnOCwjyZ1lCCCFKiQRkIYS4CJdZB4qeHLcdPIV48hUUn5uCgEh/lyaEEKIUSEAWQoiL8J58EM+cHU7qkfXoXRYMPifeoFg/VyaEEKI0SEAWQoiLiQgBIDI7lPd/fx89YVi0DAiRKd6EEKI8koAshBAXYa5WNJQiyhnC8gObyLfFEE6SLBIihBDllARkIYS4iMC4Kug9BVQpDCc2xYLLFITNdILQoEB/lyaEEKIUXNYEnqqq9gH6OxyOgcV+fw1IOnnIs8AaYDrQGCgEhjscjv2X064QQpSliLAgCt3ZWPURVEuPASDD6iE6wOTnyoQQQpSGf30HWVXVN4GJZ5yjOfCYw+HoePK/H4HegMXhcLQBngAmXU7BQghR1iKDzPg8eXi0EJpkVgLgE2NzKtnNfq5MCCFEabicIRa/APefsa05MFRV1TWqqk5SVdUAtAe+A3A4HOuAFpfRphBClLlIu5lCzUWBzo7JXRm9t4DfqEa43EEWQohy6aJDLFRVHQY8dMbmux0Ox+eqqnY8Y/v3wFfAAWAGMAIIArKKHeNVVdXgcDg8/7pqIYQoQxF2MzmKF53RTqq1Liac6HSBhNgkIAshRHl00YDscDhmAbMu8XzvOxyOTABVVRcBt1AUju3FjtFJOBZCXE3MBj2/VI6ia2YhubYYDIYUwgLM6HWKv0sTQghRCkpsFgtVVRXgd1VVT82cfz2wCVgLdD15TGtge0m1KYQQZaUgJoL99YvmQz4QE0OEjD8WQohyq8QCssPh0IDhwAJVVX8EbMC7wEKgQFXVX4DJnD1cQwghrniRQWYSTT7ufKENP+JGjZIp3oQQory6rGneHA7HamB1sd+XA8vPceiIy2lHCCH8LdJuYcOBdNwWHcecBdSvHOzvkoQQQpQSWShECCEuQaTdTIqzkJ1HswGoVznIzxUJIYQoLRKQhRDiElQLt+Hy+vhy8xEA6ktAFkKIcksCshBCXIJuDWMwGXQs2nqUKiFWmeJNCCHKMQnIQghxCUJsJro1LFpmWoZXCCFE+SYBWQghLtHAa6oBUC9GArIQQpRnlzWLhRBCVCQtqocyqX9jOiRE+LsUIYQQpUgCshBCXCJFUbileezFDxRCCHFVkyEWQgghhBBCFCMBWQghhBBCiGIkIAshhBBCCFGMBGQhhBBCCCGKkYAshBBCCCFEMRKQhRBCCCGEKOaKnOZt586dqaqqHvJ3HeKyVC+Nk0rfKBdKpW+A9I9yQt47xPmU2nuHEGdSNE3zdw1CCCGEEEJcMWSIhRBCCCGEEMVIQBZCCCGEEKIYCchCCCGEEEIUIwFZCCGEEEKIYiQgCyGEEEIIUYwEZCGEEEIIIYq5IudBLk5VVR0wHWgMFALDHQ7Hfv9W5R+qqm4Gsk/+egB4B3gT8ADLHQ7HBH/V5g/SN04n/eN00j/+Jn3jdNI3Tif9Q4izXfEBGegNWBwORxtVVVsDk4Befq6pzKmqagEUh8PRsdi2rcAtQCLwraqqTR0OxxY/legP0jdOkv5xTtI/kL5xHtI3TpL+IcS5XQ0BuT3wHYDD4VinqmoLP9fjL40Bm6qqyyn6e3sOMDscjj8AVFVdBtwAVKQ3Mekbf5P+cTbpH0Wkb5xN+sbfpH8IcQ5XwxjkICCr2O9eVVWvhmBf0vKA14CbgBHABye3neIEgv1Qlz9J3/ib9I+zSf8oIn3jbNI3/ib9Q4hzuBreELIBe7HfdQ6Hw+OvYvxoL7Df4XBowF5VVbOAsGL77UCmXyrzH+kbf5P+cTbpH0Wkb5xN+sbfpH8IcQ5Xwx3ktUBXgJNjxbb7txy/GUrRODlUVa0M2IBcVVVrqqqqUPTpf40f6/MH6Rt/k/5xNukfRaRvnE36xt+kfwhxDlfDHeSFQGdVVX8BFOBuP9fjL7OA2aqq/gxoFL2p+YC5gJ6iJ43X+7E+f5C+8TfpH2eT/lFE+sbZpG/8TfqHEOegaJrm7xqEEEIIIYS4YlwNQyyEEEIIIYQoMxKQhRBCCCGEKEYCshBCCCGEEMVIQBZCCCGEEKIYCchCCCGEEEIUIwFZCCGEEEKIYiQgCyGEEEIIUYwEZCGEEEIIIYqRgCyEEEIIIUQxEpCFEEIIIYQoRgKyEEIIIYQQxUhAFkIIIYQQohgJyEIIIYQQQhQjAVkIIYQQQohiJCALIYQQQghRjMHfBZzLNddco1WpUsXfZYjLsHPnzlSHwxFR0ueVvnH1K62+AdI/ygN57xDnU5rvHUKc6YoMyFWqVGHBggX+LkNcBlVVD5XGeaVvXP1Kq2+A9I/yQN47xPmU5nuHEGeSIRZCCCGEEEIUIwFZCCGEEEKIYiQgCyGEEEIIUYwEZCGEEEIIIYqRgCyEEEIIIUQxV+QsFkIIUZHtSN3Bp3s+5VjuMarZq3F3g7upHlTd32UJIUSFIXeQhRDiCrJw30IGfjuQlYdX4va6WXpgKX0W9eGzPZ/5uzQhhKgw5A6yEEJcIVYeXsmzvzxLm8pteL3j69gMNlLzU5nw6wReXP8iOe4chjcc7u8yhRCi3JM7yEIIcQXI9+Qzcf1E1DCVl3w9Od6lC44G9cm+sTPP/67RLbYTb25+k6UHlvq7VCGEKPckIAshxBVg9o7ZHM87ztNZrTkx5lG07KOE1tdQcJP8zipGTv6GZqYonl07nn0Z+/xdrhBClGsSkIUQws/y3Hl8uOtD+lrbYn31fSzhbuLfeZGoz3cRt3ob4XcNwLnfxLMf7cPqcfHEj+NweV3+LlsIIcotCchCCOFnyw4uI9edS7+vEsHrIfaZB1Ga3gqKgmIwEPnUBCo9cD+FiTYmLXeyN+sPpq6d4O+yhRCi3JKALIQQfvblvi9p4a6CYUsSoS3DMd409qxjKo0aRXCvngRsNjNmu4c5iYvY4fjKD9UKIUT5J7NYCCGEH/2R+QfbUrYx9ZcIFAVCR/2Xeb8dYc66gxzJyKdysJWh7ePo07QK0f/7H4UHD9J+hYMfI908u+YpPgtJwBhVz9+XIYQQ5YrcQRZCCD9afnA5FhdEbThGUP0gpqbW5LEvf8frg+6NYlAUePSLbQx+fwM5mo7YKVPR24N47LsQDmk65i24DXJT/X0ZQghRrkhAFkIIP1pxeAUDDkeAB45d24Upq/Zza4uqLBndnhd6N2TxyPa81Kch6xLT6Pf2L6Ra7FR+9RUMR9N55JcQ3rJ4Sf/8dvAU+vtShBCi3JCALIQQfnI4+zB7M/bSYXM2xkAvYzJb0KxaCC/2aYCiKADodAoDr6nGnKGtOJZZwC3Tf+FYfAPChgyhya9pqIk6pufug8VjQNP8fEVCCFE+lOgYZFVVjcD7QA3ADLwA7AJmAxqwA3jQ4XD4SrJdIYS4Gq08vJJQp0bQHzm4W0RxJE/HWz3qY9Cffe+iba1KfHZfawa/v5EB7/zKnEF3Y/v1V0YvO8SYIXYG7vqC+Jgm0HqEH65ECCHKl5K+gzwISHM4HNcCNwPTgNeB/57cpgC9SrhNIYS4Kq1OWk2Pg0GAwtzwa+jVpDKNq4ac9/j6lYP5YkQbrEY9t3+4hexHnsFS4OO+ZfB6bAIsewoOryu7CxBCiHKqpAPyF8AzJ39WAA/QHPjx5LalwA0l3KYQQlx1clw5/J7yO633uDDavcy3tmVou7iLvi6uUgCf39easAATd6xIofCue2jm8ODZmc2aSlXhy+GQl14GVyCEEOVXiQZkh8OR43A4nKqq2oH5wH8BxeFwnBoY5wSCS7JNIYS4Gm1I3oChwE34gVzyYu3Ex0TQKPbS3h5jQ218fm8booIsDMqMx63W457vYbo5DJczGRaPlvHIQghxGUr8IT1VVasCPwAfORyOT4Di443tQGZJtymEEFebX47+QovDRhQv/BKhcvs11f56MO9SRAdb+Oy+1sSEBTC6Rk/MXj295h/nvUZdYfdi2PJRKVYvhBDlW4kGZFVVo4DlwOMOh+P9k5u3qKra8eTPXYA1JdmmEEJcjdb+uZbOB0zojD6+CutAz0aV//E5Iu0W5t3XhuCEWsyo15PGBzWSVm7hj7jWsPRxSHGUQuVCCFH+lfRKek8BocAzqqqeGos8BpiiqqoJ2E3R0IsKxaf5+C35N/Zn7sdmtNGoUiPiQ+L9XZYQwk+O5hzliDOJmntBHw1RtZsSbDP+q3OFBpj4ZPg13G8xsO74dm5btZcpDYy8ZrRh/GIIDF8JJlvJXoDwK19+PllfL6Zgxw4UeyCmtq0IbXfdP/oGQghxYSUakB0OxxiKAvGZrivJdq4miVmJPLv2WbambD1te7sq7RjddDT1wmWJWCEqmk3HN1ElDUxOLwdqR9PtX9w9Li7AbOC9wS15yjsWdfrD3Dz3D959uicP/PpB0Xjkvu+ChKdyIX/nTo4+/DDllDnYAAAgAElEQVSuQ4fJtyoYXBrG9z9gXTUDOSN606vXfzHrzf4uU4irniwUUoqSnEkM/W4oB7MPMqHtBFb1X8Xi3osZ02wMu1J3cds3t/HCuhfIc+f5u1QhRBnadHwTrQ4V3TFeG9WYG+tHXfY5TQYdLw+7jl97P0iNE5D52XI2tb0Htn8Ba9+47PML/3MfO0bS3XfhTDvE87fpeHSUjpWj7Tg6KUSmuKnzzHzeGNmMLcufkJlMhLhMEpBLSZ47j/tX3I9H8/Bhlw/pW7svEZZwalgjGV73Lr7t+y131L2DeY553PrNrSRmJvq7ZCFEGdl0fBNtDukw2T1kqJ0JsZlK5LwGvY4xzwxlV5P29Fzn483f1pJZvxeseA52LiyRNoR/aB4PR4YPojA/l8cHGjDWa0Fdy3vssk5nU+fPyZk4BV+9aHr+4GPP5EXMm9IcVr0ALrkBI8S/IQG5lEzdMpVD2YeY3HEy8QUF8Pkg+L/q8FIMvBCB/Y3GPP77CmYGNSU7L4U7lgzkl6O/+LtsIUQpS81PJSnjAFUT8/FF6mjSsEGJnt+g19Fj5utkhYQx/KsMHiwEreo1sOA+SNpYom2JspP5wRQK/jjKW130pJhb8uPmfmw8kENSeh4Ltx5lyGo3t6nj+KHbnTQ4rBC+yMLMNe+iTb8G9q/0d/lCXHUkIJeCnWk7+WTPJ9yq3krLpG3wTgc4uBbq94EbJsB/noa6PUBvovXulXx6YC8xedmM/P5+Vvw+29/lCyFK0abjm6h1FPRujf2RVbih7uUPrziTKchOw+lvEeZUuOGL35hQ9UYIioHP74DsoyXenihdPmcWx2e8x77KsLZGVWK1wcy7rx3rn7qe78Z2YOv4zsy7rw39WlTlbXtznmg7AnuBkWYLbHyUDNrHfWHxWLmbLMQ/IAG5FLy99W2CTEGMIQy+fQRq/gft/nX4bngZre1ouO4x6PEm3P0tPHGIyoMW80FQc+oVFvDI5tf4dO7NkHHQ35chhCgFW09spclhHaDhiGtF1bDSmWEiqGkTwsaMpbVDI/fr2cxr/nBRQPpsoASlq0zGq4+i5Wp89B8jDayjmXfftbSKC/tr1gqDXkeruDBe6N2Q9U9dz4C7ezKhy9Mk2wNo/pWHrzKaoP32Abx3A2Qm+flqhLg6SEAuYXsz9vLjkR+5o8p/sH/3FO7oThzblcCedp1xNGvOvg7XcfTpp8nfubPoBTo91GhH8ICPmHnrSjrYYnnJ8yevzL0B74aZshqWEOXM7ym/0+KwDkuoG1uj60u1rZh7h6Nr15a7Vnn5bPUUfuvwLBzdCoseBJ/v4icQfufLyyH5m5/5vYbCn5W68/4dN2Ex6s97vM1kYHDbGsx/rh9/PDmL9TXDqLPsBAsczfCmH4b3rodjv5fhFQhxdZKAXMLe3/E+NoON27d/T6E3hoNz08j6ejHc1JXU24eTkdCQjCVLOXhLPw7ceRe5v/7612ttwbG80e9bBsb35CO7lbG//R95n90uTyMLUU4UegvZf3wnsUmFKJHQpFGzUm1P0emo9frrKBGRPLQon7FbPuJw24dh5wJYOaFU2xYlI+vtCejy4NuWVmb1fhSr6fzhuDirSc+Ybo25cc5SlrerSr2tySxdEYMzVwezu8GBn0q5ciGubhKQS1BGQQbLDi6jT2BNAg7v4dAKOy63l9dveYouhmu5M78Ot0Z2o3+np3i3fneSduzl8N1DWd73TlYt20B2gRu9Ts+T177Iky2f4KeAAAbnbCX5nXawf4W/L08IcZl2p+2m5mE3ei8ciYqhafXQUm9THxxMzbemE1ZgYOzXafQ/9CsZTe8smvrtt/cvfgLhN5rPx5H5S0iMBkPjO6kbE/aPzxEbHsSo977j+7uvITY1h83fmNifHYL2UV/Y+mkpVC1E+VDSK+lVaEsOLMHj89A3cRPH99XGnZ3Pgx3uQQuI4vmb4mgZF4ZRryMtx8WxrDZs+nMw5kXzaP3L15jGDOG9Gq34pUM/6tarQZuanXi5fRUm/DqOOwwFTP/8NlS1J1z/LIRW9/elihJ0MOsgG49vJDk3mUBjIHXC6tA0sikWg8XfpYkSti1lG/UPa6BonFBbYtSXzT0Ka4P6xL74ArrHHmfA6sN0v9HG9zVvwLZkHITVhPgKu5bTFS1v6acYMnys6GLi/26651+fR6foGPXYB3ypvkqV/31A2ncKu2+Io8dXI+DIBrjpJTBaS7ByIa5+EpBL0MJ9C6lviaTK3t85vFPHZ+oNtOl8Dc/2qH/amLGaESd/aFIFujUg/8Ro9rz2Jjd9s5BOn25jUe0OPBrXgTyjhZpVHiYn5G0Gxxp4K3E5zXcvhraj4NpHZfnYq1xGQQavbHyFbxO/ReP0seYBxgA6V+/MHXXvoE5YHT9VWP5oXi+ZCxbgXLEC+/XXE9K7N4qpZOYgvhTbUrbRKUmPJbSQgPody6xdgOCePSnYuYuuH37I/hgHvZs0ZHF4Tczz7oShyyFS+tmV5o/3p1NoAdc1fYiwB1zWuRRFoV/vx9hWrRHZDzxK5WU5PHtTY5757X0Mh36BvjMhpnEJVS7E1U+GWJQQR7oDR4aD3qnHObo7hhPWEHwDB/NSn4YXfKACwBpZiaavPE+tbxZT6fqODNi1nPlrXuVN016iTdXI2D8CZ2EIQyIrMSO8OayZBFObw+aPwOsuoysUJWln6k76L+7PsoPLGFJ/CEv6LGHbXdtYe/ta3rr+LW6sfiPLDy6n/+L+jFw5Eke6w98lX7W0kw+6uo4c4dDAO0h+ZjwF23eQPP5Zjv/fK2Vai+PY71Q/6sES6aZes2vLtG2AyEcfwdayJfd/B5Y/tzMwXMVjsMDcfpB9rMzrEefnOfYn+t1p/NRQx+M3jSyx8zZudjMNv1hEYVggfZekMMZZl+05aWjv3QAb3pUHw4U4SQJyCVl6YCl6dHTcmYIn2c361t2Y0K/ZX9PwXApzfByxb0ymxpfzCWxQj4R5M3l+2SR+7VmPp5q+RZBSk7cC/uS6oK7syg+Ar0eiTW0OW+aCz1uKVydK0q60Xdyz/B4MOgMfd/2Yh1s8TNWgqugUHUGmIDrEduB/7f7H9/2/Z1TTUWw+sZn+i/szfu14knOT/V3+VeXIyFHsv/56Dt97L4nde1CYmEjlV1+h9tqfCe7Vi8yFC/E6nWVSS0ZBBoH7jmHwQkZUOFUj//l40sulGI1UeWMy1koRPPmlmeT0Ldwfdy1aXjrM7Q8F2WVekzi3gzNeQudTONy0DtVCK5XouUOq1qTVwuV4E2ow8tssPj5k4amQeJxLxxX1A5krWwgJyCVB0zSWHVxGa10AeTuDSbfY6f/fBzD8y/GF1vr1qTprFlXemIw3JZUTgwZy/dL5rOjxDn1q9ic9fAcDo8O5VTeEvdkGWPQA2tttYdci+fR/hTuRd4L7V9yP3WTng5s+oF54vfMeG2QK4t5G97K071LurHcni/9YTJcFXXj656fZmLwRnybTdF1MaOVELJY03In7CenTh7iFCwju0QNFUQi98060vDyyFn1dJrXsTt9N3STQ0MhW/fdVtiE8nKrT3yK00Mu4haFsyF7PMw16Qcpu+ORWcOX6rTZRRNM00lf8xN7K0KfXf0ulDUNoKE0+XYip03UMWeUlfL2TTlXieDdtE7lvtYL1M2UqQFGhSUAuAbvSdnEk5wg9dh+h8Lie9C63EFfl8u4OKYpC0M03E790CaGDBpHx2eckdevJQ8fqMuW6NwgP9rCr+irujGnAYIbwZ3ouzLsLZnWGQ7Jk9ZXI6/Py5Jonyffk8/YNbxMTGHNJrws2BzOu5Ti+6fsNt9S+hRWHVjB02VBu/vJmpm6ZytEcudtzPse7D8R4fS41228i2vweprnXwptN4OvRWGtVxdKoERmflc2T/LvTdlM3ScMY6sFWt+yHVxRnqVePmP9NQE1KZcjyGBZl/sy7LYZA0jr49DZwF/i1voouZ9MG7Gkette30LFm01JrR2exED/1LULvupNuv2mMm2/kPUsAnaLDeG39ixyf0xXSE0utfSGuZBKQS8Cyg8swoKP+VgWX3kjHR4aX2Ln1gYFEP/0UcV/OxxQfT/Iz46nxyNvMq/4/7mt0H9j2sDnuB7qFN2GkcgfO4wfggy7wUR9I2VtidYjL95njMzYkb+DJVk8SHxKP5vGQs+ZnUqZOI/mFFzkx6XUyv1xAwd69aOe4c1MlsAr/bf1ffhjwAxOvnUh8SDzv/v4uXRZ0YdyP49iest0PV3VlezZpJbfERLLlP49Cg37QoC9E1YctH8PiMQTd2BnX/j/wZGSUei17UnaS8KeGvZKLuKYdS729iwnu1YvQu+7k5i1H6LY2giknVrC83UNF8+POHwpej79LrLC2Tn8Jlx7sHW4u9bYUvZ7op54i+vn/0fBIPm98HIb1SG3mBAXRhSO8NrczWT+9Iv1BVDgyi8Vl0jSNFYdX0D5LIe+gjbTrbqRxpfASb8dSty7VP/6I7G++5cRrr3HiruH06dGD20bP5ZOUpXy862N+CnDROvUmhnhhzKFFGN9ui9J2JHQYB6bLewJaXJ70gnTe2voWbWLa0LtWb1K/XEDK669BWgaaAopJD24f+IqGyChWI4Ya4Rib1sR2bXsstVpijKyFyWjCZrTRPb473eO7cyznGJ/u+ZR5e+fx3cHvaBDegN61enNTjZsIsYT4+ar9L/9YH5xM5q6D82gW2QyrwUpOkIK1bgse2beYqrHxABTu3o2hbdtSrSVj1zYsbvBFGLFHxZdqW5cq6vHH8RxLZvD331NoDOURvmJ621Fc+8tUWHAP9H0X9PLPRFnS3G5sW/axpZbC3T2eLLN2Q/v3x1S9OvpRo5m+KIlXrxvE1mrbmBO8naX7PuBZx0I6dJkKsS3KrCYh/OmqeOdLzU/FqDMSbA72dyln2Ze5jyRnEuM25qD4LDQfe1+ptaUoCsE9umO/vhOpM2eSPut9clat4o4H7uf2Wxbyxo7pfM3XfBIewifJt/O8Zx/df56MtvUTlGsfhaZ3SFD2k2lbppHvzmdQ/IOsubUvEb/vwRruIqx9DsZIL5lGO/g0jLkefCngSjWQf6iAvN3J5H/2M7aoQmzVXOyvHMt6czO2hXTGFF6dhGg7TasO4rbud/PDn0v4ct+XvLD+BV7e8DLNoprRrko72ldpT+2Q2v/ogdHy4qUeHbl9lg+37WeSTHsJCygg1BLEftzcWTmGKdnLCQEKdu8hoBQDcrYrm6B9RQ9Y5sbVhivk70LR66n82qv8OWYs965cTUChnQfbLeHNVvfwnw3vguYtCskGs79LLXE+l4uCHTsx16qJPijI3+X85dDS77DlaxyrF0yQpWzrCmjVihpfzCPp/gd47LuP+PWGgbwQ0oHgah/zoCmLaxffxpjKnVBvfh3MgWVamxBl7aoIyP+38Gn+SN/Oi7fPom543bP2ay4XriNH0NlsGKOjy7S2lYdXovNpVN5lJL2mSl21dqm3qbPZiBw7lpDevUmeOJETr76G4eO5PDJsGL2vuZ4piR+wVVnGf73hvHHiDl7O3USLpePwrXoBXdM7oNlgmfO0DB3KPsSCfQtoGHA9plHDCT6Qg7mhgew7R+FT2xNSuTZ2k5E8l4fUXBe5hV4KPV68Hi/alg1Y1izFs2kjuetzCNZl0yfiOwbFLuJA9Xjm72nNM776HKUSanQ1ron7H70bZHLMs551yT8zedNkJm+aTGxgLF3iutC3dl9i7bH+/iMpMwlRdr689waeWRTNmm2pJAIhNiNxkT7MARN4w3SCF6KiKNizp1Tr2Ju+l4Q/NbwWH7b615RqW/+UzmwmduoUjj7xJHd8+y3hzgDG3vQ9z7UcTJ+NHxYtdT9gDtjKftaN0nR8zY9kPjgaFAVDTDSmqtUwqwkEd+2KpXFjv32gTPxoGoEWSOjU0y/tm6pVo8bnn3H08Sdos+wjPm/WmocLHkQXsZHfKq2iX+avdJ7ThlHtJxBXt69fahSiLFwVAbndlxkM2ZnBL6tvJXvoWFp2GghAwY4dZC3+Bud33+HNygIg5NZbiX52PIqubIZXrzy0kl4ODV+unmr3DCuTNk8x1ahBtXfeIffXX0mZOo3jL7xAoE7H802akNq4Gx+F7OKH6J+4nxhCj93BA3n76b5uJoZ10/FGNULfYjA0HABlfJeiopm+dTpoeu6b+wPBB/IJurkRVV7/BHSnz48daDYQaT9j9Ty1B9zWA83nI3/rVpwrVpKzYhknNv1JwOY07o9YwGNV52KN9uLJMJKVbiH7twA86OllNOIMCGVLsJWNBYXM2v4e725/l1pBcbSu0o6W0S25JuYaAozl+1uFGpUC+GjYNfx+JJPfDmbwR0oOP+w5gSm7CX9G/Yw7ykLhnt2lWkNiViIJf2pYKrmIqdeuVNv6NxSjkcqvvoIxJpqb35tFdIaN/+u7ikPNBzJm63yUd66DAbOhSnN/l1piftF28ekgPR3/0Lim0Eal/Dwy531BxpyPCLz+eqq89io6a9muLufNzaXS7sOsaQDDrn2wTNsuTh8YSOzUKWR8PBdl0iRm7tzK1mbX80rIaGLjfmStfRMr14+n5+Zp3H3tBOKr+fehUyFKw1URkDt3M3BYc9PMoWB5+FUcvFr0FaWmoVit2Dt1IqB9ewq2byfjk09QTCain36q1OtKzk3GkeHg4c0u3LZAKncr/QcqziWgTRtsrVtTsGsXOStXkvPjTwR8sIgRwD3BgeyqlsW6yj/yTu1gJuluoVF6Lvcmb6fxt4/gXfoUvoSbMTa9HWp1virHG3p9XvS6Cy/G4i+JmYksObCUIb9aCd+VTfB1DYmZ/Nk//opd0emwNWuGrVkzoh4bR8HevWR/uwTnkq85vqlogQdDkBlLNTuBwQquEB15djBk5XFT5jEGKxmkG3x8F2hjbX4BX2Qd4OPdH2NAR8uwurSt3JYmUc2pG9kYs8FWVN8VMgygpDSKDaFRbNG47Kw8N4Nmecn1rWGnPZUGO134CgrQWUpnee/Dh3fQMANCqrkwVb0yQ6ai0xH56KOYatRAe24C//e+nsl91rCj/s1MOryF4Fk3wnVPQPuxoDf6u9zLdkunUWTkHOTdKt8zhwMMyXTTod/dRKeHkvLmFA4Pv4fqsz9AMZbdte5cuASjB7LUQCwW/w4pVHQ6wu66k8CO15EybRpNvvmWufrl/Fb7GuZWvpuohCUsCTrOVz88QF3FynVVO9K27q00iGyEUXf19w8hroo0FNDjWWpn9Se7/lEmZ9dCl+/EhAG7Wg/7tR1oUK0FjSMaE9y7F5rbTcYnnxA+fBjGqKhSrWvNn2sIz9YITdJD/55l+kZ6JkVRsNavj7V+fSJGj8aTkkLOmp/JW7+ephvW03C7E5ZlcDjyZ36rBc/XsnI8tD318/LodmgN7fYuJsASianVUJSWwyGg5B80LA2/HtnOqKUDaV21Fy91eowg05V1N/y/q6dQ7Th0XZOFrXYEMdPmlshXt5aEBCwJCUSMHYP78GFy160nb/068nfsxL0zCTQNI2CLjSWv9jWsCYzgeH4+yv5kbipM4W6Oo7ekcSAAfg/YyhL7Dj4OhGy7RjWfhwS3h3jNQIRiJEpvpYY5lCh7VZRKtSG8FkTUKfrvKvxABRBsM/J0t+ZM+SaYHyIyaODVKNy3D2vDhqXSXt7vRTOM+KKDrvj/b4X064e5Vi2UMQ/xwpzjzG+3ha7tg3ksKp7uP7yAftci6DUNKjfxd6mXR6djeO/JdMs+yqNLRvK2bh8rsmYzIjeSek89jvPFl0mfM4fwYWX3zeCxhR8SYoUG7TqXWZsXY6pWjSqvvELEyJGkz55NqwULabnrZ/50JLA0uj6uertICzvCzENLmHF4KRZFT73gWlQJq03t0AQaRzSmYURDCc3iqlMm/7qpqqoDpgONgUJguMPh2H/JJ4hQMdy3msBvx/H8zvlsjLTzYVgNVgUkcmL3DtgNIaZgHr/mCTrfM5zM+fPJ+OwzIseMKaUrKrLmyBp6bPGhaQq17r2nVNv6pwwREYT07UNI3z5omobr4EFyfliNedVKqq7bQt9f8nAGHmJTnI/FNW28EBdAlGZg8G9v0uWnSVga9EbX6j6IvTLvdp0S+6eL2a97cRu+ZKN9IabQKGKr1MRSJRZzXDzWRg2xNGyIoi/7O8zLHLvYk7KStxe60Zt1VHn38xL/EKUoCqbq1TFVr07orQMA8DqdFOzYQf72HRTs2AG7dlHl6CqqnDV1nJkmQFHM+XslxoxAA0fDDRyupLE9UuNAVD5JEfmEZB+l5fEfaJ1fQLv8AqJ0FqjaCuKuhdhWULnpVfXgTuv4cOYZEtgRuRHwUrj/j1ILyIb9SUU/1Cmd85c0a5MmJHz9FUnP/Y9bly6h2b4c3u6RxQd1WzL2+BGue7cTSpsH4dpHwHp1z5YSE1SZj2/9ku8PrmDCT0/zTFg6jxx7nebt25Py1nSCunbFGHNpc5ZfDldePlF7E1lbT+HOlveWenv/lKlaNaLHj6fSqFFkLViI6YsvGL7xe7y/W9lasx31InzY43aSZzvBnvxtrE/bzeKTi2UF6q38p1onetXuQ6voVhXygWFx9Smr2z+9AYvD4WijqmprYBLQ6x+dwRaGqf8sfC2HE7J0Cs8cX0cU6WTpFDZZLMwK9fDkmidJa/EonTp2JPPzeVS6/350JlNpXA9ur5v1SWsZ/LsXX0J1TLFX7oNPiqJgjovDHBdH+NC78WZmkrNmDTmrfyT455/puD0LTadwOBr2RIXwUqiOhmmr/p+9846Pqsz+/+fe6X0yyUwmhSQzKZPQpLhAhEhwFRuBhETAGgW/LrrKUsQF3QX5qQsrYkNcRVyKC4pGAZWAhSIsJQiEACGZ9N7r9Hrv748hWSAEkjAhkNz368XLzDPPfZ6TazI59zznfA7u++07iCPvBOf+RSAi7r0lj9yDRwyB4C+pOJGZh+rq85DYa2DMrUXASTb4FgcAgOXjA/mMGfCdM/umVaub7S68tv9jzMhwQ9pMIPCdZWCrA2/K3iyJBKLYWIhiY9vHaIcDlNUKmqJAEARomvaMWSyg7Xa4m5vhrK6Bo6oKRF4hhEXFiDpfCo7dCgBwE0CdhIcWmQhGAR87uYCcx4cmrxCh7hMQ8Nxg8QDSLxAs/xCw/ZQgZSogJgEIje3M1D7nD5q7cbDydwCAq6a6V/ZotbcisMoCm5SCbPC4XtmjN2DJZAh7bw1aJ98L599fxz//bcKPf2jByxPYCFfo8EzWBvwx8wtwYv8MjHkO6OOUgBuBIAhM1tyHO1TD8ez3j2ONshoLzeUYftyBpi1fwP+vr/S6Dae++wlyJ426SA6kPmG9vl9PYfv4wHfObChmPwNr5hm0pKXhzr17MfqCBeZzKhwOeACRgcAsZRUG8/ORj2b8JhRgn/MH/FC8GxFsCf4SOQsTRz4HgtM7KU0MDN7gZjnIEwDsBQC9Xn9cp9P1WEiRDItF5POxsDhcSMssxYGsfJhKTmOp6Ut8orbio9Mf4O6EpXAfOADL779DPL53CmJO153G4DwbhCYSqtm33tP+tWDJ5ZAlJECWkADa7YY16yxMhw9BePIUQi5kgzBbAHBQCyVqfyoF8cmL4PqwwQ0LByf6TnBCw8ENDQUvXAt2QECfRgOIJj38av6BhwIAWheMffwAfAY7coQGKIxcJJpGIrFShMZPP0Xrd99h0PpPwY/pqITibd5Iz0RQy2EkZFCQ3RUB8ZRZvb7ntSC4XLC6+LCouvhfmqLgrKiA9cIF1Jw+B3ZOAYTVNRDWNYPvMkLgtkFkpdGESx0jG4A8zz82DZ9J56Fee3NaOfeECSMfwHs178AqZMFZXdMrexS2FCKslgahcII3aFSv7NGbyB58EIPHjkXBireQ9FM64s4J8P3dNJYM94Uvi4MnTn2AGcfWQjT2BY+jfBurXfiL/LFh6lY8kvYwNg8qwXLdYLB++AGqhQt6PYWuds934HGBsJG3R+oKQRAQjhoJ4aiRUL/2Koy//orWXd/jgeOHgWwKVf4avOOfiAptOP4U6sArgjwcqP8dnzmb8FLOZ4jK+hdmCkLwYPQMSGISb/nUI4aBx81ykKUAWi957dbpdGy9Xt/j1jxCLhspY8ORMjYcdYZ4LN0+HrOr/ozfBU6spfbh/0gS1lOnes1B3ldyCJMzKdBCEoopib2yx82AYLHaP+QAT+MTd1MTcrIPYetvn8JdV46gRjaGNLgRqM8F63QeaPf/HGKWjwxhX20HNzS0b76BgDuAZ/cDJYdA1Gbj3no9/thUgqomCz6Ty7Ax4CS+9efhrckLEPDeVyh9/AmEbNkCwdAhvWbS8aJG7Mr9Dm//5AAhIOD/9r97ba/ehCBJcENCwA0JgeyBB6C7OO6maBQ3mJBV0YSDhUdQUXMcbkMe+M4aiJxOSKyAzAzILDRqVQKs7tPv4toMUgcgwkGjUQL4VfdOBLm44jwGtwC8MAfgf3ukWFwJW6FA9AdrYDj5GAzL3sTsvbl4+LAY++6WY+1QJzaxOZh7ai1SjnwAztBkYPQzQNCoW/LU6Xr4i/yxOn41nj04DyeDS3BPthWmw/+F5J5Jvbanw+WGOvcMzoYRmHjHY722T29BikSQTZsG2bRpcNXXw5CeDt7OXXjh7E5Q5wicP6zBBwGR0MbOxbq7dThl+BFbq3/BG+4qvH3uXYw/sRLj+P7QBdwJtXokhEF/gMwv5qapUTEwXI2b5SAbAEgueU3eiHN8JSopH5/MjsM7a5/F44Z38Tl5FM/rImA5ddpbW3Tg3KmfkFhEQ/DQaBDs27NQ6WoQBAG2ry+G3Z2ElXGJOFp1FOtObcG/m06AJlgATSPEAEQ0uhDQQENqbsGUliyE9JWDDHjypC/JlSZoGkGGKvyt7ATGHPk3PmIXYEHjh1j256kYvO44KufPh+bbNLBk3nBMAsMAACAASURBVD8Stjnd+Ou3WUgp34uIGiBw4WNg+amuf+FtBIskEKGSIEIlQfKoUACeP+hmuxP6hgroG0tR2FiL4lYDJmn+0LfGdoEQSopqqQGa6qpeWb/i1AkMBiD1E972UTLpnaMxZvd3qPppHxrXfIDH9hTgof0CnBwlwpfRTmwbJMBfCn7AHzO/AOE/FBj9NDA0+baLKo8NnYQ4bhD+M6wM4/8rQuuOHb3qIP9+4CQUZicKNARStZN7bZ+bAVuphCI1FYrUVNj0ehj27sXQX/ZjaPbPIM//BPNnQDSAZRIZoFDDSJjQ4jLAjiYUsH7BWd4vMAoB8VgNnlmwu6+/HYYBzM3y7I4ASADw9cUc5HPe3oDDIjF95mzkbvgPKLkd1eE+UP2aBdrhAOHlPORmazOGnK4CCCD4+Ze9uvatBEEQGB80HuODxsPoMGJ33lGk5/2OYncl9pMt4CktELo4GC0dhpC+NvZSCAKQBYE9LAkPDUuC6sxBvJkxD//P+D0+e+phCN7dg9p//AOB//yn17f+aH8BnM1HMe2IDeYwLqTPvub1PW5VRDwORgVpMCpI09emdItIUSgapOdgz+kdB9mV46lH5uiiemX9mw1BEAh64F4E3v9HlO0/jLKPPkP88dO49xiFVpEFhWoRNgWqMb7FhpDcJeDKloCMvtfjKEfeBwh8+vpb6BJL/vg2pqY/htwwGiOOHAHtdPZamkXxj3uhAMCJ9utXUVO+Tge+TgfVX/4Ct8mM0szzOHE4C6XZBWA31kNqN0MGMaS8QMhZbrDcZvBbjeBVWcC/Y3Bfm88wwLlZDvIOAPfpdLqjAAgAz/TGJroAKfT+UxDh+BKHZFVIttlgy8mB4I47vLrP1+f2If4cDUcIB5zI4V5d+1ZFwpVg1tD7MWvo/QAAp5tCYb0JDUYHRoXc2tGhO0fE41XJ11h4cAaWU7uwLuE+tO78Eb5/+hN4Wq3X9imsN+HTQ4VYVrwTAgcQ9Leb17CGoeeMDL4TadLzIC1WuI1GsCSS61/UDWQV9TCLaEiie1x6cUtCEARC/3g3Qv94N/T6cuzZ8C1YZ35HZFMhgopb4aaA4osZ7ST/LDj8U2ALloCrlIKrCYVg3D0QJM67ZdMwQlTDMZYS41i4AXdk07CePw/hyJFe34eiaPhkHUCJChgWPcHr698qsMQiaOPGQhs3FjRNo7DejGOFDTha2ozzVQZUtVhhcfxPTWfOMA3+3of2MjDcFAdZr9dTAObejL00sdPw4K+fY4tvFZIBWE6e8rqDXJj+Fe42An6z7vbqurcTHBaJaLUUuLmdvXvMmPBoPFr1Oj4pWo5disO4j8dDw78+QdDqt722x4ofLmCU/QJGZJlRMkqIIROSvbY2Q+8RrR2PBukmAICzutqrDrKbckNdb4XVhwKpHuq1dW81dLpB0K2ej9waAz4/XIz0szlQU78g0pkJVYsd/iYWNFYpfFscEOfaQZ7NA3blITxqLLhDbl1lj0fDp+BV+1eYCzcsGSd6xUHOLmnAoPo6/DSKwKOD+7aY92ZBEAQiVGJEqMR4Mjasfdxkd6Gy2YriBjOGBt1amvYMA4/+kzx7kaFDR6D+RxFaFQRc/grYsrO9ur7N6cbQ03pY+TT8Huu7VqAM3efPcdPxS/4GbPMtxf0ThsPw449QLZgPTuCNy68dyqvHobx6fF74JdwkoFn0Ny9YzHAzECqj4BZ5NKJdNTVAlPdSIWrNtQhsomGJdAHq27NArztEq6VY/cgd+NuUwfg+KxZpp0rwi/Qk2OJccETFIDj1AEj4mACxDfgkOPDWSs+6grg/vABxwVZU+ZEQHD8Ov7l/8voep38+gjFuGtWDWAj2Hxgnkp0h5rGhU0ugU3v3FIeBoSf0OweZIAiIfMaDS2Wg3l8AUUHX+5F0he9PnMYdRS40DGaBCGBypG43Fv/xbTx/4FGkq8/gfhBo2bEDyj/f2IMORdH4R3oOHsF5qHPNODJOgP8befsqmww4hL7gCCkApNel3rLPn0SwA3DLaEAR7tW1b2VkAg6eHBeKJ8eFotYwFscKG3GmvAX59c0oaq5CpaUeoEnAdWsXLbKECkyifXEmrAkBp0+Dcji8rq1vPPZfUADEkTdHJ52BgaFr9DsHGQCUwx5C9PnDyJeYEZhTB9rl8prSRN6OjRjmAlRx3j9qY+h9xocORSQRhl3qQiQM0aD1ux3we/75G8oV3nO+Brk1BryT8xUcbAKCp59gOkXdThAEBEI23AQFa0UlvFlCVpp1CsEAZCrFbduW+0bxl/KRODIIiSOD2sdsTjcsDjcUot5p5ORN7gmegE9Df8BDJx2wnT8P4SjvaVk3muzQFP+OMhUQHX7rppowMAxE+mUFUfCQuzDE7sAFuQm00wlHWZlX1m02OxB97gQaJUD0Q896ZU2Gm8/U4XPQwGahPLAWzspKWI4f7/FaNE1j7f58vMA6BiLPin0jSNz/hye9aC3DzUDFlqBZArSUlnt1XWtBHgAgICLaq+ve7vA5rNvCOQaAO4dMR4PKk4Jju5Dj1bUz8moR0liP7BACwyMe9uraDAwMN0a/dJC58gBonWwUK2kAgD3fO2kW+04WILrcjKIoGpyw/ltt3N+ZNfxB8Cg2ftU2gRQJ0Lq751qb+3LqUFTThFkXdoAiCFRMGQmVsH/pHg8EAvl+aJQAxgrvPEy3IaisgplPQxze//OP+yuswJEYwnLCIARaz5716tr5R06B7aZREExA53/7dVlkYOjP9EsHGQDU7DBUXUxvsxfke2XNwh9/BIsC2HcEDNjj0v4Aj8XDENkE/CwTgBXhA+Ov+0A7nT1aa+PRYixm7YY5j8LhoQTuGjHVy9Yy3Aw0PsEwCAm4mxu9uq5ffQtafWgQyv6hgTwgYXEwhhuEIn8CjVnebT5lP/M7AIDQKMBh9W4rawYGhu7Rbx3kINUosNk0DL5C2L1QqGeyuxB4/hcYBIB23L1esJChL5k5PAlWkkStqgxUayvMPUizKKgzIq+gAAl5vwBuAj+MZeGekHt6wVqG3maQXAuDEOAYWr22ppuiEdDogN2HApS661/AcMsyNvRuFKsBfnklKIfDK2s2mR0IKzuDJjGg0XpXipSBgeHG6bdhUFXkGGhO70SlQgClFxzkgznVGFxVhd8jCTw+ZKYXLGToS+JDx4H8LwvHtQ5MEYph2LsX4ri4bq3xxbFSLCa/gSGPh5xoIfyHDIOfwK+XLGboTQL8omEQAgKrDTRNe6XIsqC0BFIr0CRxDygFi/5IYMQkmHy/AYsiYM/Lh2DokBte80RxE0JbKpEbSGBoSPyNGzlAOXXqlIrNZm8AMBT9OOjH0CtQAM67XK5nR48eXXflm/3WQZZpRyMsw4UShRMxp0tBu90gWKwer5f9y1GE2ylUaFmQ+EZ40VKGvkDIEWKQcAh+c55GSrgIpn37Qa/outqJzelGZuYJzCv9HXV2Gb68047E0Pt62WqG3oIvD4WbT4NFAZTBAJZMdsNr5p87g3AAHLkA4PBv3EiGvsN/GHzkDgA8WC9ke8VBPnOhFNOMDuSPJhGnZvKPewqbzd6gVqtjlEplM0mSdF/bw3D7QFEUUV9fP7impmYDgA75kf33acsnDEFOoFThApzOG9I3pWkaZMZ/4SYAdgyjVdlfuE8bj2IuG25FOdwtLbCcPNXla3/KrsFc1zY054lhCvdHbjAQPyi+12xl6GWkwWDzPEoF9gbv5CHXFXoUDyRqf6+sx9CHiJUIFbFh4QJlvx/1ypLGU5kAgLIAEqGSUK+sOUAZqlQqDYxzzNBdSJKklUplKzynDx3fv8n23DwIAr6kArUXRU2d5T2vTs+vM2FYdSYKA4Bo7RgvGcjQ1zwYPhEAcDbMCYLLhvHXX7t87bHj/0Vc7Vk4jSwcmCBDhE8kgsRB17+Q4dZEqACL7/n72lBR65UlbeUlAIAALZN/3B8YKtKg0hdozrtxqTc3RcO/IAM0aJBaNVhkz083GUAyzjFDT7n4s3NVX7j/OsgA1MIQ1Ph4cgkdpT13kI+cr0BwUyOyQwkMi5jiLfMY+phIeSR4hAT/lUggDBPBuG8faPr6n7PVrVaMrdyCBr0ULLUK2wNKmejx7Q5BgC306PI2VXnHQebWVsDKBVQhjMRbfyAyeCQafQBB9Y3/fBTWmxDVUoQ6HwKaQUyBHgPDrUi/dpBDlUPQJAFcbBKOG4ggl/52DCwa0A8iEKUe7UULGfoSgiAQoxiODJ4YYkUFXNXVsJ3Pvu51v2WcxGTDCdjqOKh/eAwchBsTgyfeBIsZehOBRAQAaPGSgyxtbkSTFOAzNQv9Ak7gcFAyN2QGO9wm8w2tlVXeApWhCcUqAjp/5m9Kf+D48eOilJSU9uOizMxMwdSpU6OTkpJ08+bNC3O73QCATz/9VDllypSYhISEmG+++cYHAEwmE5mamhqenJysmzlzZlRFRUUHzT+LxULMmTMnfPr06bonnngioq6ujg0AJ06cEE6fPl2XlJSkmzNnjtZqtRJutxuLFi0KmTZtWnRKSoouPz+fBwD5+fm8mTNnRiUnJ+tmzZoV2dDQ0H50kZ+fz5s8efLgttdFRUXc5ORk3fTp03UvvPCCxmw2d+ovvvrqq4M+++wz5ZXjBw8elDz33HPaS8def/31oC1btnTaY37NmjXqjIwModVqJTZu3Nhp1fuVe+7Zs0c6derU6ISEhOjFixeHUBTV6T3rKv22SA8AAkOGwb8hDc1yPnx62E3P5abAOXcaFEHDFSZltCr7GfGhY/F+4xG4giwASwbD3j0QDLtqOlI7osz1aMkXguDxsG8YAVmLDMP8mCjh7Y7URw7AAENt1Q2vRdM0fAwWGKU0IA+5ceMY+h7/IRBKnABYsBQVQDK855HfC8W1GGJ0oVRFItE3xns2DnA2Hy3x/e50hVelhKaPCm5IvSvsmoUJ7733nv+ePXt8+Xw+1Tb24YcfBs6dO7f6oYcean3++ec16enpsnHjxpnT0tJUu3fvvmCz2YgHH3xwaHJycvOmTZv8YmJiLEuWLKnesmWL77p169QrV668rK3n559/roqIiLAuXbq0avv27T7vvfdewFtvvVW+bNmysLVr1xZGRkbaN27c6FdaWsrNyckROBwOcteuXbnHjh0Tvfnmm8GbN28ufO2110IXLFhQGRsba/7uu+/keXl5fD8/P/PWrVsV27Zt829tbW13cN56663gRx55pH7WrFlNGzdu9Fu3bp3/K6+8Un2pTXV1dewFCxZoKioqeBqNxuaN+71o0aIaACguLubu2LHD75lnnmm43p4Gg4F89913B23btk2vVCpd7733nn9DQwN7+/btvlfesyvv67Xo1xFkvn8UwpxO1MhoOMp61kJWX2vEyNoLKFETCFNqr38Bw23FnRerx3+WB0IUyoVxz95rpllUVFUhvuVnGMpEkCYk4DfDKYwLGMfkEPYD/CS+sHIBW2PPC3rbqDPa4GtwwSGhAPkgL1jH0Of46eAndgEASs4du6Glms6eAwGgTAVE+kR6wTiGviQ0NNT+0UcfFV46ptPpLC0tLayLkUwWh8OhlUqlKz09PZvL5dI1NTUcDodDkSSJF198se7ll1+uBoCqqiquRCJxX7lHZmamOD4+vhUA7r//fsPJkyeleXl5PKlU6lq/fr1/cnKyrqWlhRUdHW0/efKkeMKECa0AEBsba87LyxNZLBaiubmZ8+uvv8pTUlJ0mZmZ4jFjxpgBQCaTubdv366/dL/S0lLB5MmTWwFg7NixpjNnzoivtMlkMpEvvfRS1QMPPNDU3Xt28OBByeOPPx6ZmpoaPnny5MGrV69WA8BLL70UtnfvXumHH34YUFZWJli1alXA9fY8duyYWKvVWlasWBE8ffp0nZ+fn0ulUrmuds+6Y2O/jiDDNxxhThcq5S4Mzynvkb5pZmEdRrTU4Mc/EIgK+EMvGcrQVwxWDAab4GInxw9TlFmozrDBdu4cBMOHX3V+5a8fg1/EBlw0zNMmou7CTsQGxN5kqxl6Az+hEgYhgJb6G16rvLQWIgdASUmAK7px4xj6Hg4fgQo5KMKFivOn0dMzIzdFQ13k6aBnC5JBxGF+PrxF6l1hjdeL9vYG06dPbykuLuZeOqbRaOxvv/12yIYNGwJEIpF74sSJRgDgcDj45JNPlBs2bAhKSUlpz+dis9mYMWNGVHFxsWD9+vV5V+5hNptZMpnMDQASicRtNptZDQ0N7JycHPHrr79eFhERYU9NTY3Yv3+/xWw2s6RSabuTTZIkXVdXxykrK+NPmDDB8Nprr1UuWLAgdOvWrb6pqamNU6ZM6dAhKSIiwrJ79275k08+2bh37165zWbrEFDVarUOrVbrOHDgQLd0Mdv8sNraWu6ePXuy7XY7GRcXN3zx4sXt0Yl58+ZVFxYWCpYsWXJZ1PpqezY1NbHPnDkj3blzZ7ZYLKZmzJgRPWbMGNPV7ll37OzXEWTwJPCjeKhU0KAtFrgbGq5/zRWU/X4WLIpGQSCBqICxvWAkQ1/CYXEwWDEEeXwawmAXwCJg2L376pMdFkQVbkFdvhzCceNwXOT5vY0NZBzk/oCvOAAGAcA1Nt/wWlW5nmAM20dww2sx3DoE+UaiXgY4iop7vEZJoxnRLUWwcWnIQpnocX9lzZo1gzZv3py7f//+7ClTpjQuW7as/Shp7ty59UeOHMk6ffq05MCBA5K28a+//jpvy5Yt+vnz54fn5+fzUlJSdCkpKbpNmzb5iUQit9FoJAHAaDSyRCKR29fX1x0QEGAbPHiwjcvl0nfddVdrVlaWUCQSuU0mU7szSNM0oVKpnAKBgJo0aZKRJElMmjSp9fz5850+nS1btqzi4MGD8pSUFB1BELRMJnN9++23Pm02nTx5Uni9e8Dn8ymn03lZVNJisbDaUlG0Wq2Vw+FALBZTXC63x0okPj4+Lp1OZw4ICHBJJBJqxIgRxrNnzwqvds+6s27/dpABKDh+7VJvjvLup1nYz50DAI+DrIjypmkMtwh3BowEza/FYcldkAQ70LJjJyhbx3Sq5sOfgixzgLBQUKQ+haNVRxEmDUOgmNHG7g/4SoJhEBIQWkw3vFZjsUcKTOzPdFbsT4gDYmDwoSGs6X6wpQ19jRFBrXUoUxLQqq5d78Bw+yIWi11tUVx/f3+n0Whk5ebm8mbPnh1OURQ4HA7N5XIpgiDoNWvWqLdu3aq4eJ2bJElERkba09LS9Glpafqnn366YcSIEab9+/fLAeCnn36S3nHHHUatVmu3Wq2stiK8zMxMSVRUlG306NGmQ4cOyQDg2LFjIo1GYxUKhXRQUJDt0KFDYgA4ceKEJCIiwtqZ/fv375cuXry4Ii0tTc9isRAbG2tITk5ubrPpzjvvtFzvHsTExFgLCgqEVVVVHACwWq1EVlaWeMSIEde9liRJ0DTdpSP/kSNHWoqLiwX19fVsp9OJ8+fPi6Kjo61Xu2ddWa+N/p1iAcBfEopam+f0wFFWBuGorncsajTZEVCRC6uQBiEXwFfQaeElw23McOVwgKDwjnMY0rTHYDzAgSF9D+TTk/43yWYA99haFGX7ghMaAl7cXTi1/a+YFj6t7wxn8CpicSDMAkBcY4fTTYHD6nn8wFZTAgDwDWYK9PoTbGUUaKkbqnIbKLcbZA+6s+ZWteJ+gxWlQwhoZUxdS39lxYoVpfPmzQtnsVg0h8OhVq5cWarRaBxRUVGWxMTEaIIgEBsb2xofH2+Kjo62LVy4ULNjxw4lRVF44403OhxRzJkzp/4vf/lLWFJSko7D4dAffPBBEY/Ho1esWFGycOFCLU3TGDZsmOnhhx9udbvdOHLkiDQxMTGapmmsWrWqBADeeuutkhUrVoS88847REBAgH358uWdPulFRETYFi1apOVwOLRGo7H+85//7LbSgUwmoxYuXFj+7LPPRvB4PMrlcpEzZ86si4yMtFdWVnKvda1KpXI6nU5i+fLlQStWrKi81lx/f3/Xiy++WJGamhoJAPfee2/zsGHDbFqt1nHlPeuO/f3eQQ5TRaPecRY0ATgrrnmPO3CmvAWDW0pQqgaipEyno/7KcD9PvnEBzw1z9FBwM6vQ/J8tkCUl/i9nff+bcBZawDbwEPj6S7jQlAOry4qxTNpNv4EQK+EQ0BBbnag12BDsc90TxE7hNFTARQJ+gUyTkH6FXyQEYie4LjZqy3MRENb9ltNlReUgHUClgkCcnHGQ+wsajcbx/fff57a9jouLM8XFxeVeOe9iTu1lebVqtdq1bdu2/GutLxKJqA0bNnRw8O655x7jPffcc1n3GhaLhTVr1nRwaEeMGGHdsWOH/srxNjIyMrLavh43bpx59+7dXeqKs3Tp0k6lf5KSklqSkpJarhyPj483xsfHt0d02/Zeu3ZtSdvY3r17L3R1z5kzZzbPnDnzsvy4zu5ZV+n3KRZBAUPAIWkYxVw4K7vnIOcWVENpbMW5IBKRyqsXbTHc/iiFSgSKAiGRVeED7v9BEWmE7UIuDD9ezEUu+g3uI5+h+Kw/TMFhkDzwADKqM0CAwJ3+d/at8QzeQ+gHSkCBQwFNdTeWhywwNKBZDCj9or1kHMMtgW8kFEInAKAs52SPluDle66r9AUTQWZguIXxWgRZp9PJAPwHgBQAF8BCvV5/TKfTjQPwAQAXgJ/1ev0Kb+3ZFViKMAS6XGiQcqGuqOjWtY2ZnoepvEAC05VMrlh/ZrhyOA5bT+KrHDleS3kc/MLvULviNYg42WD9/i5KTgWCa3ZC9c5rIEgSJ2pOQKfQQc6X97XpDN5C6AuSRwEg0VJdD+h63jpcYjKhRQyIFUwRVr9C5Ad/EQsmAOU5ZzH2we5dbra7EFTjCYpZAiSQ8bpV/M/AwHAT8WYEeSGAfXq9fiKApwGsuzj+CYDHAEwAMFan04304p7XxycUgS436mUUHJXdc5DdeR6llSI1AY1M0xvWMdwiDPMbBjPVAIpsRZrfXAT838OgLHYU/fVzFP+igqOEwtF7ZiJo0gTY3XacqTuDP6gZ2b9+BZsLDteTUtNa33OlKKvDDYnZDosIIGQ9d7IZbkEIAtKAUFAEYC7p/sltXq0RWmM1nCwa8hCm6JuB4VbGmw7yewA+vfg1G4BNp9NJAfD0en2hXq+nAfwE4F4v7nl9hL7wdwNVcjdcNbWgnc4uXdZoskNVWwKHkIJRSEAjZRzk/swI1QgAQFhQPT4/Wgb2U+8jbNPH4A0ZiVZBKD4ckYLIeXMBAGfqzsBBOTBGPaYvTWboBQRCT92Iqb7buvftVLVaIbW4YRfSAE9y/QsYbiu46mgYJAC7pvstyQvqTPA3NaFGQUDDnC4wMNzS9CjFQqfTzQGw4IrhZ/R6/e86nU4NT6rFfHjSLQyXzDECuLlJVwQBP1KMXB8nQFFwVleDG3L9yvLsKgOiDGVo9KWhYIuYo/R+TowiBnwWH4M1jdh90ILvMisxY8w9UG66G7PW/AZfMRd3R6kAABnVGWARLCb/uB8iEosAGGBs6nk3veraVvjaabgkLKCbjYkYbn146ijYpb9B0mi4/uQrKKw3I8ZoxblgAmGyMO8bx8DA4DV65CDr9frPAXx+5bhOpxsG4CsAL+v1+t8uRpAvDaFIAHSoZuxt1DwlDsk8BY/OioquOcjlTYgzNuH3CAIaRsGi38NhcTBMOQyNTj2GBd2Hd3/OQ4xaiq9PlqO61YYPZo0ESXqcnYzqDAzzGwYxt0PnTYbbHLFYAsAA2w1002soq4QvAEiuqWLEcJtCKjQgxG6oytxotjXDh+/T5WvLqhpAmmlU+hKYyPxdYWC4pfFaioVOpxsM4BsAj+n1+j0AoNfrDQAcOp0uXKfTEQDuB3DYW3t2lUHyENTJPc6No4tKFlXn9GBRFM6rWdAoYnrTPIZbhJGqkchtysWyhHC4KBoJH/0XXxwvxWNjQzBGowAAGBwGnG88z8i79VMkcs//Z7eh5ykWreWeh3GuD/MA1S9RaCESuSCzAEXV2d26VFDwOwiaQJWCSdvrbxw/flyUkpLSruuYmZkpmDp1anRSUpJu3rx5YW63p4nbp59+qpwyZUpMQkJCzDfffOMDACaTiUxNTQ1PTk7WzZw5M6qiooLT2T47d+6Uz507t/2HZ9++fZJp06ZFJycn6+bMmaM1m80kAKxatSogISEhJjExMTojI0MIALW1tey2fRITE6MLCgp4bevU1dWxJ02aNNRqtRIA0NjYyHriiScikpKSdKmpqeG1tbWdBlQPHjwoHj9+fAepr+LiYu7UqVMvk/L57LPPlCtXruy0u9aWLVt8f/jhBxkAfPLJJ8rO5n300Ueq119/vb3IY/v27YqEhIToxMTE6EWLFoW43W643W4sWrQoZNq0adEpKSm6toYqXcWbOsgrAfABfKDT6QCgVa/XTwMwF8BWACx4VCwyvLhnl9CootFoyICbJLqshWzXe6QCc9QkHvUJ703zGG4RRqlGYT29Hm5eKdL/MgH/OliIe6JViIv83+/oyZqToGgK4wLG9aGlDL2FTKaCiwRg6vlBl7G6BAAg8GMaC/VLFBoohQ5YIERFbiZGayZ06TKnm4K62qNgUevHQoA4oDetHJicWO+LM196t33liEcbMOa5a1btvvfee/579uzxbWuhDAAffvhh4Ny5c6sfeuih1ueff16Tnp4uGzdunDktLU21e/fuCzabjXjwwQeHJicnN2/atMkvJibGsmTJkuotW7b4rlu3Tr1y5coOrX+XLl06KCMjQ3ppB7y33nordNu2bblqtdq1YsWKoM2bN/uNHTvWdPr0acmuXbtyysvLuX/+85/Df/zxx5w333wzeMqUKU2PPPJI84EDByR6vZ4fERFh/+mnn6Tvv/9+cHNzc7tj/v777weMGDHC9PLLL9f8+uuvkpUrVwa9//77pVfaVFZWxtm4caO/y+XySj7ZU089uQ1JPAAAIABJREFU1X6vN27cGDh37tzLjvMsFguxaNGisJycHFF8fHxz29jHH38cmJ6efkEkElF/+tOfNOnp6TKXy0U4HA5y165duceOHRO9+eabwZs3by7sqi1ec5AvOsNXGz8OoE+9CV9fHViFQKuEB58uSL3ZnG6IKktAk0CVLxgFiwHCHco7QBIkMmszMS5gHJYndGwCcKzqGARsAe5Q3tEHFjL0NjJxACr5AM/acweZrvM0wZL4My3I+yUCH8gkPFgA1OVdALoo9VbWZIHW5Pn7ww4JApvs9326BgyhoaH2jz76qPDll19udxZ0Op2lpaWFRVEULBYLi8Ph0Eql0pWenp7N4XBQUlLC5XA4FEmSePHFF+tcLhcAoKqqiiuRSNxX22fkyJGmyZMnt3z55ZftUZv//Oc/erVa7QIAt9tN8Hg8KiMjQzx27FgDSZIIDQ11uN1uoq6ujn3u3DlxVFSUdebMmVEBAQH2N998sxzwtHX+4osv9ElJSYPb1i0uLuYvXLiwEgDuuusu0z/+8Y8OualWq5V49dVXQ1etWlWanJw8+Mr3r0VxcTF3/vz5WpVK5aisrOQNHjzY/M4775StXLky0M/Pz9nS0sIymUysxYsXh6xevbq96YnNZiOTkpIaY2NjDUVFRXwA4PF49Pbt23NFIhF1yX2gjx8/LpkwYUIrAMTGxpoXLlwo6o6NA+I3lFRo4O9yo0HKRWBFh4eyDhTUmRDeWgG73A03i40waVjvG8nQ54i5YgxWDMbRqqN4fsTzHd6naRoHKw5iXMA4cFidnoAx3MZIxWrk8QGRzQSKotvzzrsDv7kSLhKQq8O8byDDLQEREAygEdayrnffLao3Q21ugkkA+PtH9J5xA5kxzzVeL9rbG0yfPr2luLj4sqIDjUZjf/vtt0M2bNgQIBKJ3BMnTjQCAIfDwSeffKLcsGFDUEpKSrsUCpvNxowZM6KKi4sF69evz7vaPjNmzGg+ePDgZdI4gYGBTgDYsWOH/NSpU5KlS5dWrl27Vi2Xy11tc4RCobu1tZVVV1fHlUqlru3bt+etWrUq4IMPPlC/9tprVffdd1+HitOoqCjrzz//LB81apT1xx9/lNvt9g4puUuXLg2ZM2dObXBwcNfkwS5CEAQNAJWVlfwvvvgiTygUUvHx8cOqq6vbfdLFixfXpKWl+V/qHAOAQqFwT5482bBly5b2IzoWi4W2h4R//etfKqvVyrr33nsN6enpPlKptP1hgyRJ2ul0gsPp2t/vft9JDwAgD0WAy4U6GQVn2fUd5NwaI7SGKjT50mATLKhF6ptgJMOtQFxwHM42nEWLrWMEMacpBzXmGkwaNKkPLGO4GUjEapj5gMhhhcHWrc/8dsTGRjSLAV85c/LUX+EGR8DGAzi1XS/mLKw3QWYyoUoBJugyAFizZs2gzZs35+7fvz97ypQpjcuWLRvU9t7cuXPrjxw5knX69GnJgQMH2h3er7/+Om/Lli36+fPnh+fn5/NSUlJ0KSkpuk2bNl0zbWTt2rWqzZs3qzdt2pQvEAhosVjsbstFBgCLxcKSy+VuiUTifvjhh1sAYPLkyS05OTnCztacP39+dWVlJS85OVlXUVHBUyqVzsOHD4vbbPryyy8VZ8+elaxbty4wJSVFZzKZWM8999xlKmUCgYByOp2X+ZkWi4Xk8XgUAAQEBNikUinFZrOhUCicNputxz6p2+3G3//+9+Djx49L169fX0iSJEQikdtkMrHa5tA0TXTVOQYGioPMl0JJkahRuOFubobbZLrm9MKSGvhYTShXAsFCf+YobAARFxQHiqZwpOpIh/cOlB8ASZCYOGhiH1jGcDMgBQrYeYDI4UCDydHt690UDYnF5HGQFUyUsL/CV0XALqEgazLDRbmufwGAwlojWGYXqn0IhDIKFv0esVjsaote+vv7O41GIys3N5c3e/bscIqiwOFwaC6XSxEEQa9Zs0a9detWxcXr3CRJIjIy0p6WlqZPS0vTP/300w2d7bN69Wp1ZmamZNu2bXqlUukCgDFjxpiOHTsmc7vdKC0t5VIUBaVS6Ro6dKjxp59+kgHAsWPHJFqt1tbZuocPH5bMmjWr/ttvv9WHhYXZhg8fboqLizO12fToo4827d+//3zba7FY7F6/fv1l3XNUKpXLarWS2dnZfABwuVw4fvy4dMSIERYAIK4jg0nTdJfuNQC8/PLLoXa7nfz3v/9d0JZqMXr0aNOhQ4favl+RRqOxXnuVyxkwnp+KJYZe4flZcJaVgTW483SZ5mxPgZ5exUKonCnQG0gM8RsCBV+Bw5WH8bD24cve21+2HyOUI6DgK/rIOoZeR+ADJ4+GqNGFBpMdEaruKVE0mR0Q2+woVwAyxkHutxC+WpBiN1QtJKpMVQiRXl86tKWqBLCQqFYQGM04yP2eFStWlM6bNy+cxWLRHA6HWrlyZalGo3FERUVZEhMTowmCQGxsbGt8fLwpOjratnDhQs2OHTuUFEXhjTfeKO7KHjU1NexNmzYFhoeHW5566qkoAJg8eXLTc889Vz9y5EhTYmJiNE3TxN/+9rcyAPj73/9esWTJktBvvvlGJRKJ3GvXru20HWRUVJRt8eLFmtWrV8PPz8+xZs2aku7eA5Ik8cYbb5QsXbo0jCRJuFwu4u67726ZNGmS8cqUlKsRGhpqfeGFFzQff/zxNe/HqVOnhHv27PEbMmSIaebMmToAeOKJJ2qnTZvWcuTIEenF+4BVq1Z163sYMA5ygFCJgwpPgYSjrBz8azjI7qICAMAZNRuTGDH3AQVJkBgfOB6HKg/B7raDx/KowpytP4u85jwsGbOkjy1k6FUEcrh5NAQON+p6EEGuN9ohtLlgFwAk00Wv/6LQQiBygl/OQUlLUZccZEXZaQBAjQ+TYtEf0Wg0ju+//z637XVcXJwpLi4u98p5S5YsqQZQfemYWq12bdu2Lb8r+8THxxvj4+ONbddlZ2efvtq8pUuXVgGounQsLCzM8dVXX3W6z+HDh8+1fR0ZGWnfuXNnB/s7IyMjI+tq453dhyvvV9vXF+0GAHzzzTdXzcUGLle7GD16tCU3N/fU1eatWbOm64UCVzAwUiwABEuDUXuxGZ6jvPP71Wx2QFFXAXCASjkQKmGe9Aca0yKmodXeih8Kf2gf25y9GRKOBIkRiX1oGUOvw5eD4tIQ2mk0Grt1GgcAqDfaILTRcAoHzEfrwEShhULoBMcNVJZcXwu5xeJASJMnWNfsx4efwLtKZAwMDN5nwHyKq33CYeMRMAv5cF6j8ji3xgiNoRouuQs0QWCQdFCncxn6J2PUYxCjiMHm7M2gaAplhjL8WvYrUnQpEHG6pRLDcLvB4YPgASQNtDR0X+qtsbYRLAqgRQPmcG5gIlJCJPbU/tTkX7ju9KIGMzRmT9CQFxp63dxLBgaGvmfAOMgBfp6UigYJB45rKFnk1higMVbDqPDofTPFFAMPgiAwe+hslBhK8Pcjf8effvkTBGwBHot+rK9NY7gJsPke59bS2H0H2VBVBwAgxXyv2sRwi0EQoNUedSNLyfXTRYvrzVCZmmEUAv7+2uvOZ2Bg6HsGjIMs8dNBSFFokAL2a0SQS/LLIbVbUOMLcAg21EJG4m0gcl/ofXhq8FNIL0qHwWHA+vvWM3J/AwSO0CMDZGnqvpyquc5TbM6WMScN/R1uSDhoAKzauuvOLW4wQ2SyoMqHCbowMNwuDJhzQEIeArXLjUa5G66CGlAOB0huxyJKc44nZ7zAn0CwOAgsktVhDkP/h0WysPgPi/Fo9KNgEUxb2IEEV8gH4IC99fqOz5U46i4eo/vIvWwVw62GICgKdlEm5E0WmJ3ma6ZfldU1ASYK1RFsxkFmYLhNGDARZHCFUNMkanxdIGj6qnnIFEWDU+Qp8MwK4iKUaTE94AmWBDPO8QBDIPY4Oi5jp9KjnUI2lXjW8FVeeyLDbQ/pGw5C4oZ/M42S1pJrznVV5gBWFqoVjAYyA8PtwsBxkAEEskUo9PfkFtvzOyqdlDVZMKi5EqSYRJ6Y3SXpHgYGhv6FWObj+cLU3O1reQZPBFmkCvKmSQy3IgotBGIX1C1AsaHzPGSKoqGsPAsAqPZhlJH6K8ePHxelpKTo2l5nZmYKpk6dGp2UlKSbN29emNvt6Xj86aefKqdMmRKTkJAQ88033/gAgMlkIlNTU8OTk5N1M2fOjKqoqOjQ7q2lpYX11FNPRSQnJ+umTZsWffToURHgaYCRkJAQnZiYGL1q1aoAwNNVbtGiRSHTpk2LTklJ0eXn5/MAID8/nzdz5syo5ORk3axZsyIbGhraj8jz8/N5kydPbte/LSoq4iYnJ+umT5+ue+GFFzSXduZrIzs7m5+UlKRLTEyMfumll8Kczsu7jx48eFByZXe9119/PejSNtFXsmbNGnVGRobQarUSGzdu7FTu5dVXXx302WeftUci1q5dq0pISIhOSEhovw8ulwtLly4dlJiYGP3www/H/Pjjj7LO1rsaAybFAgCCBCrsUpWCIgiPg/zgg5e9n1tjgLa1CqSPAzaCjxAJ4yAzMAw0JHLPZzfb2gKaprulOMA3N8HCA+Q+jPpNv0ehhVzoBGUWILMqD+ik9q6q1YoIQykAwOQvhpzPpN/0Fl/mfOn7feH3XtXQmxo+teHRmEevWZDw3nvv+e/Zs8eXz+dTbWMffvhh4Ny5c6sfeuih1ueff16Tnp4uGzdunDktLU21e/fuCzabjXjwwQeHJicnN2/atMkvJibGsmTJkuotW7b4rlu3Tr1y5crL1AQ+/vhj/zFjxhhefPHFutzcXN7ChQu16enpOStWrAj96KOPCrVarf2pp56KOH36tKC0tJTncDjIXbt25R47dkz05ptvBm/evLnwtddeC12wYEFlbGys+bvvvpPn5eXx/fz8zFu3blVs27bNv7W1td0xf+utt4IfeeSR+lmzZjVt3LjRb926df6vvPLKZfrNq1evDpo/f37lxIkTTS+99FLY7t275YmJid2vbr6ERYsW1QBAcXExd8eOHX7PPPPMZUd5dXV17AULFmgqKip4Go3GBgCFhYXcvXv3+u7atSuHJElMnz49OisrqyUrK0vocrmInTt35lZUVHB27tzp0x1bBlQEOUAaDCebQL3M56oR5AvF9RhkrINF4WkQwEi8MTAMPKQ+KlAEIHYYYHG4u3yd3eWGyGqEQQDIpcG9aCHDLYEkAFyp5+GpNq9zLeT8OhNCzJ58dl4Yk7bXHwkNDbV/9NFHhZeO6XQ6S0tLC4uiKFgsFhaHw6GVSqUrPT09m8vl0jU1NRwOh0ORJIkXX3yx7uWXX64GgKqqKq5EIunwwfP888/Xzp49ux4AXC4XweVy6dbWVtLpdBIRERF2kiQRGxtrOHTokPTkyZPiCRMmtAJAbGysOS8vT2SxWIjm5mbOr7/+Kk9JSdFlZmaKx4wZYwYAmUzm3r59u/7S/UpLSwWTJ09uBYCxY8eazpw506Gt6IYNGwonTpxostvtRGNjI6ettXZXOHjwoOTxxx+PTE1NDZ88efLg1atXqwHgpZdeCtu7d6/0ww8/DCgrKxO0RYPbMJlM5EsvvVT1wAMPNLWNDRo0yLlp06Z8NpsNkiThdrsJPp9PHTlyRKpSqRxPPPFExJIlS0IfeOCB1q7aBwywCHKgTxTQcBQVUj6C9R0btFSfyQYJGrV+nv7fTK4YA8PAQy5Wo44HSJ0mNJkdEPG69jHZYHJA7LDCIARi5MxnR7+HJEGoVQCssJV2nmJRUGvCOFMrWsRAqL+u03kMN86jMY82Xi/a2xtMnz695crWyRqNxv7222+HbNiwIUAkErknTpxoBAAOh4NPPvlEuWHDhqCUlJTatvlsNhszZsyIKi4uFqxfv76Dg+Lj4+MGgOrqavbixYu1f/3rX8sMBgNLKBS2O6VisdhdVlbGM5vNrEudVZIk6bq6Ok5ZWRl/woQJhtdee61ywYIFoVu3bvVNTU1tnDJlSgfHMSIiwrJ79275k08+2bh37165zWbrEFBls9koKSnhPv3001Eikcg9fPhwS1fuV9upXG1tLXfPnj3ZdrudjIuLG7548eKatjnz5s2rLiwsFFzsPNiOVqt1aLVax4EDB9rTJbhcLq1UKl0URWH58uXBkZGRFp1OZ29tbWWXlZXxt2zZUnDo0CHxX//617Bvv/32sgeBazGwIsiq4QCARgUBZ3k5KOv/OmVRFA2n3nPfivwJsBmJNwaGAYlYqIKZB4hdVjRbut5uutFkh8jmhEFIQCZhIsgDAa42AgDAr20ARVNXnZNXYwDXZEelAtDKGA3kgcKaNWsGbd68OXf//v3ZU6ZMaVy2bFn7kfTcuXPrjxw5knX69GnJgQMH2nvSf/3113lbtmzRz58/Pzw/P5+XkpKiS0lJ0W3atMkPAM6ePSt46qmndPPmzauIj483SaVSt9Vqbc8jNplMLKlU6haJRG6TydQ+TtM0oVKpnAKBgJo0aZKRJElMmjSp9fz5851Kryxbtqzi4MGD8pSUFB1BELRMJnN9++23Pm02nTx5Ugh42lcfPHjwfEpKSv3rr79+2bE7n8+nnE7nZTlqFouF1ZaKotVqrRwOB2KxmOJyuXTP7zZgtVqJi7nSrLfffrsUAKRSqXvSpEktJEkiPj7eVFFR0S2B+gHlICsDRoBN02hSOgCahr2wqP29wnoTtLWFgICNPKUAwZJgRuKNgWEAwhL6wsYDxA47mszdcZAdENhcMAkBAUfYixYy3CoIQobCKaDg3+RClanqqnMaasrhNpGoVhAIl4ffZAsZ+gqxWOxqi+L6+/s7jUYjKzc3lzd79uxwiqLA4XBoLpdLEQRBr1mzRr1161bFxevcJEkiMjLSnpaWpk9LS9M//fTTDdnZ2fz58+drV69eXfTggw8aAEAmk1FsNpsuKCjgURSFY8eOSceOHWsaPXq06dChQzLAU8Sn0WisQqGQDgoKsh06dEgMACdOnJBERERYO7N///790sWLF1ekpaXpWSwWYmNjDcnJyc1tNt15552W1NTUiLy8PB4AiEQi95X1GjExMdaCggJhVVUVB/A4sVlZWeIRI0ZcN9JMkiRomu5SAQhFUZg9e3ZEVFSU9d133y1lsz2nfqNGjTL+9ttvMgA4c+aMQKVSdf0DHQMsxYIlUkLtptHg77lH9rw8CIYOAQBklrdgeEMhhEEclAoYBQsGhgGLQA4HDxA6nd2KIDcYbVDaaDiEAyruMKAhVNFgSdzwbyZR0FKA4CtODmiahqg6C4SNRLUPgRQZ4yAPFFasWFE6b968cBaLRXM4HGrlypWlGo3GERUVZUlMTIwmCAKxsbGt8fHxpujoaNvChQs1O3bsUFIUhTfeeKNDzs7bb78d5HQ6yTfffDMEAEQikWvz5s2Fy5cvL124cKGGoihi7NixhnHjxpndbjeOHDkiTUxMjKZpGqtWrSoBgLfeeqtkxYoVIe+88w4REBBgX758eadalhEREbZFixZpORwOrdForP/85z87aOM+99xz1a+88oqGw+FQPB6PaovctiGTyaiFCxeWP/vssxE8Ho9yuVzkzJkz6yIjI+2VlZUdG1FcgkqlcjqdTmL58uVBK1asqLzW3O+//15+7tw5idPpJI8ePSoDgIULF1Y8/fTTDa+88kro1KlTo2maxuuvv156rXWuZEA5yAAQSPJQq7TBxuHBmpUF+fQkAEBeVh6GWZsh9nWhnBBiDKNgwcAwMBH4wMWlIbW4UGZ2Xn/+RVoamsGiAEo04D5WBy5+UZCInFDXc3ChOR/xg+Ive7vGYMPgpgsAgAZ/HtONsx+j0Wgc33//fW7b67i4OFNcXFzulfMu5tRellerVqtd27Zt66gccAmbN28uvNp4bGys+dJ9AYDFYmHNmjUdHNoRI0ZYd+zY0WkObkZGRlbb1+PGjTPv3r0751o2jR8/3jx+/PgO3+OlJCUltSQlJXVQtoiPjzfGx8cbr9x77dq1JW1je/fuvdDZukuXLm0/sklMTGxJTEw8fbV5H374YcnVxrvCgAt1BHDlaOS4cNovEobfDoGmPWkv1t9/BwDYfFthBcVEkBkYBip8Odw8GkI71a0Isrm2HgBAi64ZGGHoT/hFQih2QWEC8qs6Klnk15oQafQEv0htWLckAxkYGPqWAecgB4nUaCSB0/7hoGqq4SgoQH6tEaqiC3ALBSi7KDvNFFMwMAxQ+DLQXBp8B9WtHGRbg0d1iC1h8o8HDFwRoJQCAJpyOzrIebVGBBgbYecAvmHRN9s6BgaGG8DrDrJOp4vW6XStOp2Of/H1OJ1Ol6HT6Y7odLrl3t6vuwTKtaAJAg0hHj1s02+/If1EEcbUXIBYF4AinmeccZAZGAYoJAvgkhA4gBZTpzUsHaAaPYpNbJnkOjMZ+hP8CE9esbC8Gg735Q9UWWVN4BlsKPMDtD5M/jEDw+2EVx1knU4nBbAGgP2S4U8APAZgAoCxOp1upDf37C6hgWMAAMN1LSiSBaJx9x44t22B3GGGapwcxQIJJBwJ/ARebcbDwMBwG0EKPAo25qau68pzmz0pcXwfRa/YxHBrIooZDopFY1AdheLWy2ur6sr0cBhYqFASGOI3pI8sZGBg6Alec5B1Oh0BYD2AVwFYLo5JAfD0en2hXq+nAfwE4F5v7dkTNIMmAAD8RFXYrbkL7pwLeDgzHa0jxkLILkCRSAaNXMPkijEwDGDYfE+hna2lucvXcE0ejXuRX8B1ZjL0Jwj/GLDkLoTUA3nN/+vv0GCyw7/hPEgriQo/AkN8GQeZgeF2okfl1jqdbg6ABVcMlwL4Sq/XZ+l07d2CpAAMl8wxotOO9TcHmUABH5pAta0SwuRl+H8iOZ6vPorRf5sPpMWjSBqJOCa9goFhQMMVCgA44DDUd2k+TdMQWBrhJgCxb1DvGsdwaxE4EhKpA6G1HPxadx4J4QkAgDNlLbjT5BEMcIb4Q8JlUm8YGG4nehRB1uv1n+v1+qGX/gOgAzBHp9MdBKAG8DM8zvGlnwoSAB3kPm42YRwZih2t+EfiEKxfNw93p38LkciIVhJopGxM/jEDwwCHK75YaGdubFe6uRYGmwtihxEmASCXBPaydQy3FKoY8HwJyCzAOf3x9uEz5S0YbCgBAMgH39FHxjHcLI4fPy5KSUlpjw5mZmYKpk6dGp2UlKSbN29emNvt6fz86aefKqdMmRKTkJAQ88033/gAgMlkIlNTU8OTk5N1M2fOjKqoqOB0ts/OnTvlc+fO1bS93rdvn2TatGnRycnJujlz5mj/P3v3HdhU1T5w/JukSZs06d6UtszLXiJDBQEFZE9REVmKgriFV3kVFMcPXxUBZckGxQWICshQBGQJyJ4po0ChdO+mI+v3R0GLAqImDYXn81e4uT3Pc8vh8uTk3HMKCgrUAO+8805kt27davfs2bPWjh07DAApKSlel+L07Nmz1okTJ7wvtZOamurVtm3beoWFhSqAjIwMzYABA6r36tVLGTRoULWUlJQ/DagmJSVp+/XrV7N3797KoEGDquXm5l5WUyYkJOi6d+9+2dOps2fPDp0wYcJVb5KLFi0KXrFihT/AzJkzQ6923tSpU8Nef/31P41GPP/887GXjttsNp555pm4nj171urVq5dy8ODBv7WTnssW7DSbzdUvvVYU5TTQwWw2FymKUqIoSjXgFNARGO+qmP9UFVM0G4sz0OWdRRd0sRg+v5sErTygJ4QAg8kEXMDHlktesQ0/n6v+fwWUbjNtLCkkTw9RfjKCfEtRa9BWrQK/puB1+hR5JXmYdCYOnM2gW1YO6UYd1Wo083SWt4TMTxcH53z7rUsfIPLv0SM9aMDDGdc6Z9KkSeGrV68OvrSFMsCHH34YNXz48AudO3fOGTFiRJXvv//ev0WLFgVLly4NW7Vq1ZGioiJVp06d6vXp0ydrwYIFIbVr17a8/PLLFxYtWhQ8bdq0iAkTJiT+Mc6YMWMq79ixw6/sDnhvv/127GeffXYsIiLCNn78+EoLFy4Mad68ef6ePXtM33777dHExETdyJEjq61cufLoW2+9Fd21a9fM+++/P2vDhg0ms9nsU7169eK1a9f6TZ48OTorK+u3G93kyZMjGzVqlD9q1KjkH3/80TRhwoRKkydPvmyjjalTp0Z07949Y8CAARkTJkyIWrhwYcjTTz+d+m9+3wMHDvztdz1//vyo4cOHX/Y1nsViUb344otxR48e9W3Tps1lc+DmzJkTcurUKX3jxo3zAFatWhUA8M033xzbuHGj6f333690tfWkr6Q8lnkbDiwGdgJ7zWbzjnKIeU1xIXXJ1GjISSyTyvndnAoonTsoBbIQtzaDXyAARls+Wdex1FtGQQn6kmLy9OBnlAL5VuPbqDkAsakO9qTsIS2vmJyE3ZSkeXG0sor6oQ08nKFwp9jY2OKpU6deVngpimLJzs7WOBwOLBaLRqvVOkNDQ23ff//9YZ1O50xOTtZqtVqHWq3mqaeeSh01atQFgKSkJJ3JZLJfKU7jxo3zx44de9kGIJ9++qk5IiLCBmC321Xe3t6OHTt2GJs3b56rVquJjY0tsdvtqtTUVK+DBw8ak5OTdQ888EDNb7/9Nujuu+/Og9JtnT/55BOzyWSyXWo3ISHBp127djkAd9xxR/6BAweMf8znrbfeSnzooYcy7HY7ycnJ2ktba1+PhIQEXY8ePWoNGzasaufOnWuPGjUqBmDChAlRs2fPDn3vvfci8vPzNaNHj75sU4qioiJ1r169MoYOHXrZZitbt271PXDggLFPnz6/FdQ9evTInjhx4mmAxMTEq/5er8YtWz6Zzea4Mq9/AVq4I84/FRfVDI5/yekzG2jY8CGwlcCZrRyuVAWjykKUUb4iFeJWZgoIpQTws+WRWVBCbLDvNc/PyC/GWGwjyaQiQB9YPkmKG4ZXrTvxMn5N3TNZ/Q3tAAAgAElEQVRa1p7cxlFVNHdZ9uFVoCYh1ptBgTU9neItIWjAwxl/NdrrDr17985OSEi4bIegKlWqFL/77rsxc+bMifT19bVfKka1Wi0zZ84MnTNnTqW+ffumXDrfy8uLfv361UxISNDPmjUr/o8xAPr165e1cePGyyazR0VFWQGWL18esHv3btOYMWPOf/TRRxEBAQG/FbsGg8Gek5OjSU1N1fn5+dm+/PLL+HfeeSdyypQpEa+88kpS+/btc/8Yq2bNmoXr1q0LaNKkSeHKlSsDiouL/zSgqlarKSkpUXXu3LlOSUmJ+vnnn7/wx3OuRKVSOQHOnz/v88knn8QbDAZHmzZt6l+4cOG3mnT06NHJS5cuDX/vvfcu+0AQFBRk79ChQ+6iRYuCLx1LSkrSTp06NWrOnDknly1bdtkNWKvV8tRTT8Vt2bIl8N13373u0WO4BTcKAYgLrAHA6dMbwW6FEz+AJYMDOi/qh9RHo9Z4NkEhhEf5BZd+m+Rvy7uu3fTS80vwKbaTrwej9k8DLeJmF90UU2QR9c442XpyG1/sPEur/NIaJ/iO1mg1156iI24+EydOrLxw4cJjP/300+GuXbtmjBs3rvKl94YPH562devW/Xv27DFt2LDht4L3q6++il+0aJH5ueeeq3b8+HHvvn37Kn379lUWLFhwzWkjH330UdjChQsjFixYcFyv1zuNRqP90lxkAIvFogkICLCbTCZ7ly5dsgE6dOiQffTo0avuavTcc89dOH/+vHefPn2Uc+fOeYeGhlo3b95svJTTqlWr/AF0Op3zxx9/PDxu3LjTL774YpWybej1eofVar2szrRYLGpvb28HQGRkZJGfn5/Dy8uLoKAga1FR0T+qSb/55pvAnJwcr0GDBtVYsGBBxA8//BBUtoCeOnXq6dWrVx984403YvPz8687xi1ZIEebotGqNMRTDMd/gH2fYTGGEV+YTAP5KkyIW56fKYJCHZisBWQWWP/y/Iy8YryLnZToVbJE5K3ILwpj7TB0Nqh85hSpBftRpSWT7wN33vmgp7MTHmA0Gm2XphyEh4db8/LyNMeOHfMeOnRoNYfDgVardep0OodKpXJOnDgxYvHixUEXf86uVqupUaNG8dKlS81Lly41Dx48OP1qcd57772IvXv3mj777DNzaGioDaBZs2b527dv97fb7Zw5c0bncDgIDQ211atXL2/t2rX+ANu3bzdVrVq16Grtbt682fTggw+mLVu2zBwXF1fUoEGD/FatWuVfyqlLly45o0ePjrlU4BuNRodarb7sieawsDBbYWGh+vDhwz5Q+tDcL7/84teoUSML8Jf3yut5QBrgySefTP3++++PXvxdJbdv3z5z4MCBGYsXLw6aOHFiBIDBYHCoVCr+mOO1uGWKxY1Oq9bSILQhv5b8Cj+9CenHOdSoD46sbTQMlaeNhbjVeRtCsHiD0Vp0XXOQs7Nz8bKD3SDfPt2qDF0Ho1o1jeYJWpztvkP1nYZTsTr6RsoDerei8ePHn3nmmWeqaTQap1ardUyYMOFMlSpVSmrWrGnp2bNnLZVKRcuWLXPatGmTX6tWraIXXnihyvLly0MdDgdvvvlmwl9HgOTkZK8FCxZEVatWzTJw4MCaAB06dMh8/PHH0xo3bpzfs2fPWk6nU/Xqq6+eBRg7duy5l19+OXbJkiVhvr6+9o8++ujU1dquWbNm0ejRo6u89957hISElFyay1vW0KFDU8eOHRs7ffp0p0qlYvz48ZdNh1Cr1bz55punx4wZE6dWq7HZbKrWrVtnt23bNu+PU1KuJDY2tvDJJ5+sMn369Ov6ffxRjx49sp9//vm4Pn36KDabTTV69OhEg8Fw3QWy6nor9PLUu3dv59dff+3WGNP3Tefj/TPZnJyNnzGK2bf15EPzYrY8uAV/b3+3xr4VKIqy22w2N3V1u+XRN4R7uatvgAv7R+JO1j80iFSTkbPPfsJL99W65ukvTVvL4I+eY1VXX0a9/+u/j38Lq7D3DksmZ7veTnaODz9Xd3LPfienJjxKl16j3BfzFnOlvrF///7TDRs2vOoIqxB/Zf/+/SENGzaM++PxW3KKBcDtEbfjwMme/otg5C8cKDhPnF+cFMdCCPDxp0TnxGC1XtcIcnF66XNBKuPfWmZT3EwMQYT2vgNvq5V79jvRNqspxbEQFdgtWyA3CG2ATq1jZ/JO0gvT2X5hO80i5KswIQTgE4DVGwwldjKuo0DWZJVuM63xkwf0bmX6J2YTN+sD/Du2IvadGZ5ORwjxL9ySc5ABvDXeNAprxKbETVjtVkrsJTxS5xFPpyWEuBH4+OPQOfHJdFzXCLJPTmmBrAuQJd5uaVofvFt0JapFV09ncitxOBwO1d95+EqISxwOhwpwXOm9W3YEGWBA7QEk5SfxhfkL2se2J84/ztMpCSFuBFofHDrwKXaQ+RfLvBXb7PhZSqdA+gSFlUd2QojfHUpLS/O/WOgIcd0cDocqLS3NHzh0pfdv2RFkgLYxbZnZfibT9k3jyUZPejodIcQNRKVXYyiG7PyrroQEQEZ+CQG2bAB8Q2WTISHKk81meyw5OXlOcnJyPW7xQT/xtzmAQzab7bErvXlLF8gAzSOb0zyyuafTEELcYNQ+XqidNorzcrE7nGjUVx6gysgvwWTNxeIN/v5SIAtRnm677bZUoLun8xA3H/m0JYQQV+BlKF2m09eWS07h1TcLSc8vxlhiIVcP/qZK5ZWeEEIIN5ICWQghrkDnqwfAZM8m8xoP6qXlF6MvKSZfD/6+4eWVnhBCCDeSAlkIIa7Ax1i6ZJvRlnPNAjkjvwSfkhLy9CoCfGQVCyGEuBlIgSyEEFdg8CvdNMhkyyMjv/iq56XnF+Nd7CgdQZaNhoQQ4qYgBbIQQlyBb2AIAEZbHunXUSAX6MHgZSiv9IQQQriRFMhCCHEFpuAIAAJtOaTlXb1AzsqxoCuBEr0GlUqWYhVCiJuBFMhCCHEF/kHROIBgh4W0a4wgF2ZkAuD0veVXzRRCiJuGFMhCCHEFvqaI0rWNbYWk5V39IT1bRukuehj15ZSZEEIId5MCWQghrkBlCKLQB4wlRVcdQS6xOdDnpACgMcn8YyGEuFlIgSyEEFeiD6TY24m+uIT0q8xBTs0rItxaOsVCGyArWAghxM1CCmQhhLgSfQBWb/ApsZGWV4zT6fzTKSm5xYSVZAHgHRRa3hkKIYRwE5c9VaIoigb4AGgKeAOvm83mlYqitACmADZgndlsHu+qmEII4TY+Adh0Tvxy7JTYHeQW2fDXay87JSW3iGBraYFsCInyRJZCCCHcwJUjyI8AWrPZfCfQA6h+8fhMoD9wF9BcUZTGLowphBDu4aXD4QPeRQ6AKy71lpxThMmaS4kX+AVHl3eGQggh3MSVBXJH4LyiKKuA2cAKRVH8AG+z2XzSbDY7gbXAvS6MKYQQbqPy0aAvKp1acaUCOSW3CKPNQp4e/E0ygiyEEDeLfzTFQlGUR4Hn/3A4DSgCugKtgfmUjhznljknD6j6T2IKIUR5U+m98LZZ0dqtV9xNLzm3iObWIvL0EG4I80CGQggh3OEfFchms3kuMLfsMUVRvgBWXhwp3qQoSk1Ki2NTmdNMQPY/zFUIIcqVl0EHWPG15V51ioV3iZUMvQrFO6D8ExRCCOEWrpxisQXoDKAoSkPgrNlszgVKFEWppiiKitJpGJtdGFMIIdxGayhd2ziA7CuuhZyaV4yuyFY6xcJblnkTQoibhSv3Rp0NzFAU5RdABQy/eHw4sBjQULqKxQ4XxhRCCLfx9vMF0ojUWP40gux0OknOKUJb5CBfr5ICWQghbiIuK5DNZnMxMPQKx38BWrgqjhBClBe9fyBwmgh1PuezCi97L7fIRnGJFV0RFBrUeKldOd4ghBDCk2SjECGEuApjUOmDd5HkcjbTctl7KblFmEoKUAE2k/YKPy2EEKKikgJZCCGuwj+sdG3jIGsWSTmFFNvsv72XnFNEeHHpJiEOk49H8hNCCOEeUiALIcRVBIbGYFODqTAHpxPOlZlmkZBeQExJCgAqP6OnUhRCCOEGUiALIcRV6I3h5OvBx5IPwNmM36dZnEjNp4o9EwCvoECP5CeEEMI9pEAWQoirMQRj0YOuoLQwPpNR8NtbJ1LzqabKA8A7NNwj6QkhhHAPKZCFEOJqjGEU651o84sx6DScKfOg3om0fMJsOThUYAqP81yOQgghXE4KZCGEuBp9EFYfJ975VmKCDL9NscgptJKWV4xvSS65BggOiPFwokIIIVxJCmQhhLgajRdOvRofi52YIMNvI8gnUkvnJGstBeQYINhXplgIIcTNRApkIYS4FoMGQyHEBnpzNtOCw+Hk5MUCWWUpIsdXRbBPsIeTFEII4UpSIAshxDV4mXxQA3VNdkpsDvaczeJEWj46LzWqghJyDRDkE+TpNIUQQriQ7I0qhBDXoDX5AgXU9y/ER6tm+d7z7D6ThRJuQlPgINegIkgvBbIQQtxMZARZCCGuQR9YusaxNesC99YO5/OdZzmWnMew5pXwKoEiXw3eGm8PZymEEMKVpEAWQohr8A0KBaAg+Sw9GlXC4YTakX50jFABYDfqPJmeEEIIN5ApFkIIcQ1+ETHYgMKURO6uGUrXBpEMuTMOR9I+AFT+Bs8mKIQQwuWkQBZCiGsIiKhKOlCSnozOS83U/k0AyN99GgCvQNlmWgghbjYyxUIIIa4hILQahTqwZWZedtyaeBoAbUSEB7ISQgjhTlIgCyHENWhNkeTrgZy8y44XJ57GpgZDdFXPJCaEEMJtpEAWQohr8Q0lz+jEK7PgssOWpPNkmiAoINZDiQkhhHAXKZCFEOJadAYK/cCQVXLZ4eK0bNL8IdgQ4qHEhBBCuIsUyEII8Rfs/hpMuQ6cVutvxxxZRaT7qWQXPSGEuAlJgSyEEH9BE2xA7YSipHMAOK1WVAV20vwh0jfSw9kJIYRwNZct86Yoij/wBWAEioEBZrM5WVGUFsAUwAasM5vN410VUwghyoMhPBTIJ+3UEWJiq2BNTEDlVJHprybcEO7p9IQQQriYK0eQBwMHzWZzK+BLYPTF4zOB/sBdQHNFURq7MKYQQrhdYOXSlSqyju8HwHriAACOYCMatcZjeQkhhHAPVxbIBwHTxdd+gFVRFD/A22w2nzSbzU5gLXCvC2MKIYTbhdVsgl0FBSePAGA9dQwAXYSMHgshxM3oH02xUBTlUeD5PxweCXRQFOUIEAS0orRQzi1zTh4gi4YKISqUyKgm7PIDzicBYD2bAIBfbA0PZiWEEMJd/lGBbDab5wJzyx5TFOVr4F2z2fyxoigNgGWUTqswlTnNBGT/w1yFEMIjDKG1yfKD4LTS21fh+XNk+0JUWC0PZyaEEMIdXDnFIgvIufg6FfAzm825QImiKNUURVEBHYHNLowphBDu5+VNgb8Kn8xiAApOp3AuWEUlv2gPJyaEEMIdXFkgjwUGKoryM7AcGHbx+HBgMbAT2Gs2m3e4MKYQQpQLW4AOQ56D4vh4SClmXzUVlY2VPZ2WEEIIN3DZMm9mszkJ6HyF478ALVwVRwghPKGgTjDqLUmcf+FZAPZUUzHaWMnDWQkhhHAH2ShECCGug2+d2hyNhuITpykwOciO8MXf29/TaQkhhHADKZCFEOI63HnbCFY1K71lHqnuRZXAaqhUKg9nJYQQwh1cNsVCCCFuZtVC6pBaP5QfziezsqGKQVW7eDolIYQQbiIjyEIIcR1UKhVta3RndjstmaHedK3a1dMpCSGEcBMpkIUQ4jq1i2kHQPu4DjL/WAghbmIyxUIIIa5Tg9AGPNvkWTrGdfR0KkIIIdxICmQhhLhOapWax+o/5uk0hBBCuJlMsRBCCCGEEKIMKZCFEEIIIYQoQwpkIYQQQgghypACWQghhBBCiDKkQBZCCCGEEKIMKZCFEEIIIYQo44Zc5u3w4cPpiqKc8XQe4l+JdUej0jduCm7pGyD94yYh9w5xNW67dwjxRyqn0+npHIQQQgghhLhhyBQLIYQQQgghypACWQghhBBCiDKkQBZCCCGEEKIMKZCFEEIIIYQoQwpkIYQQQgghypACWQghhBBCiDJuyHWQy1IURQ1MBxoCxcBjZrP5hGez8gxFUfYAuRf/mAB8DEwBbMA6s9k83lO5eYL0jctJ/7ic9I/fSd+4nPSNy0n/EOLPbvgCGegJ+JjN5paKorQAJgI9PJxTuVMUxQdQmc3mNmWO7QP6AKeAVYqiNDabzXs9lKInSN+4SPrHFUn/QPrGVUjfuEj6hxBXVhEK5LuANQBms/kXRVGaejgfT2kIGBRFWUfp39vrgLfZbD4JoCjKWuBe4Fa6iUnf+J30jz+T/lFK+safSd/4nfQPIa6gIsxB9gNyyvzZrihKRSjsXc0CvA90BIYD8y8euyQP8PdAXp4kfeN30j/+TPpHKekbfyZ943fSP4S4gopwQ8gFTGX+rDabzTZPJeNB8cAJs9nsBOIVRckBgsq8bwKyPZKZ50jf+J30jz+T/lFK+safSd/4nfQPIa6gIowgbwU6A1ycK3bQs+l4zFBK58mhKEoUYAAKFEWppiiKitJP/5s9mJ8nSN/4nfSPP5P+UUr6xp9J3/id9A8hrqAijCAvB9orirINUAFDPJyPp8wFFiiKsgVwUnpTcwCLAQ2lTxrv8GB+niB943fSP/5M+kcp6Rt/Jn3jd9I/hLgCldPp9HQOQgghhBBC3DAqwhQLIYQQQgghyo0UyEIIIYQQQpQhBbIQQgghhBBlSIEshBBCCCFEGVIgCyGEEEIIUYYUyEIIIYQQQpQhBbIQQgghhBBlSIEshBBCCCFEGVIgCyGEEEIIUYYUyEIIIYQQQpQhBbIQQgghhBBlSIEshBBCCCFEGVIgCyGEEEIIUYaXOxpVFCUM2A20B2zAAsAJHAJGms1mhzviCiGEEEII8W+5fARZURQt8DFQePHQB8CrZrO5FaACerg6phBCCCGEEK7ijhHk94GZwJiLf74N2HTx9WqgA7D8Wg00b97cWalSJTekJsrL4cOH081mc6ir25W+UfG5q2+A9I+bgdw7xNW4894hxB+5tEBWFGUwkGY2m9cqinKpQFaZzWbnxdd5gP9ftVOpUiW+/vprV6YmypmiKGfc0a70jYrPXX0DpH/cDOTeIa7GnfcOIf7I1SPIQwGnoij3Ao2ARUBYmfdNQLaLYwohhBBCCOEyLp2DbDabW5vN5rvNZnMbYB8wEFitKEqbi6d0Aja7MqYQQgghhBCu5JZVLP7gRWC2oig64CiwtBxiCiGEEEII8Y+4rUC+OIp8yd3uiiOEEEIIIYQryUYhQgghhBBClFEeUyxuOcdT8li4/TRZBVZa1Qihz23RaDXyWUQIIYQQoiKQAtnFfo5P48nFe3A6nQQYdKw6eIEF206zcGgzwv18PJ2eEEIIIYT4CzKs6UIZ+cWM/GwnARG/cOedK3ihdxZT+9cnMdPC/TO3cyGn8K8bEUIIIYQQHiUFsgu9u/YIjojp5BiWEp99mNe3v843F95g3tBGZBaUMGT+LvKKrJ5OUwghhBBCXIMUyC5yMi2fb04vQK0/y9t3vc2Gfht444432Jm8k/nHX2dq/4YcT83n6c/3Ync4/7pBIYQQQgjhEVIgu8js7dvRBm+gY0xXuoc1Q7XqBXp9+zJjizRsTdpKfP6XvNmjHhvNabyz+qin0xVCCCGEEFchBbILWO0OVicuQ63S8N9Gj8MnvWDfZxDTgr7GGnTOtzDt4Gzqef/IoJaxzN6cwJe7zno6bSGEEEIIcQWyioULrD6cgN2wi2bB7Qha/TKkH4cBS6FqG7DbefXMNvZsGsnYXe/yRd1nOFXjNl5ZfojKQQbuqBbi6fSFEEIIIUQZMoLsAvP3L0WlLuHZyo0hfg3cM5YSr6okjnyK+Nubca7z40xaYOKOLWoW//g/5sT8QJVgA8M/2c2J1DxPpy+EEEIIIcqQAvlfstodnLBswaSKoeHuxWCKJL+kLqd69MSyYwd+PboT8vRT+NdpSNdfocXnBhKmzOGriG/QadQMmreL1LwiT1+GEEIIIYS4SArkf2nD8VM4vc/Qxq8GnN1GSY2hnP/Pf9HFxlJ1xXdEvvYaoSNHUnnGdMJXf8PGZj7YTulJfWc13xTNJjO/iKELdlFQbPP0pQghhBBCCKRA/te+PLwWlcrJQ/ZcnF4Gzs/fjkqjIXrqVLSRkZedGxJTk9hxbzDqUQ25UUbylh3k22PvkZCYxlOf7cFmd3joKoQQnuZ0Ovnp7E+M3z6eafumkZib6OmUhBDiliUP6f1L+zK2otMFUe/4enKLb6fo6DGi3nsXXXSlK57ftWpX1jRaw8jQHXy2pyrWtSdZeuFthhQ+w+uBet7sUQ+VSlXOVyGE8CSbw8Z/fv4PP5z5AaPKC4vDytx9M3jM5svwRiNQN+oPXjpPpymEELcMGUH+F85kZlOsPcbtuso4C7JJ25SBT506+HXpctWfUalUjGsxDi+tjtfa+xM14i40efnM2zKRHau3MHdLQjlegRDiRjB592R+OPMDT1pU/HTqLC+dDqdqvh8ztBZe3vEGlqnN4ORPnk5TCCFuGS4dQVYURQvMA+IAb+At4AiwAHACh4CRZrP5pphL8PXhbajUVrrZ8shNDsWamknE2/9Dpb72545w33Bea/kaozaNYsGdjzI8wEDilNVM3j6NF3FSNbQP7WqFl9NVCCE8aVvSNhYeWUi/Yg2PpCTzlNcbtGrbmZHBBuYdmsdqPiMn38q0T3qhafY4qg5vgZe3p9MWQoibmqtHkAcAGWazuRVwHzAV+AB49eIxFdDDxTE95ufE7eBU0+rCfrJOBaKrVg3fu+68rp/tGNeRPjX6MOfQXDa37kbsqC5464p5f9t0Ppi+guMpsvybEDc7h9PB5N2TidIYeSkpgfHa5xk/cgiD76xC21rhfNJ3DCPqPc82o5oBQQ1g5yzsczpAtsxPFkIId3J1gbwEGHvxtQqwAbcBmy4eWw3c6+KYHnPaso9gZzjac/kUnc8n8OH+f2v+8JjmY2gQ0oD/bn2FhI4jiH2xM97aYv5v0xT+O3U1uUVWN2YvhPC0dWfWcTTzKMOTz/OT/XYGDR5OdKDhsnOevG0oTzR4gsP+2XQ1daIwOR7brHZwfreHshZCiJufSwtks9mcbzab8xRFMQFLgVcBldlsdl48JQ/wd2VMTzmRnobV6yx3qnzIOmFEbTDg3/3vDY57a7yZ1HYSRq2RZzc8h6XXeGKe7YiPs4Qxq/+PMXN/xu5w/nVDQogKacGhBcSqfOmUl8/RBi9Tr9Lvt0d7fj7FJ09SfCqBEXWG0b1ad86GHKaPaQDJBU7s8zrD4W88mL0QQty8XP6QnqIolYENwCdms/kzoOx8YxOQ7eqYnrDs8GZUKgcdcy+Qd96A6b770Bh9/3Y7YYYwJrWdRIolhec3vYD64Q+IfvxODJYiHl78Mh+sOOCG7IUQnnYk4wiHMw5zf0Yq62nB0K53A2DZs4czgwYT37wFp7p05VTnzsQ3uY1HPzjKizvDMDh+4Omwp9lnrQxLBuHYNs3DVyKEEDcflxbIiqKEA+uAl8xm87yLh/cqitLm4utOwGZXxvSUHRd2g1NNnf2JOEqc+Hfr+o/bahjakPF3jGdX8i7GbX8N/YjZRPWvT2BmHo0mP82ynWdcmLkQ4kawNH4pOpWGXnmZpNYZgp+PF6mTJnOm/8OUJCQQ/OijRE18n6j/vUPwY4+hMZpovimV/5tbzKPLZvOzqjurbU1Rr/svxWvGglO+bRJCCFdx9TrI/wUCgbGKolyai/ws8KGiKDrgKKVTLyq8swWHCSOIwtM5eAUHYmjW7F+1161aN5Lyk5i6bypRxiieHvM51oxOsPoc5nFPsGPapzSvFuKi7IUQnlRoK2TVqVW0sTg4ZatKx45dSfvgAzJmz8G/T28i/vtf1L5//kbKlpXFueVfYJo7jfu+/JycmBi+rdqSHr98SF5OCqa+00Ejy9sLIcS/5dI7qdlsfpbSgviP7nZlHE/LslgoUp/hvoIA8i/4EPRIN1Qazb9u9/EGj3Oh4AKzDswi3BBOv3dXYMtpg7LtDHteGE7w7PlUDzO54AqEEJ7087mfsdgs9MtO4Vj4cKru2sL52XMI6NePiPGvX/VhX6/AQOKGjsDe815mv/8I3dafo+ZGBxviGtG65Csyc9MJGrwYtPpyviIhhLi5VOiNQhIzLWw0p5KaV1SucVead6JS22h/LA0cKvw6dXJJuyqVildavEKrSq14e8fbrE/aSti0Nfg38KaJ+TBbn3qy3K9VCOF6a0+vJQAdDQptRNftRPKrY/GpU4eIV1+5rpVwqgXV4PH/fMZrTwWzprWR8LPp7F9bFe99m0md0RWKcsvhKoQnOJ1OMgtKOJ9dKA9xC+FGFfa7uKW7z/HymsXoQtcS6lWXTUM/KrfYm87sAiDaXIDDPwifBg1c1rZWreX9u99n2A/DGP3zaKbdM40Wc9Zif+Qemh34le+HP03vudPx89G6LKYoXza7g91nsjCn5OF0Qp0oPxpGB6DzqtCfV8V1slgt/HzuZ7rkFbBD3YQaa1eQa7EQ+/57qHTXv5101YCqzOg6l6HaoRys7cOo7zSc3hBKWOYxkoo7EDnye1SGIDdeiShPGQUWPlj9KZaEHcQWZBNmc5CqCsYRWodqTdpy7+318fWusP+lC3HDqZD/mg4n5TB2/Wz00V9jcGrJVG3kkwOreKTB1bd4diVz9kGCigxYk0oI6HrXX+6c93cZtAam3zOdIWuH8OyGZ5nXcR5153/PuYEdab57C98Ne4rec6ZhkJthheJ0Oll9KJk3Vx7hQs7l3wQEGrT0aFSJh5vHUCNcptHczDad20SxvZjueZmk6O8n94tlBA0ZgnfVqn+7rRqBNZjTYQ7D1iS3josAACAASURBVA1j1GAnEzffTvqWnRgzUzhXeA+hT3+PT2CkG65ClBe7w86Enz/i21PzKdI4IKz0eO0SO/1zsumSuQTtj+PZ90MNLsR0pUHnYVSKrOTZpIW4CVS4IavcIisjPv8On9DltCwsZOOZU8QVO5iybwJWh/s31nA4HGQ7TtApAZx2NaZu97sljr+3P7PazyLIJ4iR60eS6AXR87/DWN3Bbbt+ZuWjIyi22t0SW7ie0+nknTXHeHLxHgINOqb3qcOWtj5sDD/Fl8VbeDl+Bdo5U5k7fBz/98y7rPt8DZasHE+nLdzgp7M/EeDUUrvIQdy+02j8/QkZ/sQ/bk8JUpjXcR4WHxUj7klANewh8s76ULwyn7S325F1/oQLsxflqdBWyEPfPMKXZ+Zye3EBb3nVZV7z8bzQ5Hls4bUYGxpM99q38UXdBwj2cdApcRKBMxuzYcpQ4uOPeDp9ISq0CjUEWWS188IXG9D4TcTPaeP/ajyM/s76jFjzNC95qzmSFk/D8LpuzWHvhQTQ5NHiuB21txpD8+ZuixWiD2HGvTMYuHogw9YNY2GnhUTP+47zj3Wj/q9bWDvoMTotnI1WW6H+Gm9JH64/wcebTjGwUSCd9i/C94nt5FlKAAjwM9FY40UDiwWKi0vXelkHCeNVZEfG4NuyJdV7dcG36W1/a6dGceOx2q1sPb+V1gUW9mXXJXDPrwSPehGNn9+/ard6YHXm3zefx9Y9xqNRa5k58RWKx03GtiYfVVpHskZ9StX6LV10FaI8WO1Whq8dybHcg4xNz6b9PR8R2LgnALcVFtInJYb4g2s4HL+V7IIt7PSLJC9yMPbso9yetRLdJ9+w2b89wZ1fpU6d+h6+GiEqngpRWS2dO4Cs3GOcs9chzbSXXJ2TuQFd0VlbYo+9gxh9TSCTjQk73V4grzu5C5xOwhJs+Narjkrr3rnAVfyrMLP9TB5b+xiPrXuMOR3mUGn2tySN6E6NPb/ww6DH6LhoLhqvf7+KhnCPLcfTmbw+ngfD4uk4eR5+2Ta21VGxqb6GY9Hg522jn1cQj+jrofeJoIRg4hNVHNiTgvbIQWovX0Li11+QHxqJ6aGHqTmkP2q9rFJQEe1O3U2eNY8OBdloT8ai8fcn4MGHXNJ2Ff8qLOq0iMfWPsajWR8yee54Al+fTd4OM4YXB7Dnmddo0nWgS2IJ95u2dwZ70nfxRnoGd7WZRmDjnthzc0mf+THZX32FIz8fX7WaloGBWNR+WE5fwLE9CS8nJBKMU6shJnQXvvvuY0Pt1kT2G0+tGjU9fVlCVBgVYorFRj8vPgwq5uvQveQ7HXy8oxre49Zw/rnnOdnxPvxUrQi02zlwfqvbc9mdvI+qySpUhRqMbdu5PR5A3eC6zLh3BhmFGQxeM5hzeiNRM77Dr66NKnt28OMjQ7HbZLrFjSjHYuX5r/bRRrWJfgtmAZD9bDOGNC9khvoc/8vJplZxCdOs5+mUvY1vj8xDt2McDZLGMqDyfPoOBa8x3fmlQ3fO2bU4P3yfX+9sw8Z3plFskRVNKppNiZvQoqZBkgPjibMEDhr4j3bgvJpKxkp80vkTYkwxjDzwKkkTR2IY8giWRB1+r73JjjdH4HQ4/roh4VEH0w4y7/AceuTl0yjyfkKb9sKyaxcnO3Umc/58jHffTcyC+Sh7dlNz6xYabf6Fyj+t5f33bufZxzWsGVQLbbf7KHbGkvarHxGf7kX/5H1seukhEpOSPX15QlQIFaJA/r/AAXxuvoePd9dn+kJ/fH8+QeD9fan88Uw0gYEUL9tC/cISzuSb3Z5LYsEx2sRrACfGrg+7Pd4ljcIaMafDHAqsBQxYPYDDGjuR07/DVM9GzN6drB8wEKvVVm75iOszeX08vpm/MHLVCgoCvKn9UCh3pnyDV+XmmAYs557nTjJ92CE+7/I5seGNGRcSyKAmHTja+f+gUX80hRnUOTWNIUEz6d7jJJq+NSgyeRO+YCq77mrL169/SGZ2gacvs2JJPQo/vEb6+texZp4s19Cbzm2icaGd8+ZKqPR6gvr3d3mMEH0I8+6bR53gOry4ZTRH+jUmYu5sitV6/BZv4GC/uyhIT3F5XOEaDqeDcVteJ9jmYEiunioPvEvOqlWcGTIUjclE3NIlVJr4Pr4tWqD28fnt5yr7VWZelwUM6fwKX8Qk0a/Wela824WIJYsx9ulBQaqBsG/3UdSnNRtHPUF2Vp7nLlKICqBCFMjFZjPaH7YRtPEwvrffTtyXXxAxbhzGu+8m9OmnsCWlcMcJSHVmU2B1X7FQbCvBwhluO1WCT6QPXhHl+3R43ZC6LOq0CL2XnkGrB7EiL55KH6/BWB8q79vDzw8/IA/u3UCOp+SxZOuvjNv+OQ4vNXW6+hCUdwR6z4b+X0C1tuDlDUC9kHos7LSQN+54g7OFqTxw9GPG+GkxPzAPXoyHnjPQVLubmqaDtGqzn+h2Ofgbi6j9xQwOtWvPp/+dRFKaPNT3JxknIf3iQ2oFGbDqRY7OvZuBpz6n7bllPPp1LyxF5fN7O5t7lsS8RO5Ly8brbAkBvXqiCQhwSyw/nR+z2s+iUVgjXvr5JdYFnafWT1spblId7aEsEju14dzq5W6JLf6dladWciI3nhczM/Dr9B55m7eR9J+X0DdqSNxXX6Kve/VphGqVmodqPcSq3qvoXr07C44spM/RUfw6qAU1tv2C8cmB2J1awlf+TFKb5mx++lkKki6U49UJUXFUiAI5dORIlF07UfbtJfrDKejr//7Agenee/EKDaX6IT1OFRzJcN+Tu5tPH0RfYiUkxYFvw+pui3MtVfyr8FmXz2gU1ohXt77Ky4dnYZq5Ap+GPkQdOMKvD9yHpajEI7mJy72/zszIY7MJz3IQ2CuE4KIT8OCn0KDfFc9Xq9T0qtGLFb1WMKTeEH448wN9V/Tl4Z9fYIlBS2bX92D0CVRD12Dq0p96nTKpfHcGUYZMbvt6Fgkd2rNo9LucS84s5yu9gX0/GqbeBlMawQe1+enw5zwSEcleTTBh2dXY7+Vg+JI+5ZLKlvNbAGh8QI3a7iDwkUfcGs9X68vMe2fSOro1b+14iynxs2mw+DtKnnsUld1B3gtjOPrC4zht8s3TjaLEXsIHuyZRq8hKTW1j/Iw1Of/iKHxq16byzJnX/TBniD6E8XeM59POnxLpG8m4beN4aP1gzvZpTc0t+/F9pjf6ECshP6zlzD3t+PXRJyg8IqteCFFWhSiQL7nSesMqrZaA+/vil2jDt9DJ/uQDbou/+ew+6p51onKq8G1dPvOPryTIJ4iP23/MyEYjWXt6LX1+eoKk/72P1+3hBB05x4n77yAnTUYFPOlwUg4FmxfS5lgGie2iqGHbB10/gOr3/uXP+un8eP6251l//3r+c/t/KLAW8Mb2N2j7VVsGrR3KnNzDHGkxFOeLRzE+PYNqwxQq351BJd8Mbl8xn9SO7Vjy1Kskn0sthyu9sY0La8WoKm352i+CEZUb8Gx4MKq8MMaWDOOrLlPonh/AXkcKh5KOuj2XrUlbiS5WUXLcF32rVnhXqeL2mD5ePkxuO5kHlAeYf2g+T61/irghw/Ce/xnEauH7zRy9pwUFRw+6PRfx11acXEFGcTrPZ2cR1uFVzj39DGqDgehp09AYjX+7vYahDfm086e82/pd8q35DP9xOI/+OIy0Pr2J++4XjCNbElijAOOOTZzu3YdD9z9E3saNMk9dCCpYgXw1httvB6BWkoMT59xXIB9KP0zDBFBpHOjb9XZbnOvhpfZieMPhLO68GF+tL8M3PceUQXXIal0D7fEC0ge0IfXwZo/mWN6cTieHzufw/lozQ+bv5KWlBzh6wTNb7k5fuZcRe37ifISWdqH7oU4PaPz3Rgz9vf15pM4jLO+xnK+6fsWw+sOw2CxM2TOFB1Y+QOuvOzAuZz8HOr+B74SdxL35KNFdISQoh3o/LiOtU1tWD3+a84m3bqF8KDOTNc7TvKY+z4H8dIatq8zC+RnU//A9UrveR19zHABfbJ/t1jyK7cXsvLCTBw8WoCqCkEcGuDVeWV5qL15p/gqvNn+V7Re203dFXy6ElhC7fAdZHeqgycrjbN/7SXh3HE6nbF3sKXaHnVn7ZqEUWwn0bYVl8SpKzp6l0gcT0YaH/eN2VSoVnap04rue3zGm2RhO555m8JrBPPPL6zD4DcJmrcY0JI6whjl4ndzDueEjiO/ajZyVq3DaZcqeuHVViGXe/orPxTlZDZIcHMg+5bY45y0naHLaiaGSFnVAhNvi/B11Q+qytNtSPj36KbMPzGbTnfkM04XQ/sd0ckcOpvjZYVTu8R9w8W5/N4r0lCR2zHiKQoc/yYVOCp2ZWEzZ6IOdnMr15aEFzZj14DM0qxJSbjmdSssnZvUHBOQ7sPcORKfOgS4fwD9cw1ilUlE7uDa1g2vzVOOnSC9MZ3vSdrYnbWfN6TUsP7GcKv5V6Fa1G/eNXUtMximylk8lb/UevDb+SM7WHznRRMH4xGiatLzjllpL+aNdFnK26bH46jFcSEXFGfy6dsG/WzdyVqwg97sVdPJ3sCduh1vz2Je6jyJ7EY0OqLCGBON7111ujfdHKpWKB2o9QN2QuozZPIbHf3icDrEdeO7tyZz7cTNBU96gaN4Sjq7/kWozF+FdxTNTyG5lGxI3kFSYxMTsbAIrdyJr6vsEP/44vs2auaR9nUZH/9r96VWjF58f+5yP939Mj2960L9Wfx4b+QXe3Q/g++1Y/A6ZST5ygqRRo0j56CPCRz6JX+fOqLxuinJBiOt2U/R4jZ8f2thYql9IYKPVPfMvrQ4ruryzhGY68W3597eEdSedRsfQekO5v+b9LIlfwnK/5ZzQZfL4ah0p781n/9Fv6fjYPLRhtT2dqsvFb/+Oql+Ufj1e9tGVhAj4+q4M7DXO85+1h/l64CcEGQzlktOS5Rvpcuw4e5oaGVByELpMBF/XFegh+hC6VetGt2rdeMX6CmtPr+XbE9/y4d4P+XDvh9QOqs1dbVtzW8+hVPp5I9bPVhO2w4x6z1CO1fImv31HqnYeRnD0zb8masD9fVF5e2PKzMS7W3cCevZEFxcHgKFpU4oOHKTfujOsHZHD0dQkaodFuSWPHRd2EJPqRJeiRffkwy7fnv561Qupx5JuS5h/eD7zDs7jp7M/0bVaV+6dPRvthDcJ2nmGU926oXvkAaqOGotKc+usr+50OjmWnM2a+L0EGXzpVb8xfj66cou/4OACIq12Iu0NyZu+EO9atQh9aqTL4+i99AytN5QuVbowdd9UFh1ZxNLjS3mo1kP0H7EE26l96Fa9RvDxU6QcspP0n5e4MGkS4cNH4N+zB2pvb5fnJMSN6KYokAH09eoRuekMmbhnFYvdSceofa50K2tDy/Id/bleJp2JofWGMqTuEI60OsKm2jO4fdp6Ir/M5r8ZvTE1rUKnFi/QJLYtGvXN8R9fi+6Ps8NbS1rCYVROJ/4+wVQq1qOsWM+Ly89ysLONN+vF8+x3L/PJgx+6PZ8ci5WoJZMo1kH1RkWofOvBbUPcFs9X60vvGr3pXaM3SflJrDu9jvVn1zPv0DxmO+2o1CqqjqxGs3QjTb+Lp/LBPAzHVnB6zVJ21wvFu25HGrfoi1/l+jfltwy+LVvi2/LKO8ip9XpCnhxByX9eokoyfLF3FeM7DnNLHjsu/EK/3TacajWxjzzolhjXy8fLhxENR9CnRh9mHZjFdye/45sT3xDWKYy6t9fl/mVHCJn/JQdXrSLijXcJa9PWo/m6S975o8R/8yK5Wj+O2fLY40xhv76Ywou3xvcPBDC93SxaVXH/wEJ8Vjz7M/bzQl4uPudisGVsI3rGDFQ69xXo4b7hvHnnmwysM5AZ+2cw9+BcFhxawF3Rd9Guz3+onuNAtWk+0Ud+JetoCcmvvcaF994h+OEBBPUf8K+mfQhREZRLgawoihqYDjQEioHHzGbzCVfG8KlXD+OqVVBoo8Regk7j2hvLptN7qZ3oBC8HPnd0cWnbrqZSqagbUpe6w6aS3z6B3U88ytBVF9h/NIExyc/hCDXQs9aD9KvdnwjfG2OqyD+lVqtp2enRPx23D3yCswMH0WDdCfoHFfBl5AbO5Z4n2q+SW/NZ89lKmiYmsfYeI8/mx0OPZVBOH0aijFEMrjeYwfUGU2At4EDaAfan7edg+kF+tp9kSV8rUSkauv/i4I6jPlQ6kse+astY8usyEqo6UXl7Y9QZCTSGEx5YnZhghSjfKGL8Yojzi8OgLZ8R+PJkbN0a1GqaHXdwKmob4PoCOb8kn+MXDvHSEciqVQOvwECXx/gnwgxhvNriVZ5t8izrz65n87nNHFQd5MkBXtxx1MnAn/LRDn+Sg3FGjMMepXGPoei8ym9E1d02rPuGqFkJ5AaDOlBFIx10dGoJ16spCE7njdoOnv5pOF91/4Kaoe5d0vPzI5+hczhpmBiObf0WgoYMQV/PvbvCXlIjsAYftPmAs7lnWRK/hO9Pfc/GxI0AVKtWjar170d7LpH6R45Rc38ufDyLjFmzKWlUl5gHH8H/7rvdtlyhEJ5UXiPIPQEfs9ncUlGUFsBEoIcrA+jr1wOg6gUnKZYUKpsqu7J5DqYdZUCiE0OoA1VELZe27U7GuCq0XrWO/R/NptbcGUyZbeVAg2ym58xl/uGF3Bt7D/1qPUTT8KY31dxUjdFI9EcfcuK+TnQ+GMPSiFTe2vg2M7tPd1tMh8OB4dMpZJigXrUcVEGtoPo9bot3Lb5aX1pGtaRl1O+jp3aHnZySHCzDLWSePU7+sm+ps2ozTVZYsKvhXFQJiZVTORaTxs/RR0jTXX57CPUJplpgDeL84og2RaMEKVT1r0qoPrTC9h1NQACGxg1pEb+HnS1OuyXGntQ9NDXb0ZaocN7vvm8T/imTzkTP6j3pWb0nAOmF6RxIO8D6FsswrN7EHbvz8XtlClsmTuFEs0hC+zzInbf1JMxQsUcQO/Z5kt2nzhF1+CQ1Mixoim2oHA7sOTmEYGT2r8UMezCD0T++z7cPTXRbHharhZUnV9A5rwDdgRC8woyEjHT91Iq/EuMXw4tNX+SF214gPiuerUlb2Zm8kwNZR0nzSuP7+lqoryU808m9+x20OnSYlJde5gKQEqkjq2Y4qob1CGjYhEq1mhJhjMRP51dh7w1ClFeBfBewBsBsNv+iKEpTVwfwrlVatMakQXLeeZcXyOnpx6mcBoZWYeU2IugqKi8vGj0/grwHerPt1bdpsO1HZh5ycLJ+AVPvWsuaMz9QxRRLz5q96RTXiUhj+W6A4i7aSpUI6N2b7GXL6F+3gE9VW8grycOkM7kl3t4l31M9OYXP7/PhtdxT0PeTf/xgnjto1BqCfIII8gkium401G2L81UHhXv2kLdhI+qNPxO7/Th3bQe7Wk1hkAZnVDGFlfI5EQkJhnyO56Wx0msH+arfVzvw1fgQY6pMsG84wT7BhBpCCTeEE6oPpUl4EwJ9bowR06sx3tuByP/thbxM7A4nGrVr/852XNhB2wNO7L4qGvTo5NK23SFEH0K7mHa0i2kHPZ38uuVrjnz+AaFH02m15gKONZPYXHkSJxsF49OxAw2Vu6kbUpcQffk9COsK3n7+3PHmtD8dd1gsZC/7mtR3JvDO51ZG9V/PuexMogOC3JLH2tNrKXKW0GmvF5pzKYS9/75Ltx//u1QqFUqQghKkMLTeUKD0w3W+NR+L1UJmcSbnU46zY98qHEf3EXoml7ALxVTfmohuUyKwmnwdfF9JxZnKWrKqhpJfJQxdWDgmnQmTzkSkbySVjJWINkUTbYpG76X32PUKcTXlVSD7AWW3q7IriuJlNptdtkK9xmjEptcRlmPlXPoxbo9q4aqmAYg8cwY1YGjcwKXtlidTVDgd531Iwt4j7HvzPZS9vzDpoIPMBhYW3HGSSXmTmLR7EvWC63FHpTtoVakVDUIboFZV3LmpIY8PI3vZMpoeDmdBdAHrE36gp+L6JfqcTie5MyeRGwA14yxogttBTHOXx3E1lVqNoWlTDE2bEj56FLasLCy7dpHxyy5KduzC+2A8pgNGQlBRz6THHqDBN9CGISSfzIBcTgZqOOOt5UxeFhk6H457acnAjo3SArp9zL180HaSh6/y2ox3tyb1f/8j5ryNwxdSaVAp3KXtJxzdSpczDpIaV6OeoYI94KRS0bRVH5q26kNiUjJHv5qCYfv3xJ4tos6KDOwrP+dw7BesrKEioZY/+riqhPqGEW2M5v/Ze/fopuqs//99Tu7Xpm2SJi1tml6SFioUUBAEAUdRBootZQHDI+Bl1nzBnw92wD4Lvo4gD2hRrIIiD6Azig4q0lpBxQcHhxEGKchFgdqm0KYtvaa3JE1zP+f8/gjtF6ilBQKF9LzWYpmefM7+7Bzbk/fZn/3ZOz4sHnGyOOjkOihFyrsmkkiKxYhY8AS4SgXoZS9g9hEv/lv7N2yf+cItmW93yU6kdPgg/0UM0ag0yKf//pbMczNwSA7CBGEIE4RBK9ViWOQwTB0aWHFwe30oOXMC9WcOgv/rQQhbLoJn9cLQxMUIMw3iUB2AOnSICVRHc1CuBf6pplGtItCsABiCgJwvR7Q0GkOkQxAjjYFKrMLv4n6HIbIhA/vBWQY1t0sg2wFcHrYjgymOu6CUkVC3N6LKUh5Uuy3OFiTVd4ImGIjG993o4U5HP3Io9F98gJ8Pn0LV62/CeOok/nyWhMBox4/pDL6jy/B+awm2n9mOCGEExkWPw1jNWIyKGoVYWexdJZh5MTGQjB2LSNOviPL5sffsp7dEILd+fxCahnq8N42LtbaLQPbHQZ/jdsAND4d86lTIp06FHgBlt8N1+jSsJ0/Df/os6MoK8C82wQ8O5AjHPQQJnUQCr4QHkcSHCHknlJI2eML8aFcwEHMHpg719cCPjwfNJxHfxOBQ1bmgCmQP5YH6yAUQIGCZMrC102+W2GgNYnPy4PvPV3DkzHmc3/d3aE/8E6l1LRj+DxL4Rzus8pM4l8zDcT2D3TEMHOKAKBZyhIiWRkMn1yFJkQRDhAHDIocFfaUvmMinzYDi07cx7WQNckbuBRB8gWy2mXHWZsJbh33gOAlErVx51zxIdCHk8zD63nHAveMA/F+0d3px6nwNGs6fBFl9AuqqX6BtqYfW2olICwdpF7gAAp+R4gLWCB6aI32oUzeiUt2Ig+H/Qp3Ch1p7A14ct2JAPxvL4OZ2CeQjADIAfH4pB/mWtG0itDHQljfghK06qHZ/qi9FQgNAh1MgE357R/zdSPrEUUif+Hec+ecx1Ly9GfpzJ3BvCYFxcX6EJzbheDwXh6IkOFp9EN9UfgMAEHPFGKYchhGqERiuHI5hymF3fC6ibOpUdB45gsdrvPgb1xT0NAuGYWB+ayNcckCV4IdEPhGIDU7t0oGGI5dDOmkSpJMmoSuWQ3V0wFNejs6KSrSaKiCsrAK/vg68JguoShpNCGzYIQCUj+cg/j8GzP1+QZAkOLGR0Dc143/rTgMIXt74r62/YmwpBZeaRvSDd/bm3v7C45CYPNIIjFwLH7UGp6vbce4fRZAX78OQ6guY+LMXE04GBJA7goMWXTgaEpWo1stw2l+FQ7WHQDEUOAQH+2btQ7T01pTWCwaqnFy0P/GfyDzWgiNVpXggPrgVLb65sAdKKw3tWT7kM2d276W5mwmX8PG79CQgPQnAXACA1elFhcWOpouV8FT/DEn5CYTVXYCstRXR1k5oalxIKeXgd5eEM0MADZNKgdD5umW5C7ldArkIwCNGo/FHBL43b8lOFV58EiJP/ARLZ1NQ7f5UW4JHGxmIYglAfufezG+U4Q+NxfCHxqL6lzL8/O7foC3+HlR1JGIkAjyr68BLagvqo4GS2BT8KovDGbcVH577EH7GDw7Bwe6M3UgOTx7oj9Ersod/h8Y1a2Asj4A/0Y3iuh/xiP7RoNl3nTwJacV5fDaVxHP2RmD61qDZvhPhyGQQjx4N8ejRUF31HtXRAW91DbzVVfBWVyNu5MgB8fF6kRuN0B1oRrM1uJ04S385iJEWoGFk2G1tVnO74HFIjEmIxJj/80fg//wRLQ4Pjp6rgufAJ1Cd+zfUjfXQlVgw5HQL7gOQTQIupQwNQ1SoS0mCjBs50B/hmvBGPgxuKh8PnvPhwxPfBFUgMwyDr0yFePYHP0DyoM55Pmi27zQUYj5GxyuBeCUwcQyAP/2/NxkGsNag0/wzOn8uhu9COai6Jox68O5/WGC5u7ktAtlkMtEAFt/qeWRJSXDQBKh2W9+Dr4N681nIXYA8PjQ2r/WGbkQKdNtfR4fNgX//9XM4v/sOSWUlcP6qBE0SSFO2Ynx4FcQqL2CMRUXSSDRGxCFOemfniXEjIyEePRpK83mIaBo/VXwbVIFc//7f0CEkYDcCev4IQP9g0GzfbXBkMojSht22ElXBQjxiFET7/g1he1VQ7Xr+8Q8AwMXkMXhIEDJl53tFKRUg434jcP8aAIDLS8FcXQ3n0SLwf/4XxFVVEDW1QfKzHYmnKuGclg3ZfXfw3wtBIO73D6GqZD/4R/4XmB28NItzLedANLRj2K8E+PPmghcdesGXfkEQQLgOknAdJKOCWtyKheWmCKk7tiIhHg4AIqsnqHYFF0wAAOk99wTV7p2KLEyKacueBpY9jcqLLTix5wAcxccQbi5D4vmL4Jko4N+dkMj/jRFqN6zrJiEq/c5uJiB5cCKcP/2Ese1+HOOdDJpdb00NvD/8C9+NA+Z0tgJTXr2jKlew9A/BqAcAvA11sx1+igaXc/N59gzDIOrkRbSqaDiH3v17F24EEZ+DockJQPJyYOHywEG/F0zzBVBtzeAOnTiwDvYD4UPZcGz/Fvedq0ezww6VVB4Uu9+aCpD9Iw2ay0H8888FxSYLC0vwCCmBLIgLbPiQ2igwDBO0zQ6aBgtogoFw5ANBPv3FIwAAIABJREFUsXc3kRCrRMJz84Dn5oGiGVTWt+HCoZ/gPn0aYtMZyFsaEM+58yMfkvvuQzOA0WYufoiwwuaxIUwQdtN22z/bBZoAjqST+C9ogJQZN+8sy21HYDCCJgBNqxcNNhdiI26+zFZT/Xno6yjUjKYQbRwVBC9DBC4fhHYouHfJghwROwZI9GPYKRLfHPoGT/7+Dzdtk2EY/HLyW/zfX2k0T37kjmkew8LC8v8IKYHM02pBE4DSysDhcwRlI5bVbYWu0Q93OA1SN7i/5DgkgeQhkUie/xgw/7GBdue6EA4bBkIsQtRFLph7Xfi56RQmxd1c1Jvx+dD+5Zc4mQhMggP8+1+862pkswQgBQI4I7kYYqFgslgQG6G/aZtV//oGYQBaVZGYEBd6+ceDBq4AutHJaD1VjbZ//wMIgkA2tZsw9qgDDEkgflluEJxkYWEJNndPva5+QPB4cEm5UNuAdldbUGya2syIb2KASBqISAyKTZbbD8HjQZw+EpEWEjyGwYmqf9y0Tcfhf4Npa8PBEQRmuBlgxM1/cbIMHIxKAk07g9Lm4FTBcf74bzj5QKNiOGIj2EYIdzOq+38Pu4SBsvTXoNj74dSnmFjCoDFRg/jkuKDYZGFhCS4hJZABwKUQQ21l0N5RGxR7JRfOIrwT4KtkACekAu6DDvGY+yBrs2GU1YuSpp9v2p6tqAh2MQfWIRSGps0FBNIgeMkyUIi1SqhtgLnFHBx7v1TAPIQBNKPvutq2LFdC6B5AawyN5Bo7KIq6aXuOPfsg9AENjy0KgncsLCy3gpATyH65HOEOoN1eExR7zaWBsk9hsQlBsccycIjvDXQ4H1FDoNzZAIZh+jijd2inEx2HfsCRVBpT3U6QY/7U90ksdzRhsTrwKMBbd/Nl2n0NDQhr8cAeTUEWPzoI3rEMKJo0cDU+KDoZ/Hz0XzdlqqmzCSNPONCiIWCcNjM4/rGwsASdkBPIjCISik6g2RqcCDJjDnTlU6TdvS2mWQIIU1PBEASiGoWwwY8WV8sN23IcOQJ4vDhuIHA/Xw8ok4LoKctAoEhIAQDwLTcfQW4/egQA4IkikaBjl9DvergCqPWBqt/nv9t7U6Z+PvARtO1AZUIsRsUpguEdCwvLLSDkBDJXGQO+H2i1XAyKPWlDE/wcBrJh9wbFHsvAQUok4MfHQ2HhAwDOt954PqHj+3/CKSThi/IjdfSTQfKQZSARJAfKOErbmm/aVtOpI/BwAadYiaHRwSkLxjKwpKaOQXMYQJbc3AqD46uv4OMAraNnB6WcIAsLy60h5P46uVGBaI2zqTEo9iJbOuFQMCDUxqDYYxlYREOHIqI9kENYXnv0hmwwfj86/nUQJxIZTHR7IRoxK5gusgwQPMNwMGAg7+iEx39zeaaeknOoigLcSIZGLgyShywDiSD2PjSraWhrb/wBivL7EP1zM+p0DGLuHZy1sVlY7hZCTiDzYgLlmfxtN1/Fwu61Q9NKwR9GA+G6m7bHMvAIhw6FpNOFeLsf55tvrK2w68xZ0FYbTiQTSOCnAsKbr6fMMvAQ0gh0yoDwDi+abDfebIihKAgqGlAdBZCyUewGvVAheiTcKgpKmx/+9vYbMnH+h71QOICGOBnGJqqD7CALC0swCTmBLBkSiCAzNsdN26q2XIDaCiCcB3B4N22PZeARDhsKABhTR6G848Y2cjqPFYMhgJpYGolJs4PpHssA4w0jEWmjUX8T9w9vVRW4Xgp2FQ3hkPQgescyoKhTIYgIrCzU/3Rjq0+N3+yCnwSqtGOhixQH0zsWFpYgE3J1y+RDNOgAwOlw37Styl9OwACAr468aVssdwbClMBGLH0jD1+m2OGn/eCS1/dn0HnsGC6qCNwDD+Lvz7wVbrIMEEy4AOpKNyrbG3A/bizC5y4pAQD4IxjExt18wxGWOwQODzJtJIBOVP74A+Km/v66TfBOlqNiCMDV/55dWQgSJ0+eVHO53PcBpCEEg34stxQawDm/3//H0aNHW65+M+QEcrgmElYS4Dv8N22r1VQGAJDHsQ1CQgWOQgEqSovIpjZ4CQr1jnrEyftfZYD2etF56jTOjgDivFGQyCNuobcstxuOMgyKs2782HIRwIgbstF57iw8XMAvEyKV3aAXUuijDKiJOA3q0kPQ9eBraEBEkwelDzAwGIfdAu8GJ1wu932NRpOqUqnaSZK88dqdLIMOmqaJ5ubmoY2Nje8D6FFzMeSetsR8LpxiAsJO+qZt0bWVAACFYeRN22K5cxAkJUHWHvjVr7JcXx6y+5dfQHi9KIkjoAqbfAu8YxlIpDFRAABH9fkbttFx7hdUqwHCH4FEFds8JpRIGJKOag2gqLr+MqL1B74GALRoFLgvgV2VDCJpKpXKzopjluuFJElGpVLZEFh96Pn+bfbnlkMQBFwiDqROwEf5bsoW32KBU8BAYWDzCEMJeYoBYXYPSJqBufHkdZ3befw4GAB2LQXtsOxb4yDLgCGPDqwmEI0VN2zDX2nGRRUBLoZAyOMEyzWWOwCuZhgcShryDg/8ra3XdW7z99+gRQ40i4dCHym5RR4OSkhWHLPcKJd+d35TC4ecQAYAt5gPRSeDdvfNVbKQtHeiQw6IVGwXvVBCkJwELk0juYVCVVv5dZ3rPHUKtSoCOoZESgq7TBpqhMcmAwD4bQ03dD5ltYK0OlAfSUAkTgmmayx3AqoUkBGB9D13WVm/T2NoGtyzFSiNA/gRD4Ek2fxjFpY7naAJZKPRGGY0Gr8yGo0/GI3Go0ajcdyl4/cbjcZjRqPxiNFoXB2s+a6FRyKCwgG0O27sS64LhdUHj4wGZNogecZyJyBIDHS9G95Eo8pR1+/zGJqG88wvMMUAUk8MouSCW+UiywAh1QVErch+Yw/XHnOgC59VQUOiZLtvhhzh8ZCFBSpZtJ/9pd+neS5cgKDTD7uWhjph1K3yjmUAKS4ulsyePbu7YcLp06dFM2fOTMnKyjIuXbo0nqICvzfbtm1TzZgxIzUjIyN19+7d4QDgcDjIRYsWJWZnZxvnzp1rqK2t7VE2y2q1chYuXJiUnZ1tfPzxx1N+/PFHCQCcP39eMHfuXEN2drZx3rx5yS0tLRwAWL9+vTYjIyM1MzMz5dixY2IAaGpq4nbNk5mZmXLhwoXuLzGLxcKdMmVKmsvlIgCgtbWV88QTTyRlZWUZFy1alNjU1NTrnrXNmzerX3755Zirj5vNZv7MmTOviBS89957qry8vOjebH300UeRX331VRgAbN26VdXfOXft2hWRkZGRkpmZmbJ8+fK4ruvd9bkfeOCB4aWlpddVlD6YEeRlAL43mUyTADwJ4N1Lx7cCmA9gAoCxRqPxlif0emUyhDmBDuuNlfECAukZEXYGPhkH4ITcXsZBjSAxsCIQ18xFlc/a7/O81dVARyfORxMQi8axu9BDEDIyBk4hA2lH5w2d760MCGQijII8hm0uFHKQHERII9EiA5p+7n96VsexYwAAu0qMETo2/zjUeOutt6JWrVql83q93V8Kb7/9dvTixYsbioqKTD6fj9i3b19Yc3Mzt6CgQP3FF1+U7dy507Rx48ZYmqbx4YcfKlNTU52FhYWm6dOnt7777ruaq+fYsmVL1JgxY+yFhYWm1157zbxu3bo4AHjxxRd1OTk5dYWFhaY5c+Y0l5eXC0+ePCk+deqUbM+ePaWbNm2qXLt2rQ4A1q1bN2TGjBlthYWFpueff77OZDIJAWD//v3yRYsWGdrb27uF+caNG7Xp6emOoqIi04IFCyx5eXk9BLDT6SSWLFmiLygoCFpR74ULF7ZmZGTYAOCDDz7oIaR/a06n00ls2bIl+rPPPiv/8ssvyxwOB2ffvn1hAOD1eokVK1bo+Hz+dW9MC6byewtAV3V9LgC30WiUAxCYTKYKADAajfsBPAzgdBDn7YFfHgGSqUJngxm4we+o5voLEPoAWsZGCUMNUiyGR6WBsqUNLaDg8Dog5fe9mcp9JrChr01NI0U37Va7yTIQSJRwSABZpwc0zVz3UrjXXAk/ByBEHOii2AonocgQeQJ+VZcg+Xz/N3I2HzmAVjnQwYvBiCGKW+jd4GbHj1WRX5yqVQbT5qxRQ1oWjY+/ZsK5TqfzbN68ueKFF17orutoNBqdVquVQ9M0nE4nh8fjMSqVyr9v374SHo+HqqoqPo/Ho0mSxHPPPWfx+wOpO/X19XyZTNajleeSJUuaBAIBDQB+v5/g8/mM0+kk2tvbeQcOHFDk5+cPSU1N7Vy9enXt9u3b1WPHjrWTJAmdTuelKIqwWCzcs2fPSg0Gg2vu3LkGrVbrWbdu3UUAIEkSH3/8sSkrK2to13xms1m4bNmyOgAYP36849VXX+1R7sntdpNZWVmt48aNs1dWVl5XdNZsNvNzcnIS1Gq1t66uTjB06NDON954oyYvLy9aqVT6rFYrx+FwcHJzc+M2bNjQHe38rTkFAgGza9euMolEQgMARVGEQCBgAGD16tVD5s2b1/zee+9ddyrADUWQjUbjM0aj8dzl/wAkm0wml9Fo1AD4O4CVAOQA7Jed2gHglrcdYxSBBwtXY/+Xz6+mqSJQxocMZ29moQih00PRGhA/Va39yyV0/XIGbj4glpBI0rP1bUMSgRxuKYOwTj/anN7rPt1dUYH6CIBPS5CgZDdihSKJ2hGojgKkDS2gPX13XGQYBv5TZ/BrLAGGHIFIKRt0CTVmzZpl5fF4V2wU1Ov1nvz8/LiHH354WFtbG3fSpEkdAMDj8bB161bV/PnzUx977LFu4c3lcjFnzhxDYWGhetq0aT1aNYaHh1NisZhpaGjg5ubmJuTk5NS2tbVxa2pqhBMmTLB//vnnJrvdztm5c2ekw+HgXC6yxWIxZbPZOBaLhS+Xy/27du0q12g03k2bNmkA4JFHHrErlcorRLnBYHB99913CgD4+uuvFR6Pp4dejIiIoKZOnWq/+nhfEATBAEBdXZ0wPz+/au/evaXFxcVhDQ0N3UHb3NzcRqlUSl0ujnubk8PhQKPR+AHgf/7nf9Qul4vz8MMP2z/66KPI8PBw/6OPPnrdPgI3GEE2mUx/BfDXq48bjcZ7AHwG4AWTyfTDpQiy7LIhMgD9X9O+QbiRgZUAV0vzDduwlP+KOAB8dY9VBZYQQGI0gDxVDJImYa4/hjTtvX2e0/HzSVzQEhB4onDPELa9dEhCEPBJSUS20Gju8EB5nWLGVXEBdZEESH8YohWiW+Qky0ASFj0UHZE0SJqA58IFiIZde7Ou11wFnt2NqiGAUDPxNnk5OFk0Pr61r2jv7SI/Pz92x44dZWlpae5t27apVq1aFdsl9hYvXtz81FNPtSxYsCD54MGDjilTpnQAwOeff15eWloqXLx4cdL7779/fuXKlfEAMGPGjNYnn3yy5cyZM6Lly5cnLFu27OLkyZMdTqeTEIlEdNf5U6ZMsR05ckSu1+vdnZ2d3YLW6XRyFAoFJZPJqOnTp1sBYOrUqdY333yzV4GTk5PT8OKLL8ZlZ2cbH3jgAZtKpfIdPnxYumnTphgAeOqppxqnT59uu9Y1EIlEtM/nu0JYO51OsisSrtVq3XK5nAaAiIgIn9vtvuG0X4qi8PLLLw+pqakRbt++vYIkSezZs0cJALNnz5ZXVFSI/uu//ku/ffv281qttl+NMoK5SW8ogN0A5ptMpm8BwGQy2QF4jUZjotFoJAA8CuBwsObsDaE6HgDgbu/xENZvOisD1Q0UuqF9jGS5GwkfagCXZqBtZ2BuPtfneNrrhc90Hhe0gM8/FBr5da0msdxFMFIu5J1AY9v1BR1orxdUbT3qIwAhGQUOW6kgNFEmA+GB71dPaWmfw50nTwAAvFFAbFzSLXWN5c5BKpX65XI5BQBRUVG+jo4OTllZmeDpp59OpGkaPB6P4fP5NEEQTH5+vmbnzp0Rl86jSJJEcnKyp6CgwFRQUGB68sknW0pKSoQ5OTkJGzZsqJw2bZodAMRiMRMTE+M+dOiQFACOHz8uS0pKco0ZM8Zx9OjRMIqiUF1dzadpGiqVyp+Wltaxf//+MAA4evSoLCEhodeWw4cPH5bNmzevubCw0BQfH+8ePny4Y+LEiY4un/oSxwCgVqv9LpeLLCkpEQKA3+9HcXGxPD093Qmgz308DNP/6n0vvPCCzuPxkH/7298udKVaFBYWmgoLC00FBQWmxMRE1+uvv27urzgGgpuDnAdACGCT0WgEAJvJZHocwGIAOwFwAHxnMpmOBXHO30SojQcAULYbiqoDAJiGenSIAOUQtpRXKCJODnxRjWikUDWkqs/xHlM5CIpGlYYEN/xhdoNeCMNRiECiA43V54FhQ/p9nq+2FgRNoz6SxBBR/K1zkGVgiUiAQuKHi8+Dq+RXKGZfe3jHiZ9gEwOMUIa0GHblabCwZs2a6qVLlyZyOByGx+PReXl51Xq93mswGJyZmZkpBEFg3LhxtsmTJztSUlLcy5Yt0xcVFalomsbatWvNV9t7/fXXY3w+H9m1OU8ikfh37NhR8corr1StWbMm7o033iC0Wq1n9erVLQKBgBk5cqQjMzMzhWEY4i9/+UsNALz00ku1K1as0O3evVstkUiod955p7I3/w0Ggzs3N1e/YcMGKJVKb35+ftX1XgOSJLF27dqqlStXxpMkCb/fTzz44IPWKVOmdJjNZn5f5+t0Otezzz6r37JlS4/rcTknT54Uf/vtt8phw4Y55s6dawSAJ554oikzM/OmMhaCJpAvieHfOl4M4P5gzdMfhFGXNj52uG7YhqDFBruMQWI0m2saivATApUsEltIfOvuOxXHfam1LBXBIDbGcEt9YxlYxJEKAB1ou3gBwJR+n+e7eBEA0KggkBaWemucYxl4+BJoIESlBpCc/Rl97fxx/FSMsiEE/O5YDGNbj4cser3eu3fv3u4NLRMnTnRMnDixxwaXFStWNAC4ogatRqPxf/LJJ9fc9bljx47f7F6Unp7uKioqMl19fOXKlfUA6i8/Fh8f7/3ss896nefw4cNnu14nJyd7vvzyy35t0Fm4cGGvaS29XYerr1fX60t+AwB2797da6OCy+ccPXq0s6ys7JplZQoKCnpco74IyUYhMpkYLj5Adva9gaI3RB1euCQMwjVsk5BQhCOVolMegagWLqppD/z0tVddnOfOwiEEwA9Dipb9kgtlZFGB0pveputrJ+y9GBjvllEIU7MPUaGMWqCBOYqAv/wCGH/v9w6fxQKivhllsQQ8xIjrzmlnYWEZOEJTIAu5cIkAnrPfqSY9bXT44ZEApFDW92CWuxJ3dBwUrSR8BFBvq7rmWPvpY6jUEPC69UjRsL8ToYxCGwsA4LRcn0D2XbwIHxcQCxhERsXeCtdY7hB0imRUagiQXh88Fb2uUsN16hQAoCGahiBq3O1yj4WFJQiEpkAWcOESEuC7epQS7Be01wuZC/CK2QYhoQwZr4fC5gPBMDBf/LHXcbTXC7qqDpUaoNY1Cknqvmsms9y9RGoS4OUAwnbLdZ3nratFq4KAws/BkAi2xFsokxCTjvqowAairvSr38J5/Dg8PIAbBsTH6m6XeywsLEEgNAWykAe3kIDQ1f8dkJfjbArUT6bY5bCQRmJIBt9PI9IOmC0/9zrOU34eJMWgSQ2Q8lEQ8ji30UuW202YPBY2CSDuuL79Hb6LtWgIA8R+IWLDxbfIO5Y7AZE2BSKpHx4ecU2B7CguRmksAakvDGls/jELy11FSApkIY+ER8CB6AYFcnvNBQAAJWUjhaGMaligzWKKhYLZeqHXcV1fgN4IAVK0bOOYUIeQqtEhAWQOZ7/PYRgG3osX0RAO8Cg55CJ29SmkURqgp/yoiiLgutRh82p8Fgt8lWac1RGgXEPYChYsLHcZISmQCYKAR8iFxHV9dfS6sNUFcsrI8Mhgu8ZyB6G6JwUAMNRCotLZ1Os4+4kf0SEEbFwtm388GJBEwillIHN6+33/oKxWME4nmhQEBKSKLQMY6oQNQZwPOBfHwP3rr6Acjh5DnMd/AgCc0xHopNOgDWNrp7Ow3E2EpEAGAI9QALEXcDr7rGXdA1tVIJrIj2S76IUyvIgI2CQKxFo4OE87QTP0b46z//wTKrQEWl3DYNSwy6Qhj0QFr5iBvJNCp7d/+xi6SrxZFICI3//aySx3KQSBKK4S53QEQFFwnjjRY4jzWDE8QhIdkRQE6vHsQ1OIU1xcLJk9e7ax6+fTp0+LZs6cmZKVlWVcunRpPEUF7iXbtm1TzZgxIzUjIyN19+7d4QDgcDjIRYsWJWZnZxvnzp1rqK2t5V1t32q1chYuXJiUnZ1tfPzxx1N+/PFHCQCcP39eMHfuXEN2drZx3rx5yS0tLRwAWL9+vTYjIyM1MzMz5dixY2IAaGpq4nbNk5mZmXLhwoXuPFKLxcKdMmVKmsvlIgCgtbWV88QTTyRlZWUZFy1alNjU1NRjWay+vp43Z84cw6xZs4yLFi1KtNvtV2hKs9nMnzlzZsrlx9577z1VXl5edG/X8aOPPor86quvwgBg69atqt7Gbd68Wf3yyy93i7SdO3dGPProo0NnzZpl/PDDD5XXumb9JWQFslcYaPNqb+h96bw3XHU18HEAmZqtgRzqtGt0UFpIdBLARUvPjnq0ywWyrg2VWqDSNZqNIA8G+BL4xQwkHgatrf1rNuTtFsgEwuRsacjBQIwsEeUxBGgupzta3AXDMHAcOYLzcQQSfQR0sWxVk1Dmrbfeilq1apXO6/V2PwW9/fbb0YsXL24oKioy+Xw+Yt++fWHNzc3cgoIC9RdffFG2c+dO08aNG2NpmsaHH36oTE1NdRYWFpqmT5/e+u6772qunmPLli1RY8aMsRcWFppee+01c1fDkBdffFGXk5NTV1hYaJozZ05zeXm58OTJk+JTp07J9uzZU7pp06bKtWvX6gBg3bp1Q2bMmNFWWFhoev755+tMJpMQAPbv3y9ftGiRob29vVuYb9y4UZuenu4oKioyLViwwJKXl9cjYrh582bNzJkzW7/44gtTSkqKa8eOHcqbvZYLFy5szcjIsAHABx980ENIO51OYsmSJfqCggJ117Hm5mbu1q1bYz755BPT7t27Tfv27Yswm8383q5ZfwnZRDmfWAagAY76SiDp3us6l25uRrsUiIxIvDXOsdwxePVJUFSeAddPotS8H7qo4Ve87y4tA0kDDjUXPK4CMQrRAHnKcjthJIGNmO0XG6CLjuhzvK82sLG3Wc5ApUzpYzRLKKDXjgJTfxYNseEQH7uyQazr55/hr2/AwRkkZO5wpEWz+ce3hePbI/Hzpzct0q4g/Q8tGPOnXhthAIBOp/Ns3ry54oUXXuiOqhmNRqfVauXQNA2n08nh8XiMSqXy79u3r4TH46GqqorP4/FokiTx3HPPWfyX6mnX19fzZTJZj6WrJUuWNAkEAhoA/H4/wefzGafTSbS3t/MOHDigyM/PH5Kamtq5evXq2u3bt6vHjh1rJ0kSOp3OS1EUYbFYuGfPnpUaDAbX3LlzDVqt1rNu3bqLQKDj3ccff2zKysoa2jWf2WwWLlu2rA4Axo8f73j11Vd7iMt169ZdZBgGFEWhsbGRN2rUqH43nzCbzfycnJwEtVrtraurEwwdOrTzjTfeqMnLy4tWKpU+q9XKcTgcnNzc3LgNGzbUdJ3ndrvJrKys1nHjxtkrKyuFAFBZWclPSEhwRkZGUgCQmpraefz4cclvXbP++geEcATZLw3ckJyWi9d9Lqe9A1YpEKFkI8ihDt9gAIdhoGtmUNrQsxGP46fDgf+qtDBoZCBJdpl0MEBKA11Q7XUNfYwM4Kurg0vCgYTDIJxdeRoURManI87nR9kQwF1aCn97e/d79m+/BcPj4oSBgMcZz3bQC3FmzZpl5fF4V4gvvV7vyc/Pj3v44YeHtbW1cSdNmtQBADweD1u3blXNnz8/9bHHHusW3lwuF3PmzDEUFhaqp02b1n71HOHh4ZRYLGYaGhq4ubm5CTk5ObVtbW3cmpoa4YQJE+yff/65yW63c3bu3BnpcDg4l4tssVhM2Ww2jsVi4cvlcv+uXbvKNRqNd9OmTRoAeOSRR+xKpfIKUW4wGFzfffedAgC+/vprhcfj6aEXSZIERVHEo48+Ouz06dPyrs/YFwRBMABQV1cnzM/Pr9q7d29pcXFxWENDQ3fQNjc3t1EqlVKXi2MAiIiIoKZOnXrF0l5ycrKnurpa1NjYyO3s7CRPnDghd7lcnN+6Zv3xr4uQjSDT0sBDpKu5vo+RPRHa3LAoGcjVbA5yqBM+Ig0AcF8TgbLoqh7vNx39DjYZYKaG4x42vWLQwFdIAHhhq6vpcywQEMhWOQElxUCt7DvizHL3w4lKhdHrxQ/JTvzuMA1bYSEi//hHMBSFjm//Fy1DI+Hmt6CdGoX4SLYu9m1hzJ9a+4r23i7y8/Njd+zYUZaWlubetm2batWqVbFdYm/x4sXNTz31VMuCBQuSDx486JgyZUoHAHz++eflpaWlwsWLFye9//7751euXBkPADNmzGh98sknW86cOSNavnx5wrJlyy5OnjzZ4XQ6CZFIRHedP2XKFNuRI0fker3e3dnZ2S1onU4nR6FQUDKZjJo+fboVAKZOnWp98803exU5OTk5DS+++GJcdna28YEHHrCpVCrf4cOHpZs2bYoBgKeeeqpx+vTpNj6fzxw4cKDkwIEDsuXLl+sLCwu7WzqLRCLa5/NdIaydTifZFdXVarVuuVxOA0BERITP7XbfUNA2IiKCWr58+cUlS5YkyuVyv8FgcEZERPgB4Oprdj12QzaCDEUgdcXbdv1/KxKHH24JEK4ID7ZXLHcYsWkGuDk8JFv4KKUcYOgrN+r5y6pxQQuUWkfDGMUK5MGCJPLSClRT/1agfPX1aJExkPo5iA5j03AGBfIYpHiBsigvePeNQtvOT8D4/bDv2wd/czNOJvt3FUdaAAAgAElEQVSg9/khir6PXXkahEilUr9cLqcAICoqytfR0cEpKysTPP3004k0TYPH4zF8Pp8mCILJz8/X7Ny5M+LSeRRJkkhOTvYUFBSYCgoKTE8++WRLSUmJMCcnJ2HDhg2V06ZNswOAWCxmYmJi3IcOHZICwPHjx2VJSUmuMWPGOI4ePRpGURSqq6v5NE1DpVL509LSOvbv3x8GAEePHpUlJCS4e/P/8OHDsnnz5jUXFhaa4uPj3cOHD3dMnDjR0eXT9OnTbbm5uXEHDx6UXfKbJknyiii6Wq32u1wusqSkRAgAfr8fxcXF8vT0dCeAPjeu9reKkM/nQ0lJibiwsNC0bdu2ypqaGuG4ceMcv3XNroeQjSCTEYF0GV97j5WKa0I5OiHwAl4xCQGXbQgR6mjDJfgpTAu1pR3tpA9NjaegiQ7krHtrqiG0+tF4Hx8ULWMrWAwiFBFK+MkqUC2NfY5lGAa+hgbU38NA5BdCJWMbDA0KCAI6ThQAB6ofG43ote+h6dU82L7+GsIRw1GYUIpRnXzEG6MG2lOWAWDNmjXVS5cuTeRwOAyPx6Pz8vKq9Xq912AwODMzM1MIgsC4ceNskydPdqSkpLiXLVumLyoqUtE0jbVr15qvtvf666/H+Hw+smujmUQi8e/YsaPilVdeqVqzZk3cG2+8QWi1Ws/q1atbBAIBM3LkSEdmZmYKwzDEX/7ylxoAeOmll2pXrFih2717t1oikVDvvPNOr33SDQaDOzc3V79hwwYolUpvfn5+1dVjnn76actLL72k27JlC0MQBNasWXPFkhtJkli7dm3VypUr40mShN/vJx588EHrlClTOsxmM7+va6jT6VzPPvusfsuWLT2ux+XweIG9hdOnTx/K5/PphQsXNqlUKv8LL7yg+61r1te8XYSsQBYr4uDmAZS9Xykx3VAtzQAAH1vof1BAkgTqo5OQWPYDeH7gxzM7MOuSQG7+6m8AAE+CAWgCUrVsBHmwEC5RwyoBOO3NfY6l2trAuN2oU5AQMhJw2GjhoEGvuhccz0HsV7qw9JGH0f7JJyBEIthzF8JWsgLizhiMjGNXIgcDer3eu3fv3rKunydOnOiYOHFi2dXjVqxY0QDgis0NGo3G/8knn5y/lv3ehF16erqrqKjIdPXxlStX1gO4Isc0Pj7e+9lnn/U6z+HDh892vU5OTvZ8+eWXPfy/nNTUVHdBQUGPuS+nt+tw9fXqen3JbwDA7t27y3uzu3DhwivSA1asWNFw6dp2cz1i+LcI2RQLsUwNhwhgOlzXdZ6n2QIAoMVsUffBgjVlBLh+CuNqgX82/Nh9vObQfljFQE3kLAwJF0Eh7vOBlyVECJNEoV0KiGx9r0D56i5VsAgDRASbfzyYUBsnweD1obzlJwx55x0kfX8ACUVf4GjnERAMg0bHKKTHst03WVjuRoIukI1GY4rRaLQZjUbhpZ/vNxqNx4xG4xGj0bg62PP1hkwkgFMIkI5+Vx0BANgbAysEtJhdTh8sCO+9FxRB4pHGSByFB52WEjA+NzgVNlTpOLjQFIV72Daxg4pwaTTapQQkjr7T1nz1gYBHi5yAhM8upw8mpEkPIM3jQZ2vBjRDgxcTA358PI42FCPV60NL2AMIl7AP1iwsdyNBFchGo1EOIB/A5ap0K4D5ACYAGGs0GkcGc87ekAm5cAsBjst/Xec56qsAAEwY22Z6sJCk16BcEYu4iwJ4SQL/PvTfuPj+M5A5AHK4EdWtLqSxAnlQIZFqYJMAckeve1i68dUFBHJzGCCXXFcdepa7HbkWCT4R3IQPv7b+CgDo9HXijLsZiS4RjDq2qyILy91K0ASy0WgkAGwH8H8BOC8dkwMQmEymCpPJxADYD+DhYM15LaQCHtxCAnxX/1rFduGurwZNAJxw7S3yjOVOI0Ujw8+qJAgr6xDr4+MN2xn8818n4eMA0mkvAAArkAcZhCQSLikDqdsPyn1tkeyrr4dfxIVTSCBCkXybPGS5U0gVpEFAM/isdDcA4BtTIfwEgI5EPJSivvbJLCwsdyw3JJCNRuMzRqPx3OX/AHwN4BuTyfTLZUPlAC5fo+wAcFuUhkzIhUdAQOCm+x58Ga6mBthFgEzaa6twlhBDr5TgZMwwEDSN/I4skKQc95QS8E2+Dw2+wJJ5Glvof3AhjoRXErh3OPpoFuKrq4MjjAcBTUOlNtwO71juIMITJuKxzk78r/kb2Dw2/O3Mdgx3e1DhGo+JhuA2dWNhYbl93JBANplMfzWZTGmX/wNgBPCM0Wj8FwANgO8QEMeXb/2XAbDepM/9QibkwsMnIXT1v5YeAPhb22CTAGEydmlssMDjkKBT0lCePArEx0XYcu5+iL1A6h//jLN1NkSHCREpZUt3DSpEEaDEgftGe1XdNYf66uvRLgOUFI3IKPa+MdjQTfwPZHR44WE8WPDtAtT5bHjcLgQZNx5yIW+g3WNhYblBgpZiYTKZkkwm02STyTQZQCOAqSaTyQ7AazQaEy+lYDwK4HCw5rwWMgEPHgEHXBpgnM5+n0daHbBJCEQqdLfQO5Y7jRSNDO+nZQA+H7z7/gHFnDkQjhiBE1XtGMHuQh988CXAJYFsq+1dIDMMA19dHZrlFBQUAY2C7Zg22OBII+GXPYqn2jsgcNnxcKcTxe2P4XdD2Q2bg4ni4mLJ7NmzjV0/nz59WjRz5syUrKws49KlS+MpKpDuuW3bNtWMGTNSMzIyUnfv3h0OAA6Hg1y0aFFidna2ce7cuYba2toeT1ZWq5WzcOHCpOzsbOPjjz+e8uOPP0oA4Pz584K5c+casrOzjfPmzUtuaWnhAMD69eu1GRkZqZmZmSnHjh0TA0BTUxO3a57MzMyUCxcudEd+LBYLd8qUKWkul4sAgNbWVs4TTzyRlJWVZVy0aFFiU1NTj9q31dXV/Llz5xpmz55tzM7ONpaVlV0RSTKbzfyZM2emXH7svffeU+Xl5fW6RP/RRx9FfvXVV2EAsHXrVlVv4zZv3qx++eWXuzsBHj9+XDxr1ixjVlaW8ZlnnklwuVwERVFYvnx53OOPP54ye/Zs4/nz568r0nU7yrwtBrATwHEAp00m07HbMCekQi48/MD/T8pm6/d5vA43OiQMwiJjb5VrLHcgKRoZzjIyRH7wERK/3Qftf69BdZsLdVYXHkhil0kHHQQBrixw/3DV9d4shLJaQXd2ol5OQ+LnQs02CRmUCCb8J5a227DbdBor23j4nvsgZgxn0/QGC2+99VbUqlWrdF6vt7sI+ttvvx29ePHihqKiIpPP5yP27dsX1tzczC0oKFB/8cUXZTt37jRt3LgxlqZpfPjhh8rU1FRnYWGhafr06a3vvvuu5uo5tmzZEjVmzBh7YWGh6bXXXjN3Nb948cUXdTk5OXWFhYWmOXPmNJeXlwtPnjwpPnXqlGzPnj2lmzZtqly7dq0OANatWzdkxowZbYWFhabnn3++zmQyCQFg//798kWLFhna29u7hfnGjRu16enpjqKiItOCBQsseXl5PdpSb9iwIXr+/PmWgoIC05/+9KeG119//aaX0BYuXNiakZFhA4APPvigxx+R0+kklixZoi8oKOhO8KdpGqtWrYp/7bXXqoqKikwTJkywV1dX8/fu3avwer3knj17ypYvX167bt266/LvlnTDMJlM8Ze9LgZw/62Y51pwSAJugQBAJ/zt7eBF932zYhgGAocfbhEgl7PF3QcTXZvwzkq1eCg+EPn594UWAMAEViAPSqRiEVx8F7yNvecg+y5Fl2sUNES0BDxOyJaWZ7kG6feMwJ+/W48Wqw3n3HosyxgGTRhbS/9282npp5F7K/YG9YY9M3Fmyx9S/9B6rTE6nc6zefPmihdeeEHfdcxoNDqtViuHpmk4nU4Oj8djVCqVf9++fSU8Hg9VVVV8Ho9HkySJ5557zuL3Bypu1dfX82UyWY/qAkuWLGkSCAQ0APj9foLP5zNOp5Nob2/nHThwQJGfnz8kNTW1c/Xq1bXbt29Xjx071k6SJHQ6nZeiKMJisXDPnj0rNRgMrrlz5xq0Wq1n3bp1F4FAx7uPP/7YlJWVNbRrPrPZLFy2bFkdAIwfP97x6quv9ijRs3r16tqwsDDqMp/6venLbDbzc3JyEtRqtbeurk4wdOjQzjfeeKMmLy8vWqlU+qxWK8fhcHByc3PjNmzY0N2hz+12k1lZWa3jxo2zV1ZWCgGgvLxcIJfL/du3b4+qrKwUTZgwwZqSkuL5+OOPVRMmTLABwLhx4zqXLVt2XUt8IX039wpFAABXc30fIwPQnU7w/Ay8IiBcwkaCBhP3xodDwufgQKml+9iR8y2IUYigixQPoGcsA0UkT4pWGeBvvoZArqsFAFwMJyAGu5FzsMLlkMh7/hkY75+OScMTsXBc/EC7xHIbmTVrlpXH412x2Umv13vy8/PjHn744WFtbW3cSZMmdQCBtshbt25VzZ8/P/Wxxx7rFt5cLhdz5swxFBYWqqdNm9ajQ1F4eDglFouZhoYGbm5ubkJOTk5tW1sbt6amRjhhwgT7559/brLb7ZydO3dGOhwOzuUiWywWUzabjWOxWPhyudy/a9euco1G4920aZMGAB555BG7Uqm8QpQbDAbXd999pwCAr7/+WuHxeHroRZVK5efz+UxZWZngzTffHJKTk9MvsUUQBAMAdXV1wvz8/Kq9e/eWFhcXhzU0NHQHbXNzcxulUil1uTgGgIiICGrq1KlXFKhvaWnhlpaWSp966inLp59+Wn78+HH5P//5T1lnZydHLpd3fy6SJBmfz9cfFwGEcKtpAPAJAg8LLkt1v8ZTrYGIoVdEQi5iN1cMJgRcDiYmq/B9aROYzDTQDPBjRQumpWlBEGzr4MFIhCAMbbIWaFotvY7x1QYEskUB3OtnV50GM1IBFy/PHDbQbgxq/pD6h9a+or23i/z8/NgdO3aUpaWlubdt26ZatWpVbJfYW7x4cfNTTz3VsmDBguSDBw86pkyZ0gEAn3/+eXlpaalw8eLFSe+///75lStXxgPAjBkzWp988smWM2fOiJYvX56wbNmyi5MnT3Y4nU5CJBLRXedPmTLFduTIEbler3d3dnZ2C1qn08lRKBSUTCajpk+fbgWAqVOnWt98880eaRNd5OTkNLz44otx2dnZxgceeMCmUql8hw8flm7atCkGAJ566qnG6dOn2w4ePChbt25d3Pr1680pKSlXdGYTiUS0z+e7Qlg7nU6yKxKu1WrdcrmcBoCIiAif2+2+oaBtZGQkpdVq3UOHDnUDwPjx422//PKLWCKRUA6Hg9M1jmEYgsfrv7YL6Qiy/1I3PNc1IkBXjG8N/F15RVxwSFYUDTZ+l6pGk92Dc3V2/O+5Rtjdfkwy9rpHgCXECRdGoF0KCKxtvY7x1taCkYnhEhCQCXukDbKwsAxSpFKpvyt6GRUV5evo6OCUlZUJnn766USapsHj8Rg+n08TBMHk5+drdu7cGXHpPIokSSQnJ3sKCgpMBQUFpieffLKlpKREmJOTk7Bhw4bKadOm2QFALBYzMTEx7kOHDkkB4Pjx47KkpCTXmDFjHEePHg2jKArV1dV8mqahUqn8aWlpHfv37w8DgKNHj8oSEhJ6LfJ++PBh2bx585oLCwtN8fHx7uHDhzsmTpzo6PKpSxyvX78+9q9//ev5++67r0c1BLVa7Xe5XGRJSYkQAPx+P4qLi+Xp6elOAH0Gn/pbgSwhIcHjcrk4XZvwTp8+LTMYDO7Ro0c7Dh061PV5JXq93tUvg5cI6QiyXxIBAPC09R4BumJ8cyCC7BOx6RWDkYdS1CAIYOuhCpyptSJFI8Ojw1jRM1iJkKjRKgekHR1gKAoEh9NjjK+2Dp5ICQAvFFK28g0LC0uANWvWVC9dujSRw+EwPB6PzsvLq9br9V6DweDMzMxMIQgC48aNs02ePNmRkpLiXrZsmb6oqEhF0zTWrl1rvtre66+/HuPz+ciuzXkSicS/Y8eOildeeaVqzZo1cW+88Qah1Wo9q1evbhEIBMzIkSMdmZmZKQzDEH/5y19qAOCll16qXbFihW737t1qiURCvfPOO5W9+W8wGNy5ubn6DRs2QKlUevPz86uuHrN+/fpYn89HdOVex8XFud98883uJXuSJLF27dqqlStXxpMkCb/fTzz44IPWKVOmdJjN5j57sOt0Otezzz6r37JlS4/rcTkCgYBZs2ZN1bJlyxIYhsE999zjmD59uo2iKBw5ckR+6Tpg/fr1PT7DtQhpgUwIIuHhAmjvPQJ0Od6WgJD2iaS30CuWO5VIqQD/3+QkbD54AQDw8TNj2JWEQUy4RIM2KQEOQ8Pf2gqeumdXNF9tLexhAeEcFZF0u11kYWG5Q9Dr9d69e/eWdf08ceJEx8SJE8uuHrdixYoGAFcsa2s0Gv8nn3xy/lr2d+zYUfFbx9PT011FRUWmq4+vXLmyHsAVOcHx8fHezz77rNd5Dh8+fLbrdXJysufLL7/s4f/l7N+//9drvQ/0fh2uvl5dry/5DQDYvXt3eW92Fy5ceEUqzUMPPdTx0EMPlV5+jMPhID8/vwY3SEgLZJ4gAg4RILT3r8xbZ+NF0AAYKVv3drDywqNGPJCkREWzAxOT2fSKwYxCFoPWS/vu/E2WHgKZoWn46urQGhMOHsMgiu2ix8LCwhIyhHQOslCoRIcIYOyOfo13N9TAIQIEvIhb7BnLncy4xEg8cT+7XD7Y4cs0cEkDOXDeS9UqLsff3AzG50OT1Aeln4JKw3bRY2FhYQkVQlogi0RqOIQEGEf/8rK9LU2wSgCRgK17y8Iy6BEr4ZUFynp2VPashNNVwaJe5oOCAjThbBc9FhYWllAhpFMsxBI1OkUAafX2azzV2ga7hIBYpL3FnrGwsNzxSJQQc2nYRVyQlT33iHirAqK5SuGFlOJByOu5iY+FhYWF5e4kpCPIYWIpnAKA09m/wtCM1QGbGAiTs22mWVgGPeJIRFAUmhUkvDU993l4KipA8Pm4EE5BSrNd01hYWFhCiZAWyFIBFx4hA56L6lc9PU6HGzYJoFCw+acsLIMeDg9h4KIxnAF+IwfZW1EBbrwODi4BKcF20WNhYWEJJUJaIEsEXHgEBDgUwDh71LC+AtrrBc9NwSECFIpem8uwsLAMIsI5AtRFAtzWZtDuK2vqeyoqQMcG6mTLeJED4R4LC8sdQnFxsWT27NnGrp9Pnz4tmjlzZkpWVpZx6dKl8RQV6Hi8bds21YwZM1IzMjJSd+/eHQ4ADoeDXLRoUWJ2drZx7ty5htra2l7bvX355ZeKxYsX67t+/v7772WPP/54SnZ2tvGZZ55J6Oqgt379em1GRkZqZmZmyrFjx8QA0NTUxO2aJzMzM+XChQvdTR8sFgt3ypQpaS6XiwCA1tZWzhNPPJGUlZVlXLRoUWJTU1OvKbmbN29Wv/zyyz2Ek9ls5s+cOTPl8mPvvfeeKi8vL7o3Wx999FHkV199FQYAW7du7bWU1NVz7tq1KyIjIyMlMzMzZfny5XEUReGjjz6KnD17tnH27NnGmTNnpqSlpY1qb2/vdy5cSAtkmYALjyjwESmr9ZpjqUtd9HwiIELKLpeysLAAETwpGi51kPZdvNh9nHa54KurQ4c6cK8IF7EP1Swsg5W33noratWqVTqv19tdOP/tt9+OXrx4cUNRUZHJ5/MR+/btC2tubuYWFBSov/jii7KdO3eaNm7cGEvTND788ENlamqqs7Cw0DR9+vTWd9999zc7VK1cuTL27bffjqFpunueV155Rbdt27YLhYWFpri4OM+OHTuUJ0+eFJ86dUq2Z8+e0k2bNlWuXbtWBwDr1q0bMmPGjLbCwkLT888/X2cymYQAsH//fvmiRYsM7e3t3cJ848aN2vT0dEdRUZFpwYIFlry8vB43OafTSSxZskRfUFDQs0j8DbJw4cLWjIwMGwB88MEHPYT0b83pdDqJLVu2RH/22WflX375ZZnD4eDs27cvbOHCha1dnf+MRqPzz3/+c014eDjVX19CepOeRMCFh08CoOBvt4IX0/uXmL810EzEIyKgEPXZ4IWFhWUQEMGXozHcDgDw1tRAkJwceG02AwyDeqkfABAVru/VBgsLy+2h7e87I2179gS1DFXY44+3RDzxH63XGqPT6TybN2+u6OooBwBGo9FptVo5NE3D6XRyeDweo1Kp/Pv27Svh8Xioqqri83g8miRJPPfccxa/P3Avqa+v58tkst8UcSNHjnRMnTrV+umnn3ZHVv/+97+bNBqNHwAoiiIEAgF97Ngx6dixY+0kSUKn03kpiiIsFgv37NmzUoPB4Jo7d65Bq9V61q1bdxEIdLz7+OOPTVlZWUO77JrNZuGyZcvqAGD8+PGOV199Ne5qf9xuN5mVldU6btw4e2Vl5XVFFs1mMz8nJydBrVZ76+rqBEOHDu184403avLy8qKVSqXParVyHA4HJzc3N27Dhg3dm0B+a06BQMDs2rWrTCKR0Jddh+682p9++klsNptFl9vpDyEdQZYKufAIAs8AfUaQ2wK//14hiTBxr6sbLCwsg4hwYTgaL0WQu6pWAICnItChtUrSCQCIjUq97b6xsLDcGcyaNcvK4/Gu2Oik1+s9+fn5cQ8//PCwtrY27qRJkzoAgMfjYevWrar58+enPvbYY93Cm8vlYs6cOYbCwkL1tGnT2n9rnjlz5rQTxJXdXaOjo30AUFRUpDh58qRs/vz5rQ6Hg3O5yBaLxZTNZuNYLBa+XC7379q1q1yj0Xg3bdqkAYBHHnnErlQqrxDlBoPB9d133ykA4Ouvv1Z4PP8/e/cdHlWV/3H8fae3THolJIR2adJBuoCIorioCLqKCmLXZdWfBeta1tVVEBEFdW2IYkNdUVYpivQiSC9DEkiAFFJIb1N/fwQkNClOMinf1/Pss5mbO+d+ZzxMPnPvuedUnZQXw8LCPMOHDy8+x7cLRVF8ABkZGaapU6emzZ8/f9fatWuDs7Kyfj9p+/DDD2fbbDbPiaH2VMfUarUc/ZIwa9asqIqKCu2wYcN+32fWrFmx995773GrCp6NRn0G2WbUUWnUAxV4Ck7Z337nzjsSkI16goyN+m0RQpylcEsUZWaFUqORkPSaATkFtFrSzMXYvF7i49v9QStCiLoQNu7G/DOd7a0rU6dObT579uzdnTp1qnz77bcjn3766eZHw95dd92VO2HChLybbrqpzdKlS0uHDBlSAvDFF1/s2bVrl+muu+5q/e677yY/9thjLQBGjhyZP378+LzTHWvGjBlRP/30U9iHH36YbDabfTabzXN0LDJAeXm5NiQkxBMUFOS54oorCgGGDx9e+Oqrr572svr999+f9cQTTySMHj1a7d+/f1FkZKRrxYoVtunTpzcDmDBhQvYVV1zxh8sUm81mr8vlOi5Yl5eXa4xGoxcgNja20m63ewHCwsJclZWV533S1uPx8Mwzz8Tv37/f9M4776RqNNVNFRQUaA8cOGA6+h6fC78lQVVVtcCrQE/ACDzjcDi+V1W1DzAdcAOLHA7Hs/465pnYjDoqDNVj0D2FfxyQj55BdplNaDTKH+4rhGgaIm1xkAvpYUGEb9v6+/aq3Q4MiYnkegqJ8niIjDrtPSdCiCbIZrO57Xa7ByA6Otq1adMm2+7du40vv/xy/Lvvvpuq1+t9BoPBqyiKb+rUqTExMTHOG2+88bDNZvNoNBratGlTNW/ePMeZjvPKK6/E7Nq1yzp37lyHxWLxAfTu3bv05Zdfjp80adKhgwcPGrxeL5GRke5OnTqVLFy4MPjGG288vGbNmqCWLVtWnq7dFStWBF1//fW5/fv3L/v6669DCgsLSwcOHFg6cODAM9Z0VFRUlLuiokKzY8cOU8eOHSvdbjdr166133HHHdkAJ54NP9HZzD521EMPPZSo1+t977//fopWe+w+vJUrV9p69Ohxzme5wb9nkG8C9A6Ho7+qqs2AMUe2vwWMBvYCC1RV7eZwODb58binZTFoqdCb8QLuvNw/3NeVm0elHtDLalhCiGph9uZofD52NrPQccNu3IcPo7HZKFu3jpCrr6LI+x0hHg1abaMerSaEOEfPPvts+qRJk1pptVqfXq/3vvjii+lJSUnOtm3bll911VXtFEWhb9++RYMHDy5t165d5YMPPpj0zTffRHq9Xp5//vmTVyY6hezsbN2HH34Y16pVq/Kbb765LcDw4cMP33HHHbndunUrveqqq9r5fD7lySef3A/w1FNPHZw8eXLil19+GWW1Wj0zZszYe7q227ZtW/nwww8nvfLKK0RERDinTp2adq7vgUaj4fnnn0977LHHWmg0GtxutzJo0KDCIUOGlOzbt++MN3slJiZW3HPPPUkzZ878w/dj48aNlh9++CGiY8eOpdddd50KMG7cuENXXXVVYWpqqik+Pr7qXGsH/wbkS4HtqqouABTgb6qq2gGjw+FIBVBVdSEwDKiTgKwoCopipcwEwXlZf7ivMyeTIivosdVFaUKIBkBnjSLC42FPggY2QPm6dWiC7PgqKrAOGkRh6jwSvMYzNySEaNSSkpKc8+fP33308ZGzrbtP3G/y5MlZwHGBJCYmxj137tzksznO4MGDSwYPHlxy9Hk7duz47VT7PfbYY5nAceNuW7Ro4fzss89Oe5wVK1ZsO/pzmzZtqv773/+eVP+p3Hzzzacd1nK69+HE9+voz0fqBuDLL7/cczbH7NGjR/nu3bs3nmq/+++//9CZX8GpnVdAVlV1IvDACZtzgUpgJDAI+AC4Aah5arsEaHk+xzxfimKjxAxVeX/8HlXlZlFkAb02uI4qE0LUe7ZIIj0eDsQ68VptlK1eg2IyoRiNGHv1oDDNS7ASEugqhRBC+Nl5BWSHw/Ee8F7NbaqqfgZ873A4fMAyVVXbUh2Og2rsFgT88XQSfqbR2imxgOsMY5DdefkUWxSMMiCysWEAACAASURBVOG/EOKooDii3B4OGMsobd8Fw7JloNFgubA3Oe4SvIpCsD4s0FUKIYTwM38OnFsJXA6gqmoXYL/D4SgGnKqqtlJVVaF6GMYKPx7zjLSaEErMCp7CP7zZEm9BEYU2MBn9Nt+1EKKhs4QT6fXh1FVy4II+uHNycGdnYx9xObsyq+9VCbfEBrhIIZo0b82FM4Q4F0f6jvdUv/PnGOT/ALNUVV1L9Rjku45svwv4BNBSPYvFOj8e84x0hjBKzOA7XHbafXweD0pxOYVWBYvllAvYCCGaIo2GKJ2VSq2HzWoPrtm8CZ/LhTYoiL0/vQFAXEhigIsUoknbnpub2yEyMrJIo9Gc/bQHosnzer1Kbm5uMLD9VL/3W0B2OBxVwK2n2L4W6OOv45wrnT6CEgsoJaedzQR3fj6KDwpsCq2CmtdhdUKI+i7KEAIUklaUhcbUDUzVC0al5VffP9IhvnMAqxOiaXO73bdlZ2e/m52d3YlGvviZ8DsvsN3tdt92ql82+hUxjOYoSswKGpcXb0UFGrP5pH08edXzbxdaISQ4vq5LFELUY1GWCKgqZF/B8TPhZJelE+bz0DyhU4AqE0L06NEjB/hLoOsQjU+j/7ZlM0dQciQTn265aXdu9RzJpRaIsNnrqjQhRAMQZatebCqn/BCVrmOrsea784h3eVDsp12MSgghRAPV6ANyiNFGWfUV0dMH5CNnkN0WCDHr66o0IUQDEBVcPcbYpM1nb271vQw+n48CTRnRXj1otH/0dCGEEA1Qow/IdrOeqqMBueDUU70dPYPsNGkItkhAFkIcYw9Jwuj1YtHnkpxTAkBGUQlFWg9RWrniJIQQjVGjD8hBJj0uU/UMMO7TBuQ8Koyg1egJMZ9x9UMhRBOi2JsR5fFg1OeTklMKwNr0FHwKxFviAlydEEKI2tAEArKOKlP1JdCjN+OdyJ2XR4kVdB4DwTLEQghRkz2WJJcbn7mQ5EPVAXl7xlYAWke0DmRlQgghakmjD8g2kw6XQYtbC66cnFPu487NocAGWq8Zk77RvyVCiHMRFEtbp5NiXQl7cqqvQmXkVU+b2Ta2SyArE0IIUUsafRq0m3TovAZKrMfGGp/InZNDnk1B57OiKLIgjxCiBp2RthjxKj72l6aTU1JJZlEqVq+X0Mj2ga5OCCFELWj0ATnIpEfjNVBoA3fOyQHZ5/PhzsvjsA20SnAAKhRC1HdtjywnrRiyGPfuOip1ObRwuVDCkgJcmRBCiNrQBAKyDrxGDtuqh1KcyFtWjq+yikKrgl4bFoAKhRD1XWJ0F/Q+H2rzEvbkHCbfXExPtwIm+VIthBCNUaMPyDajDp/HTJ5NOeUQi6OhudAKen1kXZcnhGgAdHHdaO10EWnPxB56AI8C/YzRgS5LCCFELWn0Adlq0OHxWjhsU/AWl+Ctqjru9+5D1QG5IAiM5thAlCiEqO9iutDG6SStNIVxg0ox+Hx0bz4o0FUJIYSoJY0+IGs0CopioyCo+vGJZ5FdGRkA5AYrWK3N67o8IURDEN2BLlUu8lylfL7nS7pVVmFqIQFZCCEaq0YfkAEUTTAF1uqfT7xRz5WRgU+BPDuE2+SSqRDiFPRmRpvjuV0Jx+lzc1FFJST0CXRVQgghaoku0AXUBY02lELbkdX0TnEGuTJIi08DUbaQQJQnhGgAtLFdmZTyE1eFxtPMEgomWWZaCCEaK78FZFVVg4HPABtQBYxzOBzZqqr2AaYDbmCRw+F41l/HPGv6SAqOvNITA7Iz4yAldrB6FUItxjovTQjRQLS6GLZ8SkJZDvS9L9DVCCGEqEX+HGIxHtjmcDgGAp8DDx/Z/hZwAzAAuFBV1W5+POZZMRijKLGAT3PyTBaujEwK7D4sHi2hFkNdlyaEaCguuBZuXVQdjntNDHQ1QgghapE/h1hsA9od+dkOuFRVtQNGh8ORCqCq6kJgGLDJj8c9o2BTCD6XgsumxV1juWmf04n70CHyEr0YPHpCLPq6LEsI0ZAoCiRcWP0/IYQQjdp5BWRVVScCD5yw+V5guKqqO4EwYCDVQbm4xj4lQMvzOeafEWYKARdU2hTchw79vt2VnQ1eL9nBPnQeowRkIYQQQghxfgHZ4XC8B7xXc5uqql8DLzscjrdVVe0MfEX1sIqgGrsFAYXnWet5s5tNmAqhKBTC9u37ffvRKd4OhijgMREiQyyEEEIIIZo8f45BLgCKjvycA9gdDkcx4FRVtZWqqgpwKbDCj8c8K3aTHotXy6EwD+6sLDwlJcCxgLwvVAMeG1aDtq5LE0IIIYQQ9Yw/A/JTwM2qqi4HvgFuP7L9LuATYD2wyeFwrPPjMc9KkEmHwaPnYJgHgKrkFACcBw+CRkN2sIKiBKMoSl2XJoQQQggh6hm/3aTncDgygctPsX0tENAZ9YNMOnQeI/siiwAtVcnJWLp3oyo5BU2kHa+mFEUbGcgShRBCCCFEPdEkVtILMurBYyY9WIvGYqYqORmf10v5hg14WoUCoBhiA1ylEEIIIYSoD5pEQLaZdHjdVgp1GowtmlO1Zw9Ve/bgLSqipHn1zBVGU7MAVymEEEIIIeqDJhGQg0w63J4gyjUadPHhVO3ZQ/n69QBkxzoBiDDJEAshhBBCCNFEAnKwWU+lJwQAT4wFT2EhBXM/Rd+8OVnG6hktom0SkIUQQgghRBMJyGFWA+Xu6rHGFV3DMXXpjDMtDUvvXuS5ijF7FMIslgBXKYQQQggh6oMmEZDNei1VhANQrBSROGcOUY8+SsTtt5PrqcTsNsgqekIIIYQQAvDjNG/1maIo2PRhVAAFFbloDAbCJ4yHikLyNKB3mwmVVfSEEEIIIQRN5AwyQIipeohFUWXBsY0lWeRpteC2SUAWQgghhBBAEwrIYebqm/QKqgp/3+YryiBPq8XlDiEySAKyEEIIIYRoQgE53GrB6NVQWOMMcnFhOk6NQrk7nAibMYDVCSGEEEKI+qLJBORQix69R0+htwoqiwHIK9oLQIU3imCz3KQnhBBCCCGaUEAOsxjAY6ZAo4HD1cE4t+QgABZ9NIqiBLI8IYQQQghRTzSZgBxqNeB2hZKl00F+CgB5BdVBOcwUEcjShBBCCCFEPdJ0ArLFQJkzloM6Hd78VPB6yCvJACDKIgFZCCGEEEJUazoB2WrA5YzCqVHIydsF+ankKh60Xi3RtuBAlyeEEEIIIeqJP7VQiKqqVwNjHA7HDUce9wGmA25gkcPheFZVVQ0wE+gCVAG3ORyOlD9X9rkLtejxuqpX0ztQmEpM1hYO6HQoLjuRQaa6LkcIIYQQQtRT530GWVXV6cCLJ7TxFnADMAC4UFXVbsBVgMnhcPQFJgNTz7/c8xdqMeB1HgnI5dmQtZk9RiOVlfEyxZsQQgghhPjdnxlisRq4++gDVVXtgNHhcKQ6HA4fsBAYRnVY/hHA4XCsBXr+iWOet1CrAZ8rGA0KB3xVlO7+ngydFk9VHBFBEpCFEEIIIUS1Mw6xUFV1IvDACZsnOByOz1VVHVxjmx0orvG4BGh5ZHtRje0eVVV1DofDfX4lnx+rQYtBq8emiWC/BVLyMiEkBk9VDJFyBlkIIYQQQhxxxoDscDjeA947i7aKgaAaj4OAQsBywnZNXYdjAEVRCLXqMSixHIgOY0/8AMhZgbcyVpaZFkIIIYQQv/PbLBYOh6MYcKqq2kpVVQW4FFgBrAIuh99v4tvmr2Oeq1CLAa0ngoOlmThCYjForPjcwTIGWQghhBBC/M7f07zdBXwCrAc2ORyOdcA3QKWqqquBaZw8XKPORAYZcVaGUeIqYXnGckK0Cei1GllmWgghhBBC/O5PTfPmcDh+AX6p8Xgt0OeEfbxUB+eAaxFuZfO2diR2TCS9JJ14bSeigkyyzLQQQgghhPjdnwrIDU2LCCslZTbeHvoJv2R9z5yfLLSMtAa6LCGEEEIIUY80mZX0AJIiLABkF3n5q3oD+3PMtI6yBbgqIYQQQghRnzStM8jh1WeL0/LKiLYbKXd6JCALIYQQQojjNKmAHB9qQaNAWn4Z4bbqqd3aRAWd4VlCCCGEEKIpaVIB2aDTEB9qYV9e2e8zV8gZZCGEEEIIUVOTCshQfaNeen45NqOOMKuBMKssEiKEEEIIIY5pcgE5KdzCpvQCDDqNnD0WQgghhBAnaVKzWMCRqd6q3GzaXyABWQghhBBCnKTJnUG+skscGQUVZBZVcG2P+ECXI4QQQggh6pkmF5AjbEaeHNkh0GUIIYQQQoh6qskNsRBCCCGEEOKPSEAWQgghhBCiBgnIQgghhBBC1CABWQghhBBCiBokIAshhBBCCFGDBGQhhBBCCCFqqJfTvO3YsSNPVdX0QNch/pTE2mhU+kajUCt9A6R/NBLy2SFOp9Y+O4Q4keLz+QJdgxBCCCGEEPWGDLEQQgghhBCiBgnIQgghhBBC1CABWQghhBBCiBokIAshhBBCCFGDBGQhhBBCCCFqkIAshBBCCCFEDfVyHuSaVFXVADOBLkAVcJvD4UgJbFWBoarqb0DxkYf7gLeB6YAbWORwOJ4NVG2BIH3jeNI/jif94xjpG8eTvnE86R9CnKzeB2TgKsDkcDj6qqraB5gKjApwTXVOVVUToDgcjsE1tm0GRgN7gQWqqnZzOBybAlRiIEjfOEL6xylJ/0D6xmlI3zhC+ocQp9YQAvIA4EcAh8OxVlXVngGuJ1C6ABZVVRdR/d/tGcDocDhSAVRVXQgMA5rSh5j0jWOkf5xM+kc16Rsnk75xjPQPIU6hIYxBtgNFNR57VFVtCMHe38qBKcClwF3AB0e2HVUCBAegrkCSvnGM9I+TSf+oJn3jZNI3jpH+IcQpNIQPhGIgqMZjjcPhcAeqmADaA6Q4HA4fsEdV1SIgrMbvg4DCgFQWONI3jpH+cTLpH9Wkb5xM+sYx0j+EOIWGcAZ5FXA5wJGxYtsCW07A3Er1ODlUVY0DLECZqqqtVFVVqP72vyKA9QWC9I1jpH+cTPpHNekbJ5O+cYz0DyFOoSGcQf4GuERV1dWAAkwIcD2B8h7woaqqKwEf1R9qXuATQEv1ncbrAlhfIEjfOEb6x8mkf1STvnEy6RvHSP8Q4hQUn88X6BqEEEIIIYSoNxrCEAshhBBCCCHqjARkIYQQQgghapCALIQQQgghRA0SkIUQQgghhKhBArIQQgghhBA1SEAWQgghhBCiBgnIQgghhBBC1CABWQghhBBCiBokIAshhBBCCFGDBGQhhBBCCCFqkIAshBBCCCFEDRKQhRBCCCGEqEECshBCCCGEEDVIQBZCCCGEEKIGCchCCCGEEELUoAt0Aady4YUX+po1axboMsSfsGPHjjyHwxHp73albzR8tdU3QPpHYyCfHeJ0avOzQ4gT1cuA3KxZM77++utAlyH+BFVV02ujXekbDV9t9Q2Q/tEYyGeHOJ3a/OwQ4kQyxEIIIYQQQogaJCALIYQQQghRgwRkIYQQQgghapCALIQQQgghRA0SkIUQQgghhKihXs5iIYQQQohjispdzF6ThlGnYWi7KNpEBwW6JCEaNQnIQgghRD22aX8Bt3+0gbxSJwBTF+/h7XE9GNIuKsCVCdF4yRALIYQQop6qcnt46MstGHVaFkwawNrHLkaNDuKOORtYtzc/0OUJ0WhJQBZCCCHqqbeX7SU1t4ypw2yoyx4lbP7/MbffYeJDLUz6bBP5pVWBLlGIRkmGWAghhBD1UIXTw39W7OXxhJ20nfY6KZus+LwKGv0SPhrWgcssE5j89TbeuakHiqIEulwhGhU5gyyEEELUQ99vzSSyaj9XL5/JoY02rP36EfvP5zC3iqH0h918sXsaP+3I4rutWYEuVYhGRwKyEEIIUQ/NXZfOG663yN9mJGjIQOL/8x4h144h4b/LiBihotmRzaw97/DMt9spKHMGulwhGhUJyEIIIUQ9k3yoBHvGcmy/HkYxmoh57oXjhlFETplH+IUhJOxKYdSO+fz7x90BrFaIxkfGIAshRD2yYOlW0qe/SYirDGs7lUuevh9LsMx529Qs3J7FpNJ5lB0yEXH/nfxSvoXvfv4Oi95Cv7h+XNHyCiJf+4KqsUMZu/UnHrK35dce8fRqERbo0oVoFOQMshBC1BMfv/MtEZPGMyh5JWpeMm0XzGXz0EvZv25ToEsTdSx96zLiUvNQ9FpmtkjlgV8eYHv+dtZnrefxlY9z68JbyTeZifvnM+gtbv752/s8/+lanG5voEsXolGQgCyEEPXA1t0HaD3reUJN5bS5NIseI3aTcEkhRl85ubdPJGP1+kCXKOpIVlEFPbO+oyjNwv6+LZl3aCF3d7mbRaMXsWTMEp7r9xw783dy28LbKOx8Gc3GXYCpvJLrF8/inWUpgS5fiEZBArIQQgSY1+tjxyOPEVxZSrNLDKTdMp21186iqG9/Ol+cjsbgIeueeylN3x/oUkUdWLotnUFZW/B5FGYl7eXattdyd5e70Wq0KIrC1W2u5s2L3ySjNIN7f7oXbn2dyB4eumWmsOuDT0jLKwv0SxCiwZOALIQQAbb6l9/osmcj+vZOHhrQlWs3v8ztG1/kcncKz/bsS8Lggxg8FWy95Xa8FRWBLlfUsuLN83Ed1FAUqie3RTD3d7//pHmOe8X04pWLXmFn/k6e2vwaYZOnYomq4u7N85j6wRJ8Pl+AqheicfDrTXqqquqB94EWgBH4J7AT+BDwAduBex0OhwySEkKII0pnvki4xseTl8WSVriHB3s8SKeITiw9sJRPd33K1i6tmF6+H93PHtbd/xh9334t0CWLWuJ0e2mb8QOlh4ws6+Xmri53E2wMPuW+g5sP5v4e9zNt4zQuiLiAGyYOZu/UVYz6agpfDujE2L6t6rh6IRoPf59BHgfkOxyOgcBlwBvAq8CTR7YpwCg/H1MIIRqsFEc6CTt3sLmjwh5zBTMvnsmEThPoFdOLR3o9wjvD3+GwzsBdvWMwdqogZNlCdn/4aaDLFrVk674sLshIRvEqbO1kY3Tb0X+4/4SOE7g44WKmbZzGjmG3ETvEQLPCPNL+/QoHDpfXUdVCND7+DshfAk8d+VkB3EAPYNmRbT8Aw/x8TCGEaLAOzHwZxQuz+2iZ3Hsy3aO7H/f7XjG9ePuStynUG3j0UiuaaC/OV/5F0bYdAapY1KaMjQsoztKTHwSdB12DWWf+w/0VReH5/s8TY43hsbXPo7t/JsGtyhm5exmvTf0ct0cu2ApxPvwakB0OR6nD4ShRVTUImAc8CSgOh+PoYKgS4NTXioQQoonx+XyEr19BWiwEtVEZ3ebUZws7RnRkykVTcRg0zBvpRmvwsOvOe3EXF9dxxaK22fb+SNkhI5tbKoxtd91ZPSfIEMQLA14gozSDV7J/Jub+ezDY3Fz/wwxmfr+llisWonHy+016qqo2B5YCcxwOx1yg5tfXIKDQ38cUQoiGaM/ixegLXPzUScP/9XoYrUZ72n0Hxg/ktgtu47MoC9lDi7EXHGL1XQ/IzViNSGlFFR0ObkTvVCju2oqk4KSzfm6P6B6M7zSeeXvmsbxtL+JGt8JWUU7Ym8/yiyOnFqsWonHya0BWVTUaWAQ86nA43j+yeZOqqoOP/DwCWOHPYwohRENVMud1PBofOb1acGHMhWfc/96u99ItqhtPdInE2LWUyN9Ws/xfM+qgUlEXHJtWUpzrw6tAq2FXnfPz7+t6H2qoyj/WPkv5nW8Q3k1Dj/0Ovn15Jun5MvWbEOfC32eQHwdCgadUVf1FVdVfqB5m8ayqqmsAA9VDL4QQoknzeb3od6eyLVHDtf3vPGkar1PRaXS8NPAlNHozj18ajaVZJeEfv8WyrxbXQcWitpXuWkxhtonkOIWhHf9yzs83aA28NPAlSp2lPP3bq0S89BHGMDe3//oFj876kdIqdy1ULUTj5Ndp3hwOx9+Bv5/iVxf58zhCCNHQZf78LYYS2NJfz3MtLjvr58XZ4niu33M88MsD/Hd0OJe/X4z5+Uf5MSKWyy7qVIsVi9oWnr4cJVdL3mXNiLREnlcbrUNb82DPB3lp/Ut8Hj+Qa/7xEPsefJWHFr3AA/HxvHVzb7SaM38ZE6Kpk4VChBAiAHK/eBcAy4ChGLSGc3rusMRhjGk7hnetVRwaZcLuKofH7uPTlbLMcENVXlqIMTsdDRAxcOifauuGdjcwoNkApvw6hb09BxF9w0CsORVc+d1T/PvH3f4pWIhGTgKyEELUNZ8P96697ImDUYPGn1cTj/R6hLahbZncyobxYj2Jhw/Bcw/wxk975Ma9Bihtw2Iy841U6aDb4LF/qi1FUXhhwAuEGEN4aNlDaP5vCvau0bTZsZ/geS8wd50sWS7EmUhAFkKIOla+fTnWXNjZ2kTnyM7n1YZJZ+LVwa/iwcfDQ1ti722g6/4UrG88xvPf78LrlZDckJQnL0OTbSAt0URi+J9fAS/MFMaUwVPILM3ksZWPE/XONxhjzAz79Vd2zZkqM1sIcQYSkIUIAJ/TSemKFeRMn07erFkUL1qEp1TuMm8q9n3+DgC+nv3P6ua800m0J/LKRa+QXJzGS+P6ENTRQp9dO2nz8WQenbdFFok4TwcLypm9Oo380qo6O6Zl/zoi8hXc3dv7rc1uUd2Y3HsyKzJWMCP5A5p/9BWKUcdNq37gv/95g20Hi/x2LCEaG7/epCeEOLOyNWvIfuZZnOnpoNGAtzrEKCYTYTffTPgdt6O12QJcpahNhVu3oLXA0BG3/um2BjQbwKO9HuXF9S8S9fdRjH/1J7puSSZE8yB/q3yRaX/tiUl/+vmVxfEqXR7uem8NVcnJvBTRnA8n9uHCluG1ekxvVRnFuYcIxkrcoEv92vZYdSx7CvbwwfYPaNGvBZe/9yHpN93Mfcs+ZbrezJ333UOnZrJ+lxAnkjPIQtShogUL2D/xNgCavT4d9beNqFu3kDjnI4Iuvpj8d95h78grKV0h04U3Vr7CDMwH3OxsoaV3fFe/tHlD+xuY2GkiX+z7lk8fvhJbpxhabMpi4nd3c+vMhRw4XO6X4zQFLy7YydX/m8Xry6bz/oJnWTp/Wa0fM2vHCgrzDFTqocuAq/3atqIoTL5wMv3i+vHsmmf5xZ5P81lv4q7QMemnD3jztTdZmZzn12MK0RhIQK5lZWvXkvX0P0i7cRz7b7ud3Ndfx7lfbpBoikqXLyfz4UewdO9O0jdfYx8+HI3JhMZgwNKrF82mTqHFZ5+isVk5cPsdZP/zBbxVdXeJV9SNgoWzMVcoZLVJRKP47yP4793/zrj245iT8ikfTBqArW97rNsqeHbRA9z/6kfMWZOGR8Yl/6EdmUVEzv87/TJ3sLQLmH1Owhd9W+s3PRbsWobxkI6DiTasZrvf29dr9EwbPI2ukV2ZvGIyy+OcJLz5Gt5KLQ8smc2nr03njZ+TpX8IUYME5FriKS3j4N8msX/8BIp/+AEvXiryDpE36y1SLxtB1rPP4imUVbebCldWFpkPP4KxTRuav/0WeZQye8dsJv08idsW3cYjyx7hg+0fkNcqnKSvviL05pso+Phj0m+4EefBjECX32gdOFzOM/N3cPXMVXU2HnPPT/8DIHzIGL+2qygKj/R6hNsvuJ0v9/2Xf98Qi+3a4bhTNbzyyxTSPn+ZEa8tY9GObJnl4hR8Ph9fzH2Evhuz2Juo4cvhGra1dtL5wDb2ZNbuZ7U3bTVRuQp0aVdrx7DoLcwcNpOuUV15dMWjLIgtJvG9t0DR8LdlX1I0Zwo3vruWjMKKWqtBiIZEAnItcBcUsH/8eEp+/pnyW69i2jMXcPWlO7j26n3cea+GNX2CKfj8C1JHjqR4sayA1dj5fD4yJz+Gz+Uiasq/eW3VI4z4chhTNkxh34GVVOYnszX7V17d+CqXf305k9c+he6BO4h/YwbO/fvZN3o0pcuXB/plNDrFlS7ee30KvT/6O7d+9ixvvLOg9s+geb0403I5EAHXDjz3pYTPRFEUJnWfxJMXPsnKrFXc3SMVnrwDV4mRsUt+4qVNj/L8nB+48o2VEpRPMG/pt4RvWo7JCQNe+5QXO97GL6qC3VXBlh9qcZiFz0dx1n40QHTfIbV3HMCqtzJr2Cz6xfXjuTXPMc27muZffIYhTM81a5Zz48JnGfHqUr7YcED6hmjyJCD7mc/jIeOBB6nas4dVfxvA+OjvSStN5db4YTzX81HGDZrE/L9E8ch4hUxTJRl/m0TWU0/jLZcxgo1V8fffU75uHaaJ13Dryuv5IGs5l5VX8b0nmu8qg/g4eTs/7vqNha5Ibm9+GUv2L2HUf0exqrWbpK/moY+N5cAdd5IzdSo+lyvQL6dBcXm8p/xD7/N6+H7mXxm69BOStmfQMn8/YxfN5Iv1abVajy9jE/Yshb3xZiKsIbV2nOvaXcf7l75PhauCG7wfseqVcRjaJmD+tZiPVvyLsWnvc/ec9Vz++koWNtGgXFjuZM7adIoqXOxJT+XHX59gyCbQXTaI4Pad6XPh/Rxu7sOlhcqlS2utjqqcZIryNbg10GHQqFo7zlFmnZkZQ2cwrv045u6ey4TdL+KbO5vgbpG03pHOx6ufZMrcpdz+0Uby6nAWDyHqGwnIfpb7xhuUr13L0tGJTDev4uaiEubv2sTfl7/L1V/exx2bvuOrdrcz7sonePxmDQv6myiYN499Y8ZSuWtXoMsXfuYpLePQv19G2yqOewwfcwAXd+gv4ZBpNveW/YObdC/zr04L2NzpcaKLspm0/B2+0rUk0RLDw8se5sWMD4j95ENCxo4l/z/vsu/aMVRs3hzol9VgvP3WNF544y3KqtzHNvp8zPrgGnI27CTykIaPro/g9ZFa4grz2fvhJ7VaT/6SzzC6FHLbqLV6HIDu0d35etTXDG8xnGlZc7nrrwo5f7sSV6WJXgvW8NPuJ2lX8Bt3ztnIdW+vZWN6Qa3XVJ8cTHNQ8sO9vDxtPM9+dyVjd0JHyQAAIABJREFUvveimI20nPx89Q6KQldbJLsSIDZ1W63VkbVzNfocPZmxRmz22p0t4yidRsejvR/ltcGvcbD0IGOW3sa3j1xH+I0D0WeU8/GKF9H/uoBLpy1nqcyXLJooCch+VLlzJ/nv/IfUHmHMbLGPhwvL6a2/kqdt/+IezVPMNoyl4MButJ/dwHWr3ufzvs+x/qo2PH+9QnFeJvvGjCX39dflbHIjUjDnIzx5ecy4MIN8nQ4l4xambr2YtIIqImxGiipczN1SxFUbOtEx7wW+ChlPQsoKZm9fza0hnZm3Zx63/Hw7Vf83gfg338BTUEDa9X9l/x13ULZ6dZM883cumq34mFarp/Hmm3dxILeQ/JJM7v9wML+lpHDpbz4s467nhX8so7RLBOkx0HPzYipdnlqrJ3VV9aX6iP4ja+0YNQUbg/n3oH/z/qXvYzcFc5/tB555pBUll3SgwuHkrnkzWZD/FrlZWYyetZr75v5GTnFlndQWaOXbFnDRF6kkbtjEjfN8JOZCi2mvo4+O+n2f3hGdSY9UiCrJodJZO1dvilPXEHVIobxdUq20/0cuTryYb0d9y7DEYczc+hbjOx4k56nRKF74+8+fMnnvh0x4fz0vLNhJlbv2/l0IUR9JQPYTn8dD1j+ewWnR8s+BRdxQZmZG1rPcmXk5mWG9CO50KWua38kQ13Qedd1OYWYy8XP/yhxNPJ2GXcs9451susBC3sxZpF56Gbkz3qAqJeWsApDP56PS5cHp9srCAPWIp7iY/PfeJT3Jy/IEPaUHxtGh+RAW3j+IJQ9exIcTejP/vgFs/cdw/jdpIHcM6cC/y65kYNnLbNZ04YFN3zOjwkhmcTpjvx/L1zEHabHgOyIfeIDKbdvZf+tEUoYMJeuZZyj+8UdcOXKm50SRFwyg6yYtuo2rGfdtP4Z8NZzU3DzuW+BD36kTCY8+jkbRcGf3v7GhpUJ8UQ479x6qnWI8bpzpRRyIgCv7XlY7xziNXjG9+Hzk5/xrwL8oNriZ2DOZGQ+1obJtKJoVKbz93RO87VvBT9szufjVZXzZBMagdv3L3yi/egj9U7S0NjYn9qUXsQ0adNw+vVpdTlaYgsHjITO5dmYfyt+7CaMbwnv2qpX2zyTcHM7Lg17m7Uvexqg1cp9rPq8+0hlfCzOd1vzGd1tf4Jslv3HNzNWk5cliRqLpkIVC/KTo2/lUbtvGO1cqdFTMzN7/CGP7tuPRy9phNR57mytdHr76rSPXLhnELZUfMe7XD3jMEs7AHmN5LmI9IZ3KuGuDD9fMmeS9+SbasDAMLZPQhYWjMRlRPOVUlORTWlpMhauKCq+XQo2RHK2ddEMMOw2JFIbEYmwWhxprJyHMQnyomeZhFlpF2ogKMv6plbvE2Tv8zht4S8t5Y6web+5QHhw6lgn9W5z0/ms0Ch3i7HSIs3PPkNZ8seEAdyyOpZdrLf/O/4SvcnN5LqENUzZMYX7Kt/zfyIe48JafKV28mOKFCyme/x2Fn30OgC46GqPaFlOHDpi7dMHctSu60NBAvPx6of/jr3PA9xwjPv6M7ge15MeZUHc4MdiDSXjtNRS9HoCB6mgWNHsejc/JvpW/0l31/1hQX9ZWgg4p7GhvYnhw3VxKr0mjaLiy1ZWMSBrBgr0LmLl5JuNGlTH6oiTGfLOPhG+/5duYX3i/30Qenufm282ZPDeqIy0jG+eiNQazlV7/monvOTdotaf8XIxIGoxi8wAK2TuTadnxzy8BfRyvh8qcfMBAy77D/dv2OeoX148vr/ySb1K+YcZvM/jrdR6e2BxJp4U5fJL1L94ruoYr88p4eUwXRlwQG9BahagLDSMge9zgqQKDNdCVnJLX6ST39dfIiIat7RQK907iiat6cVOfxJP2Nem13HhhIld1bca0xa25es0Qni6bw6AVb/K10c5HLTrwePMczEUahqYb6Z3hJPLQNgypTrROD4pXwUf1qX+rRyHIBdE+BRUYyNbfj+M2atkfHc+PEd35MKYrJUfeO7tJR7tYOx1i7XRqFkzX5iG0irQ26NDsraxEYzIdty2vIo+djlW4f15B7MEKItp0InjkSAzNm9dRTRUcnvsJW1tCRlAcj3W/nxsuPPMlVJNey819W3Bl5zimLYmj37rO3KJdzL8O/MBaQzlT3R7uXHInrbRW/hLUlsHXdaTN+L5UZRRRnpxJ1b4MKvfuI3/lqt9X6DO0aoWle3fM3btj7toFQ4uTQ3pjpSgKCU/+g+IevdG99G9idhRg6tyZZlOnoo+OPm6/+DaJQDIlG9fDRP8H5LJ1/8PoVMhNaOH3ts+FTqNjVOtRXJZ0GZ/t/oz3tr3HV+O13JRi5oqFh7nl61cZ1X8QkzSXc9lrh5k4MIl7h7TGZmwYfy7OlaL7g9elNxMabgYqKU7d5/djVx1y4M7XUmJWUNt293v750qn0TGm7RiGJw5nxqYZPM8XtGtu5eH/ljJh9VdcnLSZR0puYu3gjkwe0R6zQVZoFI1Xg/jES3n6L4RlbKGkywX4Wg0mtFUP7BHNUPBBZTEU7ofDqbhz0snfXQS+SEw9L8M+4jIUbe3/Ay787DPc2Tm8f70G76Er+PtlA08ZjmuyGnU8ObIDKb2b89riPkzb+RNXe5Zz7Z6d3KI5zCKrhZ9bWfhHRxMVGoXq/1Sn+M/l86F3g60S7OVgL/cRUwCtM710Tkvnnv3p3Kl8w94WOlLaBLEzNp5kTTO2O4KYszUYrzOcIG0MHWKDSYqwkRBmIS7EREKYhWahZsKtRrSa+hum8jeuIufG2yhpE0ZRlxgygyo4kJtFs+Qqeib70Hmh2Az872fy33uPpM8/x9jKz2eBTqF4+oN4y73M76VlePxDZxWOawq1GnhuVCcm9E/izaVJXLj5MvqUb2GCcyflwaksMRYxzbOJaYWbCPJ4SXK5iDG7CVe9hLTxEuT0EpcNkdk6NDlpFH6bRuGXXwKgjYnBPvwSgkeNwtShQ5MIy/YRI7CPGPGH+3Ru0ZuMsGTsqetqpYZ9q39BB2g7D6iV9s+VUWvklo63MKbtGD7d/SmzTbP5LKmCO3/xMHDVMj4K/43v//J33vzFy7yNB3nwkraM6RGPTtu0RuZFRcfh1O6lMm2v39vOSd2ELUdDdvMgNJr6874GG4N5ss+TjGk7hmkbpzExdCV/XefjL8tT+PjQizxXeCMj9uTy4jWd6duq7q+GCFEXGkRA/i3DwwVr7RTvSOdQ17epau3Ep4NijYaDOh25Hh2tt+oYtAEsziNP+mwJmcsW0+7labUaAHxuN3lvvU5yPByMjqBb8PVMHHD2Yah1VBBv3NiDnOKOLE++gbcyisgrKMDnqgSdkYEWG3ZbKXERbpIidVgMWvRaPRadBbPejE7R4fK6qPRUUuWuosRZQpGziKKyXLbl7UazfSdhmzJptruCNosKGEEBByK28VtrhU0tFRwtFBSNlly3harMINJTgjE77bgrmpHnjeaQEoExKIIIu4lYu4mEcAstI6y0irLRMsJKmNUQ0ICVpjvM94MVBm0+TPy8w8QDvYFys8KhdhYiWx9mV4yLzwjl+U8q2X/PPbT86iu0ttq7bOwrSCfr2yUciNBxsPnFfHTFJefdVlKElSljuvDE5e35fltnFu46xIa0Akqr3Bj0OVgsu3GaD+Aw5LNLX4rHXIlXe+QfQTTQpfrHKKebXjkuuuz3EZWWQ/THH1Pw0RzyIiPZ360vJb0HEtK2IwnhQcSHWIgNMaFvYkGoa8vhzG02l57J2RSWOQmxGvzafvHeDPQm6Nn7/PtDbbDoLUy8YCI3tr+RBXsXMC9yLovbObj3u1JGfvACnQYk8V7MTTz2dRXvrtjLg5eojOgUg6Yef3H2p8TgBA6F7kWTmeL3trOT1xKVr1AwoK3f2/YHNUzlrUveYm3WWt6KfpNHWm3i/m+reG7N+6wq/JXxh67nit4tmTyiHVFBpjM3KEQDUicBWVVVDTCT6j/XVcBtDofjrD9tmr/wD378eibq/G20WQHl60xsa6FQYoM2RRquTvdicPvY0T6OLRd1Ic+8h1ZrUrniu4UkJ71G23seqK2XRvFXH+M5XMbXQzVUlY7npVs7n1dgjLKbuLZHPNf2iPdvgUOP/L/Ph3PrSkr+9w2WNRtpvj6HUWt9ePU+cuOcpMZVsCahkM3xmVQZFDQ+H61cLkZWOWnjVIguC8NZ2JwNexL42N2aXb5EPGiJthv54s6+JIYHZvhLfNIl5F5oZU67vUQ6q2iutdG+fRu69O9Kj2ALPmc5YZ8/SOvMb5gyKoJn5u6n8PMvCJ94a63VVDH7ITisY9ElBmaNnOyXM/ChVgM39Unkpj6JeLw+0vPLSM8vJ6voYkoqXViMOuJDqseaR9v1oHGSW55LWnEaKYUp7M5PYXfwDpbEZ1DVz4O1wkff3T4Gbc+l+6L5sGg+h0JgY6KGOfEWtkdHURkcS5QpkQRbS5JCWhJricVu1hNiMRBi1mM2aLGb9NjNOsz6U4/hbEiCY7tRFO3Fts3H/l2phPRs77/GizLQZntJidNxTcsO/mvXj0w6E6PbjmZ029HsHbSXJV2msm/uUi5cuY//2/Qc318cwk+WXkz6pg2tf+7EpKHtuKxTTL2+wuQPCaFt2RC6jIS8TL+3nZeylRZAbK++fm/bn/rE9qFPbB+29tzCZy2eI3z+Li7/dRvtM3fyRlU/hu68gklDO3FLvxYYdTLsQjQOdXUG+SrA5HA4+qqq2geYCpz1IL++zfrR92/98N3no2DNSgq/+Zq+W7bjyyxEHxONdWxvQsaOpX27dlx75Dm/aEaxK3MPMR++T+s7/obmj8aZ/Ql5b08nOwy2RLXl1UuvqL/j9BQFQ5eBhHcZSDjV8/OWr11D6cqVmNatJ3rNPvqtARQv7mYR5MeZSAmtZHNQMavD3OREVGJSkulauY0rqqp4wqUQaerAAWsvgg2B+3CPtpt4Y8JQjn0TOJ5isND8xpkYPyigW+l6dsWb8H4ym7AJ41Fq45LmwY2k//wrVToz7kFj6RDj/5tZtBqFlpG2M9w8ZSTIEETLkJYMTTj23vh8PgqrCskrSqfw4FqKszaTmuZAuy0bW7qbi3ZpGbalFCjlcNBedjRfTWqswqYoWBihwaTVY3VZ8LjCKHVFk+9sxmF3HBpvCMHGUKKDTMQEm4i2G4kPtXBpxxhaRzWQm7y0eoJDjICT3ORU8GNA9iSvJrhAw/4Odkz6evoZUUPLkJbcMfJNGF7O/o8nUzF7IePmFzIgejGfXPQTW+0W/m9pe15Y2pvx3YdzbfcWhPn5jHt9kRjdhe/CoOveEnxer18/N6pycgFo1f0iv7VZmzpHdaHzmK8oGLCJpf+5m4gfCnl68Qo2tlrFh7TnvQ1DeWjQFVzTPaHRf3ESjV9dfVIPAH4EcDgca1VV7Xk+jSiKQli/gYT1G3jGfQePeYPvt1xE6BJY89936H/tPedzyD9UuXgOzsxKFlyioVPYDQxRo878pHpCa7MSNGwYQcOGAeApKqJi82Yqtm2ncudOzLt3E70+l/5H9vcpChUhJvJsOjKsBlYFQZnpADbDPtr3HwRq/bpsfByNhqjrZnDXtC483c1K++9yKFuxAttF/v+j5Fr0Is59Jta00/GPK+/ze/t/lqIohJpCCTWFQnTX439ZfhhfbgqVG1ZQsWUbQY79RKTmMXDn0flfvZTY3GSEV7A/7DBZYankhECuXeFwEFSaFSp8JjKcdtIzI/kxOZbt2Zcz66/1uG+cID4uAUghJ2Ur4L+5iovX/wJAQVI7v7VZJwwWEm59nebXH6b4zcfRfvELT3zhJS+mjLn9N7OqzW+8nvwh0za3p5WlD6PaDeTKTm2JCW48l9utEW0psfvQe6Ag/SBhSQn+adhVgVLgptyopV1S/byqcDqhsd245snVeIZ/yK6ZL9F5s4/pe3ewvNNOZnlnM2VDb27tei239RqItokN1RKNR10FZDtQVOOxR1VVncPhcJ/uCX9aSHO6de1JxuptHPz4A3yj7/bvJWCfj8Pvv4ZLCytbtuDzEZf7r+0A0AYHY7voouNCo6e0DOfeVKr27sV14CCurCwis7NomZGBM/0QmooqPDodvjvtAaz8LNmi0PV7kPabZ1BotaL5/GNUfwfkrC0cXLkagyuY0mFDCDUF+7f92mYJQ0nsjTmxN+bREHZkszs/n8rdu6natQv7nj1E7kujQ8o+vCWlxz3do4UyWwm5wSVk2jM5bN2KRtkANJyA3KJtN7xKCu4DO/3abvqOLRiBkE79z7hvfaRYwgh++C3s9xRROPMZ9POWMOkrF/cGedjZ3sncLptJtW/m9ZS3mLk9AqP3AjqGd2dQQi+6xTejdZQNi6H+nzk/paBYtDYvoCE7Od1vAdl1aBfGwxpyIhvo1JsaDdo+t9Kp62jcS6aR8/7HDNqpY9D2Yta0+5nvC5Yyc2c4F4T1YWyHYQxM6Fn9xVyIBqKuPrGKgaAajzW1Go6PiO1zA6kLH6TDDnBkbqVdsy5+a9u7/XsKdpSyvq2Wzs3HBmwMbm3S2qyYO3fG3LnzKX/vczqrp5wzNIxLq7aB9zBqzTS+banQd+16fB6PX2c5cS2fRvrBIDR2GHfjZL+1G2i68HBs/ftj6398uHMXFOA6mIErKxN39iHcOYdwZWQQlb4PNSsbd1EpwbFdT9Nq/ZQY153NQV9iysvwa7tlB/Mpt0LPDvV7rOmZKNZgQh+eRsgDbkq++4qCT2Zzwa/7eHG9G2+4h4MtPKxMOsiiFjmsr1jKegdYt1rRljdH4QLigrrSMqQFCeEWOsTauahtZP0PhxotNqse8FCSme23Zg+lbCAiX2Ff14Zz5fGUTMHoRj5D3LAHiFz8Ooc//pQBO9z036UhJzyXpR0WMD1tAU+EKth10XSOvIDecZ3pEN6BdmHtCDY2sBMJosmoq4C8CrgS+OLIGOTaW9i+Bk3b4bSMdFLiNbLihw9pd9s0v7Vd+slUNE4NP3e0MWXYaL+125AoBgP1/E/b8QxWTK1H4cn5CeM2H+U7tmPt7KcvTSWHqNryHeEHo9hwUQKDguL80249pgsNRRcaivmCToEuxW/sYa0pCAZbYdGZdz5bFQVo87ykRWm5MrF+zlZwrhSdDvvV12G/+jpcWVkU/+9/lCxZQsJvW7hho48btD48EZAbVsmeiCo2RxazP3QXae4vOFioEJ1tY+mGWBJvfo+kqPp/VjHUbgcKKMny3416qTtXElUFhnYX+K3NgDIFo7/yKaKveJyIXT9T/Om7mFfv5LoVbq5bAeVhHnYmZLIqKZe3Wiym3FT91yPcEIca2oGesZ3pEdOFdmHtsOgtAX4xQtRdQP4GuERV1dWAAkyok6MaLJi79KNo6TYK163EN9Hnn7MV2dvJ2ZhOgdVEVfvhxIU0kJuQBGEDb6Ptnm+BYFIWf00XPwVk14bZbMq2EeGFDtfXTfcWtSA4nsogL1H7q/zWpO/AZmwFCpktLViNer+1W1/oY2MJnziR8IkT8RQVUb5xIxWbNlGxbTsGh4OYXQUMwgd4AHDrocRcSH5QIcaRWyGq/t+gFhvZDK9SQElOmt/azE/fSxTQsmfDHHZzWhot2o6XEPrPS/6fvTsPj6JK+4f/requ3pdsnQ1I0tkqAWRRJIRFQREXAiQEQRkFUX8+0Z8ymTA8r4wjyAsOKEZk85UBR3AGUEgIoPIMPioIgywKyDakCWQja3e2Tu9b1ftHkwwhK2ST5Hyui+tKV1edulN0krtOnXNu+AJw5etQn70d5uMnMepiBUb96gTAw+PjQUmQEBeC9TgfoseW0P/FerH377MYvng29mUsSpzXq98K0b/1SIKs0+k4AGk9ca7b+TzwFIoDziGy0IwLVRcwXNP5hMhzdCPsZWKcHEFh8YT5XRAl0WNC78dgaSAuaxxg/nUUWNQFbXIeOE79DcYbcrgDBHhowtNd0CjRKyRqQMFDZeZgs9gglUs73aTj12MQcBQMwX3/qYJArYbykUegfOQ/K6d4h+KUeP+VlcOt18O/rg5asQiBAx/oxWg7boCfFvXSS+Cry7usTbe+DgAQ8+Bv/wahM5hIFv6L/wL/xd6qp7azv8B65BvYzv6CyPxyhOvsmHZzX7eCQ7WfAHpFHYyJvwAkQSZ60T06a6LjBOFjERBgh+CqAscLjnQ+QXZaYP72fyDwyHAubiAywmK6JlCiZ1AU5LFPomZANoZcrIDH4YBALO5Uk57rR1BvMSC8NBBl04ZDQJN1QO9ZFAWhWgQaHly/dBlDE+5qwZ0mDBd+AQC4I/vIo/Q79J+hOPfu9x/kH4tfFYCoTt81DfI8hEYXjHIBJD79pxIdLZFAPnY85GO91SR5noe7ogL2X47CcfZfcOh0UJQbMKDIDr+hll6Olujv+nyCjIAYyIOFMF8BCn/6Hhj9+861d+VrVBQJUKMAIhKTuyZGokf5Dp+KgEM7wXhkyD93GDFjnuhUe/pjn+FfNb64jwPipj3fRVESvUXppwZQg/zcs12SIOsLbkAoAEIHP9j54IheEeAbBaOMQoDJ1DUNWqshMVKo9el7Q27uBEVRYEJCwEybA+W0Ob0dDkE00fcXKKQoUEO9qzAwunyYneZ2Dmgbd2YHnOVi/BxL49WEmV0RIdHTBiVAq+IAAFdPfte5tuz18L3xLWxlEljlQoQlTu6CAIneFDRgEACgtuBK5xvjeTirrCjzBxIj7q0VPYj/YJQhsMl5yCz2LmnPWXUNaiMFi/89sEQmQfRTfT9BBqAaNhGc3IOICg5nKs/cfUOmClhOnoLQDVyLC0OoMrjrgiR6joCBKnoM7AxQc/HXTjVVdXoPCgQcBhd44Ei4r0uXjSN6R3TUffBQgLu8uPONWatBGwG9D42RoYM63x7RO+QauCU8FBY3eJ7vdHPX8k7Czwy4QwZ0QXAEQXSHfpEgC8ITofBxIkIPnCw/efcN5X4NfYUEdgYIf7jrqmwRPU819HHUB3BQFVWA47m7bqfu7F78YAmAwg5EPJ7ShRESvUXur4VZBoiMVZ1ui6/MhbyeQrWPFGKG3Dzds6S+4GQcGA/AmTv3FBIAiq54O2qk/XRcOkHcC/pFgoyQ4ZD4eBBSzeNc8d0nyPyVr1FfJsMFLYWnR0ztwgCJniaJHAeRrwuD9B5crdbdVRseWz0G1p2CqdpbKCVwwqNdGSLRW9QDYZXxkJo6nwi5rvwCAUeh1l/TBYERvYamQUu9fy5tlYZON1dfWgQAGDR0dKfbIgiie/SPBJmRgg/1Bw3ApcuDyXkXEy1sdXD8+hMkZuBKrC8i1BFdHSXRkwJYaNQ8pE7g3NlDd9XE1Z/2oVAEaIvdsEcEQejn1/5BxG+fagBcUh5yS+fXQjbpzgMA7MFRnW6L6F1CufdGuKak81UWPVXeJd5ih98by9wRRH/UPxJkAMxgb7WviEoe5w3n77yBvP9Fbbl3xrFq/CPt7Ez85tE05NpoAEDRzz/dVROW8/vxjcgHcSU8/MZN7MLgiF6lGgBeykFu9XS6qYqC6wAAWWTfqTbYX0kUcgBAZVF+p9uijS6YJYAigNxUE8RvVb9JkNXDEkGLOGgrgbOVZ++8gav/g1KDAiX+wGMJ07s+QKLHqUdPBEfxQMH1O554Y3c4EWM8gSKTEiI34Deuby/2368wElASCmorYHVZO9WUuaIaVjGgDR/SRcERvUXh5y2JXVtW1LmGPC5IjUBdP1/ijSB+6/pNgiwcOBISHxeiKgU4pz93Zwd73PDkfg9RBY1LWgYjgshyTX2BjH0ILiUPTbUNFZaKOzr28i9HYBPa4V/qBE8Bsgc7v14u8dshkDEQuYEKfcHdN+Jxw1PrRLkvcP8AUlDoXufvPwAeCrDpyzrVjsdUBt86wOwr66LICILoDn2/UEiD4Psg9nEhNN+Ny4aLcHlcYAQdvIMv/QW2EisYtwzm4fFgaHLn3ycMeAAipRuh1TTO6s9iqqLjEy9rzv8P8qRSxJbyoCMjIFAquzFQoqeJ5FIAFhQXXEXkgLvs/TWVgTHSqBwowORAMknvXhfqMxDlMoCrqexUO5UVl+FrBsr8+k8Fve505syZQKFQuBXAUPSjTj+iS3AALrnd7pcfeOCBZmUy+0+CLFaC16ghuuqBosaOKzVXMEwzrGPH5n2LGwY53DQweDIZXtFniGSQ+skResWF3cU/Y2pkxxJkD8dDoz+OncH+eKPcA/UMMhO9r5Gp1AAsqLxx/a7b4KsKIDNTqFHJICFLvN3zQv0jkCcB6Pq6TrVTeO0sfDmACgjtosj6N6FQuDU4ODheo9HU0jTd+UWqiX6D4zjKYDAMrqio2AqgWXLXr+626CjvTPIww51N1OPzvkW1QY7rIcC4WLKUV1/CRGghcgMFuac7fMzFa0WIRh6qzTykdg7SESO7MUKiN/j4BQEA6itK7roNd+EV0DwFk5pMxOoLRMoQ2CWA0GrpVDv6oqsAAPHAuK4IiwCGajSaepIcE3eKpmleo9EY4X360Pz9Ho6nV/mMTAAARFfJOj4O2WwAX3IJPlUcirQ+CJaT6nl9iXrEgwAAYemNDk/IKjr7Lc5LRYgs9RYYkY4Y3m3xEb1DGTwQAOCsurOx6bcy5XtLVTsCwrskJqKXyQPgEvOQ2Dq3/J+pwjuGOSCK3Fh3EZokx8TduvnZaTEX7lcJsjhqFBiZG5GVApzXn+/YygWFR1FbJYKAA+SjH+z+IIkeJR3lXbIvtIbDpapLHTqGKjqOH6VyxJXRoH18IIqI6MYIid4gCR0EDjxQc/dFIQw3vMuBiUIjuyosojfJNfCIeUjs7k4146o1AgCCosja2ATxW9avEmTvRD03Buod0Nv0KLeUt39M/o/Iq1XBQwH3PTqz+2MkepQwejQoMYcB1TzOVLb/VKHW4kSU5RyOKVQYWimCbPhwUBTVA5ESPUkeEAq7FBASf5vYAAAgAElEQVQZ76Ko0E11ld7JXH5h5FF6nyDXgBdzkNnuvjQ9AFD1drgFgGYAeRrZl5w8eVI+a9YstuH1uXPnpNOnT49LSUlhFy5cGOHxeNdV37x5syYpKSl+2rRp8Xv27PEFALPZTM+fPz8qNTWVnTNnTmxJSUmrKwHs27fPJy0tTdvw+vvvv1fOmDEjLjU1lX3ppZciLRYLDQCrV68OmTZtWnxycnLcqVOnZABQWVkpbDhPcnJy3LVr18QN7ej1euGkSZOG2mw2CgCqq6sFzz33XHRKSgo7f/78qMrKymZz1oqKikRz5syJnTVrFpuamsrm5uaKb32/oKBANH369Ca/ALds2aJZtWpVqwPwP//8c/+vvvpKDQCffPJJq7ObN27cGPjOO+8MaHh9+vRp2cyZM9mUlBT2pZdeirTZbJTdbqfS0tK006dPj3v22Wdjrl69Km6tvZb0rwRZGQzaVwD/WjsEHh6/6n9t9xBP/o8wV4pREEJjZMTYHgiS6FECIYR+YmgNwE8lZ9rd/dS/r0PJlKLK7YZfpRWSYff1QJBETxMqA+GU8pCabXfdhqPGgnopEBVKlnjrExgJIKYgcQG803n3zZg8MMkpqG9W5iPufWvXrg1aunRpuNPpbOwtWb9+fWhaWlp5Tk6OzuVyUQcPHlQbDAZhVlZW4N69e3N37Nih++ijjwZxHIdt27YFxMfHW7Ozs3VTp06t3rRpU4t3T0uWLBm0fv36ARzHNZ7n3XffDd+8efO17OxsXVhYmGP79u0BZ86ckZ09e1a5f//+K+vWrctfsWJFOACsXLlyYFJSUk12drbu97//falOp5MAwKFDh1Tz58+Pra2tbUzMP/roo5ARI0aYc3JydM8//7x+1apVA26PZ82aNaFz587VZ2Vl6V555ZXy999/f2Bnr+W8efOqp02bZgSAzz77rFkibbVaqVdffVWblZUV2LCN4zgsXbo04r333ivMycnRjR8/vr6oqEi0bdu2AKlUyh04cCB32bJlxcuWLQu7k1i6bBULlmXVAP4BQAVABCBDp9OdYFl2DIB1ANwAvtXpdMu76px3jKKAgSGgL1ch3CjGWf1ZPBX5VOv71xYC1YUINITil/EDIBKQX2h9kWhQCEIvFiG39iI4ngNNtX7fWH7hBxhlEmgrAYoHJENIAYg+Sa6BR8pDYfG0+5loEceBr3ehWiUAqyGrFfQVlNi7GomjrgaSwDvvAeY5DlILD4tcRJ48dYPtPxX67z1bEtCVbc68f2DV/LER1W3tEx4e7ti4ceP1P/7xj409uyzLWuvq6gQcx8FqtQoYhuE1Go374MGDlxmGQWFhoYhhGI6mabz++ut6t9s7dKesrEykVCpbLOM5cuRI85QpU+p27drV2LP6j3/8QxccHOwGAI/HQ4nFYu7UqVOKhISEepqmER4e7vR4PJRerxdevHhRERsba5szZ05sSEiIY+XKlTcAgKZp/P3vf9elpKQMbmi3oKBAkpGRUQoAY8eONf/lL39pllwuW7asRK1WewDA7XZTIpGow49XCgoKROnp6ZGBgYHO0tJS8eDBgy0ffPBB8apVq0IDAgJcdXV1ArPZLFi8eHHYmjVrihuOs9vtdEpKSnViYmJ9fn6+BACuXr0qVqlU7r/+9a9B+fn50vHjx9fFxcU5Pv30U+nDDz9sBIC4uDhHcXGxpKPxAV3bg5wB4HudTvcwgBcAbLq5/RMAcwGMB5DAsmyvzkyQD/H2+A2tDsaZynZ6DAuOotAoBeMBAsdO6IHoiN4gY4dAaqNAW03Ir2u9jCzP85CU/oSjMhlG1qoAAFKSIPdNcg0oCQe1hYfRYbzz4y0GMBYKtQoBBvgouj4+olfQYm8HW53h7lY3qa69Dl8TYFNIuzIsopfNnDmzjmGYJpOatFqtIzMzM2zy5MlDampqhA8//LAJABiGwSeffKKZO3du/BNPPNGYeAuFQsyePTs2Ozs78Mknn6xt6TyzZ8+uvf3GKjQ01AUAOTk5PmfOnFHOnTu32mw2C25NsmUymcdoNAr0er1IpVK5v/zyy6vBwcHOdevWBQPAY489Vh8QENAkKY+NjbV9++23PgDw9ddf+zgcjmb5okajcYtEIj43N1f84YcfDkxPT+9QFR2KongAKC0tlWRmZhYeOHDgysmTJ9Xl5eWNnbaLFy+uUCgUnluTYwDw8/PzTJkypf7WbVVVVcIrV64oFixYoN+1a9fV06dPq3744QdlXFyc9fDhw2qO43DixAl5TU2NqOFGpCO6ch3ktQAapvcKAdhZllUBEOt0uusAwLLsIQCTAdxhKbuuox41HuXUD4gs5XEg5hpq7DXwk7S8DBNfcBS6GhW0AIY/+nTPBkr0GPGwMQD+ByE1wOmK04j2jW5xv6uVZgx2X8CHUimm16ghDBZDqCEFIPokqS+EYg4iO1Blq4KvxPfOjjfegNRMoXaQBApx/1luvq9jpFIALlRVliJ4yJ1XzyzXX4S/CaiOvMPPE9Eh88dGVLfX29tTMjMzB23fvj136NCh9s2bN2uWLl06qCHZS0tLMyxYsKDq+eefjzl8+LB50qRJJgDYvXv31StXrkjS0tKit27dmrdkyZIIAEhKSqp+4YUXqlo714YNGwK///57v23btuVJpVJeoVB4GsYiA4DVahX4+Ph4lEqlZ+rUqXUAMGXKlLoPP/yw2bCJBunp6eVvvfVWWGpqKjtu3DijRqNxHTt2TLFu3boBALBgwYKKqVOnGg8fPqxcuXJl2OrVqwvi4uKaLPEilUo5l8vVJLG2Wq20WCzmACAkJMSuUqk4APDz83PZ7fa76rT19/f3hISE2AcPHmwHgLFjxxrPnz8ve/311yuXLVsmTU1NZYcNG2aOjo62CoUd/318V8GwLPsSy7KXbv0HIEan09lYlg2Gd6jFEniHW9ya6ZsAqO/mnF2FCnsQYpUbg0q9YbXai8zz8Fz/ES6DCKWBDAYNHNzyfsQ9TzT4AQBAjJ7CsZITre536nIebLJK2CkeoSVWMryiL6NpCMQCKOxAtaVZgaV2eUqvQuKgYFSouiE4oreIFN6nAbWVpXd1vL7k3xC5AY9/SFeGRfwGKRQKt0ql8gBAUFCQy2QyCXJzc8UvvvhiFMdxYBiGF4lEHEVRfGZmZvCOHTv8bh7noWkaMTExjqysLF1WVpaureR4zZo1wefOnVPu3LlTp9Fo3AAwevRo84kTJ9QejwdFRUUijuOg0WjcQ4cONR06dEgNACdOnFBGRkbaW2v32LFjymeeecaQnZ2ti4iIsA8bNsw8YcIEc0NMDcnx6tWrB3366ad5Dz74YLN1UgMDA902m42+fPmyBADcbjdOnjypGjFihBVAu8OMOrTSGIDIyEiHzWYT5OXliQHg3LlzytjYWPvPP/8sHzt2bH1OTo4uKSmpNiQk5I7WaLyrrg2dTvcpgE9v386y7H0AvgDwR51O9+PNHuRba/AqAXSuDFFn+UWB8eURqDdCLJDgl4pf8Fj4Y833q7oKh8WAgeUhKB3bco8i0TeIBg0CKGCEwY11lb/Aw3kgoJtXPqv992H8SyaFyimAsEQPaSpJkPsyoUQCwI1aQwlwh1NPbEU6AIDZl6xU0JfIlL4AylB/l+tj15YUIBQAHUiWeOvrli9fXrRw4cIogUDAMwzDrVq1qkir1TpjY2OtycnJcRRFITEx0Thx4kRzXFycPSMjQ5uTk6PhOA4rVqwo6Mg5KioqhNu2bQuNioqyzps3LxYApkyZUvPKK68YRo4caU5OTo7jeZ7685//XAwAb7/9dsmbb74ZvmfPnkC5XO7ZsGFDq2MKY2Nj7YsXL9auWbMGAQEBzszMzMLb91m9evUgl8tFNYy9DgsLs3/44YdFDe/TNI0VK1YULlmyJIKmabjdbuqhhx6qmzRpkqmgoKDdSV3h4eG21157Tfvxxx+3eT3EYjG/fPnywoyMjEie53HfffeZp06dajQYDMLXX399wJYtW0IUCoXn/fffb/Y9tKUrJ+kNBrAHwBydTnceAHQ6XT3Lsk6WZaMA5AN4HEDvTdIDAJoGHxoIcWEdhjAsfq78ueX9Co7iZ5scQU5g4PhJPRoi0bMokQiMRoXY6irYPGbk1uRiSEDT5NficMPXcBI7w+R40hkH4DzpQe7jxDIFgDrU3kU1PUOxt0S1WxPRtUERvUrlEwTgMmzVrXbotclU7l1aVDKIPJHsa7RarfPAgQO5Da8nTJhgnjBhQu7t+7355pvlAJqsMRscHOzeuXNnXkfOM3HiRNPEiRNNDcddvnz5bEv7LVmypAxAkzHBERERzi+++KLV8xw7duxiw9cxMTGOffv2NYv/VocOHfp3e/G2dh1uv14NX9+MGwCwZ8+eq621O2/evCZDaR555BHTI488cuXWbRqNxv3ll1+22kZ7unKS3ioAEgDrWJY9wrLs/pvb0wDsAHAawDmdTneqC895VyTx8QCAuMpA5NXmocLSvDeAu34EeTXex6Pxj6T2aHxEzxNrtVDXeh/3nChrPsziiM6AANG/UcoIMN7iHbYlGUz+yPVljNIHAFBn6MB66bepqfQeIwslPYV9idovFBwAd93dJciOWu8DVGWYtp09CYLobV3Wg6zT6Wa0sv0kgDFddZ6u4JPwMKo/PYGwPAswCvih+AfMjZ/7nx08blgKfoSkUoU6fymkoZ1e2o/4jROxw2D55VcE20Q4mP+/eHnYy03eP/XrBfgpTRDCBxGVPFwaDYQBXbqaEPFb4+sPoBDWqjsfg2yuNkIGIHggKRLSl8jUgaiSADDe3UhBzuRdV9t3QFAXRkUQRHfoX4VCbmKGPgyB2IPA/AJo1VocvnG46Q6lZ/CTwA32Bg/RA726Kh3RQ0SRUeA9FJIrrcgz/htF9Y3DqOBweyC4fgjfymUYHTAMnO4axIPjezFaoifQvt4bIHddzR0f66q3eYuEBIV3dVhELxKr/GGX8BCYLXd1PG12wckAfv69OledIIgO6JcJMuUbDiaAgsZQgYSgh/BLxS+od96y2Eb+YfzkUEBpB7QT2ygkQvQZokjvI88ZlbUAT+Fg/sHG945erUKA5ARuMAySIpLhyM9vHKZD9F2M5uZKA3V30VtoccMopzDIh6xi0ZdIlQFwigHGencVFkVWDjYJBR95q5WECYL4jeiXCTIoCoKoMIjrnQi2x8PNu/HV9a8a376a90/Y9N6S3YrRCb0VJdGDxNHelUqktTT8bL7Ivrofbs4Nnuex7chlnPWthoYWY6IzEvB4IIkn44/7OpEmBBzNQ2C5w95ChwlCK1AvFyBIdUeFm4jfOJHSD24xD7HVdcfHWl1WyK2ATSqAkqyNTRC/ef0zQQagSnwIAAXFySu4P/B+/O3S3+D0OAFrDXY6ijG4mAcXFAjRwFbX0Sb6EKGfHwR+fnBYlEiud6PSVopdubtwIr8aqMrGaakYz4U9AbfOOwFYMoQkyH2dzEcDlxgQW53g+A5XUAVMlZBYKNRLRfCRkp7CvoSS+YEX85DaW6wE3CaDpRIqKw+HREzKTBPEPaDfJsiKyXMAAL6XfkTa8DTorXr87dLf8K9TH+EbqRTDCin4PvRwL0dJ9CRxdDScLg0W2v4NoTkSa39Zj4z/+f9QMPAogj08Zo1eBPuVK6CVSjADyI1TXydVBYATc1DYeNQ5Oj7MgjeWQm6lYJbJQNMkEepTpL6gxBzkNr7DRQwa6Ovy4WMBnDJZNwVH9KaTJ0/KZ82axTa8PnfunHT69OlxKSkp7MKFCyM8Hu9N1ebNmzVJSUnx06ZNi9+zZ48vAJjNZnr+/PlRqamp7Jw5c2JLSkpavbPet2+fT1paWuMyKN9//71yxowZcampqexLL70U2VBBb/Xq1SHTpk2LT05Ojjt16pQMACorK4UN50lOTo67du2auKEdvV4vnDRp0lCbzUYBQHV1teC5556LTklJYefPnx9VWVnZ7LFHWVkZM3v27NiZM2ey8+fPj6qvr2+SUxYUFIimT5/eZKbyli1bNKtWrQpt7fv7/PPP/b/66is1AHzyySetlqrduHFj4DvvvNPsD/Ef/vCH8Nu33/5/01H9NkEWDoqFQEUhqKIIYdLhGD9gPDb9ugmvFudgbBEgdXJQTBjf22ESPUgcHQWH3gaK5/GG0w8OpxgW5W4w8GBL9HNQSX1hv3gRkqFDSA9QPyBU+IMS8VDavOWmO8pWeg1CDrAoSDnhPoeRgmIAmQMwO813dKi+Jh8qK+CSk89FX7N27dqgpUuXhjudzsY/DOvXrw9NS0srz8nJ0blcLurgwYNqg8EgzMrKCty7d2/ujh07dB999NEgjuOwbdu2gPj4eGt2drZu6tSp1Zs2bWqxwtCSJUsGrV+/fgDHcY3neffdd8M3b958LTs7WxcWFubYvn17wJkzZ2Rnz55V7t+//8q6devyV6xYEQ4AK1euHJiUlFSTnZ2t+/3vf1+q0+kkAHDo0CHV/PnzY2traxsT848++ihkxIgR5pycHN3zzz+vX7VqVbNkdOPGjcHTp0+v3rt3ry4uLs62ffv2Ti/tNG/evOpp06YZAeCzzz5rlkhbrVbq1Vdf1WZlZQXe/t7WrVsD8vPzpbdua+n/pqP69UAoJmoQcKUAR06cwsYnNuKby//Ar0fewfALWvACPeSJib0dItGDRNHR4CxWeIInYUH9EcQOeg/+RRsRWlcM9XNvgHM4YL96Ff4LFvR2qERPkPpBeLMHudpWDXQwr9Hf8K6db1W32klC3MNoEQ2aB2pry6AM7ninVG35NUTygFtJlnjrNqf/6o9fd3Xt+psjnq3C6Feq29olPDzcsXHjxusNFeUAgGVZa11dnYDjOFitVgHDMLxGo3EfPHjwMsMwKCwsFDEMw9E0jddff13vdrsBAGVlZSKlUtniGJ6RI0eap0yZUrdr167GntV//OMfuuDgYDcAeDweSiwWc6dOnVIkJCTU0zSN8PBwp8fjofR6vfDixYuK2NhY25w5c2JDQkIcK1euvAF4K979/e9/16WkpDSOHSwoKJBkZGSUAsDYsWPNf/nLX8Juj2flypU3eJ6Hx+NBRUUFc//993e4lHNBQYEoPT09MjAw0FlaWioePHiw5YMPPihetWpVaEBAgKuurk5gNpsFixcvDluzZk1xw3F2u51OSUmpTkxMrM/Pz2+c5HH8+HH5hQsXFKmpqYZbt7f0f9NR/bYHGQD8Up6Dxy5A4P9+CAEtwLTy61haXQO1gYds5EgIlMr2GyH6jIaJeo5Bs0ExMow/8X8QX5kL9VOZgEgOR24u4HZDct/QXo6U6BFiFUQiDgobUG1v8+9jE7Xl3t/lnN+g7oqM6EW02Fsht776zgrI1FfeAAB4fMnwrL5m5syZdQzDNBlzo9VqHZmZmWGTJ08eUlNTI3z44YdNAMAwDD755BPN3Llz45944onGXyxCoRCzZ8+Ozc7ODnzyySdrWzrP7Nmza29/ehkaGuoCgJycHJ8zZ84o586dW202mwW3JtkymcxjNBoFer1epFKp3F9++eXV4OBg57p164IB4LHHHqsPCAhokpTHxsbavv32Wx8A+Prrr30cDkezfJGmaXg8Hurxxx8fcu7cOVXD99geiqJ4ACgtLZVkZmYWHjhw4MrJkyfV5eXljZ22ixcvrlAoFJ5bk2MA8PPz80yZMqX+1m1lZWXMxo0bQ1etWtVkX6Dl/5uO6tc9yIonZgDvrMKQggso+uYDhP2yATl1YxFXXQjFC3Pbb4DoU8QxMQAAh8EBxStHgH+tBYbPAUKGAwBsFy8BAKT33ddLERI9iqYhFNFQ2oACW8fXQq43GCABIAuK7L7YiF5Di8UArDDVNK/A2paG8tSeQHLj1G1Gv1LdXm9vT8nMzBy0ffv23KFDh9o3b96sWbp06aCGZC8tLc2wYMGCqueffz7m8OHD5kmTJpkAYPfu3VevXLkiSUtLi966dWvekiVLIgAgKSmp+oUXXmh1nNeGDRsCv//+e79t27blSaVSXqFQeBrGIgOA1WoV+Pj4eJRKpWfq1Kl1ADBlypS6Dz/8sNW7tfT09PK33norLDU1lR03bpxRo9G4jh07pli3bt0AAFiwYEHF1KlTjSKRiP/uu+8uf/fdd8pFixZps7OzdQ1tSKVSzuVyNUmsrVYrLRaLOQAICQmxq1QqDgD8/Pxcdrv9rjpt9+3b52s0GoXz58+PqampETocDjoyMtJ+eznqO9Wve5AFKhXE94+AuUSCsNMrUMr5o6wkHBAIoJ4+vbfDI3qY0NcXgoAAb0+xQgM88ZfG5BgA7BcvQuDvD2Fwi8PDiD6IFoshdgO19ZUdPsZa6+3c8A+N7q6wiF7ESOQAAEud4Y6Oc9V5O9eo4GZPqok+SKFQuFUqlQcAgoKCXCaTSZCbmyt+8cUXoziOA8MwvEgk4iiK4jMzM4N37Njhd/M4D03TiImJcWRlZemysrJ0bSXHa9asCT537pxy586dOo1G4waA0aNHm0+cOKH2eDwoKioScRwHjUbjHjp0qOnQoUNqADhx4oQyMjLS3lq7x44dUz7zzDOG7OxsXUREhH3YsGHmCRMmmBtimjp1qnHx4sVhhw8fVt6Mm6NpuklPbWBgoNtms9GXL1+WAIDb7cbJkydVI0aMsAJody5PRyfCvvbaa/qDBw9euXmtKh577LGazibHQD/vQQYA36TpqPjlHP5S/xqKQ4fiDzc2QDF5MpggMk6sP5IOGwbbr7+2+J7t0iVIhw4lE/T6EY9MCsAKS1XHewvd9Q7YGCAoKKT7AiN6jUjmA8AAS82dJci80VtcRBpMPhf9wfLly4sWLlwYJRAIeIZhuFWrVhVptVpnbGysNTk5OY6iKCQmJhonTpxojouLs2dkZGhzcnI0HMdhxYoVBR05R0VFhXDbtm2hUVFR1nnz5sUCwJQpU2peeeUVw8iRI83JyclxPM9Tf/7zn4sB4O233y558803w/fs2RMol8s9GzZsyG+t7djYWPvixYu1a9asQUBAgDMzM7Pw9n1efPFF/dtvvx3+8ccf8xRFYfny5U2GONA0jRUrVhQuWbIkgqZpuN1u6qGHHqqbNGmSqaCgQNTe9xceHm577bXXtB9//HGHrkdX6/cJsvLxx2HYuAmz/30OcgUDo9EI37lkeEV/JR05AuYffoC7thZC3//MynLX1sKZnw/VVFJZsT/xKBQArLDdSTJk8aBeTiNAIW5/X+KeI1b6AQCstXdWglxgcYGjAJXGrzvCInqZVqt1HjhwILfh9YQJE8wTJkzIvX2/N998sxxAkwHswcHB7p07d+Z15DwTJ040TZw40dRw3OXLl8+2tN+SJUvKAJTdui0iIsL5xRdftHqeY8eOXWz4OiYmxrFv375m8d8qPj7enpWVpWtrn9auw+3Xq+Hrm3EDAPbs2XO1tXZb6yFuafvt5+qofj3EAvA+Vh/40Vq4S0th3LMHvs89B9noB3s7LKKXyEaMAADYzjXtRbaePAnwPFnZpJ/hFGoAgLOmg0/r3A4wVsAkE5AEuY+i1f4AAPsdJMhWlxUyKw+7lIKfknwuCOJe0O97kAFANmoUwrb8FZRYDNn99/d2OEQvkgwdCgiFsP36K5SPTGrcbvnpJ9BKJZmg18/wPn6gALjrOlgoxGKA2Eah1ldEEuQ+ivbxriLG1Xe8eEy1vRoqK+AU0wiUtftkmSCI3wCSIN9EegYJAKClUkji4pqMQ+Z5HubjxyEfkwBKSH5k+hPK9+aSqiYTeJ5vd/y5x1QBhRUwBUvgJyeJUF9EqwPgFPKAueOFQqpt1VBaeTjFQviSBJkg7gn9fogFQdxOev9I2C5cgOfmH0BnYSHcZeWQjxvXy5ERPY0O8K5YIrV6YHa1nxBVG65BYQcsMhUEpMx0n8TIfOEUAbTF1uFjDBY9VDbALhJDLW21ijBBEL8hJEEmiNuok5LA2+0wHjgAAKj/6msAgHw8KT3e3zB+weAEPBT2m9X02mEo9c4Dsco17exJ3KvESl+4xTwYm7PDx1SZbkBpBZxiBblxIoh7RJcnyCzLxrEsa2RZVnLz9RiWZU+xLHucZdllXX0+guhqkvvug2TIENTt2gVPXR1qPv8cyilTIBo4sLdDI3qYROkPiHgobECNvf1JWdXlRQAAp5oUg+irJAo/eEQ8RDZ3h4+pqr8BuR1wyny6MTKCILpSlybILMuqAGQCuLUe9ycA5gIYDyCBZdmRXXlOguhqFEXB99ln4Mi7hsLfPQfOYkHA6/+3t8MieoHMRwNa3PFy06ZqvfcLf203R0b0FqnKD2B4SBwcHB5H+wcAMOlLQQNwykmC3FedPHlSPmvWLLbh9blz56TTp0+PS0lJYRcuXBjh8XgrOW/evFmTlJQUP23atPg9e/b4AoDZbKbnz58flZqays6ZMye2pKSk2Ticuro6wbx586JTU1PZGTNmxP30009yADhx4oR82rRpccnJyXGrV68OAQCPx4NFixaFzZgxI27WrFlsXl6eGADy8vLEc+bMiU1NTWWfeeaZmKqqKkFD+3l5eeIpU6YMbnidn58vSk1NZWfOnMm+9tpr2lsr8936Pc6cOZOdNWsW++yzz8ZUVFQ0maRz5MgR5SuvvNKkpOg777wz4PPPP/dv7TpmZmYGnzp1Smaz2ajPPvssoKPnXL9+fdBTTz0Vn5SUFL9v3z6fhrZmzZrFzpo1i33iiScGJyQkDL+9vbZ0WYLMsiwF4K8A/gTAenObCoBYp9Nd1+l0PIBDACZ31TkJoruokpLg8/TTAAX4zXsektjY3g6J6AUydSAYEQeFnUdNB8pNW2u9KxsoAsK7OzSil0iV/qBFPOQOoM7esZUsrDXeSox2ZbO/90QfsHbt2qClS5eGO53OxvEz69evD01LSyvPycnRuVwu6uDBg2qDwSDMysoK3Lt3b+6OHTt0H3300SCO47Bt27aA+Ph4awIvnMoAACAASURBVHZ2tm7q1KnVmzZtalau9eOPPw4aPXp0fXZ2tu69994rWLlyZRgALF++PHzt2rUFe/fuzb106ZL87Nmz0gMHDvg4nU56//79uYsWLSpZuXLlQAB46623wtPT00uzs7N1s2fPNly9elUCADt27PBLT0+PNBqNjYn5u+++O/Dpp5827N27V/fggw+aNm3a1Kx62sqVK8Pefvvt4qysLN2jjz5au2HDhk6XmV20aFFFQkKCtaKigsnJyWn2A9PSOWtrawVffvllYE5OTu7nn39+9YMPPhjU0FZD5T+NRuPsaAGWBnc1JZ9l2ZcA/OG2zUUAvtDpdOdZtvEmSgWg/pZ9TAAiQRC/cbREgpAV/29vh0H0MpHSHyLGA4UNyO9AD7Kz3goAkAYGdndoRC+hxXIIGA4yB1DnqEOQvP2qq/abN04OH/K56E67ruzyP3D9QJfehUyPml71bPyzbf7wh4eHOzZu3Hj9j3/8Y+OjI5ZlrXV1dQKO42C1WgUMw/AajcZ98ODBywzDoLCwUMQwDEfTNF5//XW92+0dslNWViZSKpWe28/x6quvVorFYg4A3G43JRKJeKPRSLtcLio6OtoBAImJifVHjx5VGQwGZvz48cab2ywZGRlyq9VK1dbWMt99951PZmbmwPj4eMuyZctKAECtVnu+/PJL3aOPPtq4jmlRUZF0ypQpRQCQkJBgXrlyZbNxYxs2bMgPDQ11AYDH46HEYnHHakPD27u8ZcuWYKFQyJWXl4sfe+yxmsWLF1e88cYbEVOnTq05dOiQb3FxsXT16tUhN4urtHpOuVzOBQUFOS0WC22xWOjbVxvKycnxUSqVnilTptTjDtxVD7JOp/tUp9MNvfUfABbASyzLHgEQDOBbeJNj5S2HKgF0fPFIgiCI3sTIQIsAZQfHIHNmJ1wCQB2g7oHgiF5BUQAjgMwOGB3GDh3iNlkAAC7/0O6MjOglM2fOrGMYpklyqNVqHZmZmWGTJ08eUlNTI3z44YdNAMAwDD755BPN3Llz45944onGxFsoFGL27Nmx2dnZgU8++WTt7efw9fX1yGQyvry8XLh48eLI9PT0kvr6eoFMJmtMphUKhcdkMgksFotApVI1bqdpmtfr9UxxcbFk/Pjx9bt379bV19cLduzY4Q8ASUlJRoVCwd16vujoaOs333zjAwD//Oc/fex2e7N8sSFRPX78uHz37t2BaWlplR25Xg0JbGVlpWjr1q3X9+7dm7tz584mvc8LFy4sDwsLs92aHLd1zsDAQOdTTz01JDU1dfDs2bObxPHpp5+G/OEPf2hSVbAjumxRV51OF93wNcuyhQCm6HQ6O8uyTpZlowDkA3gcwPKuOidBEES3oii4xQwUdqDKVtXu7rSFg0VGwU9OioT0ZbRIAJEHqDQZgJC29+V4DpTZO1aZCiAJcnd6Nv7Z6vZ6e3tKZmbmoO3bt+cOHTrUvnnzZs3SpUsHrVmzphgA0tLSDAsWLKh6/vnnYw4fPmyeNGmSCQB279599cqVK5K0tLTorVu35i1ZsiQCAJKSkqpfeOGFqgsXLkgXLVoUmZGRcWPixIlmo9FI22y2xnHEZrNZoFKpPHa7nTabzY3beZ6nAgMDXVKplGs416RJk4zHjx9XAWjxei1durTk7bffDtu/f3/AuHHj6tRqtTs7O9t3165dgQDw5ptv3hg1apR19+7dvp9++mnIX//617zAwMAmM1clEgnncrmadOdarVaBRCLhACAyMtLGMAwYhuFEIlGHe59vP+dXX32lrq6uZg4fPnwRAJ577rnY0aNHmxMSEqyXL1+WKBQKd0xMTMcmDNyiJ5Z5SwOwA8BpAOd0Ot2pHjgnQRBEl3BLxBC5gVpjO50jnAeMDbBIhaRISB9HM97/X3Nt+x1mRocRMpv3b79EQ8Yg9xcKhcLd0IsbFBTkMplMgtzcXPGLL74YxXEcGIbhRSIRR1EUn5mZGbxjxw6/m8d5aJpGTEyMo2H87AsvvFB1+fJlSXp6euSaNWvyn3zyyXoAUKvVnFAo5K9duybmOA4nTpxQJSQkmB944AHz0aNH1YB3Ep9Wq7XJZDJ+wIAB9qNHjyoA4PTp08ro6OhWF/P+4YcfVIsXLy7JysrSCQQCJCYm1qemptY2xDRq1Cjrzp07/b744ovAnTt36qKiopqtexgfH2+7du2arKysjAEAm81GnT9/XjFixAhre9ePpmnwPN9sTcSWzqlWqz1isZgTi8W8VCrlFQqF22g0CgHgxx9/VI0bN+6OhlY06JayYDqdLuKWr08CGNMd5yEIguhuLokEgAXWGn2b+9nqSyG3AhaxCGEKkiD3ZUKRFIAL5pr2E2SDzQCllQcnAJRqRfcHR/wmLF++vGjhwoVRAoGAZxiGW7VqVZFWq3XGxsZak5OT4yiKQmJionHixInmuLg4e0ZGhjYnJ0fDcRxamkz2/vvvD3C5XHTD5Dy5XO7evn379WXLlhVlZGRoOY6jEhIS6seMGWPxeDw4fvy4Kjk5OY7neaxevboQAN59993C5cuXh33wwQdUSEiIY9myZa0+FouOjrYvWrQokmEYXqvV2t57773iW993u93IzMwM02g0zv/6r/+KBoD777/f9Kc//alxKINareYyMjJuvPzyy9FisZhzu930nDlz9DExMY7S0tI2f0kGBga6XC4XtWzZsgHLly8vbe+c//rXv6wzZsyIo2kaw4cPN0+ePLkeAAoKCiTjx4+/qwSZ4vkO92r3mJkzZ/J79+7t7TCITmBZ9oxOpxvV1e2Sz8a9r7s+G0D3fD4u/N9JYL6vwP/zf8TYn3Gu1XLTRdf/FyVzFqIgOACP7/oOGiUZZnE37oXfHed+/ygkh8pwdNlT+K9nM9vc96eyn/Br+ssYdw0o//x7PDG0nTEZRKta+mycP3++cPjw4e2PfyKIVpw/fz5g+PDhEbdvJ5X0CIIg2uCWqwAAEqu7zUlZFbXXobICdSIVfGWknHBf5pZ5557b6zpQPMZWDaUVcIsEUJEy0wRxzyAJMkEQRBs8Kl8AgMLOw2AztLqfvuI6hBxglgZCKCC/Wvsyj8y7Sonb2P6iTAabAQobD5eIgUpCEmSCuFeQ3+IEQRBt4H28E6sUNsBgbT1BrtWXAAAsirAeiYvoPR6VtyKeq779Zd6qrFVQ2wC7SAI16UEmiHsGSZAJgiDaQPl7C0EobGizB9lc5X3P4TuwR+Iieg+n9lbK5U3mdvetspRDZeVhFsmgJkNvCOKeQRJkgiCINgj8ggGab3eIhb3OO1FaEECW8urrKFUAOJoHbWl1laxG1aZyb1ERsRwKUbcsHEUQRDcgCTJBEEQbGGUABCIOPnZBm0MsXCbvOvQikiD3eQK5LzwiHmKbB1ZX20u6WmoMoEDBIlWDplteAYUgiN8ekiATBEG0QaLyJsi+NrrNHmTK4gZHAbJAvx6MjugNjNwXvIiH3AHUOdqeqOes875vVZDPRV928uRJ+axZs9iG1+fOnZNOnz49LiUlhV24cGGEx+Ot/Lx582ZNUlJS/LRp0+L37NnjCwBms5meP39+VGpqKjtnzpzYkpKSZmNx6urqBPPmzYtOTU1lZ8yYEffTTz/JAW8hkGnTpsUlJyfHrV69OgQAPB4PFi1aFDZjxoy4WbNmsXl5eWIAyMvLE8+ZMyc2NTWVfeaZZ2Kqqqoaq+3l5eWJp0yZMrjhdX5+vig1NZWdOXMm+9prr2ktFkuzfPHy5cuSlJQUNjk5Oe6NN96IcLlcTd4/cuSI8pVXXom8dds777wz4PPPP/dv7TpmZmYGnzp1Smaz2ajPPvus1d6GP/3pT4O2bNmiaXjd0nVt7Zp1FEmQCYIg2iDzCYRAzEFtbb3ctNlphsTKwy6h4KeQ9nCERE8Tyf1AiXjIHECtvbbV/exuO2iL98mCValpdT/i3rZ27dqgpUuXhjudzsZHBOvXrw9NS0srz8nJ0blcLurgwYNqg8EgzMrKCty7d2/ujh07dB999NEgjuOwbdu2gPj4eGt2drZu6tSp1Zs2bQq+/Rwff/xx0OjRo+uzs7N17733XkFDwZDly5eHr127tmDv3r25ly5dkp89e1Z64MABH6fTSe/fvz930aJFJStXrhwIAG+99VZ4enp6aXZ2tm727NmGq1evSgBgx44dfunp6ZFGo7ExMX/33XcHPv3004a9e/fqHnzwQdOmTZuCbo9pzZo1A9LT00v37duXCwDffPONT2ev5aJFiyoSEhKsFRUVTE5OTrMEWa/XC3/3u9/FHD9+XN2wrbXr2to16ygyIIogCKINCrUGJjEHpZWH3tpyNb0KSzl8LIBNIoQvKTPd54mVfnAzHGR2HrWO1hPkans1FDfLTNvUzXIeoovV/GOHv3H//i4d46SeMaPK77nfVbe1T3h4uGPjxo3X//jHP2obtrEsa62rqxNwHAer1SpgGIbXaDTugwcPXmYYBoWFhSKGYTiapvH666/r3W43AKCsrEykVCo9t5/j1VdfrRSLxRwAuN1uSiQS8UajkXa5XFR0dLQDABITE+uPHj2qMhgMzPjx4403t1kyMjLkVquVqq2tZb777jufzMzMgfHx8ZZly5aVAN5SzV9++aXu0Ucfva/hfEVFRdIpU6YUAUBCQoJ55cqVg26PaevWrdeFQiEcDgdVXV3NNJTW7ogjR44ot2zZEiwUCrny8nLxY489VrN48eKKN954I2Lq1Kk1hw4d8i0uLpauXr065M033yxvOM5sNtNvvPFG2eHDhxsT5Naua0vXrKPxAaQHmSAIok1KuRSciIbc6kGVrQotVR+tqMuH2sLDJpbAnyTIfZ5M5Q8hw0HeTg9yla0KqptDlN1+oT0UHdHTZs6cWccwTJNfDFqt1pGZmRk2efLkITU1NcKHH37YBAAMw+CTTz7RzJ07N/6JJ55oTLyFQiFmz54dm52dHfjkk082+1D5+vp6ZDIZX15eLly8eHFkenp6SX19vUAmkzUmpQqFwmMymQQWi0Vwa7JK0zSv1+uZ4uJiyfjx4+t3796tq6+vF+zYscMfAJKSkowKhYK79XzR0dHWhh7hf/7znz52u71ZvigUClFYWCh6/PHHhxiNRuGwYcPaHpB/U0M10srKStHWrVuv7927N3fnzp1N7iAXLlxYHhYWZrs1OQaAyMhI55gxYyy3t9nSdW3pmnUkvsbv7052JgiC6G9omoJLIoTYxsHptsPoMMJH0vRJYkVtPvytQJ1KjkiSIPd5CrkcLgaQ24GKthJkaxUUNxe6EPq3OuyS6CJ+z/2uur3e3p6SmZk5aPv27blDhw61b968WbN06dJBa9asKQaAtLQ0w4IFC6qef/75mMOHD5snTZpkAoDdu3dfvXLliiQtLS1669ateUuWLIkAgKSkpOoXXnih6sKFC9JFixZFZmRk3Jg4caLZaDTSNputcRyx2WwWqFQqj91up81mc+N2nuepwMBAl1Qq5RrONWnSJOPx48dVAFq8XkuXLi15++23w/bv3x8wbty4OrVa7c7OzvbdtWtXIAC8+eabN0aNGmWNiIhwHjly5NJnn30W8M477wzauHFjYUMbEomEc7lcTWamWq1WgUQi4QAgMjLSxjAMGIbh7rR3tyUtXdfbr9mdtEd6kAmCINrhEEtA84DMDpSaS5u9X15fBB8LYBT5wI8kyH2eXCwELxRA1s4kvSpbFZQ2HjzNQ65W9mCERG9TKBTuhl7coKAgl8lkEuTm5opffPHFKI7jwDAMLxKJOIqi+MzMzOAdO3b43TzOQ9M0YmJiHFlZWbqsrCzdCy+8UHX58mVJenp65Jo1a/KffPLJegBQq9WcUCjkr127JuY4DidOnFAlJCSYH3jgAfPRo0fVgHcSn1artclkMn7AgAH2o0ePKgDg9OnTyujo6FbXKfzhhx9UixcvLsnKytIJBAIkJibWp6am1jbENGrUKOv8+fOjr169KgYAuVzuaegZbhAfH2+7du2arKysjAEAm81GnT9/XjFixIh2e5ppmgbP8x1a9qW169rSNbsTpAeZIAiiHXaZAlLUQmUFbphvYEjAkCbvl1cXQuICDCJfkiD3AyIhDRcjgsTFw2hpeeImAFRaK6GyAbyIhooUCelXli9fXrRw4cIogUDAMwzDrVq1qkir1TpjY2OtycnJcRRFITEx0Thx4kRzXFycPSMjQ5uTk6PhOA4rVqwouL29999/f4DL5aIbJprJ5XL39u3bry9btqwoIyNDy3EclZCQUD9mzBiLx+PB8ePHVcnJyXE8z2P16tWFAPDuu+8WLl++POyDDz6gQkJCHMuWLWv1wxsdHW1ftGhRJMMwvFartb333nvFt+/zyiuvlP/3f/+3lmEYTiwWc++//37Rre+r1WouIyPjxssvvxwtFos5t9tNz5kzRx8TE+MoLS1t8xdlYGCgy+VyUcuWLRuwfPny5r0St4iLi3O0dF3nz58f1dI1a6utW5EEmSAIoh12ucqbINuAElPzYWzVBu8wOYMsADKRoNn7RN/jFInBwA5LbesJst6qx1Ar4BEJSJnpPk6r1ToPHDiQ2/B6woQJ5gkTJuTevt/NMbVNxtUGBwe7d+7cmddW+60ldomJiZZbzwsAAoEAmZmZzRLaESNG2HJycnStnePUqVPnG74eM2aM5ZtvvrnSVkzjxo2zjBs3rtn3eKuUlJS6lJSUZo9ZJk6caJo4caLp9nNv2LChsGHbP//5z3+31u6SJUvKbn3d0nW9k2S4JWSIBUEQRDscKu/40VCXvFmCzPM8TLXe3/8mVQhuf8xI9E0OiXc5P1td2z3IPjYeTpGQJMgEcY8hCTJBEEQ7nD6BAIBBbiVKzE0T5Gp7NcRm7xJNHj+y1m1/4ZB4aw7Y2ulBVlq9q5uoJCRBJoh7SZcNsWBZVgDgQwCjAIgBvKPT6b5mWXYMgHUA3AC+1el0y7vqnARBED3B7T8AABDiEOP723qQi+qLoL455UToT6ql9RcOiXfSndNYC57nW3xyUGmphMwGVKolCCE9yN2F4ziOomm606sgEP0Px3EUAK6l97qyB/l5AIxOpxsHYAaA6JvbPwEwF8B4AAksy47swnMSBEF0O9o3FJSQg58FqLBUwMX9p6RqcX0x1DdX5ZRourRGAfEb5lR46xQwVifqnc0nyJudZlhcZogcQL1IBhVJkLvLJYPBoL6Z6BBEh3EcRxkMBjWASy2935WT9B4HcIll2W8AUADeYFlWBUCs0+muAwDLsocATAZwrgvPSxAE0a0EKg2EIg5Kkxse3oMKSwUGKb2FpQrrC+Fn5uEW0VCr5b0cKdFTXHJfAIDc4V3OTS1WN3lfb9VD6gBojkKtSAmVhMyJ7w5ut/vlioqKrRUVFUNBho0Sd4YDcMntdr/c0pt39RPLsuxLAP5w22YDADuAJAAPAfgM3p7jW2+tTQAi7+acBEEQvUWiDoZAwkFmcgDwrmTRkCAXGQsx3sjBJpGRKnr9iFvtfVogs3uT4SifqCbvV1groLq5ymw1oyY9yN3kgQce0AOY3ttxEH3PXSXIOp3uUwCf3rqNZdkvAHyt0+l4AD+yLBsLb3J86+roSgCtr6pOEATxGyT3DYRAzEFssgMAbphuIBGJAIAiYz5STDxMUhn85OLeDJPoQR6lBqB4yBw8qmzNJ+rprfrGKnp1Ml8wAtK5SRD3kq78if0XgKcAgGXZ4QCKdTpdPQAny7JRLMtS8A7DONaF5yQIguh2aoUcHhENgdkOP4kfftX/CsA7zrTAVAy1GaiRqOAnJ72E/QUt9wXN8JDf7EG+XaWlEkqbd96YRUlWNyGIe01XJshbAFAsy54E8FcAaTe3pwHYAeA0gHM6ne5UF56TIAii2/nIGDjFIsDqwqigUfi58mfwPI9fKn8B3B6IrBQqJH6kB7kfEch8IRBxUDnpVnuQg+3eh7RmVWhPh0cQRCd12awBnU7nAPBiC9tPAhjTVechCILoaT5SBjfEYkhcDoz2HYFvi75FiakEJ8tPIsgqBAUPSiQaPEnGIPcbjNwPAoaDj53Gv1vqQbZWQmvzVlXkff17OjyCIDqJDIoiCIJoh1BAwyL1rlDxABUBAPi58mecKDuBRLt39YIiaTD8SILcb4iUfhCIeKjsaLEHudJaCY0FAAWIfNTNGyAI4jeNJMgEQRAdYFJ5l/UKtgjhL/HHbt1u5BvzMdLkfRBXJfUl5YT7EblMDoh4KKx8szHIPM/jhukGNBYPeDEFlZQMvSGIew1JkAmCIDrAcnNZL3dZKR4JewSXqy9DSAkRX+stGsIFaCCgSa2C/kIhEcItFkBq5VBlqwLP/6eQW7W9GhaXBT5mD9xiAVnijSDuQSRBJgiC6ACjn3fdY3dRHt4e8zaOP3scx589Dp9qM3ga+P/Zu+/oqKrtgePfO31SJr0RSEK9dEJRivQqiCKKXVTAgiKWp4I/fGJ/VgRFRQXBgoCAICogVelNWqgDhJaQSkJ6m/b7I6h5todkJpOB/VnLtZKb5Ow9cjLZc2bfc0xh0md6OQkw6qgw6DGUOSm3lVJoK/z1ayfzTwLgX2SnzGiQAlkIHyQFshBCXIDi4PpojQ5sKcdRFAWLwYKf3g9bXhEOPz2RQSZvpyhqUIBJR6nBiAIElFUeHvOLUwWnADCUOCk2muQUPSF8kBTIQghxAWwB9dD7ObClpf12sSwfe6GdIrMfEQHSZ3o5CTTqKTT6ARBQCsl5yb9+7VTBKfQaPUqZQoHBT3rThfBBUiALIcQF0ATXQevnxJ6V89vFnGTspVqyjBYiLVIgX05Meg0FhgAAQkq1HM8//uvXThacpL4hEqdNwzmjRVoshPBBUiALIcQFCA7wo9xsoCK36Ndrrqwj2Iq1nDZHygryZUZRFArMldu3NVDCOZZ37NevnS44jWqzAHDWGCQryEL4ICmQhRDiAkRZTOSb/XGVO3AUVRbJFYf34HIq7A+sT6RFepAvNwV+lTdmxjuDf22xcDgdnC48TYPyyj2xMw0hWExSIAvha6RAFkKICxBlMZLlFwyAPT0dgPIjhwE4HhhLRKCsIF9uigIjAYgtN5BamEqZvYz04nRsTht1z7/RcMYQjsUsN+kJ4WukQBZCiAsQGWjijKmyILKlnACg4lTlzgUpgdJicTkq9otE0biIKAUXLk7kn2BX1i4A6hU6AEgxRkqLhRA+SApkIYS4AJEWI8nmOgDYkg+Ay0V5Wh4ui5EynVFWkC9DDv8ItAYnwYWVh8UcyzvGqlOriPaPJjq/DIACUzABRllBFsLXSIEshBAXwKjTkhLcEK3BSeme3VCURXkelIaH4m/Q4i9F0OXHPxyt0YlfYRkmrYlvk79l85nN9I3riyMvHzSgDwpEUeSERSF8jRTIQghxgcotCfhFllOy+yCuzINUFOjIDq0jN+hdpnQBlQWys6CQR9s9ytb0rVQ4K+gX3w97fhGYFIL8DN5OUwhxEaRAFkKIC+QXHEF+nTBsucUUL56Oy6lwIKSp9B9fpgL8zDgNGhwFJdzR7A66xXYjNiCWxMhEHAWlOEx6QqRAFsInyXuCQghxgaICjayO7Ex/1pC5YAegY09AAhFySMhlyWLSUWHQoZwrQ1EU3un1DqWOUjSKBntROWXGYIL95AY9IXyRrCALIcQFirQY+UTfE63JSUWBjqDBfdihCyNGWiwuS0FmPaVGI44SOy6XC71Wj8VggfJC7CUuCkz+BMsKshA+yW0ryKqqBgHzgACgHLjTarVmqKraCXgHsAMrrVbrC+6KKYQQNSnKYqLAZcavQ2NsJzNwPPEiZe9soUFEgLdTE14QZNZTbDBhdFXgLCxEa6k8Pc+Vcxp7qZYMUzDBssWbED7JnSvI9wD7rFZrN+Ar4Knz1z8Ebge6Ah1VVW3rxphCCFFjIgMrV4rzXviShFU7OHF+r9sGEf7eTEt4SZBZT4Gh8sWR/WzOr9ftpw6CS+G0MZwQf1lBFsIXubNA3gcEnv/YAthUVbUARqvVmmy1Wl3ACqCvG2MKIUSNiTrfa5xVWNlzejy78rg0KZAvTxaznmy/IABsaam/XredOALACb8Y6UEWwkddVIuFqqqjgMd/d3kM0F9V1YNAKNCNykK5oMr3FAINLiamEEJ4W9T5XuP084dAHD9bTKBRJ7tYXKaCzHoyzGEA2E8eg67dALClngLgiKku15llBVkIX3RRBbLVav0E+KTqNVVVFwFvWK3Wj1RVbQ18TWVbRWCVbwsE8i4yVyGE8Kooi4kAo45D6ZWv+49nF9MgMkAOgrhMBZn1nDBFg+LCdurYr9ft6WkAZJjDCJEVZCF8kjtbLM4B+ec/zgIsVqu1AKhQVbWhqqoKMADY4MaYQghRY7QahcR6wew6Vfk6Pzm7iIbh0l5xufIzaDmtrYPO5MR2+sSv121ZOShGhVK9iSApkIXwSe4skJ8F7lJVdT2wGLjv/PXRwJfAdmC31Wrd5saYQghRo9rFBXM4o4DswnLS88uk//gypigK54x10fvbsaWn/3rdllOIEljZWiEHhQjhm9y2zZvVak0DBv3J9a1AJ3fFEUIIb2obH4LTBd/sPgMgW7xd5ox+gRCgw3b2fPegy4UtvwJ7SOXNe3KTnhC+SQ4KEUKIf6BdvRAA3llzFJ1GoVVskJczEt5kMespDfDHlleGy+GAsnzsxQqllmAMOg1mvdbbKQohLoIUyEII8Q8E+elpGOFPUbmdcVer1Av183ZKwouCzHryAoLBCfbsbJwZx3BUaMizhBNs1ssNnEL4KLe1WAghxOXitivjsGYUcm9X2bXycmcx6TjjH0kwGdhOn8CZvR2A04Fx0n8shA+TAlkIIf6he7tJYSwqBZn1HDXG0IIkbEeTqLBWbtS0J7iF7GAhhA+TFgshhBDiIgWZ9ezWxwFgSz5M8R4rWn8dVv8o2QNZCB8mBbIQQghxkSxmPYeVWEyhFeSvQvAepwAAIABJREFU2UTxqXL8W8aTWWQjIlBOWBTCV0mBLIQQQlykYLOeAgII7BhDRWYhjnItxq49yCuxERVo8nZ6QoiLJAWyEEIIcZF+WSXOuuddtCYnACVdhwCVR5MLIXyTFMhCCCHERfqlCD6trUPk6LsJ7tWKbL9wACIt0mIhhK+SXSyEEEKIi/RLgZxVWEbw6AkEA7v3VR47HSktFkL4LFlBFkIIIS5SmL8BnUYhI7/s12uZBZUfR8kKshA+SwpkIYQQ4iJpNAqRgUYyC8p/vZZVWI5eq8hBIUL4MCmQhRBCiGqItJjIKvzvFeTIQBMajRwzLYSvkgJZCCGEqIZoi+m/WiyyCsplD2QhfJwUyEIIIUQ1RFmMv/YdQ+UKsvQfC+HbpEAWQgghqiEqyERBmZ3SCgdQ2YMseyAL4dukQBZCCCGq4ZcT8zILyiizOcgvtUmBLISPq9Y+yKqqDgVuslqtt5//vBPwDmAHVlqt1hdUVdUAHwBtgHLgXqvVeqx6aQshhBC1Q3RQZTGcUVCGRqm8MU96kIXwbRe9gqyq6jvAq78b40PgdqAr0FFV1bbA9YDJarV2Bp4GJl18ukIIIUTt8ku/cWZBGSdzigGIDTZ7MyUhRDVVp8ViM/DgL5+oqmoBjFarNdlqtbqAFUBfKovlHwCsVutWoEM1YgohhBC1yi/tFJkFZew4mYtWo9CmXrCXsxJCVMf/bLFQVXUU8PjvLo+wWq1fqaras8o1C1BQ5fNCoMH56/lVrjtUVdVZrVb7xaUshBBC1B4BRh0xQSa2n8iloNROyzoWAozV6mAUQnjZ//wNtlqtnwCfXMBYBUBglc8DgTzA73fXNVIcCyGEuFQoisLg1jHM2nQSjaJwz1UJ3k5JCFFNbtvFwmq1FgAVqqo2VFVVAQYAG4BNwCD49Sa+fe6KKYQQQtQGQxJjsTtdVDicXJkQ6u10hBDV5O5t3kYDXwLbgd1Wq3UbsBgoU1V1MzCZP7ZrCCGEED6tRR0LDcL9URS4or4UyEL4umo1SVmt1p+An6p8vhXo9LvvcVJZOAshhBCXJEVReLRvY5JS8wky672djhCimuQuAiGEEMINhiTGMiQx1ttpCCHcQE7SE0IIIYQQogopkIUQQgghhKhCCmQhhBBCCCGqkAJZCCGEEEKIKqRAFkIIIYQQogopkIUQQgghhKhCCmQhhBBCCCGqqJX7IB84cOCsqqqnvJ2HqJZ4Twwqc+OS4JG5ATI/LhHy3CH+iseeO4T4PcXlcnk7ByGEEEIIIWoNabEQQgghhBCiCimQhRBCCCGEqEIKZCGEEEIIIaqQAlkIIYQQQogqpEAWQgghhBCiilq5zVtVqqpqgA+ANkA5cK/Vaj3m3ay8Q1XVXUDB+U9PAB8B7wB2YKXVan3BW7l5g8yN/ybz47/J/PiNzI3/JnPjv8n8EOKPan2BDFwPmKxWa2dVVTsBk4AhXs6pxqmqagIUq9Xas8q1PcCNwHFgqaqqba1W624vpegNMjfOk/nxp2R+IHPjL8jcOE/mhxB/zhcK5K7ADwBWq3WrqqodvJyPt7QB/FRVXUnlv9vzgNFqtSYDqKq6AugLXE5PYjI3fiPz449kflSSufFHMjd+I/NDiD/hCz3IFiC/yucOVVV9obB3txLgLWAAMBqYdf7aLwqBIC/k5U0yN34j8+OPZH5UkrnxRzI3fiPzQ4g/4QtPCAVAYJXPNVar1e6tZLzoCHDMarW6gCOqquYDoVW+HgjkeSUz75G58RuZH38k86OSzI0/krnxG5kfQvwJX1hB3gQMAjjfK7bPu+l4zUgq++RQVbUO4AcUq6raUFVVhcpX/xu8mJ83yNz4jcyPP5L5UUnmxh/J3PiNzA8h/oQvrCAvBvqpqroZUIARXs7HWz4BPlVVdSPgovJJzQl8CWipvNN4mxfz8waZG7+R+fFHMj8qydz4I5kbv5H5IcSfUFwul7dzEEIIIYQQotbwhRYLIYQQQgghaowUyEIIIYQQQlQhBbIQQgghhBBVSIEshBBCCCFEFVIgCyGEEEIIUYUUyEIIIYQQQlQhBbIQQgghhBBVSIEshBBCCCFEFVIgCyGEEEIIUYUUyEIIIYQQQlQhBbIQQgghhBBVSIEshBBCCCFEFVIgCyGEEEIIUYUUyEIIIYQQQlQhBbIQQgghhBBV6LydwJ/p2LGjKzY21ttpiGo4cODAWavVGuHucWVu+D5PzQ2Q+XEpkOcO8Vc8+dwhxO/VygI5NjaWRYsWeTsNUQ2qqp7yxLgyN3yfp+YGyPy4FMhzh/grnnzuEOL3pMVCCCGEEEKIKqRAFkIIIYQQogopkIUQQgghhKhCCmQhhBBCCCGqkAJZCCGEEEKIKmrlLhaXko1Hz/LzqVzMei39mkfRICLA2ykJIYQQQoi/IQWyh5TZHDz05S7WHs769dqryw/Tr3kUz1/XgthgsxezE0IIIYQQf0UKZA957Jtv2Ff2HrHNCqmj92dw/BDOlQ7ko3Wn6P/2Ol69sTXXtanj7TSFEEIIIcTvSA+yB7y27gs2FT9PqC6D/gVnoSiDt47NYlvaPXx2u5mmMRYembub/1u0jzKbw9vpCiGEEEKIKqRAdrO0wnQWHp9Eu/IyFkZdzXP372P+bet5K6I7KfYiHtk6htGt1jG6R0Pmbj/Nde9tZP+ZfG+nLYQQQgghznNri4WqqnpgJpAAGIGXgYPAp4AL2A+MsVqtTnfGrU2e+uFxNNh4UNeBwGsnA6AYAxkw6H3apG7l8VWj+VfyHEabNvPZ8Hd56ptkrn9/E4/0acyDPRui18prFiGEEEIIb3J3NXYnkGO1WrsBVwPvAW8D/z5/TQGGuDlmrXH03FGSSg5we56N9re8/4evR9ftxKe3b2CIOY4Py07y9ZYhLLlBYWCrGN5edYQbp23mWFahFzIXQgghhBC/cHeBvAB49vzHCmAH2gPrzl9bDvR1c8xa46NNb2JyOmkafiv6gNA//R6jMZCXbvqepxvexHqdi4c2PsTTAZ/w0U1NSMktYfDUjczfkYLL5arh7IUQQgghBLi5QLZarUVWq7VQVdVAYCHwb0CxWq2/VHuFQJA7Y9YWuWW5rD27lYFF5SRePfZvv1dRFO7oOpEPek0h0+jH7dlrid14HT9eU0S7uBDGfZ3EC98dxOGUIlkIIYQQoqa5veFVVdV6wI/AF1ardQ5Qtd84EMhzd8zaYMXhhdgUFwn2tkRHRFzQz3SJ78PsIV9j9o9mZJCOQ6tGMztkOmM6RfDp5pM8Om83dscl264thBBCCFErubVAVlU1ClgJjLdarTPPX96tqmrP8x8PBDa4M2Zt8d3BhdSvsBGb+NA/+rkGQQ2Yfd186oU0ZmydOmxPXsZTpx/gzW5avk9KZ9zCJJyykiyEEEIIUWPcfVDIBCAEeFZV1V96kR8F3lVV1QAcorL14pJytvQs+yvSGVakpVPHrv/458PN4cwY8AmjVo7iEUXLjJxibtozEnO7F3l4FwT7GXh2cDMURfFA9sIbskqy+ObYN+zK3IVeq6dJSBP6x/dHDVW9nZoQQghx2XNrgWy1Wh+lsiD+vR7ujFPbrLYuwqVAOB0I8tNf1BghphA+7vcxdy2/izG6fL4oiuSaQ+OwNZ3A45ugTrCJe7s1cHPmwhs2ndnE0+vHk1eRT2N9ECha1qes4+Okj+kU04mxbcfSOqK1t9MUXlZUbmf21lN8s/sMZ/JKCTLraVkniGvb1KFf8ygMOtkSUgghPEWOmnaDVdZvSKiwEdn0zmqNE24O56O+H3HHsjsYGxbIbENnhp54icK4p3h+GTSI8Kd30yg3ZS28ISk7iYfXPET9ChufZWZS35aCgotzGg2Lg0L4XNnJHcvu4JqEQTx15TjCzGHeTll4QUpuCaM/+QlNbjLt6/jRo1VT0iv82Ho8hx8OZBARaOTOjvHc2SmOsACjt9MVQohLjhTI1VRqL2V3aQpXl2hof0WXao9Xz1KPt3u+zX2r7mN8TAfepyfDT7xFRuiTPDJXxzdjrqJRZIAbMhc1La8sjydWjSaqooKpFdFMDXyShWlhBFBKW80x+lf8zPy87cwL1jHrxFI2nlrFM60fZGDifd5OXdSgs3n5bHx/DAscK/EzlkMOlf9FNMPZ6Rp+DujFBwcNTF59hA9+Osaw9nUZ1bU+DSLkeeFy4XK5OJheQHJ2MRV2JwFGHfVCzTSODJR3FoRwEymQq2lH6kZsCgTamlA/3N8tY3aI7sCEjhN4ccuLTGsxkoeddp5KmUyKdhz3f2FkyZirCDRdXCuH8J73108gu6KA95zx9EsbQ0iAP+MHJdAsxkK5vReHM27lyaNp+J1ay2P5P/JDVAbj9r7Lmp0fMjFxLJbEO0Erv7KXtLJ8zn00mFvs+8hvPBS/9jeCVg9ZB+HYGjQb3+ZK11tcGdWK7N5DmZbbgdk/p/LlttP0bRbJgz0b0j7+z/dgF5eGtdYzvLRqOalFp3E5zDjKYnHZKt9pMuk1JNYL5sqEULo0CqddXIgUzEJcJPlrW00bDi3E5HQSETXYreMOazyMfdn7+OjATFp2f52eqwuZkjWZG3L/zVMLApl2Zzu5ac+HnMo9ysK0DVxfruGh06NpHBPCrBFXEupv+PV7+jSLYkyvRmQWXMni3cMp35FE86KZrAo7wf7dr/P6hkm07vcSSvMhIP/2lx6Xi+zP7ia+5ACrmr/CgFvG/Pa1JgOg6+NQlAUHFsPeeURsfpGJGh3jm/XnW+NgXjmo48ZpWfRrHsWz1zQnLszPe49FeMTENV+w+MQ0CCzEFPjb9cZOA1drGxHk6szyvATe+zGXd9ceI8Coo4cawZA2dejdNBKdVoplIS6UFMjVtD5rF+3KbCR0HeDWcRVFYULHCRzOPcyEbS8z97qpxM+7mznayfQ5YGH6hmDu797QrTGF57y/9gn0LifnCm7H5Bfwh+K4qiiLidE9GvJA9wYcSOvNR1vXsiXvVUYGlfDa0tG02/QpYbd9CIHRNfsghEc5t88gIv1H3jfdy/3DHmRX5i6WHl/KodxDAMQGxJIYmUiP5tdQt+MDkHUYdn+Bce88bipZxg112vNd+L1M2KOl/5R1PNlfZeRV9dFo5MXUpeDfP77DktQZqE4HD2Xm0tS/LoXB9djuKmKRM4uproMkVOzlX+V5fBIbx6nwHnzn6MznyRqWJqVTN8TMI70bc1OHurK4IsQFkJeT1XCmMJU0yogsCaNjY/cXKyadicm9JqPRaHhs+8uU3Pw5fpTzVdBUpvywj52nzrk9pnC/zHPHWVl0nP4VwSzJSeTtmxP/sjiuSlEUWsYGMfXGoXwz7Hsi/Jryr8gIFhftpmjKFRQfXFUD2YsaUZyDc9VE1jlaE91/DC9ve4G7f7ibpSeW4qf3I9AQyN7svby2/TUGLhrIncvuZHH+Icr6PAuPH4DBk9EWZXJ90oPsajyLa+PsvLz0EHfP2k5WYZm3H52opll757Lk9AwGFpUwp8xI79u+pc6Yn1HvWMzwO1ex6J49vNtjMpqQeB6JiuCxQAX/5E959OgIdkT9h8W9cojw1zPu6yRum76VzAKZE0L8L1IgV8P2Y0sB8NO291hPcGxALG90e4PkvGSePzYPbviYuPKjTDbP5JE5u8grqfBIXOE+Cza+gBPYlzGIa9vUoWvj8H88Rt2gSL65cTZ94/vxTpiF/1iCMM6/mdTlb7s/YVHjXJumoNjLmBl4LxsK3mXR0UWMaDmCH2/+kRn9Z/BRv49YOWwly4Yu4/H2j1NUUcTEzRPpu7AvU/dP51zLoTB2J/R9HtPpDbyR/SBzO55kx8lcrp26kV2n5cW0r0rOS+ad3W9wZUk5zzkjMNz/E9S78r++R1EUeiX0ZeEN3/NE+yfYqnUytH4jvusyEqXsHG23jGWR6QU+7qMhKTWfwVM3slvmhBB/Swrkath0fCVhdgeR9a/3aJwusV14pN0jLD+5nE/tmSi9JjDAsY6+Jd8z/uskXC45aa+2spUXs+DsTtpXGDhU0Y5xAy7+IBCTzsRbPd7kVvVWvgtWGBPemJhtL5D8+cPglCPJfVZhJs5tH7PE0QVD8xOsOb2GcVeM41/t/4VZZ/6vb61nqcfIliNZPGQxswbMon1ke6YnTWfQokHMODybis5jYMxWlOhWdN47ga3NFmLRVnDrx1tZvi/dSw9QXCyny8lja8bj77QzMc+B/92LwRT0l9+v1+i5p+U9fH3d1zQOacKE9NU83aY/JddOQck7Tf/Nt7Ox7VqC9E5um76V1Qcza/DRCOFbpEC+SC6Xix2FybQqc9GyZaLH441qOYqrE65m8s7JrKt/BTTuz0Td56Qe3Mbsbac9Hl9cnPU73iFXo1B8thO3d4yjXmj1bpzSarRM6DiB+1vfz+bAUu6OaUPc8S84Mu1WXPZyN2UtatTPM1Ec5Uwzd2V77mJubHwjw5sP/9sfURSFDtEdeKf3Oywesrjy413vcMO3N/BzWRbc8z30GE/wka9ZHvAyvaNKeGjOLr7cdqqGHpRwh++Sv+NkkZX/yzlL9KA3wBJzQT8XZ4lj5oCZjG07lh9OreDOM99xZsS30O4uQvd+xHLLf7gqvJQHZu/k271pHn4UQvgmKZAv0vFzR8lVHASWxJAYH+LxeIqi8OJVL9I8rDlPbRjPwZ5PoAmIYLr/NN5euovj2UUez0H8c98lf0uow8XuogGM6lrfLWMqisLYtmN5vP3j7DWd4/Z6HYg/uwLr1Btw2aS30KfYK3D+PJOfnK0pjdtIhDmCJzo88Y+GaBjckKm9p/Jh3w9xOB2MWDGCN3e+ja37U3DHQnSFqUwrfYpRCTk8s3g/MzYc99CDEe5Uai/lre2TaV5mI9GvLcbWN/yjn9dqtNzf+n6m9ZlGRnEGt69+gD0dR8Ats9GfS2ZG2ZPcFXWax+btZsmeMx56FEL4LimQL9L2I4sB8Dd1wajT1khMs87Me33eI9gYzJhN/0faoFeJsafyrPZzHvtqDxV2eZu9NsnL3Mc6VxH1CmMY2Kr6q8e/N7LlSJ7t9CxWXTa3xHUgrmATh98ditMmK8k+49C3aIqzmOzXhHzHaZ7s8CSBhsD//XN/4qrYq/j6uq+5Vb2Vzw9+zp3L7yQlWoV716IYA3kmexzjGpzk5aWH+GzzSfc+DuF2C6wLyLPlMC43l6ghr1701o5dYrvw5aAvCdAHMGrFKFb7meG+H1H8w5mY/wzjI7fxr/l7WXEgw82PQAjfJgXyRdp6egMxdjvRjd27//H/Em4OZ1rfaVQ4Khh9eCb5XcZwA2upl7aCSausNZqL+Hsrt03Grigcy+3nttXj37tZvZlXur7CSW0ONyckUqd4KwfevQGHTW7e9Ak7PyVFE01qVDJqiEr/hP7VGs5P78cznZ5hSq8ppBSmcMt3t/BjSQqMWo0SofJg+rM8E7ef5749wNc7U930IIS7ldnL+HjvDNqVVhAedBX6um2qNV79oPrMHjSbpmFN+ddP/2Le2Z/h3tUoDXrxQP47vB60iLFzdrHp2Fk3PQIhfJ8UyBfB5XKxsyQFtVRDYrMmNR7/l7dU04rSeNh2ktK6HXjLNJOl67ex/kh2jecj/oTLxQ9ZO4ixaYiI6EybesEeC3Vtw2uZ1HMSaZoCbopvQWTJFva+dxtOu91jMYUb5B6Hkxt4xdAMu+YsD7d9GI3inqfkPnF9mD94PvUs9Xjkx0d47+hXOO9aghLfhXuzXuXpmF2M+zqJNYfkJq3aaPGxxeTbzjEm7xxRg591y5ghphBm9J9Bj7o9eGXbK0w99BmuW+dC+xEMK13AVL9PGP35Nvam5LklnhC+Tgrki5Cce4R8xYl/aR1a1/Vc4fN32kW14/Xur5N0dh/j69ZHp4OP/D7kqa92yr6ntUBO8mp26lyY8xswvGOCx+P1ievDB30/oEBv5+Z6jQgq+YntH4zE6ZC2m1przxycKGwNKSTB0oAedXu4dfi6gXX5fODnXN/oej5K+oiHN00g/8bpKA168MC5SdwfuoeH5+xmX2q+W+OK6nE4Hczc9ynNyhxE6ptjimvntrHNOjOTe03mhsY38HHSxzy79QVsg96AHk8zwLaaqbp3uX/WZpLlnhYhfL9Azi/Pp9xRsz2XO458A0CAqTN6Lx7d2Te+L+OvHM+Pmdt4rU0/mjsOMcI2lyfm78XplK3fvGntno9xKgppZQO4tk2dGonZKaYTswbMQuPnz+2xceiLf+DHGeNkG8DayOnAtWcun5lb4DBlcU+LuzxyuplRa+TFLi/y747/Zkv6Fm5ecQ9JfZ9BievMuJJJXGNKYsSnOzidU+L22OLirE1ZS0ZJGvfl5xLQ81G3j6/T6Hi+8/M82OZBliQv4eG1Yym6aixc/Ro9nVuZ5HyTUdM3kJZX6vbYQvgSny6Q16euZ8DXAxi+bDjFtuIai7s1pbL/OKrhwBqL+VfuaHYHI1qOYP7ZnXzSvAejNd+gSV7DJxtPeDu1y5fDxsrc/YRV6OjfvAtmQ83cxAnQLKwZswfNJjKoLvfFREP+bFZ/8WqNxRcX6MR6lIJUPvf3x18XxDUNrvFYKEVRuKXpLXwx8AsA7l79AJ+3HwpRLXjD+RaJjiTumrmN7EK5ubM2+Gz/50TYFFpWhBDedohHYiiKwkOJD/FClxfYlr6N4cuHc6bldTB4Cl3ZxYvlr3PPjI3kFMmcEJcvny2QN5/ZzMNrHibSL5Ij547w1LqnamSlzOVysbskhSalGto0u/hDH9zpsXaPMTBhIO+UnuCHOk143zSNL1dsIClVesm8If/IMnYYtBgKG3LLFXE1Hj82IJbPB35O0/AWPB4ZQX7W+6z86r0az0P8jb1zOWUI5GxAJsMa34hJZ/J4yJbhLZl/7Xy61+3Om3um8kj95hSGJvCR9k2iC/Yx/JNt5JfYPJ6H+GsHzh5g79k9jCzIpbjlcNB49k/0DY1vYFrfaWQWZ3Lb97exLbY5DJ5Cd2U3Txa8zr2ztpBfKnNCXJ58o0C2lYHjt1/SYlsxz295noSgBOZdM4+HEh9iw5kNpBSmeDyVk3knOKc48S+NpnXdvz7RqCZpFA0vd32ZtpFt+bfZyQk/LR8ZpvDkl1soKLu8ntxcLhe7s3Yz3zqfAzkHvJLDxn1f4FAUXLqBtIr1zhwJMYUwY8AndKnTmRciQjl55g2Wzv/IK7mI3ykrwHXwW970awSKk1uaDaux0EHGIKb0msLTVz7NxsxtDIsIICk4ktmmN/A7m8TIz3ZQWuGosXzEf5tzeA4Gp4aBheXU7/tAjcTsXKczc66ZQ4gphPtX3c8nRieuAa/RX7ODB7JfYfjHspIsLk++USB/+zBMaQVJC3Bl7Oe1FaPJKE7nRUN9/MqL6VWvFwC7snZ5PJVdyUsBCDS0w6SvubfO/xeD1sDknpMJM4fzaJ1YgrSneaJ4Ek/M23VJ9yPbnXa2pm8lKTuJ+db5DPtuGHctv4uXtr7E8GXDWXNqTQ0nVM7anH342zXcnNjDI32lF8pP78fUPu8zMK4fU8OCOJD+Kt98+b70JHvboW9x2EvZFFBK06AO1AusV6PhFUXhjmZ3MHvgbHRaIyMsMDMshLnm13Ck7ODBL3fKnupekFuWy/ITyxlcWEx2RD+0AWE1FjshKIE518yhb1xfpuyawmOlhynq+wJXa7YzNucVbvlgndy4Jy47PlEgv6BpxAdGE+WL72XW3Kv5JmcP953LJ3H7ZzCzPw1dWiwGC7syPV8g7zi9jlCHg8j4qz0e658KM4cxtc9Uil12Hm3Uhu7an+l0bDKTVh72dmoeczT3CPetvI87lt3BS1tfwu6089JVL7FkyBKahzXnyXVPcqao5k6Jqji6ik0mHebi+lzftmYLnz+j1+p5redb3NroRr4IDmR37lt88+lrUiR70955LA+Mxa4vYVTr27yWRovwFiy4dgH9EwYw1QyPRoUw3f81bEfXMnbuLmyyA0qNWnR0ETanjbsLzxHZa3SNx/fX+/NWj7cYf8V41qWu47bsNRzpNZ5+mh28XPISt7+/mnWyjai4jPhEgZyicTAt0MGV8QlMDg2hW2hbHhxzFEaugJIcNMueol1kO3Zn7fZ4Lj8XHKdlqZMmTVt6PNbFaBLShNe7v86h8rM806QDI3TLcWyYwtztp72dmkc0q6hgSWoa7xQ4WaSJ55tyC9dbN9CgrIQ3ur+B3WXn++Tvayyf7ftnU6zREBY4gIhAY43F/TsaRcOELs9xb/O7WGQJYEvJdJZ98Dh2u7yVXuPyTsPJDXxsDseAhT4JvbyaToAhgNe7vc7EzhPZbtRzR50IxgVOwf/QAh6cvYsym8yRmuBwOlhgXUDzUgUTdQht2s0reSiKwp3N7+STAZ9QZCvijpTFfNf9QToqB5itfZH/m7WcD346dkm/KynEL3yiQJ4x5BlurvsczsIrKU29jWWbhtH+P+v41xYjpYkjIXkt7YIbc7LgJGdLPXcSUEZxBpmKjaDSMNolhHosTnX1rNeTJzo8waqKTCY3voKn9fM4tORtfth/6R0l6opujbH7ZHqFt6FxaTFK9mHYMxc+6k6dfd/QIaoD3x//vmZWTB021mftQudUuL3tAM/H+wcUReHRK57iscSxLA/wZ6nmeza+fQP5+ZfnjZzljnIWH13MsuPLyCurwf8HSfM5q9Fw0i+frjED0Gv0NRf7LyiKwk1Nbqrc5SIgkhF1Iugc9gUdj77JyE82y417NWBT2ibSitMYWZBFUfM7LvpYaXdpH9WeBdcuoEV4CyakLOWVjjcRr83kB7+JbFi5iHs+3UF6vmwDJy5tPlEgAzzbZxg7Rn/ItKGjeO7aVvRrHsX3SelMPNkSXE7a5mUBsCdrj8dy2HPqRwCMSnMsJu//Yfs7dzW/i1vUW/jUnsmnDa7gRf0sfv7qFX6yZnk7Nbc6mFHIVUvDuOHcGH7q8RWOh7Z0kP2TAAAgAElEQVTD4/uhUR9Y/RzXRnfiZMFJ9p3d5/FcXCc2sNGowVIWzaAW8R6PdzFGtbmfiZ0mstHPzCdBhzj5bleO7t/h7bRq1PrU9Vyz6Bombp7I+A3jGbJkCLlluZ4P7HJB0ld8FlJ5c95DHW73fMx/oEV4C+Zfu5ArYzrzYngYyTE7GJP+GKPfXyT9px423zqfQKeOriU2GvQd5e10AAg3hzOj/wzuaXEPX2Vu5v6WV1EREsYcw3/odXIKQ95eyZfbTslqsrhk+UyBDGDSa+nXPIoRV9XnrZva8OKQFiw4aSYzsCVNrZU3Yx3PP+6x+HtO/YTJ6SQ8qqfHYriLoij835X/R7/4fkxyZTK3YWf+rf2c5NmPsWp/mrfTc5vmMRbeHNaalNxS7pm1gy6vrWHSxmyK+k8CjY5+1vXoFB1rT6/1eC7J++aSotcTbeldq27g/L2b1JuY1PNtDpr9GR/jpPyb61g35/VLsuXihfUTeGjl/WxO28yuzF08s/EZxqwZg8VoYXr/6UzvP52C8gKm7Jzi+WTS9+A6e4RFJh3BmkaooY08H/MfCjYF837faYxJHMPygABeiStlrP1JvnzveX7Yd+k8b/wVl8tFblkudmfNHdOeWZzJhtQNDMkv4FRoT3SBETUW+3/RaXQ80eEJXu32KgcKTnBLZBB72wxlhGYpS3VPsmHJTG79aIu8gBKXJJ8qkH/v1ivj6NoonAVlHTBlHSTMGEJakeeexHflHKRZuY26TTt5LIY7aTVaXu/2Ot3rduc/zjN83rwfo7RLMc6/hUUb93o7PbdQFIWbOtRj4/heTLujHc1jLLz34zGu/+IE5xJHE3joexoHxnEw56BnE3G5WJe6EYBbW3nu0Ad36Rffj5kDP6XUP4x7YsMpOjOFA6/14lDSdm+n5lYND2xgX+omHlj1AHf/cDcrk79nhMvC3MxzdDpziE6R7RneYjiLjy3mwFkPbwu49ysOmMwUGIoYED/Ys7GqQavRMrrNaD4ZMBNHYAwPxgTjH7qAkIWDmDF7NiUVNVc8epItL4U9Sx8j1fod285s4eWtL9P9q+70+KoHQ5cMZV+25991Avg2+VucOLmtKI+QrrVj9fj3BjcYzOxBszFojYwo3MOsPo8TEhbGh4YpPJP5CK+/+w4frzuKQ1aTxSWkRgpkVVU1qqp+qKrqFlVVf1JV1W1LJ9e1qcP6osrdAmL1gR7bsaDCUcExex51y4y0Toj2SAxP0Gv1vN3zbXrX682bpVYmdbiRjppDdFp1PfMWfnXJ7GZg0msZ2CqGWSOu5Mt7O5JTVM7DBysPcmmuGDmYe9CzjzUjia16G4EVAVzbooXn4rhRm4g2LBjyNc2j2/J0ZDizg9OJXHw1G6fcxZnUU95Ozy0yg8fz+MloPsg8y5TMbFZl5PMvhz9Ghw2+fwy+fYT7Wt2HTqNjxckVnkvEYYf9C5kV1ABcOh7scKPnYrlJh+gOfH39EoY2uZFPgy08G2ejftqT7H69P/t3b/F2etU2b/cyhp9dw8CtE7h39f18c/grOmPm0Wb3UOYoY8SKEWQUe/a+DafLyeJji1HLdBidYcQk1r7dkX6hhqp8de1X9IrrxdvHv+be+iqn+k2kZWApH2vfoM+aa5k55RlSMjx3H5AQNammVpCvB0xWq7Uz8DQwyV0D92sehVVJAKCOS0N6cbq7hv4vB88ewKaAqaIOCWF+HonhKUatkUk9JzGsyTA+zdnBYx0GUmo2M2zfaJZ/8CQVFZfWTThdGobz1k1t2JQTSJ5fAs0LzpJfnk9asefeXSg88C27jCbq+F2BTus7b8xE+kUyc8BMRrcZzSqLH9fGx5NuX0vg9CvYOP1xCvJyvJ1itYy9aRCr1Te4K/dj5ofO5fTtu3GNXAEPbICrHoW9cwhMS6JdZDs2nNnguURO/IStOJsfjeVE69oT5hfsuVhuFGAI4PkuzzNzwEz8wxrxWFQE70emkbfiena+dyclub7bdjHsqlH0MI2naUYrbsmsz9dFkbxxbC/3rn6bTxvegcPpYNb+WR7NISk7iZTCFO4syCSr4Y0ePzmvuiwGC5N6TOLFLi9iPXeEG47P4cNeD1A85ANCQsO4r+B9/KclcnThC1Be6O10haiWmvpt7Ar8AGC1WrcCHdw1cIi/gdYN63FGiSamvIS0ojScLvfv35l0/gY9i6mdVw9/uFg6jY6JnSbyTMdn2HbuAPfVj+SrmE4Myp7Bsbd6k59xwtspulXvppF0bxLBkpKWNEs/BODRNout1u+p0Cj0bdzfYzE8RafRMSZxDF8Nnk+DyBa8GBHCrXH1KD83F/uU1myfPZGyEt/8Y2fQaXjvtnY8f10rNpwu57r3N9N70jr+s/wwWe0eg6A4WD6OrnWu4ljeMc+tGB5YzIaAYGzaCq5reK1nYnjQFdFXsOC6r3mu83NkBMfwYEwkrxl28N3Mzuxe+AIue4W3U/zHzAYd791yJ0/f+h5bzU/RI/VfvNHoc5zhTYhd/m+urdebhUcWkl3iub1/V5xcgdal0KekhPjetbO94vcURWFo46EsuX4JveN68+G+6VxzZDrf9b2Pk0PncMLQhMb736bkzZY4t3wAPjg3hICaK5AtQH6Vzx2qqurcNXgvNZIkez2i87OxOW0e2ertQPoOIu12Qup1dfvYNUVRFG5teitzrplDkCmE18ypjGzSE4P9GMqHXUnZ+KW3U3QbRVF4pHcjVlS0pklZCTpF47kCuSibffYMNC6FO9r09EyMGqCGqnwx8Ate7/Y6Skg0j0VFcFvdCE5nzuDsmy3ZMPslCot8r1DWaBTu7pLAlv/rw3+GtiIu1I9Zm07Q653tJNUfAZn7ucpcB4BNZza5PwF7BRz6njmWWHD4MbJ97doC8ELpNDqGNRnGD8NWMLHzRAotCbwcYeGhwvlM+LAdy1b75lHm7eND+eahqxjdoyEf7LEzJehpcDm4N+04Fc4Kvk3+1iNxnS4nq06tokOJg3RTGywxte+mzb8T6RfJmz3e5IuBX9AouBFv7ZzErQdeYnnvvjxf/yV2lceiWfF/ON7vCIeXVu7iIoQPqakCuQAIrBrXarW67U6P5nUsHHAmUK8wE8AjN+odzD9J43I7sY0T3T52TWsa2pT5g+czJnEM+5xp3JwQw5shEYSuGcOJGcOhrMDbKbpFu7gQUvzboEFPI22AxwpkW/KPbDGbiFbiCDQGeCRGTVEUhUENBrHk+iW82u1VLFGNeSE8jJvigvg5ZzrHpiTy4+xXOVfge3etB5n13N4xjs9GXsmqx3vQNMbCQz9HAdA4bT+RfpFsSvNAgXz8J4rL89mhLyFW3wV/g8n9MWqQQWvgpiY3sfyWH5jZfxbNTK1Y4Q/jz7zH4Bntmbp+Us3uLe0GOq2Gpwc25f7uDXh3t519De8n7uhaGgfEsTV9q0diJmUnkVmSyZDiXCpa3uqRGDUhMTKRGQNmMGfQHHrW68miYwv5muk83yKSwQHXsaugHObdDp8OhtSd3k5XiAtWUwXyJmAQgKqqnQC33h7cNDqQg6546tgra253F8jljnJSnEWEV5hpHRfm1rG9Ra/VM7rNaL69/lv6JfTjm2AHfeIasD1vLVlvX0nFsXXeTrHaNBqFvq3rYXXWRbU5seZaPRLnxN5lHDYaSKzj3VPR3Emn0TG4wWDmD57PrAGz6JzQh0+Dg7mrnh9ziz7hx2ltWTrjWc5k+ubRswnh/ky/qwOugBgOKY1wWX+gTUQbz8yRQ0tYGxiCU+Pguka1f4eTC6UoClfEdGDmbfNYNnQFt9ECk7OYj098Ss953bl/6Si+S/6OggrfecE9boBK+/gQnkxujUvR0smlZ1fmLsrsZW6Pteb0GnQuhS7Fdhr18N0C+RetIlrxWrfXWH3TasZdMY7wABOnIvYwsp6OXlFt+DzPytlZfWHOLXByk6woi1qvpgrkxUCZqqqbgcnA4+4cPNjPwNmAJsSc38fV3TdjJecl41DAbIsi0uLbqz+/FxMQw+vdX2fuNXNpEt2SlyNCuStCy4ZFt5A3fwyU+tZK0O9d0yqGg444YgtyyCnLocRW4t4ALhdHzlauMA1p1sO9Y9cCiqLQIboDb/eazIphKxmTOIYjgVE8F21ikrKQmfM6M23qnazbvpNyH9tHOdTfwPPXtWBZRSLKmZ9p5BdDSmGKe4shpxOOrmJxYBQuu4U723Z339i1SHRwLBPunseMISt5ubgxt+cXkJyxhQkbJ9B9XnfuXXEvXxz8guS85Fq9c45Oq+Hxvk2wFppIC7+KTmlHqHBWsCfb/QdQbU7bTKsyG6f9O2IKCHH7+N4SagplePPhzBs8j++Hfs/9rR+gPNDEm6Fmeteryz2FSXy26BaOftQF19aP4Pw7v0LUNm7rA/47VqvVCYz2ZIyImAR0p7SEagxu3+rNmv4zABZjE7eOW5u0DG/JZ1d/xk8pP/GfLW/ymEFD4rlV3PfBCrr2fgFNm9tq/R3Wf6ZdXAhr9fVpVb4DMHKm6AyNQxq7L0DucQ7rStG6jHSIae2+cWuhaP9oRrcZzahWo1ifup4Fu2eySJuEXdlL1L47Ubf5E2HqRNvWI+jZujVB5tp92iRU3sz5pV9HFNtCGpYW48LF8fzjNA9r7p4AGXspKc5iV7iZCFdPLCaDe8atpYKj4hjy0CLSj++n25KX0JeuY72/kdW2nbyRsQ2AQEMgTUOb0j6qPfe1ug+Dtnb9P7mqURht6gXzcf4VjLdtQBccz9a0rXSKcd/+92dLz3Lk3BEeLS3C3uIGt41b28Rb4hnbbgwPt32IH47s4c2N8/mZ7ewMywKKCDr4Dq13v0lrQzgtotrSOKEPkQ37ojH7xi4v4tJWIwVyTVBjgkg/GUa0S+f2FotDadsxO52EhLlt841aSVEUesX1olvdbny2bz4f7prKmPAiWm9/gTu3vUu/Xs+hazIQfGgXD41GwRHRkrp5cwBILUx1a4FccHgNu4xGYvTxte4PvafoNXr6xPWhT1wfCioKWHNoIcuT5rJDk06pZh2LD/1EzF4N4c4I+jQZxYjetetI5aq0GoUrruxG+UYd0TmV7SLJecnuK5CPrGSD2YxDcdK7bl/3jOkDYhq0JObxrzh+/CjNlk7l5tNL0ejPscnsz56QQI7nnea7/FPc1OQmIv0ivZ3uf1EUhZFXJTB+Xkue89PTWh/C9gz3HqCzLb3yxUJiiQO1W+3fE7u6FEVhoNqWq5sksiU5h8k/bWN39s+Y/Q5wKOAUG7XFuHI2Qs5G9D8/T6xLy/0Nh3Jt9+e9nbq4jF0yBXLTGAtnnGFE2myklmS5dewDOVYaV9iwNPH9G/QuhE6jY1Sb27m9+Q08vXI6W9JnM05fQuTGJ7h+w3MMbjOK+u1Ggbb2rxACBNVvS70dlf3pqUWpbh07/fB6DhoNDI69yq3j+gqLwcLQNiMZ2mYkFbYydh5cwLqD33CkIpljhnQOJk+DWlwgAwy9IoEjG+oSlHoUXYiOY3nH3Df40RUsD47BaTcwvG1P943rIxo0aEyDse+SmvsfVq38Dg5/z335O0jQZOJQdNj7lEIt3Fa+T7MonFozZ8wqLUpLWeA4isPpQKtxzxHyW9K2EOhw4dC0JDAwyC1j+gJFUejSKJwuja7hVE5Pvt2Txg8HMjiRkYWf8STNg63UC0jHpslG73D/dq1C/BOXTIHcLDqQvYQTXJ5MUlmuW8c+UZ5NjwqoH9/ArePWdma9iXeuGcup3HsY9/2XZJV/xXS/bD4++D5xSVO5IqgRV6o3MrDl8Fq9N3SzBnEUbQ3B36UhtdC9BfLJvCQc4Qr9GnZ267i+yKA30bnNcDq3GV55obwIdLW/Z79OsJk9hoZ0zdtJQnw7kvOS3TNwWT7OM7vYGt8Ac0UzEsIC//fPXKLqhgZw9623UWa7mZUHMpi562fs2Ud5TBtO7Vo/rhRg1NGtcTg/pTSiybnVlIWHkFKYQkJQglvG35q6iU5lpRTV7e2W8XxRfJg/Y/s0ZmyfxmTkl7HmcCZrDmWx9NhZKuxO6kQ1oPaeKyguB5dMgRwX5scyVzgRtiTyyw04XU40SvV7ZvPK8ihUHJgqLDSO8u0tvC5WfGggX901ml2nb+GNlVvIz52HJWA/KwuO8fWuN4k3hdGice29Oz+xbjA7nXHE2HPcu4Jcls9JzTkgmLZRl8e7C/+ID215ZwtvjiVjDY3867Iv76h7Bk3ZgdWgo1hjo23wFe4Z08eZ9FquS4zlusRYb6fyP13dMpplRxrxlPZ7AI6cO+KWAvls6Vkyy8+SWFZOePfa+7xZk6KDTNzRMZ47OsZTXG5nS3IODSN95/lDXJp8766rv2DUaSkwRhHicOBwOSgod8/WQqcKTgJgIBqT3j1vr/mqdnEhzLt3EK/e9i4RIZ+gTR5Hj+S+6M21+49/iL+Bs6Z44irKSClMcdu4pSd3YDUaCFWCsRgsbhtX1Lzg+u0AiKzQcabojHt2O0nZyia/yv6BAQ27VX88UaP6Notil6sx9W0ONCgcddMLp1/2Yw8qD6JZ0xZuGfNS4m/U0bd5FPXD/b2dirjMXTIryAC2gFhCzm81da78HMGm6t8Jezr7AAAW0+XVXvF3EusF8+5tbTlX3ILdKVeTEB3u7ZT+J21oAvEVP7GxMNVt7y5kHdrEQYOBhCA33dAlvKZBy06wBQJyK19Ypxal0iSkmrvWnN7KOv8QHGWR9FPduHOKqBEh/gZiomLILo4nHg1Hco+4ZdwD2UkoLhcYOmDQXTJrVEJcci6p305NcF1CnZWN/efKzrllzBNZ+9C4XISHtnTLeJeSEH8DvZtG+cSTvDGiPnXtdiqcNrJL3HO4RX7qNs7odVxRr71bxhPeU7dODBmEE5pTuQNORnFG9QZ02Cg/s5N9ehcBzuZEBtb+XmzxR+3jQ9hRUZ8mZaUcOeeeAjkpdSsNbDb0se7bNk4I4X61v7L5B0yh8QQ7zq8gu6lAPpZ7jDp2O4ExzdwynvCO4JjG1LW7dyeLrNLK3Q7aRcmLJ1+nKApnzfWJK6o8tKDaBXLmfg5p7DgUFy1C27ghQ+ENHRJCOGCPpUlJEalFqW5pvTl47ggtyisIVi/PnW+E8BWXVIEcGRYC9sqev9xy9+xkcbokgzibnfDYRm4ZT3hHdHwTos4XyFnu2AawrIAzuso/lk3DmlZ/POF1tsC6NKrIRKfoSC9Or95gZ3ay12gEoHucvMPgqzrEh2J11aWRzQZQ7R1OskqyyHWVUqdcT9Mm8rwhRG12SRXIdYJNlDgqj+zMK6v+Eckul4s0RyFhNj3xUZfOUaCXo7ioUFz2yrui3dFiUZBygINGA8FKIKGm0GqPJ7xPF5ZAhFJEqDG8+ivIWYfYY/bHWRFC5/r13ZOgqHF1Q8zk+jeinq3yxXV1T2k9lHMIAIOjHqH+l8fBQkL4qkusQDaT6wzDzwW5btgLOacsh1LFidkWQGSg0Q0ZCm8x6bUUK9EYXJBdWv0COfv4Ho4Y9MQHNHRDdqI2sERX/lta8K/+CnLmQXYbjVAeT6MI2a7KVymKQkJcAgF2M1D99qwTWXv/n707D4+iTPfG/62t9zVJZyGQjZBKFBVXYIQRHNfDIhBHHGcUlzleOEcZJsi5dDyCXOJxwbiMy6sjXsqcF51RAiMzOjo/jzr4ouA5I6PCQLEmkD2dpPfudHdV/f6oJCZkIQkJHbrvz19JdXXVbVN27nrqee4bAGAwXXjasRFCxlbSJchu1Qa7rKC94/TnIB/3HQcAmJA5rhthkKEJGnORFldGJUEO1e9DjSBApPnHSSNzklZpwhITTm8EWVXR6N6PVk5Fll4EzyXV12zKOWeCHdXxiUgfhUZDB+u/Rposw5r3g1GKjhAyVpLqmzvdrIOXtSNNjqM9fPojyPXtWt1Lkz7/tI9FEi9uy0OWHENzsOm0j9Xm2Y8Yw+BcF5XvShbGTK2UozWioCnYBFmRR3YgfwO+RQQAMDX9vNEKjyRIaY4NkjoRudEO1J5mHfUj3hoUxGLInkLz0gkZ75IqQWYYBrIhA2myjPZw62kfr9GtlfWx2mgxRTLQZRQiU5bR6Ks/7WP5YtpIUqGD5pcmDbMLHYwe9lAEcTWO1sgIv0Oa/4mDOh2gMvjBJEqQz3al2VYcVCdhUiyKWl/NaR2rLt4OV5RHSV7OKEVHCBkrSZUgAwDM6XDKMtpHYQ7yibZjsMoKHNmUICcDa3YxXHEZradZ4USN+NDOBwEABbaCUYiMjAsMA58+B1khrVnIiOchN/0Th3UCEE3DRXmuUQyQJMJEpxH1/CRMjMXREGpGTImN6DjeDi+8jAxTzE4L9Ag5CyRdgsxaXHAqCtqjXqiqelrHqg80IkuOIy2HRgmTQVpOPlyyjJASQTgeHvFx3DX7UC3wMDEGOA1U3SSZRK0TURL3AjiNBLl5Pw7qDJCjOdQuNwkwDAO9qwgT43EoUNEYGNn89Op2rW66mZs4muERQsZI0iXIvDUTTllGhxI7rSQIAFpiHrjiKrKzskcpOpJIGTl5cHU2knGH3CM+jvuEhGpBQK5hwmiFRsYLRx7Ok7WpFSNNhCLuA6jlWdi4SRBogV5SyMzNR3ZcG3A5ERjZPORj9V8BAGxWak1PyNmAT3QAo01nz4T9eGe76Y52mATTiI/VqoRQFOeR7TCOVngkgQSjDVaZAwA0h5sxyTZpRMcJNx9DtcBjWhot0Es2+owipB8KQMfkjLjayVH/CajpRkyyFI1ydCRRxBwnmG/tADDiShZSwz/Aqyqysi8bzdBS3t///vdMnuc3ApiKJBz0I2NKAbA3Ho///OKLL+7TQSzpEmSLIwt2RUuQPREPci25IzpOTI7By8gwykaYdEn3MaUsvWoFcHq1kMPtR9Bi4VHmEkcrLDJOWDPzwQAwMRa4wyN4yhDx4bASAmDEOeklox0eSZApmRYE4y4IqmfEtZCPth/DpFgc2YXTRjm61Mbz/Mbs7Owyl8vVzrLs6c2rJClFURSmpaXlnMbGxo0AFp78etLdbTmsZrCyAADwx/wjPk5LuAUqAxhV+2iFRsYBI6t1vTudbnptEa0+doGjYDRCIuOI3qFVFzAperSOpBJOezUOCwIYhcUFOdSePlkUZphRq2YhKy6PuEZ2U6wNaTEOk3MzRjm6lDfV5XL5KDkmw8WyrOpyubzQnj70ff0MxzPm0i06yLK2MMYfHXmC3BTQFugYefoySyZ6YzZ4VUXzaSTIQUUbWZxoocU2SceqrTcwxriRjSC3V+OQTgAfdaI0yzHKwZFEcVn1aGSzkBWPock/snbTzeiAOW6krqyjj6XkmIxU57XTby6cdAlyhkWPmKK1dj2tBLmzSYjVQElQMmGtOciIKzjhHVmFAlWREeYCAIAcM9UyTTqWLACAKarAHRlZgnxc4BGLZqPIRRUskgXDMIja8pAly2gewQhyoMMPPwuYmTTqykrIWSLpEuR0iw4RWZtnejoJcl2rVpLHaZs8KnGR8UFwTEC6Ekezv898/CFxNxxHM89ADx52PU2/STp6K6KsAbaOOLwdXkTl6LDeHm87gjqeh4HLhUHgxihIkghcWiGy4jKaI23DLiFa594HALDoRrYmhox/u3btMt94443dC1P27NljXLhwYenixYvFFStWFMidFZReffVV1/z588sWLFhQ9u677zoBIBAIsMuWLZtcXl4uLl26tKS2tlY4+fgej4e77bbbisvLy8Ubbrih9IsvvjADwJdffmlesGBB6aJFi0qfeOKJHACQZRmrVq3Ku+GGG0pvvPFG8dChQ3oAOHTokH7p0qUl5eXl4s033zzF7XZ3f0kdOnRIf80113SXWDl69KiuvLxcXLJkifiLX/yiMBgMDpgv/vrXv5702muv9Sn6/tlnn1nvvvvuXquVH3nkkdzf/e536QMdq7KyMnv37t2mcDjMvPHGGwM+wj/5nH/5y19sCxcuLF2wYEHp6tWr8xRFGdLnOpikS5BNOh4dqgOMqp5WglzbXgOTosCWTglyMrGk58IpK2gf4SK9lhMH0cDzSBccNBKUjBgGYb0LrriWGLcNs+FQQ/sRyAyDbCOVAEw2luzJyJLjiKpxeDo8w3rvicZ/AACcVvp7koyeffbZrDVr1uRHo9HuPwq/+c1vJixfvrxh27ZtUiwWYz744AN7S0sLv2XLlsytW7ce2Lx5s/Tcc89NUhQFb775ZkZZWVmoqqpKmjdvXutLL73Up7bsyy+/nHXZZZf5qqqqpCeffPLY+vXr8wBg3bp1+c8+++yxrVu3Hti7d6/566+/Nm7fvt0RjUbZ995778CqVatq169fPxEAHnroofyVK1fWVVVVSTfddFPLwYMHDQCwefPmtJUrVxZ5vd7uBPKxxx6b+OMf/7hl69at0qWXXup/6aWXsk6Oqbm5mf/pT386ZefOnaM2WrRq1arG6dOnhxobG4Vt27b1SZD7O6fP52OfeeaZSa+//vrhP/3pTwcmTJjQ4Xa7+aF8roNJyvIMHTonzKqKwGkkyA2BRmTGZdizCkYvMJJwjuw8pH0j47uYd0Tv9zceRj3PY4KZEqBkJZsyMTGgfXe4w25km4f+nXo8cAIwA3m2/LEKjyTIhKwssHu1/KEp1DSsJkFHGvcDALIzLxiT2Ihm0xfV6Vu/rh3VhUNLLproXvaDgkFX7Obn53e8+OKLR+6///7urmKiKIY8Hg+nKApCoRAnCILqcrniH3zwwT5BEFBdXa0TBEFhWRb33ntvczweBwDU19frrFarfPI57rnnnia9Xq8AQDweZ3Q6ner1etlYLMYUFxd3AMDMmTN9O3bssLW0tAizZs3ydm4LVlRUmEOhENPe3i58/PHHjsrKyollZWXBtWvX1gKA3W6X//CHP0g/+tGPzus6X01NjfGaa66pAYDp06cH1q9f36cuaiAQYO+77776Tz/9dI7LPTwAACAASURBVNgJ8meffWZ97bXXsnmeVxoaGvRXX3112+rVqxvvu+++gnnz5rV99NFHzuPHjxufeOKJnAceeKB7TmR/5/zyyy8tRUVFoXXr1k2sr6/XL1682J2ZmRkfyuc6mFEbQRZF0S6K4p9EUfybKIpfiqI4s3P7DFEUd4uiuFMUxbWjdb7BdOjTYVUU+EeyCr1Te9SLNFlBRibNM00mBmcunIqCoBIc0fvj7mo08hzy6clC0mJtWShQtHnmw1qop8g40TniXJJeMAaRkUQqdJnBxLTpe82h4U3ROuGtgUFRkJd30ViERhJsyZIlHkEQes27KSws7KisrMy76qqrzm1ra+OvuOIKPwAIgoBXXnnFdcstt5Rdd9113UkKz/O46aabSqqqqjKvv/769pPP4XQ6ZZPJpDY0NPCrV68uWrlyZa3P5+NMJlN30mexWGS/388Fg0HOZrN1b2dZVm1ubhaOHz9umDVrlu+dd96RfD4ft3nz5nQAmD9/vtdisSg9z1dcXBx6//33HQDw4YcfOiKRSJ98saioKDpjxoxh/zHtevra1NSk27hx45GtW7ceeOutt3qNRKxYsaIhLy8v3DM5HuicbW1t/D/+8Q/bQw89VLtp06ZDb731VpYkSXrg1J/rYEZzBLkCwH9LkvScKIoigLcBXATgFQDlAI4CeF8UxQslSdoziuftQzGmwyor8A3z8WhPXiWINJlHtoMW2iQVSxYcsoI4IyMUCw27kUzcfxztaRxyR9hkhIx/escETK75G4D04SXIvjqc4FmwCotSF801TTaF6WYcjTkAeIZd6q0p0oJMWUV+1oBTL8koWPaDgtZTjfaeKZWVlZM2bdp0YOrUqZFXX33VtWbNmkkbNmw4DgDLly9vueOOO9y33nrrlE8//TQwd+5cPwC88847B/fv329Yvnx58caNGw89+OCDBQAwf/781ttvv9397bffGletWlVUUVFxYs6cOQGv18uGw+HuecSBQICz2WxyJBJhA4FA93ZVVZnMzMyY0WhUus41d+5c786dO20A+v281qxZU/vwww/nvffeexmXX365x263x6uqqpxvv/12JgA88MADJy655JLQYJ+BwWBQYrFYr7mIoVCIMxgMCgAUFRWFBUGAIAiKTqcbcSUSp9MZF0UxmJOTEweAadOm+b/99luTKIodQO/P9W9/+9veoR53NOcgPwvg1c6feQARURRtAPSSJB2RJEkF8BGAq0bxnP1izemwqAoCHb4RH8OHGPSyDhZ9Us5CSV16K6yKdtm3dwzrZhIAEIxpN7M5FnqykKwMzgnI73zCMKwE2VuHEzwPXcyKwgzLGEVHEsVp1iGGLLCqiqZQ07De26IEYI/rqMRbCrFYLPGuUdysrKyY3+/nDhw4oL/zzjsnK4oCQRBUnU6nMAyjVlZWZm/evDmt830yy7KYMmVKx5YtW6QtW7ZIt99+u3vfvn2GlStXFm3YsOHo9ddf7wMAu92u8DyvHj58WK8oCr788kvb9OnTAxdffHFgx44ddkBbxFdYWBg2mUxqbm5uZMeOHRYA+Oqrr6zFxcXhgeL/5JNPbKtXr67dsmWLxHEcZs6c6SsvL2/viulUyTEAlJWVhQ8fPmyqr68XACAcDjPffPONZdq0aad8L8uyUFV1SAt9LrzwwtCxY8eMLS0tfCwWw969e82lpaXh/j7X4RhR9ieK4l0AfnXS5jskSfofURSzAfxfACsB2AD0zFL9AMa8/6rOkgZbi4KGEc5Bjitx+FkVBlCL6aTDMDAwWvIykk6LIVVLqqnEW/JirNkQAOhgGv4IssBD7UjDJOfIW9yT8StqzEGGvA/N/vphva+ZlTFVcYBlaWFvqli3bl3NihUrJnMcpwqCoDz++OM1hYWF0ZKSktCiRYtKGYbBzJkzvXPmzAmUlpZGKioqCrdt2+ZSFAWPPvrosZOP99RTT+XGYjG2a3Ge2WyOb9q06cjatWtrKioqChVFYaZPn+6bMWNGUJZl7Ny507Zo0aJSVVXxxBNPVAPAY489Vr1u3bq8p59+msnJyelYu3btgF9wxcXFkVWrVhUJgqAWFhaGn3zyyePD/QzsdrtSUVFx4uc//3mxXq9X4vE4u3Tp0uYpU6Z01NXV6QZ7b2ZmZiwWizFr167NXbdu3aDFx7OysuL33ntv7bJly6YAwFVXXdV+3nnnRVwul/tUn+tgRpQgS5L0OoDXT94uiuJ5AH4P4H5Jkv7WOYJs7bGLFcDwlv+OgNGWBmuTCik2snmmXSuUDYz1FHuSs5GJswEIoCU0vCdxsqIixAUAWGiRXjKzaou19bJxWN30FG8tTvA8mI4JMOqoxFsyUqwTkBWX0eQ/MeT3BILN8HMMLFyfKlgkiRQWFka3b99+oOv32bNnB2bPnn3g5P0659T2mlebnZ0df+uttw4NdvxNmzYd6W/7zJkzgz3PCwAcx6GysrJPQjtt2rTwtm3bpIHOsXv37m+6fp4xY0bw/fff3z9YTF0efPDBAe8YFy9e7Fm8eHGfvG/OnDn+OXPmdI9idp37hRdeqO7a9uGHH/5zqOdcunRp+9KlS3s9Fh7K5zqY0Vykdw6AdwHcIknSXwBAkiQfgKgoipNFUWQAXAvg89E650BMtnRYFAX++IBPDwbVFtJuqoz80Fcpk7OHVa+1mz7hHV6pt+b2dngEGSwYuEz0xy5pWbS1IoY4P6wR5BbPMXSwLGz6vLGKjCSY4JyoNQsZxhSLhs4Sb3YjNZ0i5GwymnOQHwdgAPC8KIqfiaL4Xuf25QA2A/gKwB5JknaP4jn7ZXVoVSyCahSKqpz6DSdp89YAAMw6SoKSkcOYCQCo9Q0vQW6tr0YTx8HJmsGzNDc9aXW2mzZFgZZh1Muu92sDNrlmWqCXrMyufGTGZTQOYwH40QatSYjLTpVvCDmbjNpfeUmSbhhg+y4AM0brPENhM5ugV1ioAEKxECy64S2YaW6v1o5jonmmychpmwDeq6IxMLxWwt7m42jhOWTo6clCUjOmQWF42OMKDg5jikVdsBEQgAIHjRQmK2d2PlzfyQgq0SFXwalxa094J2add4o9CSHjSdJ10gMAh0kHVtHmf4+km15De612HDuV8kpGJmcWnLKMtsDwSjWFW+vQwnHItgyrGQ8527Asonon0mUZETmCUOyUC64BAHURbZpdmYuahCSrXFcaTHGtWchQp980+uvAqiomT6ImIYScTZIzQTYK4GQtQfZFh1/qrdnfCFZVkeYsPPXO5KxjTsuBQ1HgiwxvioXs6UyQ6cYp6cnGDGTLWrvpISVCcgxNagR6mUdhOj1hSFa5TiOYuFYbf6jTb1o72uCUgXyXYyxDI4SMsqRMkG1GAVAMAIBALDDs97dHWuFQFNgz6FFpMmLNGUiTFYRiwyuoIgfq4eU4ZFqogkWyYy0u5MoRAEBrZAjTLPwNaOA56GMm5DqoPGSyMul4MKq2yLclNLQEuU0JwB7nqKY+IWeZpEyQOZYBVG1u2EimWHg620w702mRXlIyu+CUZYTV4d08dUS1yjwuU+ZYREXGEcGWhTxZuz6GVOrNV48GngMbsyHbbhjj6Egi8ZxWBnCoI8htbBRWlepiJ7tdu3aZb7zxRrHr9z179hgXLlxYunjxYnHFihUFsqx1fn711Vdd8+fPL1uwYEHZu+++6wSAQCDALlu2bHJ5ebm4dOnSktraWuHk43s8Hu62224rLi8vF2+44YbSL774wgxojUAWLFhQumjRotInnngiBwBkWcaqVavybrjhhtIbb7xRPHTokB4ADh06pF+6dGlJeXm5ePPNN09xu93d9SgPHTqkv+aaa87p+v3o0aO68vJyccmSJeIvfvGLwmAw2Cdf3Ldvn2Hx4sXiokWLSu+7776CWCzW6/XPPvvMevfdd/fqffHII4/k/u53vxuwpWRlZWX27t27TeFwmHnjjTcyBtrv17/+9aTXXnutO0l74YUXMhcsWFC6YMGC7s8hFAoxd9111+QlS5aIP/vZz4qbm5uHdZealAkyAHCdNYxHkiD75CCsMoMMK40EJSVzBpyygjCGNre0S0zVHrVTibfkx9uyMFnRvjuGkiCr3lrU8zw4ZELgkvZrlQAQzBOhU1S0BBpOua8aj6KZA6wMTa9IZs8++2zWmjVr8qPRaHcnmN/85jcTli9f3rBt2zYpFosxH3zwgb2lpYXfsmVL5tatWw9s3rxZeu655yYpioI333wzo6ysLFRVVSXNmzev9aWXXuqz0OXll1/Ouuyyy3xVVVXSk08+eayrYci6devyn3322WNbt249sHfvXvPXX39t3L59uyMajbLvvffegVWrVtWuX79+IgA89NBD+StXrqyrqqqSbrrpppaDBw8aAGDz5s1pK1euLPJ6vd2J+WOPPTbxxz/+ccvWrVulSy+91P/SSy9lnRzThg0bcleuXFn3xz/+8QAAvP/++6d9oa9atapx+vTpocbGRmHbtm19EuTm5mb+pz/96ZSdO3fau7YdOXJE9+GHH6Zv27btwHvvvXdg165d9m+++cb4+uuvZxYXF4e3bt0qLViwoPXZZ58dVuWFpH3mw3I2ACNMkNGBdJmHQaBi/0nJlA6nIiPKxhFTYhDYPjfrfYSjMmTOD0APl5ES5KRndmGCEgbAwB059Rxkb/tRhFkWTh3NT092nH0iMjpkNPtO3VjM6z6ACMvCpqenTmfEV79Nxz/eHnDUcUSm/cSNy+4e9C45Pz+/48UXXzxy//33dy9cEkUx5PF4OEVREAqFOEEQVJfLFf/ggw/2CYKA6upqnSAICsuyuPfee5vj8TgAoL6+Xme1WuWTz3HPPfc06fV6BQDi8Tij0+lUr9fLxmIxpri4uAMAZs6c6duxY4etpaVFmDVrlrdzW7CiosIcCoWY9vZ24eOPP3ZUVlZOLCsrC65du7YWAOx2u/yHP/xB+tGPftRdaqWmpsZ4zTXX1ADA9OnTA+vXr+/z5bZx48YjPM+jo6ODaW1tFbpaaw/FZ599Zn3ttdeyeZ5XGhoa9FdffXXb6tWrG++7776CefPmtX300UfO48ePG5944omczuYqALTR9vvuu6/+008/7U6QJ02aFHvzzTcP8byW0sqyzBgMBmXPnj2Wf/3Xf20EgGuvvda3cePGYc2PTNqhDp7X5on5O7zDfq+PicOo6Ec7JDJecALM0BZxNgfaT7GzptEbRpTT5qTSCHIKMLvAAxCUoXXTq/dWAwDSTNQkJNnp0ybCJcto8J263fShWq1JSLq1YIyjIom0ZMkSjyAIas9thYWFHZWVlXlXXXXVuW1tbfwVV1zhBwBBEPDKK6+4brnllrLrrruu+8uF53ncdNNNJVVVVZnXX399nz9MTqdTNplMakNDA7969eqilStX1vp8Ps5kMnUnpRaLRfb7/VwwGOR6Jqssy6rNzc3C8ePHDbNmzfK98847ks/n4zZv3pwOAPPnz/daLJZeTSOKi4tDXSPCH374oSMSifTJF3meR3V1te7aa6891+v18ueff/6QHssyjDbQ3tTUpNu4ceORrVu3Hnjrrbd6jZqvWLGiIS8vL9wzOQaAoqKi6IwZM3q1SdbpdKrL5YorioKHH3544pQpU0KiKHYEg0HObrfLAGC1WuVgMDisUc/kHUHWO2FQFPhDw6t1G5NjCLKAgTGPUWRkPLCwZgAqqtubkWs79ehOS0sj2nmABwuHnh6XJj2zdhPEy4ahJciBOgDARBs1CUl2tsx8uGpkSEO4LqobtQ7AuRmlYx0WAYDL7m491WjvmVJZWTlp06ZNB6ZOnRp59dVXXWvWrJm0YcOG4wCwfPnyljvuuMN96623Tvn0008Dc+fO9QPAO++8c3D//v2G5cuXF2/cuPHQgw8+WAAA8+fPb7399tvd3377rXHVqlVFFRUVJ+bMmRPwer1sOBzuTvoCgQBns9nkSCTCBgKB7u2qqjKZmZkxo9GodJ1r7ty53p07d9oA9Pt5rVmzpvbhhx/Oe++99zIuv/xyj91uj1dVVTnffvvtTAB44IEHTlxyySWhgoKC6Geffbb3jTfeyHjkkUcmvfjii9VdxzAYDEosFmN6HjcUCnEGg0EBgKKiorAgCBAEQdHpdL1uMIYrHA4zv/rVrwpMJpPy1FNP1QCA2WyW/X4/CwB+v58zm81DHuEGkngEGUYHLIqKQGRoI4RdPB1aZQMDax2LqMg4YRO0pzM1nqEttPE216KF45DGW8Ayyfu/Delk0RJkXWxo7aZrO2/Ei9NoikWyy5hQiAxZRlv81NP3Gjq7shZNmjbWYZFxxmKxxLtGcbOysmJ+v587cOCA/s4775ysKAoEQVB1Op3CMIxaWVmZvXnz5rTO98ksy2LKlCkdW7ZskbZs2SLdfvvt7n379hlWrlxZtGHDhqPXX3+9DwDsdrvC87x6+PBhvaIo+PLLL23Tp08PXHzxxYEdO3bYAW0RX2FhYdhkMqm5ubmRHTt2WADgq6++shYXF4cHiv+TTz6xrV69unbLli0Sx3GYOXOmr7y8vL0rpksuuSS0bNmy4oMHD+oBLRntGhnuUlZWFj58+LCpvr5eALQk9ptvvrFMmzbtlCPNLMtCVVXmVPsBgKIouPPOO4tLSkrCzzzzTE3XVItp06YFPvnkEwcAfPTRR7YLLrhgWHNuk3cE2eiAOaggOMwpFt6g1jzCKFAt02RmN6YB8KDON7QnDKH2erTwHDINaWMbGBkfOkeQzXEOLaFTD0g1xHwQWAbF6TTXNNlNcKXDGucQRAyReAQGfuCqJe5wE1hexbk5RQPuQ5LTunXralasWDGZ4zhVEATl8ccfryksLIyWlJSEFi1aVMowDGbOnOmdM2dOoLS0NFJRUVG4bds2l6IoePTRR4+dfLynnnoqNxaLsV2L88xmc3zTpk1H1q5dW1NRUVGoKAozffp034wZM4KyLGPnzp22RYsWlaqqiieeeKIaAB577LHqdevW5T399NNMTk5Ox9q1awf8A1hcXBxZtWpVkSAIamFhYfjJJ5/sM+n+7rvvbvj3f//3QkEQFL1e3z1y28VutysVFRUnfv7znxfr9XolHo+zS5cubZ4yZUpHXV2dbrDPLzMzMxaLxZi1a9fmrlu3rm6wfbdv3+747rvvrLFYjP3iiy/sAFBRUVF71113tfzyl78sWLx4sSgIgvr8888fHew4J0vaBFmwpMHsV+DvGF6jkLZ27RowG0Z3nj8ZX9KtWUDgKBoDbUPaP+ZpQAvHId/cZyEvSUadCbIjDhw5VR1kVUWzEoElZsdEJ03NSnZGHQe9rJVtc4fdmGgduF5+m+xBGhjYjLSmJdkVFhZGt2/ffqDr99mzZwdmz5594OT9OufU9ppXm52dHX/rrbcODXb8TZs2Helv+8yZM4M9zwsAHMehsrKyT0I7bdq08LZt26SBzrF79+5vun6eMWNG8P33398/WEyXX3558PLLL+/z39jT4sWLPYsXL+7TdGDOnDn+OXPmdI/odp37hRdeqO7a9uGHH/5zoOM++OCD3YsAFi1a5Fm0aNHX/e23cePGYSXFPSXts2K9OQ0WRYUvOrxat43t2o2KjWrdJrVMm7aY1T2E0UEAUPxNaOY4uKw0xzQl8HrEdVakKzI6lFO0m4540MAz0MdNmOCgGsipQAdtitapaiG3IwI7Lfgm5KyUvAmyNQ0mRUFgsD9s/XB3rky2U7e0pGa2ZkOvKPCHmof2hlATfByHDLouUofJhayhtJv2N6KB58HLdlgNpy4ZSM5+JkF7wtA82PeHoqCVk2FnaD0LIWejpE2QTY4MWFQVoc52sUPVFtRGBDKcVK4pmTHmDNgVBZHo0OYgx+LaH8IMI029SRWsNRMThtBuOuKpQRvHwcDRU6dUYTNp0yqa/QM3C4n56tHEc3AIVBaSkLNR0ibIdqsFBhkIqbFT79yDL9IOTlWRnkYJclIzZ8AhK+iQT72IMxpXoDLaXGVKkFMHa3GhUNWeQLWEBn6U3tiuTR206KmCRaqw2wugVxTUuA8PuM/h6j2IMwwyLAPPUSaEjF/JmyAbBQgKj7Aah6oOvbyeL+qDXVHgSKfFWEnNlAGHoiCmnrrqS7M/AnDaXHZKkFOIORNTZO36GOxReoOnGgDgsBWfiajIOGB25SNLlnHCM3A3vSP1ewEAuWlTzlRYhJBRlLQJssOoA6vwiDMqokp0yO8LxAOwyCocFuMYRkcSzpwBhywjxoYRk5VBd230RiDzWrnIdGP6mYiOjAeWLOTJXjAqP2iCfMJXCwCY5KRSXqnCkZWPrLiM5lDjgPs0tGtFByZPpBrIhJyNkjZBNggsOFUrsxcYRiWLoBKGSWFhEIbVkZCcbUzpcCgK4mwU7kDHoLs2tvsQ5rWpOukGSpBThiUTDABWtqBxkESoLtQCRlVRkkGP0lNFVl4xsmQZbbE+1au6uUPagu+pE8vOVFgkgXbt2mW+8cYbxa7f9+zZY1y4cGHp4sWLxRUrVhTIstbE7dVXX3XNnz+/bMGCBWXvvvuuEwACgQC7bNmyyeXl5eLSpUtLamtr+6z29Xg83G233VZcXl4u3nDDDaVffPGFGQAOHTqkX7p0aUl5ebl48803T3G73RwAPPHEEzkLFiwoW7RoUenu3btNANDU1MR3nWfRokWlhw8f7i6x0tzczM+dO3dqOBxmAKC1tZX72c9+Vrx48WJx2bJlk5uamvqUBa6vrxduuummkiVLlojLli2b7PP5euWUx44d0y1cuLBXG8nXXnvN9fjjjw+42v13v/td+p/+9Cc7ALzyyisDTuB/8cUXMx955JHuslJfffWVacmSJeLixYvFu+66qygcDjPRaJRZvnx54aJFi0qXLFki7t+/f1hlhpI2QWYYBpyq/dsPWqLpJEFEYVSStjw06cIJsEJABxdHo3fAZkIAAG9LPdwcBxtrgMBRlYKUYdGmWfFRA5qCA48gN0a9sMssJjmpWkGqMFiccMRZeBCGovb/BKo93gqDAqQZ7Wc4OnKmPfvss1lr1qzJj0aj3Z3ffvOb30xYvnx5w7Zt26RYLMZ88MEH9paWFn7Lli2ZW7duPbB582bpueeem6QoCt58882MsrKyUFVVlTRv3rzWl156Kfvkc7z88stZl112ma+qqkp68sknj3U1DHnooYfyV65cWVdVVSXddNNNLQcPHjT8/e9/N3399dfW9957b//zzz9/9NFHH80HgPXr10+cP39+W1VVlfTLX/6yTpIkA6B1mVu2bFlJe3t79x+45557LmfatGmBbdu2Sbfeemvz448/3qfG6Ysvvpi9cOHC1q1bt0qlpaXhTZs2nfYcxNtuu611wYIFXgB44403+iTSoVCIueeeewq3bNnSvSpaURSsWbOm4Mknn6zetm2bNGvWLF9NTY3uww8/tMuyzPzxj388cM899zQ8/fTTw6rTmtSZIMcYAYQQiA1jBJmJI0elWqapwMYZoTIqjnvacGHewB3ygq31aOU4uPS2MxgdSbjOBNkc16Eh2DTgbk1qBNaYAROdNC0rlZhUKxQmjrZIW79rE7wIwSnzOLn9Lhk7b+9/O337ke2julBk4eSF7p+U/WTQgvn5+fkdL7744pH777+/sGubKIohj8fDKYqCUCjECYKgulyu+AcffLBPEARUV1frBEFQWJbFvffe2xyPxwEA9fX1OqvVKp98jnvuuadJr9crABCPxxmdTqeGQiGmvb1d+Pjjjx2VlZUTy8rKgmvXrq397W9/mzl9+nQfy7LIz8+PyrLMNDc38999952lpKQkvHTp0pKcnJyO9evXnwC0ts7/9V//JS1evPicrvMdO3bMUFFRUQcAP/jBDwL/+Z//2adywfr160+oqgpZltHY2ChcdNFFgz+O7eHYsWO6lStXFmVmZkbr6ur055xzTvDpp58+/vjjj0/IyMiIeTweLhAIcKtXr87bsGFD92T/SCTCLl68uHXmzJm+o0ePGgDg4MGDepvNFv/tb3+bdfToUeOsWbM8paWlHYqiMLIsM7Isw+/3sxzHDX1BGpJ4BBkAOEbrajWcBDnAqtCDEuRU4BS0Eb8az+C1kKPeBrRyLDJoekVqsWgDFPY4C3e4uf/FvoqCZlaBIW6Cy0INIVKJhde+D5r6u3lSFHi4KByM5QxHRRJhyZIlHkEQen1BFBYWdlRWVuZdddVV57a1tfFXXHGFHwAEQcArr7ziuuWWW8quu+667sSb53ncdNNNJVVVVZnXX399+8nncDqdsslkUhsaGvjVq1cXrVy5sratrY0/fvy4YdasWb533nlH8vl83ObNm9MDgQDXM8k2mUyy1+vlmpubdTabLf6HP/zhYHZ2dvT555/PBoCrr77al5GR0SspLykpCf/1r391AMCf//xnR0dHR598kWVZyLLMXHvttefu2bPH1vXfeCoMw6gAUFdXZ6isrKzevn37/l27dtkbGhq6B21Xr17daLFY5J7JMQCkpaXJ11xzTa8WyW63m9+/f7/ljjvuaH777bcPfvXVV7ZPPvnEarFY5MbGRt1VV1019bHHHitYtmzZwCMd/UjqEWSB00b8hjrFIqbEEGIZGFnTWIZFxok0oxOQfajzDd5NT/U3we3kMJXaTKeWzgQ5Pa7imBLVKtzoez8uj/sb0cBzKFOdYFkaKUwlTmMugCYcba/FuRnn9nrN01SNOp7D+QLVxj6TflL2k9ZTjfaeKZWVlZM2bdp0YOrUqZFXX33VtWbNmkldyd7y5ctb7rjjDvett9465dNPPw3MnTvXDwDvvPPOwf379xuWL19evHHjxkMPPvhgAQDMnz+/9fbbb3d/++23xlWrVhVVVFScmDNnTiAUCjFGo1Hpev/cuXO9O3futBUWFkaCwWB3QhsKhTiHwyFbrVZ53rx5HgC45pprPM8888yAUw5WrlzZ8NBDD+WVl5eLl19+udflcsU+//xzy/PPnZ++xQAAIABJREFUP58LAHfccUfjvHnzvDqdTv3444/3ffzxx9ZVq1YVVlVVdbeyNhqNSiwW65VYh0IhtmskPCcnJ2Kz2RQASEtLi0UikREN2qanp8s5OTmRc845JwIAP/jBD7zffPON6b//+7/t06dP961du7bu+PHjwm233Sb+5S9/2Wc0Goc0kpzUI8g6XkuQA5E+N2P98oe0WrdGnh6lpwKnSRsBavAP/n0qhJvh5jhkWKjNdErh9VAMDmTL2gLNplDfwYdG917EGQYWPudMR0cSLLOzfNvB+v19Xjt85O/wchwm2qmySaqyWCxxm80mA0BWVlbM7/dzBw4c0N95552TFUWBIAiqTqdTGIZRKysrszdv3pzW+T6ZZVlMmTKlY8uWLdKWLVuk22+/3b1v3z7DypUrizZs2HD0+uuv9wGAyWRSc3NzIzt27LAAwFdffWUtLi4OX3bZZYEvv/zSLssyampqdIqiwOVyxadOner/6KOP7ADw5ZdfWouKigbspPb5559bb7755paqqiqpoKAgcv755wdmz54d6Ipp3rx53tWrV+d9+umn1s64FZZleyWemZmZ8XA4zO7bt88AAPF4HLt27bJNmzYtBOCU04+GWqK3qKioIxwOc4cOHdIDwJ49e6wlJSURm80mWywWGdBGnjunWwx5JCOpR5B1OicAIBge2g1lq6cGAGDufB9Jbg5TJuAH3KGBr4+OuAwh1oIwyyLDTKNBqYaxZCHfp02raw41o8RZ0uv1E+5/AgDsxsI+7yXJbWLOOeC9Kupaj/R57Wjd1wCAkgnnn+mwyDixbt26mhUrVkzmOE4VBEF5/PHHawoLC6MlJSWhRYsWlTIMg5kzZ3rnzJkTKC0tjVRUVBRu27bNpSgKHn300WMnH++pp57KjcVibNfiPLPZHN+0adORxx57rHrdunV5Tz/9NJOTk9Oxdu1at16vVy+88MLAokWLSlVVZf7jP/7jOAA8/PDDtQ888ED+u+++m2k2m+UXXnjh6EDxl5SURFavXl24YcMGZGRkRCsrK6tP3ufOO+9sfvjhh/NffvlllWEYrFu3rtd0CJZl8eijj1Y/+OCDBSzLIh6PMz/84Q89c+fO9R87dkx3qs8wPz8//Itf/KLw5Zdf7vN59KTX69V169ZVV1RUFKmqivPOOy8wb9487w9/+EN/RUVFwZIlS8RYLMb827/9W53FYhm8rmsPSZ0gGw3pgAL4B0mAemporQYAWKgZREpwWHKAJiAYGXhaUqM3AgNPXfRSFWPJhOjTuuj1Vwu5ul37+5KdNvWMxkUSLytPRNZeGe5gbZ/XGryHAD1wXuFlCYiMJEJhYWF0+/btB7p+nz17dmD27NkHTt7vgQceaADQq0d5dnZ2/K233jo02PE3bdrU904MwLRp08Lbtm2TTt7+4IMP1gOo77mtoKAg+vvf/37A83z++effdf08ZcqUjj/+8Y994u+prKwssmXLlj7n7mmgz+Hkz6vr5864AQDvvvvuwYGOe9ttt/VK7K688kr/lVde2etxjtVqVV577bUBbwJOJamnWBhNaWBUFZ7w0KZYNLdr/y4Oc58KKyQJWS0TwKsqYrGWAR/l1HnC4AVtPQDVQE5BlkxMUbR1J/1NsTjqOQ5BVZE/4Zw+r5Hkps8oQHY8jraYu89rbVEt/8mz91n4Twg5S4z6CLIoiqUAdgPIkiQpIoriDADPA4gD+KskSetG+5wD0VnSYPGq8IWGliC3+rVmAGk2mmuaChhLBpyyjCjjhS8ch93Ut8ZxgycClQ8C0NMIciqyZMGltAFyQb8jyLWRVmTFVBS6HAkIjiSUzoycOIsDur4L9z3wwSlzMPJU+o+Qs9WojiCLomgDUAmgZy28VwDcAmAWgOmiKF44muccjN7shElV4OsYUuUReDvnKrvS6K4/JZgy4JQVsHwA9QM0C2nwhBDjqM10yrJkQq+EoUZtqPH2fZRerwSQHuORl2ZOQHAk0bJhRZCT0RL8fhAmEo2hjY8ik6Fr4gxRFEWhEjJkRDqvnX7nJY9agiyKIgPgtwB+DSDUuc0GQC9J0hFJklQAHwG4arTOeSoGaxosioLgEFtN+zu0tqFZroIxjIqMG+YMpCkyVC6ERm//i3nbWlvQzjPgwCDNMHAzEZKkOpuF6KN2HPP2XieiqioamDiscQMyLKdcb0KSUK5FG0zZcXRf97aa6sOoFThk66ks5Bmyt6WlxU5JMhkuRVGYlpYWO4C9/b0+oikWoijeBeBXJ22uAfB7SZK+EcXuduQ2AD0LOvsBnLG6NyabE2ZFRTA+tDrIwZgfFihId1AilBLMLjhlBbIugoYBEuRIex1aOA7pggUsk9RT9kl/OmshW6NGuCMHEIqFYBK0Oult4VaEWcAKJ3VLS1EluRcB9Yewp+Z/UX7eLADAkf274OY5TM4oOcW7yWiIx+M/b2xs3NjY2DgVSb6uiow6BcDeeDz+8/5eHFGCLEnS6wBe77lNFMXDAO7qTJ6zAfwVwHwA1h67WQF4RnLOkbDanDApKtxy/4/PTxZUQrAAMAjc2AZGxgdeDycjoIOLoWGAKRZRTwMCNg4Zeir9l5KsEwAAWVEOrQCO+4+jNK0UAHCiTVuA7RCoBnKqKi2+Anzd71Hv3tO9re7E54AVKCuYnsDIUsfFF1/cDGBhouMgyWfU7rYkSSqWJGmOJElzADQCuEaSJB+AqCiKkzunYFwL4PPROuep2Ix6GBQGYTU6pP3DagQmhW5AU0kab0aUU1Dn6TtPXVZUwN8EN8fBZaIayCnJMQkAMFmOA0CvaRZSw98BANnmyWc+LjIu6HIuwMRYHJ6IVv5VVVW0d2i1scWsaYkMjRByms5ENrgcwGYAXwHYI0nS7jNwTgCA1cBDp3IIq7Eh7R9SozCqNHqcSpx6rWviCV/fCgX1njDS1Da08BwyLBPOdGhkPNBbAYMDF7EdAJheCfLXjd/ALsvIzShLXHwksQw25Co8vJwHoWgcR5r9aNe1wqJyKLAVJDo6QshpGJNGIZIkFfT4eReAGWNxnlNhWQaCwiPMyEPaP8zIcClUlieVpBnSgUgr6nx9a5nWtIaQznjQzrJwWegxespyTILo84CV01Dtre7e/E/fEUztiMKZS3NNU9kkXQZ2M2688781cITrcMDA4lzTRJqXTshZLunnEwiqgAhUKOqpuwsGWQUGRn8GoiLjRVpn++iWoBsd8d43UtWtQZj4NqgMQ1MsUpk9DzloQTScgSMerSlTOB7G8VgbxI44CgpoikUqOzezFHGGwRv/72P8ffdfcEQQcHEuddAj5GyX9AkyDwNUBgjFTl3JIsAyMLJUuzKVODunThg4D2pae18j1e4gdIK2ppSahKQwRx4c0UYoHRmo9lVDURUcaDsAhQGyoxZk2k2JjpAk0OxzfwJWVTGB3wYX+yVUhsEF+VcmOixCyGlK+gRZx2hTJgKxwWshh0Pt6GAZmHjroPuR5JJmywcAWPgWHG3pfY1Ut4YgdHbJchldZzw2Mk44JoGPh6CPuBBVOvC/jf+LvW6tbGYOS3PTU116wRWYzprhsR0HYzgKBsB5mRckOixCyGlK/gSZ1UZ3grHgoPvVt1QDAEw6+1iHRMYRq30SOFWFgffgSEvva6TGHUCU1ZJml4kS5JRl1ypZFHe4IDAmbD28FX878TlccRl2O02vIMD1pTejVuCw0WHHjOzpsOpooIWQs13yJ8idI8L+Dt+g+zW1nQAAWKlbWkphrTlwyArM+gCO9kiQFUWFv70R7Z1FTdIN1GY6ZXWWepvu6IAldik+OPoBdjd+iZ/5fDDl0AI9Alx5wZ0wsjpMTSvFM3OfS3Q4hJBRMCZVLMYTvaCNCAdDLYPu5/bUAgDsZlqMlVKsWXAqMqAL4UiPKRb13jBccgtaOA5O3gyBExIYJEkou9ZO+FyzD/+3aRqQ+zcU8gVY5j2OQH5pgoMj44Fdb8eflnwAp8EJHUdtxwlJBkk/gmzqHBH2+JsG3c8T0F5Ps2aPeUxkHDE4kKYAMhfG0ZYAVFUFAHx93IMJTCtaOA4Z9FQhtZnSAMGMUkM7/L4cLBf/E1e3XwAOgD1XTHR0ZJzIMmdRckxIEkn+BLmz+kCbf/ARZG+oFQCQ4Zg45jGRcYRhkMHoEGI64IvE0RrUui7+z7E2FPBtaOY5ZJrppimlMQzgLEAR04BchxH/9YkJaDwBBVz3/GRCCCHJJekTZJslCwDQHhg8QQ50tAMAcjLyxzwmMr5k8Sa0MlEACr6u0a6D/6luwwX2IBp4ATk2uiZSXu6FYOu/xj1XFKHRF8FUQwsYxySApt4QQkhSSvoE2WHTOqD5wp5B9wvGtEV8OWlUtinVZOsdiDOAzRzFh3sb4Q3HIDX5MUnfhnaORa41N9EhkkSbeBkQbsNNRR346WWTMEt3CMzEixMdFSGEkDGS9Amy2Z4Bk6KcsopFSA7AqKjQC9RJL9VkW7QEeMYU4P/b34RdR1uhqoDKak8dcszUZjrlTbwUAKBr+BqPzdZDCDUDhVckOChCCCFjJekTZIvdBYuiIBjzD7pfRAnDfOpu1CQJZTmLAQDnZ7XDH4ljzXt7oeNZeOLavPQJFnqqkPJcpYDeBtR+BRzboW0r/GFiYyKEEDJmkj5BtjmcsCgqQvHBW02H0QGTwp2hqMh4ku06FwBg4+thNwqIyyr+z83nobFz2s0EMyXIKY9lgdyLgNr/AY5+BjjygLTCREdFCCFkjCR9HWSrQQeDAoSVyKD7hZk4jKASPakoLfM8CKoKt68Gf77vftgMAuwddXiW58AzLHXRI5q8mcBnjwPN+4ELbk50NIQQQsZQ0ifILMtAr3LwqR2D7hdiZdhB849TEePIQ1ZcRmOwAZPStNbkqJXQwPPI1qeDZZL+QQsZih/cBygyUP05MO1niY6GEELIGEr6BBkA9AqHCOIDvq4qCkIskAPTGYyKjBscj2yGR1NnqT8AQNNe1PM8cm15iYuLjC86M3DlQ4mOghBCyBmQEkNjeggIM/KArwcCXvhYBhbeegajIuNJlmBFU8956k37UK/TI8dGjSAIIYSQVJMSCbIOeoSZgUtUuFtqEWZZWHWOMxgVGU+yDRloYmQoinYjFW3aixaWFugRQgghqSg1EmTWiDDLQFb6H0VucB8DANhNGWcyLDKOZFtzEWcYtLUfAWIR1HmqAVCJN0IIISQVpUSCbGDNADBgqbfW9loAgLOzLTVJPRPSSgEAx2v+Brgl/FOnlfwr7dxOCCGEkNSRGgmyoM0t9gXd/b7eHmgAAGQ6qKVwqjqn7EYAwHeH3wea9mGvXgcDq8Nkx+QER0YIIYSQMy0lEmSTzg4AaGmr7fd1f1hrKZyVThULUlWGLRe5jB7ftB8Avn0Hew0mlKWfA55NiUIvhBBCCOkhJRJks8EJAGjxNPT7erCjDQCQ7aSKBans/LQyfMMziB39FAcMBpybMTXRIRFCCCEkAVIiQbZ2Lr5r8zX1+3oorrUUdpjSz1hMZPy5oOAqNPM8vsi/CBE1jqmUIBNCCCEpKSUSZIdVaxXsCbb0+3pECYBTVZh4ahSSyqZlXwIAeD1Tq1xxXsZ5iQyHEEIIIQkyahMsRVHkADwD4BIAegCPSJL0Z1EUZwB4HkAcwF8lSVo3WuccKpdDmzrhC7f2+3pYDcOisGAY5kyGRcaZkrQSGHkj9ri/RVlaGSZZacoNIYQQkopGcwXSrQAESZIuF0UxF8CPO7e/AqAcwFEA74uieKEkSXtG8bynlJtVDADwRdr6fT3CRGFWaTFWqhNYAS/96CXElBguzb6UbpgIIYSQFDWaWeG1APaKovg+AAbAfaIo2gDoJUk6AgCiKH4E4CoAZzRBdqXnwKAoCMY9/b4eZuIwgaZXEODS7EsTHQIhhBBCEmxECbIoincB+NVJm1sARADMB/BDAG8AuAWAr8c+fgBFIznn6WBYFlYFCMrBPq91xOIIcQrMrPFMh0UIIYQQQsahESXIkiS9DuD1nttEUfw9gD9LkqQC+JsoiiXQkmNrj92sAPofxh1jZoVFWA332e7xeOFnWWTw5gRERQghhBBCxpvRrGLx/wD8CwCIongBgOOSJPkAREVRnCyKIgNtGsbno3jOITOpAsJMtM92b1sDvBwLW2czEUIIIYQQktpGcw7yawD+jyiKu6DNQV7euX05gM0AOGhVLHaP4jmHzMTo0dxrtoemzV2PIMvCYUxLQFSEEEIIIWS8GbUEWZKkDgB39rN9F4AZo3WekTKxJgThhaqqvaoTtLqPAAAybDmJCo0QQgghhIwjKdEoBAAsvA0+joXX5++13eM7DgDITs9PRFiEEEIIIWScSZkE2ap3IsYwaGg62mt7MNgAAEh35CUiLEIIIYQQMs6kTIJsN2UAABrcx3ptD0WbAQAZ5qwzHhMhhBBCCBl/UiZB7ppj3Np+vNf2sNIOAEg3pp/xmAghhBBCyPiTMglyVpo2hcLjb+i1vQNBMCrg1DsTERYhhBBCCBlnUiZBnuDSFuH5wy3d2yIxGRGuAzbw4FguUaERQgghhJBxJGUSZKdtIgAgHG3r3tbU7keQk2FnqM00IYQQQgjRpEyCbNc7AADh+PfNQtqaatHKsUgTqIseIYQQQgjRpEyCbOAN0KlARAl0b/O5T6CV45BuogV6hBBCCCFEkzIJMgBYVA4xhBCXFQBAyF0HN8ch2zohwZERQgghhJDxIrUSZNYAhYvgRFsQABD01yDKMshxTkpwZIQQQgghZLxIqQTZobOjnWNQW30YANDe2WY63UZtpgkhhBBCiCalEuRJ9klo4Dl4avdDUVSEIvUAgHSTK8GREUIIIYSQ8SKlEuT89BK0cBxCzQdQ3RqEjdES5AxjRoIjI4QQQggh40VKJcgT0kugMgxCfgn7qhvB814AlCATQgghhJDv8YkO4EyaYMkFAMTitWg+/L8I8iw4sLDrqQ4yIYQQQgjRpNQIco45BwCgcq1oPfQVGjke6YY0sExKfQyEEEIIIWQQKZUZZpmzwAKICmFMiR2ApDeg2FmS6LAIIYQQQsg4klIJssAKyNTZ0cBzmM99gWM6DmKamOiwCCGEEELIOJJSCTIATHBMRn3mFNTodIgBmOKckuiQCCGEEELIOJJ6CbJlAupZFQcX/wYAUEJTLAghhBBCSA8pmSA3h5qxP1gHnuVRZC9KdEiEEEIIIWQcSbkEOd+WD1mVsf3IdhTZiyBwQqJDIoQQQggh40jKJcjXFVyHizIvQlukjaZXEEIIIYSQPlIuQdZxOjw39zlclHkRrsy7MtHhEEIIIYSQcWbUOumJomgH8HsAFgAdAH4mSVKjKIozADwPIA7gr5IkrRutc46U0+DEpus3JToMQgghhBAyDo3mCPLtAL6TJGk2gD8AWN25/RUAtwCYBWC6KIoXjuI5CSGEEEIIGVWjmSB/B8Da+bMNQEwURRsAvSRJRyRJUgF8BOCqUTwnIYQQQggho2pEUyxEUbwLwK9O2vxvAK4RRfGfANIAzIaWKPt67OMHQHXVCCGEEELIuDWiBFmSpNcBvN5zmyiKWwE8JUnSq6Iong+gCtq0CmuP3awAPCOMlRBCCCGEkDE3mlMs2gF4O39uBmCTJMkHICqK4mRRFBkA1wL4fBTPSQghhBBCyKgatSoWAB4GsFEUxV8AEAD8a+f25QA2A+CgVbHYPYrnJIQQQgghZFSNWoIsSVI9gH/pZ/suADNG6zyEEEIIIYSMpdEcQR41+/btc4uiWJPoOMhpyR+Lg9K1kRTG5NoA6PpIEvTdQQYyZt8dhJyMUVU10TEQQgghhBAybqRcq2lCCCGEEEIGQwkyIYQQQgghPVCCTAghhBBCSA+UIBNCCCGEENIDJciEEEIIIYT0MC7LvPUkiiIL4GUAFwDoAPBzSZIOJzaqxBBF8WsAvs5fjwF4FcDzAOLQmrCsS1RsiUDXRm90ffRG18f36Nroja6N3uj6IKSvcZ8gA1gEwCBJ0kxRFGcAqARwQ4JjOuNEUTQAYCRJmtNj2z8AlAM4CuB9URQvlCRpT4JCTAS6NjrR9dEvuj5A18YA6NroRNcHIf07GxLkWQA+BLSufKIoXpLgeBLlAgAmURT/Cu3f7REAekmSjgCAKIofAbgKQCp9idG18T26Pvqi60ND10ZfdG18j64PQvpxNsxBtgHw9vhdFkXxbEjsR1sIwNMArgWwHMAbndu6+AHYExBXItG18T26Pvqi60ND10ZfdG18j64PQvpxNnwh+ABYe/zOSpIUT1QwCXQQwGFJklQAB0VR9AJI6/G6FYAnIZElDl0b36Proy+6PjR0bfRF18b36PogpB9nwwjyTgD/AgCdc8W+S2w4CXMntHlyEEVxAgATgKAoipNFUWSg3f1/nsD4EoGuje/R9dEXXR8aujb6omvje3R9ENKPs2EEeRuAq0VR/AIAA+COBMeTKK8DePP/Z+++w6Oq0geOf+/0lkx67yQMoUnvCEgRFQRE1LV30bWwILv2svaCa18VLKigIp0FadKkhR4gkFBCgBRCejLJTKbd3x8RfliQkpk0zud5fB7I3HvOO/Fy551zz3mPxWJZD8jU3dQ8wAxASd1K47RGjK8xiGvj/4nr44/E9VFHXBt/JK6N/yeuD0H4E5Isy40dgyAIgiAIgiA0Gc1hioUgCIIgCIIgNBiRIAuCIAiCIAjCGUSCLAiCIAiCIAhnEAmyIAiCIAiCIJxBJMiCIAiCIAiCcAaRIAuCIAiCIAjCGUSCLAiCIAiCIAhnEAmyIAiCIAiCIJxBJMiCIAiCIAiCcAaRIAuCIAiCIAjCGUSCLAiCIAiCIAhnEAmyIAiCIAiCIJxBJMiCIAiCIAiCcAaRIAuCIAiCIAjCGUSCLAiCIAiCIAhnUDV2AH+mZ8+ecnR0dGOHIdRDRkZGcVZWVqi32xXXRvPnq2sDxPXREoh7h3A2vrx3CMLveT1BtlgsO4DKX/96BPgUeA9wAcuzsrJePFcb0dHRzJ0719uhCQ3IYrEc9UW74tpo/nx1bYC4PloCce8QzsaX9w5B+D2vJsgWi0UHSFlZWQPP+NkuYCyQDSy2WCyds7KydnqzX0EQBEEQBEHwFm+PIF8GGCwWy/Jf234B0GZlZR0GsFgsy4AhgEiQBUEQBEEQhCbJ2wlyDfA2MA1IAX4Cys94vQpI8nKfgiAIgiAIguA13k6QDwCHsrKyZOCAxWKpAILOeN2P3ybMgiAIgiAIgtCkeLvM293AFACLxRIFGIBqi8XSymKxSMCVwC9e7lMQBEEQBEEQvMbbI8ifA19ZLJb1gExdwuwBZgBK6qpYpHm5zybJ6XayLm8deqWe9qHt8df4N3ZIgiAIgiAIwnnwaoKclZXlAG7+k5d6ebOfpm7XyV1MXvs4J2oKAdBJau5rewd3dX4ItVLdyNEJgiAIgiAIf0XspOdlhdWFPLLy7yhLC5i6tYwv00q56ngFH2RM4/pv+3M475IYQBcEQRAEQWi2muROes3ZU+ueoFVWOZMXulHY/AD4GzAsQsmMfhXc6L6bx4L7ces1HyKpxGiyIAiCIAhCUyMSZC9KL0qnZNdWXp7jRg6LIGbK86hCQ6nZkoZq5nc8OjuPo1Hw2ZANbCvszktXfoR/fN/GDlsQBEEQBEE4g0iQvWjqpneZON+NrNfR5vtZqMPCANB3aE/QbbdRPncufPAhr3xdwvq2Hu623cuE2EH0u/Y/oNI2cvSCIAiCIAgCiDnIXnO88ji6FVsIrQC/J586nRyfImk0BN50E5blywgeP57eB5Q88SXM3LyGqZ/2xHMys5EiFwShqbA6rOw8uZMCawGyLDd2OIIgCJcskSB7yaLdPzBmkwdbpJ74MePOepzCaCRswmOkLFyIqVU7Hlko417t4JUZI6jZM78BIxYEoamQZZlP0z9lyOwh3P7T7QybM4x7l9/LvpJ9jR2aIAjCJUkkyF6Sv/BHgqygveN+JEk65/HapEQsP3xP0EMP0j9DpvMCNa/8NInqTZ81QLSCIDQl0zOm8+GuD+kS2oMbYp6hr2Y4GSf387fFN/PRro9wepyNHaIgCMIlRcxB9oLsimw67K7C5geX3XrfeZ8nqVSEP/oohg4dcE94DONceNP9Ok8qVeh63O3DiAVBaCp2FO7gne3v0C1kAIlpau50Pk6oVEmlQuKloFA+Sf+En7MW8NaQD2gVbGnscAVBEC4JLWIE+ZfcX5i8djIOt6NR+l/+y3Ta58jY2sWhVCkv+Hy/QYNI+XYGgQ4tg+dp+WTlv3HvW+iDSAVBaEpkWea9He8RoA1m6IZj3LnzBypWB3F4XQeKswZw+6HWvFBQTVF1LuMWjeW9eXfgtFU0dtiCIAgtXrNPkIuri5iy6F/s3PkTP2T90Cgx2P63BAUQdPNDF92GvkMH2nw7E/9aFW2X6Jk1/xHI2+G9IAVBaHI25G9gx8kddD0SRvefMinO8EOd2Altuy64jpWiWppN+8WxPLW9Bz3KlEyr3MG4b/uwddWr4HE3dviCIAgtVrNOkGVZZs/fxvDae2W8M83DjM2fYnVYGzSGElsJrTOtlIZDmyEj69WWrm1bkj+bSmSZhGa1gQ0zb4KqE16KVBCEpubzPZ8T7grkofk7cbtVJHz/HfHTpxPzwfukrF1L7KefoEtMIOHnNB6bqePJtSnU1krcc2wm//60G1VHNjb2WxAEQWiRmnWCfHL1ciIOlJDfIwG1Syb2QBlLjixp0Bg2bJ1D0gmwJUchKer/6zT17EXQv1+g7XHI2qzkyDfXg9PuhUgFQWhKsiuy2Va4jfuW1eCqUBDz9ivoO3U6/bqkUGAaMID4r6cT/91MTD2703njfqZ8ruGB9UHM1zi5Y+VdbJ0zEdyuRnwngiAILU+zTpCPTfuYMiOs79MLl0ZFtxwlh8oPNWgMuQvqpnUEDT17abcLFT32Bhx3/Y3eGbC5PEbZAAAgAElEQVR4RxFVc+4HURNVEFqU2QdmE1Mi0XGPFXXnKEzDxpz1WEPnzsR++CGJCxfg17cPV6wvYurXAZjyNDxWsYzFHw9ArixowOgFQRBatmabINdmZ2PacYC1nVQ8d+IdAsOquCzbQ075kQaLwe1xE7a3gPIgmTbX3urVtjv+81lO9unE4PUKfti0AffKf3u1fUEQGo/D7WDhoYXc9zMoVDLxr757XufpWrcm9sMPiZ06FbNaz5M/uLluvZbnjOXMnzoAZ166jyMXBEG4NDTbBLlo9g+4JTCkVFLaagy6CCfmSjf2Qw03grz/6DYsx2XK4w0YDCavti1JEv3/+xW5iaH0WKlh8bLPIe1Tr/YhCJeyxdmLSStIa5S+f8n9BWNBOamHnSi6RqFO7HhB55v69yNp0ULMo0ZxzUYbT8zT8Zqfmp9mXosja6WPohYEQbh0NMsEWXa7KZ0/n12tJPrKDoLHvEVeYhsAwrJOYnPZGiSO3XM/R+UBXac+PmlfodVy+bfzKAnQEbXCSNrcF2HXTJ/0JQiXkv0l+3nilye4d/m9PL/x+Qbvf/GRxYzZLCEpPUQ/+q+LakOh1xP52quEP/sM7Q/beWWmmrcMfqxdcAeO9B+9HLEgCMKlpVkmyNWbNqMurSQ9VSY2aiiYQrF1uR5ZKRNWLnOs8liDxCGnbadGK5M46l6f9aENDqbjt7Owa5R4VprJnDkRds7wWX+CcCn4cNeH+Gn8GJE0grkH51JmL2uwvqscVezcv4Z+e11oUlQYOl950W1JkkTQLbcQ+8l/iS2Hl2YqeU0fyLafHsa58RMvRi0IgnBpaZYJctHMb7DqIDqyhrDBjwKQcvk4JKObkEo4Uun7ecjVtVaSDtdQFCsR3/rCHo9eqODEFCI/+xRJlihdFUj+zAmw7i2xcE8QLsLe4r2sy11HT/O1dDLXJae7i3Y3WP8rj66k/85alB7Qjh0H57E1/bmYLr+cuGnTiLCreGGmxAv6UDLWPotr+fPg8XghakEQhEtLs0uQbRkZ2Fet5aduEt0VYUjRXQEIDg5BaZAIrZDJqcjxeRy71s0hoBpqE8O9Ut7tXFp17ov6g7dRuuHYqhBKFr4BP94JtQ1b91kQmrs5B+dgcqp58K3PSXnmUbQuBelFDbe4bdGBBVy5U0YfXkv0dY94rV1Dt27Ef/EFYU4dz86EpzSRHN72Ec4f7wJHjdf6ERqfLMsUVNg4dNJKblkNdqfYNEYQvE3V2AGcD9npRJZlJKWSk//5D9U6iT2dPEzs/MBvRl/cRh1hBU42VOb4PKaji2YRAIT2He3zvk7p2vdqfnnXiuofz3NwVRiyewkhJwfBuOkQ3rbB4hC8Y1fBIb5NX8mR8mNYnVYkJAxqE7GmODqFt+PyhI4khfgheWGEUahT665l6eGfeGaOHXeBEn2Bk5dmwKzInQ3Sf25VLmzcSlCVjLt/AhiDvdq+/rLLSPh6Otx9N89+V8VT18XwxqHFxE+7EvXNMyEg1qv9CQ0rPfck72xYxK7CDOzuKnSyG71HgdppRKtIICqkB53jQukaH0iPxCB0amVjhywIzVazSJB/eWAc5t05+MW3ojZjH7MHK7jLbsPU7abfHGcPCMD/cBF5xb6fYhG49yiF4TKdh/zN532dqf+AG1j1rgvtxJc4sjqUWoqJmjoI6cpXoNs9XnlcK/jWtoIMHv/5JUrcGQDIshKFrK/7s7uGg7UeVpXAlD1aFPZU2pr787d2V3JV+1g0qmb30KdJWXN8DX22VJF0RMb/thFUFheS8NM2ig6k4x7uRqnwbULxv+z/MXSHjKR3E3Lzgz7pQ9e2LYnffgv33M0z3xfz8rUxPCYdof0nA1BfPxWSB/ukX8F3qh02Hpv7FjX75uFX66CzGsqCZQoDoFr5/9es1TMNDmjZu601z9mvpkvbjtzUI47uCYHii7YgXKBmkSBnpDoxFjlIzj3A99eoqUy2MdDyKGh/W1rNGRqJjiLkgkKfxpOfm0VcvpuD3dQEhoT7tK8/c8XlN/Pze+Cc9BKFK/XkDY6kx+JJcHAFXPsBmMIaPCbh/EzdOYv3019Fdmvpoh/NhBATl1UdRFm4DypycbtsHNWZ2GUKZoPWwAbDfjJcu3hq++c8/0tvbm5zMw/274yfTt3Yb6VZmr3jO+5d74FIDVFPvYVu03JO/rQNS3Yth8oPYQmy+Kxvj+xhQ9psnjoi49fBhbnTtT7rS5ucTKtZP3L43ruZPCebGQODORbt5NpvxyL3fgTF4GdApfVZ/4L35Bcd5fvH/8aj28pQ/24mhTrUH333VOzdEzkUUs2mkt2sIY8SUwYB7t2oCvR8/sVA/hM1iklXtadbQlDjvAlBaIaaxXBUh1bXoBpYySv3utEnVjPZGYph4IQ/HCfHJAKgPlmO7MMFbLvnf44CULRp57M+zmVw35tR/vd1SsygXVHGFyevxHN4FXzcG7KWNlpcwtl9uHU67+9+CU1tLP/TpvL1wY/osvFVlNlrwRyD23Id7la3ER08lJFE83bpSdbnHOS/J05yhcuKx+9nvsm9n75TH+Hd1VvFvMMLlF2eTfRPW/GvgaDHJtRVgOg5BNnooWOOTGZppk/735i/kfYb8pElGeegQT5PUNXh4bT+fhaagf25bbWDsq0Sr0pdUWx6H8d/L4e8HT7tX6i/orxD7Bk7gqvSynAm1hI7ykjSf58lfuZMwp99Bm27LlSt3Injxe9JenkLDx4fzE+Xz+Ozns/T3S+BZQEOtictJdV5H4s+n8w/vvmF3DIxH10QzkezGEHud91D5GyKpM+2zwmObYPfoAnwJ49CNSkdgAWYy53YXDYMaoNP4rGtXUelARIG3uaT9s9X/86jSJtmJPfBx+i+Zg//7H0dT6TuIOS7G6HXQzDkRVBpGjVGoc6yI2v4NGMKQbYYlpXvRpNfTZXftVQXm7FlFOA4cgSPdc9vzpH0BrTxA0iO9eNVazFlyl18EWxgvt8GvsjZzDf7LueRrg9wa/dUVMpm8V23UX298E3GbPTgTtIRPvouACSlEk+sH+2PVLO1Mt+n/c/eO5Obd8uYou1EjvDN9IrfUxiNJH/8KbmffUS39z4i8UQ+fx80hGeKdxA+bQhSj/uRBj0JOnODxCOcP1t5Cek3jyOi1IVzcAVdrxwLV799+ouVoUtngm65BbfVinX1aiqX/ETpV9Mp/fwLovv25cW/TWTCFUl8lvYyc6StmEybuOPkama9Mwhtn4e4a/BlGDTNIgUQhEbRbP51JPQeA73H/OUx5nbdsEsyoZUypfZSnyTILqeDmIMVnIj3MKzHEK+3f6F6thnCni+/4Mj993HXxnU86+7HqLZtGL75YzieBuO+goC4xg7zklZsK+aJdU9gqvVj8Yk0rMfjKc2Mwl2ahsJgQNehA+Zrr0UdHYUyOBhJrcZdUYEjJ4faAwcpX59Omc0GqjDuSY3k9tCjfNHaycKA1by37xc+2z6MB7rew41dW4lFOWeRcXQ7naevQ1bJxLz6/m9ekzp2xJC5ifIt26GLb/rPt+bjWrEOPxso2/mhju3qm47+hCRJxD7wMKZu3al5ZDzjF+7jy8tbExWi4/a0T/DsnoVy0JPQ9U5Qiqk7TYEsy6x96GZiTtopHmZlwPA7YPirf7rGRGkyYR45EvPIkbiKiiifPZuy738g9+FHUEVE8NgN47h9yP1MyXqPD5R7SfDfwN/TV/DdliswXv4Io/t1EvcNQfgTzSZBPh9Rca04aJQJrYBSeykxfjFe72P/uvmY7FATF4BW0zTm8HVI6EnQjHnsuPtGHt28ni8V7VgcPYG3T0xF8+kApLHTLsmFOaX2UlYeXYkkSQyNG0qALqDBY5BlmYeXP4XbY+frA4UUbozBUWbH2K8bQbfdirF3byTNX4/yyw4HNTt3YV2zhsolS3DtUXDbZn9ubeVhVlsrPyYu5qOMZXy/qQs9kh7k1l5tSAn3a6B32LTNu60/fsfL0NjcJFdA9ai2BHTq/5tjAgZdQ+WsTagOHPRZHN/u/5ZhOzwo/F2or7qrURbTBnbtSeclq9j46G2MWXOY/Ul6buvydybU/Ez3JY8jb/oQacC/oMMNoGxRHw3Nzo5PXiN+xzF293YyuufAukXY53HNqEJDCXnwQYLvuw/rmjWUzfyO4vc/gI+UPDt0CEevHMxrVd8zWVNIL9sGHtm4lJXrelDR7jYuH3Q1scHGBnh3gtA8tKi7oE6jwmVUEFIh+2xnrJxF35MoQUDnoT5p/2JFh7Yi4PuVrLt3DHdtzGBFj2KGxf6TLz2fk/jtWOj7D6QrnrpkRojW563n6fVPU2ovBWD2gdlMHz4dnUrXoHEsyV5JRvkmnt1Tg3tFIAQHETvtFUz9+p53G5JGg7FnD4w9exD2+CRq0tIonzefquXLGbdHxfWBStJa2/jusi2sLk6j+tsgIuXLSeo0jMt79iTYr2Hfc1NSFa5HU1CERw+lo7rQ/59f/eGYkC6XU6KSMRRX+iSGSkcl29bOYmS+TFAXG6H97/FJP+dDHRDI5dMXsX3aG7R6fzoPF87j25FD+MhxDc9UziN5/oN1mxANfBLaXw8NUOO9KZFlGevq1dj27UMKNBPyt1sapM79maqP56D4+Fsy42FQOyPa6z+94P8PkkqF35Ah+A0ZguPoUcp+mEX57NkELV3GeynJHLr8Ct4J3MwtMTqGVO/nwawHcewOYY55MObOo+ndZyBGsRBYuMS1qAQZwG3QYS63n06MvM2w8yDHo2Qs/W/2Sfv1YTQGcOU3K/jln3cxdMk2ok9+wcRB13FD1S5u3vAOpRkr8Lv5S9RhKY0dqs/Issw3+75hyta3iC4Nx//YDRi7hbKv5GNe3vwyL/d7ucFiqXXX8vLG1+h7VKbjMjWaxARiP/8KdfjFVxmRlEqMffpg7NMH93PPUrV8BZWL/0evTZvpleYmP0rJT+1LWW6ZyzUZ31C4UeKIJhVVfC9adb0Cv8TuoNZ77002cbe/vRynvRqXrQp9YMSfHqP1D6HaLBNQ6vBJDD9m/cjlW2uQlTI1ffp4vfbxhZIkiW73PUFhr8Eceng893+/gpVXRHCz3yN0tB3nBet8YubeBxvfh6H/hqRBl0T5SGdeHgXPPU/1hg2nf5a29nv6vz8DcwM9fZJlme2TxuOHTGiPSkJvWQKa+k0V1MTHE/7PyYQ+/HcqFi+m/PsfiPt8Oe+qVBR1jGZBdCF3JmnpoNLycNEsOqz7lqK1AWT6d8EvpQ9JHfuiiroMNGJ0Wbi0tLgEWdIb8Cuwk+ODBLk8N5uoQhd7eilITE71evveoFCpGPDON2R1+YSU19/nye9nsWh0MpON43mm7GvcH/dhe+tHaT/mn5j0TWOKSH3YXDaWHllKhDGCGmcNs9dMI2zDbj7YoSTUmgfMpGB9CN+M6MxCFvL3Tn8n0hTZILF9tP0r9KUneWSOE1VoGHFffY0qJMRr7Sv9/AgYex0BY6/DWVhI5eIlaBcu5J7lmbh/ltiZZOL9thIq8zGuP7YLXdZ/cKKmKKgLmjbDCO4yGikk2WvxNFVqnRG17i8+3CUJu7+SkHIPNpcNvcp7XyBcHhfz02fy8j4IiK8hZPjfvdZ2fYV36E7I4rVsm3w/w1btJDruLX66aTDDjz3FFc6dPFf8IyHfjEGO74c07N8Q3XDzphuK7HLhLi+nYsECij/+Lw63g+lDFfxyWTg3bVAxfF02i955hFuf+qZB4sn93xxCdx9lY38XY/uMR4q8zGttKwwGAseNI3DcOOz791OxcBGqZUu5d4edeySJrDgH36SEUdY+nK5uJVcXpRO3YxXsAA8K7AEp6Fr1QZHQr+5LUyN/0RMEX2txCTImP4z2Ukprir3e9P7/fUsA4EpMavJF1y23jqem5xXsf+wBbvnuEFss2bwxdgxDC7IYdOBt9r4xj93tJnPlVdcRbGq+ifKWzetRP/M0Jcj418Cjvz4lV0VLhKSWIylkVPtk/j6vksfv9bDg8ALGXzbe53FVOar4fs9U3pjrRImauK++8Wpy/Hvq8HCC776L4Lvvwp6ZScW8+XRfvIhuC0qxayTSE4JYnKSiOsxE15pcrtv8CtLGlzimSSYvchiuNiOJbNWRhGDDJVkRw2nWEX7MxomqAhIDk7zW7trja7FsOYHGKSO1NaNpdbnX2vYGpclEj49ncGL2d1heepWE91YSPGwDJ3qM5sp9rzHCuZYJR+cROPUKSuKvxnz1C6jCfVcruiHV7NzJsdvvQHY6AchOCWLKEDvtlB5+yd2OI1bHhsPRhC/ezrGHjxHn79vFzh6bjfxXX6E8FHqlaAkY+k+f9aVLTUWXmkrYPydjz9hH1c8r0axYQZuVh2FlAQei4POOQdh7jsBQFUhQ7jE6lhyia/kPmLZ/WZcwR/VE22EUyrbXgjnaZ7EKQmNpcQmyxy8ABUexFnm/ZFPZ6pVghOhu13u9bV8wpLSmy4LlHJ/6MV0+mUqnN1azupuG9CvGMO74Om7OGM+Wve+xLHYcHYfcSvuEht/0pL66+asoNlZTZtcghygwt6ohJLoaTZIFLrsP/KPRzX8d9w9WJszT89+Iudzf8X4Ukm+TwLc3f8b1a2uIKFQQ9fZLaBISfNrfmXRt2qB78gnC/jmZmq3bKP9pMd1WraTn0jKgDIcK9uojcGoUKFU2TOofCdfPxGk0MNecQkbCAFzJA7gsIZyOsWaSQ00tPmmWgwPQuG2cyN5HYlfvJcgzM2cydo8CbUAtquEPNMmpCpIkETnuZoJ79OXwvyZy16J9HNv0HT/101PUZwSTit+jS84i7spZDP9dSlrAVdDnETp36dmsd3bcr7aztp8ZJAXr4ys4FF7B38sruFlKQjP0Qdw7vsOSdAzbZn8W/PgKj9zzqW/jef81/MvsZI6yMWDU5w2ykYskSejbt0Pfvh1hjz1G7ZEjVC5bhmvRXFovPY572QrSkyR2dw1iX9f+fFF9N/IRK93s2xieu5XW+U/Asic4pG3H0YiheCwjaJWSSkKwEYWi6V3rgnAhGiRBtlgsCuBj4DKgFrg3KyvrkE86C6x77GMt9G6CLLvdhB4o5miCh/49Rnq1bV+S1GriHnoM55gbyH7rFYYuXQVb0tiQbMLZuz19OUCP3H9T+eVbrNT3R9/1b3QbMALtOSorNBXGDgMxvv0h8TkboLYSDMGQei3EdDudjOgiOhJ6YAjyVongjDx2Xr6TruG+e1xcbi/n8OrpPL1Fxm9wF/xH/HV5Ql+RlEqMvXpi7NWTqBdexHEkh+rt28jPSMN14gjW8pPUVpZhrVbjKVZjskMHDtJh7UGkwP+iiFZSE2tgq58eldaA3mDEZPLHLyicgOhklJGXQeRl9Z4j2RRoo+KAAgoydkDXEV5ps7C6kKP70kgscGPs5CC0751eaddXNPHxtJn5I1XLl8O7U3hgfi7lK35kffu5lPbvypeJ79Bu7yr6li1As2Qxu5a0JidkEH7thtGlez8CTc1rMaij6jDbOxVSrFTSvraWRyqCuPzKN1C2uRokCX2X2wks7UrpTvD/30YcdzrQKH1zX3Tk5eH+Zjbb20DvpC7oLI1TdUibmEjo+PGEjh9P7cGDnJz7Ix0WLaTLrBLs8+azs5XE/ngl2SlJvBc9Br3Dn3Ynj9C/bCODj74LR9/l8NJIliqS8Jgi0ZnDCQgKJSoygvDgYJR+YRCYAPqGrygkCBeqoUaQRwO6rKys3haLpRcwBRjli44UwXWjoM6yEq+2e2LnRkw2meooHeGhzW/ulToyEss7H+KYmMehr/9L4oJFmL4+yHGzgh09+xARoaK3bR3GDcsp2hBIdsRwIgfcS1xqt8YO/a9JEqSOrPvvbEJb43f7gxTv/ZLRmyS2jN7i0wT5zZVTuG+xE7dZQdQbvh11Ol+SJKFNSkSblEjQuHGnf+7yuNhfsp+dhTvYf2gzxXu3EXWshi6H1LTeC9q9dmoDa6mOrsRudqM1OdHqK1Gk14ICXJKKUv92OGJ6oUnsjalVLwyBDTPH25sCW3UE0qg+5L3d9NYcX0O/fTIyMtZuPQhvBkmBpFDgP3w4fsOGYV23DtV333D1+s0o0rZQpdvC8TgdP7cZRnCQnkjXbjoVfwprP6VsjYld+lSUUZcRddlgglMHNvkvTr1730rvtgOhMr+uVrzf7xZx6gNwdr8beec0Oh7SsT03jd7x/f+0rfra+9KTKJFRd7GRPO4dn/RxobQpKcT+6yliJj9BzZatlC35Hz1+XknvzHJYdgAPBzgZAPnBEisCtawP7IafBGZPDfFyNjElO9CpnEhKGUkCj0LGAyBDjTYMR1h7NCm98Ws3EEVUJ1FaUGhyGuqK7AcsBcjKytpssVh8lnVpwqPq/lBZ5dV2s3+aRRAgterg1XYbmiYmmrZPvYw8+Xky539N7fdfY1megwLYHRxJdWo0gX7VdHLNQvvDd2Sq21JiuYnWV9xOaFBgY4d/0TR97iPI8jEddpmYvnUNdPLNTmYlthJCvptLaKVM9JQnUZhMPunHW1QKFR1CO9AhtAO0vwPPKA+Hyg+RXpTOgqw0lL9sI373SVpnutG6wIWa49R9QaxVSzhV4FYXIevmg34uGDzUGlRUmgKpCogidPC9DBt2TSO/y3MLSu1MmRKkPO89eVp1fBU37pMwhDoIuuoBr7XbECSFAr+BA/EbOBB3RQXlq1ZStXohoXv2ErRoF0oZKpQSJ5K6oI0PR9JYMdUeJcH2BarsaTjmqTkR2BVV25FEdB+DIqCJzlE1x9T9dxYhAx7ANe9jyjJ1bF87l963ez9Btm7fhn7NVpb1gjFtb0QRlOD1PupDUihOP4mKfvHfuPLzse3bhy1zP9K+XZiPHkHKLEVTnY9CPn0W+Zzr82Jf3X/SNGS9TK1RQ7W/P9UhUchxyXS94x5Ck1v+ImKh6WqoBNkfqDjj726LxaLKyspyebsjXXQ8LkBRbUeWZa8tpqvZupWaEIjv2DzmH5+LpFaTOu4eUsfdw4njmWz+4X3c6zaTvCkbjRuyNFFUxpkJNZfSvfRF7LtfY4VpEJUp1xHfaRAdY4Oa1/xDYwjOAX3x7N5F4Mb9OO92ovZBTeip059h5HYP9suCMF9zq9fb9zWFpKB1YGtaB7aG1uNgJNhddnJKsynYt5WSzN3YC/NxV5Qj19iQ7bVI1Tb0VQ7M1TJBhRBuh3AqgUqyDjwNzSBBDo2zkG2WMRR5pxZylaOKI5mbiSxxo+qqxD/1Cq+02xiUZjPBY8YSPGYsAMcLD7L5p88p3byeiAMnSFp1ApUHnEBGUGvsIYG41LWE6XII2v9vXEufIzcomROxw5FTryWpdTsi/HVNfqEzAMYQqtr3wb1hDzXrN8Ht3m1e9njIeu5JbH4Q08ZF/MhnvNuBl0mShDo6GnV0NP5Dh3LmqhVZlqmuKiX7WDrHs9MpKjhMaVk+FdZiKm3l4HYjA7IEkgxKD2idYLLLBFgh0OomuKKUkOOlGNL2sjx7NbfM2NxYb1UQGixBrgTO3NpL4YvkGMAvrhVlgMHmodpZjUlT/xE82eMh+GglWSkeBndrvh90ZxMR24bRj3+MZ5KHtOy1/LLoC9iaTrvDpXgOwWHCqTEriQ1PI+rAKqq2GJih7s3hyKtJat+HO/omomwGCzIChzxI4ex76JYpsbd4D53DvbuvcHlNGe1/WIvdINP+7Wlebbsx6VQ62oS1pU1YWxj458e4PW6qHFVUOauwlhdReSwbR+5RunQ+ywlNjM4cQY1JxljpnVrImws20za77hZX1XUAKFrOVr6x4SnE3vk63Ak5FTmsObSM7G2rcGVkkpBXRWxRJVGl4HIpTj9tkKUq/I3fozDMJN+gZasxnhOWgdz07AT89U17vYOx8wjKw3aRdKCCY5XerWZRunA+hsO5LL7Kw/09J4G2+e6AKUkSJv9gOra/go7tf/s56ZE9FNUUUWovxeq04vQ4kWUZl8dFrbsWGRmVpELhrKHoxD6qj2RweaexjfROBKFOQyXIG4CRwKxf5yDv8VVHgdFxlCpk/GrqdtPzRoJcfTALfa2MNUxLWIC/F6JsmhSSgt6tBtF7wiBq3bVsKdjC8h1LsK5fT9y+Etof0ZJ3QItHgnaB22kblIZzs4aDIbNpk9quscM/J31SX8zRLnRb1OzYtozO13g3QZ77ynh6F8gUX9sabWxbr7bd1CkVSgJ0AXXbefvFQqx3f7c+p1BQa1AQWu72SnN7i/fSMQeUejfmITd5pc2mKMGcwJ1dH4CuD2B32dlTvIf9JfvZVp5D+fFD1OYdR5lfTEi5m7ByFSGVMiFlHpKOHiFp3xFOjOqIf8/hjf02/lJkl6upDH8WQ7qKPYc2ENfFOwmyx2bj+JuvczwC2sdqiRhwn1fabYoUkoJwYzjhxvOolJQ8sm5SpiA0soZKkOcBQy0Wy0ZAAu7yVUdajQq3FvxsUF5bTiyx9W7z6C9LUADOmPj6B9hMaJVa+sf0p39Mf7gWjlYeZevxjeRvWoMifT+BR0pILFAQcBjcJ9KhGSTIKFXUWlLxbMnBueoXuOZJrzVdWVxIu592kxclM+DZL73WrtBwao1q/KqdXpmatb9oH/fleNCFuwhvN8BLETZtOpWO7hHd6R7R/Tc/d3qclNhKKLYVU2IrocReQlbhPhQledzS6fy3XG8skikUdVQwcrqdwrR10OVvXmm36Msv0JZWse4GN/8a9HaLesogCC1BgyTIWVlZHsD3uzP8yq2VMNmgyumdhXrFG1ahNUBI8qXxQfdn4v3jiW8XD+3qPhycbifHrceptpbTNqpTI0d3/hxth1Ae9hlBGXlebXfV0/eQUgMlt/ZG7df8qpwI4DZoULud1JaXogu8+P+Hsixj3b+37h6UGAM+mOvenKgVaiKMEUQYz6gSkXJd4wV0EWrbD0BeuhTbngyvtOcqK+Pk1Hrv4BQAACAASURBVKnsTJHoEhJKSKervdKuIAje04xWWZ0/j06Fn02m2lntlfY0B45zJApatxM3sVPUSjVJ5iQ6RHfx+aYb3hTe+SocYW5i8h3Yar1zfVhzsklaf5g9bWHYQx96pU2h4Xn86rajLs87Uq92CmsKic6uW+zn6jmk3nEJjc+/03CsgTJBOSU43PWfp17y2Wco7LVs7OPmiqFvNskNZAThUtd8MpsL4NFp8LOB1WGtf1s1NfiXOLGGgCWlZWyxeikLj2uDJ0iJ3gE5u9d7pc0tz/wdGXAPH4hKZ/RKm0LDkwLq6hQXHq3fHkb7SvaRUCgj6zxEDWwZVW8udZGpvVAEO0k84eFAaVa92nKVllIy41vWtZfoYIogPLXpTzMRhEtRi0yQZYO+LkF21j9Brjl0EAVgDzCi14g5Ys2dpFDgCq/byOLk9g31bs9+8CDh23PY2Amuu/3tercnNB5NUBgA5UcP1qud/aX7SSiU0QS4CYlr443QhEamNASgDdJiroHM/fX7Yl327Qwkh4tfustc3ucF7wQoCILXtcgEWTL6183/s1ec++BzKNxVl0S5I89eTF5oXrQxnanWQm367nq3tfelx3GooKJ/V/Ri9LhZM0bUVSew5R+rVzsHTu4jrhicwX5IihZ5i700RScCULpz60U34bHZKJnxLduSJZJ0AXToOshb0QmC4GUt8+5tDkTlAWtRQb2bKtq1EYcSjHEdvRCY0BRoojqRFyGjzapfIlSbfQT91gP83EXi9humeCk6obEER7TCqQRX8cl6tWPLPozKDTXR9a+gIzQdnnY9cCtk2HfxU3Aqly1DrqhkUU8FHRPu8GJ0giB4W4tMkKWAuhXo9pMn6t2W49ARckMgMV7ME2spAhK7UB3mIbjAhsduv+h28qa8hFMJOV1iiQo6j/qeQpMWGZZIuREUZeUX3YYsy+iz676Yy6mdvRWa0AT4W3pjDZAx5Zciy/K5T/gTlUt+otQfFCFuhlxxp3cDFATBq1pkgqwMqkuQXWVl9W5LX1BBYQhYUnrWuy2haYhLbI0c6EEpQ/WBzItqw1lYiG31JlZ2kujfZ4KXIxQaQ1hYAhVGUFVefHWTUnsp0SeceJQyft3F4/OWJDq1B26zm/BiN2W1F/7Z4i4vx7phPetTJRI97Qgy6XwQpSAI3tIiE2TVrzVM3TX1q4PsrqzEVOWmMlAiOtjsjdCEJiDAqMVmrvv/Wbh7y0W1UTb9c5BlNnfSMa7rld4MT2gkOv8wqo2gs158Ga98az7xJ8EV6CaubfdznyA0G1pjILJZRXg5HCk6cMHnV/38M5Lbw6Y2Ep1SH/RBhIIgeFOLTJBPrUaXa2z1aqf2UN1cM1ugDoVC1KlsSRyB8djVULnvwhfqeex2Sn6YxdYUBaExA1GIhVgtg0KJzQD6atdFN5FXnUd4uYzbT43eIBZttjSKgECUMuRn7bjgc6uWr6DULKEMlBjSQ+ylLAhNXYv8ZNeF1iXIClttvdqxHq6rd+kODql3TELTYjK35XgIuLIuvKZp1YqVUF3L0m4So7rc7oPohMbiMEgYamRk18UlyfkVuYRUgOzv7+XIhKZAFZUEQFnmngs6T3Y6qd6SxtZWEOmKJdik9UV4giB4UYtMkA1hUQAo7PXb8ahw32YAdBGt6x2T0LQEhnUiNxQ0OYUXvOCmYs53VJlkjkcZGJYsqpu0JA69CgV1mzlcjLKjB1HKQEiYV+MSmgbFr//e7YcurJKFbfduZJud3QkSccFiSpYgNActMkE2hdclyMpad73aqThyiFITREWK1egtTUBsO6qCZbTVTlxFRed9nqu0lOotO1ndTkG8sa+YXtHCeAwaoG5B1cWozq7bZMQdFee1mISmw5TUEatJRpt3/vcMgOoNG/FIkB8t06PTDT6KThAEb2qRn+5akxGPQkbj8OD2XHySLBeWUOwPrWJFgtzSREbGYA+qGzmuzTr/BTeVS5eCR2ZdewXDLSN9FZ7QSCS9HgDXRSbInry6Em+qpFSvxSQ0HWGJ7akNcBNc5MDpdp73edWbNnEsAoIx0rOVKAkpCM1Bi0yQJUnCpQZ9bf22m9aUVVPiL5ESKz7sWpqYIAM15rp5gPbM8y/1VrVkMZWBHvJCFFzXTtTGbmmUprq5w0X5uRd8rizLaEuq8ChkjG06eTs0oQkIDI3GY4aoUpk8a955neO2VmNLT2dngkQQCeg1Sh9HKQiCN7TIBBnAo5EwOKDaeXE1TWWPB2OlC6u/TKCoV9ni6NRKJHUwxf5g3X9+C25cZWXU7NjJ9tYSQXIcJq24Lloa9a+bDJXlHb7gc0vsJYSWeXAaZcLiLd4OTWgCJIUCt58BvQPyju49r3Pse3aDx8O+OInI4P4+jlAQBG9RNXYAvuJWS+hrocpxcbWQXUVFKD1gM6mQJFHirSXSqqLJCSskeF/GeR1vXbsWPDLLUlUkBonR45ZIE1i3uM5WlH/B5xbVFBFaIeP2kwn4tRa70PIogsOB45Qc2AMdR5zz+JqdO5GBYxFwo+XcxwsXZvv27WEqlWoa0J4WPOgn+IQH2Otyue7t2rXryd+/2GITZI9Gid7huugRZGde3Qekw1+U42mpTIYUcsJ30HVTPh67HYXur0eErT+vwmWUyY6AW1qJOqYtkSkgDJcCnKXFF3xuib2EsHJwxqjFl+oWTBPbBjiO9eD5lYi07dzFyRAIltR0TYz0bXCXIJVKNS0iIiI1NDS0TKFQXNwe4MIlyePxSEVFRW1PnDgxDbj296+32G9bskZVrznIztzjALgCxA56LVVQWBdywiUkj0ztwb8u2+SprcX6yzqOJbhRyipGtunRQFEKDSnQLxyrHtwVF75Ir6ysgIAa8PibfBCZ0FSoWnXAqZRxH8k557Gyx4Nt5072xkj4O8KINItpWT7QPjQ0tFIkx8KFUigUcmhoaAV1Tx/++HoDx9NwtBr0DrA6Li5BLj9Yt8OaFBzhzaiEJiQspiNlwR4AarP+eqFeTVoasr2Wja0l/OU49GrxZKElCjKHY9WBVHXhU7Osx3N+bUTUQG7JTNFtqAyQ0Z0495cox+HDeKxWMqMlAnUdxZMF31CI5Fi4WL9eO3+aC7fYBFnS6uo1glx2OJNKPQQEJXg3MKHJiA0xg1FBrQbs+/86QbauWYOkVrCilZpoP7E5SEsVGhSDVQ+Ki9im3pp7BABFmKiB3JKFx7eh1uwhqNhxzk2GanbuBOBAtER8zOCGCE8QBC9psQmyQm/A4IBKe8VFnV9bUECJP0QEJ3s5MqGpiA8yoHcZyAsF+/79Zz1OlmWqVq/BGeXCplbQPUrUxW6pQgNisOokVDUXvgtnbX5d2S9lTJK3wxKakMCgENz+EmHlMsXWwr881paejl0vUW2W6dyqawNFKDSGzZs3G6+//vrT5Wt27typv/baa9uMGTPG8uijjya43XV7Mnz66aehI0aMSB05cmTqjz/+GAhgtVoVd9xxR6uxY8dabrzxxta5ubnq37dfXl6uvP3225PHjh1rGTVqVJuNGzcaATZt2mQcOXJkm9GjR7d5/fXXIwHcbjeTJk2KGzVqVJvrr7/ecvDgQS3AwYMHtTfeeGPrsWPHWm666aaU4uLi0zUHDx48qB02bFjbU3/Pzs7WjB071nLddddZHnroocTq6uqz5ovff/990KhRo9r8/udr1qzxu//++39zQ3zhhReiv/7667OuYp4yZUpEWlqawWazSV9++WXI2Y576qmnYqdOnRp66u8ffPBB2MiRI9uMHDny9O/hlPnz5weMHz8+8WxtnU3LTZANJjQuKKu4sB2PTpErKig3SiRGdfByZEJTEWBQo3IHsD9Kwp6Rgcfx50lR7YGDuAoKyI2ve/3q1j0bMkyhAWl1Zmp0oLGd/yYQpxXXbU+tixdfqlsySZJw++lReSDv4K6/PNa+ezdHI2TCHTraRYn1LC3Vf/7zn/Dnnnsu3uFwnJ5D8/7770eNHz++YN68eVlOp1NasmSJuaioSDV79uywuXPnZs6YMSPr3XffjfV4PHz11VchqampNXPmzMm65pprSj766KM/zO38+OOPw3v06FE5Z86crDfeeOPIyy+/HAfw4osvxv/nP/85Mnfu3My9e/cad+zYoV+4cGGAw+FQLFiwIHPSpEm5L7/8cgzA008/HT9hwoS8OXPmZN1www1FBw4c0AHMmDEjaMKECUkVFRWnE/NXXnklZty4cUVz587N6t69e9VHH330pzvc7NixQz937tyQcz1NOV+TJk060bNnz5oTJ06o582b94cE+eTJk6pbbrklZcOGDaf/QR0+fFizdOnS4Hnz5mUuWLAgc/Pmzeb09HQ9wJNPPhn7/vvvR3s8ngue39Riq1gofi34X1P6h8od50VVZaciGFJj2nkzLKEJkSQJrTKGfbH5XLO1FvveDAxd/jg6XPXzSgDSkiXUbhNtQmMaOlShoUgStToZrd1zwaeqK2pwaGQCohO8H5fQpEhBYUAuxVnp0GX4nx7jtlqpPXSY3X0ljM5wQv3EugVfm74xJ3jujtyzjjpejOu6xBTf0Seh5K+OiY+Pr/3www8PP/7446dHKS0WS015ebnS4/FQU1OjVKvVcmhoqGvJkiUZarWanJwcjVqt9igUCh5++OGTLpcLgPz8fI2fn98ftgB+8MEHC7VarQfA5XJJGo1GrqioUDidTik5ObkWoHfv3pXr1q3zLyoqUvfr16/i159VT5w40VhTUyOVlZWpV65cGTBlypSY1NTU6ueffz4XwGw2u3/44YeswYMHnx4RPHr0qH7YsGFHAXr27Gl9+eWXY38fU3FxsXLKlCkxzzzzzPFnnnkm/kJ+r2vWrPGbOnVqhEql8hQUFGiHDh1aOnny5BOPPPJIwjXXXFO6bNmywGPHjulff/31yCeeeKLg1HlWq1XxyCOP5K9evfp0ghwbG+v86quvDqpUdSmt2+2WdDqdB6Bz587WYcOGlX/33XehfwjiHFrsCLLkV/e7c1aWXfC5siyjq3Fj14O/Qe/t0IQmRG9oTWZs3RdL247tf3pM1fIV6OP92Rykw6z6w1MkoYVx6CQ0Thn5LE8UzsZQ6cBukDGH/uFzRGhhtNF1T9KrD5x9apZ9zx6QZQ5ES/jp/nSRvNBCXHfddeVqtfo3Q6iJiYm1U6ZMiRsyZEi70tJS1YABA6oA1Go1n3zySejNN9+cOnz48NOJt0ql4oYbbmg9Z86csKuuuuoPiUtgYKDbYDDIBQUFqsmTJydNmDAht7KyUmkwGE4n0yaTyV1VVaWsrq5W+vv7n/65QqGQT548qT527JiuX79+lbNmzcqqrKxUzpgxIxhgxIgRFSaT6TejAsnJyTWLFy8OAFi6dGmA3W7/Tb7ocrl4/PHHE55++unjf5bQ/5VTi1ULCws106ZNOzx37tzMmTNn/mbU/NFHHy2Ii4uznZkcAyQlJTl69er1m/q9Go1GDg0NdXk8Hp599tmYlJSUGovFUgtwww03lF3s4tgWO4KsNNclyO6LWI3uqapC6QanvsV+fxB+FRzalarSmdSG6anZtp3ge+/9zeuOY8eozczE1FtBnlpJn0Cx7XhL59IqADfuigpUoec36OCRPZisbhwGMJsDfBug0OhUMW2pMK1EPnjkrMfY0usqIR2KlBgRcUVDhXZJu6NPQsm5RnsbypQpU2KnT5+e2b59e/unn34a+txzz8W+9dZbxwDGjx9fdNdddxXfdtttKatXr7YOGjSoCmDWrFkH9u/frxs/fnzytGnTDj755JMJACNGjCi58847i3fv3q2fNGlS0sSJE48PHDjQWlFRobDZbKfnEVutVqW/v7/bbrcrrFbr6Z/LsiyFhYU59Xq951RfgwYNqtiwYYM/8Ke/r+eeey732WefjVuwYEFI3759y81ms2vOnDmB3333XRjA448/npuXl6c7NbXk2LFj+qeeeir21VdfPX6qDZ1O53E6nb/JTmtqapSnRneTkpJsarUatVrt0Wg09ZqjYbPZpH/84x8JBoPB8+abbx6tT1untNgMUPXrTlZy9YVXsXAV110vTn2L/f4g/Kp1RAoKWaYwSqrb8crz20frVcuXA5AXXXdN9I7u1OAxCg3Lqav7XHFXnP8C38raSgKsMi6DAknRYm+rwq9MEa0pD5Ix5Z79CaUtPZ2KIAUKDXROEJVvLjUmk8l1ahQ3PDzcWVVVpczMzNTefffdrTweD2q1WtZoNB5JkuQpU6ZEzJgxI+jX89wKhYKUlJTa2bNnZ82ePTvrzjvvLM7IyNBNmDAh6a233sq+6qqrKgHMZrNHpVLJhw4d0no8HjZt2uTfs2dPa9euXa3r1q0zQ90ivsTERJvBYJCjo6Pt69atMwFs2bLFLzk5+azlelatWuU/efLk3NmzZ2cplUp69+5dOXbs2LJTMfXq1at6xYoVGbNnz8567733suPi4mxnJscAqamptkOHDhny8/PVUJfEpqenmzp16lRzrt+fQqFAluXzGvr1eDzcfffdya1bt7a98847R09NtaivFpsBaoNCsQNSjf2Cz3WX1O2i5TSKou4tXVKIGbNLyZEIB3G7arDv24++fd28c1mWqfjfYnStotkYXPckYliyWIne0nl0KsBxQQlysa2YICucjGuxt1ThDMEJbckNdBO514nH5ULxuw9kWZaxpadzONJDWK1RLNC7BL344otHH3300VZKpVJWq9We11577WhiYqKjdevWNaNHj24jSRK9e/euGDhwoLVNmzb2iRMnJs6bNy/U4/Hw0ksv/eHRxJtvvhntdDoVpxbnGY1G1/Tp0w8///zzRydOnJjo8Xiknj17Vvbq1ava7XazYcMG/9GjR7eRZZnXX389B+CVV17JefHFF+PefvttKTIysvb5558/65ahycnJ9kmTJiWp1Wo5MTHR9sYbbxy70N+B2Wz2TJw48fi9996brNVqPS6XS3HjjTeeTElJqc3Ly9P81blhYWFOp9MpPf/889Evvvhi3l8du3DhwoA9e/b4OZ1OxcaNG80AEydOzO3Tp8/FbaX8qxZ7N9eFhmMHFLbaCz7XVVRX+UI2iR2xWrqEYAM6p5FticUM1OipmDfvdIJs276d2sxMIq5vyx6tAaU7mCj/s1anEVoIj14H1OAqP//d9MqKczG5QDaKNQuXgqjwCHYESGjcUHggnci2v/3i7DiSg7u0lG09JfS1YcQFGRopUqGhJCYmOhYuXHi6oH7//v2t/fv3/0OB/V/n1P5mXm1ERIRr5syZB/+q/enTpx/+s5/37t27+sx+AZRKJVOmTPlDQtupUyfbvHnzzrpHelpaWvqpP/fq1at68eLFZ59kf4bfv/czjRkzpnzMmDF/uJkOHDiwauDAgafnwJ7q+4MPPsg59bOlS5fuO1ufTz75ZP6pP48ePbp89OjRO8527O/7Ol8t9lmgMbyuDJ6y9sLrmZ4u+C/mErZ4oX5aZGcYWX4q/Pp2pmLRIjz2uqcOpd98i8JsxhyUQ7pGT7Ba1Le9JBjrkhl7yfkv8K3MywH+f3Gw0LKplAqcAXWfDyf2bPnD66cW/O6LVWDUtEWhEDvoCUJz03IT5NAoAFS1F7S4EoDyY4fxSKAR20y3eJIkIalaU65UouwSjKeykooFC6nZsZOqlSsJvPYqqqzZFKs9tBYL9C4JCj8/AKyFBec48v9V5detCVEFinvGpUIKTcADVO3f84fXarbvwGVQkR8E4eEDGzw2QRDqr8UmyAqTCRkZzUUkyDWFeVTqIcgv8twHC81ekF9d4pvrfxxd+/aceOEFjt1zD5rYWIIGxLNPU1c7vVeUWGhzKdCZAnBLUF34l9PefqPmeF2CrBPbTF8yjMHtKQwE94E/Phmv2bGdgmgFJg90jBX3DUFojrw2B9lisUhALnDqbrEpKyvrSYvFMhJ4DnABX2RlZU31Vp9/RZIkXBrQ1MrIssyF1MFzlZZQaYQQs9gQ4lLQNiSFjJOQXXqALtM3UPjmW9gzMoj56ENUaa+wS183onhlSvdGjlRoCCZ9INU6UF7AJkPuk3XHqv+PvTuPj6JK98f/qe6u3pPOQkIgsgQSKlEURtCQARQGRRlAlqC4jeIyDvoVBhNxXK4gd/AnihkcEa8LLngvOCJJBAcGHEcQB1xmFEEYUqwBAwnZO72ml6rfH53EQMImSTqkP+/Xy5fpquo6j+1J5+nT5zyH20xHDGPSZTiepCJdLoOqKE3VSwIVFfAfOYo91wroXm/GZcmcdkN0MWrLRXr9AXwny/LExgOSJIkAlgC4CoALwDZJktbJsnzmDezbSEAUYPQD3qAXJt15LJ6xO1BrEdCr23lv3U0XoSuTU1BQpsFhfw00Gj96LHgmdEJRgP1/x3ZrHHRBG5Ki4sIaJ3UMmykeLiNgtp/7HGSh2o56UYU56bw2k6KLWEyfyyEnB2DeK6B+3z4Y00ObCDm3fgEA+DxFgN7TA2ndudib6GLUllMshgBIliRpsyRJGyRJkgBkADggy3KNLMs+AP8EcE0btnlGiijA6APc/rOW3DuJzuGF3Qz07t6/nSKjziQ9yQbRF4PDoggc/vynEyXfQHUcx39EBT2MUvgCpA5ls3aDywCojrpzfo7ocMNlBqzderZjZNSZ9OrVB7ruobrplVs/azru+OQTKPFWHEwSoNNdCYNOe7pbEFEn9rMSZEmS7pMkaXfzfwCUAXhOluXRAP4/AP8HIBpA82KiDgAd9n1TUBRg8AHuwPklyAaXH3YL0D06sZ0io86kb7wZbl8vHNQbgN0FP53YU4gf9Wb4tD5ckcB5hJEi3tYDLqMAwX3u7xtGpx/1ZhWxicntGBl1JvFWA4xiLErigeovNgMI7dzq3L4dJZIIDYDu3a8Pb5DUYb766ivLtGnTmkZSduzYYbrpppvSp0yZIs2ePbtvMBhaD/X6668nTJgwIWPixIkZH374YSwAOJ1Ozd13390/Oztbmj59+oCSkhLx1PvX1tZq77rrrtTs7Gxp0qRJ6du3b7cAoY1AJk6cmD558uT0RYsW9QCAYDCI3Nzc3pMmTUqfNm2atH//fgMA7N+/3zB9+vQB2dnZ0q233ppWWVnZ9Olt//79hrFjx17a+PjQoUP67OxsaerUqdJDDz2U4nK5WuSLO3bsME2dOlWaNm2adNttt6WVlZWdNCthy5YtUQ888MBJ886eeeaZ5Pfee++09VLz8vKSvv76a7PH4xHeeeedbqee37Nnj3HKlCnS5MmT02fNmtXX7/cDAJYuXZo4ceLE9IkTJza9Dnl5eUnTpk2Tpk2bJt14442XZmZmDjpdu635WQmyLMtvybI8sPk/AP4FYG3D+X8C6IlQQhzV7KlRAM69uOgFUkUtTD71vEaQFbcbuoAKjxkQNS36KHVBOq0GMWIvlOk0cO/fBNQ7Q9Mr/rMWn3cL1US+rt/VYY6SOkpiTA+4jYDGfe411M2uIHxGwGqNbsfIqDMRBAFazWX4oa8Azc4iKG43nJs3A34/vujrRLJPi6v6ctFmJFiyZEn3xi2XG4+9/PLLPWfOnFlaWFgo+/1+YcOGDbaKigrdmjVrEgsKCopWrlwpv/TSS70URcG7777bLSMjw52fny+PHz++atmyZS3K4bz66qvdr7766rr8/Hz5+eefP9y4YciCBQv6LFmy5HBBQUHR7t27Ld99951p3bp1MT6fT7N27dqi3NzckoULF14CAE899VSfOXPmHMvPz5dvueWWin379hkBYOXKlXFz5szpZ7fbm5KeZ5999pKbb765oqCgQL7qqqscy5Yt635qTAsXLuz99NNPH12zZo08ZsyYmqVLl15wGZ/c3NyyzMxMd1lZmVhYWNgiQV68eHHynDlzjn300UdFALB+/fqYgwcP6jdu3BhfWFhYtHbt2qKvvvrKtnPnTlNubm5Z485/CQkJvtY2YDmTtpyDPB+hPb1fkCRpEIAfAfwHQJokSXEAnAhNr3ixDds8I0WvhdHjhydw2t0UWwg2bA7gN3bZAh/Uir7R/bDLDxwUgri86K+A1w44SvGPuEGAUoNr+gwMd4jUQWKie8JpBHRe/zk/x+pWUJmgOa/FwHTxCyRm4VDaN9B8p+L4Hx6HZ/du6Hr2wN8vKUNfRxKu7MNa+h3qmzfi8f37LZKqCzL4tkpc/UDVmS7p06dP/SuvvHLw0UcfbVq4JEmSu7a2VqsoCtxut1YURTUhISGwYcOGPaIoori4WC+KoqLRaPDwww+XBwIBAMDx48f1UVFRLcpvPfjggycMBoMCAIFAQNDr9ardbtf4/X4hNTW1HgCysrLqtm7dGl1RUSGOGDHC3nDMlZOTY3G73UJNTY346aefxuTl5V2SkZHhmj9/fgkA2Gy24AcffCCPGTPm8sb2jhw5Yho7duwRAMjMzHQuXLiw16kxLV269FDPnj39ABAMBgWDwaCe68u6ZcuWqDfffDNJp9MppaWlhuuvv7567ty5ZbNmzeo7fvz46k2bNsUePXrUtGjRoh4Nm6sAAJYvX35Qp9Ohvr5eqKqqEqOjo4O9evXyv/vuu/sbt5gOBoOC0WhUGp9TWFgYExUVFRw7duy5z5tD285BXgTgWkmSPgfwJwAzZFn2A8gBsAnAlwhVsTj32kkXSi+G5iCfxxSLxgQ5aOC8sUhyZffBAIB/x/UE1s0GPnkaSLsB3wdrESX0g17HbxMihdUUB5cR0NcHoKpnf7/3BeoR5QYCRr5nRJqoASNhSfBhwwgDHH//OxSHA56HRsOt1cJfLyEtMersN6GL3tSpU2tFUTzpzSIlJaU+Ly+v93XXXXdZdXW17tprr3UAgCiKeO211xJuv/32jBtvvLEp8dbpdLjlllsG5OfnJ44bN67FCuHY2Nig2WxWS0tLdXPnzu03Z86ckrq6Oq3ZbG5Kpq1Wa9DhcGhdLpc2Ojq66bhGo1HLy8vFo0ePvhfWgQAAIABJREFUGkeMGFG3evVqua6uTrty5cp4AJgwYYLdarUqzdtLTU11r1+/PgYANm7cGOP1elvki43J8bZt2yyrV69OnDlz5jkVYGgcSDhx4oR++fLlBwsKCopWrVp10ujz7NmzS3v37u1pnhw3vk7FxcX6G2644TK73a674oor3Hq9Xk1ISAgoioKnn376krS0NLckSU1fAb711ls9HnnkkeM4T202gizLcg2A8a0c/xjAx23VznnR62H0AR7/eYwg20NTplWTob2iok4os3cK3j7YDZ8k9sY9tkuBE3vw76vmIvjlvfhF/A3hDo86kEFrgMcAaIOA6vVCMJ25Ak5tRQm0KhA06TsoQuosLu3fBwe+NOO94QFkD7ofSSOvw5I9c6FXVZhjp0LLHfQ61tUPVJ1ttLej5OXl9VqxYkXRwIEDva+//nrCvHnzei1evPgoAMycObPinnvuqfzNb36TtnnzZufo0aMdALB69ep9e/fuNc6cOTN1+fLl+5944om+ADBhwoSqGTNmVO7atcuUm5vbLycn58dRo0Y57Xa7xuPxNH0ydzqd2ujo6KDX69U4nc6m46qqComJiX6TyaQ0tjV69Gj7tm3bohH65r+FefPmlTz99NO9165d22348OG1NpstkJ+fH/v+++8nAsDjjz/+49ChQ92rV6+Ofeutt3q88cYb+xMTEwPN72E0GhW/33/SL4Hb7dY2ju7269fPI4oiRFFU9Hr9OY8+9+3b17dly5bd77zzTrdnnnmm1yuvvFLs8XiERx55pK/ZbFZeeOGFI43X7tmzx2i1WgNpaWnnPmeuQZeeRyAYjDD5gLp65zk/x18V6isai6W9wqJOaGjfWKje/ihy7EVg+v8Cv9+J/93/NQDgtoE3hjk66kiCIMDf8Pk4WOc46/V1ZT8CABTLeZSSpC6hf4IVFndoDdJfs3TQpffH37zHkOa04so+nH8cyaxWa6BxFLd79+5+h8OhLSoqMtx77739FUWBKIqqXq9XBEFQ8/LyklauXBnX8LygRqNBWlpafeP82RkzZlTu2bPHOGfOnH6LFy8+NG7cuDoAsNlsik6nUw8cOGBQFAVffvlldGZmpnPIkCHOrVu32oDQIr6UlBSP2WxWk5OTvVu3brUCwDfffBOVmpp62tHDzz77LHru3Lkla9askbVaLbKysuqys7NrGmMaOnSoe9WqVXF/+ctfEletWiX379/fd+o9MjIyPAcOHDAfP35cBACPxyPs3LnTOnjw4LN+ra/RaKCqaotPmHfffXfqvn37DABgsViCgiBAURTce++9qQMGDPD86U9/OtI41QIAPv/88+jhw4ef19SKRm05B7nT0ZrMMPqBWmf1OT/HWRqaAaK1srh7JDGKWgyIHoyD+Bp7q/bi8oTL8e+KbdAGEzGi76VnvwF1KX6DBkAQSp0d6H7majbOiuMwABC4QC/iaDUCXNHX4lr3HqwpWoU+7jrUajWItw/FkL6smx7JFixYcGT27Nn9tVqtKoqi8txzzx1JSUnxDRgwwD158uR0QRCQlZVlHzVqlDM9Pd2bk5OTUlhYmKAoClpbTPbCCy8k+/1+TePiPIvFElixYsXB+fPnH8nJyUlRFEXIzMysGzZsmCsYDGLbtm3RkydPTldVFYsWLSoGgGeffbZ4wYIFvV988UWhR48e9fPnz688Xfypqane3NzcfqIoqikpKZ7nn3/+aPPzgUAAeXl5vRMSEny/+93vUgHgyiuvdDz55JNNUxlsNpuSk5Pz4/33359qMBiUQCCgmT59enlaWlr9sWPHzviVW2Jiot/v9wvz589PXrBgQdPU3AceeKD0scceSxFFUTEYDMoLL7xwZN26dTE//PBDlN/v12zfvt0GADk5OSW//OUvXYcPHzaOGDGCCfKptObQKLCrpuKcn+MsKwEA6G2nrUJCXdSNqcOx7ODrWH/gc8QZkmBX90Kyjgt3WBQGSkOCHKw7+/uqs/RHGABo+Z4RkQJp45C58/+wxeLGU4dWIymg4Kj/BmT1Y3+IJCkpKb5169YVNT4eOXKkc+TIkUWnXtcwp/akebVJSUmBVatWtdyzvJkVK1YcbO14VlaWq3m7AKDVapGXl3f01GsHDx7sKSwslE/Xxtdff72z8edhw4a51q9fv/d01+p0Onz77bffnylmAJgyZUrtlClTWlQvGzVqlGPUqFFNX9E1tr106dLixmMbN278z6nPGz58uGv48OEn/fdOnjy5dvLkyd+11n7jtJafo0tPsdBZQqPAHvu5T0lyV5bCKwJRUQntFRZ1UhMHpiPgSsEH+1fgN399CBCAuy7PDndYFAZBQ8Nq6HNIkF3HQ1MsjPE92jUm6px+mZqA1XV34057HR5y+hFbcgduuKIP9Lou/eeVqMvr0r/BOmtoBbHfce5bxvprquA0ATGWtq0UQ51fcowJQ80Pw+cXUeEvwkDDbzDp0qHhDovCQDGFqpYo55Ag+ypOQAFgTeDW9JFoRGo31CdeiYr6x5Dyi/fxjWcQJg7ijopEF7sunSBro0M1KAPOsy+0aaTU2eE0AvHRHA2KRMvvHINfmp+AuW46/uemh8MdDoWLMbTgzltz9n2N1Oqa0IfquBZlQikCaDQCfndtP6yp6osHPz6OXnEmZKZwegXRxa5Lz0HWRdvgB6C4XOf+JJcbDpOAPrEcAYhEBp0Wb942Eao6gZs+RDChoSKFt+rs3z5p61xwmoFusS02mqIIMXFQT3y88ziSY02Y/as0lncj6gK6dIIsxsTBD0D1nPtGIVp3PZwJQI94luiJZEyOI5tJb4VHD2irys96rd7hhcesIirugndZpYuUqNXgnXu4HT1RV9Klp1gY40LziAXvudeHFj1+OI2Azcw5yESRyqKPgssI+KvPvsDX6PKj3qQiOu7M5eCIiOji0aUTZHNcqBKFUN+ifnWrVFWF3huE0wRYRWt7hkZEnZjVEA2nEfDbz15D3ewKwm8UYDQaOyAyIuqMvvrqK8u0adOkxsc7duww3XTTTelTpkyRZs+e3TcYDO38/PrrrydMmDAhY+LEiRkffvhhLAA4nU7N3Xff3T87O1uaPn36gJKSEvHU+9fW1mrvuuuu1OzsbGnSpEnp27dvtwChjUAmTpyYPnny5PRFixb1AIBgMIjc3NzekyZNSp82bZq0f/9+AwDs37/fMH369AHZ2dnSrbfemlZZWdm0297+/fsNY8eObSr6f+jQIX12drY0depU6aGHHkpxuVwt8sU9e/YYp0yZIk2ePDl91qxZff1+/0nnt2zZEvXAAw/0a37smWeeSX7vvfdOO0k/Ly8v6euvvzZ7PB7hnXfeOe1I5ZNPPtnrzTffbCo39sQTT/T69a9/nTFt2jRp2rRpUm1trbaiokJ32223pU2dOlV64IEH+rX233AmXTpBNnULvXZan/8sV4YoLhc0CuAzCNBqtGd/AhF1SVHGGLgNoUW7Z6L6fDDXAz4Tp+QQRaolS5Z0nzdvXh+fz9f0RvDyyy/3nDlzZmlhYaHs9/uFDRs22CoqKnRr1qxJLCgoKFq5cqX80ksv9VIUBe+++263jIwMd35+vjx+/PiqZcuWtZiv9eqrr3a/+uqr6/Lz8+Xnn3/+cOOGIQsWLOizZMmSwwUFBUW7d++2fPfdd6Z169bF+Hw+zdq1a4tyc3NLFi5ceAkAPPXUU33mzJlzLD8/X77lllsq9u3bZwSAlStXxs2ZM6ef3W5vSsyfffbZS26++eaKgoIC+aqrrnIsW7asxSKLxYsXJ8+ZM+fYRx99VAQA69evj7nQ1zI3N7csMzPTXVZWJhYWFrZIkMvLy3V33HFH2rZt207aza2oqMi8YsWK/Y07/cXExATz8vJ6jBs3rrqgoECWJMn99ttvn9fUgC49B1ljC70WuvrgOV0frA39MfQZ+ceOKJLZLPFwGQXAceYFvoGGKhcBU5d+KyW6KLy/9/34dQfXten8yJv631R5W8ZtZ5xr1adPn/pXXnnl4KOPPtpU61GSJHdtba1WURS43W6tKIpqQkJCYMOGDXtEUURxcbFeFEVFo9Hg4YcfLg8EAgCA48eP66OiolokLQ8++OAJg8GgAEAgEBD0er1qt9s1fr9fSE1NrQeArKysuq1bt0ZXVFSII0aMsDccc+Xk5FjcbrdQU1MjfvrppzF5eXmXZGRkuObPn18CADabLfjBBx/IY8aMubyxvSNHjpjGjh17BAAyMzOdCxcubFGmZ/ny5Qd1Oh3q6+uFqqoqsXFr7XOxZcuWqDfffDNJp9MppaWlhuuvv7567ty5ZbNmzeo7fvz46k2bNsUePXrUtGjRoh4Nm6sACI22z5o16/jmzZubEuRgMIhjx44Z//CHP/Sprq4Wp0yZUnH33XdX7dq1y/r73/++FADGjBljf/HFF5NnzZp19oUlDbr0CLLGaERQo0LnP8cE2R76Yxc0cvSYKJLFRiXAaQQ0bs8Zr6uvPAEACJrOuGsqEXVhU6dOrRVFUW1+LCUlpT4vL6/3ddddd1l1dbXu2muvdQCAKIp47bXXEm6//faMG2+8sSnx1ul0uOWWWwbk5+cnjhs3rkX5nNjY2KDZbFZLS0t1c+fO7TdnzpySuro6rdlsbkpwrFZr0OFwaF0ul7Z5sqrRaNTy8nLx6NGjxhEjRtStXr1arqur065cuTIeACZMmGC3Wq1K8/ZSU1PdjSPCGzdujPF6vS3yRZ1Oh+LiYv0NN9xwmd1u111xxRXnVBGhcRH8iRMn9MuXLz9YUFBQtGrVqpNGzWfPnl3au3dvT/PkGAD69evnGzZs2EkjFy6XSzNt2rTypUuXHn7vvff2rV69OnHnzp0mt9uttdlsQQCIiooKulyu80ruuvywR1AEdD717BcCCNY2JMimFtN/iCiCdIvujh0mQOs58/oFR/kxAIBqNndEWER0Brdl3FZ1ttHejpKXl9drxYoVRQMHDvS+/vrrCfPmzevVuO3xzJkzK+65557K3/zmN2mbN292jh492gEAq1ev3rd3717jzJkzU5cvX77/iSee6AsAEyZMqJoxY0blrl27TLm5uf1ycnJ+HDVqlNNut2s8Hk9T0ud0OrXR0dFBr9ercTqdTcdVVRUSExP9JpNJaWxr9OjR9m3btkUDaPX1mjdvXsnTTz/de+3atd2GDx9ea7PZAvn5+bHvv/9+IgA8/vjjPw4dOtTdt29f35YtW3a/88473Z555pler7zySnHjPYxGo+L3+0/6St7tdmuNRqMCAP369fOIoghRFBW9Xn9uiVorzGazMnPmzBMWi0UBgCFDhjh2795tMpvNQYfDoTWbzQGHw6G1Wq3nPMINdPERZAAIigL0fhUBJXDWa/0NX5eqJi62IYpkUdbucJoE6PxBKL7TJ8mu8uOhH6zRHRQZEV0MrFZroHEUt3v37n6Hw6EtKioy3Hvvvf0VRYEoiqper1cEQVDz8vKSVq5cGdfwvKBGo0FaWlp943zaGTNmVO7Zs8c4Z86cfosXLz40bty4OgCw2WyKTqdTDxw4YFAUBV9++WV0Zmamc8iQIc6tW7fagNAivpSUFI/ZbFaTk5O9W7dutQLAN998E5Wamnrar8g+++yz6Llz55asWbNG1mq1yMrKqsvOzq5pjGno0KHuu+++O3Xfvn0GALBYLMFTy6NmZGR4Dhw4YD5+/LgIAB6PR9i5c6d18ODBZx1p1mg0UFX1nOa77tu3z3jzzTenBwIB+Hw+YdeuXdZBgwa5L7/8cuemTZtsAPCPf/zD9otf/MJ5LvdrFAEjyAJMPsAT8CBKH3XGa13loakpGgtHg4gimcUYC2fD5+RgbS00ia2XcHOdOAY9AK0truOCI6JOb8GCBUdmz57dX6vVqqIoKs8999yRlJQU34ABA9yTJ09OFwQBWVlZ9lGjRjnT09O9OTk5KYWFhQmKouCPf/zj4VPv98ILLyT7/X5N4+I8i8USWLFixcH58+cfycnJSVEURcjMzKwbNmyYKxgMYtu2bdGTJ09OV1UVixYtKgaAZ599tnjBggW9X3zxRaFHjx718+fPrzxd/Kmpqd7c3Nx+oiiqKSkpnueff/7oqdc88MADpY899liKKIqKwWBQXnjhhSPNz9tsNiUnJ+fH+++/P9VgMCiBQEAzffr08rS0tPpjx46dcV5aYmKi3+/3C/Pnz09esGDBsTNde+mll3rHjRtXNXny5AydTqeOHz++auDAgd5HHnmkNCcnJ6WgoCDBZrP5ly1b1uJ1PRNBVX/2qHa7mTp1qlpQUNAm9/rqmstw2KLiV2s2o7vlzDtdHXjuOfhXvIf3nhyI5+76sE3aj1SSJH0ry/LQtr5vW/YNCo/26htA2/WPOl8dcudlIecjBSnr1sI4YECr1335+O9gXbcVu/5rAu64ffEFt0t876DTa61v7Ny5s3jQoEGnTfSIzmbnzp3dBg0a1PfU411+ioUqamH0q3AHzj533Ft5AvU6wGyJ7YDIiKizsugscIZ2m4ZiP32pN19lBerMQHQUt5kmIupKunyCrOi1MDZMsTib+toKuIxAjPm0NayJKAJoNVr4DKHpb4GGxbutUWtqUWcGYqN6dlRoRETUAbp8ggy9CKMPcPvPPoIcsNfAZQRiLQlnvZaIurZAQz30M40ga+tcqDMLSIjr01FhERFRB+j6CbJBD6MPcPjOXPAfAFSXEy5jqMQTEUW2xnrowTOMIItOL1wmFbHxHEEmIupKunyCLBiNMPmAWs/Zq3to3B64jAISYy/pgMiIqDPTiiICWiBQe/oRZKPLD68ZiI5rvcoFERFdnLp8gqw1mmEIALXO6rNf6/XBZQBiOJ+QKOKZNAZ4jCq8Va2/dyj19TD4VPhMKowmSwdHR0RE7anLJ8g6c+gPl6f6xNmv9QbgMgLRJlaxIIp0Jq0JbiNQX916ghxsOO43nlMteyLqwr766ivLtGnTpMbHO3bsMN10003pU6ZMkWbPnt03GAxt4vb6668nTJgwIWPixIkZH374YSwAOJ1Ozd13390/Oztbmj59+oCSkpIW2/nW1tZq77rrrtTs7Gxp0qRJ6du3b7cAoY1AJk6cmD558uT0RYsW9QCAYDCI3Nzc3pMmTUqfNm2atH//fgMA7N+/3zB9+vQB2dnZ0q233ppWWVnZtNve/v37DWPHjr208fGhQ4f02dnZ0tSpU6WHHnooxeVynTZffPLJJ3u9+eabLRZvbdmyJeqBBx7o1/zYM888k/zee++dthJCXl5e0tdff232eDzCO++80+3U8zt27DBNnTpVmjZtmnTbbbellZWVNe3nEQwGcccdd6Q1xuJ2u4X77ruv/9SpU6U777wztby8/Lz2/ujyCbJotQEAvLVn3n1SVRSI9QpcRpx1QxEi6vpMOjMcJgHBqtZLrAaaEmRtq+eJKDIsWbKk+7x58/r4fL6mT8svv/xyz5kzZ5YWFhbKfr9f2LBhg62iokK3Zs2axIKCgqKVK1fKL730Ui9FUfDuu+92y8jIcOfn58vjx4+vWrZsWdKpbbz66qvdr7766rr8/Hz5+eefP9y4YciCBQv6LFmy5HBBQUHR7t27Ld99951p3bp1MT6fT7N27dqi3NzckoULF14CAE899VSfOXPmHMvPz5dvueWWin379hkBYOXKlXFz5szpZ7fbmxLzZ5999pKbb765oqCgQL7qqqscy5Yta7E4q7y8XHfHHXekbdu2zdZWr2Vubm5ZZmamu6ysTCwsLGyRIC9cuLD3008/fXTNmjXymDFjapYuXdr0Wj377LPJDoej6Q35rbfeSkxNTfUUFBTIEydOrFqyZEmP84mly++kp4+yQQXgqzv9QhsAUJxOCAA8BgEGraFDYiOizsuqj0KdCVDsrb93NI4gK6YWgz1EFAbV/7cy3r52bYuk6kLYJk2qjLvzjjOOsPXp06f+lVdeOfjoo4+mNB6TJMldW1urVRQFbrdbK4qimpCQENiwYcMeURRRXFysF0VR0Wg0ePjhh8sDgQAA4Pjx4/qoqKjgqW08+OCDJwwGgwIAgUBA0Ov1qt1u1/j9fiE1NbUeALKysuq2bt0aXVFRIY4YMcLecMyVk5NjcbvdQk1Njfjpp5/G5OXlXZKRkeGaP39+CQDYbLbgBx98II8ZM+byxvaOHDliGjt27BEAyMzMdC5cuLDXqTE5nU7NrFmzjm/evPm8E+QtW7ZEvfnmm0k6nU4pLS01XH/99dVz584tmzVrVt/x48dXb9q0Kfbo0aOmRYsW9Xj88cdLG5+3dOnSQz179vQDQDAYFAwGgwoA+fn5sYIgqFlZWXWN1+7YscP629/+tgwAbrjhhrrly5ef1/zZrj+C3LAFbNB5+oU2ABCsC72mAQO/LiUiwGaMQa1JAOrqWj0fqAiNLAetxo4Mi4g6malTp9aKonjStsQpKSn1eXl5va+77rrLqqurdddee60DAERRxGuvvZZw++23Z9x4441NibdOp8Mtt9wyID8/P3HcuHE1p7YRGxsbNJvNamlpqW7u3Ln95syZU1JXV6c1m81NybTVag06HA6ty+XSRkdHNx3XaDRqeXm5ePToUeOIESPqVq9eLdfV1WlXrlwZDwATJkywW61WpXl7qamp7vXr18cAwMaNG2O8Xm+LfLFfv36+YcOGnb1E2CkEIZRnnThxQr98+fKDBQUFRatWrTpp1Hz27NmlvXv39jRPjgGgMTnetm2bZfXq1YkzZ8488cMPPxjXr18f9+STTx5vfq3L5dLabLYgAERFRQVdLtd5fd3X9UeQY2LgA6C6z/z/UGn4Ixg0dPnPDER0DmymODhMAFyt11CvLy8DAKhWawdGRUSnE3fnHVVnG+3tKHl5eb1WrFhRNHDgQO/rr7+eMG/evF6LFy8+CgAzZ86suOeeeyp/85vfpG3evNk5evRoBwCsXr163969e40zZ85MXb58+f4nnniiLwBMmDChasaMGZW7du0y5ebm9svJyflx1KhRTrvdrvF4PE1Jn9Pp1EZHRwe9Xq/G6XQ2HVdVVUhMTPSbTCalsa3Ro0fbt23bFg2g1ddr3rx5JU8//XTvtWvXdhs+fHitzWYL5Ofnx77//vuJAPD444//OHTo0DNuMGE0GhW/33/SqKPb7dYajUYFAPr16+cRRRGiKCp6vV5t/S4trV69Ovatt97q8cYbb+xPTEwMvPLKK0kVFRXi9OnTpRMnTuh1Op3aq1eveovFEnQ4HBoAcDgcWovF0mJk/ky6fDaoj22YC+4+80YhjSPIirHLf2YgonMQF5UAp0mAJhCA4vW2OO8uLYHLAOhNbTb9joi6CKvVGmgcxe3evbvf4XBoi4qKDPfee29/RVEgiqKq1+sVQRDUvLy8pJUrV8Y1PC+o0WiQlpZWv2bNGnnNmjXyjBkzKvfs2WOcM2dOv8WLFx8aN25cHQDYbDZFp9OpBw4cMCiKgi+//DI6MzPTOWTIEOfWrVttQGgRX0pKisdsNqvJycnerVu3WgHgm2++iUpNTT3tFsOfffZZ9Ny5c0vWrFkja7VaZGVl1WVnZ9c0xnS25BgAMjIyPAcOHDAfP35cBACPxyPs3LnTOnjw4LM+V6PRQFXVFl/pr1q1Ku4vf/lL4qpVq+T+/fv7AOC///u/Sz7++OOiNWvWyL/+9a+rbr/99hM33nhj3eDBg52fffZZDABs2rQpetCgQY6ztdtcl88Gzd0SUQ1AU9/yD1xz9TWheYYq5xMSEYD46CQ4TaGfg7W10CSdvG7GdexH1FoAqz4mDNERUWe2YMGCI7Nnz+6v1WpVURSV55577khKSopvwIAB7smTJ6cLgoCsrCz7qFGjnOnp6d6cnJyUwsLCBEVR8Mc//vHwqfd74YUXkv1+v6ZxcZ7FYgmsWLHi4Pz584/k5OSkKIoiZGZm1g0bNswVDAaxbdu26MmTJ6erqopFixYVA8Czzz5bvGDBgt4vvvii0KNHj/r58+e3vgIZQGpqqjc3N7efKIpqSkqK5/nnnz96vq+BzWZTcnJyfrz//vtTDQaDEggENNOnTy9PS0urP3bsmP5Mz01MTPT7/X5h/vz5yQsWLDgGAIFAAHl5eb0TEhJ8v/vd71IB4Morr3ScOrWi0X333Vfx+9//vu+UKVMkURTVP//5z4fOJ/4unyAb40OVRzRe3xmvc1Y2TPkxmdo7JCK6CERZEkNTLAAE7XaIpyTI/opy1FgFWE1tuiaIiC5CKSkpvnXr1hU1Ph45cqRz5MiRRade1zCn9qR5tUlJSYFVq1btP9P9V6xYcbC141lZWa7m7QKAVqtFXl5ei4R28ODBnsLCQvl0bXz99dc7G38eNmyYa/369XvPFFOjJ554otUEFQCmTJlSO2XKlBYrnUeNGuUYNWpU04huY9tLly4tbjy2cePG/zR/jk6nw7fffvv9ucZisViU5cuXn1dSfFJ7P/eJACBJ0hQAN8uyfHvD42EA/gwgAOATWZYXSJKkAfAqgEEA6gHcL8vygQtp93xoY0OVSbT1gTNe562sCF1nYcF/IgKiTfFwNqy/C9a0WDMDVNegNgGIs3AXPSKiruZnz0GWJOnPAJ475R6vAbgdwAgAmZIk/QLAZABGWZazADwOIO/nh3v+hKgYqFCh8505QfZVlUMRAIOV8wmJKFQPvdYamgIXqDx5HYuqqhBrXaixAt1s3JqeiKiruZBFetsBPNj4QJKkaAAGWZYPyrKsAtgE4DqEkuWNACDL8lcAhl5Am+dN0GjgFwGdTznjdf7qSrgMQJSRCTIRAVbRipqGAhWB8vKTzikuF7T+IGotAnomprTybCLqIIqiKKzPSj9LQ99pNUE86xQLSZLuA/DIKYfvkWX5A0mSRjU7Fg2gecFQB4B+DcebFyEOSpKkk2X5zEO6bSigB/RnSZAD9iq4jECMKa6DoiKizixKHwWPHgjoWibIgYrQlKxai4rkpNRwhEdEIbsrKipYRfGuAAAgAElEQVQuTUhIsGs0mnMuFUakKIpQUVFhA7C7tfNnTZBlWX4LwFvn0FYdgOZ7NEcBqAVgPuW4piOTYwAIiAL0/jP/3igOO5xGINZy2i3CiSiC6LV6iNDAbQmeNkGutwBmS2w4wiMiAIFA4P6ysrLlZWVlAxEBpWupTSkAdgcCgftbO9lmVSxkWa6TJMknSVJ/AIcA3ABgAYBLAEwEsLphEd8PbdXmuQrqBRh8gD/oh6g9TRk3twtuo4Bu0S22GyeiCGVRtXBb/PCfJkH2s+gNUVgNGTKkHMBN4Y6Dup62/rQ1E8BKAN8A2CHL8tcACgF4JUnaDmAJWk7XaHeKqIHJp8IdOH1taq3bC5cRsEUxQSaiELMgwmFR4D/ReoKsmM5r51IiIrpIXNAIsizLWwBsafb4KwDDTrlGQShxDhtFr4XRFYQn4IHN0PoiPK3XB6cRiDIzQSaiELNgQF2UisCP5VBVFYIQWgsUrKyEXwsIxjPWuiciootURMzXUfU6mHw47QiyqqoQvUG4jECUmYv0iCjEojWh2ioAXi8Up7PpeKCiAnUWwKwxhzE6IiJqL5GRIBtEmOqBOq+r9fNeL7SKCpdRgFW0dnB0RNRZWUQrKhprITebh1xfcgyV0YBFy/cLIqKuKCISZMFogNEHVLsdrZ4P1oWq0zmNYIJMRE1sxmiURbeSIB8+hJJ4AVY966YTEXVFEZEga4wm6INAjaPFduAAgGBtqEyz3wBoNVx0Q0QhcaY4HIsKvU02JshBhwNqdQ1K4wREG1gWkoioK4qIBFlntgAAnNWlrZ5X6kIJctDA5JiIfhIXnYjyhhHkxlJvvuJiAEBpHBBr5aJeIqKuKCISZL0ltE+Jp6a81fP1NaEEWTEyQSain0Rbe6BeLyCo1yFQHirt1pggH48TkGBLDmN0RETUXiIiQTZGxQAA6msrWz3vrKwO/WBmySYi+onVHJpC4bPo4C8pCf18uBgqgBMxQI9ufcIYHRERtZeISJBNMd0AAH5HTavn3VWh44KJ22IR0U+i9dEAAGe8Bp6dO6GqKnzFxXDb9AjoBPRM6B/mCImIqD1ERIJsjAnVNg646lo976sqhwIVOqulI8Miok4uSh+anuVIDCJYXQ1fcTF8xcWwx4SmY3EOMhFR1xQRCbIpPjSCrLpbr4Psr6qExyAg2hDdkWERUScXZwx9uK7tXg8A8Hy3A77iYtTEqBBVFSYdv3UiIuqKIiNB7pYAABDcre+kp9RWw2kCYowxHRkWEXVy8cbQHGRHt3oI0dGoWr4cituN8vgAohRN09bTRETUtUREgix26wEA0HnqWz2vOGrgNAJxZtY0JaKfWEQLRGjg0gWhZlwK3+HDMAwYgF0ZAVjARb1ERF1VRCTImvhQgix6fa1f4KiDyyggPiqxA6Mios5OEATEaM2o0mrhSe0PaLUwPvEkavVBxGijwh0eERG1k4hIkAVTNOr1KvTeYKvnNR4PXEbAZkno4MiIqLOL09tQpdWg9qrL0X/TJlRFGVGh06KbsVu4QyMionYSEQkyBAF+A2Cobz1B1nnr4TQC0ZakDg6MiDq7BHMCqrRa+Bzl0F+SjNrj+1Cp1SIpipuEEBF1VZGRIAPwGwQYvUqL46qqQvQG4GKCTEStSLQmoUqrRdBxAgBQXr4XiiCgT2JamCMjIqL2EjEJcsAgwFivQlFPTpJVjwcaRYXLKCDKaAtTdETUWcVHJaNGq4HiKAMA2B2HAAA9u0nhDIuIiNpRxCTIQaMWFi/gCXhOPl4X2jzEafxp1ywiokbx5gQEBQF1zmMAAFf9cQBAYlSPcIZFRETtKGISZMWog6UeqPWevJte0B567DaGSjoRETXXWAvZpJbgRJ0X9Uo1ACDRxKo3RERdVcQkyDAaYPECJ5wnJ8iBmhoAQNAgsOg/EbUQbwolyAnaY/jmYBl8Ggc06k+77BERUdcTMQmyxmKC0Q9U1FSedNxZHnrst+jCERYRdXJNu+npVGzc+Fe4dH7EaYzQarRhjoyIiNpLxCTIWkto+kRNRelJx10nKgAAqlns8JiIqPNrHEGu0mpxn+cdVOg0SGLNdCKiLi1iEmS9LQYA4Ko4dtJxT8MIsmA1dXhMRNT5ReujodPocExvw5WaAzghmtA9liXeiIi6sohJkM220HxBX1XZScfrK8rhMqqI0lvDERYRdXKCICDOGIdaW2hRXoXegAQzF+gREXVlEZMgW7uFNgEJ2k+egxysOAGHWYDNEBWOsIjoItA3ui8OmQxwJ18Jh1KP7pbu4Q6JiIjaUcQkyLHdQ9vCqnW1J5+oqUaNGYgzxYQhKiK6GAxNGooi13F8NiYXAHBp3KVhjoiIiNpTxCTI1qRLAAAap/Ok4xpHLeosAmLNLNlERK0b2n0oVKhYtmMZTDoThiYNDXdIRETUjiImQdZ26xn6t9t90nHR6UCdGYgyc1U6EbXuioQroNfoUeIswbAew6DX6sMdEhERtaOISZA1tgT4tSp0Xm/TMTUYhOiph90MRFu5bSwRtc6gNWBQ4iAAwDWXXBPmaIiIqL1FTIIMQzS8RkDv8TcdCtrtEADUmQXYopLDFxsRdXqZSZnQCBqMTB4Z7lCIiKidXdD2cZIkTQFwsyzLtzd7/CKAHxsumQ/gCwCvAhgEoB7A/bIsH7iQdn8WnR4+PSDWB5oOBauqAAB2MxBvTerwkIjo4nHXZXdh5CUjWcGCiCgC/OwEWZKkPwO4AcD3zQ4PAfCYLMv5za6bCsAoy3KWJEnDAOQBmPRz270QfqMAozfY9NhbGUqQ68w/bSdLRNQak86ES+NZvYKIKBJcyBSL7QAePOXYEAD3SpL0hSRJeZIk6QCMALARAGRZ/gpA2JZ/+y0Cop0KfAEFAGA/Xg4AcJoExBhY5o2IiIiIzmEEWZKk+wA8csrhe2RZ/kCSpFGnHP87gI8AHAbwGoCZAKIB2JtdE5QkSSfLcgAdLBitQ2KxH0drapCaEA9HWQU0ABSLFlqNtqPDISIiIqJO6KwJsizLbwF46xzv97Ysy7UAIEnSWgDZCCXHzbep04QjOQYAIcYEQ8CP4uKDSE2Ih7uiElYABrMhHOEQERERUSfUZlUsJEkSAOySJOmShkNjAHwLYBuAXzdcMwzAD23V5vnSx8cCAMoOyQAAX0Ul3EYVMdxmmoiIiIgaXFAVi+ZkWVYlSbofQIEkSR4A/wHwJoAggOslSdoOQABwT1u1eb6ik3sCOALH0YMAAM2xI6iyCUgw2MIVEhERERF1MheUIMuyvAXAlmaPPwHwSSuXzryQdtpKQp/+cONLaEqLAQDGshL8pyeQYO4W1riIiIiIqPOInI1CAMT3yoBPCxgqy6B4PDDW1uDHeA3iWdeUiIiIiBpEVIJsie2LmijAbLfDd+QIAOB4PBBv7RnmyIiIiIios4ioBFmI7gl7NBBV50Ft0X4AwLF4AXHRvcMcGRERERF1FhGVIMOSALdVhc3hR+luGSqA0lgg3tYn3JERERERUScRWQmyRgtvlACbS0H1niI4rVr4RQHx5oRwR0ZEREREnURkJcgAArEiNCoQ+8O/4YxVAQBxprgwR0VEREREnUXEJciuQbH4d5oAU6AedbEB2AQRokYMd1hERERE1ElEXIJss8Ri8VQN3rnyenxytYoUI2sgExEREdFPIi5BTjJ3h6oR8Kv7UvBNvIjL4y8Nd0hERERE1IlEXIJ8VfzlAIBNZWtRr9Hgil4jwxwREREREXUmEZcgdxs4DRk+Pz4NVAEAruiZFeaIiIiIiKgzibgEGVFJGG5LAwDEQ4selh5hDoiIiIiIOpPIS5ABjLhyJgDgClMSBEEIczRERERE1JlEZIJ8Rb+xSIvqjV9dPiPcoRARERFRJ6MLdwDhIGpEFExdH+4wiIiIiKgTisgRZCIiIiKi02GCTERERETUDBNkIiIiIqJmmCATERERETXDBJmIiIiIqBkmyEREREREzTBBJiIiIiJqplPWQd6zZ0+lJElHwh0HXZA+7XFT9o0uoV36BsD+0UXwvYNOp93eO4hOJaiqGu4YiIiIiIg6DU6xICIiIiJqhgkyEREREVEzTJCJiIiIiJphgkxERERE1AwTZCIiIiKiZjplmbfmJEnSAHgVwCAA9QDul2X5QHijCg9Jkr4DUNfw8DCA1wH8GUAAwCeyLC8IV2zhwL5xMvaPk7F//IR942TsGydj/yBqqdMnyAAmAzDKspwlSdIwAHkAJoU5pg4nSZIRgCDL8qhmx74HkA3gEID1kiT9QpblHWEKMRzYNxqwf7SK/QPsG6fBvtGA/YOodRdDgjwCwEYAkGX5K0mShoY5nnAZBMAsSdInCP1/ewaAQZblgwAgSdImANcBiKQ3MfaNn7B/tMT+EcK+0RL7xk/YP4hacTHMQY4GYG/2OChJ0sWQ2Lc1N4AXAdwAYCaAdxqONXIAsIUhrnBi3/gJ+0dL7B8h7BstsW/8hP2DqBUXwxtCHYCoZo81siwHwhVMGO0DcECWZRXAPkmS7ADimp2PAlAblsjCh33jJ+wfLbF/hLBvtMS+8RP2D6JWXAwjyNsA/BoAGuaK/RDecMLmXoTmyUGSpJ4AzABckiT1lyRJQOjT/xdhjC8c2Dd+wv7REvtHCPtGS+wbP2H/IGrFxTCCXAjgekmStgMQANwT5njC5S0A70qS9E8AKkJvagqAlQC0CK00/jqM8YUD+8ZP2D9aYv8IYd9oiX3jJ+wfRK0QVFUNdwxERERERJ3GxTDFgoiIiIiowzBBJiIiIiJqhgkyEREREVEzTJCJiIiIiJphgkxERERE1AwTZCIiIiKiZpggExERERE1wwSZiIiIiKgZJshERERERM0wQSYiIiIiaoYJMhERERFRM0yQiYiIiIiaYYJMRERERNQME2QiIiIiomaYIBMRERERNaMLdwCtyczMVJOTk8MdBl2APXv2VMqynNDW92XfuPi1V98A2D+6Ar530Om053sH0ak6ZYKcnJyMgoKCcIdBF0CSpCPtcV/2jYtfe/UNgP2jK+B7B51Oe753EJ2KUyyIiIiIiJphgkxERERE1AwTZCIiIiKiZtp0DrIkSSKAtwH0BWAAsBDAfwC8C0AFsBvA/5NlWWnLdomIiIiI2kpbjyDfCaBKluWRAG4E8AqAPwH4r4ZjAoBJbdwmEREREVGbaesE+UMATzf8LAAIABgC4POGY38DcF0bt0lERNS1KQpQ8i3grg53JEQRoU2nWMiy7AQASZKiAKwB8F8AXpRlWW24xAHA1pZtEhERdWkl/wYKfgtUH4Ki0cN++T2InbQI0HAZEVF7afPfLkmSegHYDOB/ZVleBaD5fOMoALVt3SYREVGX5KwAPrgTnnofngj+DoX+TMTufB1bXv1/8PiC4Y6OqMtq0wRZkqTuAD4B8AdZlt9uOLxDkqRRDT+PA/BFW7ZJRETUZX08G4q7GtPts7Cz20Qk3fUO/p04FaMqV+F/31iMQJBr3onaQ1vvpPckgFgAT0uS1DgX+fcAXpYkSQ9gL0JTL4iIiOhMKmRA3oAPLHeiXJuGv92fiViLHui/HBV/PoCbK5ZiSWEW5k67NtyREnU5bT0H+fcIJcSn4m8vERHR+fj6NQQ1eiyuGoFHp6SFkmMA0GiRcOdbCLw6HAN3/hF/vzQd11/aPbyxEnUxnOFPRETU2XhqgZ1/wWb9tbDGJeHmoZecfD5hADDqDxin/RfWffg2Kp314YmTqItigkxERNTZyBsAvxuv2Efi7l/2haht+edaN3w26mMH4DHlLTy39rswBEnUdTFBJiIi6mz2/hV1+kTsFlIxaXDP1q/R6WGYtAS9hAr03vsGPis60bExEnVhTJCJiIg6E58L6sF/4G+BIRid3h3drIbTX9t3BIKXZeNB3cd4teBTOOsDHRcnURfGBJmIqJP5sdqN1z4/iJf/sR+7j9nDHQ51tAP/gBDwYq33F8i+Mvmsl2tvWAitTo+HPG9g8d/2dkCARF0fE2Qiok5ki1yO0S9uwaK/FWHJp/swYek/MffDnXB4/eEOjTrKvk3waKPwveZSXDMg4ezXR/eE9ldP4lfa71H2r3x8d7Sm/WMk6uKYIBMRdRJ7S+uQu/JL/L+YL/HvqS58l/MLPDSqP/K/K8Gtb3yFGpcv3CFSe1NVqIe34Btchqv7d4dZf47VWDN/h2DCpfhv8T0sWPMNfAFuIEJ0IZggExF1En8pyMd6TQ4ecb+Mbht+i9i3huGx5N14a8ZV2F/uxO3Lv4bdw5HkLq3mMAR7CT71pmNMeuK5P08rQjvxJXRHFSZUv4s3vzjUfjESRQAmyEREncD3+4rxQPkfYTbqgbvWAfd+AnQbAOTfh9FlK/DmXUNxoNyB3773b3j9wXCHS+3l8FYAwHblMow+nwQZAHpnAkNm4F7dRnzyj7/jSJWrHQIkigxMkImIOgH32lx0F2ogTn8X6HdtKNm5ZyNwxa3A5oW4tvRd5N0yGP8qrkbuhzuhKGq4Q6b2cHgrarRx0HQbgEtizef//OueAcxx+KN2OeZ9tAuqyn5C9HMwQSYiCrPK4t34petTfJd8J0wpmT+d0OqAyf/TlCTfFPwUT47LwPpdpXhhkxy+gKl9qCrUw1/gn/4MDE87h8V5rTHFQnvjc7hCOIBehz7Apj2sjUz0czBBJiIKs4q//wn1qojEsbktT2o0wKRXgP5jgI/n4P6k/bgjszde+/wgPtpxrOODpfZTUwzBVY4vg+nI6h//8+9z+c1QUq7F4+JqvPLxdnh8nJJDdL6YIBMRhZOrCv2OfYwtxtHo26dv69doReCW94CkgRA+nIEFQ33ITInDH/J3Yc9x1knuMkr+BQD4Xk3FsJQLSJAFAZrxeTBrfLjH/Tbe2MoFe0Tnq10SZEmSMiVJ2tLwc6okSf+UJOkLSZL+R5IkJuVERA2qvnkfBvjgHHTfmS80WIHbPwTM3aD7y614bXw8YswiHl61gzWSu4qSf8ErGCEmXQabWbywe3VLg+aXs5Ct/QLffP4xjtd62iZGogjR5smqJEmPAVgOwNhw6E8A/kuW5ZEABACT2rpNIqKLlW9nPvYpycjMuubsF0d1B+5cAwTrEfvRnVg2tT+OVrsxb+2e9g+U2p3y47/wfbAfru7/M+cfn+qaRxGISsY8zdvI28g+QnQ+2mM09yCAqc0eDwHwecPPfwNwXTu0SUR08XGUoXvtDnxtuubcKxYkSMD0lUD1IQz9Zg5mX9sXhTuO4eOdx9s3Vmpffg9Q9gO+VVJx9YVMr2hOb4Hu189DEn5EzA9v4/sfa9vmvkQRoM0TZFmW8wE0/75PkGW5sc6MA4CtrdskIroYeXd9BA1UeAdMPL8npowEbnoZOLQFs/xvYXCvGDxV+APK7N72CZTaX+lOaNQAdihpGNIntu3umz4Bgf7XI0fMx9KPPmd5QKJz1BHzgZvvdxkFgB9hiYgAOHeuxQGlJ674xbDzf/Lg24FfzoLm38ux/LIf4A+qeCyfdW8vWse+AwDUxl6OOIu+7e4rCNCNfwFGjYKp5a8g/7uStrs3URfWEQnyDkmSRjX8PA7AFx3QJhFR5+ZzIabiX9imuRJX/twRw+sWAKnXo9vWp/BSlhtb91XgvS+PtG2c1CHU0p2oQAxS+/Vv+5vH9YNw7R8wXvsNvt7wLuxuLuokOpuOSJBzASyQJOlLAHoAazqgTSKicxKoPori/30I3sqOTSzV4n9Cp/pR02MkRO3PfCvWaIHs5UBsX4zd8xim9lfx7Ia9kMscbRsstTtfyffYHezTttMrmtGM+D088QPxePANvLTuy3Zpg6graZcEWZblYlmWhzX8vE+W5WtlWc6SZfleWZZZsZyIOofjO1D/6jXoe3Al9vzl6Q5t2rFnEzyqHt0uG31hNzLFALe+D8HvxfPBF9HNoOChld/CWR9om0Cp/fm9EGv2Y4/aF0P7xrVPG1oRpptfR6zGjSv3PIvtByrbpx2iLoI1iYkoYlUUPg6XX8UXwhBcVrEBR3882nGNH/gHvlIyMGxAzwu/V8IAYMprEMt2YN0l/4fiSgceW7OT85EvFuX/gUYN4rCuP/rGn2M1k58jaSCUa/6AidqvsPGD/+GHKKIzYIJMRJGp+hASKr7CRtN4pN+ZB6Pgx+51f+6Ytu0liHYVY4d4JfonWNvmnhkTgOv/G92ObEB+2t+x4YcyvLrlYNvcO9LYS+D4bAm2FLyJqtoO2KmwbFfo3z2ugCAI7dqUeE0OnAmDket7FS/nb27XtoguZkyQiSgiVX2xHEFVgH7oXUjo/wscNF6GvlWfn/2JbUA9vBUAEOgzsm0Tol/OBobei8FHV+D5Pv/G4k0y/vZDadvdPxIoCqrfuwtRW5/BqF2P4tsPX2j3JgPHdsKhmtCjT3q7twWtDtbb3oFJC4wp+i/89f9n777joyrTBY7/zvRMS2+0JJQMwUgRpAgq2NYC0lxFV0TUu4tllYvLvXrdtSy6uCIqdl13FV10RYoVe1mRJgLSGVoCSUhPJtPrOfePCSxIS2AmIcn7/Xz4SCZn3vMQJzPPec/zPu+GFrxrIghtiEiQBUHoeCJh9Fv+xXfKAC4dOgAAT0ofukZKcbfAts3OHd9Rp5jJLRgU24ElCa6YA70u49qqZ/hd5jbu+dfP/LBL1Js2VWjt66TUruN54x2UaHNJKvsWfyi+S2f8pRvZpuTQr1uc6o9/KaU7qjFPMUS1g9L3H2J3lbtlzisIbYhIkAWhpe35Fu87N1M3ZyB7/zqCz5/5HS/8813eWllEmcPX2tF1CJGdX2AO1bI9exypZj0Auqw+WCQfe/fuivv51fuWs0YuYEiPtDgMroFrXkfqPJD73E8wPmk3t8xfK2aSmyLgJvLVI6yK9OGc8TNQ9bqM/soOvv45jqUqioK2zs5OuQv9urTcPlqaAdfjOet6fist5W9/f4Ead6DFzi0IbUH7S5D9TnBXtXYUgnC0cBD543vhrXEEdnzFOqcVlz/ExY73uHP3bzn3szH89YlHuf6VH/hsS4XY8SqOale8To1iJX/EhEOPpeb1BaB678b4nrx+H2bfAbbq+tItJU4LsvRmuGEhUmovHg88xqS0Iu54ez1//6EoPudrJ0JrXsMQauDTrN9xXq90sgeNQSdF2Lnmk/id1FWOPuymQp9HhtUQv/Mcg2nsU/jTCnnQ/xSzXnsXj1i0JwiHtK8EuXYPvDwcnsyHf04En9i0TzhDKAqR9+9A9dNr/C18JbP7vE/v//6Efg+tQfO/e1HGPEv3NBPP6p7nzxV3suDt17ny2eV8v7O6tSNvfzy1pJR+w2fS+Yws6Hzo4bTGBNlfvi2up1eKfwAg1HV4fBdkGVPgpg+QknN4xPUwD3TdwqyPt3H/ks1xLxlok0I+wj88y/JIIaOvvBoAVbehBFQJdK1dGb/zVm2P/jfdFr9zHI/OiPGm91AbE/lj/R+Z9cb7BMPyyZ8nCB1A+0mQPbXw+hUQcMN5d8Hur+GHp1o3pECY+SuLuW3+T1z17HImvrSS/1m0kU82lYsPqI5m+ZOot7zHnNC1qC7/C09cN4iuB2cPE5KQBk5Bd9cqmPh3eiYqvKV7nAdcj3L/Pz7h9n+uo1bc/owZ/8qX0RDGWTAJneY/b4GSKR2nZEVbF98SC/euFTgUE11t58T1PACY02Hqp0hdBnFb1V9Y0u09PvhxJxNeXElRjSf+529DIt8/TUKwlq/SpzA4r7EWWKOjInkgZ0e2xW33uVBF9ILM3PXsuIx/UtZsDLd8jFmvYcaBe3nsjSWEIiJJFoT2kyAvnwuearjpfRpGPISv4BpY8wo0lLVKOKvsZcz662Ps++RJbAeW0l9fgU4l8dmWCu58ez2DHv2K2cu2i8Qn3hQFtn0IK56Folba5bx6J/K3j/NRZCjyiBncOiLv2MepVHD2NUh3rYWLH2KEajPfGf+HHva/ceXT3/D19sqWjbs9CPmjr4GDvHVIq1/g08i5XDDiwiOPlSTqjHmkeovi2j9Y3r+a9XIvhnSPQ/3xsRhTYPJSOO/3nFP1PutTHqC34ztGP/s9H/zcOu+PZ5zqnfDDU7wfOY+LLh9/xLeklJ50karZWx2f3QmdJVuoVSzk5eTEZfwmSc8n4b8+xazXcHfJdJ54Y6FIkoUOr30kyPX7YO3fCBROYvIyP/3+/AWX/jycSCSMsuqFFg9n7bI36PX2UB6Xn+JB7VvMDDzPY+W38Y7vt/w8Yg2LbujKqN4ZvLp8LyPnfMer3+8Rt7XiQVHgiz/Cwsnw5Z/gzbFQsrbFYwh+dC9uRceHWfdw72VNuI2q0cP5M5Du/BFt/qX8Qf0O/1Lu45U33+L+JZtFnWAzbJ93NSVzhiG7a0FR8H/+ENqwl1XdplHY+egFUaHkXvSghPJ4LZb01ZPo3sM2TW96ZsSo/3FTaPRw2aNwy+cYzCk8pTzJe/pZzH93Ifcv2dQh72iFDmzG+7crUD5/gNA/rsQt61jd614uzE8/4jhjZh4mKUDZgdK4xKFUbmeX0oWCbGtcxm+ydBvG332B3mDinv338MrfXxVJstChtY8EeflcFCRu3H0Ra4rquOfiXgzuP4Afwn2o27isRUM58OVzDFwzHYcuC9/1S+B/i+GudTBmHqTZUK14mkFLL+Q55vDDRDg3N5m/LNvBmOd+YMP++haNtV1TFPjsflj1PMU9buTN877AZ8yGxbdCID4zQce09zt0+79nXuTX3H/tBWjUzfiVS+oKkxbAdQvINYdYqJ/FyA3TufPJf7B0Qylh8eF1Uvu6/4YMz24a5g0j8NoVGDa+yRvy5dw09lfHfkK6jSTJQ3VlnGZWS38CwJ81KO4bQhxTtyHwu+9h9NMU6GtYon+YURum89/Pvd3hSi42VMPmkjqkVc+zzWNlmubP/M/EC446LrFTTwAcB+LQyUJRMDt3Uyx1oWtyHHfQa6rUHpjv/JGta1QAACAASURBVI6ApRvTyu5n8Ut/ItgBL54EAdpDguwsR9n4Dt8ZL2Oj08zbtw3hvy/NZ+61/ajKGE6qrwhXVXGLhBK0f0XWij+xQj2QpDu+JMF2MSQkQ1pPGHgz3LgI7tkIw6dDyRo6f3wD//DcyafDdhDyNjDhpZX8+aNtuFqgD+txyRFwV0PVDqjcCnV7wVsH4cCRt6rPZIoSnTFe8xLLTOMYufUKHvymhpvrpoJjH2xa2GKhuL58nAolmcQRv6X7qe6YVjA6WnYx8v+42GDnjdBMei29ilf/8nvmf/AZOyucYkvh4/jV+Jv4V+9n2ezPoLbUzhPhSfgvmkXPDMsxjzek5wLgrtoXl3g8e1YQVlSk5A+Ly/hNotbAoFuQ7t4Aox7gIoOdl5x3sfu5cXz57dcd5rU06OxCSsYuZmrWYt4fOJ+n7v4NKSbdUcdpU3IB8NfEoQOIqxyD7MFl7YVK1QoXTMdizSb1999Qln4Bk2qeZ+286wn6OtbFkyAAaFo7gNO2+kWUSJgHay7ivqt6Myg3urhCkiT6j5wAi1/ip68XM+r6e+Mbh6uSyHu3sFfugvq610lLTjr2cUnd4JKHYOR9sHUprHmFgg1/5mudiZ+yL+LJVf255Oez+c153bmqbzbd00xHzDRFZAWXP0SNO4jDG0QBLAYN2SYNibiis6OSBFojJCSBxhD9WlEgEozWaTeURRPFhhJwlIBjP9QXg7cm2iaP43xAqvVgSgNjKpgzwJIN6b3h3NtA27LtiY4r4IJlM2HjO7zLr5jlvp7HJ/ThisJs7no7ld37O5G57l9Yzr01/rHsX4OlYjWvqqYwbeRp7pClM8HI/0Uz5LfIGxfSZc1b3FH/T9jwTyrXJ/Gp6mxKTYUEEntgSeuMPqUzaWmZ5KWbyU01Nm/muh2RJIkp19/AptIr+de2Si7tncGAbsnHPd6a3hUAb118ZpB9e1axR8mhf4/OJz843nQmuPB/0Jx7G67vnmX42lcwfDeRNT+NotvEx+jUvU9rRxhXKpXENQO7cM3ALic+MKkbAJIj9hdNSu1uJECT0SvmY58WvYWcO5by8z//l+F7X6XkqeFkTP0n+k6FrR2ZILSYtp0g1+9D/vFVPpGH0b1XIVOH5x7x7V6F51K/NIXQzq+JyDNQx/EK3f3pw+hCbhb3eJYHCrqd/AkaPfSbFP1Tug7pp79z7talvKv7CK9sZPO/u/HTt1l8qUlFTkjDq7bgCEp4PB6yqCNLqqWTVEdnqYZ0qY5E6fhlA4qkRlKOfZtMNqRAUjdUWWdHk15D0n+SYJUGQl7wN0DQHU2evbXRP+5KKN8EmxdBj1GQedap/uhOj7Oc8Kf3obZmQzhAeOuHaP01PBW6hs9SJ/Ph5EGHZm5fmjyItx4fwe8q3oteJCTGN0lxfDsPFBOW8/8Lkz5Gv2oJyaiG/o6kob8DRwkNW7/Av+VLzq9eg8W9HNxAY24XUDTUYmUbycgJKSRY00nK6Exqp+5o0ntBSvfoRY7uJLd2FQXkMChy9E8kBCigt0YvvtqAvl2S6NvlOBeth7GmR18T4YY4bKohy5hrN7OF87imU8ttCHFSxhQsVz5M5MJ72LTwEfoVL0AzfwT2tJHkXPxfGPIvir5fdVQGK161FaOnDFlWYjrT6yi1kwwkdW6BLaabS6Wi/01z+OajfvT96X6kV0fhuexxTMNuaTO/94JwOlokQbbZbCrgRaAfEABus9vtu0933ODHM4mE4UXNZOb/uu/RNX2ShKvzBQza/xWbSuoZkBOnbTwrNmPc9g7zlSu4bfzlzX9+l4HRP1f8FXZ/jbHo3/Qv28zZdVsxBGpQ+Q6b0dVG/xPUWgkaswiYuuPWD6VISWS/30ixW02VO4gq5CUJN3opiAoFGRVBRUM9FsqVFPYrGZQpafj9enBAarWOLilG0kw6dBoVCVo1Oo0KSZJQFAVJktBrVFiNGlIz9HRLMdIj3Ux2og6tpvWus3ZUOHFt3c7Z0icE0LFR7s5zyj0MG3k5H47sgUGrPnSsWa/BNHASqp8WUrHqbbIunxm/wNxVWIo+423pV9wwoiA+50jqSuLwW0kcfms0iXUegPpiZFcF3tpSPLVlBOvLMTZUIHvrSKgoJrHySzRbjizhiaj1yDorktaACgVJDkfvNkRCSHIoWl5zrLsKKm30QsqYGu2UYEoHc2a0tdjBv3cdHC0zaiMkc1b0L66K2A9etxeD7MGRfPYR7eXOFGpTMv2nPkNl2XS2LnqMc2o+wbDwa0LqBKRuw9BkF0YvqpJzISUPEruCSn3ScdsDn6kz2fVVVDj9dEpKiNm47gM7MSoasrv1jNmYsXbRmBv5IuNsjJ/cyYgvZuDa+TmWa56PTqgIQjvWUpnNOMBgt9uH2Wy2ocBcYGxTnyzLCsGIfESyU//VUyTv+ZzHI7/hTzdeSobl2Lf4U3uPwFTyPks3bWRAzqjT/Gccm/vzWYQVI/WDppN5Ojsh6S1w1jg4axyH5mvkSHTG1u+ESCBa5mDJQqc3owPMQCqQAww6bChPIIzTH8LhDeENRg4t6JKVaJlGKCLj9IdwB8I4vCFK672U1vsob/ATjMj4QxFCEZmIDCopmh75QxHcgfARpchGnZoP7xrRsivyD9OzRy+WjFnMsvIGdFo1PdPN/L0wC6tBe8zjx150Afa1Oag2LYtrguxaPR8LETyFkzHHavb4RCQpOiOe2BkV0dfFL/+P1LgDfLO3FvveIhpKthGpK8ISrCEp7MYc8KKXQiioCClqQmgIoSGCirDagEajI0GvRaVWo9HoMOrUpKrcpODEqjRg8rhIqF+P1leNFDysXrHPOLh2fvz//bGi0dEgWdF4Y78bZ7BkHTpAnzMw5mPHUmbnXDLv+Rvr95bz1SeLyKz8N8P22ulevByNctjFlVoPqT2jd4+6DoYu50ZLrs6UcqsYkhO70cWxmQMOX0wT5EjtHkqUDLpntnIHi5O4bEg/1mV+wDNvPsLtRW8TeGYA2lH3oTr31pPfgRKENqqlEuQRwGcAdrt9tc1mG3SS44+w/LlbSK9bz0rrlYQTc+jlWM7F7o/5TBnC0Ov/yHk9j99P1JQbbcZftWstEIcEuWYXxqIveJkJTLmof+zHV6mjV+rNvFo36TWY9BqyE2P3Zg7R5LrOE2RfrYe91R6c/hBZia33gahRq7j23K5A1yYdn2jUsil1EAPrPiYUDKDVxeHWsaIQ/mk+a+TeXDHqwpMf30LSzHqu7NuJK/t2AoajKArVrgAl9T7qPEHqPUEcviARGSKyTDAsowC+YIQ6b5AadxB/KIInEKbOEaTWHSR4jE4anU0wKD2EzeTj3LMHc26L/0tPj1ubRkKwJubj1u1aQ6Kio1uvOLxPxME53bM55/e/Z1PpZF74oYhPN5WRKtfxq2wvV3Xx0TehBn39TiheDpsbF75KakjOgYw+kNk442zOiK6H0FlAowNNQnQrbG1s35viSZWcQ5f937Db5Y/puAZnMTukLC40n/klLANzU8mdMYfH/jWSi/c9zYVf/pHQ93PRDLwJqd8kyCgQpRdCu9JSCbIVaDjs64jNZtPY7fYmNXTtef51aL7cxG2uF8EFITSsTR3LgBtfIDP52KvRD8k4Cxk1lrqt1LoDpMb4jcj3/TwkRYOn79SYj30mUqsk0i160i36Qwsi2xpL/giMqxezcf0K+g29KObjh0t+Itlfwpb0exmSaor5+LEiSRIZVgMZp3jXQ1EUXIEwte4gVU4/5Q1+yhw+ims87Kx0sbzYR11ygHPjVGESL35DOokNsU+QlbL1bFNy6JfbQhuExEjfLknMmzSA/7uygEXrSlm8vpQ31nrQqGycmzuGSwZncFnnIF1926Odb2p2Rv+74xOOu+AXwNoF/usbsGS22L/lVOnScjFIIVy1B4BOsRlUUUgOlNKQcHbrtPw7BalmPY/cOp6PNg7hdx8vYqL3Ay5e+RzqlfNQTBlI3YZG7yR0Pgc6DYguBBWENqqlEmQncHgmq2pqcgzQ+ZzLYcCvoi3HnAfQZp7FucYmJmdaA4HkXpxVU8QPu2sY2z+GC7O8dWi3LGShfD7XXNgC28YKMWE791JYDQc2fxOXBLl8xQIyFA05wyfFfOwziSRJWA1arAYteWnt54MwbMwgtWEXLn8Iy3FKdZpNjpDi3M4P2osZeJxysDNdptXAnaN6csfIHvxc4uCLbZV8ta2SWZ9sZxaQbrHQI/1i8tKupkd/M71StORqaumsdaEJuiDogbAvWtPud0Tr5vUnmeA4Qxgb2/8F60o4spjtNLgq0CsBQom5sRmvhUiSxNX9O3PZWXfx3rpx/Prf6+jpXMlI7w6G7VlL8vYPGw9UQXoBdD0Xuo+CnOHR9QmC0Ea0VIK8AhgDLGysQd7c7BEkCVJ7RP80k77rAArrPuXZ4vqYJsiRje+ikQPYu17HDe0oQWjvElK7Uq3JxnBg7aEFiDEjR7Ds/oiV0gAu6HvmLrwRjk+yZpFe3sC+Bl/sEuSaXegVP/60tt8mS5IkBnRLZkC3ZP738t7sr/Xy3c4qNpU2UFTj4fOtldR5Sg4dr1VL2LIsDMrJYXBeCkPyU9rc3TZ1Y4lbyFkdszH9lTsxAJr0tvk+YdCqmTw0h98M7sYPu8/n3Z9KmLG9ElOonlGWMsakltFPvZfELUuQ1r0RfVJybnRmOWd4tG49ow+oY/Q7Jggx1lIJ8lLgUpvNthKQgKktdF4AVJ36k77pHfbs3Q3E6ANKUfCu+gd75e5ceEF8Fv8J8ePOHERh6b/ZU+WiZwwXyLh3/0BSpIaa3N+fkZ0KhJPTJnZCK0Woqz4AMXptOIo3kASYcs/sBXqnoluqkZuG5R7xWL0nyN4aN/tqveysdLOxxMG/1u7njZXFAPRIN9G/azKPjD2rZRaxni5TKgCyJ3YJcm3JDjoD1jOxxVszqFQSF+Snc0F+Ou5AmC+3VfDJpnJ+u6uGQFims0XD1Px6hmns5ATsmEp+RNq6NPpkSRUttbFkQkIKGBKj9erGVDhrPKTbWvcfJ3RoLfLOZLfbZWBaS5zrmLL7AmCo3YLTf9VxOxw0S9k6LM6dLNP+jpm9xG2jtsbSYyhpZR+xYvt2emYOidm4ZasWkatosJ1/TczGFFqWMTW6cYSzqhSITfJSv3cDJkVNTn6/mIx3pks26RhoSmHgYa01g2GZzWUNrN5by88lDkrqvQTDMrSFyWRjtG5c8tbGbEhvxW5Ciprsbs2/K3qmMus1jB/QhfEDuuAJhPlqeyUfbyrniW0ywfAgYBAJ2skMS3YzzFBEvqqMzlSTGqrHHCxHU70Dye+I9t4P+eDSR1r7nyR0YG3g0j0GMqI7QuVTwvp99Yy0nX7/Ru9Pb6NStCQMuLbD7lLWlqX2GAjfQ/XudTAyRgmyopBU8hXr1X0Z2v0M2ClNOCVJGdEE2Vd/IGZjKpVb2aN0oneXtrVAL5Z0GhUDc5IZmNN2+mIforcQRoM2UBezISP1JVQoKeRlnEGbxsSQSa9hbP/OjO3fmWBYZneVmy0HGthe7qSoxsPC+gwOOHx4gv/ZxCrJqGVA1yR6ZyQwoW8uZ9j+gkIH0zES5IQkZHMW+Q1lrItFghwJw7b3+UYewNihbWyJvgCAlBm9aJIrtsRszIb9m8kMH2BD7uQ2sypdOJo+ubFLQQw3C0l07WSDrje920I5gXA0ScKnTcYQqI/ZugWdp4xqdTpdte1/sxWdRkWfTlb6dDqyZElRFGo9QXZVutld5WJzWQM/lzhYsbsWRaXlvivadvmJ0LZ1mHdrVUYBhb5S3iuuP/3B9v2AMVjL5uTfcaVYnNc2GRJxGTrR2bMnZs3/9614j75A7nkTTz8+ofU07qan9lTGZjyfg9RwFd60Ju+NJJyBAvpkEv1O3IFwTBZvWgKV7Nf1iUFkbZckSaSZ9aSZ9QzrkXro8Vhv6S0Ip6Lj1Aak9yZHKWVLWT2yfILenE3QsPZfuBUDnQaNiVFwQmtQMgvpLe1nbXFsbpsmFH/FDlVPbL3yYzKe0Eq0BrwkoInR7XTn/k0AaDqdHZPxhNYhG1JIkVxUuwIxGCxCcqSGgCn79Mdqh0RyLJwJOlCCbEMv+7AGKtlb4z71ceQI2l2f8o18DpcPaD+LKzoic7d+5EnlbN13+jOFzpoKegS2U519oSivaAc8aivaYMPJD2yCqt3rAUjtMSAm4wmtxJRGCk5q3MHTHkp2VqAhgmLtEoPABEGIhw6UIEdrmXqpythYcuoffMr+1RjDDvZlXES6pS0svxaOR5VViFpSaNjf/Lbcv2Rf+T4qSSHjHHFXoT3waRIxhGKTIAfKNtOgGOnVQ7Ssass0lnRSYzSD7KjYC4A2pdtpjyUIQnx0oAQ5+uF0luYAG0sdpzxM7U9LCCgaOg0aHavIhNaSFb3lraneRuQ0y27knV9Qh5Ve/S+IRWRCKwvqEjFGYpMgax172a/qQkob2xxDOJI+MQOr5KXOeRp3IBs5yosAMGfknvZYgiDER8dJkI0pYM5kkKmKjaWn+MGnKGh2LWOlUshFfUV5RZuXnEtEpSNHLmFP9al/6Pn8QWyuNexLOQ+Vuv2vSO8IIvokrLKLcEQ+7bFS/PtwJIiZwrYuITHa/cjjqDrtsXy1+wFI7dT9tMcSBCE+Ok6CDJCWT76qjO0HnATCkZMf/wtK5VaSAgcoShtFskkXhwCFFqVSE07qTg/pAJtO9aIJ2PTjNyRJbhIKfhXD4ITWJBuSSZTcNPhCpzeO30WaXEswUSRCbZ3KFO1hHWg4/QQ5Ul+CU0kgOzPztMcSBCE+OlaCnG4jI7CPYCTC9nJXs59eufZ9AFIHXB3ryIRWos0qoJfqAJtPo+zGsfkzZCR6DBWvi/ZCZUolEQ/1ntOrN63ZvwMATabobNLmmQ7upldz2kNpXGVUSmmYRF9sQThjdawEOc2GNuwmAwcbS5qfEMk7PuFnuScXDiyMQ3BCa1Cl2+giVbG95NRmhSKyQnb1CvYbeqO1dNxd0tobtSkVtaTgcpxeMlS7bysASV3EhkJtnjHap1fynf5200Z/OQ6tmD0WhDNZx0qQ06OzOINMVfzczARZcZbTybONPSkjSDKK8op2Iz0fFQr+ip2ETqHe9OedxZyl7CKYOyoOwQmtRW+JJkOe+tO7ne4ttwPQqftZpx2T0MqM0Qtgrf/0+2MnhqrxGUSCLAhnso6VIKdFO1mMSKpr9gxy6Y/R8gpzX3EbvV1pfE3kyCXsqmz+Qr3itR+jlhQ6i64m7YohMR0Av/P0ZpBV9XsoJ5W05KRYhCW0JmMKMhK64GnuxhoJkSg7kU0iQRaEM1nME2SbzTbeZrO9fdjXQ2022xqbzbbCZrM9FOvzNYslC/RWztZXsLfGQ4O36QtwfFs+pkRJZ+iQ8+MYoNDiUnuiSCp6qg6wpax5C/UURUG/7994JBOmvCFxClBoDeakaIIcdJ/e7XSLu4gqXTexeUx7oFLjV1swhk99vQKAz1GJSlLAIhJkQTiTxTRBttls84DZvxj3ZeAGYAQwxGaztd52UpIEafl0lUsBmtwPWQ54yHH8iD1xBImie0X7ojVAUg691QfYVNa8D749VW76hzZQkz4U1GKxTXtycAY5cjoJsqKQGSrFa86JUVRCawtqrRgi7tPqm+6oLgNAk5gVq7AEQYiDWM8grwRuP/iFzWazAnq73b7HbrcrwOfAJTE+Z/Ok27C69yJJsGF/0xKiXas/Rk+QhLPFbfT2SEq3UaCtYHMzW72tXf8jXaQaEgtFe7f2RkpIjv7Fe+r1pu6GWix4UZLzYhSV0NrCWitWvDhPo/2fuzaaIBuTs2MVliAIcXBK0142m+1W4L9/8fBUu93+rs1mG3nYY1bAedjXLqB1G4Km5aP6eQEDM1SsLW7ah59r44e4lAT6D78yzsEJrSItn067vmZnhYNgWEanadp1o3fbFwAknS0S5HbHkEQEFZL/1OtNq0t3YgZ0abkxC0toXbLeilWqo8EXOuVe+L66AwBYUjvHMjRBEGLslBJku93+d+DvTTjUCVgO+9oCnF4B1+nK6APAlZn1zNkuEYrIaNXHT4iCwRC5dcvZaRnCQKOxpaIUWlK6DY0SIjNSgb3CxdldEk/6lDpPkFzHGupNXUlOzo1/jELLUqnwqMxogqf+dtVQvhcAa5bYdbPdMCRipQTHacwgh52VACRliARZEM5kce1iYbfbnUDQZrP1sNlsEvArYHk8z3lSmdF2S4ON5fhCETafZGHW+pVfkEYDhr5jWyI6oTU0drLoKR1gQ0nTZgz/vb2MIartRHIvjGdkQivyqa3og6e+w6K/ugiAtC49YxWS0MpUCYlYJe9p7bCouCpxKQmkJInOJoJwJmuJNm/TgAXAj8AGu92+pgXOeXzWTmBIoodcDMCPRScus3CsX0oIDbbh41sgOKFVNPbH7m+oZP2+piXIu39egVnyk1J4aTwjE1pRQJuIMXLqCTKO/XgVPcmpoltBe6E2JmPFi8MbPOUxNN4q6qRk1CrR2UQQzmQxX3pvt9u/A7477OvVwNBYn+eUSRJkFpJQt4Me6RP5saiOaRce+xZoldNHQcP3lCQNorspuYUDFVqMIREs2Qyiinf3nzxBDoZl9CXLQQJVnmj7114FdUmYPWUoinJKbdr07jKq1JnkqjpWu/n2TGdOxigFcHu8pzyGPlCLU5MSw6gEQYiHjtmbKvMs+HkBQ3sn8/7P5fhDEQxa9VGHffXv77hBqqSq/y/XIwrtTlo+3WvKKKnzUeXyk2ExHPfQH4vqGChvxpXaG4sptQWDFFpSWJ9EInYCYfmY7w8nYw2U06AXnQraE705OlHidZ764k1TqI5yg6hLj5V169ZlaDSa14BCOtrmZ8LpkoEt4XD4toEDBx61bWrHTJCzCiHo5urcMAt+jPDDrhou6XPkbdBQRMb18/vISGQMEuUV7V66jdTSdYDC+n0OLi88fo/Srzfv4z7VTtT5t7VcfEKLUwxJWPHg9IWanSArikJ6uJLalNZr+y7EnsYYTZCDnlNPkJPkOvYlnDk3Vds6jUbzWlZWVkF6enq9SqU69QbVQocjy7JUXV3dp6Ki4jXgqG2SO+bVVuNCvYH6MhITtCzbUn7UIV9uq2REaBXO1AHRHfiE9i0tH3XITTd1Pev2Hb8uXZYVKrf9gF4KoekhFui1Z6qEJKySjwaPv9nPdTrqsEoelMSucYhMaDWGaIebsPfUEuRIwBvtjW1Kj2VUHV1henq6UyTHQnOpVColPT29gejdh6O/38LxnBnSC0BSoanawqV9MvlyWyXBsHzo27KssOTrFZyl2of1HDF73CFkFADR9n/Ld9Uc97BNZQ3k+39GQQXdhrVUdEIrUDfOFnpczU+Gqkp2AaIHcrvTmCBHvKfW/u/gLnpqsc10LKlEciycqsbXzjFz4Y6ZIOuM0VnkkjVceXYWLn+YZZv/M4v80aYD5FR/A4CqYExrRSm0pMa7CiOTqthR4aK8wXfMwz7fWsFQ1XYimWdDgmjT1J5pTdH/vz5n87ebdlbsAUQP5HanMUHGf2rdTRpqogmyLknUpgvCma5jJsgAXYdCyVou7JlCYWcrsz/djjsQpsYd4InP7Fxj+AklsxBSxDaxHUJCMiR2o49qHwD/tlcfdYgsK3y2oZhzVLvRdBfdK9o7vTnaacB/CjPIgdoSAFKzc2MZktDaGhNkVcB5kgOPzVMbnYgxpYiyvfZm9erVpmuuucZ28OsNGzYkXH311b3Hjx9vu/vuu3MjkQgAr7zySvro0aMLxowZU/Dee+8lA7jdbtWUKVN6TJw40Xbdddfll5aWan85vsPhUN900009J06caBs7dmzvlStXmgB27dqlv+666/InTpxomzRpUq+amho1wOOPP549ZsyYgnHjxvVes2aNEaCyslJz8Dzjxo3rvXv3bv3B8auqqjSjRo0q9Pl8EkBtba36xhtv7Dl+/HjblClTelRWVh53zdrzzz+f8fDDDx+1801RUZHu6quv7n34Y3/729/SZ8+e3el4Y7355pupH330USLAyy+/fNxapF+e86OPPkocPXp0wdixY3v/4x//SDvRz6ypOm6C3G0ohDyoq7Ywa2whlc4AU/7xI9e+vAq9p5SCiB2pcEJrRym0pKxCLA47WVYD3x0jQV5TVEemazM6QpArEuT2zmCNJsghT9O2pD+c4ionrKhITDvu54DQFjUmyOrgqSXIQVf0fcWcLGaQ25Onn34688EHH8wJBoOH+kE+++yznaZNm1a+dOlSeygUkpYtW5ZYXV2tWbRoUcaSJUt2LFiwwP7MM890lWWZN954I62goMC7ePFi+1VXXVX7wgsvHHUF9eKLL2YOHjzYuXjxYvtf//rXokcffbQbwAMPPJAzffr0ssWLF9uvvfba6p07dxrWrVtnXL9+veWDDz7YPm/evL2zZs3KAXj00Ue7jB49um7x4sX2e+65p8xutxsAPv/8c+uUKVPy6+vrDyXmzzzzTHb//v3dS5cutU+ePLlq9uzZRyXAXq9Xuv322/MWLVqUEauf5U033VQ7ZsyYBoDXX3/9qDfQY50zGAxKc+fO7frmm2/uXLhwoX3JkiXpFRUVmuP9zJqqY3axgP/Uj+5fw4ChA3hoTB/eXLUPlz/MksFlsA44SyTIHUpmIdLOz7j0LCtLN9fgCYQx6f/zK7JkfSkXaHegSCqkbmIVentnskZb+IVPoWOBxlNJnSqZDHXHfYttl3QmZNRoQ6eWIIfd0XIda2rM8gnhMPNXFqcuWV+aFssxJ5zTpWbKebknrLPKyckJPP/883v+8Ic/HLrlbLPZvA6HQy3LMl6vV63VapX09PTwsmXLtmq1WoqLi3VarVZWqVTcddddVeFwGIADBw7oLBZL5JfnuP322yv1er0MEA6HJZ1Op3i9Xqm+vl771VdfJc2dwSo4cwAAIABJREFUO7dLQUGB56GHHip99dVXM4YMGeJUqVTk5OQEI5GIVFVVpdm8ebM5Pz/fd9111+VnZ2cHHn300RIAlUrFW2+9ZR8/fnyfg+crKioyzJgxowzgvPPOc//lL385Krn0+/2q8ePH1w4bNsy5d+/e4/dGPYaioiLd9OnTu2dkZATLysr0ffr08Tz55JP7Z8+e3SktLS3kcDjUbrdbPXPmzG5z5szZf6Jzbt++3dCpU6dASkpKBKBv377uH374wXKsn1lzYuy4M8iJnSGxK+xfBcDU4Xl8+4eRrH3gYrod+BQ6nSPKKzqarEJQZG7I9eAOhFmyoezQt+o8QZZtLudy006krL6i/rgD0DZuDiT7mr8gy+CvokEd089p4UwgSQQ0Zoyyh1BEPvnxv+SpJaBosVoSYx+b0GomTJjg0Gq1RyRfeXl5gblz53a75JJLzqqrq9NceOGFLgCtVsvLL7+cfsMNNxRcfvnlhxJvjUbDtddem7948eKMK6644qir8uTk5IjRaFTKy8s1M2fO7D59+vTSuro6zf79+w0jRoxwLly40O50OtULFixIdbvd6sOTbKPRGGloaFBXVVXprFZr+N13392ZlZUVnDdvXhbApZde6kxLSzsiKc/Pz/d98cUXSQAff/xxUiAQOCpfTElJiVx22WXNvlqUJEkBKCsrM8ydO7f4ww8/3L569erE8vLyQzMKM2fOrDCbzZHDk+PjndPpdKrNZvOh+E0mU8TlcqmP9TNrTpwde3qj2zDY8zVEQqCO3lmQKrdC+Ua47LFWDk5ocVlnA9Bb2ke/Lj14fUURvxncDZVK4rlvdqEKucnzb4Nzft/KgQot4tCCrObPFppDNbgSRIu39iiktWINeHD5w6SYdM16rspfh0OykCl2V4yLKefl1p5strelzJ07t+v8+fN3FBYW+l955ZX0Bx98sOvBZG/atGnVU6dOrZk8eXKvb7/91j1q1CgXwMKFC3du377dMG3atJ6vvfbarvvvvz8XYPTo0bU333xzzaZNmxLuvffe7jNmzCgZOXKk2+v1SgkJCfLB548aNaphxYoV1ry8PL/H4zn0IvN6veqkpKSIxWKJXHXVVQ6Ayy67zPHUU08dVTZx0PTp08sfeOCBbhMnTrQNHz68IT09PbR8+XLzvHnzOgNMnTq14qqrrjrhatWEhAQ5FAod8WL3er2qg7O62dnZfqvVKgOkpKSE/H7/Kf1iWK3WiNfrPfRcj8ejtlqtEYBf/syaM27H/i0tnAjeWtj52X8eW/0iaI0w4DetF5fQOpJyQWdBKt/ILSPy2Fvt4Y2Vxfxc4uCfq/fxB1sNkhyG7qNaO1KhJegtRFAhBZrfsSAlUkfIKG6jt0dhnRUrXlz+ULOfqw3U41FZ4xCVcKYxm83hg0laZmZmyOVyqXfs2KG/5ZZbesiyjFarVXQ6nSxJkjJ37tysBQsWpDQ+L6JSqejVq1dg0aJF9kWLFtlvvvnmmq1btxqmT5/efc6cOXuvuOIKJ4DRaFQ6d+7s//77780AP/74o6Vnz56+wYMHu1etWpUYiUTYt2+fTpZl0tPTw4WFha7PP/88EWDVqlWW7t27H7fJ+/Llyy2TJk2qXrx4sT03N9fft29f9/nnn+8+GNPJkmOAjIyMsM/nU23dutUAEA6HWb16tbV///5eAEmSTvh8RWlaRURBQYG/tLTUUFtbqw4EAtLPP/9sHjJkiPtYP7Pm6NgzyD0vAUs2rJsPBWPAVQmb34NzpkS7Gggdi0oFXQfDvhVcecWTvL+hjD9/vA1JgnSznl8n74ZSA3Qd0tqRCi1BkvBKJrTB5iXILreLZMklNhhqpxR9IlapBpc/3OznGkIOvBpRntURPPLII/vuvvvuHmq1WtFqtfLs2bP35eXlBfPz873jxo3rLUkSw4YNaxg5cqS7d+/e/hkzZuQtXbo0XZZlZs2aVfTL8Z544onOoVBIdXChmclkCs+fP3/PY489VvzII490e/LJJ6Xs7OzAQw89VKPX65UBAwa4x40b11tRFOmPf/zjfoA//elPpffdd1/Oe++9l2EymSLPPffc3uPFn5+f7585c2benDlzSEtLC86dO7e4uT8DlUrFrFmziu+///5clUpFOByWLrjgAseoUaNcRUVFJ739kpOT47vjjjvyXnzxxaN+HofT6XTKvffeWzJlypR8WZYZO3ZsTZcuXUIPPPBAt2P9zJoav9TUDL0lTZgwQVmyZEnLnOybR+H7J2HKh7DyOdj9Fdz1E6SK/qWnw2azrbPb7YNiPW7cXxs/PA1fPQx/2EU4IY25X+4kEJK555JeJP7j/GjSc9P78Tt/BxCv1wbE/vVR9WhvtqpsjPq/D5r8nOLd28j95zA2DHiUAWNFOU5znenvHbX/mERt8SZqpnzPeT2aV2e+/899qDH25Jw/fHjacXREx3ptbNy4sbhfv37H391JEE5i48aNaf369cv95eMdewYZYNAtsGEBzG/cEGT00yI57sjyLoj+t3g5msKJ/O/ljS0ca/dA9XYYcGPrxSa0uIDGgj7oatZznFXRNSWGlC7xCEloZVJCIlbJS9EpzCBbZCflenF3UhDagpglyDabLRH4J2AFdMAMu92+ymazDQXmAWHgC7vd/kiszhkT1k5w5xpY+Syk9oR+k1o7IqE1ZfUDvRWKlkdr1A/a2jjzdNa41olLaBVBjZUEf/MSZG9ttPuJJV0s0muPNMYkEvA0u8QiEg5jVdwoCalxikwQhFiK5SK9GcDXdrv9QuBm4IXGx18GbgBGAENsNtuAGJ4zNgxWuOiPIjkWQK2BnPOg6Hs4vPxoy5Jo15NEMSvYkUR0VkyyG1lueilauCGaIKdkNasnvdBGaI1JJEhB3N5jb0d/PA311aglBcmUEqfIBEGIpVgmyE8DrzT+XQP4bTabFdDb7fY9drtdAT4HLonhOQUh9vIvh7o9sG9F9OvKbVC17cgZZaFDUAxWrJIXd7AZs4XOCgJoMSYed5dUoQ3TmaLt/wKeZi7erK8CQGMRrwtBaAtOqcTCZrPdCvz3Lx6earfb19pstiyipRbTiZZbHN5awwV0P5VzCkKL6TcJvn0MfngGcobD138GTQL0EeUVHY1iSMKKlzpfCKtBe/InABpvJXVSCtknaWEktE3qhGibtpC3eQmyu64SAL1IkAWhTTilBNlut/8d+PsvH7fZbGcD/wL+YLfb/904g2w57BAL0PxtqQShJWkTYMjvoh1O3r8Ddn4Kl84Cs/hg62hUCUkYpQDFbg8kG5v0HGOgGpc2lew4xya0En00QQ43M0H2O6sBSEgSOywKQlsQsxILm83WB3gPuMFut38KYLfbnUDQZrP1sNlsEvArYHmszikIcXPuf0HOCNj4DnQaAEPvaO2IhFagMUV71noamr45lyVch08nkqB2Sx+d85GbuXgz5Ip2IrMmi/7Y7dHq1atN11xzje3g1xs2bEi4+uqre48fP952991350Yi0Z2QX3nllfTRo0cXjBkzpuC9995LBnC73aopU6b0mDhxou26667LLy0tPep2lcPhUN900009J06caBs7dmzvlStXmgB27dqlv+666/InTpxomzRpUq+amho1wOOPP549ZsyYgnHjxvVes2aNEaCyslJz8Dzjxo3rvXv3bv3B8auqqjSjRo0q9Pl8EkBtba36xhtv7Dl+/HjblClTelRWVh53QvW7774zDx8+vO8vHy8qKtJdffXVvQ9/7G9/+1v67NmzOx1vrDfffDP1o48+SgR4+eWXjzsr9fzzz2c8/PDDh3YCfOedd1KuvPLKgtGjRxe8+uqr6QDBYFC644478iZMmGAbM2ZMwcFxmyqWNcizAQMwz2azfWez2Q42Dp0GLAB+BDbY7fY1MTynIMRHQhJM/QTu2wdTP40u3hM6HJ0p2pLL56pv8nMSZQdh0amg/WqcQZabuQV5xN2YIKeKHRbbm6effjrzwQcfzAkGg4fqqp599tlO06ZNK1+6dKk9FApJy5YtS6yurtYsWrQoY8mSJTsWLFhgf+aZZ7rKsswbb7yRVlBQ4F28eLH9qquuqn3hhReOuop68cUXMwcPHuxcvHix/a9//WvRwc0vHnjggZzp06eXLV682H7ttddW79y507Bu3Trj+vXrLR988MH2efPm7Z01a1YOwKOPPtpl9OjRdYsXL7bfc889ZXa73QDw+eefW6dMmZJfX19/KDF/5plnsvv37+9eunSpffLkyVWzZ88+5rbU+/fv177++uuZ4XA4JjVlN910U+2YMWMaAF5//fWjEmmv1yvdfvvteYsWLTriF2nevHld3nrrrZ2LFy/e8fbbb2fW1dWp33nnnZSkpKTwkiVL7G+88cbOxx9/vFkrp2P2qW+328ce5/HVwNBYnUcQWpShWRecQjujt0QT3aC7rknHe3x+knCjmEQ5TrvVOIMsBZq5c623nqCiQW8U7ylx8+Orqfz8Tmxv3/S/vobBvz3hLaScnJzA888/v+cPf/hD3sHHbDab1+FwqGVZxuv1qrVarZKenh5etmzZVq1WS3FxsU6r1coqlYq77rqrKhyOLgQ+cOCAzmKxRH55jttvv71Sr9fLAOFwWNLpdIrX65Xq6+u1X331VdLcuXO7FBQUeB566KHSV199NWPIkCFOlUpFTk5OMBKJSFVVVZrNmzeb8/Pzfdddd11+dnZ24NFHHy2B6I53b731ln38+PF9Dp6vqKjIMGPGjDKA8847z/2Xv/zlqOTS5/NJ//d//5fz+OOP75s4cWKfX37/RIqKinTTp0/vnpGRESwrK9P36dPH8+STT+6fPXt2p7S0tJDD4VC73W71zJkzu82ZM2f/wef5/X7V+PHja4cNG+bcu3ev4eDjeXl5voaGBrVGo1EURUGSJCZMmFCvKEo9RLetVqvVzQkxpjPIgiAI7YrRGm3JFfY0LUGurz6ASlJQWTLjGZbQmhoTZFUzN5BR+WtpUFlBLN5sdyZMmODQarVH9ILMy8sLzJ07t9sll1xyVl1dnebCCy90AWi1Wl5++eX0G264oeDyyy8/lHhrNBquvfba/MWLF2dcccUVR92ySk5OjhiNRqW8vFwzc+bM7tOnTy+tq6vT7N+/3zBixAjnwoUL7U6nU71gwYJUt9utPjzJNhqNkYaGBnVVVZXOarWG33333Z1ZWVnBefPmZQFceumlzrS0tCOS8vz8fN8XX3yRBPDxxx8nBQKBo/LF+++/v9utt95a2aVLl1Bzfl6SJCkAZWVlhrlz5xZ/+OGH21evXp1YXl5+aNJ25syZFWazOXJ4cgyQkpISueyyy466Ou3Ro4fv17/+dZ8rr7yy8LzzzmtITk6OWCwW2Wq1yk6nU3X77bf3uOOOO8qaE6e4bywIgnAcCZbGBLmJC7KctQcA0CWK2+jtliFaYqEOuZv1NF2wAY/Kgri3EEeDf1t7stneljJ37tyu8+fP31FYWOh/5ZVX0h988MGuB5O9adOmVU+dOrVm8uTJvb799lv3qFGjXAALFy7cuX37dsO0adN6vvbaa7vuv//+XIDRo0fX3nzzzTWbNm1KuPfee7vPmDGjZOTIkW6v1yslJCTIB58/atSohhUrVljz8vL8Ho/nUELr9XrVSUlJEYvFErnqqqscAJdddpnjqaeeOmbZBMD06dPLH3jggW4TJ060DR8+vCE9PT20fPly87x58zoDTJw4sXrTpk2W0tJSwwsvvIDb7Vb/9re/7f7qq6/uPThGQkKCHAqFjkisvV6v6uBMeHZ2tt9qtcoAKSkpIb/ff0qTths3bkxYuXJl4tdff73ZbDZH7rzzzrxFixYlX3PNNfX79+/X3n777T2vvfbaqkmTJjVtpqORmEEWBEE4DpUxWoOs+JpWg+yprQDAmCx6WLRbWiMyKrRhT7Oepg834NdY4xSUcKYxm81hq9UaAcjMzAy5XC71jh079LfccksPWZbRarWKTqeTJUlS5s6dm7VgwYKUxudFVCoVvXr1CixatMi+aNEi+80331yzdetWw/Tp07vPmTNn7xVXXOEEMBqNSufOnf3ff/+9GeDHH3+09OzZ0zd48GD3qlWrEiORCPv27dPJskx6enq4sLDQ9fnnnycCrFq1ytK9e3f/8eJfvny5ZdKkSdWLFy+25+bm+vv27es+//zz3Qdjuv766+u++eabLQe/NpvNkcOTY4CMjIywz+dTbd261QAQDodZvXq1tX///l4A6SR3UxSlaRs0JSYmRvR6vZKQkCBrNBpSUlLCDQ0N6oqKCs3UqVPzZ8yYUTplypRmXziJGWRBEITjaaxBl5q4ICvYEE2QrWnHnZgR2jpJIqgxYfB7CEVktOqmzTMlhF24TWL78Y7ikUce2Xf33Xf3UKvVilarlWfPnr0vLy8vmJ+f7x03blxvSZIYNmxYw8iRI929e/f2z5gxI2/p0qXpsiwza9asol+O98QTT3QOhUKqg4vzTCZTeP78+Xsee+yx4kceeaTbk08+KWVnZwceeuihGr1erwwYMMA9bty43oqiSH/84x/3A/zpT38qve+++3Lee++9DJPJFHnuuef2/vI8B+Xn5/tnzpyZN2fOHNLS0oJz584tbu7PQKVSMWvWrOL7778/V6VSEQ6HpQsuuMAxatQoV1FRke5kz8/JyfHdcccdeS+++OJRP4/D5ebmBidMmFB9zTXX9NZoNHLnzp0DN954Y+3DDz/cxe12a1566aVOL730EgBvvvnmTqPR2KTMW2pqht6SJkyYoCxZsqS1wxBOg81mW2e32wfFelzx2mj74vXagPi8PoIPp/G1dQJXzHj1pMd+/8afuKD4WUIzi9E2dsAQmqctvHe4H+/NZ55eXHzfYpJNJ/2cB6Dy4TzKUoZxzt1vxySGjuhYr42NGzcW9+vXr6a1YhLavo0bN6b169cv95ePixILQRCEE/CqzKhDTexY4KkhgBatMSm+QQmtKqI1Y8aHy9+0LcgjsoJF8SAbxOtCENoKkSALgiCcgE9tQR9uWoKs9VXjkJJEp4J2TtZZMOPF6W/a4n2ny41RCiAliARZENoKkSALgiCcQFBjwRBuWscCQ7AOt0aUVrR7egtmqekzyC5HtAJAbUqJZ1QdlSzLsrgiFU5J42tHPtb3RIIsCIJwAiGdFaPctJ63pnA9Pp1Igto7yWDFgg9XE2eQPY5qALQiQY6HLdXV1YkiSRaaS5Zlqbq6OhHYcqzviy4WgiAIJyDrrJiVvQTDMjrNiecUEiP1HDA0a0MpoQ1SJ1ixNGMG2eeMdpjSWcUW5LEWDodvq6ioeK2ioqIQMeknNI8MbAmHw7cd65siQRYEQTgB2ZBEouTB6Q+RZtYf9zhfIEQKTkqNsd3pVjjzaBISGxfpNW0GOeCOllgYreK1EWsDBw6sAq5u7TiE9kdcbQmCIJyAKiERK14avMETHldXW4VWiohtpjsAnSkJoxTA7TvuPgtHCLmjG82YE0WCLAhthUiQBUEQTkBlTEYjybhdjhMe11DTuM20VWwz3d6pE6I74gW9TetuEvFGd7g1J4uNpgWhrYhZiYXNZjMBbwPJQBCYYrfby2w221BgHhAGvrDb7Y/E6pyCIAjxpmnc8MPbUAccfyc0b110Fz1DclZLhCW0Jr0FgJC3oUmHSz4HMhLqhMR4RiUIQgzFcgb5v4B1drv9AuCfwP80Pv4ycAMwAhhis9kGxPCcgiAIcaU3R3vXBtx1Jzwu0LjNtDm1U9xjElpZY4Ic9jUtQVb5HXgwgkodz6gEQYihmCXIdrv9GeCxxi+7AQ6bzWYF9Ha7fY/dbleAz4FLYnVOQRCEeDNYop0HTpYgh11VACSmZsc9JqGVNSbIiq9p7f/UQSdulSWeEQmCEGOnVGJhs9luBf77Fw9Ptdvta2022zfA2cClgBU4vEjLBXQ/lXMKgiC0BmNja66Ip/6ExynuGmRFwmAVdabtnj5aKqEEmlaDrA814NeIBFkQ2pJTSpDtdvvfgb8f53sX2Wy23sAnwADg8HcFC3DilS6CIAhnEL05urmD7D3xW5faV4NTspCkFt0z273GGWRVsGkJckLERcAg6o8FoS2JWYmFzWa732azTW780g1E7Ha7EwjabLYeNptNAn4FLI/VOQVBEOLuYGLjP3GCrAvU4lIntUBAQqtrTJDVwaZtQW6UXYR11nhGJAhCjMVyquMfwPzG8gs1MLXx8WnAgsbHvrDb7WtieE5BEIT4OpQgn3hBljFUj1eb3AIBCa3OEE12NaGT1yBHZAWL4sZpEK8NQWhLYpYg2+32SuDyYzy+Ghgaq/MIgiC0KJUar2Q86e10S8SB09y7hYISWpXWiIwavewlHJHRqI9/M9bpDZKIhzJRYiEIbYrYKEQQBOEkvGoL2hMkyOGITLLiICK2me4YJImQxoQFL+5A+ISHOhrq0UoR1EYxgywIbYlIkAVBEE4ioLFiCB+/xKLO5SZR8iKZRAeLjiKktWCRfLj8J06Q3Q01AGjMqS0RliAIMSISZEEQhJMI6pIxR5woinLM7zfUlAOgtohtpjsKWWfGghenP3TC43wN1QDoGruhCILQNogEWRAE4SQihmQSceEJRo75fXdtdBc9fZLYZrqjUPRWzJx8Btnvim4wc7CftiAIbYNIkAVBEE5CSUghRXJR7wke8/s+RzRBNiZntmRYQiuS9BYskvekCXLQHd1gxpgk6tMFoS0RCbIgCMJJqEypWPFS7/Ye8/vBhkoAEtM6tWRYQitSJSRiwYfrJCUWsqcWAHOiSJAFoS0RCbIgCMJJaC1pqCQFt6PmmN+X3dE6U3OKKLHoKNQJVsxNWKSn+KIbzKhEFwtBaFNEgiwIgnASemu0O4XXUXXsA9xVBNAi6cVuaR2F1pSEBe9JZ5AlfwNh1KAzt1BkgiDEgkiQBUEQTsKYFO1OEXAeewZZ56/GoUoBSWrJsIRWpEn4//buJjau67zD+HNnOBx+DYekbFmiLEeRnByjRes4TmEXddKkcGMgdpAA3blI0doFaqAoUHfXLNoYXbSLOoU3bdpASRc1kCKLAE0C1Fq0Te00dhZ2A8dpj23Z9YdkUaL4McMhZ/g1XdyRODIpi+GMeDni89uYPPdS9wX8YvTX4bnnlCkmqywubb3s5pJ8Y56FZMTekHqMAVmSruFSQF6tXtj6emOaWsFtvPaV1m8LVmoffAR5/8o8S/nSblQkqYsMyJJ0DfnhdIuu5uLFLa+Prs1QH/CQkH2lFZDXlj44IBdXKzQKLr2Reo0BWZKuZai1h+3S7KZL9ZU1DjRnWR1yi7d9pZjOCl8rIA+tLbBSKO9GRZK6yIAsSdfSP0SDfvrqM5suXZitMJ4skJTcwWJfGUhnhZv1qwfklbV1Ss0qa768KfUcA7IkbUMtX6Z/eW7T+NyFdwAojB3e7ZKUpdYMcrNeveotlaUVykmN5oBbvEm9pq/bf2AI4Q7gBeCWGGM9hHAv8BSwCpyKMT7R7WdK0vW2VBhjcIuAXJ0+C8DQhIeE7CutWeFc4+oBebbW4DiLTLkHstRzujqDHEIYBZ4EGm3DXwMeBu4D7gkh3NXNZ0rSbljuLzO8tvnX6fXZNCCXbr51t0tSlgbSdcW5lSrNZnPLWxbmL5JLmuSHDchSr+laQA4hJMA/AF8GFltjo0Axxng6xtgEngHu79YzJWm3rBYnKDcXqDWuPDltde49AMo3GZD3ldYSi+HmIguNrU/Tq7VOXuwfdgtAqdfsaIlFCOFR4PH3Db8FfCvG+JMQwqWxUaDSdk8VOL6TZ0pSlnIjB5g4X+Vcpc6JmzdORUtqU6yRI186mGF12nX5Aqu5AUrJIvNLK5QGCptuWaqmL3UOjt6029VJ6tCOAnKM8SRwsn0shPA68GgrPB8CTgEPAe07pJeAzYv4JGmPK5ZuokyNn84sXBGQC4vnqSSjjOfyGVanLKwVRigtLzG3uMKtW6yiWKmm+2YPlg/scmWSOtW1l/RijLdf+jqE8H/AZ1sv6S2HEE4AbwAPAL6kJ6nnDE9MkkuazJ4/A2FjS7eBxjTVwk24ynT/WS+WKC2mM8hbWa6lM8jDBmSp5+zGNm+PAU8DPwZeijG+sAvPlKSuGrnlGAC1C29dMV5avchS0V+h70vFUUqkM8hbWaulB8skg65BlnpN17d5A4gxHmv7+nng3uvxHEnaLYXx2wBYnX378tjc4jI3NWeYG/mlrMpShnKDY4wmZziztLzl9eZS62CZwbFdrEpSN3hQiCRtRzndpSJXOXN56K2pGW5J5shPHMuoKGWpb2SCMrWrLrHoq89ST4pQGNzlyiR1yoAsSdsxUGYpN8TA4tnLQ9Nv/y8AI5MfyaoqZSg/NM5YUmP+Kkss+lfmWMw7eyz1IgOyJG1HklDtP0R5eerywRAL770GwPiR8EE/qRvV4DjlZIG52tZLLIZW5mkUyrtclKRuMCBL0jY1hg9zS/PC5ZeymjNvAFA8ePsH/ZhuVIPj9LFOfXHz7qWN1TVKzQorRfc3kXqRAVmStqk5eiuTyUXOzi8B0F95i1oyAkPuUrAvDabhd721nVu7mdoy41RZdwcLqScZkCVpm/ombuNAUuXcdLp9V7n+LrMDHjG9bw2k64vXt5hBvriwzHiyQDLsHshSLzIgS9I2DR88BsDM2TeYrS1zZP0cjdJt2Ral7LRmkHONLQJydZGxpEbfiHtkS73IgCxJ2zTaOizkjdORNy/McSSZJnfgeLZFKTutgJyvbw7IC3MXgPSIckm9x4AsSduUlI8CUH3vNP/xwosUkjUmjt6RcVXKTOsAkKH1Ko3VtSsuLc2dT6+NHdz1siR1zoAsSdtVvpXlgQPck7zMz37y43Ro8qMZF6XMtGaQx1jYtBdyvTKd3lK+edfLktS563LUtCTdkHJ5+n7hIX7jxX9mkAarxXH6jtyddVXKSmGQtVyR0aTGhYUGB0cHLl/wx2TqAAAHMElEQVRaW0gDsi/pSb3JGWRJ+jnkfvGLDFPn/vxL9H38t6EwcO0f0g1rbWCMMRaYqtSvvLB4Mf2v27xJPcmALEk/j2OfvLy9Fx//nWxrUeaSwTHGkhpTlcaV40vpVoAMOYMs9aKuLbEIISTAu8BrraEfxRj/NITweeDPgFXgGzHGr3frmZK06/IFuOcPYOZNuNkjpve7/PAEY8kc/zN/5QxyX32G5aSf/v6hjCqT1IlurkE+AbwYY/z8pYEQQgH4G+BXgBrwwxDCv8QYp7r4XEnaXZ/5ctYVaI/IDU4wkTvL+epGQF5dW6ewPEdjcIz+DGuTtHPdDMh3A0dCCP8OLAGPA0Xg9RjjLEAI4TngU8C3u/hcSZKyMTjOeK7GubYZ5HOVOmNUWS2OZ1iYpE7sKCCHEB4lDcDt/hD4yxjjt0MI9wH/1Lpnvu2eKlDeyTMlSdpzBscYbS5wrm0N8ruzS61jpj0kROpVOwrIMcaTwMn2sRDCEOk6Y2KMz4UQJkkDcantthKw+cghSZJ60eAYxWadufnK5aF3Z5e4m3kKJQ+RkXpVN3ex+HPgjwFCCHcC7wA/Az4SQpgIIfSTLq/4URefKUlSdlqHhawuzl4+Te/MzCKHklmKB45mWZmkDnQzIP8V8OshhB8AXwV+N8a4AvwJ8AxpMP5GjPFMF58pSVJ2htOjpA8m85xvLbO4OD3FYLJMX/nWLCuT1IGuvaTXehHvwS3Gvwt8t1vPkSRpzxg9AsCh5CLnq3WOTgzRmHmnde1whoVJ6oQHhUiStFOjkwAcTmY4N5/OIK9XzrauHcmqKkkdMiBLkrRTIwdpJnkOJTOcq9RZW2/SX3svvdYKz5J6jwFZkqSdyuWhdJijfXPEcxWmKnUOMkOTBEZuybo6STtkQJYkqQPJ6CRhsMp/vjrNy2fmOcQMK4M3p8eSS+pJBmRJkjoxOslkbpZzlTpPnoocLczRN+b6Y6mXGZAlSerE6BFGlqeAJq9OLXB7sUKubECWepkBWZKkToxOkltZ5O6D6V+pB9anfUFP6nFd2wdZkqR9qRWGH/nlIh+eGiD/WgVK7oEs9TIDsiRJnWjtd/zgh5o8+LGD8BrugSz1OAOyJEmduLSconIGGvPp1wduz64eSR0zIEuS1InSIUjycPF1qM9BsQyH78y6KkkdMCBLktSJfAGOfxpe+Q6QwIc/CXn/epV6mbtYSJLUqY89DPPvwPzbaViW1NMMyJIkdeqOB6E4mn59/DPZ1iKpY137HVAIIQ98FfgEUAS+EmP8XgjhXuApYBU4FWN8olvPlCRpTygMwl1fgtP/BgdOZF2NpA51cwb5S0AhxvhrwBeAS6/wfg14GLgPuCeEcFcXnylJ0t7w2b+Ax56FJMm6Ekkd6uZbBA8APw0hfB9IgD8KIYwCxRjjaYAQwjPA/cBLXXyuJEnZy+WBfNZVSOqCHQXkEMKjwOPvG74A1IGHgE8B3ySdOa603VMFju/kmZIkSdJu2FFAjjGeBE62j4UQvgV8L8bYBH4QQvgoaTgutd1WAuZ2WKskSZJ03XVzDfJzwOcAQgh3Am/HGCvAcgjhRAghIV2G8WwXnylJkiR1VTfXIH8d+LsQwvOka5Afa40/BjxNujDrVIzxhS4+U5IkSeqqrgXkGGMDeGSL8eeBe7v1HEmSJOl68qAQSZIkqc2ePCz+lVdemQ4hvJV1HerIh67HH2pv3BCuS2+A/XGD8LNDV3PdPjuk90uazWbWNUiSJEl7hkssJEmSpDYGZEmSJKmNAVmSJElqY0CWJEmS2hiQJUmSpDYGZEmSJKnNntwHuV0IIQf8LXAn0AB+P8b4erZVZSOE8CJQaX37JvD3wFPAKukx3k9kVVsW7I0r2R9Xsj822BtXsjeuZH9Im+35gAx8ERiIMf5qCOFe4EngCxnXtOtCCANAEmP8dNvYfwO/BbwBfD+EcFeM8aWMSsyCvdFif2zJ/sDeuAp7o8X+kLbWCwH5PuBfAWKMz4cQPpFxPVm5ExgKIZwi/f/2FaAYYzwNEEJ4Brgf2E8fYvbGBvtjM/sjZW9sZm9ssD+kLfTCGuRRYL7t+7UQQi8E+25bBP4aeAB4DPhma+ySKlDOoK4s2Rsb7I/N7I+UvbGZvbHB/pC20AsfCBWg1PZ9Lsa4mlUxGXoVeD3G2AReDSHMAxNt10vAXCaVZcfe2GB/bGZ/pOyNzeyNDfaHtIVemEH+IfA5gNZasZezLSczj5CukyOEMAkMAbUQwokQQkL6r/9nM6wvC/bGBvtjM/sjZW9sZm9ssD+kLfTCDPJ3gN8MIfwXkAC/l3E9WTkJ/GMI4TmgSfqhtg48DeRJ3zR+IcP6smBvbLA/NrM/UvbGZvbGBvtD2kLSbDazrkGSJEnaM3phiYUkSZK0awzIkiRJUhsDsiRJktTGgCxJkiS1MSBLkiRJbQzIkiRJUhsDsiRJktTm/wH7233tnC/HfgAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAokCAYAAAAwwpPoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4VEXbwOHf2V6y6Y0SWoClFxEIRQHFAlIUUBQLKqCoiAU+u9heRRRerAgIvKCggjQbivQOUkKHJfQa0kiyJZtt5/vjBERpCaSQzdzXlYvs5pydWbI5++zMM89IsiwjCIIgCIIgCIJCVdYdEARBEARBEITriQiQBUEQBEEQBOE8IkAWBEEQBEEQhPOIAFkQBEEQBEEQziMCZEEQBEEQBEE4jwiQBUEQBEEQBOE8IkAWBEEQBEEQhPOIAFkQBEEQBEEQziMCZEEQBEEQBEE4j6asO3AxrVu3lqtUqVLW3RCuwa5duzJsNltMcT+ueG2UfyX12gDx+ggG4tohXEpJXjsE4d+uywC5SpUqzJ07t6y7IVwDq9V6pCQeV7w2yr+Sem2AeH0EA3HtEC6lJK8dgvBvIsVCEARBEARBEM4jAmRBEARBEARBOI8IkAVBEARBEAThPCWSg2y1WlsDo2w2W0er1VobmArIwE7gGZvNFiiJdgVBEARBEAThWhX7CLLVan0JmAQYCu76L/CGzWa7CZCAnsXdpiAIgiAIgiAUl5JIsTgA9DrvdgtgRcH3vwOdS6BNQRAEQSgfTu8Ge+pVnx4IyBzOcBIIyMXYKUEQzlfsAbLNZpsDeM+7S7LZbGf/iu1AWHG3KQiCIAjlQiAAU++CCTdDuq3Ip689kMHtn6yk4+jl3DZ2BUv3ni6BTgqCUBqL9M7PN7YA2aXQpiAIQrkmyzJnnB5yXN4rHyyUH5kpkJcFznT49h4I+At9aq7by9Dvk/H4Arx8Zz3UKomB0zYxe/PxEuywIFRMpREgJ1ut1o4F33cBVpVCm4IgCOVWrtvLfRPW0fy9RTR770+Gfp/M0UxXWXdLKA7HNyr/tn8Bck9A2u5Cn/rp4hQynR6+vK8+T9U8zbxBN9A2MZrhP25j1qZjJdRhQaiYSiNAHga8Y7Va1wE6YHYptCkIglAueXwBHpn8F1uPZfPibXUZdFMtFu0+ze2frGD8igO4vYUfcRSuQ8c34ZLMPJpsVW4f21Co0zIc+Uxbe5h36h6m8eyb4X9dMH/ZhP812c1NdaJ5ec52pq09jCyLvGRBKA4lUubNZrMdBpIKvt8HdCiJdgRBEILNz9tOsvVYNp/e34yeTSuDJPFYuxq8OX8nH/6+l0mrDtI2MZpIs45sl4cjWS7OOD2oJIlqUSa6NqpE96aVMerUZf1UhIvwH9vIJl8tkh3hpMnhmA+sxdxy4BXP+33HKcID2Tx46kOIqAad34at36Fd8DxTbn2PpzRteOvnXaw/mMnTHWvTsHIoKpVU4s9HEIJViQTIgiAIQtHJsqwEwLFeeiQPhJ83QkQNKnV6jUmP3MP6Q1lMW3uYjYezcLh9hBq1VI8yUbVqOP5AgD2n7Lw0ZzufLknhg16N6VA3pqyfknA+jxNV+m6S5Z4817kumxfWof3Rwo0g/7LtFCMts1D78uDeqRBdBxr1gbmD0C55k4md3+XLql0Zv+IAv+9MxaLXkBBpolKYgTpxFu5sFE/TqmFIkgiaBaEwRIAsCIJwnViVksGp1FPMDX8T6aQdWg6AI2th9mOwYzZJ3T8l6aEWlzxflmXWHshkxE876T/lL17oXJeht9YWQdH14tQ2JDnA1kBtxjSvwvRlDeji2giONAiJvfRpOXmcPLKX2/TLoN1zSnAMoNFB78mgUqNaPIJnb7bzyCsvsXDXaXacyOFkdh4nsvNYmZLO+BUHaFUzko96N6FGtLmUnrAglF8iQBYEQShuAT+c3gmxDUCtLfRp87ee4FnD7xjdaTBwMVS9Efw+WD8Olr4H41pDp9ehWT/QGi84X5Ik2tWO5rehN/HavB2MXbyPE9kuRvZqglpMt5e9HKXahNtSnUizDnX1JDg4Df+R9agb9rjkaX/sTOVu1Rrlxr/TMdQauGciaE2w8mPCTu/mvi6juK9lo3OH5Lq9zNtygtF/2ujy6SrGPXQDnayXDsgFQRAB8nXN5w9gO23nYLoTt9ePUaemUpiR+pUsmHTiVycI161d82DOADBGQJ8pkHjLFU8JBGS27d3PSOl3pIa9lOAYlACo3VCo3RkWDIffXoQ/34QqN4AxHHz5ypdGD1G1oUFPDAmtGXNvU6qGG/ls6X58AZnRfZqKnNSy5lBqFsdXrgZAzcZJ+A6oSN+3gUqXCZBX2tJ4R7cWqrWD8GoXHqDWQI/PIbY+LHkPPm8B1i5Q906o3obQ8Or0b1uDOxrGM/CbjQyatolP72/OXU0qlcjTFIRgIKKs60wgILMiJZ05m4+zwpaOPd93wTEqCZomhHNnw3j6tkwg3KQrg54KgnBJx/5SRvQ0BtgwoVAB8rbj2XTLX4BOmw8dXrnwgLgG8OhvcGgF7JoPaXsgI0VpQ2MAVxYcWqWMNickIfX4nBdvt6JRq/jvon3o1Co+uKexCJLLUH52KrKspXZCZQDa1K3KAbky+uPbLn2Oz4/90CaqqU9Ak5cu/eCSBG2egfrdYc1nsGsu7J6v/CysGjTuTXzLgXw/KInHp27k+ZnJhBm1tK8TXZxPURCChgiQryOLd5/m44U2bKftRJi03NWkEm0So7DGWzDrNDg9Po5l5bH9eDYr9qUz8ve9fLI4hUE31+LpjokYtGLVuiBcF1K3Q3xjJcVix2wlTUJ9+cvtsr1pdFOvx5fQFm1M3YsfJElQq6PydTH5Dtj+gzKKOOFm6P01Q2/tjtcf4POl+wFEkFyGcjNO4JbDaVw1HIAIs45NutrcmL3zkudsOnyGW+T1BCQNqgY9r9xIeDW4azR0GQXpe5Uc9v2LYc2nsGECllvfYtIjj9N34nqemr6Z+UPakRgTUlxPURCChgiQrwPp9nxem7eDRbtPkxhj5pO+zejauBI6zYVlquvFh3JbgziG3W5lb2ouXyzdz2dLUvh56wk+vb85TRPCy+AZCNfCH1Dqlooc0SARCEDqDmj6ANRoB5v/Bye3QEKry56WsmszdVUnoNHzV9+2PkTJUa3XDX54EGY+DF1G8eJtTwDw+dL9ePwBPu7TVLzeykDAfpp0wkiINJ27zxXVgIjTy5Ed6UghF1YdWZmSzj3qZOSEJCVlp7BUaohrqHy1GgRnjigpOn+8TNipbUx++EN6jPuLQd9s4qdn2mExFD5XXhAqAhEgl7HVKRk890My9nwfr3apx+Pta6JVF27/lnrxoXzR7wb6tcpg+I/b6P3VWt6/pxF9W14kR0247uxPc/Dm/J0kHzuDSpJoUjWM2xvE09EaQ81o87nKA2ecHg5nOknNcePxBwgzarHGW6gUduEiLeE6cOYQeBxQqQnUuFm579CKywbIOXleamcuVa7I9btfex8s8fDorzBnIPz+EpIrk2G3vYq2IN3C4wswtm+zQl9rhOKhcaWRIYdRJ+TvtDhTtWZwGtL3byK2WZcLztmzdzevSsfA+sS1NR5RHfrNghWjYPlIquTn8uUD/+XBKZv5vx+389VDN4hqJ4JwHhEglxFZlpm8+hAfLNhD7dgQvn8iibpxlr8PCAQgwwand4E7ByQV6MxgjFRyEUMrnzu0be1oFjx3E89+n8zLc3Zw/EweL95WV1zsStrid8DvgVtHKAukimDLwVOs/uZtxrEAyWjkcMgNfG7vybu/ZvHurxCi12AxaMjN8+L0XHzntFrRZro3rcyDSdWItRiK4xkJxeGUkk/qj2vMryluusY0QntwBdz8f5c8ZdPhLO5QbSQ3pgWhocW0cEprhHunwS/PKUGRM4OhXT/GoFXxwYK9eHwBPu/XHL1GpGaVFkN+JllSDUL0f7/1Vq3XGjZCesqFAXKa3U1CxmrQAnXvuPYOSBJ0fAUM4fDHyyTpzLx650v8Z4GNCSsPMrhD4rW3IQhBQgTIZcDnD/DmTzv5/q9jdGkUz+h7m2I+e8HMy4a/JsLmqZB74tIPEpag5CE26wfV2hBu0vG/R1vyxvydfL50P3a3j7e6NxBBcklx58LazyHgheMb4dEFV8wxPXeqx0fOjMcYyjryatyKMSSCZnt/Y7J/Ifbm97Ek5mG2OiKwu32EGjVUCTdSPcpMlXAjOo1EpsPDzpO5LNubxqdLUhi/4gCPtqvBM51qEyqmScte6nZklYb75+ew8dhJLPH1uOX4r+D3XrLk2y7bPm5VHcbb6JHi7YtaAz2/AHM0rPkE3Nk8cc8E9Bo1b/28i2dmbGHcgy0ums4lFDO/F6MvG5cu6h/X5To1qnFSjiJw8sKFeqv2ZdBJlYzHkoAu+hJ56VcjabAyy7H0PQa0Cie5UV8++mMv9SuFis1lBKGACJBLmdvrZ8h3W1i8J41nOiUy7DarsmAm4IeNk2HZ++DOhsRblXqnlZsX5J3J4HGCMx1ObYeja5WV7MnfQpUWcOsINLU6MrJXY0L0GiatPkRAlnmnR0MRJJeEg8uV4LhJX9g+E46thxrtC3Xqstnj6OJfx5Fmw6h+9wjlTvtpWD0Wy6bJ3L1nJnfX6gAJScrmAX4vnM6CIzmg1lI7rBqta7dlQLtWHMp08fnSFCauPMi8LScY0b0BdzWuJH7nZSl1J2dMtdh4zEnzauH8cqoyt6jdkLYbKjW96Cn+A8sA0NbtXPz9kSS47R3lOrL4Lci30//eqahUjXhz/k6GfLeFcQ/egEakW5QsZwYqZDzGf1aN0KhVHDdYScjZccEp62zH+I96F9p6/ZXfY3G6aRi4MpHWj2PszZEcyGjLs99tYd4zYtGeIIAIkEuV2+tn0DebWL0/g/fubsTDSdWVH6Tb4KchcPwvZVT4tveU/MWLia4D1dsWjAA4YfssWPVf+KYnNH0A6c4Pef2u+kgSfL3qEP6AzHs9G4lV68Ut5U/Qh8GdHyo1b22/FypAzsnOJsn2EQeNDanV4/W/f2CJgy4fQvvnYeMk2PubMi2OXHCABHqLktLhcyt3VW5OzZuG8d97u/FImxq8Pm8HQ75LZlbd47zXsyHVo8RuWWUi9ySpqlhCDRre6t6QZ8fZQA2c2HLRANmZ76NG9gac+gjMcY1Lrl/tnwdDmFJH+ZuePNxvFn5/A97+ZTcvzdku6iSXNGcaAH7ThRt05FdpTaWDa8k6dZjISjUApeSnZ/8KDHiUmsbFTZLg9vchLxvdypF8f9M7dF7bkMenbmT+0+2IMIvyoULFJoYMSkkgIPPs98msSsngo95NlODY74VVY2D8TZCZouyG9PD8SwfH/6Yzw42PwZCNcNNwJVj+qh3SkbW81rU+T3aoxYwNRxn+4za8/kDJPsGKRJYhZREkdgJTpBIY71tYqFN3/jGRCMkOt7+rrDL/N0s83PIGPL0OXk+FF/fCS4dgRCa8egzeOA3P74SuoyHfDjMfgmndaWZI46dn2vFW9wZsOXKG28eu5KvlB/CJ33vpc6Zx0htC3TgLTauGoY2sSa4UCic2X/TwzYczaa/agaPKTaAq4UvyjY8pecmntsHUbjzaxMSw2+oyd8sJxi7eV7JtV3QOJUBWWeIu+FF8k1sB2L/pz3P3bT2eTSvPX/jUxkLPThWZSqVsMFK/OxGr3mJuKxunctwM+mYTbu/F1z4IQkVRLgLkjxfuZeSCPWXdjWvyyeJ9LNp9mhHdGnDvjQnKG9TXt8CSd5XFF8/8BU37Xt00mtYAt74JAxeBRgfTuiGtGsMrd9Rl+O11mZt8goHTNmF3e4v/iVVEaXvAkQp1blNu171T+YCTeeCyp8mBAFVs0zigqU2t5rdeuR2tAUIrKUH4+cF0eIJStunpDXDXGKWk2Ph2aJa9y2M3RrP4xQ50qBvDqD/2cu+EdRzLcl3DkxWKJOBHdmVyMM9MnTgLkiTRrWlltvhr4j9+8QD54M4NxEg5hDe6vXT62KCHUs3gzGGY2pUhNxq5v2UCny/dz9wtx0unDxWQPzcVAG1Y/AU/S2yUhAMjngOrz903Z9MxblUnIyfeUuRFwEWi1kDvKVDnDqqve4NZrQ6w6cgZhs3aRiAgX/l8QQhS5SJA1qnVTFh5kOW2tLLuylVZnZLBZ0v3c9+NVXmsdSWliP/ETsq2o/d9C32/VXJNr1WVFvDkSmh4Dyx9D2nWIwxpF8/IXo1ZvT+Dnl+uYX+a/drbqegylQ0XiC+YDq97p/LvFUaRd6/9hRrycc40frx48gnVGqXm7ZCN0LAXrB4Ln99I/JGfmfDQDXx6fzP2pzno+ukq/tiZeu3tCVfmykKSAxz3hlA3TsnjbFs7mm2BRFQZe5W0qH9RH1oKgN5aAvnHl5LYCR6eC440pKl38W6nCJJqRfLK3B1sPZZdev2oQPLOnATAFHlhlRKVRssxc2MqZW8mEJBxe/0c2L6KSlIW2nolkF7xbxod3PcNJN5Csy1vMLX5fn7bcYoPyvnAlCBci3IRIA/uWIvEGDOvz9tJbjkbBc3z+Hlt3g5qRZt5r4MF6X93wqrR0PR+eGaDMppTnPQW6D0Z7hip5MVOvoMH6sKMga3JzfPS84s1/Lb9VPG2WdFkH1X+DVfqTQfCqkFkLTi08rKnuTdOJ1c20ej2R4u3PyGx0GsCDFisjDjPHYQ05XZ6xpzm9+duIjE2hMHTNzN6oU2MCJW0gjzTTDnsXNnG5tXC2S3VRpIDcHLrPw53eXzUyd1Amqm28rsrTdWSlJQuZya6GXfzVc+qxFr0PPntJjIc+aXblwogP/sUubKRyLCwix9Qox2JHOeXNVtYsOMUvX1/4NeYiv894lK0Brh/BtTqQIe9bzPaamPS6kNMWX2odNoXhOtMuQiQ9cve5fuEeaTm5vHqnB3Icvl5k/98aQpHs1x83taFfsotkHkQ+k6Hu8cVbVekopAkaPM0PDQbco7D17eQpD3AL8+2xxpv4ZnvtjBywR6Rn3q1so+CPpQ8lYUXZ22l5fuLcVRuo2zpGrh43p7bmUP97BXsibwVg7GEFs8ltISBS6Hnl8quWV/fQtW1bzLz0Qbc3zKBL5bt59kfkkVuYUkqyDPNkMOoUzCCrNeokRJaEUCCw6v/cfi2/ce5QbLhrt6p1LsKQNUWynUi9xQRs+9l8r21yHZ5ee6H5HM7PArFw5+rbBISY7l4uoS144MEUJG5eCyj5q6lp2Ydqqb3KwsrS4vWCPd/j1S9Hb2P/odXq+/lvd9288dOMagiVDzlIkDGFEXs7qlMabST33ac4tMlKeUiSE7LdTNlzSFerX2MhosfAXMMPLGseHbKKozEW2DgYtCFwNS7qGSbzg+DkngoqRoTVh6k39cbSM1xl05fgknOMQhLYMj3ycxLPoHd7eP7tBqQn3Nuk4h/27NsJiYpH1PLB0u2byoVNH8Int0ErQfDpinox7dlZJM0Xu1Sj9+2n+KRKX+R4ypfMzHlhjMDgHxDFDEhfwdCTerWZEegJp6Upf84PHXbInSSn5hmXUu1m/9QLQn6/QBnDmH982E+7FqNNfsz+eiPvWXXpyAUcGWRTQgxIRff1EcVUwd3/V48IC3kE/M0dHiRWg0q5V4COhM88ANS1ZY8kf4BA2NtPD9zK9uPi9QboWIpHwFymyGQeCs3HxjDcGsGnyxO4ZU5Ozide30Hd+OWH8AaOMCg0+8ou98NWARRpbxTUUxdGLRUKR+3YDi6WQ/wn1uiGdu3KTtP5nDXZ6tYsz+jdPtU3mUfxR+WwMqUdAa0q8nzt9Vh4tEqys8ukWah3TWLk8TQoHUpLcQyhCll4wYsBr0FaUZvnnRN5Mv7GrD1aDb3f71eTKOXhIIUi7Doyv+oRd2+djRrAo3QnNykVB8poDu0hDzJgDGxXal39R9q3gx9Z0D6Xu7Z9SwDWkYzYeVBftx0rGz7FUSk/FxyZTPRlkuXTzN1fg2D5CfJsw7aDlXeN8qCPgQe/BEpvgmvOT7kNoONgdM2cSonr2z6IwhloHwEyCoV9PoaKbwaz6S+wQfNs5m95TjtRy3lyW83selwVln38AJpdjfzNuxjivlLVKYo6PcjGMPLpjOmSHhgJtw5SgngvmzNPd7f+fnpNkSYdTw8eQNfLT9QLkbly5wsQ/ZR0tVxeP0ySbWiGNi+FurQeI5rq180QM5KPUJ91yYOVe6GWl3K2/pWbQFPrlBGkzeM5671/fj+7lAOZzjp89VaDqY7Src/wc6RhhcN5rCof9zduEoYe4wtUMk+JRUHOJyaSbv8lZyK7VCyVQoKq05npQTcya28nvM2nWqZeXXuDlalpJd1z4KCxpOLS2XGpLvM9gNRiUiP/Y707Ca4/b3S69zFGELhoTlIUYl8Kn+I1bOLx6duwpHvK9t+CUIpKR8BMoA5Ch6eh2SKpN+ep9lV41PmxU7h0YMvkjn5PtZMff2S+Z9l4fsNx3he+p4oz0m4Z4KyEURZUqmUzUWeWgNVmsOC4dSedxe/dJPp0rgSo/7Yy1PTt4iL35W4syE/lwPeSABuqB6BTqOib8sEFuY1QD68WtmG+jz7F09BLclU7vBYWfRYySvsMgoenA3OdFos7MUfNx3Anufl7i/XsHKfCICKjTOdLEKJ+tc0uiRJVGrcAbesJd+2CADbih8Il5yEtX28LHp6cfW6Qq+JqI6u42vDZ9SL0TP4283X5SBEeaPz2fFqQ698YLXWyqLf64EpEh75CVVYFf6nHYU+bSvPi/x0oYIoPwEyKPVfn1oHHV/FIHlpJB2gVbyKpsbTtDv8Bae+HQiBsl945vEF2LB+Bf01f0KrJ6BGGU+fni8qUVm5fu9UcGdj/K4nX6j/ywe3hPPn7lTu+XINhzIuLEUlFCioYLHNHkqtGDORBbtN3d8qgQWB1kj+fLAt+Pt4WSb24Fz2aOpR03rxbYZLTZ3b4Km1UL0t1de+xso631ErDB793198tiRFLNosBgFHGmmBUKJCLpxGv6NpdRYHWqDeOh1yTxKbMos0VSxRjUsp7aawGveB7p+iObiE2bFTiLdo6T/lLzYczCzrnpVfsozR78CrtZR1T4ouJBYe+RlNSDQzTR9zfO8mRon8dKECKF8BMigLCDq+ouTVDk1G/eRyIl/axjRtXyodmotv45Sy7iELd6XyeP50/FoLdHqtrLtzIUlSaiUP2QidXkdKWUy/jX1YmrSVbLuTHp+vZvHu02Xdy+tTQYC8Kt3EjdX/rkJSKcxIZN12nCIK34655+63bfidGoGjZNfpU+pdvaiQWHhwDtzyBuZ9PzFX8zpP1HPz30X76D1+naiTfY38dqVSQdRFtultnhDBVOMjBPw+7F92pLlvKydq3Vfyu+ddjRb94Y6RGFJ+5deE6VQO1fLIlL9YskdcF66KNw8NPny6QowgX4/CqkD/n9EZQ5hj+pDlq1YwadXBsu6VIJSo6/DKXHQ6jYqEXu+yPVAT56qvlDzRMpS89k86q5NR3/R8yZVyKw5aI3R4CYb8BbU6UiP5I9ZGjKB36C4GfrORsYv2ibq5/1YQIO/Oi6BF9X/+bp+6pQ6/+JKQDiwBVxbIMoGlH5BOBE27DS6L3l6cSgU3/58yderO4ZVjz/Bz0j6OZjjo+tlqJqw4IKZQr5YjjUzCiAq5MKdYpZJ4/t47GO/vidmdxq9hD9Kk71tl0MlCavM03DoC4965/BY3kcZxWp74djNzNovd9orMnQOArC+nATJARA2k/r9gMhmZbfqQ7xcs5oe/jpZ1rwShxJRKgGy1WlVWq3W81WpdZ7Val1ut1trF3UanenH8pu9KmGM/HF1f3A9faKdz3bQ5+Q0uTRiqpOsoKLqc8GrwwPfwwA9oCfC2/R1+j/6Mn5eu5OkZW3CKvOS/ZR/FpzGTg/ncRhBn3VAtgmMJPZDlAO75z7H9z2nU9+xgf90nMJmvw6nVmjfD4NWQ0IomW99mQ9VPebhGDiN/30vvr9ay+2TulR9D+Jsso87LvOQIMkD7OtG0enQUHzT8mY5Pf4Zae+mKBteFm4ZB19HoDixkpvZdulXzMuzHbeLDc1GdDZANZbRQu7hEJSL1/wWLQcts00gmzv+T70WQLASp0hpBvhsw2Gy2NsArwJjibkCSJPz178EuG/FvnFzcD19oy9as4Tb1ZvKbPQ66EtoQoqRYu8DT6+H296nn3cNiw8s0s43lwXFLOJJ5/eYl5+SVYk1fx2mcumhAokqE8YIf39+9C58E+mLY9zNN1j3HYVUCze95rvT6V1SWOCUnvdsn6DJ288bxwaxOnI4600b3L1bz/m+7xQekwnLnoAp4SJdDLzqCfFZSYjRv3HczIfrLVDO4nrQaBA/8gPrMIT7JeY63ah/i0yUpPPOd+PBcaAUBsspYipt+lJToOkj9fyZcr2KO8X0mzfuDL5ftF1WQhKBTWgFye+APAJvNth64sUQaaVidhYGW+FMWl1maRWjyBDxoiej4TJm0f800Omg7BOnZzaib3MdgzS9MzHmSSZ+9y29br7+Rgm3Hsmnx3iI2HymlVfbODHJVYeg1qn9sBHFWw8ph3P3MKH413cPCmAFEvbC25HbOKy4qFdz4GAzditT+BaqmrWBO4AV+ifqSbasXcPt/V7B0b/nMPf1j5ym2HSulDQ5cyiK2LDn0kiPI5Zb1TnhiOVJ4dR47/jp/1vyedbv20/urtRw/4yrr3l33PM4zAGhM5XwE+azY+kiP/kq4Qc3PxndZ+ed83v55l0jNEoJKaQXIoUDOebf9Vqu12IdPkmpFsV2qhy7/DGSV/gKClEOHuSV/KUeqdIeQmFJvv1iFxMI9X8GAxYTF1eQ9aTyN5t7KnM9fIv3U9RMo14kLoYrRy9hFKaXToDODTDmMKuHGf2wEcb7acWF0e2kqdzzzXyyWcpRzaAyHzm/B8zugwys08O1mlv49JvleYfo3ExkyYzNp1/nmPP/2vzWHeX3+jtJpzK0E4nYphDCjtnTaLE1RicpmRzcNp27qAjaEvU7d7JXc/eUathw9U9a9u6657coHeK35Ol6TUlSx9ZEGLMIUWYnvDB+g/ms8z0zfLLayF4JGaQUCbxlyAAAgAElEQVTIucD5SZgqm81W7HNzBq0auWpL5caxv4r74a/o5NLxGCQv0bc9X+ptl5iElugHL8V/73S0EVXonTmBiAlNOTGuJ/KeX8BftlsWm9K3szQwAOeBdfx16CKjyOn74LPmMKv/uQV218SVQarffNH0iqBhjoJOr8ILu+CuMdQLcTNFN5pn9j3Gp6Pf5uulu8j3lY83wcfj9uM9uZOU06VQnaOg/rVkCEWluviHp3JPo4Nb34RBS9GHxfEZHzNK/oRnJi7k1+0ny7p31618h3Jt0ocEUYAMEFkTaeBi1NYujNB+y30pw3hq/ALS7WKXTqH8K60AeQ3QFcBqtSYBJTakE1G9MXbZiO/ohpJq4qJkn4f6x2ax03ADETXKuN5tcZMk1A27U/mF5Rzvt5xfzX3QnN6KNPMhfP9tBNlluB1tjBWVIZSXDXMZ8dPOf45eZB7AN6UrbnsWgX1/wLTu11YnOxAAVybH881UCQ/iAPksnQlaDkQaugXu/orESB3vq76i94rbmTnqSVYnby/rHl5Rp4wZfKSdyPytJy7688wtP5E2rT8cWXftjRXkmaqDZRr9cio3g0HLoNPr3CJv4E/tcJbP/IQxC/eIxXsX4XUqswtGS2QZ96QEGMKg73S4cxQdtHsYmzGY8Z/9hz0nc658riBcx0orQJ4HuK1W61pgLPBCSTVUr3I4yYHaeA+XbiWLQytnEEsmOU0Glmq7pa1q3eb0GDaRZV2WMZSX+C63GYdzy/ANUWdGav8cSfI2TKc38/5ve/D5A9jtuZyceC+5rjzucrzOCP9AOHMYTmy6+rbyzoAc4LinggTIZ6m10KwfuqEbof8vBKom8ZB3Nq3nd2TDRz048lfZzyRciq5hd5qqDpK8ecMF+ZE79+xG9/NgYg/Nh//dCSmLr62xggBZa64AATIoo8kdXkIavApzlXqM1k6g05qH+GDSDOzu6/P1UFb8rmzcspaQkOt8PcLVkiRIGoz6qdVo46y86f2M3Al3smbd6rLumSBctVIJkG02W8Bmsw222WxtbTZbG5vNVmLb8NSLt7BFroMhywb5pbTpgSxj2DiO/XIVmt5yb+m0WYZUKon7k2rx5rDheG4fSWx85bLtUMuBEBLHxNApzF+/h04fLWHpx/2onH+AJfXeY9STffhLl4QXDfLun66+HVcGAJlyaHCnWFyKJEHNm4keNAff05vZW+1+6rk2UX3BQzjer0naxHvwLf0Ads6B07vAex3kKze+l4Ckpr1rMT9v+3sU+WiGkzM/PIUGP8OjxmGXjWRtnn1tbeUrKRbGkCAcJbyc2PqoHv8Tuec46hvO8NqJIawecz9Hjx4u655dNwJ52eRiJtQQhLnp54upi3nwYnI7f0wD1VFa/dGDLROfIuASOepC+RMUG4Wcr3qUmT1SbSQCypt0KfAdWEHlvH1siH+AEEOQrV6/jBiLnoE31cKkK+NyVToz9JlClPckqyp9yjjep6dqFaktXuTeBx7nxhqRPHF7c1b6G+PdMf/qK5w40wHIJJSqEaZifALljy42kcYDxsELe/m1/miWyjfiOL4b1YqPYPbj8FVb5A8qweK3y7ajIbFItTtzn3YNn/+5G68/gNcf4JtvJnCTtJX8m1/j9cfvZV2gAepDK66t+o07B78sYQ4NglJeRaVSITV/EOOLWznVYACdvcuInJLEvjnvgkdUucCdQ65sIjQYF2/+m0pFaPsn0D6fzKaILjQ78T3O0U3JWzb6XJ6+IJQHQRcgq1USUnTBPiSlVMnC/udI0uUwKrXvXyrtCRdRoz1Sj88Jx05jeT/cMZL47n/vUnZLvVgWBlqicxyH1KvMnXUqI8hZFXUE+SLCwkLp1ncQXd6Yy5F+q3ij4Z/0lT7mWc8QvvTdw085xb4nUJFJrQYRLWdyc+4vPPHNJh6csIb7s7/GEVKD8A7PEGHWYTPfSFj+yWu6Zvhc2dgxERViKMbelzOGUKr0HUPGw8vZpWtC3R1jcIyqT96iD8p2rcLFONLwbZh8besSCkmVn0supuAfQT6PISyWpOem81ub70n2Vce44j18YxrAknfBkV7W3ROEKyonleqLJrJSbXxnVKgzD1Dia8kPLicibT2jVI/xQv2qJd2acDnN+ilfsqykA5wn0qwjr3ISpE+EU9uh0lUspCwYQT4jhRFnufRGEBWRVq2iU71YOtWLxee/kU1HzrBsbxrqqtfBaGrtzsg1O/DKsZ+443B7nmQOtVUnodt3Sn414Kp6M+yfgHxgGVJU4lU143GewS6biDSL10alxCZEvvQ7M+b+SMLOL7l5zShYMwpfpRvQ1O8KdW6HuMZKDe4ysmvTShouf5EsUwKRjW+/8ABfPix8DVRaqN8darS76rbUnlzsmDFog25M6rIkSaL7nV3Y2bgtg2fMood9Fneu+i/Sui+RmvRV0uPiG19wvRaE60FQ/rXWqRLJiUA0+Wn7S7ahQADvonc5KUfha/YoOk1Q/neWP5e42DZr3IR8WUPu8d1X97gFG0HoQqLQqMXv+lI0ahVJtaJ4tWt9ujUp4/x0AElCuuN9DAEny1VP0U9aCG2fBWvXc4ck1G7McTkal23pVTfjd2WTi4lwU8UZJbwcvUbNg/fdT9zTC3g1YTofefuy+2QOLP0PTLgZPmkMjrQy65+5XidyZBPpq6de/ICVH8PGSbD5fzD7sWsaadZ5c8lTh1yydnqwa1QljE9eeJwtrT/lNs/HzPe3x7f1B5hwE4xLgj9ehW0z4cSW0ls7JAhXEJQjyIkxIRyR44jKOFCyDW34Cu2pzYz2DuappKsbdRJKT9s6cRxaXInwk3u4qu07nOk4VBYiQoN0JXowi28MT65CSv4WjJFw8/B/fJBqVi2CPYHqtErbd9VNyHk55MpmLIagvKxeNWu8hZEDumNL7cjk1QdZu3UXrQLbaOPL5vaAgbKaY6gRH8Ufpo50PL0I2Z2DZDivJ6k7kVeP5WjVHhjq3Ubc4mfh+Eao1vqq2tL7HeSrLVc+MIgZtGre6NaAHs0q8+ZPDXj72H08GraF+wPJxG+aguQ7b1FvSBx0fAVufLzsOixUeEF5Ja8SYWSNHE9SzvqLTrcXi6MbkBe/w1pNK47E9qBOXMW++JUHtWLMLJEr0Sb7KmcWnBmcISz4thGuKOIawJ0jL/qjunEhbJJiMTj3XPU1Q8rPxU4IcRUoz7QorPEWPurTlOyu9Zmf3IblR85wh66Mc/mbPoBh/QJOrJ5Blc5PK/fJMvz+EnkqMz3334V8QMUWgwb13l+uLkCWZYx+B16jeI8AaFI1nPlPt+X3namMW16ZT0/cjEnt566qbjrHZNPUkE6s7xSqUJGyKJStoJwnrhJu5Igch85nB9dFdle7Fo50WPERTL2LPGMczzke4+E2NYq3DaFE6DVq0g01CHOfUPILi8qZQYYcSlSIyDENNhq1Cn9oAvqAS6l3fRXUnlxyESPIVxJu0vFou5p82e+GMl+0lnTTHWyXEzGtHwvePOXO3T/BkTW8n9ebzi3q07RODdYFGiLv+fXqqpx489Dgw68TAfJZkiTRtXElfhnSnvnPtOPhdnXY7o7nyU1VSFrdjMZbuvFtlrWsuylUcEF5JTdo1WTpq0IAZVW6OeraHzRlMawarWxhLfuRrV15MrM/hggd3ZpUuvbHF0pFfnhtVOkB5XURW79I58quDNL8oUSLADko+UOrggNlS3JT0WsZa7x2cmUTFjGCXG6Em/X8Uu9FmtieIXPhKKJaP4D/t//jgFyNA1V7822vxizbm8aCAzfS/sxkyNwP0XWK1khBTq0sAuQLSJJEs4RwmiWE82rX+qTlull3MJPko9lUFZWChDIWlCPIAJ7Q6so3xVHqbd04mNFHWVDS/gV4egPrW33BquN+nri5lliwVY5o45RRCX+arcjnyo500gMWokNEikUwUkVUA0DOPlL0kwMBtD4ndkxiBLmc6dbjPpbILYnaNBZ5XBty8zwMl4fycd8b0KpVtK0dzW5qKgenF/26gccBgKQPKcZeB6fYUAM9m1Xh7R4N6WSNLevuCBVc0EZ26qiaBJAg6xoX6mUfhT/fAGsXGLwabn0Tf7SV//y2m0phBu5tkVA8HRZKRURCAwCyj+0s2omBAJL7DFlYiBIBclDSxyhBkCvtcNFPzs9FQsYpmTFo1cXbMaFERZh1ZHf5ild9T/CbryWPBN5iSN/uJEQqmwGF6DVEJRRM91/NgEtBgKw2iBFkQShPgnaoIy4yjPT94cTmHLu2Wsjrv1IW7HT9GHTKBXPWpmPsOpnLZw80x6gTb4blSc3KsZyQo+BUEUeCPHYkOUCObKa5SLEISlFRsdhlI/nphyhynRJ3DgBerQiCyqPeSXVonvgWc7YcZ1zLaueC47Na1KvFmVMh6NP2U9Q9ND15dnSARizSE4RyJWhHkKuEGzkth+PNPnX1D5J3BjZPg0Z9IExZUXsow8n7v+2hVc1Iuovc43InMTaEU3IUcu7Jop1YEADlYiZKbAQRlOLDTRyXo5HPHC36yfnKFrp+3VUVEBSuA7ViQvi/O+pdEBwD3FAtgiNyHPmni14Bx+1Qrh1aMYIsCOVK0AbIlcONnJYj8OemXv2D7FsIXie0fgKAPI+fp6ZvRqOWGNu3WYUt+l6eheg15Gqi0LqKuEFBXjYAubJZ5CAHqcphBk7I0ajtV7ElcsEHqIAIkINStUgTR+Q4tDmHi3yux6Us0tOYxGtDEMqToA2Qq0QYSZfDUTlPX/2DHFkDhjCo1BxZlnl9/g5sp+2M7duMKuFihW155dbHEOLNLOJJZ0eQTUSKOshBKSpEz0liMLmKOLsA4FZGkDFcB1trC8UuLtTAMeIx5Z0Cn6dI53rzlNeGVqRYCEK5ErQBctVwE2mEo8/PAr/36h7kyDqo1gZUKuZuOcHcLScYeksdsbq2nPOaYzHLTvC4Cn9SQYAs68NE1ZIgpVZJ5OgrY/A7il4LueD1IRnFKGEwUqskHKYEVAQgp2gzDL48ZQRZJ0aQBaFcCdp3+lCjhhx1Qf1jRxGn08+ek5kC1duS5/Ez6o+9NK8WztBbi1gDU7juyCHxyr/2IqTfuJUUC7U5oiS6JFwnfKY45RtHetFOLAiQ1cbwYu6RcL3whtdQvsk6VKTz/G4lQDaaRYAsCOVJ0AbIkiThMcYoNxxXkYd8dJ3yb7W2/G/tIdLs+bzapT5qlcg7Lu+0YcriSlfW8cKfVBAA6USAHNQ0lmjlG1cRU3AKFulpzCJADlba6FrKN0Us9RbId5AvazAai1r/QhCEshS0ATKAz1SQCnE1I8hH1oLWhC+uMZNWHaKjNYZWNYu+u5Zw/TFGVgHAnl60ADmAhDlUBMjBzBSmfKiWXRlFOi/gziFP1hFiNJREt4TrQGRsVZyynvz0otXWD+Q7cGHArBclQQWhPAnqABmLMpVOUabSzzq1DSo15a+jDrKcHu5vKTYECRahMcrv0pV5ovAnuXNwYCQqRARAwcwcqaRYuLKLlmLhddlxYCBUbDMdtBIizaTJ4eSdKVrpUMnjwIkBsz5otx0QhKAU1AGyNixe2U3PUcRKFrIMabshtj5/7ErFoFXRoa5YmBcsomPiyZc1eLMLX60g4DpDTsBMhKhgEdRCwpW/87ycogXIPrcdp2wU20wHsYRIE1mE4rMX7bUheZw4ZQNmnXhtCEJ5EtQBcmSIiSzZQqCoI8j2U8qUekx9Fu5KpWPdWLFjXhCJCzOSTjhyET44+VzZ5GIi3ChGCIOZJTQMt6zFV8RFen63Mo1uESPIQatalIlMORTJWbTXhsrrxIUBgzao324FIegE9V9sVIiedDkcX1F300vbA8ABqRqnc/O5s1F8CfROKCtGnZpMKQKtq/ABst+VTa5sJswkAqBgFm7UkoWFgDOrSOfJ+Xac6AkVI8hBK9Sgxa4OQ5dftNeG2ufELRnFxlKCUM4EeYCsI00OJ2C/ugB5vV1ZsNO2dlRxd00oY3ZNFEZ3EUaC3DnkYCZMjCAHtXCTlmzZUvQqFh4nTtlIqHh9BLU8XSQmXzYEAoU+R+Nzka8SG0sJQnkT3AGyWU+aHI5U1Bzk9D1gjuWvNBWVwwzEWsTCrGDjNsRg8RU+CJLys8mVTSJADnLhRh1Zcghqd9FGCZWFWHqRgxzkvPoo1PjP1UUvDK3fhUctSrwJQnlT7AGy1Wq9x2q1fnfe7SSr1brBarWusVqtbxV3e5cTY9GRTjjavAxl4V1hpe2B2HpsO5ZN0wRR1zQYeY2xWGQHeN2FOl7jySUXESAHO4tBwxksaPOLtpOeyufCJYsc5GDnNxbMJhZhhkEfcOEVAbIglDvFGiBbrdZPgZH/etzxQD+gPdDaarU2L842LyfKrCdTtqCSfecK+V9RIABpe3FHWDma5aJJVREgByN1iLIhhN9ViJFCvw+Nz0WObBZT6EFOpZJwqcMweHOKdJ7G58KBqGIR9MwFm08VYaGePpCHT2MuoQ4JglBSinsEeS3w1NkbVqs1FNDbbLYDNptNBhYCnYu5zUsKM2rJlsKUG85CFv7PPQFeJ0dVVQFoWjWshHonlCWtRRkJsmcVIv2mYBe9XJGDXCG4teEY/Hbw+wp3giyj9TvJVxnQqoM6a63C01qUADlQ2M2n/F50eAloRYAsCOXNVQ13WK3WAcAL/7r7MZvNNtNqtXY8775Q4PyhWztQ62ravBoqlYRPHwF+lCmxqMQrn5Sl7JK0Mz8WSYJGIkAOStoQJUB2ZGdwxTmCgnzDPLUZvUaU+wt2Hn0EKq+s/N7N0Vc+we9BLfvxiWn0oKcPVzaSyctOo1Ahr8cBgF8EyIJQ7lxVgGyz2SYDkwtxaC5gOe+2BSj86oZiEDBGgYPC54xlKgHyhpxwakabxM5YQcpQsKWwO7cQMwsFI8h+XWhJdkm4TvgNEQXXjKzCBcgeJ4CYRq8ATAUbybizUwsXIOcrAbKkE68NQShvSnQ+0Gaz5QIeq9WaaLVaJeAOYFVJtvlvZ3NNC51ikXUQNAY2ZRqoG2u58vFCuWQOU14XHnvhA2RZL/LRKwLZGKl8U9gP1fl2APwiQA56kZYQsmUz3txCplgUfHiSdeK9RBDKm9JImBsMzAD+ApJtNtuGUmjzHG1owaKKIowgByJqcviMm9qxISXXMaFMWSKUqVKvoxCL9ApSLCSDCJArAtXZUePCXjMKgqCAVqRYBLtIs45MORS5kAMucsGHJ5VefHgShPKm2Jdc22y25cDy826vB5KKu53CsljCyZN1GF2FHUE+gMtSC39AFgFyEAsLDSVf1iAXJghyK2n0KpPIR68INAX56X5nJoXKOC/IM5V14noR7KJCdBwhFHMh30/yXbkYALVRjCALQnkT9DWJIkzK1rHxjowrv9kF/HDmMGmRNwOQGCPe8IJViEFLGiGQV4iU+IJRIJ0IkCsEfcGsU35uGoUaEy4IkBF5pkEvwqRjixxKortwswv5TiVA1hhEgFxSNm/eHKvRaCYBjQjyzc+EYhUAdvp8voEtWrS4aM5U0AfI4WYdWbKFaEf6lQPknGPg93BIjgcgMVa84QUrSZJwSBY0hdkQoiAAMpjFIr2KICQkFI+sxuM4U8gAWUmxkPTiA3Ww02lU2NVhGDwphTrem6d8uNYYxLWjpGg0mknx8fH1Y2JizqhUqiLsCCZUZIFAQEpPT2+Qmpo6CehxsWOC/tNWhElLlhxKwFGIKbGCCha786OpEm7EpAv6zw8VmlMditZz5Q0h/O5cHLKBUJPYcrwiCDPrsGPC4yrkZiEFlQpUejFKWBHkayMw+nILtTurJ09Jz9KZxIenEtQoJiYmVwTHQlGoVCo5JiYmB2Xm4eLHlGJ/ykS4UUcWFqTC7JiWdRCAjfYIEkX+cdBza8Iw+q4cBHmdOTgxEGYUH5gqgnCjFodsJJBXyAC5YIZBYxTXjIogoA9FReDv1JrL8LuVEWS9mH0qSSoRHAtXo+B1c8k4OPgD5IIRZE1hcsayjyCr9WzK0JEYI9Irgp1XF4bJf+UtyH15OThkI2EmURO7Igg36XBgRHYXbnv6QL6SYqEW0+gVg75gLUIhXh9+t/La0ItFeoJQ7gR9gBxRkIOs8TnBl3/5g7OP4bdUweWVqSUW6AU9nyEci2y/4lSp323HjlFsM11BRJi02DEhFSzOvBJfXi4BWUJvEB+qKwKNuaDco/vKMwyBfCduWYvZqCvhXgllbf369eY+ffpYz95OTk429ujRo94999xjHTp0aA2/3w/AhAkTYrp161a/e/fu9X/88ccIAIfDoerfv39i7969rX379q17/PjxC95sXC6XNGDAgMRevXpZH3roodppaWkagJkzZ0Z279693t13311v2LBh1fx+P36/n2HDhlXr2bNnvT59+lhTUlL0AH369LGe/WrdunXTt99+u8ql+r9582ZT9+7d6/fq1cv68ssvJ5zt/8WMHj06/oknnrhgl+Rvvvkm6vw2AJ544olay5cvv+Qnxtdeey3hyJEjuszMTPUPP/wQ+e+fL1myxNKzZ896vXv3tg4YMKCW0+lUAfTv3z/x7rvvrtenTx/rgw8+WOf8c3744YfInj171rvkE7iEoA+Qw41KFQvgynVNs4/iMFYGoEaUqGka7GRDBHq8yF7X5Q9023HKIkCuKCwGLXbZiMpbyADZbceJAZNBpOBUBBqTEiDLhQmQPS5c6DGL9SxBbezYsXEjRoyo7vF4pLP3ffbZZ5UHDx58at68eTav1ystWLAgLD09XTN79uzYuXPn7p0xY4btk08+SQgEAkydOjW6fv36rjlz5tjuuuuuzC+//DL+321Mnjw5tnbt2nlz5861de/ePXPs2LGVXC6XNG7cuMo//PDDvvnz5+91OBzqBQsWhP3888/hHo9H9dNPP+0dNmzY8f/85z9VAWbPnm2bPXu2bdSoUYeio6M9w4YNO3Wp/o8YMaL6K6+8cnTu3Lm2kJAQ/8yZMy8IVgF+//330NWrVxfbJgEffPDBserVq3t27NhhWrp06QWP+/7771efMGHC/jlz5tiqVauWP23atGiAEydOGObOnbt39uzZthkzZpxbRbtlyxbj3Llzo+VCrBn4t6D/qzXp1ORKBVNizgwIrXzpg3OOkVlQ4q16pBgNCnYqk/L37szOIORyFUs8dhyEEicC5ApBrZLIU5nRelMLdby/IEAWQVDFoC4o9+hxZqO/0sEeJy4MmHSFqqgtXKNpaw9Hzd1yvBD7wxderxuqZvRvW+Oyo2vVq1fP/+KLLw4MHz685tn7rFarKzs7Wx0IBHC5XGqtVivHxMT4FixYsEur1XL48GGdVqsNqFQqhgwZkubz+QA4efKkzmKxXDBcm5ycHDJo0KBUgDvuuCN30qRJlfV6vTxz5sy9ZrM5AOD3+yW9Xi+vX7/e0r59+xyANm3aOF988cV/vMG9++671V588cXjFoslcKn+Z2Rk6Nq1a+cEuPHGGx2LFy8O79ev3z8Wc6WkpOhnzpwZM2TIkBOzZs2KKcr/6zfffBO1atWqMLfbrTp58qS+f//+qY888khmnz59rO+9996R8ePHxx88eNA0efLk6AEDBpyrsjB9+nRbfHy877znG0hNTdU4HA51//79azscDvWAAQNSu3XrlpORkaEeM2ZM1TfeeOPYG2+8Ub0o/YMKMIIsSRJefYRy43IjyN48cKZzUo5Go5KoHC4qFgS7sxtC2LMuv22s2uvAgZFQgwiQKwqP2ozOf+VFWAB+twOnbMAogqAKQWtW3k/c9kKsa/G6yJP1mPXiw1Mw69WrV7ZWq/3HEGXNmjXzx4wZU61z584Ns7KyNB06dLADaLVaxo8fH9OvX7/6d95557kXkUaj4b777qs7Z86c2C5dulxQf9TpdKrDwsL8ABaLxe90OtVqtZqzweJXX30Vm5eXp+7cuXOu0+lUh4aGnguyVSqV7PV6Adi2bZvR6XSqb7311nNTZBfrf6VKlfKXL18eArB06dLwvLy8f1zg7Ha7asSIEdU+/PDDIxpNkV/fMoDD4VB/++23+7/66qv9U6dO/ceo+eDBg1ObNWtmPz84BqhcubIXYN68eeGbN2+29OvXL9Pj8Uj9+vU7PWXKlP3jx48/MHr06ITU1FTN8OHDa7z++uvHLvaBozAqxF9twBgFDpQR5EvJOQ7AQV8kVSKMaNRB/9mhwtNblIEGZ076ZY/TeJ3YZSMWESBXGPmaEAwep5KfLkmXP9jjFNPoFYguRAmQ851X3mRI5cvDgQ69RryflIb+bWtkXmm0t7SMGTMmYdq0aXsbNWrknjBhQsyIESMSPv7446MAgwcPTn/ssccyHn744TrLli1zdOrUyQ4wa9asfXv27DEMHjy49qRJk1JeffXVGgDdunXLNJvNfrvdrgKw2+1qs9nsB/D7/bz99ttVjx49apg4ceIBlUqF2Wz2OxyOcwGtLMuSVqu8f82ZMyeqd+/el3/TAz788MND7777brVx48ZJzZs3d2i1Wnn8+PExixcvjgTo3bt3elZWlnbIkCGJDodDnZWVpR0zZkz8sGHDzk29GQyGgMfj+ceLPy8vT2U0GgMAdevWdQEkJCR4vF5vof9IPv/889glS5ZETp06NcVoNMrx8fG+xx9/PF2r1RIXF+erU6eOa+/evYYTJ04YzqaOHD161Pjaa68lfPDBB8cK206FuKIHzNFKgHy57UGzjwCw2xVOtUiRf1wRGMOUEeT83MtcK2QZrd9BnmTEoBVvchWFX2NG7fErM0u6K1wP8u04MWLSixHkisBoUQJkbyECZLXPRb5kQLrShywh6ISEhPjOjuLGxcV5k5OTQ/bu3av/6KOPqk6aNOmAVquVdTpdQJIkecyYMfHx8fGeBx98MCskJMSvUqmoU6dO/uzZs21nHy83N1e9dOnS8NatW7sWLlwY2rRpUzvA8OHDq2u1Wm8juXIAACAASURBVHnKlCn71WrlGtSiRQvHsmXLwu+9994z69atM9esWTPv7ONs2rTJMnTo0FNX6v+iRYvCP/vss4PR0dH+l19+OaFDhw65Xbt2zRk8ePC5N8wHHnggC2D58uWW7777Lub84BigSZMmrq+//rqy3W5XWSyWQGZmpvrw4cPGBg0auG02m/FyfxeSJMkXyxv++OOP4/fs2WP+7rvvbCaTSQZl4d6MGTNip0+fvt9ut6sOHTpkbNiwoXvRokW7AA4dOqR77rnnahUlOIYKEiDrzBH4UaG+3AhytvL/lpxroXUtkX9cEZjCYwHwOi4z4ODLRy378WrM4k2uAvFpCxb25tuvGCBLXidO2UCEGEGuECxmM25ZS8BViADZn4dHJQZcKqJ33nnnyNChQxPVarWs1WoDI0eOPFKzZk1P3bp1XXfffXc9SZL+n737jpOquv8//preZzvL0vsFGxBNFMUIEQtEith7JyTRFFvU7y92EzUSxRhbRLFgJCpEbBG7WFGKBeFSlqUsbG/T6/39MbOwyxYQZhmX+3k+Hj5k7szce3Y53HnP5557DmPGjGkcN26cf/jw4eGrr7564MKFC4uSySR33HHHxl33d9lll1X//ve/H3DqqacqFotFmz17dumyZcucb775ZuHBBx/sP+ussxSA888/v3Lq1KkNn3zyiXfatGnDNU3j7rvvLmveT319vaWwsHC3Qw4GDBgQPv/88xW73Z48/PDDfZMmTdrDieF3Gj58eOSMM86oOuOMM4Y7nc5EPB43XH/99Zubxz53ZvDgwZHS0lLHQw891OPKK6+sAqioqDDPnTu31+DBg4MXXnjhMIATTzyxbsaMGdVLlizJmTJlynCj0chVV11VXlRUFP+h7d2VLs7ouS47DXgpCHRSKWzcgmYwsSHk4UyZwUIXvHmpewrinVWC0lN9xc0y7Z+eJK3NAbkJPMWdvtYQCxLEKzdi6YTXbqEJ1x4tJGNOhIka2735XxxgBg4cGF20aNGa5sfHHnus/9hjj12z6+tuuOGG7UCrCm7Pnj3jzz//fKfrl7tcruQTTzxR2nJbSUlJfM2aNcvae/2sWbM2t7f9s88++2ZP2j958uTGyZMn71EoHjdunG/cuHHtTvszY8aM6hkzZrQJXxdeeOGOypTD4dCWLFnyLaRm2mje/u67765q+Z6ePXvGV61atby943RWHd71Z9tTurhmnOO0UK150TodYrGFmKuEBCYZYqETXreHqGZCC7e5H2KnSGoxgKRVArKu2FsE5N0wpyvIciOWPjRPA7gn8yBbkiFiRsd+aJUQItN0EZDznFZqkx6Svs4ryE221E2U/QtkiIUemM0mfLgxdLYiVrqCrFllJSw9MdjTU0PuwWIhpkRQpvLSEa/DTBMujJHdB2RrMkzcJAFZiO5IJwHZQi1etE5nsSin1pQak9o3X05oehEwujBFOwnI0fRUXzYJyHrSvGz0bheD0DQsiTBhg11mKtAJh8WEDyemPVhIxpoMkzTL54kQ3ZEuzug5Diu1mhdDR0MskknwbadCyyPXacEpN9voRtDowRLrJASlK4jNgUnog9GRqiDHg7sZYpGIYiRBzCQzFeiFwdC8kMxuAnIygY0oCakgC9Et6SIg5zkt1GreVKUwHm37glAdJGOUJ3IpyZGTmZ6EzW5s8U4WhEgHZLNDKsh6YnOlAvJu57qNBgBISgjSlYjZgy2+m4CcXsI+aZF7WoTojvQRkF1W6khXANurIjdtA2BD2ENvWUFPV2IWD/ZOVkzTmgNyenlZoQ+W9N93LLibIRbNIcgsIUhPomYP9mRgNy9K9Q0kIAvRLekjIDtTQyyA9lfT86Xmtl4bdEsFWWfi1hxcyY4rQc0BqbmiKPTB5XQQ0qwkdheQ0yFIkxCkK3GLB6sWhVi44xelvzxhlZu+9eDzzz93nX766Urz4xUrVjimTJky/NRTT1V+97vfDUgkUlMPP/bYY0WnnHLKiMmTJ4948cUX8wD8fr/xoosuGnzaaacpZ5111rCtW7e2WbY1GAwaLrvsssHTp09Xzj///CFVVVVmgPnz5+dPnjx5+LRp04Zfc801/RKJBIlEgmuuuabf1KlTh59++unKunXrbACnn3660vzfkUceOfLWW2/t3VH7ly1b5pw8efKI6dOnK3/605/6Nre/pY8++sg9efLk4VOmTBl+yy239N71+Weeeaag5TEAZsyYMeiDDz7o8JLsTTfd1HfTpk3W2tpa0wsvvNBmjsTFixd7J06ceNCpp56q3HvvvSXN22fNmtVz6tSpwydNmjRi7ty5hR3t/4fQRUDOdVqo1dJ/H+3NhexrriB7KZEKsq4krV7cWnpJ4XZEA40kNAMOpwyx0BOPzYwfB4nOZjgBiKWHWEhA1pWENV1w6WwawHRANuxuJUbR7d1///3FzUsaN2978MEHe82cOXP7woUL1VgsZnjjjTdyqqurzS+99FKPBQsWrJk3b576wAMP9E0mk8ydO7dwxIgRwZdffln95S9/WfvPf/6z567HmDNnTo8hQ4aEFixYoE6ePLn2/vvvLwkGg4aHH3641wsvvLD2v//97xq/32964403chYtWpQbjUaNr7zyypprrrlm65133tkHUnMMv/TSS+o999yzsbCwMHrNNdds76j9N998c/8bbrhh84IFC1S3252YP39+m7B699139509e3bpokWL1nz//feu5cuX73OF8S9/+cuW/v37R7/99lvne++9l9vyuUQiwW233db/oYceWr9w4UK1rKzMvmTJEvcHH3zg+frrr90LFixYM3/+fHX79u3WfW0H6GShEIvJSNiW/rsNtrNqWrqCXE0uvaSCrCsGRw5WQ4JIyIfN2fZGvHioET8OPI42X+jFAcxlM9OkOXHtLiCnK8gGCcj60nzTbrgJ3D3afUk87MeMBOT9aunjBaz8d0aqhzuMOqeGn83oZLlV6N+/f+Shhx7acO211w5s3qYoSrChocGUTCYJBoMmi8WiFRUVxd94441VFouFsrIyq8ViSRqNRq688sqqeDy18Nu2bdusHo+nTbl2xYoV7iuuuKIC4KSTTmp64oknetlsNm3+/PlrXC5XEiCRSBhsNpv2+eefe8aOHdsIMGbMmMDVV1/d6jLG7bff3u/qq6/e2ryiXXvtr6mpsR5zzDEBgCOOOML/zjvv5J577rl1LffzyiuvrLZYLPh8PmMgEDC53e7drpDX7JlnnilYsmRJTjgcNm7bts120UUXVVx44YW1p59+unLHHXdsevTRR3uWlpY658yZU3jZZZfVpNtkdrvdicGDB0cBRo0a5V+6dKnb7/ebhgwZErr00ksHB4NB0/XXX791T9vRGV1UkAE0Z/rfTHsV5KZtRO0FxDBTkiMVZD0xOvIA8DfUtft8POTDhxO3XRffJUWa256qIBt2t1BIc5XQJpfR9cSQnuWks8VCwsHUvQ0m6RsHvOnTpzdYLJZWlyEHDhwYmTVrVr8JEyYcXFdXZz7uuON8ABaLhUcffbTo3HPPHXHyySfvCN5ms5kzzzxz2Msvv9xj4sSJbVavCgQCppycnASAx+NJBAIBk8lkomfPnnGARx55pEcoFDJNmDChKRAImLxe746QbTQatVgsBsDXX3/tCAQCpuOPP37H2ML22l9SUhL54IMP3ADvvfdebigUajPRu8Vi4bPPPnNNmjTp4Pz8/FifPn3amQWhXRqA3+83Pfvss+sfeeSR9XPnzm1VNZ85c2bFqFGjfM3hGKCoqCgeiUSMq1evtsfjcT7++OOcUChkbGhoMK9evdr5+OOPl95xxx2b/vSnPw1KJvc4q3dIN5/6Fmce8aAJcwdjkAPW1LLDvXKlgqwnJlfqCk6gqZaCXgPaPK9FfPg1B14JyLritpnZrjkoiXYywwnsmMXCKONMdcWU/mKdCDXQ0fIwsVDzFJGyCud+87MZtbur9u4vs2bN6vv000+vOeSQQ8KPPfZY0c0339z3b3/722aAmTNnVl9yySU1F1xwwdD333/fP378eB/Af/7zn7WrV6+2z5w5c8gTTzyx7sYbbxwAcMopp9S6XK6Ez+czAvh8PpPL5UpAatjBrbfe2mfz5s32xx9/fIPRaMTlciX8fv+OrqlpmsFiSV0FffnllwtOO+20TlZNS7n77rs33n777f0efvhhw+jRo/0Wi0V79NFHi9555518gAceeKC0T58+sTFjxgSWLFny7R133NHrgQceKLnpppu2Ne/Dbrcno9Foq0JsKBQyOhyOJMCwYcOCAH379o3GYrHdFmyNRiN//etfN9588839LBaLNnjw4FBeXl48Ho8bBg4cGLbZbNrw4cMjFoslWV1dbS4uLo7vbp+dHm9f3tySoig5iqK8qijKh4qifKYoypj09qMURflCUZRPFEW5JVPH+6HyXFYaDTkdjkGuNxViMECxVyrIemJ1pYbeBJs6OKdGmghgx2OXIRZ64raZ8ePEvLu5bmMhAEx2Cch60jyrTcTX/pUngFg49eXKIn1Dl9xud7y5iltcXBzz+XymNWvW2C699NLByWQSi8WiWa3WpMFg0GbNmtVz3rx5+en3JYxGI0OHDo00jxm++OKLa0aNGuVvHpP71ltveUeOHOkDuPbaa/tHIhHjk08+ub55qMXhhx/u/+ijj3IAPvvsM9fAgQNDze366quvPCeccMJul4F8++23cx988MHS//znP2sbGhpMY8eObZo5c2Z1c5t69eoVmz59ulJXV2cCcLlcSaPR2KoKfdhhhwW//PJLb3Owr62tNZWVlTkOOuigMNDp3PEGg0HT2rk36MMPP/Q+99xz65577rl1W7dutR133HFNRxxxhP/TTz/1JpNJysvLLZFIxFhQULBP4RgyW0G+GnhXVdUHFEVRgH8DPwEeBU4DSoHXFUUZrarqigwed480T/VW0EEFudo6gEK3DaushqUrNk8qIEc7+KAzRPz4NQe9pIKsK06rCT8OzLHdVJDTN+mZbFIl1BOrO3XlKRxopKMRxrFwqm+Y7XKDrx7ddtttm373u98NNplMmsViSf71r3/dNHDgwOiwYcOC06ZNG24wGBgzZkzjuHHj/MOHDw9fffXVAxcuXFiUTCa54447Nu66v8suu6z697///YBTTz1VsVgs2uzZs0uXLVvmfPPNNwsPPvhg/1lnnaUAnH/++ZVTp05t+OSTT7zTpk0brmkad999d1nzfurr6y2FhYVtp6TYxYABA8Lnn3++Yrfbk4cffrhv0qRJrUK10Wjk4osvrrz44ouHWiwWraCgIDZr1qyylq8ZPnx45Iwzzqg644wzhjudzkQ8Hjdcf/31m5vHPndm8ODBkdLSUsdDDz3U48orr6xq3t6jR4/Y1KlTR9hstuTEiRNrDznkkPAhhxwSXrp0qWfKlCkjkskkN95442azed8/szP5qX8/EGmx37CiKF7ApqrqBgBFUd4CJgD7PSDnO61UJHMZ6q9o/UQ8CoFqyk259JLxx7rj9KYCcizQZsgXAOZYE02USAVZZwwGA1GjE0si2OnrEpEAJsAs40x1xZEOyNFAx4W4RHMF2SFfnvRg4MCB0UWLFq1pfnzsscf6jz322DW7vu6GG27YDmxvua1nz57x559/fl1n+3e5XMknnniitOW2kpKS+Jo1a5a19/pZs2Ztbm/7Z5999s2etH/y5MmNkydP7rTSPGXKlIYpU6Z0uprSjBkzqmfMmNHm0v2FF16447Ktw+HQlixZ8i2kZtpo3v7uu++u2vV9l156ac2ll17aptJ5++23Z+TGvJb2KiArinIZ8MddNl+iquqXiqL0BJ4D/gB4gZZ3ufiAQXtzzH2V57KyJZGH1vgdrYr6/koAyqJeSopk/LHeuHJSN2/Gg+0HZEvMh48huKwdjTQUB6qY2Yk1EUxNAdjBpcBYyI8JsDgkIOuJMz0vejzUSUCOpCrINlmFU4huaa8Csqqqc4A5u25XFOVQ4AXgWlVVP0xXkFueHTzAbtZu7Rr5LivlWiGGQHVqcndLulqcXkVvfdhDsdeWjaaJLPLmFgCQ7OCDzhb3Eza5Oh0rJQ5McbMLUyIB8TBY2v/ynIgEiGgW7LaMTLspugmP045fs5MIdTzLSTISIKkZsNul8CJEd5TJm/QOAl4EzlVV9U0AVVWbgKiiKIMVRTEAJwFLMnXMHyLPaWG7lgpDNJXvfKJhEwBrI/n0kBv0dMditRHQ7BjC7Xxvi4Uxa1Gi5rbzI4sDX8KSvjQe6XgcciLiJ4gNp1xh0BVPehrAZCfzZGvRYKpv2OT+hS6WTCaTUsEQP1i633Q4HjqTd6T9FbADsxVF+UBRlFfS22cC84ClwApVVb/I4DH3WJ7TyjbSAbmxxVCV+lRA3qoV0cMjFWQ98htcGNub7za9LW6RMYR6pFnSwyaiHc9kkYgECGLDYZGArCduuxm/5sDQSd8gFiCEDadVAnIX+666ujpHQrL4IZLJpKG6ujoH+K6j12TsX66qqlM72P45cFSmjrO38l1WtrVbQS4j6igiHLbJFG86FTS6MUfbCcjpRQB2LCsrdEWz7r6CrEUChDQbDglBuuK2mdmKg7zO5smOhQhqNnLly1OXisfjl1dUVDxRUVFxCDpa/EzssyTwXTwev7yjF+jmrJ7nslKhpZeb3qWC7Hf0hnqZA1mvQmYP1nh7ATm9zS4BWY8MtvTtE52GoKAMsdAhm9lIAAeFnfQNQ7pvlEjf6FKHH354FTAl2+0QBx7dfNvKdViIYCVoyYfGLTufqN9EnbUXgAyx0Kmo2YMj3s6l0vS45OblqIW+GO27ryATDRKSIRa6YzAYCBtdWOId9w1jPEgYu8ytL0Q3pZt/uWaTEa/dTL2lBzSmh1gkYtC0lUpjMVaTkVynzHWrR3FrLu5kx2OQm1fNEvpiTF850CIdjzM1xIIENRsOqRLqTsTkwhIPdPi8KR4iYpSiixDdlW4CMqTGIVcbe+wcYtG4BbQkm7Uiijw2mcpLpxL2PLyaj12XtYwHUxVkm1sqyHpkTs9fG+9kpgJjIiRDLHQqanZhS3YckM2JEFGDDNsTorvSVUDOc1mpoCB1k56m7ZjBYkOsUOZA1jNnPg5DlGCg9eXSiD+1eIgEZH0yO1IV5Fiw4wqyKR4ihB2nRTe3c4i0hNmNI5leSKYd5kSIqFHmQBaiu9JVQO7hsVEWy0vddBOq3zEH8vfhfHp45Ju+XplcqdlNmuoqW22P+utJaAbcHhlioUfWHQG54wqyKZ4aYmG36upUKoCE1Y2RJMTaX47clgwSNckKi0J0V7o6q5fkOFgWSd2Qx5alUF8GRjPf+91SQdYxszu13LS/vvVy8bFAAz6ceJ2ySpoeOR12wpqFRCdDLMyJMGGDDatJV6dSASSt6VlOOhijbkuGiJud+7FFQohM0tVZvdhr58PwUDSrC9a9BaUfkiwaQUM4Kavo6Zg9JxWQQ41VrbYnQ400aU5yHXLzph45bSb8OEh0NItFMoFFixA32uX+BT2ydRKQk0nsWlgCshDdmK4Ccs8cG1EsBPr8HL55EbYtp0E5A5Ap3vTMmdMDgIivdQVZC6cqyDkSkHXJZTUT1Gxo4Q7GIKcvrcdNMs5Uj5pnOaG9VThjqZv3EmYZYiFEd6WrgNy8EEhFj5+nlo812SgtOaXVc0J/3HmpgBz31bbaboj4aNJc5MoQC11y2UwEcKB1VEGOpgJywiwBWY9M6YAcD7U3RWS6z1glIAvRXekqIJfkpD7I1nrHpDaMOIWyYKpy3DdfLoXplTc/FZCTwbpW203RJnw48NplhgI9clnN+LFjiHUQkHdUCeXcoUem9E2cEX9D2yejqb6xY7lyIUS3o6tP/p7pKvHGiAfOmQ8lI9n8hQ+DAXrnShVIr8xWO34cGEKtA7Il7iNk7I1ZbsDSJafNREBzYIx2MNdtuoKsSUDWJYsrNbtNONBImzpxNDUsx2iTgCxEd6WrT36H1YTXbqayKQzKyeAtYUtdkF45DlkOVOd8Bg/mSH2rbba4n6hZPuD0ym1LVZBNHa2Wlh6DrFkkIOuRLb3CZizY2Oa5eDh11cHQfCOfEKLb0V0q7Jljp6IxvOPx5rogffOleqx3AZMXW7TFpdJkElsySMzizV6jRFbZzakxyB0uJ9x8Gd0i40z1yO5OBeR4OwE5EkhtM9vlC7YQ3ZUOA7KDiqadAXlLXZB+Mv5Y98LmHOyxFh90kSaMaCRsEpD1ymg0EDV2EpDTFWSjTc4feuRyOjucJzuSXn3R4pTzhxDdlf4Cste2o4Iciiao8kXomycfcHoXtebiSrb4oGueukkCsq5FTS4syVD7ywlHmi+jS5VQjzx2Mz4caO0E5ObVF80OGWIhRHelw4Bsp9ofIZZIsrU+VQHqVyABWe/i9nw8yRbz3fpTcyInnQVZapH4MYibXRjRdgynaCWant1Cxpnqkttmwa852l0oJJ6eO9vuki/YQnRXugvIJbkONA22N4TZXJcKyDLFm8CRT44hQDgSAUBrKk/931OSzVaJLIs3L/QQbWeqt/Q2GWeqT267OTX7TTvzZMdDqYBslSEWQnRbugvII/vkAvBlWR1b0gFZxiALoysfgKa61HLT0fpUQDZ4e2WtTSL7ks034LUTghLpECQBWZ+cFhM+nJhibYdYJCM+wpoFt0MWoBKiu9JdQB7e00Oe08JnpbWU1QZxWk0UuGSlNL0zu1NDKXYE5IZtxDQTNm+PbDZLZNmOhR6i7VxGDzXh1+zYrbIUuR4ZjQaCBjeWaNuArEX8BLDjsulqqQEhDii6+9drNBo4alABn6yvIZbQOHJgPgaDIdvNElnmKugDQFPVJjj4cKL1W2kil0KPTAGoZ1rzDXjtVZDTIchp1d1pVKSFTB5s8Y1tn4gGCGh2XFbT/m+UECIjdFdBBhgzuIDtjWFq/BEuHTsw280RPwIFfRUAwlUbAEg2bqNSy5Px6TpntKZvwGvnRqxk2Idfc+CUEKRbEbMbe6Jt3zBEA1JBFqKb02dAHpS6nK4Uexg7pDDLrRE/BnnF/YhqZqgvA8AUqKRSy6NPnlSQdc2RWgxix7R/LWgRP0FsOCQg61bU4sGuhSERa7XdGPMTwIHDIn1DiO4qY19vFUVxAc8DeUAUuEhV1XJFUY4CZgNxYLGqqrdl6ph7a0gPN9NH92byqF4yvEIAYDCZqTQVY/NtBsAZrqLBPFwqQDpnSgdkLdxImzNF1CchSOfi1hwIAOFGcO0stpjiQSIGO0ajfL4I0V1lsoJ8BbBMVdWfA88B16e3PwqcC4wFjlQUZXQGj7lXDAYDfz9rFOMVuQFL7FRv7YU3XA4RP/ZkgIijONtNEllmcqZmvWlvOWGiAfyaXYZY6JhmS19hCDW02m6JBwgbZXiWEN1ZxgKyqqoPAHelH/YDGhRF8QI2VVU3qKqqAW8BEzJ1TCEyKeTuS3GiAnwVqQ0yB7LuORwOIpqFWLChzXPGWCBVQZaArFsGR+oLFOHWX6AsiRAxkwRkIbqzvbp+rCjKZcAfd9l8iaqqXyqK8h5wKHAC4AVaDt7zAYP25phCdLVk7gC8NQECW7/FBVjyeme7SSLLnFYzTTiwt1NBNsX8BDQbbhmGo1vNVxi0cEOrITjWZJCYVQKyEN3ZXp3ZVVWdA8zp4LlfKIoyHHgdGA20XIfVA7QtxQjxI2AtHATroe7793EB7sK+2W6SyDK3zYRPc2INtReQUxVkGaeuX+b0AkNRfx22FtvtyRBxqSAL0a1lbIiFoig3KopyQfqhH0ioqtoERBVFGawoigE4CViSqWMKkUnekqEAWLd+CqRmthD65rSa8eFsO4tFMoElGSaAXSrIOmZz5wEQ9tXt3BiPYCZO0iIrLArRnWXyzP4k8HR6+IUJuCS9fSYwL71tsaqqX2TwmEJkTFH/YQAUB9exOtmPkh5FWW6RyDaXzYxPc7QNyNEAAEEc2My6nC1TADZPasrQqL9FQE73Dc3qykaThBAZkrGArKpqJXByO9s/B47K1HGE6Co5OXmsoy8NSQe/il7NxzIHsu557GaqcGKM1LV+IppaWS9mdslUkTrmcbmJaGZigRYjB9N9Q7NIQBaiO5Nrg0KkGQwGas5ZzGurajjNZpYlhAVumxmf5sQU29T6ifTS00mzjDPVM6/TQhNOksH6nRvTfcNgkyEWQnRnkgCEaGGM0osxSq9sN0P8SHjsqTHI5pi/9RPpKmFCxpnqWo7DQpPmwtpimrdkuAkjYLR5On6jEOJHTwbPCSFEB1xWMz4cWBNBSCZ2PtF8Gd0qAVnPvHYLTbgwhncOsYj6qgHQnAXZapYQIgMkIAshRAeMRgNRUzoEt7xRL30ZHbmMrmseu5lGzYUpurNvRJuqADC6Czt6mxCiG5CALIQQnYhZ0pfKwy0CcrqCbJQKsq6ZTUaCRheW2M6+EW9KVZBNEpCF6NYkIAshRCfizQE50k5Atss4U70Lm73Y4r4dj5P+agKaDbtT+oYQ3ZkEZCGE6IRma6eCnB5iYXJICNK7qNmDI+EDTQMgGaihTvPidViy3DIhxL6QgCyEEJ3QbDmpP7RTQbY4ZIiF3sWtXkwkdywQQqCGWjwUuKzZbZgQYp9IQBZCiE4YHOmA3KKCnAj78Gt23DYJQXqXbP4CFUrNhWwM1VKnecmXgCxEtyYBWQghOmFytK0gx0M+gthx2WQqeb2LOotTf/BtB8AaqaMOL7lOCchCdGcSkIUQohMWZ3MFeediEM0VZJfNlKVWiR+LmLt36g+NW0DTcMTqCZpzMRllCXIhujMJyEII0QmHw0VEs5AI7QzIWqieJpxSQRZo3lRATtRvhqgfixYlbM3PcquEEPtKArIQQnTCYzfThIN4cOdqaYZAFTVajgRkgcOTR6PmJFa3GQI1ACQcEpCF6O4kIAshRCfcdjNNmotEi4BsCtVSo+XgloCse/kuENwVpAAAIABJREFUK9u0QuJ1WyBYC4DmlEVChOjuJCALIUQnvHYzNeSg+VNLCJNMYgnXUkMOLqsEZL3rleugXCtIjUFOV5CNrqIst0oIsa8kIAshRCfcNgtVWi6mQEVqQ6geo5ZID7GQm/T0LhWQC7H6y4n7U8tMW3MkIAvR3UlAFkKITrjtZiq1PMzBqtRqaYFUJblW88oYZEGxx0YFhVjjPiJV6wFw5BRnuVVCiH0lAVkIITrhaQ7I8SBEfBBIVQlrkDHIAswmIwFHCQDatpWENQteb26WWyWE2FcSkIUQohMeWyogA+CrgPRY5DpysZnlFCog4ekDgLP8E0q1XuS7bVlukRBiX8nZXQghOuGxW6iiOSBv31FBDlrzMRhkMQgBlvx+ABiTMe6In0+hW1bRE6K7k4AshBCdsFuMVJOe1zZdQU5gImHNyW7DxI+Gu7AXdZqb1b1P57PkweS7JCAL0d3JADohhOiEwWAgZCsEjR0VZJ8pF6ddQpBI6ZXnYVzk75zoHYbBsI1cp/QNIbo7qSALIcRuGO0ewkZnqoIcqKbekEu+hCCR1ivXThNuPttYT4HLiskoQ2+E6O4kIAshxG7kOa3UGQvAtw38VVRrXgo9EpBFSp88BwDlDSHOPKJvllsjhMiEjA+xUBRlOPAFUKyqalhRlKOA2UAcWKyq6m2ZPqYQQnSlHh4bVY159EpXkCsSAymUmQpEWq/cVEAeWOjid8cPzXJrhBCZkNEKsqIoXmAWEGmx+VHgXGAscKSiKKMzeUwhhOhqPbw2tiVyoWk7mr+K7XGPBGSxg9Nq5uZTDuLh836C3SKrKwpxIMhYQFYUxQA8DtwEBNPbvIBNVdUNqqpqwFvAhEwdUwgh9ocit40tMS9a4xYMiQhVWi5FHgnIYqdLxw5kRIk3280QQmTIXg2xUBTlMuCPu2zeBLygqurXiqI0b/MCTS1e4wMG7c0xhRAiW4q8dj5ODkVz5FM7YBILVhzDvVJBFkKIA9ZeBWRVVecAc1puUxRlPXBZOjz3BBYDpwCeFi/zAA1711QhhMiOHh4bbyV/yqrz/ki1P0z9iq9kMQghhDiAZewmPVVVhzT/WVGUMuDE9E16UUVRBgOlwEmA3KQnhOhWeqSHU1T5wtT6owAyBlkIIQ5g+2OhkJnAPMBEahaLL/bDMYUQImN6eO0AVPki1AVSAVnGIAshxIGrSwKyqqoDWvz5c+CorjiOEELsD0XpanFVU4SGUBS3zSyzFQghxAFMlpoWQojdsJqN5DktVPnCNIZiMv5YCCEOcBKQhRBiDxR5bFT7IjSFYzL+WAghDnCy1LQQQuyBHh47Vb4INf6oBGQhhDjASUAWQog90CNdQa7xR+QGPSGEOMDJEAshhNgDRV4blU1h4klNKshCCHGAkwqyEELsgZF9coHUWOSfDszLcmuEEEJ0JakgCyHEHph0aAkTD+mJwWDIdlOEEEJ0MakgCyHEHpJwLIQQ+iABWQghhBBCiBYkIAshhBBCCNGCBGQhhBBCCCFakIAshBBCCCFECxKQhRBCCCGEaEECshBCCCGEEC38KOdBXrVqVY2iKJuy3Q6xT/p3xU6lbxwQuqRvgPSPA4ScO0RHuuzcIcSuDJqmZbsNQgghhBBC/GjIEAshhBBCCCFakIAshBBCCCFECxKQhRBCCCGEaEECshBCCCGEEC1IQBZCCCGEEKKFH+U0by0pimIEHgZGAhHgclVV12e3VdmhKMpyoCn9cCPwGDAbiAOLVVW9LVttywbpG61J/2hN+sdO0jdak77RmvQPIdr60QdkYBpgV1V1jKIoRwGzgKlZbtN+pyiKHTCoqjquxbaVwGlAKfC6oiijVVVdkaUmZoP0jTTpH+2S/oH0jQ5I30iT/iFE+7pDQB4L/A9AVdXPFUU5IsvtyZaRgFNRlMWk/t5uBWyqqm4AUBTlLWACoKeTmPSNnaR/tCX9I0X6RlvSN3aS/iFEO7rDGGQv0NjicUJRlO4Q7DMtCNwHnATMBJ5Kb2vmA3Ky0K5skr6xk/SPtqR/pEjfaEv6xk7SP4RoR3c4ITQBnhaPjaqqxrPVmCxaC6xXVVUD1iqK0gjkt3jeAzRkpWXZI31jJ+kfbUn/SJG+0Zb0jZ2kfwjRju5QQf4EmASQHiv2bXabkzWXkhonh6IovQAnEFAUZbCiKAZS3/6XZLF92SB9YyfpH21J/0iRvtGW9I2dpH8I0Y7uUEFeCJygKMqngAG4JMvtyZY5wFxFUT4GNFIntSQwDzCRutP4iyy2Lxukb+wk/aMt6R8p0jfakr6xk/QPIdph0DQt220QQgghhBDiR6M7DLEQQgghhBBiv5GALIQQQgghRAsSkIUQQgghhGhBArIQQgghhBAtSEAWQgghhBCiBQnIQgghhBBCtCABWQghhBBCiBYkIAshhBBCCNGCBGQhhBBCCCFakIAshBBCCCFECxKQhRBCCCGEaEECshBCCCGEEC1IQBZCCCGEEKIFCchCCCGEEEK0YM52A4QQoispimICfg+cS+qcZwVeBW5WVTWiKMpc4DtVVe/LYhsvBk5XVfWUbLVhdxRF+TlwL+AAGoGLVVUtzW6rhBCiaxg0Tct2G9o48sgjtd69e2e7GWIfrFq1qkZV1aJM71f6RvfXVX0D2u8f27ZtI5FI0KtXL0wmE8lkkq1bt2I0GunTpw/l5eXYbDYKCwu7okl7pL6+nqamJvr375+1NnQmFouxYcMG+vfvj8PhoLa2Fr/f3yXtlXOH6EhXnjuE2NWPsoLcu3dvFixYkO1miH2gKMqmrtiv9I3ur6v6BrTtH1u2bGHy5Ml8/PHHuN3uHdurq6tZsWIFJ554IjfccAN+v5+amhpqamoYOnQos2bNwul08tJLLzF//nxisRiNjY1cccUVnHvuuSxYsIC3334bo9HIpk2bsFgs3HPPPQwbNowLLriAUaNGsXz5crZv387hhx/OPffcg9FoZPny5dx3332EQiEMBgNXXXUV48ePZ8GCBbz11ls89thjrX6eRCLBvffey3vvvYfH4+Gwww5jw4YNPPvss1xwwQXk5ORQWlrKOeecwwknnMCtt95KeXk5mqYxbdo0Lr/8crZu3crkyZNZsWIFQKvHCxYs4PXXXyeZTFJZWUlxcTF33303xcXFrdoxd+5cvvvuO+67L1Vkj0QibN26lcGDB2f871DOHaIjXXnuEGJXP8qALIQQmfD9998zZMiQVuEYoKioiBNPPHHH48rKSp555hmsVitnnHEGixcv5oQTTuDFF1/k8ccfJy8vj5UrV3LJJZdw7rnnAvDll1/y2muv0bNnT+644w7mzJnDPffcA8DmzZt59tlnCQaDTJw4kaVLlzJixAhuvPFG5syZQ58+faisrOTMM89EUZQO2//iiy+yatUqXnvtNQwGA7/+9a9bPe/1ennjjTcAOP/88zn++OO55JJL8Pl8nHfeeZSUlDBy5MhOf0fLly9nwYIFDBw4kPvuu4+77rqLBx98sNVrysrKcDqd/PGPf2Tjxo2UlJRw00037ea3L4QQ3ZcEZCHEActoNJJMJnf7ugkTJuBwOAAYOnQodXV1uFwuHn30UT788EPKyspYs2YNwWBwx3sOPvhgevbsCcBBBx3E22+/veO58ePHYzQacbvd9O/fn8bGRlauXEl1dTW//e1vd7zOYDCgqmqH7frwww+ZOnUqNpsNgLPOOotnn312x/NHHHEEAMFgkOXLl/Pkk08C4PF4mD59Oh999NFuA/IxxxzDwIEDATjzzDOZOnVqm9fE43Hef/995s2bx4ABA3jmmWe48soreeWVVzrdtxBCdFcyi4UQ4oB12GGHUVpait/vb7W9srKSGTNmEA6HATCbd9YKDAYDmqZRUVHBtGnTKC8v5/DDD+cPf/hDq33Y7fY27+nsuUQiweDBg3nllVd2/Dd//nzGjh3bYftbtgtSgb8lp9MJQDKZZNf7SZLJJPF4vE3bYrFYq9eZTKZW72n5uFmPHj0YPXo0AwYMAOD0009nzZo1O35/QghxoJGALIQ4YBUXFzN58mRuuummHSHZ7/dz6623kpub2yrI7uq7774jPz+f3/zmNxx77LG8//77QGpc8N4YNWoUmzZt4ssvvwRg9erVnHTSSVRVVXX4nuOOO45FixYRjUaJx+MsXLiw3de53W5GjhzJvHnzAPD5fPz3v//l6KOPxuv1EovFWL9+PUCrSjfA559/TmVlJQAvvPAC48ePb7P/E044geXLl7NlyxYAFi9ezNChQzv9/QkhRHcmQyyEEAe0W265hYcffpizzz4bk8lENBplwoQJXHXVVZ2+75hjjuGll17i5JNPxuFwcNhhh5Gfn8+mTXt3n1B+fj4PPvgg9957L5FIBE3TuPfee+lsZoXp06ezceNGpk2bhtPppE+fPjuGguzqvvvu4/bbb2fBggVEo1EmT57M9OnTMRgMXHfddVxxxRXk5+dz8sknt3pfcXEx1113HdXV1QwZMoTbb7+9zb5HjBjBrbfeypVXXkk8Hsfr9TJ79uy9+j0IIUR38KOc5m369Olad77bOBxLsK7Sz7Cebmzmtpcr9UBRlGWqqh6R6f12+74RiFG9rZGiXl7sLmu2m5MVXdU3oPv3j119/PHH1NbW7hgXfOedd2Kz2bjuuusysv+OZs/IJjl3iI505blDiF1JBTnDPlxbzf8t/Jat9SGcVhPXnqhw6diB2W6W+BF45/VlrHm1HgNGotYgh57agwnjf5btZokfsaFDhzJnzhzmzJlDIpFg+PDh3HrrrdlulhBCHPAkIGfQukofM575in75Tu457VD+910Ft7/2PfXBKNec2PFUTuLA9+WHa1FfbaSiYD35I00EvnKgzncSSSzhlxOOzXbzxI9UcXExTz31VJftf/r06UyfPr3L9i+EEN2V3KSXIbFEkj/MX4nLZmbeFUdy1k/78cRFP+XMI/rwj/fW87/vtme7iSJLwv4Yn71USkVOKf0mHcw2w89wTTiE+txtbHg5yNJvvs12E4UQQgjRggTkDPnvinJWbWvizmmH0MOTurPbZDRw57RDGdknh+te+oZtDaEst1Jkw+KFyzHEzGwZ2sTdrzZQseojFr6/nFedDsLWIB88reIL+ne/IyGEEELsFxKQMyCZ1Hj8o1KG9/Qw8ZCeJBJJNn5Tw1dvlFG5roEHzx5NLJHk9le/z3ZTxX4WaIyw+TMf63ssJ1Lm54vGP3Db67N54tV7eOr1m2kMf4krkM+//rUo200VQgghRFrGxyArirIcaEo/3Ag8BswG4sBiVVVvy/Qxs+19tYp1VX4eOGsUiXiSRbM/YeuqbzCYcjCYSug1NI+rxg7mb++v4321ivFKj2w3WewnX324DkPSSKl7I09++zo1X7qw9ikid0wv/EtXcP6HC/nop05YfTT/++BjTh7X8aIRQgghhNg/MhqQFUWxAwZVVce12LYSOA0oBV5XFGW0qqorMnncbHvu80309NqZdGhPnv/zP6kufRdILSYQ93rYtu50iqL9GJbv5PZXv+fowQW6nf5NTzRNY9Wn5WzzbOKmyvdYvrGE0lHFJBx2+vY7lGOuuJLEPTMZ+9V8Pj6qL6tfKmDUiFp6Fhdku+lCCCGErmV6iMVIwKkoymJFUd5TFOXngE1V1Q2qqmrAW8CEDB8zq2r8ET5aV8O00b35eN5CqksX05jrZMk4H/U/SZAMNeL3PUVVWSnnJVyUVQd46pOybDdb7Afb1zegNVjYkvc1FWoB3/UuInfQEJQxP2fzdyuZd+/9BH51D8Vjoxy+cg7WqInn//EeifjerdQmhBBCiMzIdEAOAvcBJwEzgafS25r5gJwMHzOrXv9mO4mkxvjCBCveeIaErYTvxmzi8epvuGnrCs5xfIvRGMMfnIdv43YucHn5x7vrqGgMZ7vpoot9+dE6osYwY7ctpdSVz0H9h3D2nfdxwowrufSBxyno05f/PvwYDWfezsCRZRyk/htbTQHPzvlftpsuhBBC6FqmA/Ja4DlVVTVVVdcCjUB+i+c9QEOGj5lVC1eUM6LEi/ric2Cw8Olhddz7/XoCn4xg09t5hJa4GbeqAls0TlPk3/QoD9MzDHe+LjfsHciSiSRbv21gs/drIpUF5ISjHH/TbRiMqX9yrtw8zvjzXygeNITXn55P6Jw/c2jfd+iz9QMCKxwsfuXLLP8EQgghhH5lOiBfCswCUBSlF+AEAoqiDFYUxUCqsrwkw8fMmvKGECu3NDCpwE/1pm+JeIdxSuArtA96E/MZ6HnbbfSf9xz9Tj+LkVuqsYX9hKNvMy1q452V21myrjrbP4LoIuXrGiBsxu1bRtRo5pjRR2HNbX3xxOZ0cuqfbsFTWMiiF99HO/sqRuU8SVH1Sta96WPlkvVZar0QQgihb5kOyHOAXEVRPgbmkwrMlwPzgKXAClVVv8jwMbPmne8rAXCsfBcMLtYM3Ma4tzxoBhv95j5F3lln4jz8cHr+300c9cBD9G3wYQisQvNvZHrCwY0vf0swGs/yTyG6wrdfbCKKj/yaAMWNAQZfclm7r3N6c5h2/S0kkwne+GAr7qmnozgeIrdhHZ88t5HSlbLAjBBCCLG/ZXQWC1VVo8C57Tx1VCaP82Ox+PsKRrqCNH63hqTrp5yqPk+szkifR/6KfdiwVq91HXkkE+/+O8/ddiORxlfoZZxBQdLEvf9TuXXKwVn6CURXSCY1yr6upd74HjmYOMjhwtq/f4evz+/Vm8l/uJGX/3ozH5X+hJ9P/AU1bz1A3H8D/3skybSrbfRS8jt8vxBCCCEySxYK2UuNoRhflNYxNvQ9YGZbjxDDl5lwTzgez/jx7b7HM/pwfnnFr0gSJ9n0EhPCJl5ZsolP1tfs38aLLlVZ2kgyYMDZtJE8f4j+U07f7Xv6HzaK4y+dSemKr1gRGs2hE47CYXkAR6iWV/6+lG3r6vdDy4UQQggBEpD32odrqzHGwpjKVmCyHsTo8i8hAcXXX9/p+/r98jR+8rORxLRqtMAXnBExc938r2kMxvZTy0VXU5dvJ57YgiWWpG+9D++kiXv0vpEnTOKIydP5+u03KXWeyDHHHUTCdD+2UD2LZi2leouvi1suhBBCCJCAvNc+VKs5LF6GlogTdPfkJ99sx3PSSVj79dvte4+79i4KCpzEwp/jCVQwoirGjQu/QdO0/dByfSlrLOOqd6/is22f7ZfjaZrG2uXb8WufYUomGFjSE0tx8R6//+fnXsxBx47nkxfnUVF0GuPH9CZkmI0pEmDR3UsINEa6sPVCCCGEAAnIe0XTNJasq2Z0aAMGYx7m5EZMEY2CS9u/EWtXBoOBc+6bi9maJOFbwOhQhNKvKnnhyy1d3HJ9+d/HXzD39vfZusLH0989vV+OWVseIFofwxrcRkl9gLyTp/yg9xuMRk769R8YeuTRfPDsk/j7XcLRRzhIhB8lGjWw6K73ScSSXdR6IYQQQoAE5L2yttJPqK4ae/0mTNYR/Ez9GseoUTgOPWSP92FzOjn7rodIGKIkGl/klAA88vIq1lXKZfRMUZ9TKQr0Z8L6CwksM9IYaezyY5auqCIRK8WU1OjV4Md9/PE/eB9Gk4lf/u46Bv3kp7zz1L+wDL+aPj+rxlH3LHVNVt598ICZKVEIIYT4UZKAvBeWrKtmSGADADFHMT0qtpN75pk/eD/F/Qdx3K9/RZwGNP9izqyNce2zywnHZKnhffXuK0sx04d+W17EEapmVNlQ3t/yfpcfd/XyrQSTK7Ak45TkerENGrhX+zGZLUz+4430P2w0i+f8i6Ejb6P+qOXkVf2PdesSrHrt2wy3XAghhBDNJCDvhY/W1XBIdBMGUxGeYCkmpwPvySft1b6OGDeVIb8YQzSxnmRsLcetruK+N9ZkuMX6s3HBMswxPz0nbCAnXIYr3pe3N73dpcdsrA7h2xbEHN5Orzo/nhNO3qf9ma1Wpl7zf5QMG84bTzzJL0fdzKdHLsLdtJ4li7ZSt6EyQy0XQgghREsSkH+geCLJ9+u3kBvYjskylIPWf4P3lFMwOp17vc/JV9yAd1AxsdAHWAxhkou+5mNZZW+vbfx6PVHbYGJ8wRGXzMFtrSVhyUfdvLZLj1u6sppkbCNGTaOkIYB7/C/2eZ8Wu51Tr7+ZvJJevDVvIRcMOpslQ+diSMR5454PiUei+95wIYQQQrQiAfkHWlPho7ghNbwCa2/y60vJmTZtn/ZpNJq44P/NxpRjIdb0EvkmF2/e/w5NYZn6bW98+dhCNKMZbVA5q1aquPulvrz0LcvFH/V32XHXLt9OMPk1Zi1OgabhHD06I/u1u92cdtPtWJ0uVr5bynG9erDJ9QKNxkI++PP8jBxDCCGEEDtJQP6Blm6sY3BwI5i8OELVWIsLcIwatc/7tbvcnPfn+0maE8QbX6Aknsdjf3szAy3Wl2Q0SrzGQiK0jMSaRt565AFMQ0sAGFTTh22BbV1y3EBDhOrSBoyRckoa/biPPgqDxZKx/XsKCjnthluJRSIk1J7Ehq0mEf0EtbGENU++nrHjCCGEEEIC8g+2rLSSPuFtmMyDGVi+mpzJ0zAYM/NrLOo3gFN+dwMJfCR9i3CXmXj1pS8ysm+9WP7Ev2nw9iMaWUKP/oMp6NOPVSuWYQ9upyDYj3JfeZccNzW8YhOmpEbP2iDuCfs2/rg9hf0GMOWa/6O+ooLR28fy7uEvYo5V8tHHMeo+X5nx4wkhhBB6JQH5B9A0jU2rVmHSEhgt/SmsW433lFMyeozhR43lJ9NOJZbcTDy6nMrXNlH63aaMHuNApSUS1Lz2KdHociDJxN/+kbHnXERDxTaIf42Z3l1WQd6woopw8lsMJCjwh3Afe2yXHKffIYdx8q9/z/b1pZxRfTRvHPQkcbOd//1jKdHyrgn/Yv+LhOIk4jLftUjRNI1ta1fz9pyH+fdfbuS5v/yJ1599iC1rV8kCU0J0EXO2G9CdbKkLkVNfChgxa1acBSZsw4Zm/DjjzrqEyo3r2Pr1F+DswUf3vEvJ7NNw5Odk/FgHkrJnnqPKM5xE5H36HvMz8kp6k9uzF86cXOKBGhKWHLbWfZXx44YDMbaurYXIJoqDfpxD+mEuKMj4cZqNOHY8vrpaljw/l4lKIcuLX2Jk9bm8e+1cTnzsKkxeb5cdW3SdkD/KwjkLqVy5DC1SAyTRLHa8Pd2cfNop9P3pcWAwZLuZYj8LNjXy+iN/Z/PyZcRNGk3OGKakEc8337Hmtf8RyjGR//ORjDvpLEYUHoRB+ogQGSEB+Qf4tryRfsEtGMwllNRsIPfkyV1yMjIYjZx29a3MuWEmvorXwHM+r/x+Lmc8MROTzZbx43VnyXAI/4JniEVM1P7jGeoOPhotpjHpvN8AqVULewwYxPZVazEYLdSuL4VjMtuG8rX1JKPlmJJJelUFcZ+9bzdt7omfTjkNf30tK958lUHDfFQ6vgDGsPSquzny0T9jdDi6vA0ic75evoZ3Zz+GFl6HZjBhwYJRMxNLhmgq28p/Zq3D5HqBX0w6lMOmXQ5mOQ/oQVNNNc/efDWB+jo297YzIDiRXlo/MJvRzGGMgWWYG74l9OpyXn9tKc/2iVE8ZQITD5mOkq9ku/lCdGsHzBCL5ZvqOOWu9/j35103HOHbdVsojNVhsgwkr349nhNO6LJjWex2zvvzfVjdNsL+f1PjGMDbM+9Fi8e77JjdUd0nb1J+x/1U3jOLNUPHkYiuovhnP8FTULjjNUUDBhFNBNC0BPGtmV9Nb+vqeuJxFc2QpKgphGvcvk/vtjsGg4HxF17BQT//BZa1RpKu9wiaNrHS+nO+vup2kpFIl7dBZMbbb7zPO/fdgxZeTy9fnJO+Wcf4NaWMrmliZHkDh20JkhN1kwhs4+0XF/Pgpdfw+T/vQgvUZrvpogsFGxuYd8u1+BrrMLmOZETwt+SHPPTf/h6H1LzIQaH36GHJxe49D4trKiZDTwq3ODA++DnvX3Y5t9xyAv/++pn9soKoEAeiA6KCvOSLct57ZjUTE0Y+fvZr+he5OHpw4e7f+ANtXbOKgYDR3Bdv4nUcI0dm/BgteQoKOef/3cuzf/4jYd/zbHCfxxe/+j+OfOwuDOYD4q9un33p7seaX9xH1FCDtX4pWsLAtIt/1+o1PfoPRNM0tEQdlvrMfyfc9H0N8dha8uIBLA4rjkMPzfgx2mMwGjlp5u9JxOOon35E9aB/Y264jKXRMRhm3shh/7xzn+bnFl3vo8Uf8e1zT0OinlGbainpWULff/4T99ixO2ZBqW4Kse2/HxF5fSH58SYCbOKTjzaz9NNtHDbIy9hrr8acU5Tln0RkUiIe46W/3Yqvrgav9WQwKoyoXcgRk4twT78Wg3vn55sWDVG1fDlfv2OmbGMt/vA6YvEEOatNRP/vZR7P/wfGs07m4l/8gQJH1w39EuJA0+0ryJFQjC+fXU1x2E9+7SoOijt5+aFHMn4cTdOIbF2PZjDhiGrk/mxExmav6EyPAYM488Y7wRAkHHiRFfyMby79rVQI0074yWg8g6ow+VeQjG9mwhW/xpPf+kOgaMAgALREFe6Ai6ZoU8aO31QborFiC6ZEhH7VAVw/HbVfv7wYTSYmXXkNw485jqJSK1WuuQQtUb4wjmPFxVcTr6vbb20RP4z6jcpXTz+Dlqhj9KZKDrr8ckYseBHP+PGtpggs8jq46MKTuHbew5T8v3vZPOQ4jAY3sfhWlq39jn/+5k7m/+pGAmu/z+JPIzLpw+eepHrdepyWn2O0DOL4QSsYN382ngtvbhWOAQxWB8VHHcOJ/+8SrnjiGs6/5Wb6Dj8Fk3UANa4kxkgJnjmbeP6SM5n98j3Ek3IVUog90e0D8kv/+gZbDHps+hdbza9D8AsOqenNtsbMXn4sbwiR7y/HaOpJQUMpBROmZnT/nel70KFMv+4WNK2BYGgRnxuP4/uzzpHwA9Tx7GCuAAAgAElEQVRuLaNx6QIMoQ0ceeqZjDp+YpvX5JX0wmy1kkxU4wl72ebP3EwW5Wo9ydhGAIprw7h+0fb4Xc1oMjHxyqs57PiTKdxios72FAFrhK88k1h+7pVE1q3b720SnfM1+nntvtlo8QoOLm9g1F1/peTySzv90m01G5k6ug+z77qWKf94nPjpVxB15hCPl7G14Vv+ddtjPHPRdWz/9IP99nOIzNu6ZhUr3nwVi2kgJtthHD8+gnLDn/aoIGMwGOgxrDdn3jaTK5+6n5PO+w057r74LI1ENQem+av519mn8/T854jKLClCdKpbBGQtkWh3+6bvamj4vhFPxQtsLDBgxUQ4+jl+q5n/zn8go234urSKwmgtRnNfchvX4zp6TEb3vzuDRh/B9OtvQdPq8Ufe4HPPJFZPPZXQt9/s13b82BT1H8C5d83iN088z9izL2z3NUajiaJ+A9HiFThiXioDlRk7flWZj3i8FM0UxhZP4DpmbMb2/UMYjSYmXPFbxpx+DrkVBgI8g9/qZ3mfc/jq0htoemtxVtol2tI0jX/deCtENjOgNsFP77iD/OPH/6B9DC5y86czTuHGp57jpL8+SLKkF4l4GdXh1cx/6EXmnfsb1i+cCzIF2F7RNI1wrP3Pna6UiMd48+G/Y8CC0fNLDh5Wx9Dzpu/VvkwWI4dMmcjlc/7JRTdeT9+CPkSMfoKGOI0vv8mTZ57FY0+/Qa1frkYK0Z5uEZBXXvYrvpp8NvGKih3bwoEYbz2+Ept/HdX/n73zjo+qzP7/57bpJW1SSS+TUKSrQBBEQSlBEiJIUcSsbNZFdEFXdL8bZUXBkgVFpAguFqQIYXUVYSmyIghRjEhJJgkhhYSUyWSS6eXe+/sjhB8lgSRMEhLu21deL3PzlDPDnbmf5zznOUdcAR8fG57+5yrIFGq4bIfgPp7v0fyQeb//DhI8SDoEEmkNaB8fj43dWqIGDsH0v78BnjKj3rUPP0U8ioLZT8GwcR147s70BpAkhaAYLaTKG6c28w0NA88aIOLUMDqMHpv/YlEVePdFBFksEAV4QdQrxGNjtxWCIDD80Vl4+Jm/QFFPwe3YBqOoDCd7/xHZy7eh/O13hEOetwFbP3gPfG0e1A4F7n76D/C9f9Qtjdc3KhwvrlyPP238DNL4OLBsBSrZUnyz/UdsmzYbZ//5J7gunvaQ9T2bC3VWvLbtJB77v9146v++wFMrN+HkhY7Jnd4cOXu+QUNVFWj5BKiJ87jvxVkeGddvwAhM+3Atnvn7M4gICIab4mBhbLB/+ym2z34cy9/dht/KjEJOZQGBK+gWAnmfVwKOB/8BB/+wFJZffoHD6sK/lx2Fy8bCZfkKPMVj6jMvQxYUhX5jx4Nnq+FTF4x8g85jNhiK8sEDEHMKeA+O8ti4bSW0dz/MeXMlIOFgch7A4bsmo/yfa1A6ezpcFy92mV23O0pfDXjYAShhtHkmNIVjOdSUnAYBIKLCCvmwuz0y7q3SZ9QDmJbxJtQiNRjjd6gh9yEvbiaOHXXj5ONPw1Vd3dUm3jbUVpiRc6gMB/ecR0NDx3vSLpYUoeLIUVBQYNBdcQidPtVjY8sUKjyz5J945l+fQXHXALC8ERfIeuzNNmL7M6/ibPpgVH6XCd4s/Ps3oTc7UFprxf6zVXjx41/wdsZ/4bXnEIaVZePuymIMOuuHzau+xqHC7A63xdpQjyNbN4EhAiEi/ZDy1pMen0PaZwymvrcOzyx+HAFBIWApBlaxFZLs7fj1z09i8Z/ewMrdp3Feb/H43AIC3Y1ukQpBOjIYhoPHUdArBRUrc+GQVoElGPhcWIsKFYlRwyKh6vcgACCsb18c3wU4GW/kZ/8b2vGLPWKDu7oMBKWG2nwRwQ967qHWHjRhEZj3zzX4+O8vwa7Pxn8Hj8T9v/8I+6QJCFyyFOpJE7vUvtuRprRvLoqGTX/eI2PWVVnBOsrBEQS8TU7IRnm+vHR7CYnvjceXv4c9a1ai+LcTqJOXgtc8CoNbC8NjL6D/S4/D96GOS1N4O8NzPM7/rsf//lMIa7nt8vWTX51GRb8GvP2nmR1WbGHLa68DvB0RnBwDX3utQ+aQyhT449+Wwma34PPVq2A6kYtKkQnf1fWC8qNsxGzcDv8oJehxTyB6ZCoY8Z2Z6eR/B0/hl427wBIiUKQbwVwdOFchWLAgOB48AfDWbPRyJ2P3xp/R9+9R8JN5PjtSE8e2fgy3k4VI/RB63a+BXN1BucwJApL+EzB75QRYz/+Kreu3w1haizriIgLqTsBnzUnsXe1GQf9J0I4biTG9gxCtUQgFSATuOLqFQI4qv4Bc4y8o6FWMSH4ERI5cWPgDaPDlEaiQYvCfV1xuGxSjBUDAJGLhPHEM8MCZKTfLQW6qBEmGQtlQDPngJ2990FtE6eOH+e+txRdvvYPq34/iQO94xBkugHvhBZj+uweBGa+C9uu4L/PuRlNmCydNwFpS7JEx9WVmcO5y8JQbBADZkCEeGddTyL28kfLSq/j9wB787/OP4bBtgk3aG2djZ6B+9U+I3Pol+ix/HUxAQFeb2mF8N+1Z2F1qMD4s+EH3wk6HoCa3AbwdgOM8FLUHYCfq4KBJiJhYhP96HxZuW4UVjy246dhtZdfGNeCtNVC7gzDxo7c6PAuOVCLH04sWg2U5fPPlv1G090eYbCXI4TUgi0Xwef9LXFy5AkRwCPRj5iD83gfQN1gNqYjqULtuFwwnswD3z2h6tTxPQcmZ0EdVhqG+etS5Zfi6LAEW078RRj+Nt7d9jLfn/rVDbGmoqcZvB/aDobUA5cDEGR6uZtQCsshBeGrZIDgazMhavwYXT55DDS4AIKA9uxuBRz/GHqUXfosYCZ/hYzEgSoOBYV6IC1CCIgXBLNCz6RSBrNVqSQAfAugPwAHgDzqdrrC1/Uc/8QdUFuaDqqyHLuAYAlSnoT4nB+0S4+FFy0BS//9lMBIJpD7BsDdUwn3BM/FUBaWVkLMWkKIA0OTPt00pX4pm8PjfXsHRrw/gpy0bUahWo3CIBqP+dwiWh49A8/wieD82XciZDEBxyYPMEXawFz0Tg3zxXA14Vg8/Rz0YjRK05vbLRUuQJPqPnYCowXfjh8//hbwj/4OV0qHUZziMznvgTJqFoKmjEfLswh6ZM/m0rA6kXQ/KnQDq13qAsEPWcAqwn4ZR4oJDCvRSASKZBEWVBSAsdYjYNxD7hvyMsTFDPWaHzWLB+X37QZA+GJo8HEwnnmGgKBKPPJYCPJaCwnMl+O/mL2EvKIOeKIMeIUA9INn2L1g2r8ZJsRRVQX2AeyZi6MAE3B3pAy+ZqNNs7UyS5szBHskx6PU10JA2DFFKENBrMBD9RyByJALk/pjyw2Z8vmYbuIZv4fvrGJwafxr9Avt63JajH68AeBKkYhTuSevX6d5asUqBGS+8CJ7n8eO3/8WvXx2EyVQKU4A3AGBAxY9QfPZf1IoJbFAGotBrINR978HgqEAMifBG/1AvKMTCc0agZ9FZd/QUABKdTjdMq9XeCyATQKvzpMm9vJH6f0vxnxXLwRUVAPACGAbJf/0/BMbGX9c+IK4vio/tB90gB8/zt/xlk3sqFwBAUBrIQly3NFZHMHzyA4gbNBBbl62GQ/8LDsVHQO3iMPitZTBsWAO/Z5+HOmkyCFHPfNC1hqYQC54zA0bPPHzK8xrvi/BqG2SDBnhkzI5C6eOHiQtexJBJydi/eT0qTx+GgRDjaPx9iPq+Cg3bh0PzxHT4pi0ApZB3tbke46Hn5uGHLz+D/Vw2WDTGkToJgFEC9wztg4HT5kEeHAMA0B3ej28+WAmS5fDd9k0Y+4rnBPKmV/8GnnfAjwxC/9lzPTZuW4mJDkdMxgtwO1n88L9fcebgSbAXa+FkKlDrrgTPWyCpzgP+kwfdvzmUsRxoSgZaFQSJdySkQTHwCQ6CQuMLRiWHWMbAO1AGlZ+0223B0z4RmPSn727YRnP/HAz57Ryyj/0KmZ3Cl3sOot+TnhXIhvILOPPr72BEd8Eha8DQoV13xoUgCIyc9BASJ45DRaER2VkHUZZXAJerGgZRNXiuHsGOegRXHQIqDwE8g2xSjaNUACAJBKMOhdTbF3JvFXx8ZAjupUSvaDV8ghUgBY+zQDejswRyIoA9AKDT6Y5ptdo270Wr/QMwc+m7yP3xEDiWRbA2Ab4hoc22jR3YD8XH9kLsUKDKWoVAeeAtGX+hsDGPrNRFI2Dk7XEQ61r8evngmVX/h593n8TRnVvRYD2Lg70j4e0k0Xvpm/B76w14JT0Ar7nPgukV3tXmdjoiqQwUIwLPmUBZPbNQqKssBA9AY3RAlviAR8bsaAKiYjDr72+jXJeLrz/7ANaCbBSoKZz3GYHYXccQvvEzeI8fDb/5L0MU2vznqztx18D7cNfA+2C3mFGedxZupwMKb18ExWpBUleHEsQlPoCQb79CefERhOfHodhYggivW/+sVJdfgLWsCDQdi/F/az4VYWdDiyiMGTsUY8YOhaXegcKTlcg7XYqac1Xg6i3g3TVws1Wod1eB5wyApaTx58JhEKQaBKkCQSoBUg6CkAIEA5dYBKufH1zRYfAOUSNALYGPTIQgLylCvaXwkYu6nYgGgIFPPo+fjz0OwnIM5O9RsLgskDOeW0T+9NFyEDwJUjYCo5/s47FxbwWCIBAS643kl6bCaXejssCAi7+eRmX+RZTXuOB2W8GxenDuanBsNUj2DGA5A9YCWC4qYCO9oac1KCC9QJBK8KQUbqkUfIgfpBG+8A9VQO0lgZdMhACVGIFqCcT0nRHaI9B96CyBrAJwZUF4VqvV0jqdrk05p0iKQp9RNxcigRFhje15KfKqchAYdWuByA3lxZCScqiseoSOefSWxupISJLAPZMGYNC4fjiY9RNO7/kGRuThaFwwKNIf3r9R8Hl6NXzkRvTqp0Rw6kQw8fcBVM/fGiMIAjK1Lyz1ZtB28S2P53aycFnKwVFiMBwP6d2dEzPoKUK0CfjT0tUoLynA9o8+gKuwFLkBLPICtAg4WYDg1GQEBvkg+ImnoXx4YrcPv5DIFYgefOPFLUEQSHzij9i2ZDFozg9rj36C5RMybnnu7W8uBUBBzXDw7z3wlsfzNHK1GP3vC0f/+xoXAw6bG4X5ZThTVIASYykumAphNpwHY6mH0uKAwmqHxFkD2kkAPAFcEr2EFZDXASggwBMyVBFiVBE0cgkKAHHpPwbgOQBOEACS/+8VhPXuOo9pa1B4+yCm/yCc++0kfM1j8J+Te/DYEM8c1K4tLUZe7nmIRP1hVdRh8IBIj4zrSUQSGmH9/BHWbwyAS1VlTVY4L+hgqc5BviEbZ/S1qL5gAmugwJjNkDhqQdlLAOKKOHsTQFRTcJxUoIyQ4gIhBggaAAUCJEBIQBBiAAQAHoFhgZi+9OmueMkCAgA6TyA3AFBe8TvZVnHcFtT+jR5jB02hKPcQRt+iQIa+sYKe2FQBSVS0ByzsWBgRhYceS8TYR4djz76fcXT3Dqj056Gnq6FXS0AxMThRGgt6hQXezo0IVNUg7r5gBE9IAqG4/eJoPYXKzw/muhowLvEth96YDHZwbDVoAoCIhCgywlNmdioh4bH4y9L3UFunx/b1n8F2pgyVXiWoVIsBnofXx+vgvfo9eIeEQPvoLAQ99HCPDtUJjk8AQ4vg5Cog2l8JTLi18apKiuHQX4CIGYDRC8d5xsgORiyl0ad/JPr0//9ijed5mFwm6K16GB1G1DnqUG83wlRXCldVEfjSUhAltUCNCG67DzheDJYnwMEBDix4sODBgwcHAhQIggEgQnXVydteIANA/6SpKDiZA95dht8Pm/GYh87jHvv4HRA8CUI2HEOm9fLMoB0MQRCQqOSQ9B4EVe9BCEIaLmfy5nm4rHqUXfwFpVW/o6byPEzVlWAv1sOtdwANDHgXB56zgwMBlmi8JxrvEa5RG1+iqpwBIAhkga6jswTyEQBJALZfikE+1ZGTiWUygBDDQfKw5Z8FbiHrmdvlgsRuBCHRAqLCbrVFSFIkJjx8DyY8fA9+Kb6INV+uh6j4d4QbToNxnoYLBFyEP6pNMTi1l4B097cIIfPQvy+JwCnJoCKHXPYO9QRUfhqU685D7NbA5DJBJWr/Ycua0mqAt0FtByS9fLrVfdEcvt5++NNLf4HZaMe3W46h6kQxWFcJakUFMMqNOO+w4NfP10P8rw+hoGmoYvsh6oFxCIuPg0rjD5phuvoleASSpBA3bATOHP4RATW9obfp4SdtfzaYrz78EIAIUsqJiLvu85yhnQxBEFCJVK37zJhrAGMJYK4GXFbAbW+s6EfSlz2KDoKHTe4Hr+gHO9hyz9AroQ9oigJtPQXl+QFwsA6IqVvbiTJeLIcutxgM0xcWqQFj7p3kIWu7EIIAI9cgKmY8omKacUzxPGCrAyx6wGUBXHaAdQAECZ7j4Xa5UM/ZUcpZEB05plVTnjhxwp+m6Q0A+qKb1HYQuG3gAJx2u91/GDx48HUJ4jtLIO8CMFar1R5F4xqxw0+pEBIvuF0OkGU1tzRORWkZCPAgSW8wPlYPWdf5DIkIwsYXX0VprRVfHD2HQ0f3w7f+DHpZa+Btayy97ALQQEiQ94s3RNn/gsy9CnLaDIUvCXmgL0SaYNBKL9AyFTiaAg9ApfaH9r7bJ//vjVBpNABvAeMOQ729/pYEcmVRMQAgpNYI6aAYD1nY9Si8JJj+p9EwGez4/YcynDlWBmedGxxbBQeXC5etFCZXPWoLT+F84RXrXJIEIZaBUvlCpvaCTCKCXCpG7xEjEXdP9wo/iRtxH84c/h40J8fh0qNI1k5u1zgNNdUwFZ8FJR6K8AdvPayn26DQNP7cAPGln+4CRTMI6zcAZb/+DoV9Mn4u/RWJkcNuacxfNr8P8AQI+QgEju35YW4AGh0uMp/Gn2v/BIAB4Hfpp7XQNL0hMDAwQaPR1JEkKZQCFGg1HMcRNTU1vSsrKzcAuO6LvlM+lTqdjgOQ3hlzNUGpNWCryyHS35pnq6iwsagESaihivH2hGldSpivDIuT+oGd2Be/ltbhkK4aR3PLoC8phLe7BEHOaoRZzeA5NxyUDXU8AD0AfTmA8mZGJFCeq8OYPz7XuS+kHTRmsuBB8hTqHHUIRfsPoelLSwEAGmM9xHcN8pCFtw9KHwlGTInF8EdioC8zo/iUHsVn4lFTYgLPAmKuMcSEdFaCctWCdDcATitYkx72i5WwgUMtwaIu7/duJ5DD+g4AARI20oqffvqm3QL56He7AQByTob7Z9z+nw+BGxM5+B4U/XYCIr4BP2cX3ZJAdtqsOPvLaYiJMDhoG2Y8nOxBS+84+griWKA9kCTJazSa+srKymZT0/TYZavCzx/GylwwNq9bijctL2kUQjKHE0FDuu8W6bVQJIGhET4YGuEDPBQPu2sMzlQ04OzFBhRWmXDOaEddbT0khgoEWGrha7dA7GJB8iwI3gKSd4KEGy6ahXpE9/AgN6V6A0/C6Li1XMjGqgsAaEhdbkgGJd66cbcpBEFAE6aEJkyJoRMjwbo41FaYUVtuhrHKirpaM+qq9bDWWOCyM+A5GiTx/79W7MTpLrS+fdAMA7W3BvUNVRCdrG3XGDzHIXffdyDpcFD+JaDpnhu3facQ0f/SQtiRj7pTDDC9/WOd/W8WXDwBQpkIS18zRML9cSuQgjgWaC+X7p1mQ3N6rEDWhIbAeJqFyO0Dg90AX6lvu8apu1gOEFIorXqE3vtHD1t5+yBhKAwO98bg8Bt7yXmeh8PNod7mgtHamBNaG6i8YZ/bBblX42vjCRJGy3XhRm3CVFcBUHKAAMTxCZ4wr1tAMST8w1XwD285PIXjeDitblToqxAYcGvb0F1F+KAhOHlgDwL0vdoVh1x29hQ4pwWMNBF3TVV3kJUCnYlXQCCkSjVQnw/v2gkwOU1Qitr33Xdy978h4mQA6Y1pKXEetlRAQMAT9NiA9ghtY6o3AkpUmivaPY6t+iII0gdANcQK4UFHEAQkDIUAlQTaQGW3EccAIFU2ijqW4GGsK7ulsdw2PWiegdubASmVesK8HgNJEpAoGERF9IKsm743of36AmAhc/rhjP5Mm/v/dvhHABQkrB0D75nhcfsEuobQPv3ghgEi3he/Fbdvd6T2Qin0RjsgHYQa30JoA3vOGYY7mWPHjslTU1O1Tb/n5ORIJ0+eHJ+cnKxdsGBBBMuyAIB169ZpJk2alJCUlJTw5ZdfegOA2Wwm58yZEz116lTt9OnT4y5cuHBdbKjVaiXS0tKiU1JStLNnz46prq6mASA7O1uWkpKiTU5O1qalpUXZbDaCZVksWrQo7JFHHolPTU3VFhQUiAGgoKBAPH369LipU6dqH3vssVi9Xn85+XRBQYF43LhxvZt+LyoqEk2dOlWbkpKifeaZZyItFkuLevGVV14J/eijj647eHDo0CHlvHnzrkpT89prr4V8+umnLXosMzMzA48fPy6z2WzEv/71rxY9E1fOmZOTI01NTdU2/fTt23fQnj17VGazmfzzn/8ckZKSok1KSoo/fvx4m/KV9liBHBLWmDKHJRhU6vPaPQ5fXwOS8gEnqfOUaQJdRJNAdpOA6WJJu8dpqDUCnAVyBwc6pPNKBgt0HkExjc85O8MgJ/+nNvXleR5Fx46AZMLA+5wDRfeMDB8CQFCsFi6SBc9ZcPZShdW2UnAgCwBASBIQmNi+nU2B24sVK1YEZGRkhDudzsuxnO+//35wenr6xV27dulcLhexe/dudU1NDb1jxw7/rKysvM2bN+tWrlwZynEcNm3a5JeQkGDduXOnbuLEibWrV6++rrrZxo0b/WNiYmxZWVm6pKSk2hUrVgRxHIeMjIyIt956q3jXrl26xMTEhpKSEtHXX3/t5XQ6ya+++ipv0aJFF5YuXdoLAP72t7+FP//88+U7d+7UTZs2rSY/P18CAJs3b/Z5/vnno+rr6y9/Wb3xxhu9Hn300ZqsrCzd0KFDTatXrw641qbq6mp61qxZsUeOHPGY93DRokWV99xzj7WyspLZtWvXdQK5uTkHDhxo27Fjh27Hjh26xx57rHrkyJF1Dz/8cMOqVasCm96zpUuXlhQWFkraYkuPDbFQaxr/LZ0Uj5qyM0BC2wt82MwmUC4rCKk3KMWteRwFuh5aLAYICizJwqavavc45brGg5s+ZgfU/bp/tTmB61H6aUBTYjiJetT+fB5oQ6HEuosVYO0NoKWDET3W3nFGCnQ6gTGN4RC8uwKGs0agHfVCdEd+BANvuCgbHhvVulRmAq3jk6PFvlm/Xmh/XsZmSBnUSz9neMQNDyOEh4c7Pvjgg3MvvPDC5eThWq3WajQaKY7jYLVaKYZheI1G4969e/cZhmFQXFwsYhiGI0kS8+fPr3a7G0tDVFRUiJRKJXvtHDk5OYqnn366EgAeeuihhg0bNgTn5+eLVSqVe/369QFFRUXSxMREY3x8vOOzzz7TJCYm1gPAsGHDLAsXLpRbrVairq6O2b9/v1dmZmavhIQEy6uvvnoBANRqNbtt2zbdAw880K9pvpKSEum4ceNKAOCee+4xL1269LqHndlsJp999tmK77//vs0C+dChQ8qPPvookKZp7uLFi+KxY8caXnzxxcpnn302YuLEiYa9e/d6l5aWSpcvXx60ePHii62Z02w2k2vXrg3esmWLDgCOHTumGjt2rGHGjBmxcrmcfeONN0rbYmOP9SDTIhFASOGiWJguFLVrjLqKxqwNBOkNeUh3Skok0BwEQYCiJGDhhstgaPc4deWVAACV1QJZxO1fOEag7RAEAZ/gcPDuSkjK2nb+p+jXbACAhGUw/H6h0EFPIiAiGiAIUNZC0NVtTxNprKqEvt4OXtIXlUHFCFIEdYCVAp1NSkqKkWGYq74oIiMjHZmZmWEPPvhgH4PBQI8aNcoEAAzDYO3atZqZM2cmPPzww5eFN03TmDZtWtzOnTv9x48ff92WtcViodRqNQsASqWStVgslF6vp3NzcxVz586t3rJlS352drbq4MGDSovFQqlUqssimyRJvrq6miktLZUkJiY2bN++XdfQ0EBt3rzZFwAmTZpUr1AouCvni4mJsX777bdeALBnzx4vu91+nV6Miopy3nvvvZa2vl9NSROqqqpEGzZsOJeVlZX3xRdfXOU1X7BgwcWwsDDbleL4ZnN++umnfmPGjKnTaDRuAKivr6cbGhroLVu2FIwePbr+H//4R5uq8fRYDzIAgJbCzbFwV1W2q3t1eaNApnkJvONu/2pPAjeHFsvgcjqABle7xzBWNXqfFTYTmJjeN2kt0F0J6z8A1WXb4V0f0qaDeqeO/gSC9AHPVEAm9+9gKwU6E0YigTooFM6yckico1BjrYFG1vrqo8XHDgIASFEMwoe3WVcI3IQ5wyNqb+bt7SwyMzNDP/nkk7y+ffva161bp8nIyAh95513SgEgPT29Zu7cufrHH3889vvvvzfff//9JgDYvn17fm5uriQ9PT1mw4YNBS+//HIEAEyaNKlWLpezJpOJBACTyUTJ5XLW19eXDQoKsvfu3dsOAMOHD68/efKkTC6Xs2az+XJ8Mc/zhL+/v0sqlXJNc91///31R44cUQFo9v3KyMi48Pe//z3sq6++8hsxYoRRrVa7d+7c6b1lyxZ/AFi8eHHZkCFDblgcQiKRcC6X66oUYlarlZJIJBwAREVF2RiGAcMwnEgkuuVMJN99953P6tWrzzX9rlKp3OPGjTMCwIQJE4ybNm26LnTlRvRYDzIA8IwSLJxw6duX0qu8vHHhInM4EHRXz03ldSfByJTgORtoc/vHMNXWAIQYMocJorj+njNO4LYiKK7x8JTE5YWztWdb1YdjWdSdzwfJhIIJ1nekeQJdRFh8AhykCQSk+DXvtzb1Lf7pICheAo5w48FB93aQhQK3AwqFwt3kxQ0ICHCZTOKCSmMAACAASURBVCYqLy9P/NRTT0VzHAeGYXiRSMQRBMFnZmYGbt682edSP5YkScTGxjqa4mqffPJJ/YABA8wHDx70AoC9e/eq+vfvb4qKinLYbDaq6RBeTk6OMi4uzj548GDzDz/8oAaAn376SR4ZGWmTyWR8SEiI/YcfflAAQHZ2tjImJsbWkv0HDx5Uvfjiixd27NihoygKw4YNa5g6dWpdk003E8cAkJCQYCssLJRVVFQwAGCz2YiTJ08qBgwYcNO+JEmC5/lW5+c1Go2Uy+Uiw8LCLnu/+vfvbz5w4IAaAH788UdlREREi6+3OXq2B1mmAm83gGho3zpAX1kFQASxy4jgmO6ZrkrgaqQqL1hqDaBt7T84ZarTgyAUoFgrmNDIm3cQ6JZowiMAAG5CjLyK33Ffr5vnQa8pLQbPuUGSAdCOan+lRoHbF//IaJwieIA34dzvpcCgsa3qx3McykoqAVECKn3yEes9rYMtFehKlixZUrJgwYJoiqJ4hmG4ZcuWlURGRjrj4uKsU6ZMiScIAsOGDasfPXq0OT4+3r5w4cLIXbt2aTiOw+uvv37+2vHS0tJqnnvuuYjk5GQtwzD8e++9VyQWi/klS5YUL1y4MIrnefTr1888ceLEepZlceTIEdWUKVPieZ7H8uXLiwHgjTfeKF6yZEnYu+++SwQFBTleffXVFlfxMTEx9kWLFkUxDMNHRkba3nrrrTbF7wKAWq3mFi5cWPaHP/whRiwWc263m5w+fXp1bGyso7y8/IbJv/39/V0ul4t49dVXQ5YsWdJclbKryM/PFwcGBjquvPb8889ffPHFFyMeeeSReJqm+Xffffe69/VG9GiBzCi94NZbwZil4HgOJNE2oWzS14CgVOC4GjBCIvcegcLLGzW8DWJ7+2PKrQ21IEgZnAoShEi4L3oqXv6BIAgKdoaF4ecfgbvn37RPeV6jp1nMsRg05BYqSQjctmjCGxfFvKsSlqLWO6RqSovh5ABGEg6qv63dxasEbk8iIyOdX3/99eWUWSNHjjSPHDnyuhRal2Jqr4qrDQwMdH/xxRcFNxpfLpdzGzZsuO5A1ZgxY0xjxoy5KqUKRVHIzMy8TtAOGDDAtmvXLl1Lcxw/fvxk0//fe++9lm+//bZVqVpefvnlFnPpJicnG5OTk6/bxh89erRp9OjRpmvnXrVqVXHTtT179rS4dXftnHfffbf17rvvPnflNV9fX/bjjz8+h3bSo0MsJF5qACwUDiVMTtNN21+Lo04PglSDE7X/QJfA7YXS2wvgHaCd7RfILrsRFM+A9RYObvZkCJKETOUHjjOALKxvVZ/8nBwQhAIsXQmZd0THGijQJWjCwgEAtO08qNrWH94vPbYfAEBSGtx394AOsU1AQMBz9GiBrPBrzDEpdslQa217PCBvrgNBKgHlLQSsCtxWyL0bH2g0J4Gbc7e5v9NuA1g7RBwFUuPlafMEbjMCYrTg2Booa73gYB03bV+ZdwYEHQLGV4g/7qmIpDJIfTSA+yJE7l6wOFt32K4k+0eQhBIWURXuDb2ng60UEBC4VXq0QPYNbDx1TvFS1JralsfYYbWAcDtAkEqI/Xv023RHofBuFLUkK4LF1fZT5CZ9DQBA6gBkIcEetU3g9iO0txbg7fBy+KPIeON0kQ36GrAOC0g6GL0G3rhku0D3JjAyCi6iAQQhw2ldzk3b8zyPigoDwISiKrAKKpEQny4gcLvTo5Wff0hjiiWOEMNgKG5T34ZLQoggVVBFCqmaegpK30aBTICB2dX2nYH6mmoAgNTthjpSKBHb0wmIupTekZMj39Bi6B4AoPJcPgBAxEkx6O7WHdwS6J40CmQ3eN6F/N9P3rS9sbICTh4g6WAo+wuLJwGB7kCPFsjBQY3C1slQaKhsW7GQJk8hw1Lwj+vrcdsEuga516WwCJ6G2dl2gVx3sTEHstThhDIywZOmCdyG+IVFAADsDIlzecdv2LY8XweABEE0ICD85hkvBLovmrBIgADgrkZdQcNN21f8cin/MalEYn8h/lhAoDvQowWyn583AAJOioS5+qZZQq6i4ZKnUOxyIzDm7g6wTqArkCobtzY5goTZ1vbDl40CmYDcYYUoLM7D1gncbkgVStC0FA7Sjrrfb7yVXvTbSRCUBrysHGCknWShQFfQlMmCtp0Dp795uETZT4cAMDCJazAkcHDHGicgIOARerRApmkaPCGBi+Jhv+QRbi01lVUASFCsDRo/bccYKNDpSJRKAABHABZzVZv7N9TUAIQcYqcZdGisp80TuA1RaoLBc3pIygjwfPPFnniOQ31FCUg6ELKQtmfMEeheqP0DQIrEIB0XQLt6we2+cWXOspIakHQQKkL08JYIIRY9kWPHjslTU1Mvi4WcnBzp5MmT45OTk7ULFiyIYNnGys/r1q3TTJo0KSEpKSnhyy+/9AYAs9lMzpkzJ3rq1Kna6dOnx124cOG6RP1Wq5VIS0uLTklJ0c6ePTumurqaBoBVq1b5jx07tk9qaqo2NTVVm5eXJ26pbXZ2tiwlJUWbnJysTUtLi7LZbJdzDV5r/4kTJ2RJSUkJKSkp2pdeeim0yf7mePfddwPnzZt3XbnhTz/91Pe1114LufLavHnzog4dOqRsaaxXXnkltKSkRFRbW0tt3brVp7k2brcbaWlpUXv27Lm8Op0zZ070lClT4lNTU7WzZs2KbZqr6X0ZOXJkv+ZsvBE9WiADAEfJ4CZYuIytS9PUhL6qCgQhB0/Wg6GEXLc9BUYkBkCDJTmYDRdv2v5aLMY6EKQc4EwglS1+xgV6ECEJfcCzBvgaNSg3N78TZagov1QgxB/97hUWTj0dgiTh3SscTqIOBKGELje7xbZOmxUNLg4EHQRZP0Ec90RWrFgRkJGREe50Oi8Lzvfffz84PT394q5du3Qul4vYvXu3uqamht6xY4d/VlZW3ubNm3UrV64M5TgOmzZt8ktISLDu3LlTN3HixNrVq1dfVxJ548aN/jExMbasrCxdUlJS7YoVK4IAIDc3V75s2bLzTRXu4uPjHc215TgOGRkZEW+99Vbxrl27dImJiQ0lJSWiluzPyMgIX7x4cWlWVpZOoVCw27Zta1asfvfdd6off/zRYymd3nzzzbLw8HDnqVOnZE2VA6+ksLBQnJqaGq/T6eRXXi8vL5dkZWXl7dixQ7d58+YCAFi/fn3Rjh07dOvXry+Uy+Xsa6+91qZsDT26UAgAcIwcnNMBsv6mlQ2vokFfA1AqcETbhLXA7Q9JisHyLCz6tgtka4MRBCkHywhewjuFXr1jcfogB7nTB7mGXPRS9rquTdMBPYYD+vYe39kmCnQBwZFROHWuAGKex5mcHPTpN6LZdhd/2Q8QAEnIMapPfCdbeYeRvd4Xv23x8+iYA2bocfe82hs1CQ8Pd3zwwQfnXnjhhculVbVardVoNFIcx8FqtVIMw/Aajca9e/fuMwzDoLi4WMQwDEeSJObPn1/tdjemHa2oqBAplcrr3LU5OTmKp59+uhIAHnrooYYNGzYEA4BOp5OtWbMm0GAwMImJifWLFi2qbK5tfn6+WKVSudevXx9QVFQkTUxMNMbHxztasl+v14tGjBhhAYAhQ4aY9+/f7zVz5syr4hILCgrE27Zt08yfP798+/btmra8rZ9++qnv4cOH1Xa7nayoqBDPmTOn8oknnqhNTU3Vvv766yVr164NLCoqkm3cuNEvLS3tct5Ms9lMvvnmm8Vr1qy5vIiorKykzWYzNWfOnBiz2UylpaVVTpo06bJ4e/vtt4Mfe+yx6uDg4Btv9VxDj/cg8xIlON4GWJrfGm0Ju7Gu0YMsEYRQT4OgRGDBwmpoe65au7keBCEDJ25TSXeBbkxAROOunJOWIb/k12bblJ45DYABT+shCrirE60T6Cr8I6IAggfYOtTqWj7wW3rgWwBAg8yIoUFDOss8gU4kJSXFyDDMVSIjMjLSkZmZGfbggw/2MRgM9KhRo0wAwDAM1q5dq5k5c2bCww8/fFl40zSNadOmxe3cudN//PjxddfOYbFYKLVazQKAUqlkLRYLBQBjx441LF++vHTr1q35OTk5im+++UbdXFu9Xk/n5uYq5s6dW71ly5b87Oxs1cGDB5Ut2R8UFOQ4dOiQAgAOHjzoZbPZqCv/bjKZyIyMjLDly5eX0HSbfa08AJjNZuqzzz4rXLNmTeGmTZuu8pqnp6dXDhgwwHSlOAYaqwH27t3bfuU1p9NJzJw5s+rjjz8uXLt27bl33303tKqqigaAqqoq+sSJE6rZs2e3+YHf4z3IpEwF1FlAWSRt6uc214Oie4FUti12WeD2h6IkYFk3HMabnz6/Eo5j4XZawDAMWOV1IWICPRTvoBAAJKwiAobsI0AzCSqKf/sNJB0M2usiQPX4r1UBAJpLGU4kljzYDS2nAj1fWAWC9Mb5XrXwlwkpQzuUu+fV3szb21lkZmaGfvLJJ3l9+/a1r1u3TpORkRH6zjvvlAJAenp6zdy5c/WPP/547Pfff2++//77TQCwffv2/NzcXEl6enrMhg0bCl5++eUIAJg0aVKtXC5nTSYTCQAmk4mSy+Usx3FIT0+v9vLyYgHgvvvuqz9z5oysuba+vr5sUFCQvUlcDh8+vP7kyZOyMWPGNOsFXL58+fl//OMfYR9++CExcOBAM8Mw/Nq1azX79+/3AYCpU6fWGAwGZv78+dFms5kyGAxMZmZm4KJFiyqbxpBIJJzT6bzKEWuz2UipVMoBQFxcnBUAQkNDnS6Xq90O28DAQPdTTz1VwzAMAgIC3LGxsVadTicJCAgwf/XVV97jxo2rbYeI7/keZFquAsBC4pS1qhIWALjsdoB1giDlkAlFQnoclEgKHi64TG3bHbCbTADPgeYoQC2/eQeBHgFF05AqfeHm68AUNlx3UM9ps8JaXwOCDkJAnCCO7xSaUgASjlIQXChY+/VhfLzLDoOTB0kHQtRXKA5yJ6FQKNwqlYoFgICAAJfJZKLy8vLETz31VDTHcWAYhheJRBxBEHxmZmbg5s2bfS71Y0mSRGxsrKMprvjJJ5/UDxgwwNwUk7t3715V//79TQ0NDdTEiRP7mEwmkuM4HD9+XNmvXz9rc22joqIcNpuNKigoEANATk6OMi4uzt6S/fv27fN6//33i7Zv355vNBqpxMTEhvT09Jomm2bMmGHYu3fv2R07dugWL15cNmDAANOV4hgA7rrrLuvPP/+sahLrtbW1VHFxsbRJpBME0dzUuPQ3vqVD0ddy4MABZXp6ehTQ6Nk+f/68NCEhwQ4Ax44dU40ZM6Zt3rBLeOzbXKvVEgAuACi4dOknnU73slarTQKQAcAN4GOdTveRp+ZsDWKVCg4AIrcMdfY6BMqvi32/DrOxMcyGIORQhTUbly7QjaEkcnCmKrDmtlXSsxgbd70YloAoUDhscycRpO2Dol+OQlMXhAvmCwhVhl7+28XCxvhjmvDG8KGhLQ0h0MMQy2SQ+frDVl0HghAj79h/0Wf0lKvaGH7+FizBgiIZPKAd2kWWCnQFS5YsKVmwYEE0RVE8wzDcsmXLSiIjI51xcXHWKVOmxBMEgWHDhtWPHj3aHB8fb1+4cGHkrl27NBzH4fXXXz9/7XhpaWk1zz33XERycrKWYRj+vffeK/Ly8mKfeeaZCzNmzNAyDMMNHTrUNGHChHqLxWK6tq1YLOaXLFlSvHDhwiie59GvXz/zxIkTWzxkFRERYZ89e7ZWIpFwgwcPNk2YMKHNB7Li4+Mdjz76aPWjjz4aL5PJWLfbTfz1r38tVSqV3M36RkdHO4qKiqQffPCB//z586tv1Hb8+PENhw8fVk+ePDmeJEk8++yz5RqNxg0AZWVlkqioqNZ5R6/Bk+6OaAC/6nS6pKYLWq2WAbACwFAAFgBHtFrt1zqdru35tdqJzFsNBwCalaDWqm+VQLbUNQpkhiXgEyWkeOtpiOQqoNoBwtpy2prmsNQbG/uzBJSBQR1hmsBtSszgASj65RBkzlD8XPnzVQK5/OxpAABJmqGJmthVJgp0AcHRMcivzYYMwG/HdOgz+uq/F/7nPwCAGpURs0ITO90+gc4jMjLS+fXXX+c1/T5y5EjzyJEj865tt3jx4osArjohHhgY6P7iiy8Krm17JXK5nNuwYcN1Fc9mzZplmDVrlqE1bceMGWMaM2ZMbmvsT0pKqk9KSmqVKB49erRp9OjRzW7Jzps3r2bevHnXxao+8cQTl0NhpFIpf/jw4VMAsGPHjsslSw8cOHCmpTlXrVpVfOXvb775ZrMZKvbt29fiGDfDk/EDgwGEaLXa77Va7W6tVqsFkACgUKfT1el0OieAH9FsBF/HofRr9PSRvAS19SWt6tPkKaRZFv69hCp6PQ2JSgXADdjbdvtbL90XIjcLRXB4B1gmcLsSEt9YNdHGSHHqzKGr/pb/008gSF/QivOAl3Bf3EkEx8WDhBuyhnw0lF6zq8RxyD9vAggxdHFmaGRtOuQvICDQxbTLg6zVatMA/OWay38GsEyn032p1WoTAXx+qc2VKxATAHV75mwvPgG+KAXAkQwMxlYK5EseZJJ3IcCvTwdaJ9AVyNWNtyDpoG7S8mqaPMgSlxvqMKHM9J2Ed1AwCJKBhXTDefgn8I/wIAgCrNsNQ+UFkExvhERXAjeIqRPoeQTFNFbTZKy/w6pMhrOiEKLgGAAAf/5H1PIUSNoXvbTCjpOAQHejXQJZp9NtBLDxymtarVaGxjhj6HS6H7VabTAaBfGV1RSUAIztM7V9+Po1xhC7KAqWyuJW9THVGQCQ4GGFTCrEmvY0lOrGwzKks20FYBoXThQYtx3qKCGV150EQRBQakJhqqlBzHlvnK8/jyivKJTnnQHPs6CoIIy5N7qrzRToZAKiYgCChIGpAUVQOHNgHwY+3iiQz23+HCyssMrkmBx3fxdbKiAg0FY8GWLxKoDnAUCr1fYHUAbgLIBYrVbro9VqRWgMr/jJg3PeFI2vGgABF03AWtO6whB1+lqAkIGnW85tKdB9UXg1epApd9tStZkMjVX0aNYGJlDYSr/TiLtnKHiuFmpHPA4V7QMA5B3YC4AETTshjR3TtQYKdDqMWAKf0AgYGAK0y4zfjzsBhwkwnMevZxvPOGTHlGJ4L+GAnoBAd8OTAnk5gFFarfZ/AP4J4EmdTucCsBDAXjQK4491Ol3ztVo7CC+5GDwhhosk4DS0Lj2isboGBKkAxwgCuSciUykAAAQvui5l140wGwwAIQNLWkFQbQvPEOj+9B45EgBQo1Til+8+gc1lQ+7xn0DSYfDTnAG8I28ygkBPJFQbDynvQnD5Ppjd/VC59V3U/euvuEipATBQxt0FCd22PPwCAgJdj8eyWOh0ujoA1x3h1ul0/wHwH0/N01ZkIgocIQFLcmCNrct7a62tBUHKwUuFKno9EXlTiAVLwcE6Wv3wstZfKjNNtr1EtUD3RxMWAZFUDYuzCuO+57C+zzK4WRdoSTjG31UsxB/foYRoE3By327k+JxHoLMBe3+KAWkPB8vuQbW3DXP7T+tqEwUEBNpBj6+CQRAE3JQMbsINvqF15YEdZiMIQg5K0bY0YALdA4V3Y4gFARoWV+tzIVsbjCAIGVhaKDN9pxJz93DwbCVAD4LyoyMAaPjJ6qEYNrOrTRPoIiIHDQVBUTiniEbghS3grDTqSB48b0VeGIsHI+/tahMFOoFjx47JU1NTL+eFzcnJkU6ePDk+OTlZu2DBggiWbdQT69at00yaNCkhKSkp4csvv/QGALPZTM6ZMyd66tSp2unTp8dduHDhuvg/q9VKpKWlRaekpGhnz54dU11dTQPAqlWr/MeOHdsnNTVVm5qaqs3LyxO31DY7O1uWkpKiTU5O1qalpUXZbLbLq/pr7T9x4oQsKSkpISUlRfvSSy+FNtl/JQcOHFA+8sgj8VOnTtWmpaVFWSyWqzTlp59+6vvaa6+FXHlt3rx5UYcOHVKiBV555ZXQkpISUW1tLbV169ZmC1G43W6kpaVF7dmz53L1nTlz5kRPmTIlPjU1VTtr1qzYpn+DlJQUbWpqqnbGjBmxlZWVbXIK93iBDAAsIwMHF0iz8+Zt3S5wLjsIUg6ppm2HuAS6B3KfS59NnoTV2TqBzHEsnFYzQMrAidqVc1ygBzBi2jQAJM55VaFOIQUtHYF7eumA8OFdbZpAFyGRKxB+1yBEWaqw+X4zqqRvw0b9G06aQ+8BM25YLUygZ7BixYqAjIyMcKfTefkf+/333w9OT0+/uGvXLp3L5SJ2796trqmpoXfs2OGflZWVt3nzZt3KlStDOY7Dpk2b/BISEqw7d+7UTZw4sXb16tXXFWzYuHGjf0xMjC0rK0uXlJRUu2LFiiAAyM3NlS9btux8U4W7+Ph4R3NtOY5DRkZGxFtvvVW8a9cuXWJiYkNJSYmoJfszMjLCFy9eXJqVlaVTKBTstm3brhOrb7zxRvi6desKd+7cqQsLC3N88sknfrf6Xr755ptl4eHhzlOnTsmaqgFeSWFhoTg1NTVep9NdVc62vLxckpWVlbdjxw7d5s2bCwBg6dKlYX//+99Ld+zYoXvggQfqVq1adfNCGFdwR9RF5RgZeNtFUNabf1FZjJeSbJByeIf6drBlAl2BRCYBQIMnCFit1YA67KZ97GYzAB4EIQMvFXYW7lRUfhpM/uMfsHvjTnDwxQOao4h+6BEhvOIOJ2H4SBTn/IzS2gdgHX0MI/5jRpnGCyvHPdnVpt1RbMnd4vv1ua9vWaRdyeToyfoZCTNueIApPDzc8cEHH5x74YUXLh9E0Gq1VqPRSHEcB6vVSjEMw2s0Gvfu3bvPMAyD4uJiEcMwHEmSmD9/frXb7QYAVFRUiJRK5XUPmZycHMXTTz9dCQAPPfRQw4YNG4IBQKfTydasWRNoMBiYxMTE+kWLFlU21zY/P1+sUqnc69evDygqKpImJiYa4+PjHS3Zr9frRSNGjLAAwJAhQ8z79+/3mjlz5lUFST7//HNdYGCgGwBYliXEYvFNK+Q18emnn/oePnxYbbfbyYqKCvGcOXMqn3jiidrU1FTt66+/XrJ27drAoqIi2caNG/3S0tL0Tf3MZjP55ptvFq9Zs+ay2K2srKTNZjM1Z86cGLPZTKWlpVVOmjSpftWqVUXBwcGuK+xr/aEj3CEeZEjkAG+D2CGDi3PdsKn1Uq5bimPgHyWkbeqJECQBEGJwBAGLqXVFHW0NDZf6SkEq2vQZE+hhxI6ZjJlJgZjdNx99x/UDMUAIr7jTiR5yL2ixGGNrTyPsvxowLInhY+ZBRN8Zj9g7nZSUFCPDMFc9GCIjIx2ZmZlhDz74YB+DwUCPGjXKBAAMw2Dt2rWamTNnJjz88MOXhTdN05g2bVrczp07/cePH1937RwWi4VSq9UsACiVStZisVAAMHbsWMPy5ctLt27dmp+Tk6P45ptv1M211ev1dG5urmLu3LnVW7Zsyc/OzlYdPHhQ2ZL9QUFBjkOHDikA4ODBg142m+26k+lN4nPXrl1eJ06cUM6cObN1mRAAHgDMZjP12WefFa5Zs6Zw06ZNV3l309PTKwcMGGC6UhwDwIABA2y9e/e2X3nN6XQSM2fOrPr4448L165de+7dd98NraqqopvsO3LkiHz79u3+6enpbarifEd4kAmpAgAHqVOOekc9/KQtLzCbBDLN8/Dzi+0kCwU6G4IQw03ysBlaK5Ab692QPANKLetI0wS6AZrH3upqEwRuI8QyGSb/5WX8O/MNqF3ViJ48G1MeGd3VZt1xzEiYUXszb29nkZmZGfrJJ5/k9e3b175u3TpNRkZG6DvvvFMKAOnp6TVz587VP/7447Hff/+9+f777zcBwPbt2/Nzc3Ml6enpMRs2bCh4+eWXIwBg0qRJtXK5nDWZTCQAmEwmSi6XsxzHIT09vdrLy4sFgPvuu6/+zJkzsuba+vr6skFBQfYmcTl8+PD6kydPysaMGdNsNoLly5ef/8c//hH24YcfEgMHDjQzDMOvXbtWs3//fh8AWLlyZVGvXr1cq1at8j9w4IDPpk2bCqRS6VUiWyKRcE6n86pVos1mI6VSKQcAcXFxVgAIDQ11ulyudq8mAwMD3U899VQNwzAICAhwx8bGWnU6nSQgIMC8fft2740bNwatX7++wN/f392Wce+I5S2taIw5FbEyGGw3/uxY6hsXbiTnhsY3rsNtE+gaCFIEluBgba1ANjV6kBmOh8RHCL0REBC4msiBQzBjyduY+NxfMWXWY11tjkAXo1Ao3CqVigWAgIAAl8lkovLy8sRPPfVUNMdxYBiGF4lEHEEQfGZmZuDmzZt9LvVjSZJEbGysoymu+Mknn9QPGDDA3BSTu3fvXlX//v1NDQ0N1MSJE/uYTCaS4zgcP35c2a9fP2tzbaOiohw2m40qKCgQA0BOTo4yLi7O3pL9+/bt83r//feLtm/fnm80GqnExMSG9PT0miabevXq5XrnnXcCc3JylF988YVOo9FcJz7vuusu688//6xqEuu1tbVUcXGxtEmk3yg+nyAIvrVpWA8cOKBMT0+PAgCTyUSeP39empCQYP/iiy98tm7d6v/FF1/ooqOjb34I7RruCA+yuCmtFy+F0VIF+GhbbGttikGGA3J5m+K5BboRBCkCR1hgNda0qr31kgeZdvOQBwj3hYCAwPUERsciMFrYeRQAlixZUrJgwYJoiqJ4hmG4ZcuWlURGRjrj4uKsU6ZMiScIAsOGDasfPXq0OT4+3r5w4cLIXbt2aTiOw+uvv37+2vHS0tJqnnvuuYjk5GQtwzD8e++9V+Tl5cU+88wzF2bMmKFlGIYbOnSoacKECfUWi8V0bVuxWMwvWbKkeOHChVE8z6Nfv37miRMn1rdkf0REhH327NlaiUTCDR482DRhwoSr2lZWVtKbNm0Kjo6Otj7xxBNxADBu3DjDvHnzLj9Ur0xmaAAAIABJREFU4+PjHY8++mj1o48+Gi+TyVi320389a9/LVUqlTeNVY6OjnYUFRVJP/jgA//58+dX36jt+PHjGw4fPqyePHlyPEmSePbZZ8u9vb3dmZmZYRqNxvnHP/4xBgAGDRpkeuWVVypuNncTRFsKJXQWKSkpfFZWlsfGW/P5Plj/8x7C632geGccHu43u8W2329aj1+/+w5yST+kf/IPj9lwp6HVak/odLohnh7XU/fG+3P/AtZ6AcGjFJj+zL9u2v5Y1jYc2fYZ/DERfZ9kMXD8/Fu24U6lo+4NwPPfHQKdz+3+3SHQdTR3b5w8ebK4f//++pb6CAjcjJMnT/r1798/4trrd0SIhUrTuCXupBmYqq9bmF2F6VKREI4WioT0ZChGCh5uuC4dvrsZjTHIDESsHYogoWKagICAgIBAT+aOEMheft4AACdNwVp140rX9VU1ACEDL7Z2hmkCXQQtloOHCy5T68qJ20wNIEgJaJcVqpD4DrZOQEBAQEBAoCu5IwSyt1oJgISLJmGvvXHMqcVoAEHKwMtunA5OoHtDyxoPbrLWFs8oXIW1oR4gpCB4K9TeITfvICAgICAgINBtuTMEslwEnpDATfJwGVuMSQcA2C0mEKQclFpI/N+TESsaD27y1tYthGwNDSAIOdyEFRJa0pGmCQgICAgICHQxd4RAVksZsKQUboIDW9/yljrrdoN1O0AQMkj9hVy3PRnJpcwmvL11h1StDfUAKQVLts7jLCAgICAgINB9uWMEsouUgiXcgLllgdNUDAKkDN4RwjZ6T0ahbAyxIJyty3RoMzWAIKRgaUEgCwgICAgI9HTuCIEsE1FwUlJwcIIyt1xIxXK5zDSFXoExnWWeQBeg9Gr0IIO9uUB2OexgXU4QpBQs0+Zc4wICAgICPZxjx47JU1NTLxdZyMnJkU6ePDk+OTlZu2DBggiWZQEA69at00yaNCkhKSkp4csvv/QGALP5/7F354FNVWkfx783yU3SJF1oaaHsLcstKAIDqGAVXBBkUSngwqCAVaf6Oi6g4zIjyoCKox1BURFBUUQBoYwzyoALMiKLICIqywUslJ1utE2TdMny/hGKhRYRKI2Q5/MXvTm592k5TX85OfecUsPIkSNbDxkyRLv55pvb7d27Vz3+/G63W0lPT2+dlpamjRgxok1ubq4J4JVXXkno06fPBUOHDtWGDh2qbd261XKitmvXrrWlpaVpgwcP1tLT05M9Hs/RuaTH179+/XrboEGD2qelpWmPPvpo86r6q/vqq68cgwYNSrn++utTnnrqqRqjiu+++27c008/fczxu+++O3n58uWRJ/o5PvHEE81zcnLMBQUFxrlz58bW1sbr9ZKenp68ZMmSqOrHXS6XoV+/fh2qjmdnZ5uHDBmipaWlaffee2+Sy+U6pcwbFgFZURR8qo0AZageBZ+/5n80/LLNtDEQoEWjE28mIs59kUemWCi/ISB7qpaCUyLwmSUgCyGE+MVLL73UaNy4cS0rKiqOBs6XX365SUZGxoFFixbplZWVyuLFi6Pz8vJMCxYsSMjKyto6Z84cffLkyc39fj+zZs1q2L59e/fChQv1AQMGFLz66qs1dqOaOXNmQps2bTxZWVn6oEGDCl566aVEgC1bttife+65nVU73KWkpJTX1tbv9zNu3LhWzz///K5FixbpqampJTk5OeYT1T9u3LiWjz322O6srCzd4XD45s2bVyOsTpo0qfmUKVOy//3vf2/dvHmz/bvvvos405/ls88+u6dly5YVP/74o61qN8DqduzYYRk6dGiKruv24x977LHHWlTfne+ZZ55pNmzYsLysrCy9e/fuzldffbXRqdQSFjvpAXjNNgiU4yizc7j8MA0jGtZoUxWQwUtcnOyGdD6LiHIE/xGo8Ua9hqptphUlgoDlpBsACSGECIHC9+bEFX/0Uc0/7mcg+oYb8mNH/LHg19q0bNmyfOrUqT8//PDDRxfJ1zTNXVRUZPT7/bjdbqOqqoH4+Hjv4sWLN6mqyq5du8yqqvoNBgP33Xdfrtcb/HR7//795sjIyBqjeBs2bHDcddddBwH69u1bMmPGjCYAuq7bXn/99caFhYVqampq8dixYw/W1nbbtm2WqKgo7/Tp0xtlZ2dHpKamFqWkpJSfqP78/HzzZZdd5gLo1q1b6eeffx4zfPjwwuo1ffTRR1tUVcXpdBpcLpfR4XD85j+Q7777btyKFSuiy8rKDPv377eMHDny4O23314wdOhQbcKECTnTpk1rnJ2dbZs5c2bD9PT0oxvBlJaWGp599tldr7/++jFvIqZMmdKoS5cux9xklpOTE3HttdfmAFxyySWlEydObP5b64MwGUEGCFiDgchaaaOwrLDWNq6iw8G2hgoMqqxUcD6zRTkAhUDAeNK2VdtMKwYbiiNsfmWEEEL8BmlpaUWqqh5zx3dSUlJ5ZmZmi2uuueaCwsJCU69evZwAqqoybdq0+OHDh7fv16/f0eBtMpm46aab2i1cuDDhuuuuO3z8NVwulzE6OtoHEBkZ6XO5XEaAPn36FE6aNGn33Llzt23YsMHx8ccfR9fWNj8/37RlyxbH6NGjcz/44INta9eujVq2bFnkiepPTEwsX758uQNg2bJlMR6Pp8YfS1VVWb16tb1///4XxMbGVjZr1uy3fsQaACgtLTXOnj17x+uvv75j1qxZxwTejIyMg507d3ZWD8cAnTt39nTo0OGYm4G++OKLyJycHOsdd9xxTNs2bdq4P/nkkxiAJUuWxJSVlZ3SH/CwGUFWbMHReNVnp6D0EDRoV6ONq7AAUAmYZJOQ853ZagLFAoETz0mvUjWCjBKBMfLkI85CCCHqX+yIPxacbLS3vmRmZjZ/5513tl544YVlb7zxRvy4ceOav/DCC7sBMjIy8kaPHp1/2223tf3yyy9Lr7zySifA/Pnzt23ZssWakZHRZsaMGdsff/zxVgADBw4ssNvtPqfTaQBwOp1Gu93u8/v9ZGRk5MbExPgArrjiiuJNmzbZamsbFxfnS0xMLKsKlz179izeuHGj7aqrrqp12+BJkybt/Pvf/97itddeU7p06VKqqmpg2rRp8Z9//nkswOTJk7ObNWtW2aNHD9eKFSt+nDBhQpPJkycnPvHEE/urzmG1Wv0VFRXHhFKPx2OIiIjwA7Rr184N0Lx584rKysrTHn368MMPGx48eNAydOhQbc+ePdZt27bZGjVqtHPcuHF7n3zyyRYfffRRw8suu6woOjr65H/wqwmb4TBT1JE5p1gpPFz7dtMlBw+iGOz4VFd9liZCQLUYURQLAQxUVP76yhRVc5AVJQJrQ0d9lCeEEOIc5nA4vFFRUT6ARo0aVTqdTuPWrVstd9xxR2u/34+qqgGz2exXFCWQmZnZeM6cObFHnuczGAy0bdu2vGpe8ahRo/I7d+5cWjUnd+nSpVGdOnVylpSUGAcMGHCB0+k0+P1+vvnmm8iOHTu6a2ubnJxc7vF4jNu3b7cAbNiwIbJdu3Yn/OP32Wefxbz88svZ8+fP31ZUVGRMTU0tycjIyKuqqUmTJpVpaWlaYWGhEcBut/sNBsMxo9AXXXSRe926dVFVYb2goMC4a9euiKqQXn2+8PEURQkEAr9tGdZp06bt/Ne//rV1wYIF+sUXX1z80EMP7e3SpYtn2bJlUY888sjeBQsW6EajkR49epT8phMeETYjyNaYaADKVQsV+3+Gi2q2KcnNA4Mdv0WW8jrfqVYjKFYCShkuTx5m9cRTk4IjyAoGPzgSEuqvSCGEEOek8ePH59x///2tjUZjQFVV/3PPPZeTlJRU0a5dO/eNN96YoigKPXr0KO7du3dpSkpK2ZgxY5IWLVoU7/f7mTBhQo1RvPT09LwHHnig1eDBgzVVVQNTpkzJjomJ8d177717b731Vk1VVX/37t2d/fv3L3a5XM7j21oslsD48eN3jRkzJjkQCNCxY8fSAQMGnHDntFatWpWNGDFCs1qt/q5duzr79+9/TFuDwcCoUaMOjRo1qq2qqoG4uLjKzMzMXdXbpKSklA8bNix32LBhKTabzef1epW//OUvuyMjI086V7l169bl2dnZEVOnTk247777ck/hR39UmzZtysaOHZusqmogKSnJ8/zzz+8+lecrvzWh16e0tLRAVlZWnZ4zc+FamP93GrviKRuqkD7qrRptpqWPwFOeAC1dPPTMG3V6/XCjadp6Xde71fV566pvVJR5eTX9fiyeQ1w/5TGaNe9+wrafvTmVH79YRmTECNqOPETv3vec8fXD2dnqG3B2XjtE/fq9v3aI0Kmtb2zcuHFXp06d8k/0HCFOZuPGjQ07derU6vjjZzSCrGnaYGCYruvDj3x9KTAF8AKf6ro+XtM0A/Aa0AkoB+7UdX3HmVz3dETFNaAEqDAZKc87WGsbj7sURU1Ciflt2w+Lc5dqDo4g+wwBXIf3wa8E5OAmIWZM3jLsia3qr0ghhBBChMRpz0HWNG0K8Nxx55gGDAdSgUs0TesC3AhYdV3vATwGZJ5+uaevQWQEAcVMpVHBV1jzU4XKsjL8fi+KwY4locbSe+I8oxgUFEXFp/jxFNb+hqlKMCBbMPrcOGJPaZUYIYQQQpyDzuQmvVXA0c+aNU2LAiy6rv+s63oAWApcQzAsLwHQdX0NcFY+Wj2Z6AgVvxKB1xiA4pqrVJQWBZd+UxQ7cQmJ9V2eCAHFoOJXfLgLD/1qO09JCQoWCJQRaZU3T0IIIcT57qRTLDRNSwceOu7waF3X52ma1rvasSig+h2CTiD5yPHqQ7Y+TdNMuq6f0nIbZyo6QsVniMAb8KE6ay7VV7UGsiFgoFG8bDMdDhSjhYASoLQg71fbBUeQGxIIeIg0n3CHTCGEEEKcJ04akHVdnwnM/A3nKgGqp4dIoAiwHXfcUN/hGIIBucJox+orwFHqIxAIHLPEiOtw1brcPpo2Sqnv8kQIGEwWANwFRSdsEwgE8DhLMJla4gt4sKs1drcUQgghxHmmztZB1nW9BKjQNK21pmkK0BdYAawE+sPRm/h+rKtrnooYm0qZ0YafMiJdAVyVx651XHo4uLZ4wFBJbINT2q5bnKMM5uC28Z6SWtdJB6Dc7SLg9xMwOPApZZgMYbMyohBCCBG26nqjkAxgDrAW2KDr+jfAIqBM07RVwEvUnK5RL6IjVFwGOwTKcHhs5HqOXVav9OABQMGnuom2mUNRoqhnpojgBxte14l3TqzaRU8xROI3yvrYQgghalqzZo196NChWtXXGzZsiLj++utTBg8erN1///2tfD4fAG+88Ub8wIED2w8aNKj9hx9+2ACgtLTUMHLkyNZDhgzRbr755nZ79+6tsWWr2+1W0tPTW6elpWkjRoxok5ubawJ45ZVXEvr06XPB0KFDtaFDh2pbt261nKjt2rVrbWlpadrgwYO19PT0ZI/Hc/Rj9OPrX79+vW3QoEHt09LStEcffbR5Vf3H83q9pKenJy9ZsiTq+MfefffduKeffrpp9WN333138vLly084V/GJJ55onpOTYy4oKDDOnTs39lSuuX37dsu1117b4fj2U6dOTTi+jt/ijAKyruvLdV2/pdrXa3Rdv1TX9e66rv/1yDG/rusZuq731HW9h67rW8/kmqfLqhpxm49sN+2P4mDpgWMedx44AIodv9mFwXDi3V3E+cNsC/6O+twnXtavzHlkdNlgxWv6rdvMCyGECBcvvfRSo3HjxrWsqKg4Gh5efvnlJhkZGQcWLVqkV1ZWKosXL47Oy8szLViwICErK2vrnDlz9MmTJzf3+/3MmjWrYfv27d0LFy7UBwwYUPDqq682Pv4aM2fOTGjTpo0nKytLHzRoUMFLL72UCLBlyxb7c889t7Nqh7uUlJTy2tr6/X7GjRvX6vnnn9+1aNEiPTU1tSQnJ8d8ovrHjRvX8rHHHtudlZWlOxwO37x582qE1R07dliGDh2aout6nc09fPbZZ/e0bNmy4scff7RV7Qb4W645Z86c2AcffDC5uLj46JsLt9ut3HPPPUkLFiw4rR2+wurz4sojI4Y+k4MDB7dC08uOPlacl4disOO1lIeqPFHPLJHBN5+B8trfGUO1EWQlAr8qAVkIIX6vfvhyb5y+5kDDujyndmli/kVXNiv4tTYtW7Ysnzp16s8PP/xw0tHnaZq7qKjI6Pf7cbvdRlVVA/Hx8d7FixdvUlWVXbt2mVVV9RsMBu67775crzd4a9b+/fvNkZGRNf4obdiwwXHXXXcdBOjbt2/JjBkzmgDoum57/fXXGxcWFqqpqanFY8eOPVhb223btlmioqK806dPb5SdnR2RmppalJKSUn6i+vPz882XXXaZC6Bbt26ln3/+eczw4cMLq9dUWlpqePbZZ3e9/vrrNQL9ybz77rtxK1asiC4rKzPs37/fMnLkyIO33357wdChQ7UJEybkTJs2rXF2drZt5syZDdPT049uBHOia0ZHR/vmzZunX3311R2rjpWVlRkGDx5c0KNHj5Ls7GzrqdZY11Msftd8juB2025LBIdzNh/zWGlxUTAgO0JRmQgFW2TwDZO/4sS7XlYFZJQIfJYTB2khhBDhKS0trUhV1WO2JU5KSirPzMxscc0111xQWFho6tWrlxNAVVWmTZsWP3z48Pb9+vU7GrxNJhM33XRTu4ULFyZcd911h4+/hsvlMkZHR/sAIiMjfS6XywjQp0+fwkmTJu2eO3futg0bNjg+/vjj6Nra5ufnm7Zs2eIYPXp07gcffLBt7dq1UcuWLYs8Uf2JiYnly5cvdwAsW7YsxuPxGI+vqXPnzp4OHTqcztzDAEBpaalx9uzZO15//fUds2bNOibwZmRkHOzcubOzejj+tWsOHDiw2OFwHPPHPDY21nfttdeWHN/2twqrEWQlJjha7zFb8OzKPuYxj8eFYk6CqLB6zxDWHDFHpi95TzylxlMSXKFQMUSg2OqjKiGEEKfjoiubFZxstLe+ZGZmNn/nnXe2XnjhhWVvvPFG/Lhx45q/8MILuwEyMjLyRo8enX/bbbe1/fLLL0uvvPJKJ8D8+fO3bdmyxZqRkdFmxowZ2x9//PFWAAMHDiyw2+0+p9NpAHA6nUa73e7z+/1kZGTkxsTE+ACuuOKK4k2bNtlqaxsXF+dLTEwsqwqXPXv2LN64caPtqquuqvUu9UmTJu38+9//3uK1115TunTpUqqqamDatGnxn3/+eSzA5MmTs5s1a/ar2w5brVZ/RUXFMaHK4/EYIiIi/ADt2rVzAzRv3ryisrLydxe+fncFnU0RsdGAgXKTEd+BXzaHKHe78AV8KIYobFGnNVVFnIMcjgjATMB/4l8Dj7MEFAUwo0SG1ftJIYQQp8nhcHijoqJ8AI0aNap0Op3GrVu3Wu64447Wfr8fVVUDZrPZryhKIDMzs/GcOXNijzzPZzAYaNu2bXnVvOJRo0bld+7cubRqTu7SpUujOnXq5CwpKTEOGDDgAqfTafD7/XzzzTeRHTt2dNfWNjk5udzj8Ri3b99uAdiwYUNku3btTjj6+9lnn8W8/PLL2fPnz99WVFRkTE1NLcnIyMirqulk4Rjgoosucq9bty6qKqwXFBQYd+3aFVEV0qsvtXs8RVECgUDghI/Xh7D6ix8XZSVgsFNuUlDzflnmrSQvuKKFokTiaNgqRNWJ+maNMKEYrPgDJ/418DhLMBrMKIqCGitDyEIIIU5u/PjxOffff39ro9EYUFXV/9xzz+UkJSVVtGvXzn3jjTemKIpCjx49inv37l2akpJSNmbMmKRFixbF+/1+JkyYsPP486Wnp+c98MADrQYPHqypqhqYMmVKdkxMjO/ee+/de+utt2qqqvq7d+/u7N+/f7HL5XIe39ZisQTGjx+/a8yYMcmBQICOHTuWDhgwoLi22gFatWpVNmLECM1qtfq7du3q7N+//wnbnkhKSkr5sGHDcocNG5Zis9l8Xq9X+ctf/rI7MjLyxPMaj2jdunV5dnZ2xNSpUxPuu+++3JO1PxuUUCf02qSlpQWysrLq/Lz/WLKVwOwXsXkrifKsY8S/fsRoMLJj3Ro+enEiZvsNJNx5BTf31E5+MvGrNE1br+t6nW8rXpd9Y/PK/Sx59Uns7j386V+f1trmoxcnkrPhR4yRf8LR92tGDh5XJ9cOZ2erb8DZe+0Q9edceO0QoVFb39i4ceOuTp065Z/oOUKczMaNGxt26tSp1fHHw2qKRazdTKXBjlfxklAUIM8T3GL48M6fAQiYAkRHRYeyRFGPVIsRRbHiU2rce3CUu6QEQyD4uK3JKd+oK4QQQohzUFgF5DiHmfIju+k1PgwHSvcDcPjnHYCRSrWMhg7ZJCRcmK0mUKz4DAaorH0qlqekCAUVg6+cyIanvM64EEIIIc5BYRWQY+0W3EY7BMoxeRUOHVnq7fD+PRgMUfitTmLtEpDDhWoxohgi8BkU/J6iWtu4i4sxYMHo8xBlbVDPFQohhBAiFMIqIMfZzbhMwc1XSiOiKNK/A6CosBAM0ZSrFcQ5LKEsUdQj1WI8MoIMrvw9NR73VlRQ7nahYAW/B4dZFskWQgghwkFYBeRYu5k8NbgW8uHIGPJ+Do4geyorUIzROAN2oqxhtbBHWAvOQY4AoHDPthqPu6vWQMYGSEAWQgghwkXYBeS9luDH5EV2B5U5+3E7S/ApoBiiyLMm/uq6fOL8olqNKIbg7pPFB/bWePzoJiGKAz9lRJmj6rU+IYQQQoRGWAVkq2rEbbOCIQqnQ6XLlkp+WrMUCAbk/OhmIa5Q1KfgFIvgCHJJ/qEaj7uKj+z2aYjCa/AQaY6sz/KEEEKcI9asWWMfOnTo0TViN2zYEHH99denDB48WLv//vtb+Xw+AN544434gQMHth80aFD7Dz/8sAFAaWmpYeTIka2HDBmi3Xzzze327t2rHn9+t9utpKent05LS9NGjBjRJjc31wSwdu1aW1pamjZ48GAtPT092ePxKD6fj7Fjx7a44YYbUoYOHapVbQ6yfft2y80339xuyJAh2i233NI2Pz//6BJO27dvt1x77bUdqr7Ozs42DxkyREtLS9PuvffeJJfLVSMvbtiwISItLU0bOnSoduutt7Y9ePDgMR/BL1++PPLuu+9Orn7s6aefbvruu+/GnejnmJmZ2fibb76xeTwe5e233254onZPPPFE8zfffDO++rHc3FzTlVdeeaHH41EAioqKjLfffnubIUOGaDfccEPKqlWr7Cc6X23CKiADxESaQW1IhclP4yLY/8bM4AOqmeho2QginASnWATnnDsLC2s87i4OjiAHDNF4DWVYjDI/XQghxLFeeumlRuPGjWtZUVFx9CPol19+uUlGRsaBRYsW6ZWVlcrixYuj8/LyTAsWLEjIysraOmfOHH3y5MnN/X4/s2bNati+fXv3woUL9QEDBhS8+uqrNdYUnTlzZkKbNm08WVlZ+qBBgwpeeumlRL/fz7hx41o9//zzuxYtWqSnpqaW5OTkmP/973/HVFRUGD766KOtY8eO3Ttx4sRmAH/9619bPvjgg/sWLlyo33TTTXnbtm2zAsyZMyf2wQcfTC4uLj4azJ955plmw4YNy8vKytK7d+/ufPXVVxsdX9PEiRNbPPnkk7sXLFigX3311YdfeeWVM14LdezYsQcvueQS98GDB9VFixbVCMi5ubmmP/7xj21Xrlx5zJq8S5cujRo5cmS7w4cPH/0eXnvttUYXX3xxycKFC/Xnn39+58SJE1ucSi1hN+E21mbGa2kI5bsoN0JZsQfi4sBqoKHcoBdWFEUBU/D/3F1cWuNxd3FwZQufGovXtL1eaxNCCHFqNiz5OG7zV1+ccNTxdHS44ur8Lv0GFvxam5YtW5ZPnTr154cffjip6pimae6ioiKj3+/H7XYbVVUNxMfHexcvXrxJVVV27dplVlXVbzAYuO+++3K9Xi8A+/fvN0dGRvpqfG8bNjjuuuuugwB9+/YtmTFjRpNt27ZZoqKivNOnT2+UnZ0dkZqaWpSSklI+e/bs+NTU1GKAHj16uMaMGWN3u93K4cOH1c8//zwmMzOzWfv27V1PPfXUXoDo6GjfvHnz9Kuvvrpj1fVycnIirr322hyASy65pHTixInNj6/plVdeyW7SpEklgM/nUywWy2/eeW758uWRb775ZmOTyeQ/cOCApU+fPoWPPPLIwT//+c+tBgwYULh06dIGu3fvjpg0aVLiY489dqDqeaWlpYY///nP+7/88stjArLBYGD27Nn64MGDj46C33PPPYcsFosfwOv1Kmaz+ZR2xgu7EeRYu5lSS0PAz+4kIwUOKwa1CV78JEZbQ12eqGcGc3CKRbmr5jrI7uIijCaVgMmOT62o79KEEEKcA9LS0opUVT0mfCUlJZVnZma2uOaaay4oLCw09erVywmgqirTpk2LHz58ePt+/fodDd4mk4mbbrqp3cKFCxOuu+66w8dfw+VyGaOjo30AkZGRPpfLZczPzzdt2bLFMXr06NwPPvhg29q1a6OWLVsW6XK5jFFRUUdDtsFgCOTm5qq7d++2pqamlsyfP18vKSkxzpkzJw5g4MCBxQ6H45jtn9u0aeP+5JNPYgCWLFkSU1ZWViMvVoXjlStX2ufPn5+QkZFRc65iLaru9Tp06JB5xowZP2dlZW19//33jxl9vv/++w+0aNHCUz0cAyQnJ1dceumlruPP2adPn5KGDRse88aiQYMGPpvNFjhw4IDpkUceSX7wwQdr3mz0K8JvBNluId/cgBggqoWdsgIVk7EVOw0RdI2JCHV5op4ZI2wQUKgoK6/xmLukGNUcHGH2WWq8oRdCCPE70qXfwIKTjfbWl8zMzObvvPPO1gsvvLDsjTfeiB83blzzF154YTdARkZG3ujRo/Nvu+22tl9++WXplVde6QSYP3/+ti1btlgzMjLazJgxY/vjjz/eCmDgwIF053cdAAAgAElEQVQFdrvd53Q6DQBOp9Not9t9cXFxvsTExLIOHTqUAfTs2bN448aNNrvd7istLT06vzgQCCgJCQmVERER/qprXXnllcUrV66MAmr9eY0bN27vk08+2eKjjz5qeNlllxVFR0d7Fy5c2OCDDz5IAHjsscf2dOvWzT1//vwGM2fOTJw+ffr2hIQEb/VzWK1Wf2Vl5TErH7jdbqPVavUDJCcne1RVRVVV/6mO7v5WP/zwQ8TYsWOTx4wZs6d37941Pyr+FWE3ghznMLPTGAkY+bE4OKXGYGrGZqUBTWQEOexYbBYMqPgq/TUecxcXYTIEX2MCMj1dCCHEb+RwOLxVo7iNGjWqdDqdxq1bt1ruuOOO1n6/H1VVA2az2a8oSiAzM7PxnDlzYo88z2cwGGjbtm35ggUL9AULFuijRo3K79y5c+myZctiIDjftlOnTs7k5ORyj8djrLoJb8OGDZHt2rUr69q1a+lXX30VDbB69Wp7UlKSx2azBZo2bVr21VdfOQDWrl0b2aZNG8+J6l+2bFnUI488snfBggW60WikR48eJUOGDDlcVVO3bt3c77//fuzcuXMT3n//fb1169Y1PmZt3769Z8eOHbb9+/erAB6PR9m4caOjc+fO7pP9/AwGA4FA4IyWFdu0aZP1wQcfTH7hhReyr7vuupJTfX4YjiCbOYgB1T4AX8USTCYFxdiQ/aZyEqNlBDncWCNUFMWC11vzzau7uAhjwIAXILLGTcVCCCFErcaPH59z//33tzYajQFVVf3PPfdcTlJSUkW7du3cN954Y4qiKPTo0aO4d+/epSkpKWVjxoxJWrRoUbzf72fChAk7jz9fenp63gMPPNBq8ODBmqqqgSlTpmRbLJbA+PHjd40ZMyY5EAjQsWPH0gEDBhT7fD5WrlwZdeONN6YEAgEmTZq0C+CZZ57ZNX78+BYvvviikpiYWP7UU0/ln6j+Nm3alI0dOzZZVdVAUlKS5/nnn99d/XGv10tmZmaL+Pj4ij/96U9tAP7whz84n3jiif1VbaKjo/1jxozZc+edd7axWCx+r9druPnmm3Pbtm1bvm/fvl/dtjghIaGysrJSeeqpp5qOHz9+3yn++AH4xz/+0bSystJQdXOe3W73vvPOOz//1ucrgcBZGdU+I2lpaYGsrKyzcu4F6/fyyPyNPOqx07StiaJDh3EqsfyjsogNT/ahgWw1XSc0TVuv63q3uj5vXfeNRVO/J+frKVh8e7jnw8+PeWxaxu1YygK4raMp7fY1j945rs6uG87OVt+As/vaIerHufLaIepfbX1j48aNuzp16nTCoCfEyWzcuLFhp06dWh1/POymWDRrEEFAgbgucezeVEFJvh1XvBmraiDGJqOE4SbCpoIhAl/g2F+FgN8fHEH2BY9bE6Jre7oQQgghzkNhF5BbxAYnk5a1tmOxBWeY7LMrNImOkF30wpDNZgJjFJWK8ZjjZa5SAn4/Bl+wTzhiG4SiPCGEEEKEQNgF5EZRVsxGA3td5aQOa0vH3s3IKS8nMUZu0AtHZqsJxRCN32Ck3P3LfQOuw8GNQwz+4KcKUZGOkNQnhBDiV/n9fr+MbonTcqTv1LxLnzO8SU/TtMHAMF3Xh1f7+kVgz5EmTwErgNeATkA5cKeu6zvO5LpnwmhQaNYggj2FblKua09Kj0T+8uweUtvW6dri4hxhjjChGIPTJ0pzD2Bp1RqA4rxcAAz+4DJvUQ4JyEII8Tv0U15eXof4+Phig8Hw+7upSvxu+f1+JS8vLxr4qbbHTzsga5o2BegLfF/tcFfgL7quL6zWLg2w6rreQ9O0S4FM4IbTvW5daBFnY3dhcLTQ6/OT6yyTTULCVHC76WD4LTmwk7gjAbkkL7jeudFvA38FUREyB1kIIX5vvF7vnQcPHpxx8ODBCwnDT8XFGfEDP3m93jtre/BMRpBXAf8C/lTtWFegi6ZpDwJrgUeBVGAJgK7razRNOyt3r5+KFrE2vssJblST6yzHH0CWeAtT5ggTGCIBcO7Jhh7B48W5hzCZLeB2AB6izDV22RRCCBFiXbt2zQWuD3Ud4vxz0oCsaVo68NBxh0fruj5P07Texx3/jGBo3glMAzKAKKC4WhufpmkmXde9hEiLWBslZV6K3ZXkFARHkps2kIAcjlSLEcXggECA4n17jh4vycslKj6BQE4EfjxEmiNDWKUQQggh6tNJA7Ku6zOBmb/xfG/pul4EoGnaR8AQguG4erowhDIcAzQ/spLF7kI33+4qRFGgc7OYUJYkQsQcYUJRjKg+BeeReccAxXmHcMQ0wLs3Aq+hjChzVAirFEIIIUR9qrP5OpqmKcAPmqY1O3LoamA9sBLof6TNpcCPdXXN09WiWkD+ZmchWqNIomUN5LBktgaXdzP7FYqLfvmgoyQvF4vJhNcUQYXRg8MsN+kJIYQQ4aLOArKu6wHgTiBL07T/ATbgTWARUKZp2irgJWpO16h3VSPIm/YXsz7nMJckxYa4IhEqZmvwQxST34TTFdyWvtztpqzUiclXSaXJRoXqwWQIu13ZhRBCiLB1Rn/1dV1fDiyv9vWnwKe1NM04k+vUNYfFxOVtGzL9q2y8/gCXJMeFuiQRIuqREWTVr1JU7gKgJD841cJc7sZrslFuqQhZfUIIIYSof2G7JMq4gR2O/rt7KxlBDldVI8gGLHgDChUeN8W5wSXezKVOvKoNr63WNcSFEEIIcZ4K28+N2zaK5P6r27JxTxHxkZZQlyNCxGQ2gAJ+YwRwmJL8vKNrIKtOFwHViC8qbN9HCiGEEGEpbAMywP1Xtw11CSLEFEXBaFYImKKB/ez+aSOHft6OxW7HUFoODcAqb6CEEEKIsCJDYyLsqVYTPksMEd4Ktq78H9vXraHtxT0JeIK7lkY4zCGuUAghhBD1SQKyCHsRESqVJgsNXaUc2K5TWeYh5bJe+CqCH7A4HLKJjBBCCBFOJCCLsGeOCK533KgouIqFPaYBzS/oSKUvOHLscNhCWZ4QQggh6llYz0EWAoKbhfiNEcQVlxPfrDltLk3FYDDi9QdHjhtEyy56QgghRDiRgCzCnjnCRMBgwxhQ+OM9ozG2uRi/qxSvwQ5IQBZCCCHCjUyxEGHPYldRCE6j8O3bDkDF7u14TTYC+GgYKetkCyGEEOFEArIIe1a7ioEIAkBl9mYASn76jkrVRqXBTYOIBqEtUAghhBD1SgKyCHtWu4qCEZ/RSsXPwRFk96YNeE02ylQ3DSwSkIUQQohwIgFZhD2rXQWgNMJO2e59AFRm76DCbKNM9RBhkmXehBBCiHAiAVmEPas9eK/qwTg7ZQeKAPAfyKPMYsNv8aIoSijLE0IIIUQ9k4Aswl7VCHJejIOKw5Xg80KhmwrVjmLxh7g6IYQQQtQ3Ccgi7FkdwYBcGGnD7zLgy9mI3wU+ow2jNcTFCSGEEKLeSUAWYa9qBNnpcEBAofSjdwmggGJFtRlDXJ0QQggh6psEZBH2LLbgHGS3NbgxSOmKVXhNVhQMWOyyl44QQggRbiQgi7BnMBowRxipUIObhTj1EipNwbAcYbOEsjQhhBBChIAEZCEITrOwBGLYmWCFSDubUtoCEBUjS7wJIYQQ4UYCshAEA7LDH8PYm9rwyfj3eb/lVQDExUWHuDIhhBBC1DcJyEIQDMh2fySKWsQnPx4kUikHILlpixBXJoQQQoj6JgFZCMBiV7H6bBjUIrLzXbRyGPAaKkmKl4AshBBChJvTukVf07Ro4D0gCjADY3RdX61p2qXAFMALfKrr+nhN0wzAa0AnoBy4U9f1HXVSvRB1xOpQMVWYUYxlpHVtSNz2QsotLswmc6hLE0IIIUQ9O90R5DHAF7qu9wJGAa8eOT4NGA6kApdomtYFuBGw6rreA3gMyDyjioU4C6w2E5QbUQIG7usTj7cUsFeGuiwhhBBChMDpLvL6EsHR4KpzlGmaFgVYdF3/GUDTtKXANUAisARA1/U1mqZ1O7OShah7VbvpWbwRHHAdwOi2YE5UQlyVEEIIIULhpAFZ07R04KHjDo/WdX2dpmmNCU61eJDgdIuSam2cQPKR48XVjvs0TTPpuu49o8qFqENVu+lZvHY25v5AREUrIhv4QlyVEEIIIULhpAFZ1/WZwMzjj2ua1hGYCzys6/r/jowgR1ZrEgkUAbbjjhskHIvfG3tMcEOQqPJY1u1ZTze/RsM4NcRVCSGEECIUTmsOsqZpHYAPgeG6rv8XQNf1EqBC07TWmqYpQF9gBbAS6H/keZcCP9ZF4ULUpdjE4M55KUonft63C4AmjRJCWJEQQgghQuV05yA/B1iBKZqmARTrun4DkAHMAYwEV7H4RtO0dUAfTdNWAQow+szLFqJuRUSasTpU+kQOxGd0A5CYEB/iqoQQQggRCqcVkI+E4dqOrwEuPe6Yn2BwFuJ3LTbRjivXS8bl97Fs1VYcMdZQlySEEEKIEJCNQoQ4IraJncMHXLiKK4Bf5iULIYQQIrxIQBbiiNhEOxVlPrauOkBMIxuq2RjqkoQQQggRAhKQhTgitknwRr3iPA8XXtE0xNUIIYQQIlQkIAtxRFVANpkNpPRoHOJqhBBCCBEqp7uKhRDnnQiHmZhGNlpeEIfFJmsgCyGEEOFKArIQ1dzyt4tRjLLFtBBCCBHOJCALUY1RlVlHQgghRLiTNCCEEEIIIUQ1EpCFEEIIIYSoRgKyEEIIIYQQ1UhAFkIIIYQQohoJyEIIIYQQQlQjAVkIIYQQQohqfpfLvG3atClf07ScUNchzkjLs3FS6RvnhbPSN0D6x3lCXjvEiZy11w4hjqcEAoFQ1yCEEEIIIcTvhkyxEEIIIYQQohoJyEIIIYQQQlQjAVkIIYQQQohqJCALIYQQQghRjQRkIYQQQgghqpGALIQQQgghRDW/y3WQq9M0zQC8BnQCyoE7dV3fEdqqQkPTtO+AkiNf7gTeAKYAXuBTXdfHh6q2UJC+cSzpH8eS/vEL6RvHkr5xLOkfQtT0uw/IwI2AVdf1HpqmXQpkAjeEuKZ6p2maFVB0Xe9d7dj3wBAgG/hE07Quuq5vCFGJoSB94wjpH7WS/oH0jROQvnGE9A8hancuBORUYAmArutrNE3rFuJ6QqUTYNM07VOC/29PAxZd138G0DRtKXANEE4vYtI3fiH9oybpH0HSN2qSvvEL6R9C1OJcmIMcBRRX+9qnadq5EOzrmht4EegLZABvHzlWxQlEh6CuUJK+8QvpHzVJ/wiSvlGT9I1fSP8QohbnwgtCCRBZ7WuDruveUBUTQtuAHbquB4BtmqYVA7HVHo8EikJSWehI3/iF9I+apH8ESd+oSfrGL6R/CFGLc2EEeSXQH+DIXLEfQ1tOyNxBcJ4cmqY1AWyAS9O01pqmKQTf/a8IYX2hIH3jF9I/apL+ESR9oybpG7+Q/iFELc6FEeRFQB9N01YBCjA6xPWEykxglqZpXwMBgi9qfmAOYCR4p/E3IawvFKRv/EL6R03SP4Kkb9QkfeMX0j+EqIUSCARCXYMQQgghhBC/G+fCFAshhBBCCCHqjQRkIYQQQgghqpGALIQQQgghRDUSkIUQQgghhKhGArIQQgghhBDVSEAWQgghhBCiGgnIQgghhBBCVCMBWQghhBBCiGokIAshhBBCCFGNBGQhhBBCCCGqkYAshBBCCCFENRKQhRBCCCGEqEYCshBCCCGEENVIQBZCCCGEEKIaU6gLqM0ll1wSaNq0aajLEGdg06ZN+bqux9f1eaVvnPvOVt8A6R/nA3ntECdyNl87hDje7zIgN23alKysrFCXIc6Apmk5Z+O80jfOfWerb4D0j/OBvHaIEzmbrx1CHE+mWAghhBBCCFGNBGQhhBBCCCGqkYAshBBCCCFENRKQhRBCCCGEqEYCshBCCCGEENVIQBZCiN8LbwWU5oW6CiGECHsSkIUQ4vfghw/h5S7wYht4bwgU7gx1RUIIEbYkIAshRKjtWw+L7gZHPKSOgb3rYPaNUJob6sqEECIsSUAWQohQ8lXCv+8HRyO4/SO45ikYkQXOQzDvNvD7Ql2hEEKEnd/lTnpCCBE2fvwQDv0EN79HpdnGwk8/Zs8XZZiUybTetpwBq6dhvOz/Ql2lEEKEFRlBFkKIUFo3AxpqBLQBTJo5nYIsG34vFPnd7Cm+iVkfmijbtyPUVQohRFiRgCyEEKGy77vg/OPu6cz+Zj6RG1pDi1LuHdGWe/5goSThY1zlrZg3ZSW+Sn+oqxVCiLBRp1MsNE1TgbeAVoAFmAhsBmYBAeAn4P90XZdXeiGEWD8LVBv52rVseX4JiYYG9PdtY++tjwJwI7C1bQH7m45kyWtLGPBA/5CWK4QQ4aKuR5BHAAW6rl8O9AOmAv8E/nbkmALcUMfXFEKIc4/PC1s/Bq0/s9f+l2aHNVKsOymbM5Pifjfyxd9eZ9OoMbTN30bTvUvYtcXKlpV7Q121EEKEhboOyB8CTx75twJ4ga7A/44c+y9wTR1fUwghzj27V4O7gKJ217BrVTEBxUvjJW+y4Q/XcIs1lcmb3Txc1IRR3e8jtng5UcXb+HLOZorzPKGuXAghznt1GpB1XS/Vdd2paVoksAD4G6Douh440sQJRNflNYUQ4py05T9gsvLv8jKScjvTpOQnXA47zzS7iqcGdWDrhH5888TVDOn3Bx7s/hCJ+97BUFHJ0ldXE/AHTn5+IYQQp63Ob9LTNK058CUwW9f194Hq840jgaK6vqYQQpxTAoFgQG59Nd+u3Ynqt9B021Jeb9OXhwZ1YvRlSZiMBhpFWXm8f3vefKAv867oRZM9C8g7CN/9a3OovwMhhDiv1WlA1jStEfAp8Kiu628dObxB07TeR/59HbCiLq8phBDnnEM/gXM/21t1x7onHrO3CI+/lMrUXtxxWVKN5l1bxvLU2HFsuGQrDQq+55ul+8jdJrvsCSHE2VLXI8hPAA2AJzVNW65p2nKC0yzGa5q2GjATnHohhBDha8cXAHxc7qF5kUajA+vJSr6CRwdciMGg1PqUZg1s3JXxDuvavo9a4eKTf6ygvFTmIwshxNlQp8u86br+APBALQ/1qsvrCCHEOe3nZQQS2rNpUz5dMBFT+BNFfR+gc/OYX31akybtGNTrWv7739m08tzLJ2PfZ/Bro1CMxnoqXAghwoNsFCKEEPWpwgW7V5Pd8mKi9iWiVpbwo93ByD4X/KanX9VnAsaOuylRPuOAksSKR6cRCMhNe0IIUZckIAshRH3KWQW+Cr6w2mh5OIW4gs182+4SemsJv+35BiOP932Vz7t9QsC3nU3FyWzNnHl2axZCiDAjAVkIIerTzv+B0cy3B1yYAnYszp206tMb4wnmHtcmutklPNXkSt7r/g4BKlj9g51D7y88i0ULIUR4qdM5yEIIIU4iZzX5TTpRuTP48rvFamJQ1+anfJor+v6T62Zdyr8vmMGgLfezbNFWBjT/mqjLU+u6YhFqFW74+QuWLvyG/K0NwGvHWpZP80QXHf90MxGdO4e6QiHOOzKCLIQQ9aXCBQe+Z018C9odSsHh3M321hfS5SQ359XKqPJI32mYHDvY0DyLwrgL+CLzSzy6Xvd1i9A5tImyab14K3MtO/ZehdPalqJIEwcadWZdoA//nrCMVf/3BN5SV6grFeK8IgFZCCHqy95vwe9lDUaiKpOILN5B0149UZTfPr2iOluz7mQ27c/3Tb8ip8Ea9je+jOWPvYu3oKCOCxchUZhNYNYAZm8aiMd0JQbnKlxNP+PO5k/Sv8VYspusIq/hBWxyd2PpDXfz5adr5YZNIeqIBGQhhKgvu1cTQOHnPV5QTBxQyrn8giZndErtmon8tczEf7W55FmyyW50NSvun4y/vLyOihYhUV4K79/CvPxUKpTLMRWtRB9wHf/3t8lY7vkfyVEOXlSmoPZZSYnNS07r2/BOnMLzj04lt6Qs1NULcc6TgCyEEPUlZxU7Gren2a7GKH4fG2Lj6JHc8MzOqUYwuN8r3FpSwqLOU3FykC2OK/hm7GQCfn/d1C3q31cvsCf3EIeLbsFesoOd117OS7f+AatqhPh2kP4ZStOu/GnTKyT2/458+362tR9Fj9WrmX37GL7ecjDU34EQ5zQJyPUgEAiwK9/FT/uKOVRSJh+BCRGO/H7Y9x2r45rQrLgNkc4cuPhiIsx1sMlH0hU80qI/PcpcfHjxS5T5CthQ0YUN42SN5HNS/nZY/SqLC/9EwGBhc1wRT424/NipOLZYGJEFSb0Yvm4a7a7dzsHIXfzU4Q66HHaRf8ftvLdolfz/C3GaJCCfReVeHy9/sZ0ezy2j94vLGfjK11zy7Bf0nLSMZz7ZzJ5Cd6hLFELUl4LtUOFkPUZMSgsqy3O59KJWdXZ6te8z/NMFrZVK5vd8Ba+vmG8OJbPpxXfq7Bqinnz+NN/5k/FWdsdatI5hY9JrfyNltsGtH0ByL25ZO40OfXayN3oHm9vfjiWyLe3G3cf0SbPw+SUkC3GqJCCfJYdKyhj0ytf887NttE+M5Lm0jrxxW1eeHtSBC5pE8/bKXVyVuZzx/9mEs6wy1OUKIc62fd/hA4qyzaAYyTYr9GgdV3fnj2iAre9zvLY3hxgrZPWcjt/nYqXekG2vz62764iz69Am2Pox6w4NwRDws+ui5nRP+pV+okbALe9Di57cuuZ1Lrg6m5wGm8hOHsJebRBXvPMP5qY/QrlH5qQLcSokIJ8F+aXlDH9zDfsOe3jvEiv/8HzL1V8vpMfuDdx2YSwzRnZjxaNXMrRrM2at2kWff37Fl3puqMsWQpxN+9azzR5Nm93NUPw+NiY2o33jqLq9xoVDaJjchzd27yRg8/BRj1n4Al6Wr7OS/bZsJHJO+OpFthma4/N1Ri35jtvvuvHkzzHb4Y/zoeVljFj9Bl1SdbbHredAw15s6PUQXVYv5ovrb+XwwfyzX78Q5wkJyHXM7w/w0LzvKcg7zAd7FhH7+J858NpMct+ezb6HxrC995UcnDCRhp5inku7iEX3XkZUhInRb6/j8awfcJV7Q/0tCCHOhn3rWRffiobu1kS499GoUwqGU9g97zdRFLhhKi2NNqYXVeByFLK4+3t4DSa+XO4j+50P6/Z6om4V74PN/+KrgmEEFCM5yQ1okxD5255rtsMfF0DKQIave4/L//A9mxqt4LDShrWDniXxwE42Xj+E7es3n93vQYjzhATkOvb2ql2s37yH6T/OZt/+CL666nlWpL7A/y57ke+GTqXgyjso+HAhP1/bl4MTn+ECtYz//DmVP/VKZu66PVw3ZQXLZTRZiPOLtxwO/cR3xggCagtKvE4urcvpFdU5EuDGaWiHdN50dKIwej/LusylzBLNyqVOtr/x7tm5rjhz38/B5TfgLe2EzbmFq24ffGrPV61w07tw6f8x5MePGZT8Nd+0+g+lzki+7fc8imLj8Ojb+OyDJWenfiHOIxKQ61Cus4zMpVuZos8hO+JyspOuJydyL98nLebbZv/lZ/d+vnd3YN11kynrdzuH585lx9XXkDd2LH925DP3jm6YDAqj3l7H8DfX8L9tefjl5goh6lYgAPvWw9o3IX9H/Vzz0CYCvgq82x0EDCrbrSqXJp+lgAzQ9hq4+G46rJ/DjJS7OBC7k9UdFlES2ZLvPs1n4/NTzt61xenx++G72XxaOQSfGsXOqGJ6tUs49fMYjNDvWRg0hetyvuOB6BX8r+O7lJSV8VO3sexr3ouEvz/MG4++RJG7ou6/DyHOE6ZQF3A+efmL7UzInorT2JP8hh0pbvUf/mL6mAaluRxM0JhzSQVLNn9Cz11puDxdSPlzb7TDy3Ev+hDn0qXEREczq2dPNjZsw/TtRYzckU+TmAh6afH0bN2QS5JiSYiyhvrbFOKcsernfBwWExc1q7aV8+dPwcojATGhA/zpKzCqZ7eQQ5vYpZpouas5GOGHRo1pn1jH84+P1+fvkLOaDkvG8dawN7l7/XOYyz+hqzKQnV+voKz4GS5+5onT3sVP1LGdy6F4N/kH78McKCRuyMAzm4LTdRTEJtN17h95JcLNk70MNPz2Ymg+kOL4TnRfOp15P24k9q9/ZUiPNnU/3UeIc5yMINeR3QVu+PotYvdFcSCxB96L9vPEo/+kwRgdhr5FY28lY1fO4sWmKhsu/5Dvm3zBlu+L+KzoEgxTs2jy8stE9u5N2bp1tJn9Cv/490Q+XjaBJ1e8QYN3ppH1jxnc+MRcLn3mc+55bz3vrNrF3sOyTJwQv+atr3eS9toqZq/JCX4a89WLwXDcdRTc8CrkboY1r5/9Qg5tYqMtktiy1qjlebRsl4jxbAcSNSK4BJjJivbvMbzXYyK57baxsckX7Gt6OYXf5rHqgcdlM5Hfi5+y2O5NpsLclhLfZgb3aHfm50y6AkZ9QuPKSqb9vIz2gwpY1TqLIns8ay4dR1KZGfuDd3HX3+ex6me5gU+I6mQEuY58tOx/3KIvYVXyJCocefzfXbcGR2YUBS4cAtoAWJGJtuJF3mvQipcvb8WiTf/kmpzbWTqzghYXxHPZg0+SOMlGxc6duL/9Fs8PP2DbtJmk7FUMOrJtbGlULN830ljaoB3PNdLoeUEz7undmu6tYkP8ExDi9+efQ9rz8Fw3E//1HeqXE7ipbCHfRf4N/dtUjBuNXNzgTyR/9QJcei8Yz+LL4aGf2GSJJ86ShLPiEN1a1tPva0xzuC0L3r2R5vNGM2fY2/zF/h7bvloHXE/KD++x4o77uHz6ZBSzuX5qEjX5KmHrx3xbcCsA29u0oEWcrW7OnXgRpH+K8b0h3P6/17h88MtM2PwRCesuItDuFqJLdpDxr6l88ON63h44lL9dfyEt4+x1c20hzmESkOuA01NBt6//zi7vICrNkVx3V2fM6nEf2apWuOqvkNwLc9bdPLziLXp2+yNPx88gfmcK/m2D2P33Qtp0TaBDahOaDhlKg5o/fBoAACAASURBVJtuAiDg9VKenY3nu+9wrV5D1Jo1pG5fjddsZeXmzvx19cU0ubQrTw7sQOt4Rwh+AuJUBbxeKvfvx19aitq8OcbI33inujglqx9+hYHlAZ5K/ITKEjPTS6bhOxTP4ahcmvniWJZ3LYnRHxCRtwUadzw7RQQCcOgnPMXt8ZlsZGPijy0bnJ1r1aZxR7hjCcxOI/q9Ybw25E2mXL+D3Qu3ENCG03HzW6y8ZTQ9Z0/HYJdgFBK7vsbvOozL0xE1kM1lfa6p2/PHJsHo/8I7g0jKuo8ZN0xl3gVe/rv4X/zh5+twXvw4gzfNonj63/i/b9Lod9M1ZPRqjckoHzKL8CUBuQ6s/e+72LeXs7v5VVhal5KitTxx41apcM9KWPwXeq59h6z4FF7tZuC9+PF02X8V/o2Xs+PbXEwWAwktoohOiMDRwIqjgYOoztfS4LrBNLUbcX/7LcX/+Q+9/7uEXj+vYcePLfjHFz3pMHwI91zbAbNJXth+jyoPHiR/2jScS5biKyo6etzSrh2R/foSMegGAvEJWExG+T+sAwdNhXh8V7Gn8FIATJWFNN07nYTARhb0askVhY+wxjmCK/esPXsB2XkAZ1kRsQcSwQLfRzfghRYxJ39eXWrYFu78HD64BeO82xjT7zk+GtWMb9/KgQtGc+FPM/hm8C10+2AWatxZvHlQ1G7zR2wsuYhya2P2+lfw0AWN6/4akY1g1CcwbwSGhenceuVf6XvvU7z+1VsUfZqAv+M9ND/4Kf9Y/gqfZa9i5PrhPHdHr7obyRbiHCMB+Uz5vCR/lclP3IjfYCJt5GUnf05EAxjyJlw4BMfiR3j061ncdOENvN2mnPdzniYhP5mmxW1pkpdM5J44TGXH3pjnaGihZYc4Wt38EMmPPErpx//B+N6c/2fvzMOjqq8//N47+0wy2fc9JJks7Mi+I6Cyb4I7KkqxtUq1uLRKVaxYlSpqFau2ij+sslalVBFBZRXZlC0DIfuemayzb/f3xwhVESWQAAnzPk+eJ7m599wzk8m9557vOZ9Dxp73aPr2I5a9M5SRv59Htz6GdnrRAVqLJEk0vPsutc8+B14vwVddhbp/f45ZJEq/OUrwN1+T8uLLSC++zN4YA5tS+lKW2YtuGbEMzYhkhCEq0KB5DiQ/MI5P3noOw7dhhFgcyFWVxKQkof5Gz4KVpawbsxvRMpIhxR+i6NtOTtQc5ohKSYQ9FZvcTnhyKEGqi3DpPRkgrb0TPn6Iyd1mknDXrWxYdoKDXeeQc3Q5BybNoPs7/0CVnnbh/btckSQ49jHGpmsRFF6Kcrq33/96UBTM/gg+uhe2/JlwSw1/vGox+b2KWPvmTmAsxdHxDN/1NoOXP8zf9l7DkAV3MbFPcvv4EyDAJUyHCJDf2VFEg93DXSO6oLjElnwqt71NtVFOecIQ9Flews9W1B3AcLW/iWLrc6Rtf5EnNGH8YeJSvg4K5pDpEMaGvXzVeILK5ipUDh16ZyThtjgSmrJo2JbJ4S8r8cidOFK9hP3uero6bChW7eTKvZ/gu2kjn/YdzoCH7yE4J7v93oAAv4jkdlP1yCM0ffAh0rBrqB1wE1uK7Zi+dNAo+ahRDkA1eTQ5YU7y9m+hx67N9Nv9Du79Kzkalc6e0FRWhCUTkp1Jn56Z9E4NIzFMS5hWgU8Ci8NDo92F2eKizuKk2e4fXR4VrKJLVBBZMcGXbTZ6ZPJIhj0yjBpbDSqZinB1OIIg4K6oYP/UKWQX7KU5tj/VBSaS2suJmkMck5RI8jQc3iZ6pVzEYEOphZnvwLYlsPnPXFG5j9jbn2X529Xk59xKSuFKFNNnkvnGa+j69L54fl4Aar89QuHCx4nOySQoIhREGfLoaEImTUSmb2eFkR84cgRfYxVWKQ/cJxh9xdj2PZ9c6W9Q1UXAjpegYh/Zk17k4Ydms+k/+zD+J5dPhi8goeR1bj3wb0rnbePlmfO4Y/51qBWy9vUtQIBLiA4RICe88VeCjxj59ZTf8Ni8sSSEai62S368HsQNz9HkGY1PruHqGVe03oZSC1cuhK4zYPXtqN+7nqFXzGHo2EX+yUiA1+fF7DBTaamkylqFyW6iwVpAY7EX3/Fg9IUJuAuUfKkyU5SZjOIKNV33ldB/71bKp27BldudxKkT0I8ZgyK2HZbuApwRn8tFxb3zafpiK8VTHqG4MRbf1yZqdWU4dVbC3JGkW2Mh30FEgo74SXeStegP+A5/Q8vGjei+2kX3I//1G9sOdpmSal0EX2hCqVfrsSnUOGUKHDIljaogGlXBNCu1mNUh1Gv0+AQRpUykb1oYIw3RjM2NveyWTGWijPig+B9sUyQkEDz9BnouX84XsT6qTHqSbPWgbYfmudp8GhqjkeniKPHVMSjxApdX/BhRhGELIGkArJ1L4qrr+O3Ep3jtUzOlXIdVE4o4+zaSnnmasHHXXFxf25FKt0hBC/g2bsWjjqQx1EBTiB75R/8kO7OUXgufOHUNbleOf8qx2kwc6mgKxWPMb4/yih8jijD2SUjsBx/dA8uGIvS4njEjHybP0IUNr31DY/JDvGF4hwlb93Dlm0+y5ov19H9uMRnZqe3vX4AAlwAdIkDuP/cmin5zN79a8RgvfPs1Ixf8inG9vpfvMR2Hbc9D/noIjod+d0DfO9rdL9+htZQdcVGeMBxNvJvo5PPIOsTkwtwtsPlJ2Pk3KN4KU1+DhN7IRBnR2miitdH0pOf/jvluSdjl8HBkbxmHdskILhwGVSKOICfrri5FZykio7QMz19fR/3U08i7ZhM5aQoh11yDPDLy/N6AAD+L5PVS+eCDNGzdxY4rH8bbGMvRmK24Ij8iTe4kJjSR6pBYvjRXE16RRp55EOaVVnb9+wSG/rEYbryH9EcewdvUiOPIEVxFxbScKEReWEJsdTWyxmPI7DZkLudPO6BU4YxLpCY8noOlYWz+Mox/6mMJz0pjXPdEJnSPIyn88gqWv0/GzbM49s+/45UqKHXn0q9in3/ARltjLkA0p4Jc5LBOx10XO0A+SdpQmLcN1swheOP9zDdM4a2QaZi5mq+D4+GBP2I9cpSEe3+L8OOm406AqfoATZm/Yv93P3sFD83KYqJaYtlh6obrz4/Rf+FT7a+RXbCJI9aRoPORn5pyYf8ncyf5PwdfPucfnHNwFfF9ZnPd3XexcVUTwolb2Tf1KmzHn2fyzgM0zJzIB7N/zcTf/QpRvDxXpQJcPnSIAPmIOZrqG14m/NsPmP31BzTdupGVvQYzYNrVOM3FmA4fxiFFEJl0NwbxM5T/+T3E94aEdlwilCQs65/B2tAHZ0I4Y8fnnr9NhQau+jNkjoW1c+H1kZA7GUY96m+yOQNKtZyeg9PoOTgNl8NDeX4DJUdNFB9XY7V1oTpFpDoFJMmH3NNE8H/qCHrvecQgE5q+UaRddx3J8QYUYse7Cbqrq6l5ajG6QYPQjx93SalB1D7zDA0bt/D50PngicSSuIwRai/j08aitZT4H4IcO/Aqg9mequTdrJV8Vu2iV80o3Dt6cXhrJdoQJandI0nJyyJ2Ul/C9adLcUmShORw4DGb8dbX46mvx1NTi6u4GGdBAboTBSRXVjH+u/2dX6g4EprMqxFp2LvkkNgti5wemfRJjyRa7UUQ5SBX+SUKOzGK+HhM2ZlEm05QGz0Ab10BsrYOkCUJW/1xdM2TsYWDOUhJRvQlpDSji4Cb1sD2pci3/Jk5is/Z2OuPHDuQx5cDH6Lv+/+gcduXZP71r6jS0y+2t23K4KEjMdW+jdOtIDI+Fl98Lh8c1LPl4IfcWRzFHq4h4/M1RFx5Xfs54bQgFe+iWbgWPMUMyhvUfuc6E5ow/31nwF3+QHnv2wR9/SaTu1zN12G3sG9vHCHhS/jgji/JW/8uOa+/yHtfrCbnzy/Qq1s7NbYGCHAJ0CEC5HqxgPJyH6Wa0chGjkZ0WcAr8dEGBZCJIKWjUMs4kg9HEocySfMbNOt/B3du9o/dbA8KNlG830Rl/K0IGjddep7DSNAzkT4cfvMV7HrFn00+uh66jILk/qCNBLkaJC84LWAzgaMJ3DbweVEC6Y4m0psrQH4Cd7SLencKtVIXjotdqHbrMWsjaQwZCoISCqDgT0W4hS1UxBVCYgkJQVYSZWoiFEHo1REk6uKICE1DCE+FyKz2WYY+RyqbnXxrtBH51TsIzy9H0a072iv6os1JQquXEZYajzzswpeVNLz3Pua33+GLIXMRSMAWvp6qxN9y342D/lfH53FCwWfIjv2XYcc3MaylEqNay/IuFpanrCapvit97MOxf+XkyNZKAFRaOVq9ErlShs/rw+304nZ68Xn9I8kFpQRaLw6FGqsqlpaeShwDkvBiIbTFQXSDm6haG7GlFrpUHEUsO4T0uYBPJueEVqQoCJS6FhRBzfiiJBTJ4chiU3EFx4FKh0wdhlwbiTw4Frk+gXBdLEHKSyjgayXhV14NK7dRHzWCuuJGYts6PrHVc8xrR+NNxOZtISMxuv0HhLQWUQZD74OsqxE+foirihZgiOnJh/Xz+brP74mt3IJr6izifnsHsbffidBJMocafQzX3fbAD7ZN7A3Ld8Zy7IUHiPLm8NmGE8wc6W2/+0jZLmqrw7DqkiiTbWdSdhveR1pLSCJMfMFffrPnH8gOvMuAlutJSxzAF5bf4DQOxjZ6BBsrljNiyzZcN8/kmUHp9Jj3IFd1H3bx/A4QoJ24IAGywWAQgVeAHoATuMNoNBac7fH765/mX93NJDYZyGvIJMitwSN58LjNBDecYNS+EjROL7tmX0dD+TA2hD/FNNsshKIvocvIdnlN3i9fwVaSQEOfXHqNTERs6+ZBTSiM/AP0vRN2vuQPkgs+PX0/QQSVHhRaEL/7c6r1EBQDSQNQxOQSE9eTmJiudPtuEEKD1cWW/cc5uONr1MXFxDhVqIRkkuryoA5schP/jTpIcfhBqoMPIpkklEUSSR43eU4XVwhB9IvuSULqcIjKgZRBFy3b6LZ7KU27ntLvbzwAHGgBQKSOtKD/o08fB1FX3ejXA21n7AcOUL1oEV/1uhpB3p06/bccTJjJuzcO+GGTi1wF2eP8X5IElfswHFzNn49+xD2WSt7XV/NhxB7qEkWSbRl0ZyBR7gRcbi2SG7wKDy6lA2uwhWZPIza3HYVXhc4agtodhN4VQawn8Qe+eYFqoDoJfrErrfG7r2+8+LBjU1po0jRhURZhUe2jQVNDg7YKl7qWcJlAoiyINFUYaUGJpISkkRySRkzaSMRL6IHqx6QPGoD7jRUAmKtdtPmjlLmAIqsauzaJJmx0Twxp6zO0HTG5MPtDqNhL6t63+NWhP/CJeQpl8WOoiR1I6uovUH84FsNzz5CY1Xkb+G4ekMKfRt1K3PpdVIgDse5Zj67f5PY5WckODjb1hxDYG6njiQs1QObnCEmAKx/1338KPiNm92vMKLiNo/qRfFV+M3Lv9Ry4ZhzKkk8Y9/kO7Dt+xXM9QrGOG8+NY28mI+xnZE4DBOhAXKgM8hRAbTQaBxoMhgHAEuCsrzgPTl3F1IMr+Lz8S76N/IIaUUStCSM6sjtflw5kVVJX/vLFFvovf4//XA/e8qFURfUg/tjH7RMgm09Qvnk3psibkJDoPrQdu9KDomDME/4vtx3sDeBxgCDzN5Bowlqd3QjTKZk2JI9pQ/IoMllZvrOYjV8e4qpjG+hrs9EUmkOQeyg9qkYiU0uIiTZsYeWUqQ+yTbWXDyUb2A6Q/M3XDLPZuWfq+2iSBrTP6/8FUhLcxOU+R5M7jGZBS60PqGrhikMOwmw6TBndKZd3o+gLOf32PUnvK2MRrnzUP7ilHfA0NFA6fz4lsalYQ8bhDi7nQ10un9zc5+c7wAUBEvr4v656ipjaI9xzfCO/Of4pX9UdYLOmkf2ao2wMkuPAPxpYKSoJVYUSrY0mSZ9EniqSZJ9EurOOdGcZWksdroZaLPV2HDYBt9ONTxLxokCSidiiMmmJ7oo9Mh2HXMAlOPHixWvzIlZZ8ZZb8FQ1ojRbUTvBpQzGrg7FrsnCK9dzclK9hA+PshGLykS1qoECpQWHvByXrIBu4St45M617fJetwWa3ByUrgYkyU1To9T2J6g/QbM5GJs2mhJZM+Mu5QD5JN99DlUTvEyqM1L3zQHWb7ZQLF6F6B1F833vsTLnAfJm38bInGtRyjrXBD5BELj7+lFsW/kSCMPY8+W3DO/XPueSirdj8o1G8DYRn9bz0lKbEWWQNRayxiK2VJOXvx7D0ffINyr5tvFK6iNmsn3YRLS2fLqVGwl9dgs733mXJT0iUQ8axri84XSN7EqsLtY/VTZAgA7GhQqQhwAfAxiNxl0Gg6FVcg+CNhxD/99i6P/b034nSRJPrD/C75qv4K0dz2D4Yg1VuQM54JtNvHEpXP10m2c3pd1vUntcT1n3AYRm+Ad5XBAUGv9XG5IWqeNPE/O4b0wW6/b3Z+mWfLL2f86EAx+iUkZhiupBg6MbCgykYyBTMRNtpAy7rplqoZB8+TEqtBFktKlXZ0+hCE+EVuKVygDQyDWEp0XwZU83V35RwKxt+9jVLRxZ/4fZVXAjnk/fp3/zr2DGP/2d3G1M9ZNPYq9v4tDQ3xAkt/CiGMHzU7sRHdyKz4ggQEwexOQhG/I7BjktDDrxGRz5EKl4Kx5LDSIgA1AGg6YGnDvA8b/BI4gK0Mej1CcQnp4E6hD/w1RwLMR0hfherXpIcNaZMP7nM+q2fInu228IbmnCpo2iRZdAXUgKLbo4lKowQhXxIFMjCP5Li7O55exf90VA1GhojAlH5jFTZW0HdRxzAUJjCoSKFKg1dE3oAAHySUQZxOQSNTaX28ZC4bEaNr2+iUrZ1WgbR1K6eDvXXTGanLQYxhiuZVDmZJRy1cX2uk2I1qsxZ3dD11xJfrmG4ZLU9qtkbjuOIwdpCvotTbJ8RmROb1v7bUlwLPS9A3nfO+gqSeQ1lFF5wMix/Q5KS7Mo0PYCQOWs56pvD6Lbdogj8R/xUg8vpmQ9ORE5GMINZIRmkBScRLQ2msSgRGTtVboSIEAbcKECZD3Q9L2fvQaDQW40Gj3na1gQBB4Zn4uxuoV3qq9m3r7V7OuxBcE8mmbRhr7OCNFtqAPscdGyYSV2RR988hAGjzlz81xHIlit4JaBqdzUP4UvjvVm1Z5SyrftZmjJHgbvWIVaVNOkT8UUmU2LLRVJHU6kL5dIKY/glhi4SMO3DOEGtl63FZ/kQyvXovhex3nx+AZWPXA/E7bt5P3Qh9BmPcieE7MI3/scmZGL/aO/25DmjRtp+c8GNg2bhcYbxlq9m2HZkYzvHnd+hlVB/mbN3MkIkoSizgjlu8FqAkuNvwZdqYPwLhCdA9G5EBTdpjd0VVQk3W+dBbfOAvzNkfX7v6Xp4GFiSooRak8g1bZAYwM0NyFJMjxyNfS7glYsFl0UxOwcghpN1OsiwdHsL1FqK8wFKJz+JedGNaRGdNxRzulZMcx99kbyj9ay7aWNOIOGc2X+cJoK9/BI9Wv4dj3BSHkYo8K70jd9HPr0kf7Pbgel/+xbKHrifcq1g/GUH0Ke1MYNaRV7KalNx6PTcjjEytQuHWSCoSAghCeTMCqZhFH+JFVLbQsV23dRuM9KmWoA3oThKHxuZu0vRPnVUYzJR1nX7Wssiv+t0mgEOZnaODJCUukW3YveySNJC+0SyDYHuGS4UAFyM/B9eQGxLYLjk8hEgedn9eSqEjPXn9hEt6M7MSeNodzZg9xj/23bALlgE0VHJUoT++NWeEjp2kEuameJKAqMzI5mZHY01mt7srtoBvvK67EdOoIm/yARJUfIOfEBoU4LEgJNqhBqq/9OTOrF62YOVv60ckVqeBj3vPo6H9/4K2Zs28Gjqc8wOOwxtlp/Q/KX81D1uA4iurSJDz67nconnyQ/tQsacRhSvI1Ch8iycTltYv8UguD/PLflZ/ocUMTGEnNNLDHX/PRQA5/LhaeqCnn0RWw6Okvi+w6gbl0JzWFdkBpLEWK7tpntetMx5IwHn43E+NBLr0HvHMjOiSb7lZs4/Pk3HHzlE8SQnly/vy/N+m/Ykv4fPvRtQ6jbSvZWN0PEYPpG9aKnYSqa9OEXRle4jejWN49yWwEII6n4ahcpbR0gl+yk0NENdFAYEkFWa4ZMXUIIgoA+Ro9+2lhypoHHYqFyxw5K9lVQXBRCrTCFMOcUfvVFBVHSAVSRB2iJP45RLXLMZmFzczFrK7fCgReJ8An0UIbRXZfIhN6/Jib5LCbTBgjQTlyoAHk7MBFY+V0N8sG2PkGMXs2swen851BfZhk/5dN0K+XCQHLLdrfpedxb38JXG05jl25EdYts++a8SwidSn4qWGZ0NjAN8GcM7BWVmPfsQ1NSSnJe6kX18+dQKWRc8/pfOTB2PHd96OSZm95gypHfs8c6i8EfPww3rmyT85jf/AfeOjPHr7yTCJmFZ+xybhqYQnpUx82gnQ+iUokypWM068T06YPm3T0gabBXlaFtqwBZkiiprMShjsOGhdz4zjWuN29ED3IH53J4yWuc2FZNpW8Ikw70pEbfhCdrD2VBO/iH28zrjbtQ7txJn89dDFFF0z9pGJmGqYix3dqtF6AtEAQBe5gLJC/fHK2hrT/NUtkemsRB4K2ha3J3xE7w8AQgDwoieexYksfCUKDJZGP/6q8p2iOnRLwayTEe8biLcHcdQzROrg5xogwxYw4q4ZiqkEM+M5s99VTtfpZHAgFygIvIhQqQ1wFjDAbDDkAAbmuPk8wZnMZtH+VyQ/6n2KR8SuzZSJX/pM0uO/YGajftoi5qPIIgY8TYzqULerYIgoA2MQFtYsLFduWsUIboyXjyT9T89rd0OxhDQfReZI1j6Ge8GUXlfn897nngMZupe+PvbO85HJ0ngcoMH6LZw29GXqzK7ACtQZmWhsZhAqC5vBbt+X0c/ofNTE0D2HSx1Mgs9Ii7gOOLLxCCQkHXh+4ms7CIor8s5XiZBnn8ELx7RxPsG4QyUoT0ShSa7ZSKR3mWJqj4CH3pvxng8vL4tesJirh0y9TCelyB7WgJFaYYv9JMGy7/2779hqbgWzArDzE04yLoH18gQiK1jJg3nBGArcbMnhWfU3GwFqdHi92TiL1R6VfLYQjJQDKAz4MsygYzLqLjAS57LkiAbDQafcC89j5PtF5N9rD+NO7QEVF/DJe+D40NPsLaaISsdHQ9dUVqivL606x1k5DagRpuLnPCRl+JuWcvZu4u4OmbD5NpuoJ892i67X4dprxyXrbr3nwTl1eBPWwcCRENPFetZu7wdKKCO0fDUmdHFhKC4G0AoKm6ue2k3prKsDZH4dFpKVbCdZ0wQD6JKj2N7NdeIOXgQWr+8X8cO2KlMqo/IfUJUJ+O5Aqni2cYZoWTJl0NlqhijoVXU+VRcemGx9D1ylFYvvqIppAh+OpLECNS28ZwcxUV5eF49RqOhFq5NiWsbexe4mhjIhh2n78ZUZIkPHUmTIcKKT9hoqGiEVuDFY/ViWi1k5jTMRIwATovHWJQSGsY1yOer6Ny6FV0nG97QIWrG2FV37SJ3Jtj03t4PPF4VMkEZQaC446EIAgkPLAAzw03kPSNDHNEJTs8k+l28Ld+CT3duY3d9jQ0YH73/9jZazJyn5pv0iJQFTUyd+jlubrQUXHqnCD5MNc52s5oUzk+awLooFYuI7sTB8gn0XTrRurzfyHZasWycxdV276lotRJnTOEJlUcOkUwuLKgYihCmYfg0XKIudhen5nI3t3R2pYhoKTJeIiwQaltY7hyH8VOfylPUVAQWTEds/74fBAEAUV0FHGjoogbdbG9CRDgdDpdgDw4I5L3EnIZvWsPLlkzlS4DXau/Pf8A2d5I1VeHqYqZgQ+J3kMTf/mYAJcUml49UWVnM6Wogn9mHSOifATVqmhi978DQ353TjZr/285TiEUr3YYmZkWXjjh4oZ+yUQEBbLHHQlvdDhydxM1LW14SWwqR+6MB0AZriJI1ekut2dE1OnQj74S/egrMXy3zed00pJfRENBJU0FlbjrG4ho89GFbYuo0eBS+6UKi/ILCWsjd6WKfTSIGeCtJykqq1M0b14s9u7dGy2Xy98AunJSnD1AgLPDBxzyeDx39OnTp/bHv+x0V2y1QkbEFb0Qdi3HLZVTIWVB1efnbVfK30BjmYrybn0pVzqZm31uGccAFw9BEAi9dgYJi56kuW4QEj42qqZyy/7/g8HzW11fKHk81P7r/9iXdy0y0cv+1DR85gruCGSPOxzqpGS0ZWYaHW2nsuCoLUQQY5EkB4lxnUvt5lwQVSpCemQT0uPiKrC0FjEhGHxejpVbaKv5gZ78r7Fob8IqK2VA0rg2snp5IpfL34iNjc2JiopqEEWxHab9BOis+Hw+oa6uLre6uvoNYNKPf98pn7YGDu5Ki0KNxlaBzRWLt/Lwedt0frkGty8FnyIKZ5welTwgcN4RCZk4EUGlYnJlNdXB5VQ3dEUyF0Dprlbbqtu8EZczBFfQFXTtLbLi22qu6RpLUri2HTwP0J7EZmWjdjbjdLed6khVkRGrLhYbLWR0UAmvABCb1x2drZrGxrb7bDQcLMWhiaRM10ifS2G8dMema1RUVHMgOA7QWkRRlKKioprwrz6c/vsL7M8FoV96BIUhCcQ0VIMko6HWAe7zqC30uqndeYDaqB748JHWPZA97qjI9HqChg2lX+Vhjsqd6GxRbFXmwv53Wm3r2D+WYsyYgFzm4Hh6Gi1OD3OGpLWD1wHam5jMPJSuZrwePXicbWLTVFmNVRuLSeamS/TlKffXGUjr1ZsgSwUeezxYzedv0FJHeb2/Ae2oHnomhZ6/zcsbMRAcBzhXvvvs/GQs3CkD5LgQDdXRySRVlgJgdidDfeG5GyzbTV2lSGVsD8oVTvoGyis6NEEjRqAw1yE6FEj4+EIYaLN76wAAIABJREFUC4fWgr3hrG00VZchOwHNYd3pNTyKt/eW0zs5lF7Jl0c3emdDnZSC0tUMaPE0nlaKdk401rlwK/VUKVRkBALkDosmI4NgazmCFI695Mj5G6w7SpU3EyQfjpAwwnTK87cZ4KKza9cu3YwZM06W3LN//37NpEmTsqdOnWq45557Ur1eLwCvvfZa1IQJE3ImTpyYs2rVqjAAi8Uizp49u8v06dMNs2bNyiovL1f82H5jY6PslltuyZg+fbph8uTJ2Tt27NABHD9+XDVr1qys6dOnG6677rpMk8kkA3j66afjJk6cmDNlypTsr776SgtQU1MjP3meKVOmZBcUFJxqlqmtrZWPHDmyq91uFwDMZrPspptuypg6daph9uzZXWpqas5Ykvvyyy9HP/bYY6fJjhQVFSknTZr0g5qq119/PWrx4sXxZ7K1fPnyiI8++igEYNmyZVFne86PPvooZMKECTmTJ0/O/sc//hEJ4PF4ePjhh5OmTJmSPX78+Jz169e3Sl2hUwbIAGKmAb2lGq/gptyTBqZj52zL+816fJZYPKp4CuQyeiQGnvg7MkHDhgFwnVBBlboerymdOskJB/511ja+eOMPlKSOQy5z0GRIoMRs47bBgexxR0WREP9dgAy2urrzN+h24LD4rxM1Mh1dLtOBMZ0BRXwcKkcVALUnys7bnlR9lGZZOj5fNVmRHaseO8BP8/zzz8csXLgwxeVynWpkefHFF+PnzZtXtW7dOqPb7RY2bNgQUldXJ1+9enX02rVr81esWGF84YUXknw+H2+99VZkTk6Obc2aNcbx48eb//a3v52mNvnKK6/E9OvXr3nNmjXGv/zlL0VPPvlkMsAf//jHlPnz51esWbPGOHPmzLpjx46p9+7dq923b1/wBx98cHTp0qWFixYtSgF48sknEydMmFC/Zs0a47333lthNBrVAJ988ol+9uzZWQ0NDacC8xdeeCGuZ8+elnXr1hlvvvnm2sWLF58WANtsNuGuu+5KW716dZuNTL3lllvMEydObAL45z//eVog/VPndLlcwpIlS5KWL19+bOXKlca1a9dGVVdXy999990Ij8cj/Pvf/85/7bXXCoqLi1vVPd/pmvROEtmrG+IHPlxCFRXedDAdP2dbzV9uwhwxwP9DohbdZdSN3hmRR0Whzssjr+wQ7yfnMdyaxOqM/ty1500YcNcvNutZXRYcO6sxJ3Wj31VxvLy3nOhgFVd3bTMF3QAXGFGlwiOzAmCpbUB/vhPCmyvwOv3Xb0mnIDyQJeywCKKIV+fP/uWXVJ73RD2XcR8tQeNoURyhT0L/83cwwCne3lEcsXZfeZsu8U7rnWiaPSj1Z2trUlJSnC+//PKJ3//+96eyJAaDwdbY2Cjz+XzYbDaZQqGQoqKiPBs2bDisUCgoLi5WKhQKnyiK3H333bUejweAyspKZXBwsPfH57jrrrtqVCqVD8Dj8QhKpVKy2WxCQ0ODYtOmTaFLlixJzMnJsf7pT38q//vf/x7dv3//ZlEUSUlJcXm9XqG2tlZ+8ODBoKysLPusWbOy4uLinE8++WQZgCiKvPPOO8apU6fmnjxfUVGR+r777qsAGDRokOWpp546bRSow+EQp06dah44cGBzYWFhq8ZiFhUVKefPn58eHR3tqqioUOXm5lqfe+650sWLF8dHRka6GxsbZRaLRbZgwYLkZ599tvTnznn06FF1fHy8Mzw83AvQvXt3y7Zt24K3b9+uz8jIsN90000ZAI899lirnnA7bQY5p383nKIcuaucFk/quWeQrWbKCkzUReZiVtjI7RJoqOgMBA0fjnToIPrvmqf2W3Jxmwug4LNfPHbNB/eDaiwyXIT0iueLY3Xc2D8FRSceO3454Na4AWioPftSmzPSVI7g8d+nI2MCTZsdHU1SOEheqs2u87bVdLQMtzKYKk0z3RICq5GdgWnTpjUqFIof1EGnpaU5lyxZkjx69Oi8+vp6+fDhw1sAFAoFy5Yti7rhhhtyrr766lOBt1wuZ+bMmVlr1qyJvuaaa067CIWFhXm1Wq1UVVUlX7BgQfr8+fPL6+vr5aWlpeohQ4Y0r1y50tjc3CxbsWJFhMVikX0/yNZqtd6mpiZZbW2tUq/Xe95///1jsbGxrqVLl8YCjBkzpjkyMvIHQXlWVpZ948aNoQDr168PdTqdp93gwsPDvWPHjm1u7fslCIIEUFFRoV6yZEnxhx9+eHTXrl0hVVVVp7KPCxYsqA4KCvJ+Pzg+0zmbm5tlQUFBp/zX6XTelpYWWVNTk7y0tFS9fPnygjvuuKP6wQcfTG2Nn502FZqXFMGm4ChCLLXY5MHYq8vQnIuhku04aoNp7t6FEzIPUy+TiUedHd3AAZheeYWpIfXskQcRWWdgU1I81+xYCpmjz3iczVpHwdajxERdS/crQvjXgXIUMoHr+yVdQO8DtAdSkP/6bzK1+np/Gj5TCZIQiSQ5SIkNSLx1dKJz89DsN2G1tCpJdjqSRHWlHHRwPEgkL77zD4+5kMwelGr+pWzvhWLJkiVJb7/9dn7Xrl0dr732WtTChQuTTgZ78+bNq7vttttMN998c+aWLVssI0eObAFYuXLlsaNHj6rnzZuX8cYbbxx/+OGHUwEmTJhgvvXWW03ffvut5v7770+/7777ykaMGGGx2WyCRqPxnTx+5MiRTdu3b9enpaU5rFbrqYDWZrPJQkNDvcHBwd7x48c3AowdO7bxr3/96xnHFc6fP7/qj3/8Y/L06dMNgwcPboqKinJv3bo1aOnSpQkAt912W/X48eObfu490Gg0Prfb/YPA2maziScz4XFxcQ69Xu8DCA8PdzscjnPKMun1eq/NZjt1rNVqlen1eq9er/eOHDmyURRFRowYYXnwwQdb9Q/caVNeSrlIc2QcEQ3+esLGGjtIrW909Rz8DKdoAEFOkUygd6AJq1Og7t4dQaWim+kEJxRy4pq78H5IJhR9CRX7znjcqo33klR/JYLkI2tiDqv2lDO+WxzR+vO8cQa46CjC/Y/Q9Y2287bVUpiPQxOJQ7CQGqg/7vBE53VDazfhs4ef033kFJYaqh3+skqLXh8YKNSJCQoK8uj1ei9ATEyMu6WlRZafn6+6/fbbu/h8PhQKhaRUKn2CIEhLliyJXbFiRfh3x3lFUSQzM9O5evVq4+rVq4233nqr6fDhw+r58+enP/vss4XXXHNNM4BWq5USEhIcX375ZRDA7t27gzMyMuz9+vWz7Ny5M8Tr9VJSUqL0+XxERUV5unbt2vLJJ5+EAOzcuTM4PT39jPJeW7duDb7uuuvq1qxZY0xNTXV0797dMnToUMtJn34pOAaIjo722O128fDhw2rwN83t2rVL37NnTxv4ZxP8HNJZ/q/l5OQ4ysvL1WazWeZ0OoUDBw4E9e/f39K7d++WL774IgTgwIEDmujo6FYtAXXaDDKAlJBM7J5tlKVBrTOSuOZKCGndfHfT7m3Uh43HJ3iwhchJCj+nPHSASwxRpULTsyeevXuIGj8WcU8z9qp49gWH03vzk3DTmtNqkS0Fm3i/4jgTtLNJCTaz/ngdFqeH2wPSbp0CXVwMiqIWWqynlf+1mtqSQuzqPBplbvICutgdHmVSEhr7NvCkI7XUIOjPsd+gLp8mIQnB20hiZOC60Zl5/PHHS+65554uMplMUigUvsWLF5ekpaW5srKybFOmTMkWBIGBAwc2jRgxwpKdne2477770tatWxfl8/lYtGhR0Y/tPfPMMwlut1s82Zyn0+k8b7/99ok///nPxY8//njyc889J8TFxTn/9Kc/mVQqldSrVy/LlClTsiVJEh555JFSgEcffbT8oYceSlm1alW0TqfzvvTSS2eU98rKynIsWLAg7dlnnyUyMtK1ZMmS4ta+B6IosmjRouKHH344VRRFPB6PMGzYsMaRI0e2FBUV/WJjRkpKiv3Xv/512iuvvHLa+/F9lEqldP/995fNnj07y+fzMXnyZFNiYqL71ltvNT3wwAMpkyZNypYkiccee6ykNf536gBZ2yWNoC8/wCu4KfUl0cN0rHUBstVMWWk95vAcarVOuibF/OITT4COg7ZfX0wv/41Jfwzli30NZNX35W9XFPPm4c/gyL8hb+r/drbU8dan8+l54hokQUb3UYn8ZUcxfVLC6B5QNekUhCYkoTQ247Sd/2WxobIahzqCOnkDyRGBALmjo0hIQGOvRUCDvbwQbe65Bci+6nxsikRcQgW9Yoa2sZcBLiZpaWmuDz/8MP/kz0OHDrUMHTo0/8f7PfTQQ1VA1fe3xcbGet59992fVRJ4++23T/zU9p49e9rXrVtn/PH2hx9+uBKo/P621NRU13vvvXfG82zduvXgye8zMzOd//73v0/z/6e45ZZbzljWcqb34cfv18nvv/MbgFWrVp2xeezH55w4cWLTSfWLk6jVaunFF18sPpvX8FN02hILgOjcTAQknGIttd5EMBe0zkDpTiyNUdi1MeRLMrontEpCL8Aljq5fP5AketYXUREsEtOUyqHGFr6Kz4END4D5u+uR207Z+7N4V6Ek0TaCqIYjHI5PpbTeFhgM0okIiUtG6W7B6zr/VaKWBvDJlNTK1YHJip0AmV6P3FsPQGXBzyazfhbHkUNYdbHUq0zkxLWZMlaAAAHagU4dIKf1/E6ryVeL3ZPQ6gBZKvkKrzsLgBIRugUyhZ0KdY8eCCoVjr17yOwbg4BA74YrWRSmx4oP/jkONj6C95X+POIpw2AeiiRoMETW8eZXZSSGaRibG3OxX0aANiIsPg2lqxmfV3fetpw2f92xW6VFrz5N8z9AR0TrVzkpKK78hR3PTN3xeiRRQYXWRlZMoDY9QIBLmU4dIMckxtCi1KJ1mMEVhbeuddP0zPt30KLPQhJc1MkkuicGMsidCVGpRNOjB9avv+bakWmUyL1kVw6j3FbLwu6jcOoi8exaxiKdyAGljgE14wlpLEDITeHr4gZuHZSKPCDt1mlQx8SidDUjSfqzbg45E26Xv5k3OFBe0WnQRgeB5KW2wXPONupq/Q9LhUFy0iLP/0EsQIAA7UenvrsLgkBTRBwhjSYERBqrWyHf5PNSWFBMY2gm1iAXUXoVMQGlgk6Htl8/nEfzSVR48abrkDtE7gp5kI3Vu5gaE8LUbgNZo/Byh/gAHpuctJINvOWKIVSr4Lp+p+mmB+jAyMPDUbmaARVu63koWXhcSD7/alNkdCBA7ixEdklH5WygxXaOKwI+L3V2f5LFGxKBSi5rQ+8CBAjQ1nTqABnAE59ItKkCgNoGETzOszuwLh9zYyg2bQyFKk0ge9xJ0fbtC5KEbe9epozPpEnwwe4klo1aRoQ6gsTgRJ7o8ySabxOJEmoIUzWztkbgzqHpBAUmKnYqBKUSH/5peg2V1edsR2quBkKRJDvJ0YEsYWchPC0TjaMBr+MctYubK2gmDtFTT0pYoHchQIBLnU4fICtTUoir9wfIxb5EaCg+uwPL9+B0GgD41ukmLz4QIHdGND26IygU2L7ew5CsSAriFXjqXajzE3ln3Du8MuoV1NvTcdk8pB/6F/ujsgjRKrll4PkOnA1wKeKT+x+g66pM52zDU3YclyoULxaSAw16nQZFYiJqRz2COwy87tYbMJ/AIY/FI9XQNTqj7R0MECBAm9LpA+TQLqnIvU7s8kZqvGffqOcu2YUkpANuakQpMPGokyKq1Wh69MC2ezeCIHD7dbkUyb3sWneCvR8Xs/mdoxTur6NvfzW6uuP8R5PKgqsMBAcarzolktof+DSZz32anr3YiFMZgkO0BxQsOhHKkwGyLxRfQ3mrj3cXH8aujsGqMJEbG9UOHga4mOzatUs3Y8YMw8mf9+/fr5k0aVL21KlTDffcc0+q1+vXV3/ttdeiJkyYkDNx4sScVatWhQFYLBZx9uzZXaZPn26YNWtWVnl5+Wk3GJvNJsyZM6fLtGnTDDfddFNGbW2tHOCll16KHjNmTN6MGTMMM2bMMOTn56vOtO/u3bu106ZNM0ydOtUwZ86cdLvdfkq39sf+7927Vztx4sScadOmGR588MGkk/7/FM8991zs3Llz03+8ffny5RGPPfbYD7R1586dm/75558Hn8nWH/7wh6SSkhKl2WyWvffee+E/tY/H42HOnDnpH3/88anAbNGiRQkTJ07MnjRpUvZJ+5WVlYqZM2dmTZs2zTB79uwuzc3NrYp5O32AHJfjf1J3C7VYPAlg+lmpwVMcP7oXS3AagqoFnwB5AYm3Tot24AAchw/jaWhgSGYUlp56iuU+dv27kGNf1dBjVBIhFdvxCiLenn24IVB73GkRdP660Kb6xnO2UV9ixKkKpUXuJSksECB3FhQJCaic9QjIaCgtbfXxTUdO4JWrqVNZyQwoWHQqnn/++ZiFCxemuFyuUwHniy++GD9v3ryqdevWGd1ut7Bhw4aQuro6+erVq6PXrl2bv2LFCuMLL7yQ5PP5eOuttyJzcnJsa9asMY4fP978t7/97TSh7TfffDM6IyPDvnbtWuPEiRPNzz//fBzA0aNHdYsXLy46OeEuOzvb+VP7+nw+Fi5cmPqXv/yleN26dcYhQ4Y0l5SUKM/k/8KFC1Meeuih0rVr1xqDgoK877///k8Gq//973/127ZtazOJr6eeeqosJSXFdfDgQe3mzZtPs1tQUKCaMWNGttFoPFW/tm/fPs3Bgwd1H3zwQf7SpUsLFy9enATw8ssvx06aNMm8du1aY3Z2tv3tt9+ObI0vnb6IMsqQThMg9zbg83VDMn3ML476cDsoLmugJSgJa7CDMKWC+JBAg15nJWjIEEwvvYx1xw5Cxo/n8Zk9mFq7nUMOH7+bmoNPp+TE0k04IlN56uaBiGJgWExnRRmhASc0tpx7BrmpshyXMoQ6uZXYwHWj0yBqNIhCCwAlJ4qJ6D28Vcebii0AlGt9pEYEatPbhd1/j+DAv1oVBP0iPa830W/uGQdhAKSkpDhffvnlE7///e9PFZcbDAZbY2OjzOfzYbPZZAqFQoqKivJs2LDhsEKhoLi4WKlQKHyiKHL33XfXejx+dZTKykplcHDwaena/fv3B915553VAFdddVXzG2+8EQ9gNBq1r776amx9fb1iyJAhTffff3/1T+177NgxlV6v9/z973+PKSws1AwZMqQxOzvbeSb/TSaTcvDgwVaAK664wrJp06bQG264of77Ph0/flz1/vvvR919990VK1eubNWyyPLlyyO2bt0a4nA4xMrKStXs2bOrb7nlFvOMGTMMixYtKlm2bFlsYWGh9s0334ycM2fOqZo3i8UiPvXUU8WvvvrqqYeI3r1721esWHFMFEVKSkqUQUFBXoAnn3yyTJIkvF4v1dXVit69e59lE5qfTp9BloeH41SoUNsakXm12GvOQsOy9jCNLelIopx8VTB58SGBCXqdGHXXrshCQrBu2w5AjF7N23P60aAWmPv+AX776mekmkvJnDCGLlGBzE9nRhfrT5LYWxznbKOlzoEkyrBqglAEZAA7FaLOL/9XWlXX6mNr6/2r5jXhetSKgIJFZ2LatGmNCoXiB9qQaWlpziVLliSPHj06r76+Xj58+PAWAIVCwbJly6JuuOGGnKuvvvpU4C2Xy5k5c2bWmjVroq+55pqGH5/DarXKQkJCvADBwcFeq9UqAxgzZkz9008/Xfree+8d279/f9D69etDfmpfk8kkP3r0aNBtt91W+69//evY7t279Zs3bw4+k/9xcXHOzz//PAhg8+bNoXa7/Qcf2paWFnHhwoXJTz/9dIlc3upcqwRgsVhk77zzTsGrr75a8NZbb/0gaz5v3rzqnj17tnw/OAb/5MDc3NzTLtAKhYJFixYl3HvvvZmTJ082gX/UtdfrFa666qq8/fv360/+Dc6WTp9BFgQBS3gMwU0mrGqoq27hF9urqr5BcnUBYK/Nwaz4cxsrGqBjIMhkaAcNxLp9O5IkIQgCmTHBbH1wJJ8b69Bs/i8AXcaNvsieBmhvdHGJyE/Y8FjOXevW3iyDCFAGnbHMLkAHRRfhXxGob2pVIgokiXpnGKLcgT48cD9pN/rNNf9StvdCsWTJkqS33347v2vXro7XXnstauHChUnPPvtsKcC8efPqbrvtNtPNN9+cuWXLFsvIkSNbAFauXHns6NGj6nnz5mW88cYbxx9++OFUgAkTJph1Op23paVFBGhpaZHpdDqvz+dj3rx5taGhoV6AYcOGNR0+fFj7U/tGRER44+LiHCeDy0GDBjV988032lGjRv1k0Pj0008XPfHEE8mvvPKK0KtXL4tCoZCWLVsWtWnTpnCA6dOn19XX1yvuvvvuLhaLRVZfX69YsmRJ7P33339KAkitVvtcLtcPsgR2u13UaDQ+gKysLBtAUlKSy+12n3c24dFHH6249957q6ZPn54zaNAgS0ZGhlOpVEqbNm06vGnTpuD7778/bc2aNaeN5T4Tl0V6wxeXQKTJP/r8hDMUrD///9NQvhuEdORSM42Sj9xAg16nJ2jIEDy1tTjz/zcyXiETGZMbQ/I3O1AkJKDumncRPQxwIdBGxyN3W/E5z/3S6HH66471IYG+hc5GeHIScncLdnsrc0tWE1YhBsFTR0ZA4u2yICgoyKPX670AMTEx7paWFll+fr7q9ttv7+Lz+VAoFJJSqfQJgiAtWbIkdsWKFeHfHecVRZHMzEznybriW2+91dSzZ0/LyZrcTz75RN+jR4+W5uZm2fjx4/NaWlpEn8/HV199FdytWzfbT+2bnp7utNvtsuPHj6sA9u/fH5yVlXXGpbJPP/009MUXXyxcuXLlscbGRtmQIUOa582bV3fSp+uvv77+k08+ObJ69WrjQw89VNazZ8+W7wfHAN27d7d9/fXX+pPButlslhUXF2tOBuk/tzIvCIJ0tgObNm/eHLxgwYJkALVaLclkMkkURWnBggXJW7ZsCf7uffWJotiqCVBtlkE2GAwhwP8BekAJ3Gc0GncaDIYBwFLAA2w0Go2Pt9U5zxZVchIJB/dQKHio9CWByQi6QWfc/1DJfuza0chVViA0IPF2GRA0ahQoFDR98CHqnJxT2z1mM9YdO4iYMydQZnMZoI+KR+EuwOk5d5USr8efOY6I1rSVWwEuEfSJqWhO1NPgaGUNcUMxDnk0bqGcvOgz33sCdB4ef/zxknvuuaeLTCaTFAqFb/HixSVpaWmurKws25QpU7IFQWDgwIFNI0aMsGRnZzvuu+++tHXr1kX5fD4WLVpU9GN7c+bMqbv33ntTp06dalAoFNLSpUsLQ0NDvb/+9a/Lr7/+eoNCofD17du3Zdy4cU1Wq7Xlx/uqVCrp8ccfL77vvvvSJUmiW7dulvHjxzedyf/U1FTHTTfdZFCr1b4+ffq0jBs37oz7nons7GzntddeW3vttddma7Var8fjER544IHS4OBg3y8d26VLF2dhYaHm5Zdfjr777rtrf27fYcOGtWzYsCFsypQp2T6fj5kzZ9amp6e7br/99tpHH3005ZVXXpEEQeDxxx9vVXdtW5ZY3Ad8ZjQaXzAYDAbgX0BvYBkwHSgE/mMwGHoZjcb9bXjeXyQsIxWv141FWYfoiYc6I6Sc4SLlcVFc5sKpDgd9A2pBDIwEvQyQh4URPGI4TevXE33/fQgKf4DU/N+PwetFP2H8RfYwwIUgODIBhecb8J7b/7wkSfgIBclHTFTgutHZUMbFo3YYwRUDkgRn+dDsqTDiVMVg5yA9otus4T/AJURaWprrww8/PLUEOXToUMvQoUPzf7zfQw89VAVUfX9bbGys59133/1ZiS2dTud74403Cn+8/cYbb6y/8cYb689m31GjRrWMGjXq6Nn4P3HixKaJEyeeVVA8YsSIlhEjRvxkqcbcuXPr5s6de1rR/i233HJqKV+j0Uhbt249CLB69epTJRCfffbZ4TOd86WXXio++b1cLue55547LfjNyclxfN9ea2nLEovngde++14OOAwGgx5QGY3GE0ajUQI+AS54IWd0ll+ezys24HYlgunYmXeuOUSzxS8Nd1yrwxATjCygWnBZEDJ1Kl6TCcu2bQBIHg+N77+PKisLdVbWRfYuwIVAFR6Bwm0F6dzk2XxWKx5FKBItxIUFMsidDUVsDGpHPaInAsl69sNkGo4UIYky6pX2QMIlQIAOwjllkA0Gwxzgdz/afJvRaPzaYDDE4i+1mI+/3OL7ekktwGli0u2NNtXflifzNKFwZ+OpLjjjC5fK94AjDUHpZZtLYHRcoP74ciFo6FDkUVHUPf8CugEDaFy1Gufx4yS8uPRiuxbgAiEGByPz2JDQ4vNJrZb081aW4FSF4BVaiA8NSLx1NuRxcaicDYioaK4oIcRwdspW9UV+UYIqDcSHBh6cAgToCJxTgGw0Gt8E3vzxdoPB0A14D/i90Wj84rsM8vdbuYOBc1fgP0cU8fH4BAGlpQFBJVJRdWYli5KyHSh9/ZB76zA5QsgJBMiXDYJCQdxTT1E2dy7FN96Iq7gE3ZAhBI8Zc7FdC3CBEEQRsAIaGqwuIoJVrTreWX4Cl1KPS2YnLiQQCHU25NHRqB3+YLekoJjuhivO6rhas7/ksilCH1iRDBCgg9BmJRYGgyEXWAXcYDQa/wtgNBqbAZfBYOhiMBgE4Cpga1ud82wRlEocoZHozP4673yLDlzWn9x3f+23eJUpqJU2gECAfJkRNHQI0fffh7ehkaDBg4l74vFAc97lhmAHQaTGbGv1oc3lBbgUQdhFN9GtDK4DXPqISiWizP+5KKs4C0397zDbdIheF4qYxPZyLUCAAG1MWzbpLQbUwFJ/jx5NRqNxMjAPWAHI8KtYfNWG5zxrfHEJxFRXU57gocyXDDWHIanfD3dyNHPcpEYn1+AL8r812XEBLdPLjYg77iDijjsuthsBLhYyv/JRXZ0FUsNadWhzZQluRTdn5rS8AAAgAElEQVQcKhF5YEhIp0QV4p+XYGqwnN0BHhdWbwRy6siICEi8BQjQUWizAPm7YPintu8CBrTVec4VdWoK8QXHOaIx4fEkQcW+0wPkqgPYmwzogDKdiiStBr363OWeAgQI0AFRuABoMtUDSa06tKWuAUmU4QoKlFd0VvSxoeBzY7GepaRqUxlOWRSSz0ROVEDiLUCAjsJlk+IIy0gjxGXFqbHicyZC5b7T9mku3oba1gW528JOQUduoLwiQIDLDpnWXy/aYqr/hT1Px9bg9tsICkh5dVaCE1NQuRpxO8+uCVNqKMGpjMIp1vP/7N15eBRVuj/wb3V39b5lT0hC9lTCFhAVhKiAbLIpIbgggpiRyc9h0IvecZk7UQYFvE4UAQUcmEEcFBXCdWNEEVBUFgcjIibFEpIQsm+d3req3x9NMJCEzQ4Nyft5Hh+T6tNdb+Kx8u3Tp85JDqc19burffv2abKzs7nW7wsLC1VTpkxJmzp1Kjd//vx4r9cLAFizZk3YpEmT0idPnpz+wQcfBAGAxWKRzJ49O2natGncvffem1pRUdFuZM5mszE5OTlJWVlZ3MyZM5Nra2tlALBixYrwMWPG9M3Ozuays7O54uJiRWdtDxw4oM7KyuKmTp3K5eTkJNrt9rPzB8+v/+DBg+rJkyenZ2VlcU899VRsa/1tffnll7q77rorbdq0aVxOTk6i1Wo9J1Nu2LAh5Pnnn49ue2zu3LmJu3fv7vSj+WeffTa2rKxM3tDQIN20aVNwR208Hg9ycnISP/vss3NC2rFjxxRjx47t0/p9SUmJfNq0aVxWVhb36KOPJpxf38X0mICsT2r9aMsGlSsU9vLD7dr8VL4LGk8C9LZT+MkuoQ1CCOmBFFrfR+jm5ssPyK4zn7qrDKH+LIlcQxRRvaCyN0F0XtoASsuxExAkcrSwZlrirZt69dVXI/Ly8uJcLtfZwLl8+fJeubm5VVu3buXdbjezbds2Q11dnWzz5s3hBQUFxRs3buSXLVsWKwgC1q9fH5qenm7bsmULP3HixIbXX3+93X7k69atC09OTrYXFBTwkydPbnj11VejAKCoqEizZMmSk6073KWlpTk7aisIAvLy8uJfeuml0q1bt/KZmZktZWVl8s7qz8vLi3v66afLCwoKeK1W633vvffahdUXX3wxbs2aNce3bNnC9+7d2/nWW2/95gvf4sWLT8XFxbkOHz6sbt0NsK3jx48rsrOz03ieP+d/po0bNwY//vjjiSaT6eybixdffDFm+vTpdQUFBfxNN91kfv311yMupxZ/zkG+psl7n/mo1OK7Oe+HRimGO0yA8kwI9jjxfVMV5NIo6GSnIIJBX9pimpAeR2lUAfWAy9xy8cbn8TjlAIDQkA4HPkg3wEZGQun8GRJ3MiB4AYn0gu0bj1UBSEKd0osIHS3915XeLXo35KMTH/n13emUpCn196ff33ChNnFxcc6VK1eeePLJJ89OMuc4ztbc3CwVBAE2m03KsqwYFhbm2bZt2xGWZVFaWipnWVaQSCSYN29ercfjAQBUVlbKdTpdu+HawsJC7SOPPFINAOPGjWtZu3ZtLwDgeV69atWqyMbGRjYzM9P0xBNPVHfU9ujRowq9Xu958803I0pKSlSZmZnNaWlpzs7qr6+vlw8fPtwKADfeeKNlx44dxhkzZpwzavCvf/2Lj4yM9ACA1+tlFArFRXfIa7Vhw4aQPXv2GBwOh6SyslIxe/bs6lmzZjVkZ2dzixYtKlu9enVkSUmJet26daE5OTlnFx23WCySxYsXl65ateqcNxEGg8H73nvv8XfccUf/1mNlZWWqsWPHlgHAkCFDLC+88MJlzZnrMSPIbGxv3xe1vn5+ROgDVP74a4OK71HsTvF9rfHNLaMRZEJ6HnWI742xYLFf9nMFt2/ucWjYlW00Qq59sogIKJyNkHqNcDZXXbR97Wnfqhcmg/Ky19Um14esrKxmlmXPmZSekJDgzM/P7z169Oi+jY2Nsttvv90MACzLYvXq1WEzZsxIHz9+/NngLZPJcM8996Ru2bIl/M4772w6/xxWq1VqMBi8AKDT6bxWq1UKAGPGjGlcunRp+aZNm44WFhZqP/nkE0NHbevr62VFRUXaOXPm1L777rtHDxw4oN+5c6eus/qjoqKcu3fv1gLAzp07jXa7vd07wV69erkBYOvWrcaDBw/qZsyYccE3Em2IAGCxWKRvv/328VWrVh1fv379OYE3Nze3euDAgea24RgABg4caO/Tp4/j/BecNGmSSavVnhPQk5OTbZ9++qkRAD777DOjw+G4rMzbY0aQpVoN3DoDghobYI1sgtedClQcABJvBwDUH/8cMhMHRvCiVidDiEaOCD0t00RIT6MOi4LsiA1uh+eynieKIkRofdtMh1JA7q7YyEgoHU1gIMXpYyVIHHLhpdtqTTIwghfeqF5XqcKe6/70+xsuNtp7teTn58e+9dZbxf369XOsWbMmLC8vL/bll18uB4Dc3Ny6OXPm1D/44IMpu3btsowcOdIMAO+///7RoqIiZW5ubvLatWuPPfPMM/EAMGnSpAaNRuM1m80SADCbzVKNRuMVBAG5ubm1RqPRCwC33Xab6ciRI+qO2oaEhHijoqIcreFy2LBhpkOHDqlHjRrV4RbRS5cuPfnXv/619xtvvMEMGjTIwrKsuHr16rAdO3YEA8CyZctKYmJi3CtWrAj/8ssvg9evX39MpVKdE7KVSqXgcrnOCaV2u12iUqkEAEhNTbUBQGxsrMvtdvt9wDYvL6/iL3/5S+8PP/wwdPjw4c0Gg+GyLuo9ZgQZACQxMehlrYcrxAGZLQmuw1sA0fff87uynejdnA5DSwl+lBnRp5ee1r8lpAfSRMVD5rGDcV3e//+C2QyPTAcRVkTQJiHdliwiAkqnb4Cv/GTpRdubXQYonPWIiknv4srItUSr1Xr0er0XACIiItxms1laXFysePjhh5MEQQDLsqJcLhcYhhHz8/MjN27cGHzmeV6JRIKUlBRn67zihx56qH7gwIGW1jm527dv12dkZJhbWlqkEydO7Gs2myWCIGD//v26/v372zpqm5iY6LTb7dJjx44pAKCwsFCXmprabiS21RdffGFcvnx5yfvvv3+0ublZmpmZ2ZKbm1vXWlNMTIz75ZdfjiwsLNS98847fFhYWLvwOWDAANv333+vbw3rDQ0N0tLSUlVrSL9QxmIYRhTFS1wpphM7d+7U//d//3fF5s2bealUiltuueWy5s31mBFkANClpiC25EsUG5UIqjDgh0YThlYfBrxu7DVbEOOJRXDjh9gbPQxZNP+YkB7JEJUEmftHSLwXnlt6Pk99A9ysDgJjpU+fujGJQgGZ1Df9pqqm7sKNXVY4xFBI3fVIDx98Faoj14qFCxeWzZ8/P0kqlYosywpLliwpS0hIcKWmptruvvvuNIZhcMstt5hGjBhhSUtLcyxYsCBh69atYYIgYNGiRSfPf72cnJy6xx57LH7q1Kkcy7Lia6+9VmI0Gr2PPvpoxf3338+xLCvcdNNN5gkTJpisVqv5/LYKhUJcuHBh6YIFCxJFUUT//v0tEydONHVWf3x8vGPmzJmcUqkUBg8ebJ4wYcI5baurq2Xr16/vlZSUZJs1a1YqAIwdO7Zx7ty5Z/+nSEtLc06fPr12+vTpaWq12uvxeJg//elP5Tqd7qJzlZOSkpwlJSWqlStXhs+bN6/28n77PsnJyY4nnngikWVZMSEhwf7SSy+VX87ze1RA1qamIPjD/4Pd6/v48wAGYOgPb8FkOoWTrkGIARDsOY06VosB0bRMEyE9kTasF2SevWCEywu53qZGuOQ6eCVWBKnlXVQduRaojL4/nSZTpwNwAM4s8SYLg9xZhr4RIVejNBIgCQkJro8++qi49ftbb73Vcuuttxaf3+7pp5+uAnDO5PXIyEjPO++8c+xCr6/RaIS1a9eWnH/8gQceaHzggQcaL6XtqFGjzKNGjSq6lPonT55smjx5cqcBOjIy0nPkyJH26+WeZ+7cuXVtQ3OrWbNmnZ0Ko1KpxD179hwGgM2bN/Otx7/88ssjnb3uihUrSjs6vn///kOtXw8dOtT66aefdvjzXooeNcVCkZIMADBVVMHLulHuHIyWg+vwTu1eRJr6QO61Qgjy/VEc1JsCMiE9kcxohMxjg0RUwO5qv/ZnZ2w1p+BidfDInHQzVjeniwqHxGOG037hjaQc1acgSNVwSJpoiTdCrjM9KyAnJQEApBUnETvIgNiGDCxOm4wtuiQkNWcgtO4QSo3RiNArEGWg5XgI6YkYloVEsANQocnmuuTnmSuO+0aQFZceqsn1SRUVA5WjAV5Xp/sdAACaT1QAAFpYB8J1NO2GkOtJjwrIsqgoCAolYkw1iBoYB5nI4tQJI/pUjoFUkKJ32ec4yIZiUGwQ3aBHSI9mgwgVGq2XEZBrKuGVqSCoe9RltUdioyKhsTUA7qCzN3p3pOZEDQDApJXR3xRCrjM96krOSCSQJSait7kGxXYHwhN0yDydhfSqYUiMdkNtr8MBSQgG0vQKQno0UWIHJEo0mp2X/BxrvW+1JJmGVrDo7mQRkVA6GsC6gmFr7vxGvcoaFyAK8EbS/GNCrjc9KiADvpUsEiw1+E9ZE8Y81Bd9M6ORkBEKDr9AZFlUaMMwKJYCMiE9GSPxBeOG5gvfhNWW3eQbbVbrtF1SE7l2sJERUNkbIIEMp4qPdtquyaKB0tEIQ1zaVayOEOIPPS4gK1KSEWQ34Rf+NAzhKtx2XyrG/74/JCcOozmyN6SsDP1jaAc9QnoyRuYLu83Nlz6C7LT6Pmo3Bvt1p1tyDfKNIPs2+DpZcrzjRl4P7N4wqOw1SEwZeBWrI4T4Q48LyMq+fQEAweU8Tjf71rIU3W44Dv2Ew9poDE0MgVreo1a/I4ScR6rwrXnf3Gy75Od4Xb4VDULCo7qkJnLtYHtFQeXwrVJV3clayGJjKVxMBBhvLdKjqE90d/v27dNkZ2dzrd8XFhaqpkyZkjZ16lRu/vz58V6v7+bdNWvWhE2aNCl98uTJ6R988EEQAFgsFsns2bOTpk2bxt17772pFRUV7ZZHsdlsTE5OTlJWVhY3c+bM5NraWhkArFixInzMmDF9s7OzuezsbK64uFjRWdsDBw6os7KyuKlTp3I5OTmJdrv97MT48+s/ePCgevLkyelZWVncU089Fdta//k8Hg9ycnISP/vss3abR2zYsCHk+eefj257bO7cuYm7d+/u9O7WZ599NrasrEze0NAg3bRpU/D5jx87dkxx7733pk6bNo277777Uurr66UAsHTp0qjJkyen33333Wn79+/3y1amPS4gqwYOhCiTYUDdCRws8+2GZD98GILNhq90CRiVFh7gCgkhgSZT+taxt7Q0XfJzRI9vlYLwXnQN6e4kSiWUagGiKMDS4u6wjaX8JESJAm7U0xJv3dyrr74akZeXF+dy/br95vLly3vl5uZWbd26lXe73cy2bdsMdXV1ss2bN4cXFBQUb9y4kV+2bFmsIAhYv359aHp6um3Lli38xIkTG15//fXI88+xbt268OTkZHtBQQE/efLkhldffTUKAIqKijRLliw52brDXVpamrOjtoIgIC8vL/6ll14q3bp1K5+ZmdlSVlYm76z+vLy8uKeffrq8oKCA12q13vfee69dWD1+/LgiOzs7jed5v3XwxYsXn4qLi3MdPnxY3bobYFt//vOf4x5//PHTW7Zs4e+55566o0ePKg8ePKj+4YcfdB9++GHRa6+9VrJo0aI4f9TS44ZKJSoV1BkZuOHkCfz7SA3uGhgN63d7ITIMfgpNwhIKyIT0eHKNBLACnub6S3+SqAZEAVHhFIZ6AmV0FKReE2yOjpdvayqtBBALM2uDkTaOuSoa/7UxxPThh36d42S466764JkPNFyoTVxcnHPlypUnnnzyyYTWYxzH2Zqbm6WCIMBms0lZlhXDwsI827ZtO8KyLEpLS+UsywoSiQTz5s2r9Xh8n1pVVlbKdTpdu+HawsJC7SOPPFINAOPGjWtZu3ZtLwDgeV69atWqyMbGRjYzM9P0xBNPVHfU9ujRowq9Xu958803I0pKSlSZmZnNaWlpzs7qr6+vlw8fPtwKADfeeKNlx44dxhkzZpyzIYnFYpEsXry4dNWqVe0C/cVs2LAhZM+ePQaHwyGprKxUzJ49u3rWrFkN2dnZ3KJFi8pWr14dWVJSol63bl1oTk5OPeAbRW9qamJ37NhhzM/Pj0lPT7c+99xzFW+++Wb4kCFDWiQSCeLi4lxer5epra2VhYeHt9v++nL0uBFkANAMuRmJTaex58eTqDM7Yd27F5Xh8YiMCUdcCP1xI6SnU+rPrINubr6k9oLdDq9UAxE2hOpoDfWeQBkT65uH7Or4npVTZb6pFzbDhTcTIde/rKysZpZlz1nvLyEhwZmfn9979OjRfRsbG2W33367GQBYlsXq1avDZsyYkT5+/PizwVsmk+Gee+5J3bJlS/idd97Z7qMrq9UqNRgMXgDQ6XReq9UqBYAxY8Y0Ll26tHzTpk1HCwsLtZ988omho7b19fWyoqIi7Zw5c2rffffdowcOHNDv3LlT11n9UVFRzt27d2sBYOfOnUa73S49v6aBAwfa+/Tpc+l3Mv9KBACLxSJ9++23j69ater4+vXrzwnZubm51QMHDjS3hmMAaGxslJWXlyszMzNb3n//fb6lpUW6cePGEIvFIm37pkKtVntNJlO7ei9XjxtBBgD1zUPAvLEKaXUl2PINj9t+/BF7km5H9uCYQJdGCLkGqIM1QBUgtV3atd/b2Ag3qwUYK+SyHjnu0OOw0dEwnKhGi+EGuOwWyFXnrl5SWeOB1OOALIbmH18twTMfaLjYaO/Vkp+fH/vWW28V9+vXz7FmzZqwvLy82JdffrkcAHJzc+vmzJlT/+CDD6bs2rXLMnLkSDMAvP/++0eLioqUubm5yWvXrj32zDPPxAPApEmTGjQajddsNksAwGw2SzUajVcQBOTm5tYajUYvANx2222mI0eOqDtqGxIS4o2KinK0Btphw4aZDh06pB41apS5o/qXLl168q9//WvvN954gxk0aJCFZVlx9erVYTt27AgGgGXLlpXExMR0PL/oDKVSKbhcrnMuiHa7XaJSqQQASE1NtQFAbGysy+12X/TCGRwc7FGpVELr72vkyJGmb7/9Vp+QkOCwWq1nn2+z2aStv5PfokdeyVWDBkKiVuOhiu/QvHo1GK8XlWmD8fDwhIs/mRDS7WlDQ8AIHshcF7z+n+VpbIKb1UKUXPpNfeT6xvbqBZ2lCjKvBiWHfmr3eItZB7WtBpGptIJFT6TVaj16vd4LABEREW6z2SwtLi5WPPzww0mCIIBlWVEulwsMw4j5+fmRGzduDD7zPK9EIkFKSoqzdV7xQw89VD9w4EBL65zc7du36zMyMswtLS3SiRMn9jWbzRJBELB//35d//79bR21TUxMdNrtdumxY8cUAFBYWKhLTU3tdATgiy++MC5fvrzk/fffP9rc3CzNzMxsyc3NrWut6WLhGAAGDBhg+/777/WtYb2hoUFaWlqqag3pF9o8h2EYUTxvEx61Wi1GR0c7vv76ay0AHDhwQJecnGy/+eabLXv37jV4vV6UlZXJBUFAWFjYb5peAfTQEWSJQoGIvL9AePoZJKAYu5KH4ZH/dzeN/BBCAAC68BjIPHawl/ghnaepEW5WA1HW0rWFkWsGGx0NjbUSAHCi6BekDR3264O2Rri8UTDaeCQOGBWgCkkgLVy4sGz+/PlJUqlUZFlWWLJkSVlCQoIrNTXVdvfdd6cxDINbbrnFNGLECEtaWppjwYIFCVu3bg0TBAGLFi06ef7r5eTk1D322GPxU6dO5ViWFV977bUSo9HoffTRRyvuv/9+jmVZ4aabbjJPmDDBZLVazee3VSgU4sKFC0sXLFiQKIoi+vfvb5k4caKps/rj4+MdM2fO5JRKpTB48GDzhAkTOm3bmbS0NOf06dNrp0+fnqZWq70ej4f505/+VK7T6YSLPTcpKclZUlKiWrlyZfi8efNqW4+/+OKLpQsXLuz9t7/9jYmKinI+99xz9QqFQhw0aJDl7rvvThNFkfmf//mf8suttSPM+Qn9WpCVlSUWFBR0+Xlqlr4Ee2Ehev/zH5Co/bIqCDmD47iDPM/f6O/XvVp9g3SdruobgP/6R8vhr7Dl5Uo0K+uRu/JRqOQXTsrVWzbh40/ksAWX4rH8Bb/5/D3Z9XLtcJ44geK778M3w1+CIvYAfvfnp88+Zj20G+tXCYgr+QAjPloOrZLmIftDR33j0KFDpRkZGZdxNy0h5zp06FBoRkZG/PnHe+QIcquIp58KdAmEkGuQJjIRMs8JyEQWjTYXouUX3j7aUlMJN9sXjPKiAyOkm2B79YLcbYFXbIHFcu6f0pqikwDi4EENhWNCrlM0p4AQQs4jCYqA1GODRFSiyeq6aPvmqiqIEhashi6pPYVEpYI0OBhSTzUEx7lLxJ4oawZEL5yqi/cdQsi1ia7mhBByHkYmByPawECJhksIyOY63/Q8jbbjNXFJ98RGR0Nrq4bMGQm33XL2eHmdAhprFWTxSQGsjhDyW/g9IHMcl8ZxnInjOOWZ74dyHLef47hvOY57zt/nI4SQrmEHGNUljSA7W5wAAKNee5GWpDtRJCYgtLkKUkEJ/ttvAACiywaHNRp6czniBw4NcIWEkCvl14DMcZweQD4AZ5vDqwHMAJAJYAjHcYP8eU5CCOkSjB2iRI0Gi/OiTb1237/DQ9vtxkq6MXlyMqKqjgAAjuz3LfVm/uUgIOqgM5cjdQj9uSPkeuW3gMxxHAPgTQDPArCdOaYHoOB5/gTP8yKA7QBG++uchBDSVRjGDjBSNJsvHpBFl+8mrcjIiK4ui1xDFMnJUDkaYGFPo77eCADgdx4EABiaj0KTnBjI8gghv8EVBWSO43I4jvu57T8APgHwKc/zh9o01QNouzCoGUDH+3ISQsg1RCLzraHf3HzxgAzBt8pFeK/wriyJXGMUKam+L4RfINoTYTpaiEMnwyFxHodH64ZELg9sgeSq2bdvnyY7O5tr/b6wsFA1ZcqUtKlTp3Lz58+P93p9G7utWbMmbNKkSemTJ09O/+CDD4IAwGKxSGbPnp00bdo07t57702tqKhot/SJzWZjcnJykrKysriZM2cm19bWygBgxYoV4WPGjOmbnZ3NZWdnc8XFxYrO2h44cECdlZXFTZ06lcvJyUm02+1nd+o4v/6DBw+qJ0+enJ6VlcU99dRTsa31t/X1119rJ0+enDZlypS05557Lvr8xzds2BDy/PPPn3N87ty5ibt379Z19nt89tlnY8vKyuQNDQ3STZs2dfiRnMfjQU5OTuJnn32mb3v82LFjirFjx/Zp+1qtv5dRo0b1nTJlSlpn5+3IFQVknufX8Tzfr+0/ADgAORzH7QYQCeBz+MJx21+EDkDzlZyTEEKuJqncN/fYbL7wdtOi1wsRKkAUoAoOvRqlkWsE2ysKjFqNWGcVGEjwxarv4HRHIrL6G2hS+ga6PHKVvPrqqxF5eXlxLpfrbOBcvnx5r9zc3KqtW7fybreb2bZtm6Gurk62efPm8IKCguKNGzfyy5YtixUEAevXrw9NT0+3bdmyhZ84cWLD66+/Hnn+OdatWxeenJxsLygo4CdPntzw6quvRgFAUVGRZsmSJSdbd7hLS0tzdtRWEATk5eXFv/TSS6Vbt27lMzMzW8rKyuSd1Z+Xlxf39NNPlxcUFPBardb73nvvtQurS5cujX3ttddKPvroo+JffvlF88MPP1x4PcxLsHjx4lNxcXGuw4cPq1t3A2zr+PHjiuzs7DSe5zVtj2/cuDH48ccfTzSZTGzb19q8eTP/zjvvHNVoNN4XXnih7HJq8ds6yDzPJ7d+zXFcKYCxPM87OI5zcRyXBKAEwDgAC/11TkII6SoyhW/ExNpy4d3xvC0t8LBaiLCCUWgu2JZ0L4xEAkVSEvpazfhn4kGIDYPglFmQVFaIqDvnBrq8HuenXRUh/L4qv75L5YZG1Q8YGdNwoTZxcXHOlStXnnjyyScTzj6P42zNzc1SQRBgs9mkLMuKYWFhnm3bth1hWRalpaVylmUFiUSCefPm1Xo8vp2RKysr5Tqdrt1wbWFhofaRRx6pBoBx48a1rF27thcA8DyvXrVqVWRjYyObmZlpeuKJJ6o7anv06FGFXq/3vPnmmxElJSWqzMzM5rS0NGdn9dfX18uHDx9uBYAbb7zRsmPHDuOMGTMa29b04YcfFrEsC7PZLLFarVKtVnvJC8Fv2LAhZM+ePQaHwyGprKxUzJ49u3rWrFkN2dnZ3KJFi8pWr14dWVJSol63bl1oTk7O2Y1gLBaLZPHixaWrVq06502EwWDwvvfee/wdd9zR//xzrVmzJnzIkCEtAwYMsF9qfcDVWeYtF8BGAAcAFPI8v/8qnJMQQn4TZWvWbWm6YDtvUzPcrBZgLADDXLAt6X4UyclQnapFUcY32DA4D/sjXwYreKBISb74k0m3kJWV1cyy7DnbEickJDjz8/N7jx49um9jY6Ps9ttvNwMAy7JYvXp12IwZM9LHjx9/NnjLZDLcc889qVu2bAm/88472110rFar1GAweAFAp9N5rVarFADGjBnTuHTp0vJNmzYdLSws1H7yySeGjtrW19fLioqKtHPmzKl99913jx44cEC/c+dOXWf1R0VFOXfv3q0FgJ07dxrtdnu77URZlsXevXs1EyZM6BscHOyOiYm51IW/RQCwWCzSt99++/iqVauOr1+//pzAm5ubWz1w4EBz23AMAAMHDrT36dOn3cd6kyZNMnUU0J1OJ7N169awefPm1VxibWd1yU56PM/Ht/l6HwBa64YQcl1R6aWAFZBazRds521ugjZ2W3MAACAASURBVFumAaTWq1QZuZYokpNh2roVH47ajLdK9yB0yy4AO6G6YXCgS+txBoyMabjYaO/Vkp+fH/vWW28V9+vXz7FmzZqwvLy82JdffrkcAHJzc+vmzJlT/+CDD6bs2rXLMnLkSDMAvP/++0eLioqUubm5yWvXrj32zDPPxAPApEmTGjQajddsNksAwGw2SzUajVcQBOTm5tYajUYvANx2222mI0eOqDtqGxIS4o2KinK0hsthw4aZDh06pB41alSHF7ilS5ee/Otf/9r7jTfeYAYNGmRhWVZcvXp12I4dO4IBYNmyZSUxMTHuW265xbpnz57DixYt6rVs2bKoZ599trL1NZRKpeByuc4ZiLXb7RKVSiUAQGpqqg0AYmNjXW63u0sGbL/88kt9RkaGufV3dDlooxBCCOmAJkgNAFA7bRBFsdN2zvp6uFkNGJntapVGriHqm28GADi++ha/vzEbg0+ZoOiTDjaCbtjsybRarUev13sBICIiwm02m6XFxcWKhx9+OEkQBLAsK8rlcoFhGDE/Pz9y48aNwWee55VIJEhJSXG2zit+6KGH6gcOHGhpnZO7fft2fUZGhrmlpUU6ceLEvmazWSIIAvbv36/r37+/raO2iYmJTrvdLj127JgCAAoLC3Wpqamd3mDxxRdfGJcvX17y/vvvH21ubpZmZma25Obm1rXW1KtXL3dWVhbX2NgoBQCNRiNIJJJzLpQDBgywff/99/rWsN7Q0CAtLS1VtYZ05gKfuDEMI17ounupvv32W91tt91mupLndskIMiGEXO/0oUZAFKD1etDi8MCgandjOQCgrrICbjYIEnllh4+T7k3Zry/YmBi0fPYZdKPvgL3wR4Q88rtAl0UCbOHChWXz589PkkqlIsuywpIlS8oSEhJcqamptrvvvjuNYRjccsstphEjRljS0tIcCxYsSNi6dWuYIAhYtGjRyfNfLycnp+6xxx6Lnzp1KseyrPjaa6+VGI1G76OPPlpx//33cyzLCjfddJN5woQJJqvVaj6/rUKhEBcuXFi6YMGCRFEU0b9/f8vEiRM7DY7x8fGOmTNnckqlUhg8eLB5woQJ57SVSCR46KGHah566KEUlmXFkJAQd35+fmnbNmlpac7p06fXTp8+PU2tVns9Hg/zpz/9qVyn0110rnJSUpKzpKREtXLlyvB58+bVXsav/hxlZWXK7OzsK/pUgfFHQve3rKwssaCgINBlkN+A47iDPM/f6O/Xpb5x/euqvgH4t3/UfvEGtm6KRZPkOO5bMhfxoR3fgLf3xUUoLBsKedQB/G7hn/1y7p7serx21Obno+Gf6xHxzNOoWfQC4t59B+pBtEmIv3XUNw4dOlSakZFR39lzCLmYQ4cOhWZkZMSff5ymWBBCSAcMEXGQeexQiFI02jq/96Slrh6iRAqNhm7Q66l048cDHg9qFr0AWVgYVAMGBLokQshvRFMsCCGkA/LgSMg8h8HK5GiwdB6Qnc02QAkYNB1PwSDdn7JPHwTPng1GoYBxWhYYabsb/gkh1xkKyIQQ0gFGZQQj2CCBCnUX2G5asLoBJRBmVF/F6si1hGEYRDzzdKDLIIT4EU2xIISQjij0YGADA+UFAzJz5j7w8CDDVSqMENKGIAgCzW8iV+RM3+nwpkEKyIQQ0hGlLyCDUaHO0vl204zH90GcMajdrqiEkK73c11dnYFCMrlcgiAwdXV1BgA/d/Q4TbEghJCOyBQAY4UoUaGupfOALBWUAABlkP5qVUYIOcPj8fyuurp6bXV1dT/QoB+5PAKAnz0eT4frMlJAJoSQTkgkdogSFg0tHU+xEBwOiBINRNELuSH0KldHCBk8eHAtgCmBroN0P/RuixBCOiGR+UaOTZ0EZM+ZXfTAWMCogq5maYQQQroQBWRCCOmETO4Lxq7mpg63m248XQM3qwUkFkBFc5AJIaS7oIBMCCGdkCs9AACt0wyL09Pu8fpT1XCxWjASCyDXXu3yCCGEdBEKyIQQ0gmV2rf6T5DXjtoOlnprPF0JN6uBlLUCDN1ETwgh3QUFZEII6YTG4NsRzeB1dbgWcnNVOdysFnJF56tcEEIIuf5QQCaEkE6EhKoAAHqv0GFAttfXwM1qoFF1vpEIIYSQ6w8FZEII6URoRBgkXhd0XnQYkMVmK8BIYFR6A1AdIYSQrkLrIBNCSCeModFg3RaoGSnqLO0DstTuC8bBGpp/TAgh3QmNIBNCSCekKiMkXgsUUKC2g7WQZW7fJTRUq7japRFCCOlCFJAJIaQzSgMY0QwJlDjdbDvnIY9XgFzwBWOjUROI6gghhHQRCsiEENIZpR4MLACjRlnDuQG5ptkGKdQAAHUQrYFMCCHdCQVkQgjpjNIIRmKBINWgyuSAw/3rzXhV5dVwy3UQ4YbcQLvoEUJId0IBmRBCOqMKgkRihiBVQSYIKG/8dRS5srQSLrkeYMxgNMEBLJIQQoi/UUAmhJDOqIPByloAAKEuM0rrrWcfqi49DTerAyNpAdQUkAkhpDuhgEwIIZ1h1ZDLzQCACI/pnHnIzeUVcMl1kMhMgIoCMiGEdCcUkAkhpDMMA43Kt410NOwobfh1BNlTVQqXXAeWNdEIMiGEdDN+2yiE4zgpgFcA3AhAAeB5nuc/4ThuKIDXAHgAfM7z/EJ/nZMQQrqaQS8AViCS8eLomRHkZpsLGlMNXHodgmQmQKEPcJWEEEL8yZ8jyA8CYHmeHw7gLgDJZ46vBjADQCaAIRzHDfLjOQkhpEuFBvvGEQxe4ewI8tEaC0KdDogSGXRyB8DQTnqEENKd+DMgjwNwmuO4TwH8HcDHHMfpASh4nj/B87wIYDuA0X48JyGEdKmIYC0gClB5GFQ222FzecBXtyDIJQAAwhSeAFdICCHE365oigXHcTkA/uu8w3UAHAAmAbgNwD/hGzluadPGDCDxSs5JCCGBoNOFQuqxQg4pBBH4/EgNiipNGC+wAIAINd3KQQgh3c0VBWSe59cBWNf2GMdxmwB8cmak+CuO41LhC8e6Ns10AJqvsFZCCLn6VEGQiBZIPArEBKmw/rtS1JdVYozMN+9Yr/fbrRyEEEKuEf4c+vgGwAQA4DguA0A5z/MtAFwcxyVxHMfANw1jjx/PSQghXUsVDKARgqhF1qBo/HiqGbqWejiUIQAAXRAb2PoIIYT4nT8D8t8BMBzH7QPwJoDcM8dzAWwEcABAIc/z+/14TkII6VqqIDDSOrjkwZiarIOEAab1ksKuDIEoaQGrMwS6QkIIIX7mt88GeZ53Ani4g+P7AAz113kIIeSqUgdDLt8Hi1cLTXU5PvnjrTB+sgm7lcGQsHW0BjIhhHRDdHcJIYRciCoYOlUNAKD88BH06aWH9dQJ2NShULK1gDokwAUSQgjxNwrIhBByIaogRKkqAQCNJ6sBALaTJXAqgmCU1NI204QQ0g1RQCaEkAtRByNRUgUAsNU6ILpc8PA1ACNDuKSaplgQQkg3RAGZEEIuRBWEcDQDogseqxT2n3+GS+Jb4i2aqQa04QEukBBCiL9RQCaEkAuRKcDINWDEZng9Wlh2fwW7yjfvOEhaC+iiAlwgIYQQf6OATAghF6MOhkdtglMRgoa1a1ET6hs11mrcAKsKcHGEEEL8jQIyIYRcjCYMEoMJJl0wIAioMQZBIjdDZqDpFYQQ0h1RQCaEkIsxRCORqYGE0eHTUdFwK1MQqawC9DS9ghBCuiMKyIQQcjH6GAxlvgYAnA4aD7UnBGnKvTT/mBBCuikKyIQQcjGGGASLR6GPkSC54QZAIiKB+ZICMiGEdFMUkAkh5GIM0QCAwTdoAACxKWooGTNNsSCEkG6KAjIhhFyMPgYAkBzbgNBYLQYMPHNc1ytwNRFCCOkyFJAJIeRiDL6ALHdU4N4/34z4iDrfcRpBJoSQbokCMiGEXIw2HJDIANNp3/dm39bTNIJMCCHdEwVkQgi5GInUF4ZNFb7vzVWAhAXUIYGtixBCSJeggEwIIZfCEAO0nBlBbqnyrWAhoUsoIYR0R3R1J4SQS2GIBkynfF9X/QiEpQa2HkIIIV2GAjIhhFwKfbRv5NhcDdQVA/G3BroiQgghXYQCMiGEXIqoDEBwAzsX+b5PoIBMCCHdFQVkQgi5FGkTAXUoUPgvQK4DIjMCXREhhJAuQgGZEEIuhUwB3PCg7+u4YYBUFth6CCGEdBkKyIQQcqkGzwGkciBlTKArIYQQ0oVoCIQQQi5VUBzw2CFAGxHoSgghhHQhCsiEEHI59LR7HiGEdHc0xYIQQgghhJA2/DaCzHGcAcAmAFoATgAzeZ6v5jhuKIDXAHgAfM7z/EJ/nZMQQgghhBB/8+cI8kMADvM8fyuA9wD895njqwHMAJAJYAjHcYP8eE5CCCGEEEL8yp8B+TAA3Zmv9QDcHMfpASh4nj/B87wIYDuA0X48JyGEEEIIIX51RVMsOI7LAfBf5x3+A4CxHMf9AiAYwK3wBeWWNm3MABKv5JyEEEIIIYRcDVcUkHmeXwdgXdtjHMcVAPhfnufXcBw3AMAW+KZV6No00wFovsJaCSGEEEII6XL+XOatCYDpzNe1APQ8z7dwHOfiOC4JQAmAcQAuepPekSNH6jmOK/NjbeTqi+uKF6W+0S10Sd8AqH90E3TtIJ3psmsHIedjRFH0ywtxHNcLwFr4VrFgAeTxPP/FmVUslgGQwreKxZ/9ckJCCCGEEEK6gN8CMiGEEEIIId0BbRRCCCGEEEJIGxSQCSGEEEIIaYMCMiGEEEIIIW1QQCaEEEIIIaQNCsiEEEIIIYS04c91kLsEx3ESAG8AyADgBPA7nuePB7aqwOA47gf8ujPhSQBrALwGwAPfEnoXXWO6O6G+cS7qH+ei/vEr6hvnor5xLuofhLR3zQdkAHcDUPI8f8uZNZXzAdwV4JquOo7jlAAYnudHtDn2I4Bp8G3C8inHcYN4ni8MUImBQH3jDOofHaL+AeobnaC+cQb1D0I6dj0E5EwAnwEAz/P7OI67McD1BEoGADXHcZ/D99/teQAKnudPAADHcdsBjAbQky5i1Dd+Rf2jPeofPtQ32qO+8SvqH4R04HqYg6zHr1tYA4CX47jrIdj7mw3A3+DbrjsXwD/PHGtlBmAIQF2BRH3jV9Q/2qP+4UN9oz3qG7+i/kFIB66HC0ILAF2b7yU8z3sCVUwAHQVwnOd5EcBRjuNMAILbPK4D0ByQygKH+savqH+0R/3Dh/pGe9Q3fkX9g5AOXA8jyN8CmAAAZ+aKHQ5sOQHzMHzz5MBxXC8AagBWjuOSOI5j4Hv3vyeA9QUC9Y1fUf9oj/qHD/WN9qhv/Ir6ByEduB5GkLcCGMNx3HcAGABzAlxPoKwDsJ7juG8AiPBd1AQAGwFI4bvTeH8A6wsE6hu/ov7RHvUPH+ob7VHf+BX1D0I6wIiiGOgaCCGEEEIIuWZcD1MsCCGEEEIIuWooIBNCCCGEENIGBWRCCCGEEELaoIBMCCGEEEJIGxSQCSGEEEIIaYMCMiGEEEIIIW1QQCaEEEIIIaQNCsiEEEIIIYS0QQGZEEIIIYSQNiggE0IIIYQQ0gYFZEIIIYQQQtqggEwIIYQQQkgbFJAJIYQQQghpgwIyIYQQQgghbcgCXUBHhgwZIkZHRwe6DPIbHDlypJ7n+TB/vy71jetfV/UNgPpHd0DXDtKZrrx2EHK+azIgR0dHo6CgINBlkN+A47iyrnhd6hvXv67qGwD1j+6Arh2kM1157SDkfDTFghBCCCGEkDYoIBNCCCGEENIGBWRCCCGEEELaoIBMCCGEEEJIGxSQCSGEEEIIaYMCchcSHVaIlnrA6w50KYQQQggh5BJdk8u8Xe9OVx3H8Z0LoRLcULVwCKpOhTHBDs1994BR6wNdHiGEEEIIuQAKyH4kiiK2fPoW1JJXII+0wuZWQB79PRoStYguXADD0i0ImX0DpEkZgS6VEEIIIYR0gqZY+NHOr3ZCJXkFMkYE+/NM1Dc9jx8Lx8MkSFB282I0a2yoXXsC7kPfBrpUQgghhBDSCQrIfnL69GmUnVwJpdKKxCMP4tZHnsbQ5FgkhQ7Gzz+OhcmmR9ngN2DT16FuUxPcP3wT6JIJIYQQQkgHaIqFn/x7RwF6xxyBpupmBKVn4L0leag8WgQAkBhDwTMj0S9jO07e/HekfPM46j4QESbbB3bA0ABXTgghhBBC2qIRZD+oqKiAxLsTUqkXUaW349OvP0X9qTKMnPsoHl33Lu7/w2NQ22UoPjICHo8ZJ2/bAEHqQf27VfAU/yfQ5RNCCCGEkDYoIPvB19/sQUTkcSjr+6BKcKCutATb+5Vj9qmn8KcPX8DRci9GjHwEjDscR38ZBq94AlVjP4EXatRvOAFvWVGgfwRCCCGEEHKGX6dYcBzHAvgHgHgACgAvAPgFwHoAIoCfAfyB53nBn+cNJJvNhvraXYgItyGYH4Z//7ILv8S3oH//MRj/7RAwtWocQwuOoQVyaQYaQ90o5zn05nbDMDEZ6k+GoP7v3yPsMQ0kYb0D/eMQQgghhPR4/h5Bngmggef5WwGMB7ASwCsA/ufMMQbAXX4+Z0AdPnwYYeEnwLjUaKzRwg03bhkzA+nbb4OsWoa06k8RWbsI+2JeRMrYUIQiDWU1N6HpdDDK7Osg3lEJtycODa9/AdHSFOgfhxBCCCGkx/N3QP4AwF/OfM0A8AAYDOCrM8f+DWC0n88ZUAd/+A+Cg09DVzcYJ6qLYE7XIeijYFjNHtxs/hTpaXL0rXLg2X9V4ugnf8T0BbcjLLgXik+OgdvK4mf7EpwKboLTkYrG1wogumnXPUIIIYSQQPJrQOZ53sLzvJnjOB2AzQD+BwDD87x4pokZgMGf5wykpqYmuJw/QSZzQ17Loc5ejtGS21DtCkW/iHoMemc5ei1dgpQvdgBTxmDcHgu+nzMN0+4eD5FR4cjxCZCpnKiOXILDNgfs5lRUv7IFoihe/OSEEEIIIaRL+P0mPY7jYgHsAvA2z/PvAGg731gHoNnf5wwUnucRHFIBeGWoP60EE6lDybFQ6GDCLc/dD4ZhAABSrQbp/7scVY9OQUJRE8r/MAcjhg6F1aLDzydugz6mHqaUZTjucsLbFI2jL2+HKFBIJoQQQggJBL8GZI7jIgB8DuApnuf/ceZwIcdxI858fSeAPf48ZyAVFxchJLgCmoZ+qG+qQLI9EnZVGIZkp0PGtr//ceQfl2Jn7mAoTlYhaMmLiAoJgdOUitLqVISmF6My8l00oBGaRg0OLP0aHpc3AD8VIYQQQkjP5u8R5GcBBAH4C8dxuzmO2w3fNIuFHMftBSCHb+rFdc9ut6Om5mcoVRao6/uhxlUGkykZapkLKSNTO3wOwzB46P+twqqcSNhMdRj4wWa4HU7IhGy02I0ISv8GR7RfwclUI8rEYNdL++G0e67yT0YIIYQQ0rP5dZk3nucfA/BYBw/d7s/zXAtOnDgBg6EaAGCvDoaRVaFFl46hY3pBIu38fYdOrsP8Wa9jvvwBPPuRDf1+KMQhUcQtt/wRjORFqGJ24PBpDW4w34Akcwg+zz+IsQtugELNXq0fjRBCCCGkR6ONQq5QSUkJDMZqSB0GNNSaITXpwUBA3zuSLvrcPiF98Mdxz2PBvXZ40+QIr63F93uOQ904FvreVpiZHThhOAhWYkeyyYFPX/sRLhpJJoQQQgi5KiggX6GTJ0/CaKyGurEP6hzlsBhvRe9kNZTaSxvpvSv5Lswa8DAW9imCZnQMJAyDH75hoDgehMib68BXf4dG7ZfQSkX0rrfh09cP0ZxkQgghhJCrgALyFWhubobDUQq53AFFQwrc9iZ4FOHoMzrlsl7n8cGPY2LiRPzN/C7CMmPRGBKK6u+SwTYAve+owq5jh+GVb0MkK4G+wozP/v4zvJ5uswkhIYQQQsg1iQLyFSgtLYXBWAMAcFTpwQiRkLMC4vqFXNbrSBgJFg1bhNtjbsfy6hUISgzCz/FpYH+4GQqFC3EjK/HBiaOQSr4Gp5TCVdyIz9cegddLIZkQQgghpKv49Sa9nuJ4yXFo9TWQOvWobzTDabgZ3A0RkMou//0GK2WRPyIfj+18DOsr1uMe/T3Yq70BY8pkQPK36DWgCh8U/YTpkRG4SZuMXT/V4Yt1v2BsTp8L3gxICLmOiSLE2iJ4SopRUyai1qqDCcFwi0qAYcAwvlVxJDIGCjULfYgSoTFahCfoIaXrAiGE/GYUkK9A8YliDOhTD1VzKk7ZTkHQDEfKkF5X/HoKqQLLRi7DvJ3zsM2zDaOrR+PHsFHo12ICBv8Ma50KO5t2Y2RQKG4PCcL2wlp88U9gzBwKyYR0N2LJd6h6+xPYLcOgkIYBAMIBGIUWmIR61DJS1MmU8Eqk8HoEOG0eeN2+T5XkSikSbwhH38xeiEzsNpuWEkLIVUcB+TI1m5sBpwUalQXy8njYHE1QBjOI5oJ+0+sqZUqsGLUC83fOx/fO7yGeFNFr+FxoPIuRNLICv/yfHEes/4d0zYMYHaPEZ/+phUTK4I7ZfSCRMH766QghgeT8cjXKtimgZu9Es6sMVa5iMCoPJC4vNKIBkaoE9JVqAMEMXWgRtOMGQdJnBKwmN2pKTSj9qR4nfqhF8XdV6JVixM2TExCd+tuuTYRcyw4ePBguk8nWAugHmjZKLo8A4GePx/O7wYMH157/IAXky/TxwY+h19cBAFy1Rri1MUgZHOGXjzVVMhVWjFqBxyWPo+RQCfAtMDVrEVw185E2uhQ/fyxFqGwzwjADd6TpsWN/DRiGwahZ6RSSrzPO6grUbv8M9qp6SEU7tEYPQpKDIUu+CYgdAsgUgS6RXGWe79bh+DYt3DIjCk2HoIgOx8AYDYwhMVD16wcTI+KXr3ai+tsdiFf0Q3TtjWh52wOtYRl0EwYjadDtSBoUjlvv9aDo2yoUfl6G/3ulEPEDQpE5PQWGMFWgf0RC/E4mk62NjIxMDwsLa5JIJGKg6yHXD0EQmLq6uj7V1dVrAUw5//HrNiDb7adxouRlCIILvaKmIzR0ZJefUxRF7C3ai5v0dYAggakWgDwZSYMj/XYOpUyJ5SOXY4G4AA3/acD/fbQHD9z3EsokjyHttjLs3CnBlOjPoKkej9tvDMNX+6ohkTIY+UAaGArJ1zy32Ybj+ZugssVDJuGgBuc7bgKqSkU4t1dCzS5ESKoX8sE3geHGAQpdgKsmXc1xcj/e+7galQYnwqJ/QVTUUSiVVpwAwDgAxRYGipIwpKfdgxv+8BCOnS7Fnn9vRYyQjHjcAMu7ItT/XgPDtEzIU/si445Y9L21F37aVYHvt5Xi3YX7ccO43rhhfBxkrDTQPy7xM6vJicbTVpjq7Wips8NUZ4e50QGX3QNRFKHUsAiO0iAqxYj4/qFQ6+WBLtmf+lE4JldCIpGIYWFhpurq6n4dPX5dBmSPx4xDP+XAYa+ARKKA2XwEISG3gWG69sL/Q+0PYEwMdBENUJrjcNrSDLlehZjfOL3ifHKpHK+MegVPep6E9T9WbNpSiPuyn0UZ8yJSrBX4eC8wLT4KxhMDMGx4FL77tgqsQorM6SlgGArJ16qWouOo+ccRaCRJqHcfhsLogKCLgpU1wml1AfVN0LrlYKVjUcdL4fjFjnrvTtQyDBwaHTQRwQiP16N33xCEx+nov3U30VhbjX+s/xhegw0Zfb6GQtsEa6UWvIODVNBDrWlEcHoFlDfUwty8Epq1q6AvisCtA25GVXADvq54F1FMKpIxCLZ1ddDGvgv9zImQGfW4YVwcUm+OxHcFx/H9p6U4eqAGt8/gEJseHOgfm/xG5kYHDu+qQMmPdTDV2c8el8ok0IcqoQtRwhihBgDYzS6UHWlA8b5qMBIGcf1C0H9ENGLTg7vDdURC4ZhcqTN9p8MpANddQBZFAT8f+S9YLcdx5PAIJMjKoe5zAvX1OxEWNqZLz/3xsY8R5DRCr2mEsjoTDYIaSRnhkLL+n/Ykl8rxt7F/w5POJ8EeYrH541rcfecjOI2/o7e9Gh//tBN3xYUg/DiDwcOicHBnBVRaOW6cEO/3WshvZz9Vh9p/HAUDBaqO/RPNZhWqUm+Ax+aB1+WAx64Dy2ggYQXAchhB7ibEKGLQS52IGEYKh8OG2pIKFB9R4cDHJ2GMUGPAyBik3RIFVkEjgtcrp9OJd/65BlC4cWPGDngAnP48AcG/m4+huhgUHi/Ej3t/ge7YUKgiSxEVcRrRU0vRPK4W2l1fwrjJgRs8DCqNP2BH7F4khd2KpFMZsC7dB8MwNbQTh0EbpMDYnL5IHx6Fr97h8dFrPyJ9eBSGZ6dAobru/gT0eF63gO+3nUTh9nKIAHr3CUa/26MRGquDMVwFjUHR4aeJoiii4bQFx76vQdHeapQur0dIjBY33hmPpEFh9Ankb7Rv3z7N3/72t5jNmzfzAFBYWKh67rnn4qRSqRgbG+t89dVXS6VSKdasWRP28ccfhzIMg1mzZlVPnz69yWKxSP7whz8kWCwWmUwmE/Pz80/GxMS4276+zWZj/vjHPyY2NTXJ1Gq195VXXikNDw/3rFixIvyjjz4KMxgMHgB44YUXSnv37u3qqO2BAwfUS5cujRVFEcHBwe6VK1eeVKlUYkf1Hzx4UP3888/HsSwrpKSk2BYvXnxKKj33b82XX36pW758ebRMJhONRqN7+fLlpRqN5uw6tBs2bAgpKSlRPv/886dbj82dOzdxxowZdSNGjDB39Ht89tlnY3//+9/XaLVa7xdffGG47777Gs9v4/F48Pvf/z5x+vTp9ePHj28BgLy8vJhDhw5pvV4vk5WVVffwww/XNzQ0SMeNG9cvPj7eAQAjR45s+sMf/tBurnFnrrurY3n5OjQ07MLxEzfB2RyEQkRgqKMCp8r/0aUB2eFx4Ltj32GUoh+krAtCYwjc8lgkDgrvsnPKpXL876T/xZOuJyH5RYKPd+hw54hsxdGuJAAAIABJREFUYOhmeJxSbD/2Icb3noW4Kha2G8Ox/6MSaIxypA+78hU1iP95nR5UrPwW9RIPfpFug3b6KRiDKxHLfn62jeCUQFHKQMkDquogBCWNgjnOgSP1X8NZ7kK0MgUxqjj01kvhYepQ4vHi601HceCTkxg0pjf6j4wBK6egfL35ZOsHaHS4cOvA7+CRePH/2TvvOKuqq38/5/Y+986d3vudGWaYoXdBEFAEpWqMhfgSfTFBfYMaWyxECTY0UYwlGFuCJSoSqRZ6b8NQpvde7rTb+/39QfBnQaUMzczz+fAHZ/bea90zZ8797r3XXqtjzSRmP/ckKpkagIGRA/EN9/H3L/5O7V4/ttZEWjLyiNZVIr76KA2XG2ipn0h/ZzITzHUUH17HF9r95IZPgJ2p2ArWEnrjMORp4cRnhvKLPwxl7+pqDn1RR31RJxN+ld3rO2B9nDucNg9rlhXSWmMlKdxObnQHusgupPoEFNGhiDQnF8dwPC1gWJyWsDgtQ6emULavhYMb6tjwt6MYolQMuiqJ9CGRfedZzoAXXnghct26dUaFQvG1OHzxxRdj5s+f3zxlypSeO+64I3nt2rUhw4cPt3/00UcRa9asKXK5XMJVV12VM2vWrK633norLCsry/HAAw80v/POO8aXX345asmSJfXftPHGG29EpKWlOR988MGmDz74wPDCCy9EL1mypL64uFi9ZMmS6sGDBztOtH3ppZciv9t28eLF9Y8++mjSSy+9VJmenu5+8803w2pra2WZmZnuk/n/6KOPJj700EN1o0aNsj/xxBMxH3zwQegvf/nLb4nVxYsXJ65YsaIkKirKt2jRoti333477De/+c0pC9CT8ac//akeYPPmzdqNGzfqvyuQKyoq5Pfee2+y2WyWAmaATZs2aevr6+WrVq0qcblcwpVXXtlv+vTpXQUFBaoJEyZ0Pv300/UnMfWTXBoC2e8Dn5P6pveoqHoaszkBavKY7h/CZ5LDNDRnIFbsxevtQio9Ny/7TfWbkNqlaLUdADjaFUhkcST0O7dblQqJgmdnPst9/vsQSgXWbjYwcdQVMPZLfD4RW+s+5jJuIkcnx2bSs/kfpWiNvR/20ceZU/XnT9kra8ebuo6khGP4vHJaupKwuUPx26TIJB7kmnZU8a0YM+xYBTPt3f9CdUAgdrcImiW0xEdRHBqGXpNJhm4gGVIF6aFd1Ch17FpZyeGN9QyekkTWqJgzysfdx/mnpKSEIyUVDE2sIqBtomXzbVz70LyvxfEJJGIJt195OzUDa1j+4XIcpToKFem4BmUSqdhHP9OHFHel8kf3dSTMnMb0YAPVm96n0hrHoNAJ+JeXoMquJmRmPhKNjJEz00gZEM5XbxWz6s8FDJycyLBpyX0pIy9ynFYPHy3ahs3iI6/iX0Q3agk0ZmLRiBAUVgRRwfGGfjuCyIpE5UQaKUeWnYy8XxqSUMPX4RRiqYiskTGYhkdTebCNA+tq+PLNIg6sr2XEjFSSco2XZOjF2ztrjJ8cbAjrzTFnDowzzx2Z1PFjbRITE93Lli2rvPfee5NPXDOZTI7u7m5xIBDA4XCIpVJpMDw83Ld27dpjUqmUmpoamVQqDYhEIhYsWNDm8/kAaGpqkmm1Wv93bRQUFGhuu+22FoDJkydbli9fHgNQWlqqeuWVV6I6Ozulo0eP7rnnnntaTta2rKxMrtPpfK+//npkVVWVcvTo0d2ZmZnuH/LfbDbLRo0aZQcYPHiw7csvv9R/VyD/4x//KI2KivIB+P1+QS6Xn3IVs3feece4bdu2EJfLJWpqapLPnTu35ZZbbumYPXu26Yknnqh99dVXo6qqqlRvvPFG2Lx588wn+tlsNtGf/vSnmldeeeXrw1/Dhw+35eXlOeD4RNDv9wtSqTR4+PBhdWlpqXrWrFkmg8Hg/eMf/1gfExPjPZk/J+OSEMiVn11Jg6IKn0ygsyOOtuKJTPENxeHtYIIok022EgBs1hIMoSPOiQ9bG7YS5Y9CY2hD8EvoMcuJz4lEpjj3t1ApUfLcnOd4+F8PHxfJO2KYOGwUwfE7aNxQwsHWzxjIDEbkGvmi2836144w+/7BX8ef9XHhMO84wjZbE6p+nxIVUUtHzQhGjF/M5KREADweD0WlRXyx/Qvs5XYCMgtCfDmxeg+J46qxT/DR06rBd1RO4lE34toN7NdtQxKdT65+JMkBMUmRVoplSra8V8bBz+sYOjWZjGFRfStBFzEul4vVn60iUmVGnrAPW8VokmIHoosK/8E+SRFJPPHbJ1i9azV7Nu2hcYeEfboUhgyIIy30MA8NfZp9beN46NgkAsn/w/+IKrAWLycpdBSmY0NwlGxDPy0T9bAYopJDuO6hIWz7sIyD62tpreph8m05KLU/q8NbPxt8bh+rHtmA0y5lgrgB1dCbARFiqgn6jhJw28DlIeiU4A9oQR5FQJ+A16nCUeMmuGof/q4yxLIO1KMy0U2djMRgQCQSSB8cSdrACCoOtrHn31Ws/ethYjP0jJqdTnhC3wHhU2HmzJnd1dXV3/rjSU5Odj/zzDMJy5cvj1ar1f6xY8daAaRSKa+++mr48uXLY2fPnt16or1EIuG6667LqK6uVr7++utl37Vht9vFISEhfgCtVuu32+1igIkTJ3bOmzevXafT+efNm5e6evXqkJO1NZvNkuLiYs3jjz9el5aW5p47d27axo0bHePHj7eezP/o6Gj35s2bNePGjbNt3LhR73Q6v7dFeUJsrly5Un/gwAHtgw8+2PjdNj9AEMBms4nfe++98rKyMvn8+fPTbrnllq8nIvPnz29ZsWJF+DfFMUB+fr7zu4MplcqgUqn0ezwe4a677kqaPn16u1arDaSlpbn69+/feMUVV1jfe++90EceeST+jTfeqDpFHy8NgVxbPQBPmJ46mxJrczajHMlY9z6DxNqOb+RvEKmPTyRsHXvOiUAOBoPsbdnLyMBIdJoS5LYE6v1yBp/D8IrvopAoeOr6p1i8cjGeIwHWbI9l4rD+xE48Qu2a/ZR26DEduZwrhkfx2bYW1vz1MLN+PwiFWnrefOzj2wS8fjas24I443PCI2ppPTyT8df8gaik/1/AQSaTkZ+bT35uPjV1NXy09iNslToqxA4OxkQwLFVDREQJIRNK6blMya6mIXSVpXBFYyP7y15FEzWYPMMYst0+stL97HdK+OrtYgq+qGPE9FQSL9GVoJ8727dvx2Z3MDjvCH6nhrbCqUz98xU/2U8QBKaNnMbEgRP5aP1HBAuD1G71s9loYWSGmSGRmxgafYAS+w28sjcbR1ICC8xrqa0/wsCwibBKhn13DaG/zEcaqWb8zVnEpOnZvKKUfz21n6t/2x9jjOY83IE+Toev/vAhTk8UkwxeJKJ0ut3bOWQpptXW/a12Cq2OsPgEwmPcGGTVGJxuVGYX/k4pgj4FZPnYD3uxfPUPpEYnof8zFWW/bIT/COWUAeEUbWti7+pq/rVkH7nj4hh2bcp5WQjqDeaOTOr4qdXe88XSpUvj33777ZKcnBzXa6+9Fv7oo4/GP/vss3UA8+fPb7/11lvNN998c/qmTZtsl19+uRXgww8/LCsuLlbMnz8/bfny5eUPPvhgEsDUqVM71Gq132q1igCsVqtYrVb7A4EA8+fPb9Pr9X6Ayy67rOfYsWOqk7U1Go3+6OhoV3Z2tgtg5MiRPYWFharx48efNBb4qaeeqv7jH/+Y8Ne//lUYMGCATSqVBl999dXwL7/8MhTgz3/+c1VcXJz3pZdeivjqq69C33rrrfIT8cwnUCgUAY/H862tKafTKVIqlQGAjIwMB0B8fLzH6/We1RZWZ2eneP78+amDBg2y3nPPPS0A48aNs6hUqgDANddc0/3qq6+eVvzpJfHUHyGVrgo1uoCKoXYIWfck8gH9abzvDhRrW0h0puDxyOlu30d8eu/br7fW02ZvQ2qXoNF0IG/KwoqOpP69upPzk0hFUh6b+Rgvq16mdU8r67cnM36Yhfir6qj8bCOqnhDidw/kynEx/Hv98diyqXfm9ZWevUBs+tv7dEXtJyuumM6yCeTk3f2j1c2SEpK4d/69lFeW8+n6T1HVqyhpcvKlIZoR/fMYGGJlgnQ7QuJWyrrS2F01jLHHzGyqfIXEyDFkBocyRNSDZ7iBHRUe1vz1MDHpekbP6VsJupjo6upi166dpBlq8Ic0YN5zE4MnZp/WYV+FQsFN02+i87JO1qxfg6RMQoPFzc7InVwe00qm8lVenpxEvWcef94+G0lbHfNaPsSgzWagbzyeF/ahHZuAbkIimSOiMUSpWfvqYT559iBX/W8OcZl9WS4uFoqW/YtmexTjNEECQoCvmlfQ5mnAHBXEn6EhIiIOU2gmURjoaW3BXFfDkW2b8LndAAgiEfqoGCLjncRLZBhagkiMmQSlBtqXVyP4N6G/bgza0f0Ri0XkjosjY2gke1ZVcXhzAzVHzEz4VTYxafoLfCcuLTQajU+n0/kBIiMjvQUFBZqSkhL5M888E7d8+fJKqVQalMlkAUEQgkuXLo2Kiory3HjjjZ0ajcYvEolIT093nzgwB2CxWMQbN27UDxs2zLFhwwZdXl6e1WKxiK+++up+69evP6pWqwN79uzRzpo1q0OpVAa+2zYlJcXtdDrF5eXl8vT0dHdBQYF21qxZ5h/y/4svvtC/+OKLVWFhYf77778/fuzYsZYpU6b0zJ8/v/1Em2effTaquLhYvWLFilKVSvW9TCL9+/d3/O1vf4uxWq0irVYb6OjoENfU1Cizs7NdpaWlyh9bvBEEIRgMnlpyEofDIdx0000ZN998c+sNN9zwdRjIvffemzRx4sSuOXPmdG3cuFF7QpCfKpeEQDYVrCKysBnFf/7gK68w8dygBqTb38Qd2sbiuoW02g10CRXnxP7elr2ofWpkkh5EEi/+TgPhSWmoQ85/MQdBEFhw1QJWGVexd/1etu7MY+QwB4lXN1P46b+R2zVE7AhyxbhYPv+qgS0rSrn8psy+VcTzjLmpjQNdh8kfvBeHOQGJ4zZyx8aeUt/01HTu/c29VFVVsX7TepQNSlo3+XlN3YU+dTRXJeroJztAhuF9unL07KkchGzvQep6jpAfPpGoEgVXaG10X5nGrh0tfLhkH9mjYhg+PQWlpm8L/UKzefNmCHqITSuC7misDcPJvSfzjMYKDQ3l5l/eTFVVFevWrUNefzm1dh97w9Yz3lhHtPQR/jIpjzLbjTy36Q4ub95MV91rZIZfQfIWMfa9dRhvzCMyzcDs+wezelkhn71UyPibMzENj+7dD97HaWPZf4h9B0SMNAbx4WVL4wccimtCdpkJiVpFXU8DX3Vvwdf9BVqpnkGJlzNq+LVMDs9F5ujB3VpPZ30N7XW1NJSXUdJ5fHFVqTpAv7AkYnxxKJQ59Kzuofvj99FelkzItCHIVVIuu8FE2uBIvnq7iE+XHmTotGQGXpnUF7p1iixatKj2rrvuShWLxUGpVBpYsmRJbXJysicjI8Mxffr0TEEQGDFiRM+4ceNsmZmZroULFyavXLkyPBAI8MQTT1R/d7x58+a133333UkzZswwSaXS4F/+8pcqvV7v/81vftNwww03mKRSaWDIkCHWKVOm9Njtdut328rl8uCiRYtqFi5cmBIMBsnNzbVdffXVPT/kf1JSkuumm24yKRSKwKBBg6xTpkz5VtuWlhbJW2+9FZOamuq45ZZbMgAmTZrUefvtt38toDMzM91z5sxpmzNnTqZKpfL7fD7h97//fZ1Wq/3JWOXU1FR3VVWVctmyZRELFiz40YN/b7zxRnhzc7P8448/Dv/444/DAZ555pnqBx54oOH+++9P+uCDDyIUCoX/mWeeqf0pu99EOFWFfj6ZOXNm8JNPPvn6/x+99iX1R+qw+b6kPEZEpGsIid39EAIi/Eo3/YQGGvJXERddyvgrSno9H/L9W++nqqyKy5xasvttQfTVLWhHzb3gKdUOVB7gX+//C7XYzZAhmwg6PdSuSmCU8iYM6gTMmWHs2NXCkKuTGDot5bz6ZjKZDpSWlg7u7XG/+2xcjASDQf66+DnC09djMNRT+9UfmXPvtWdcyay1tZWtu7ZSdKSIoD9Ij7SHDl07w/tp6Kdqx+c4hMsno7Q2k4i9DmT+XAaGTkAuVqHIEFOuDOfQ9ibkKgmj56STMTTygk6YztWzARf/82E2m1n28jKSwkuIz9xH+5b/JX3wDAZNO/utL7/fz969e9m8eTNenxch2U+r8mMm6FzoxEGkijQOmifw5s4Y7qj7CLUkmiFhV6KRhaLIUhM6JxevILDu1SM0lnYx+Ookhl6dfN7Tf/03vzu+id9qZcO8vxAdP5JQicAXbSuQz8xFGTGIopqteFxlKMQOBMFPQGzHI+7GJe7GEghi9qho7Eqnw5KDOpBFpCqCULWMOJmHZF8rmo4KbBVHcVp6UEk19FelEKMYhFQVQdBnRTXAgH76YMRqKR6njy3vlVK2t5X4LANX3NrvghUaOdmzUVhYWJOXl/eDK6F99PFTFBYWhuXl5SV99/olsYI8ZPQAbNUKZN1JDGsCuVpC5vhoIhK17PmsEkuHBKctFMQBnM46VKrknx70NDjYdpAh4iGoNcUQFOjpNpCTa+xVG2fCoNRBRM2P4uW/v0zhgbH0H/AFCdfWsXPVe4wRzSWsDAbkGdm3pgaFRkr/y+MvtMu9j6UJVi/EJw5ippEOkRmb1IsWNTHRs9EPe/S8u7R3z27c6iqM4TW0H5lK/thhZ1XmNzIykjnT5+C60sXhw4fZVbALXbOOtq0ClVI1+hgjefFd5KQcQZzqpbnZzt4DB4m0TyG9bDDxQh0p443sqPDz5ZtFVOxvZewvM9EY+spZn0+CwSD/WP0PAoKHxIQKhM54rB0DyJ3YO+8rsVjMiBEjyM3NZf369Rw9epTkkFvZF9dMO2u4TFdNruY1lk5WUNYzgo179bgrXicxdBymoiE4/7gJw4xspi7oz5YVpexfU0NXs53xt2RdMjGoPyfKF7+EJGo44VIpuztXo5sVjZePMdj/wqhw8AWVCCI9YpEYAS8EnQQDnv/07oGo/Vj9+6lyi6lzh1Fny2ajuT8d5ngI9kdkzGV4opU8dxX7G47g6zlMoiqRbPkAhCNaHIXbUKaC/vqRXHFrNrEZBra+X8aHi/cy6df9iEnvy5TUx8+bS+Ktl9jPyE1PjKCtxopYIsIYp/66XKpULmH3Ky2Ibcdjr63dh3tVIFs8FlrsLej9erSaLqSOSJyoCYu7OA6yxBpjeeSuR1j6zlKOFEwkJ/9zEqZXs+Pf73KZ6H9IaAjiztSz7YNyRCKBnLFxF9rlXqW27BBHZTXI9WYEURCvV4bDEYFG1UWL9W3yNpsxjnvxvPljd9r5ct168gYW4LNr8HVMZ8BvEntlbIVCwdChQxk6dChWq5V9hfvYfXg3zjoVB2tjkEhSiYqvIDqqDMVUO9aud9l18AuSrTcQs1/BELqxDY9h24Eu3lu0m+HTU+l3Wex/5Zap3VZB6dEnCIi8hIYNIzn5TgTh3MXqtznaeOTLR4iqiSI5rJKAqoueAzPIn9z7B6A0Gg2zZ89mwIABrF+/HtkxDf2M/0uJ0MZHvs8YqnIzWLsF0xUBKofmsn/3ARoajjEw7EqEldWIvzjKmFtHERqtYdfKCrpbHUy+LQdDlPqnjffRK1i3bqW0IZIBsVIKhS0IU3ZgVDVjtYfS0DwetXwAen06aoUGtVqNRqNBq9Wi1aoAC05nLVZbKQ3m7Sh6DpKnagVDK13RmylzS+kW0rD5xtHWlscbdXp8Ebmku+oY5i6htutTQmyh5KsGElmZj3PJbuTGLtJvHEf4/YPY8PpRVj5fwMBJiQydmnxOCmX10cfFwCUhkAEkUjEx6d8/JJCUY2S7XofKflwgO80HIObaXrNb1X08I4hgF9BEdiO3ZmDol3FRxfQq5Uoe/vXDvLPmHY4cgpz+XxA3vZwdq//OaG4jvS2AkB7ClvfK8Lj8DJiUcFH5fzbUNbhx+DRY6uPBnI6/zUCrqwG3QUzOoC0UqlYzsnISitSp59wXf8DPkhVPEmFsQ6ltp2nvzYyelXNOvkC0Wi3jR49n/OjxOD1OPjv0GbuKd1HbaiC87kpijS3Exx8lbEIFrbbnqSpOJ6ttDsYSB1eqe6jWhrP1/TKObWtk5Mw04rN/FiVnv0/LEQj4IGYAAEFXD8e23UGLaC9+vwSXS0OPbQ8d9iaG5D59Tlwo6ihiwVcLSGhMQBAgKa4OkSUas3kYV09IOCc2AVJTU7njjjs4evQoW7duRXpUxlj9rQRiA7xm/5wURR1jtcdInRSg3prAru1vENE+mHzfOFpfPEBSVhDj/+bwxbulfLhkP2OuSydrZPTP8zm5iHD3dLHnT38nNmcWW0LXE56/Co0QoLxuMnrFaAS/j+bmHoqKdhEIfD+UU6FQYDAYMBgMhIXdQGL0QsIjBGyOfVS3rGGwtRAxRfiDRdTIxYxJSUMqG0VbzygO1OTTXFtLZk8R7dYt6G176KcdTGIgH89LR5EoWrh2kol91SEc3FBL7VEzl9+cRWSS7gLcqT76OLdcMgL5hxBEAlmXp9C4uQGvV4a1vbhXx6/oroAguG0WpCorNISRNiyjV230BoIgMHfqXHbHm9j0uUBuzpfEXFvK7nWvMMR1O6ntIMvQsmtlJbZuN6Nnp/0sCgOEpiZz9KXriRbchCtVRMsTkaiGsrN9PUVHLmPw8M8oOfQY+edYIAeDQZ7Y9gSyWglpA4vx2ULQKa4+L5lOlDIl1w29juuGXkeHs4ONdRvZUraFDXWxDJDFkh/ZTPiQQzS5SyipTyax8SrSrKHEh9gps4v57KVCotNCGDIlmbgsw89KAL317O9x2h1khoAiMkB3Yhcyg5P2lkRad0UhdwloxnYCH1FcN4ishOt61b7D6+CezfcgD8hJtaeSFlJFQNeGc9915E9KQa46t2kYRSIR/fv3Jycnh+LiYnbv3k39sXr6MxKNcRI71U0I6m0MNtQTf1WQbnsr2/fsJr7rGtKKByIUH+DawTJ2NOnZ9G4J1YVmxt5g6gvPOUcUthdy5L67UWbMozTmc9JzN2DzaPCH/oX5vxrzrbaBQACXy4Xdbsdms2G1WrFYLHR3d9PV1UVLSwvFxcWcOGcUERFBSsqvSEiIxRDaSa15LdHmTagCpeArJV31d3Ky5Pj7x4CkH132GZTss1NVdoAEyy5SNXlkaPPxrenBJHSQmiOwvVbCR0/tJ3NkNMOmpfQ9F338rLjkBTJAfHo45i9EeDwqumynmqf61KjsriSUUBTyLgQBPF0G4kwXbwqk4XnDiQ+P5x8fyMlK+5zoq8so3PZnMnvmE98agyZdyrZNDXS32Jk4r98ln9UgPCYed0Il9U06Gl1iitwwQBVkdMgU7G0baG1NJRheiaViNbq0cyeSXzj4AlV7ihloDEGua6V5/y+56sas8y42jUojc0xzmGOaQ4+7h411G/m8egOBxqOMUHuISy3BnlZMQbeR0KYRZJrHkqaRU9McZO2LhwiJ1dB/fBwZQyKR/AxKV8cMakMc1U0AcABBt4qqwiGkHsslR5OOVd5F8bZDuKfXc7TkpV4XyMsOLaPB1sDDEQ9T4ishIrIOkVtHQ+NYJtx5/s4EiEQi+vXrR79+/ejo6KC4uJjS0lLs9XaCwas5IvITGldBdNQRYsfXYXe+wt6ieBLMM4ku7M/AYBNpJik7iztZsWg3Aycnkjc+Hqn8En5GOqtg058gZiBE5YA6HERSEIlBEwkyFcFg8Jz/DbfaW/my7kvWVq0luO8Q13inU5ewj345n9PhNBAIe4UbRwz8Xj+RSIRKpUKlUhEefvICM16vl5aWFmpra6msrGT//v3s3r0bgIiIRGJiHkIUIuAUFdPjPYzXX4UqUIfBX02YZDUpw8ExKhyPJ4mG8nKqCnYREcgiQzuIsIZ4LhP5cRqslB4Q+GBfC5nj4sm/Iv6CZHjqo4/e5rwIZJPJJAL+CuQBbuDXpaWlvZaTLSxOg8grxu1W4RJ+MGvJGVHZXUmqJBW1pgsAl8WAQnNxF9+IjYnljnkP88/3IwkLXUn42Aaqy57GUfprEtrzmBxlYWO5wHt/3Mv4mzNJyj2/+Zx7kwijkf/7wyz83gCWDiedTXbqj3XQXtjG5coJfFTVQ2RUBRsOPsaccySQN9Rs4N3D7zLTNo30lG0EnGqio+dgjL2wceoh8hBmpM9gRvoMrB4rWxq2sLF8LXpzKSZtN67s1VSxGsEajtE8mPjWHDrNsRSusLP9X+Wk5IeTPjiS+CzDJbvbUF81Ha+lGKnUjdOuJ6Yhm8miwQTCBCwGGZGdRiJJY0dzPdGJxfTY6whR907YQ4ezgxXFK5iVNovmvc3EabohsoZA8RUMmGw656vHP4TRaGT06NGMHj0al8tFQ0MDdXV11NWlUrQ/k5CQBmISiggdVENP8Hnam0MJbRlHdMcEJisdNIgFCv9dxZFNDQyekkT2mJhLMtd69ebtrHmvET3lGMVvosKL4AniFvzYlF6KQ8SsGiBhrOlKFg5aSJQ66qcHPQ3cfjevFr7Km0ffxB/0k6NM5YajORQNdDMgZyNOt5Ia0bM8OPL74vhUkUqlxMfHEx8fz+jRo/H5fDQ2NlJdXU19fT0VFRXYbLb/tM74zz+QSl1ote1oQ9rR6VoJ0RzEmOWHLHB5a6hs2kJFkw6dM494zygGKCUEgn7adtSxeWsdnlg5YaMSicvQE6qWo1NKflY7U338d3C+VpCnA4rS0tIRJpNpOLAU6LVAYbFUREAqw+NWEdT3braXyu5KRgojUakKEPwyJKpTy2V7odHpdPz61jtZty6Fmup3SUgvpDv2JSz7JtDPeT2TFT0ck2hZ8/JhskZFM3p2OjLlpbuhIJaKMESpMUSpSR1BQJIMAAAgAElEQVQYQWteGO5/FhPdk4DFEoFS3InNZUGj6N1YuRZ7C3/c9UcmWIei0HajCK3DfHgKU2819aqds0Ur0zI1ZSpTU6bi8XvYXL6Z/Xs3YPDUEWpoxp+4nq7kdQheBcldWcjbM7BUmti9P47VEjHaTD2m4VFkZxrRKi7uCeI3EUsH46uLQyOWMcAXDjoNnZFqbCo5NruX0GQJYfu6ENcPQJRUzPaiZ7l6yEu9Ynt9zXr8QT9jFWPZ0rMFU0wlBMQ01kxizP9cHBllFAoFaWlppKWlAeB0OikpKeHIkSPsLyskPKKKiMhK7DGfUB5YiaQjAUPXYC5T52DpDqPso3J2rq2m35UJjLgsHrHk0hHKbXIlIyam4wi2YhO106PqQmZwIVV60QHD8DGgU8z20k3c3HaQj6/5BJ2sd94fwWCQ+7fez1d1X3Ft6rXMy51H+/NvsyHXy8CcLxDjZ03bIl7+1ehesXcCiURCYmIiiYn//+Cw1+vFYrFgsViw2+14PB58Ph8ejweXy4XL46LR3ILVXoo82ECItg1dZDuKxFqglsbAv3H36BBZotE60ohxJiFyhmNZ3cRBLxwQedkulaALUZMcbWRoWhRj0sNJNKp+VqJ59+7d6ueeey7uRHGPgoIC5WOPPZYoFouD8fHx7hdeeKFGLBbz2muvhX/22WdhgiBwyy23tMyZM6fLZrOJfvvb3ybbbDaJRCIJLl26tDouLs77zfEdDodw5513pnR1dUlUKpX/+eefr4mIiPDt3btX9dRTT8UHg0FCQ0O9y5Ytq5bJZMHf//73CRUVFSqpVBpcsmRJTXp6uru8vFz+hz/8IdHn8wlSqTSwbNmyqrCwMD9AeXm5/Le//W3q559/XgRQVVUlu++++5KDwSBRUVGeZ599tlatVp80f/FDDz0Un5yc7Lrtttvav3l98+bN2hUrVoS//vrrX5d3fvzxx2NTUlJc3ywr/U2WLl0aNXr0aEv//v2d77//vvHWW289qaj7rs1169bpXnnllZhgMEhmZqbj6aefrrNYLOK77ror2W63i30+n3D//ffXjxw50n6qv9PzpYhGA+sBSktLd5tMpl7PcamICSfg1iJWeAgEvIhEZ/8lbvFYaHO2oUOHWmVBZo8kbGhOL3h7fpBKpVxzzXSKijLYuOkNEhM3Ih+3gYLaAlKqfk1/r4FYdSv7dkFDcRfj52YRZ/p5pO6J7B9O3YFWhpcMYHP7XlLS2vh035PcNOaZXrWzrGAZXp+XMHMkaaaD4JOSkDz3ot5ilIllTMqcxKTMSdhsNtZtW8fewkJC5I3oDU0YDGUoIgqgHxh8UuQ2I1ZLGIe2RrJtdRRNnmhEEZGkpiYxICMBU5QOvUp6UX7ZTfnFKDb/s5T2OitmgC4XNLiQyMUo1VIqO10kSEsxSYZQ3/MFAff2XrO9tmotGYYMWstbUcuCKBKrETfnkj1+0EU7GVUqlQwYMIABAwZgt9spKiri6NEjdHYewGisJzS0EX/4x5DxMUGvHENPEmFdSVh2ZvDa6gSKYiPIHxrDhKxIksMu7qwX3XoZguRLBCGAyCcn4FHQ0ROOqykUwaNCLOlGH1XH+NROUsxSluxYzJLLe+cg5ztF7/BV3VfcM+gefpXzK4o++4z1AT/9TPtRqDt5p/A2npo3Bel5WJmXSqUYjUaMxp9OXRoIBDCbzRytPEpJzV48tjJ0UjM6TSfq6FrcslLc32iv8UkZ7laT59Tgcatxe5RYC1Ss2KPF4g9Dro0nIjKNlPgEMuIiiA9VI7uEJlkneOGFFyLXrVtnVCgUXwvIF198MWb+/PnNU6ZM6bnjjjuS165dGzJ8+HD7Rx99FLFmzZoil8slXHXVVTmzZs3qeuutt8KysrIcDzzwQPM777xjfPnll6OWLFlS/00bb7zxRkRaWprzwQcfbPrggw8ML7zwQvTixYvrH3300aSXXnqpMj093f3mm2+G1dbWyoqLi5Uej0e0atWqkl27dqmffPLJuLfffrvy4YcfTvzd737XOGLECPsnn3yiLysrU4SFhdn/+c9/hq5YsSKyp6fna+G0ePHiuDlz5rT/4he/6HzzzTfDXn755cjf//73zd/0qa2tTfK73/0uuaGhQZ6cnOzqjXt5okx0dXW1bOXKlWHfFcgns2mxWETPP/98/IoVK0rDw8N9L7zwQqTZbJYsX748YujQoZYFCxa0lZSUyBcuXJiydu3aUz6odr7e0jrgm7EPfpPJJCktLfX1loHI3CQayvXH44Q97SgUp1Vy+6ScyGAhsYlQGS2IezJInHBxrQyeCtnZ2SQlPcFXX42mtvYfxMUdoTl+CbV1JjLqbmGi4KfSbmHNCwVkjY1l+IzUn0Xe0+ipKbSWduFpjoe0gzRXriU4+uleE3KNtkZWV63mRqbilnnRRZRjr8nnsrkDemX884FGo2HOVXMITJ5Fe3s71bXVlNWV0FlbhNJfiV5tQxPSQ3RcMYLoKAB5AQGXS4PLrqVil4oDbi2N7hjs4nik6mRC9QnE6MOIC1UzJDmUEOWFW3GOSNQx54HBmBtstNVakMrF6CNVhMVrEQQo29vK539rJlMhpaQrisiEo3h9NqSSswuPqbPUcdh8mLv730356nLSVaUEpU66qsYyYs6lkWpRrVYzZMgQhgwZgs12HRUVFVRVVVFcVIwgKiUkpA2drgV1WCny9A2kB0TE2Aw4asJYX6SnxRuOXJlFfGwO+elJZCZEIZVePO+VSEkGn+68HgA5agwSI3HSaLIEPSEOP3J3gKpjxTSkfUBSTg207GVv/V6Gxg89K7s97h6WFSxjXNw45vabS1VpKR/v3UtcdBX6qAoaSkZww6S5RIecee70c4VIJCIiIoLxEeMZP2I8cHwFuryxnGONx6gzF+HpKUPT3YTO50ItDaIIkWDQORGFmBGkJ9dQgU6B8nYpRT4ZXp8cr1+BV3oNN0279/Qc3Pu6kUPv9W7MYP4NZobeftLVzhMkJia6ly1bVnnvvfd+nWPWZDI5uru7xYFAAIfDIZZKpcHw8HDf2rVrj0mlUmpqamRSqTQgEolYsGBBm893XA41NTXJtFqt/7s2CgoKNLfddlsLwOTJky3Lly+PKSsrk+t0Ot/rr78eWVVVpRw9enR3Zmam+9133w0fPXp0D8CIESPsCxcuVDscDqGrq0v65Zdf6pcuXRqXlZVlf+yxxxoAQkJC/B988EHphAkTck/Yq62tVU6aNKkWYNiwYbYnn3zye9teNptNdOeddzZt2rQp5HRv6+bNm7V/+9vfoiQSSaC5uVk+ceLEzvvuu6/lzjvvTLr66qs7N2zYYKirq1M+9dRT0Q888MDXwvxkNnft2qVJSUlxLFq0KK6pqUk+Y8YMc0REhO+OO+5olcvlAQCfzyfIZLLTqox3vt5WFkD7jf+LelMcA0RmhyM+cjwNnMtS0SsCud56fALn7rEhU9oINuhRai/NQ20qlYpp02bQ2TmWPXu+oLPrXSISSqlNfBh7WxKausmMae9H/a4m/nmgmfG35pLY78IXQzkbpOEqgkYFceZs7PbNpModVPVUkapP7ZXx/37k74gEEdpKMeExVSD2ER4+DekleLhNJBIRGRlJZGQkw4cO/9bPmptrOLB1FbZju9DJBdShYuQhDlQqM35jE9FyB5kUfKuP3ynGXqXgjcLhLLzh9fP3QU6CIBIIT9ASnqD93s9Mw6KoPJhL09GdyLvTESUdobRpAzkJs87K5rbGbQCkelJp8DdgjGtF4gjDMOCqS3LyqdFoyM/PJz8/Hzhetc9ut9PT1UnZvq9oqVyHQu9AabSijqwmUuL5TzTraoJBgbpSFRVHlLi8CtxeDV5/CEEhiRumP4xWc2FWmvOHZZGUci9F25poKOmmq9lOrTdALQ4AciMUJJGJvPxGGj2vkzSwjn07ljH0F++cld1Pyj/B5XexYMACGhoaWPHee4QozCRm7EPSlsbR8HuYm9O78c7nEqlUSnZSNtlJ2d+6bvfaabA2UN1aTMvubXg3tKFwmQgJ06PXuNEq/fgVTmxyM26pFa/Yik9sRyRxopC5sLXtu0Cf6PSZOXNmd3V19bfEQXJysvuZZ55JWL58ebRarfaPHTvWCsfv16uvvhq+fPny2NmzZ7eeaC+RSLjuuusyqqurla+//nrZd23Y7XZxSEiIH0Cr1frtdrvYbDZLiouLNY8//nhdWlqae+7cuWkbN2502O12sU6n+1pki0SiYFtbm7Surk4xevRoy8MPP9z4u9/9LvGf//ynce7cuR1Tp0793uGttLQ0x5o1a/Q333xzx/r16/Uul+t7S/spKSmelJQUz+kK5BOLVK2trbJ169Ydc7vdojFjxvS/7777Wk60ueuuu5orKyuV3xTHP2Szs7NTcujQId2nn356TKPRBK677rrMoUOH2kwmkxugublZct9996Xcf//9dafj5/l6U+8ApgEf/icG+UhvG9BHqRE7j98vR90B9BGXnfWYrY5WxAExgrgbQQgSsJ32JOmiIzQ0lKuuuh6vdyYlJbupq3sLhXEnRL5KqSUMR91QElpGUPY3L9v1MPWuMYSEKi6022eMfng0pjXd7OmMJTammO0160nN/+1Zj+v2u1ldtZpr9JNpAUZFV+DviGXYjBvO3umLjOjoJKZefzdwNwAOSw+VOzbTsvMQQocMhdSAJETApbZiV7ThVnQQkHWBwkJUY/eFdf4UGDU7nbUHPieipx/B4CdU1a8/a4F8uP0wEaoImiqaCJH0IAqrx18yidHzerfK54VCLBaj0+nQ6XTEJ84D5hEI+GkpLqJ85SfY2h2EhCpQ6YM41G0ICjMiWQdyuQWxtg2JzEMwuIejjRMZYbr8gn0OfbiakTOPl/kOBoN4XX6sXS6ayrrZt6YadxCy1Om0l07GnrySFP0Bisr2k51xZlGC/oCf90veZ3DkYAw+A39/dzkKVzfZA/cgcev4pOoGnlx46YTx/RhqqRpTqAlTqAmypsOtx693NpjZ98kBisoCCH45BpGPaG87MUEPCoUOmdKIIBLT6Txw+kaH3t7xU6u954ulS5fGv/322yU5OTmu1157LfzRRx+Nf/bZZ+sA5s+f337rrbeab7755vRNmzbZLr/8civAhx9+WFZcXKyYP39+2vLly8sffPDBJICpU6d2qNVqv9VqFQFYrVaxWq32G41Gf3R0tCs7O9sFMHLkyJ7CwkKVWq3222y2r1dqgsGgEBER4VUqlYETti6//PKeHTt26ICT3q9HH3204ZFHHklYtWpV2KhRo7pDQkJ8H3/8seG9996LAHjggQfqBw8e7Pixe6BQKAJer/dbW7YOh0N8IhQlJSXFKZVKkUqlgdNd3f0mBoPBZzKZ7NHR0T6A/Px86+HDh1Umk8l9+PBh5T333JOycOHC+nHjxtl+aqxvcr4E8kpgoslk2gkIfP2n0nuIRAJix3EB2910lLNfPz5+ACtSFIlKdXxyJfgv3vRup4tUKiU3dwy5uWPwem0UFy3H53kbXc5a3OmbMLemImsexJYnm7H4rWTfmM+AISMvyjjTH0OVF456TRWuzgiE+CKqy1dBLwjkPc17cPgcpJUqadO2IFJ3IOmchEhy6a0eny4qXQi5V11L7lX//5xtIBCgqaCG5l1VeKq7kbkFNCIVPdJTPg9xwQgJV+IJDcXgNNBg1+NzHD3rMQ+3HybPkEflzkoyjTUgBOkJXJqrx6eKSCQmpl8uMf2O79J6XD4OfrKflp3lhCAmVqbGINUjCCJ8IicdvlpipgIXSdSaIAjIlBKMSg3GGA2JOUY+ee4AESIf/QxjKFi3BdUN9RQcWkJ2xsdnZGN3826a7E3cnXs3K1asQHC7yEjfj6CyEtxzE7/4xbRL6hDsmRAaF8bkuyYT8AdoLO2mfH8rJYVKXHYveEElCRApd2GaMv5Cu3pWaDQa34lV3MjISG9BQYGmpKRE/swzz8QtX768UiqVBmUyWUAQhODSpUujoqKiPDfeeGOnRqPxi0Qi0tPT3ScO/AFYLBbxxo0b9cOGDXNs2LBBl5eXZ01JSXE7nU5xeXm5PD093V1QUKCdNWuWOTEx0b1p0yb9nDlzunbt2qVOTk52qlSqYGxsrGvr1q2ayy67zLZ3715tWlqa84f837hxo+6+++5ryMzMdL/44ouRI0aMsMyaNatr1qxZXad6D7KyspwVFRWqpqYmaUxMjNfpdAqFhYWa2267rbWxsfFHt+NFIhHBYPCUBMeAAQMcixcvVra3t0v0er3v6NGj6l/+8pftx44dU/zf//1fyvPPP1+Vn5//g5/1hzgvb+vS0tIAMP9c2xE8Cvx+MWZLTa+M12xvJkYcg1JpAcAQntYr415sSKUa+uf9H7n976TdvJmig88SE3cMIeEoTqcGSXcMFXsOU7byYxwN5Ygj1UT1zyc5fwQJGYNQKC6OstsnQ6yTIxiVaDrTgc1ou+uxe+2opWe3rftV3VdoJBraOl0kZtWDT8awSb/pHacvQUQiEXGDUogblPL1Nb8vgEh8aUyoMoYPwb1pN7aeCIyRlQSDfgThzCY7na5OGmwNTNVOpT3QTmhsM9LOFEbMGte7Tl/kyBQShv9yOMFfDKOhtIvinc3sO9SGNuDFKPYSIg1Dl5p1od38QXRhSsZcn8GOvx1lvE6ORnwlzeYPCdcXU1NTQVLS6X8fbGvchlKkpGVnC1aLhXzXRlTJzYSWzmRL+mT+L/XSDms7HURiEfHZocRnhxIIBGmvs9Jc0U17vZXOJjt22aW9ILVo0aLau+66K1UsFgelUmlgyZIltcnJyZ6MjAzH9OnTMwVBYMSIET3jxo2zZWZmuhYuXJi8cuXK8EAgwBNPPFH93fHmzZvXfvfddyfNmDHDJJVKg3/5y1+q5HJ5cNGiRTULFy5MCQaD5Obm2q6++uoev9/Pjh07dNOnT88MBoM89dRTNQCLFy+uWbRoUcJzzz0nREdHux977LEfTPuVlpbmuueee1KkUmkwOTnZ+fTTT59WeAJASEhIYOHChfW//vWv0+RyecDn84muv/76tvT0dPdPCeSIiAiv1+sVHnvssdhFixb9aIGLyMhI34IFCxrmzp2bDnDFFVd05ebmuubOnZvq9XpFTz75ZAKAWq32vf3225Wn6r9wosrOxcTMmTODn3zyyWn3W/XAm4hGv4i0U8yVt+w/az9m/XsWqZ1J5MmOEGNoZ0jiR2iyeyd+9WLH4zHTXPEuleWf4FOYEUs9AASD4HGrcDvVeO1ygh1S4gbcyahx387aZzKZDpSWlvZ6tpIzeTa6Pqvk2M5DdI5cjMfiJnLsq4yJG/PTHX8AX8DH+A/HMz44CFG5mpHDP0HSEse4Wz4/4zH/mzhXzwac+bvD3GBj35PL6c4pJSL7cwYM/jehun5n5MOW+i0s2LiAhaqFmCsOM3DYvxGKrmH8ghfOaLyfE16Pn+aKbhrLurGanYy9MRP5dzJ6XEzvjmAwyGcvHiK6oZMwIch2HiHmyjZ6euYwc8ZTp+3DtJXTMHWa0NRrGCPpIDBkPRpLFrbCqYx+dB7KS/D8wvnkZM9GYWFhTV5eXu/md+3jv4rCwsKwvLy8pO9ev/TyqfwIMqUaj1tFQO796canQIu9BYNNjkppQWaPQp2R1CvjXgrIZGEkZv+O8dduY+IVhxkS+TjqmnF4KkZAVyoK5OjCetBnN+J3925xlt5GkaonOmjA0hOOzujlmPnsQuCPmo/S5e4iuVqNMbQBQeImTn/xlR/v49QxxqqxCaCxHy8SUtWy84zHKmwvRCyI6WnsJjqkFgC3clxvuHnJI5WJScg2MmJ6KpN+nfM9cXyxIQgC/S+Pp8whQiqSY2wbicUth+AWenpO771Xb63H1mpDU68hv18WvsSvEAXlhB+ZS9gNV/aJ4z76uMj4WQlkY0QEHq8CQXHSXNanhcPrwOKxoLCJUSqtiGxGhP+C+NKTIYil6PrdzPD/eYMpv36Ly3PvIbXuNqI3PkLSl3/GJL+4xaE8SYcMCa6uKMQyP40t285qvENthwBot/qJDWtEcGlIHXZHb7jaxwVCEASECB0G6/FDdC2NZ36C/qj5KNmqbLq7ewiLbEHWk8iQGRN7y9U+zjMJ/ULxqCU4/U7CdLkcNksJ0bdRWLjptMbZUb+D/I581Do1Cf4vkMS6iS65mR6ZhQH9eqd6Yx999NF7XNzT99MkIimK8nYVYv3ZryC32I9nGwm4vUhlLoKOizfO9rwilqDsP4aM/v8JUQgEQHRxz7NEKimicCWKziRgO/LmorMa71D7Ifr5k3EoRWiMdSgakhAisn+6Yx8XNca0JBSHu+hxqXG7K854nKqeKob7hyOVOpEaWgmWTiYsVNWLnvZxPhGJRZiGRdOwtYoUZRKKwyEQa6Ou/jOCwWtP+eBywYECQrwhXHXtSFoaX0PcnIKqeQhxv+t7d/TRx8XIxa1sTpPQtEhEXhVimRe//+xE8gmBHJQdP/go+L6fQ7UPLnpxfAJ1RijRrkx8PinRwQDtjvaf7nQSgsEghe2FDG5PIDS0CUHsI1YVAZdYdo8+vk9SrgmvqwunIwSpqPOMxnB4HbQ6WtE6tITqmgDwBzJ7080+LgBpgyNo8kkRC2IyOwbR4VKiVBbT0NBwSv1dLheSGgn+UD+err8TFEF8+e24VS3ooi6dnMd99PHfxKWhbk4RVbQakfe4kPV0/+ihx5+k2d6MJCBBqjqe5k8uv7RP1P63I4vTEoMRu82AUROkqOPMVpGb7E2YnWYkFg1RxnpEbg0J/Wb0srd9XAii0yPo9vbgt4ehUNkJBk8/VKvWcjzmONjuIzykFZFXTczQSb3tah/nmbB4LU65GJfPQbgqkwJngJCQNgoLT600+cZtG5H6paTmy+n0bCZQ1g+FK4qka1J+unMfffRxQfhZCWSxWorYczx9l6vle4VoTosWRwtqrwqF4nhe6ai49LP2r48LhzROgyaowG4NRa13n/FBvcK2QiQBCRaJFL2xEXlrNELKuN50tY8LhEItxY4fsT0KsTiAy3X6k+zqnmrkPjkupwedsRW5OYOMwRdJot8+zhiRSCAmXU+H30O4Ip6GJhmCEKSlZT1e74/vVjocDg7sPUCjqpFkxVECHhEJ9XNx0Ik8f9h5+gR99NHH6fKzEsiCIID7eKyftfnsMhW02FtIdUcdF8h+KWFpuT/dqY+LFolRCRIBf084IkmAhs4zSwN42HyYjJ5oNHozgsSD0SUDVd/uws8GnRalLRaAts7C0+5eY6khzB2GUmlBrLQR7Ey65Irr9HFyYk0G2n0KlBItSZXxWL0adCHVlJaW/mi/3bt34/f66Yg8gs+2D3tJIlrCUSU7+0Kzfkbs3r1bPXv27K9nwwUFBcprrrkmc8aMGaa77rorye8/Xvn5tddeC586dWrWtGnTsv71r38ZAGw2m2ju3Lmps2bNMl1//fUZDQ0N36sW093dLb7lllvSZs2aZbr22mszd+7cqQb4/PPPdVdddVX2jBkzTM8880w0HC8Ff8899yRce+21mbNnzzaVl5fLAT799FP92LFjc2bPnm2aPXu2afPmzV8frvqu/wcOHFBNmzYta+bMmab7778//oT/J+O5556Luv3227+3HfLOO+8YH3/88dhvXrv99ttTNm/e/IMxqw899FB8bW2trKOjQ/z++++f9MvV5/Mxb968lPXr1+tOXHvqqaeip02bljV9+vTMPXv2qOCHfwenys9KIAPgUQJgbvvxl9ZP0e5sJ86uRa6wIXGFIonvO2V8KSOIBGRxWpSWRABEHWe2w1DeVU62JYFQQxMERCQl/jzKwvZxHHV8JNr/pHqradx92v1rempI9CeiDzl+hkFM3xb6z4U4k4FO//FMRjnODA706DEYWigo+OHnxOFwsHv3/2PvzaOjKrP1/+ecU+fUPKSSqgxkJJBKABWcEAGFbkBpEoQkgnIRBH7Nil6+SIP0hVaDNCj0xbRMKiheAcUBMgh209Iy2NLK4MWIiKQCZCLzUKl5PMPvjyK5QBISFIgU57MWa1W99Q67ToWq5+x3v3sfhTfCi99GBcAFKOgqxoITBET+bsjNMl3kBvP6669H5ubmJvj9/vY7nvXr18fk5OTUFRUVmQOBALF3715tU1OTJD8/31hYWFiyY8cO89q1a+N4nsfWrVsj0tLS3AUFBeYJEya0vPHGGx0C0998883I+++/315QUGD+y1/+Ur5y5cp4juOwfPnyhI0bN54rKioyV1RUyA4fPqzas2ePzu/3k7t37y5ZtGhR9cqVK2MB4NSpU4rnnnuuOj8/35yfn29uK73cmf25ubkJS5YsqSosLDSrVCruk08+6VSs/uMf/9D8+9//1l2va/nqq69eSEhI8J86dUpx8ODBDvOeO3dOmp2dnWo2m9urfZ04cULx3XffqXfv3n1m3bp1ZStWrEgAOv8MrsWWkMpiAQAIBAWy1V73i6axeCzo69VDJnVB4jaCVMivh3UivYg0QYuICyZwHIUorwMBPgCavLayrues59DfNxwRYcVgWuMhHfTgDbJWpDcw9osDX1UJd4CBvfH0NY+vsFegvzcZYboyUH414u+9IfVQRHoBfYwSAbkEfs6HaCoJ+c5vMSqCg9X6DRoaMhAZGdlhzNdffw2/34/z2u/wW4kNLafCcC9zN1xoBR33UC+8i9DmozMfhe85vyfies45MXli85NpT7ZcrU9CQoJv48aN559//vmktjaTyeS2Wq0Uz/Nwu90UTdOCwWBg9+7de5qmaVRUVDA0TfMkSWLevHmNLMsCAGpraxm1Wt3B1fnMM880SKVSHgBYliUYhhGam5slKpWKS05O9gPA4MGDncePH1dZLBbJiBEjbAAwbNgw18KFC5UAUFJSojSbzYoPPvggcsCAAa5ly5ZV0zTdqf3Nzc3M8OHDXQBw7733Ovfv360sCNgAACAASURBVK+bNm3aZaeXz549K/3kk08M8+bNq9m5c6fhWq7r9u3bww8fPqz1er1kbW2tdObMmfUzZsxoyc7ONq1YsaJy06ZNUWVlZYp33303Ys6cOe2FYJxOJ/nqq69WvPXWW+03EceOHVMNHTrUTpIkEhIS/BzHEY2NjZLOPoNrsTHkPMgkF/Tcu/3OXzSPxWuBxBeMQSY9mu4HiPzqYWJViOT1cLt0iJQGE/dfC63eVtjddnByFnJ1MxTNGiDu/htkrUhvEN0/HvB74PWoIQQarmmsIAiosFWAcTNQ61ogbe2L6PtEL2GoQBAEDPFqtAZcMMjjYLN6EeCVMBhqcOTIkQ79bTYbjh07hpQBKeirrgQBAdzZAZBRMkj7/LLfJ5FfF5mZmdYrxVdSUpIvLy8vfsyYMQMtFovk4YcfdgAATdPYtGmTYdq0aWmPPvpou/CWSCSYMmVKSkFBgXH8+PGtV64RFhbGKRQKoa6uTrJ48eK+CxYsqDYYDKzP5yPPnDkjY1kW//73v7Uej4d0uVyURqNpF9kkSQqBQAAPPPCAffny5VX5+flmt9tNvfvuu4au7I+Ojva1hWAcPHhQ5/F4LisE4XA4yNzc3PjVq1dXSiTX7GsVAMDpdFLvv//+ubfeeuvc1q1bL/Oa5+Tk1A8ePNhxqTgGgMGDB3sGDBjgvbTN6XRSl95UKBQKzmazUV19Bj0l5DzIDKMCy0rAStifPYcgCLB4LeAJAjTjA+kTcyCHAky0ChpBAbdLi7AwO8pt5eir7fkW+DnrOUR4wqELCwono5cFVMYbZa5ILxARG46zrBOsVwuZqv6axja6GyHxSEBRfjBKG4gLfUBIrm2HQuTXTUScGs3nZRgoU6CPVY1TlgQMMZzB0SPf46GHHoJe/3+70AcOHIAgCDAO0uHBGhYNF8IRzd4FThAQPebXXVzpVuXJtCdbuvP23izy8vLitm3bVjJo0CDv5s2bDbm5uXFr1qypAoCcnJymWbNmNT/11FP9Dx065Bw9erQDAHbu3Fl65swZWU5OTr8tW7acXbp0aSIApKentzz99NPNP/zwg3zRokV9Fy5ceKEtPGLVqlXlubm58TRNC8nJyZ6wsDDW4/GQTqezXdAKgkDQNI3p06c3h4WFcQAwZswY6759+7oMjVi9enX5n//85/g333yTGDJkiJOmaWHTpk2G/fv36wEgKyuryWKx0PPmzUt2Op2UxWKh8/LyohYtWtT+xSmTyXi/33+ZI9bj8ZByuZwHgJSUFDcAxMXF+QOBwM922KpUKs7lcrWPd7vdlE6n4672GfSEkPMgK9VhYFkpIL0mT/plOANOBPgAKEXwJkXCix7kUIDSywACYB16MLIAKluvbQv9vPU8Eq0GaLWNIFgZYmLibpClIr0FI5PAzftAePSQyjwQhJ4f6qhx1kDr10KtDjo8SJeY3zbUMMSpYeUZAMCQ1iT8uykSBOFBeEQ9du/eDZ4PpgY8efIkfvjhBwwfPhxW516oKMBWrEaUsj/snBeK1Ht6822I3ARUKhXb5sWNjIwMOBwOqqSkRDp79uxknudB07TAMAxPEISQl5cXtWPHDv3FcRxJkujfv7+vLVb46aefbj59+rRswYIFfdesWVM2fvx4e9s6//rXvzQffPDB2Q8++OBsdXW19OGHH7bfc889zq+++koLAEeOHFEmJSV5eJ5Henr6gAsXLtAA8M0336gHDhzo7sr+L774Qrd+/fqynTt3llqtVmrEiBH2nJycpjabnnzyScu+fft+ys/PNy9ZsuTC4MGDHZeKYwC488473d9++63G4XCQANDS0kJVVFTI2zzAVzvATBCEIAg903H333+/88iRI1qO41BZWcnwPA+DwcB29hn0aMKLhJwHOSzSAFtABlJ6bacVL8XiDYbZSFRBgaxUXdeQJpFegiAJEGE0JM6gcGmxXlumk3PWc4jyRCFMWwqpJQlUX3H7PBTxSQRI3AaQpACPpxYKRc9uhGpdtdD5ddBomwCBgEoRe4MtFbnZRMSpYOOCP9qJgTiY3VZw0GLgQBcOHqhEYWEhjEYjvvrqKyQkJOChh0bgH1/9AbVOBmgyQBOvQ5Ok7pYpsCTy81m+fHnl/PnzkymKEmia5letWlWZlJTkT0lJcU+aNCmVIAgMGzbMNmrUKGdqaqp34cKFSUVFRQae57FixYryK+f77//+7z6BQIBcuXJlPAAolUp227Zt541GY+Cxxx5Lk0ql/Pjx41sGDRrkTUtL83799deaSZMmpQqCgNWrV1eQJIlly5ZVPvvss/0YhuGTkpI8Tz/9dHNHy4MkJiZ6p0+fbpLJZPw999zj+N3vfme71muQmprqe/zxxxsff/zxVIVCwbEsS/zxj3+sUqvV3SaZT05O9pWVlck3btxonDdvXuPV+t57773uIUOGOC++X+LFF1+sAjr/DK7F/pATyFEJBpyrlUIu83bfuQssXgskLAH64hy6KPEkeqggT9BBeyZ4DoFtLbumsect59GPMUKmtIKuGgSMvPtGmCjSywgqOeSe4IErq/VsjwVyvaseeq8O2tgLkDpiETtY3GEINbRGBQSahNvvgIHug0jZOZRY78Ud+q8xYsRUHD36PX788UckJydj0qRJaGn5Ago48W1JHIbIg78jyr5iardQJCkpyb9nz56StucjR450jhw5suTKfkuWLKkDcFkWgaioKPbDDz88e7X5t23bdr6z9tmzZzfPnj37MqFLURTy8vI6hBKMGzfOPm7cOPuV7Z3Zn5GRYcvIyOiRKB41apRj1KhRncb3zp07t2nu3LkdStfOmDGjPRRGLpcLhw8fPgUA+fn57SnIDhw40OU274YNGyoufb506dJaALWXtnX1GfSUkBPIuj568JVykCo7BI4DQV2TRx1AMINFlF0ORhfcfdDFion+QwVptBqG75PQytLQelohCEKP89Q2NTbhnrDgY63VBxgH3EBLRXoLaWQ4lHYaPgB1jT8hJuY3PRpX46iB3qeDUt0KpuFeqH8rpgAMNUiSQESsCvbqVoQxkejjbUSheRIGDj2A/v1r8MADC+D1ehEREQGeD+DUj39FfYAEftIiVtkPHl5A5IiBvf02REREekDI7fNIVAz4gByU1AeutcNB0B7R4m2B0SkHw7hB+FRgokVPUKhARymhF9Rwu7WIYNj2cJrusPlskNgl0GgbQHAMohkOoMXUf6GIPiEGMqcOPE+gruGHHo9raG2AnOEgYbyAzQBCLR7gDEUi4tSwQAkVrUOYBaiwxcJL3ovKqnchl1OIiAiG5NXUfgyPpwJfNEih9XAIV8SjlfVC2z+tl9+BiIhITwg5gUwqaBABJShJAP6mn5cL2eK1QO+Sg2E8IH06EJrrlgNbpJehIxWQgYbXqYVG6e9xqrcLjguIdOmhVTdDZusLVUL4DbZUpLeI6pcAKhCAz6uCz93jA89wtDigVAVvuEiX+PcRqoT3UaGVD2YnSXUkIjk6gH0V4xEItKCsfB0EQYDDcRrnz7+GFi4R9koVNHQEGEoKjrGJ1fNERG4RQk4gEzIKhD9YYMXefO5nzdHqbYXeHw4p44HEqwYhHqgIGUgNA47kwTnCQTMBVNvO9Ghclb0KRr8eSlUrJJYYkH1EL1CoYkwwwMe64fdqICF7ljFKEAT47X6olMFdKzkhHuwNVfTRClgvHtRLCsRicJIHn5kN0OizUFX1Dr4/OQvF3z8NSqLGxtJUxDTL0UcerOApi7/2kD8REZHeIeSUH0EQIC8KZGvzVWPeu8TitUDGa8FI3aB8yu4HiNwyEAQBaCVgnNEAgKbWnm2hlzeVI0ztBkHyoCwqIOqOG2mmSC8iVzNwcz7AEwaprGcFHWw+GxReBdTKFtCuSITFqG+wlSK9hT5aBVYAPD47wpkoxJM1oEkSuyv+A/Fxc+B2l0GtSkM5vxKNnAV9LApEMfFw8wLC74jvbfNFRER6SMgJZAAg/MHYUKelQ6aUHmHxWiBQUjCMF2RAjDMNNWR9NNA6gyfK3a0922Woq62DWhM8iKt1uIFIUSCHKgRBwEcEQHkiQNN+sGz3xZdqXbXQ+TRQqVohdcQhLFUMsQhVZCoacpUELp8bYUwk7OUlyLonFjv/txbayIUY/uBXiEl+G2u/DCCWbwHjJ6CTx6GZFWC8Szy4KSJyqxCSAplkg6LWZv95BXUsXgsoRTCPMs2LHuRQQx6rQ6Q/CSxLg3ZfNb1iO44mBzTqZkjcBkRIWwDVNZWdF7nFYCUA4wkesrPZOs2udBm19lroeDmkCicYexxkyWJqyFBG30cFm0BDRYeBr7LimYeTwfECFu48iRqrB3/45Ht4Al5EWjxQ0+FgJHI4ORdkGllvmy5ygzh69KgyOzu7PeVVcXGxfOLEiamTJ082zZ8/P5Hjgppi8+bNhvT09LSMjIy0Xbt2hQGA0+kkZ86cmZyVlWWaOnVqSnV1dZclOD/99FNdTk5OUtvzAwcOqB977LHUrKws05w5c/q2VZRbvXp1dEZGRtqkSZNSjx07pgCAhoYGSds6kyZNSj137py0bZ7GxkbJ6NGjB3k8HgIIFvWYPn16v8mTJ5tmzpyZ3NDQ0CHrWW1tLT1lypSUzMxM08yZM5PtdvtlmrK8vJyZOHFi6qVt77zzjmHVqlUxXb2/7du3h3/22WdaANi0aVOXP7QbN240vvzyy30ubXO5XOSkSZNSz5w5IwMAv99P5OTkJE2aNCk1MzPT1NbeU66bQDaZTFqTyfSZyWT6l8lkOmIymYZdbH/AZDIdM5lMX5tMpmXXa72rQfIKAIDL7/lZ4y1eCyQKHwBAKtVeN7tEfh3QBjnCBBXcbi006FlpdsHGQ6NuhtyWDHUf5gZbKNLrKGVQuIMFZRoau0+jWdlYCZXyYnpRewQIXcKNtE6kl9FHKdFMBn9n+lgNiNbRWJ15B46UtWD46oP45nwLcsaqEdMkRawmeLNEaLosWiZyi/P6669H5ubmJvj9/vYTmOvXr4/JycmpKyoqMgcCAWLv3r3apqYmSX5+vrGwsLBkx44d5rVr18bxPI+tW7dGpKWluQsKCswTJkxoeeONNzotw7l06dK49evX9+F5vn2dV155JWHz5s3nCgoKzPHx8b5t27ZFnDhxQvHdd9+pd+/efWbdunVlK1asSACAlStXxqanp1sKCgrMzz33XI3ZbJYBwL59+zQzZ85MaW1tbRfma9eujR48eLCzqKjI/NRTTzWuWrWqz5X2bNy4MWrixIkthYWF5tTUVM+2bdt+8eGLGTNmtLTlX37vvfc6CGm3200888wzSfn5+ZelCfr2228VU6ZMMdXV1bWL/s8//1zLcRzx6aefljzzzDN1r732Wof3cDWuZx7khQAOmM3mtSaTyQTgIwB3A9gEIAtAGYC/m0ymIWazufg6rtsBSgh6fQNk4JrHcjwHq9sC6qJAlqvEVE2hhsSgAAUSPqcWmvAL8LAeyCVdh9I4fA4YWAqMzA26NR5k326LAInc4jDGMGhawmABUN9sRncZrxsbGhGmsAIASJcWoEIuxbzIJehjlDDzwc84Cn1wuvRbPH7vg4jRyfFthQVjB0TirOUL+Ful6BPZB15eQFiqeHDzRmP5YEe4bffu63qhtY891qyf/h9X3Y5OSEjwbdy48fzzzz/f7tk1mUxuq9VK8TwPt9tN0TQtGAwGdu/evadpmkZFRQVD0zRPkiTmzZvXyLIsAKC2tpZRq9WdlgIeMmSIc9y4cdaPPvqo3bP6wQcfmKOiolgA4DiOkEql/LFjx1RDhw61kySJhIQEP8dxRGNjo+TUqVOqlJQUz9SpU1Oio6N9K1euvAAAJEni/fffN0+ePLn9q668vFy2cOHCGgB48MEHna+++mqHAPqVK1deEAQBHMehvr6evvvuu309va7l5eXMggUL+hqNRn9NTY10wIABrtdee61q1apVMREREQGr1Uo5nU5q8eLF8WvWrGlPJ+T1esnJkye3DBs2zF5WVtbuEfb5fMRbb711buHChe3bd/369fNyHEdwHAeHw0FSFNWz2tUXuZ4hFq8D2HzxsQSA12QyaQBIzWbzebPZLADYB2DMdVyzU6R00OvLS9hrHmvz26B1AbQ86H3W6kVPUKgh0csgQABnD4NU6kdV69UzWfxU9RPC1MGCQkSzDoRRLBwT6mhio6Dy6cCyNOz27s8y2C12KBRWEKwUUlLabX+RW5uwaCX8AhDw2hEmjcSPJ74CAAzvF4EFY1IwMEaL8yf/F6RAQCPpg2ZWgGFg/162WuRGkZmZaaVp+jLxlZSU5MvLy4sfM2bMQIvFInn44YcdAEDTNDZt2mSYNm1a2qOPPtouvCUSCaZMmZJSUFBgHD9+fKdFHKZMmdJ6ZWGrmJiYAAAUFRXpTpw4oZ42bVqL0+mkLhXZCoWCs9lsVGNjI6PRaNhPPvmkNCoqyr9u3booABg7dqw9IiLiMlGekpLi+ec//6kDgL/97W86n8/XQS+SJAmO44hHHnlkYHFxsabtPXYHQRACANTU1Mjy8vIq9uzZc+bo0aPaurq6ds/C4sWL61UqFXepOAYAvV7PdVYNcMSIEa74+PjLvKIqlYqrr69nxowZM+iVV15JnDlzZkNP7GvjZ7k5TCbTHAB/uKJ5ltls/tZkMkUB+ADAAgAaAJe+EQeAGx6cJ1fr4GIlIJhrulkAANh9dhicUjBRHgg8CU1c8g2wUKQ3ISQkWIYH4wjuYlU1HIXJ0HXZ6NKKUqjVzQAnAWPzAwYxxVuoExEfA/bIj/B7VOCF6m77B2wBqPpYIXX2gVJ0FIY8+pjgLqXbbYVeE4Njp7/u0MdeUgaDXAuaVqHFzeGOJPEP40ajn/4fLd15e28WeXl5cdu2bSsZNGiQd/PmzYbc3Ny4NrGXk5PTNGvWrOannnqq/6FDh5yjR492AMDOnTtLz5w5I8vJyem3ZcuWs0uXLk0EgPT09Jann366uau1NmzYYDxw4IB+69atZ+VyuaBSqbi2WGQAcLvdlE6n49RqNTdhwgQrAIwbN87617/+tcuQgwULFtS98MIL8VlZWabhw4fbDAZD4PDhw6p169b1AYBZs2bVT5gwwcYwjLB///7T+/fvVy9atCipoKCgvVS0XC7nA4HAZcLa7XaTUqmUB4Do6GivRqPhAUCv1we8Xu91PRe3efPmyKFDh9qXLVtWU1VVRc+YMcP0j3/847RcLu+ROPxZxpjN5nfNZvOgK/59azKZ7gBwAMCfzGbzvxAUx5fmO1IDsP6cNa8FjTEcHMeAkl37VrjNb0OYk4GUcYPwa0BFdRlLLnILQ0bIoHMmAgBamk5dtW99TT3U6ibIHAnQ0qWAQfQghzoR8ZFwsw5wHi1oqvuKnKSbhEJphdQZC2WsmPkm1JGrGMhVElj9fqglOjDVfnDs/+1YBnw+yCpciDL0AwA4eA8UGvHswu2ESqViNRoNBwCRkZEBh8NBlZSUSGfPnp3M8zxomhYYhuEJghDy8vKiduzYob84jiNJEv379/fl5+eb8/PzzVcTx2vWrIkqLi5Wf/jhh2aDwcACwP333+88cuSIluM4VFZWMjzPw2AwsIMGDXLs27dPCwBHjhxR9+3b19vVvIcPH1Y/8cQTTQUFBebExETvnXfe6Rw5cqSzzaYJEybYFi9eHH/o0CH1Rbt5kiQvE55Go5H1eDzk6dOnZQDAsiyOHj2qGTx4sBu4mHb1KgjCtTs5L0Wj0XAqlYoDgp7ni+EWPa7Uc90C5Uwm0wAAuwBMNZvNJwHAbDbbTSaT32QyJSMYg/wIgOXXa82uiIiLQkUDA4LpNIznqth8Nui8WtCME6RPDVIjpmsKRVTxYYiuMaGGpeH3V1y1r6vJDnUfC+QX7kaYtgxQ6G+OkSK9hjpcDjfnAeHVQxp+AYIgdPll7g/4oeYBWuoD4+wDzf2dnq8RCTH0fVRossiRAMAg6YPz/3sUKQ+MAAAc/dceMH4C/ehE+AMspDquWzEgElosX768cv78+ckURQk0TfOrVq2qTEpK8qekpLgnTZqUShAEhg0bZhs1apQzNTXVu3DhwqSioiIDz/NYsWJFj3LU1tfXS7Zu3RqTnJzsnjFjRgoAjBs3zjJ37tymIUOGOCdNmpQqCALx4osvVgHASy+9VL1kyZKEXbt2GZVKJbdhw4ayruZOSUnxLl68OGnNmjWIiIjw5+XlVVzZZ/bs2Y0vvfRSwptvvikQBIHly5dfFg5BkiRWrFhRsXTp0kSSJMGyLPHQQw9ZR48e7SgvL+/2jjEhIcHz7LPPJr355ps/K2fvs88+27Bw4cLEzMxMUyAQIP7zP/+zRqVS9dhzej1PkqwCIAOwLnhGDzaz2fwYgBwAOwBQAP5pNpuPXcc1OyUsQgu2hoGEYSFwHAiq59WLbD4b1H4tGLoZpMcolgUNUaQxGmgJFUodYZAzXd6cw+PxQEm0gqQ4yGx9IYu+phAmkVsUCU3Bw/vBeIygKA4uVx1Uqs53k8pqy6BSBCPJCHskJJFJnfYTCS30MSqcKQkDz/mgVcXg+N8L2wXyD/v3wa4IQM/GoJYFjENie9lakRtNUlKSf8+ePe0pb0aOHOkcOXJkhxQ4S5YsqQNQd2lbVFQU++GHH/aostmoUaMco0aNcrSNO3369Hed9Vu6dGktgNpL2xITE/0ff/xxl+scPny4fTu1f//+vk8//fSqKXzS0tK8+fn55qv16eo6XHm92h5ftBsAsGvXrtKu5p0xY0anoTSX2qNWq/l33nmny5uA7rhuAvmiGO6s/SiAB67XOj2BUtAQWBlIxgHObockLKzHY+1+O6ScCjTjhcQmbpWGKnSEAgQI+Gxh0MedgyBwIIiON1I1NTXQaIICmmiJBJkiip/bBZbkIfdEgQfQ2PhT1wK5ugxKZTByTLCHARpRDN0O6KOVYAkarK0K2vAYnC49hPpzpfC53fBW1sOfGg7Sp0ADyyI1WdxVEBG51QjNQiFyCgIrA8X4wVmvLeTZ5rOBJGWgaS8kYhW9kEViuPjZWsMhoTi0WDq/US6vLIdG0wjSo0XAwYnxx7cRvJSC2h0UxTUNP3XZr66+DgpFK0i/EiRLiSnebhPaDuq5HM2IEaJByqTIf+Ul7M57BS4tMCDyPgBAEysgIk7Vm6aKiIj8DEJTIMskACsDJfEj0Gq5prE2nw0UQ4AkeUh4MV1TqEKqaLAIQG4LCiBzxYFO+52vOAettgEKqwkSVIsC+TaC1CoQ7oqHIBBotXa50wdLiwUqhQVSZxwkip9XnEjk1kMfHRTIrV4XKFCw3mlEZN9+UOr1+Ps91RjcHAu3xw4WPMIiFb1srYiIyLUSkgKZYCgQrBykJABnc233Ay7B7reDVAZjuGlS/FILVQiCACfjYXD0B88TaGruGMbl9/thbT4PqdQLhdUELf0TECEK5NsFRR8jaEEGv0cJv/9Cl/3crS4oVDZIHbGQaq8997rIrYlMSUOpZdBEyMCyrRjoGYA7/3MGlHNHQ03qoHNHotHnQ3iUFCQVkj+1IiIhTUj+ryVIAkRABoIA7M2V1zTW5rWCkgd/5BixzHRIQ0eqYCCj4XFpwPoqOrxeWVkJjboRACBvTUG4thoQKyveNugTE+DnvGBdWtBE54cz3W43pIIDlISD1BkLVbQYXnE7Ed5HBZc+CWg9hftcA/Hx9x9gy49bMNOfCUIQcE6Qw5hi6H4iERGRXx0hKZABAIFgBUJna103HS/Ha/+/MtMymZjiLZRR9TVAIdHA0xoGlbQBLHt5afJz585BrW2A4GfAOKIhjVSIWU1uIyISouHm7IBLD5nMCpbt6B2uq6uD4uIBPakzDtp+PT8QLHLrY0hQwynRw1f2HWiBhueHFrS4mvFQ4yD4W0vgIqQwJmh620wREZGfQcgKZIINCmSHo+maxgnNVlDSoEBW6sSTx6GMLCb4w8XWGUHTfpw99+Vlr58/fw6asDpIWhLgYR0gjGJVxdsJbYQSbtYDxh0FiSSAxsZzHfrU1tZCqQwWEhFsBjAxiTfZSpHexJiggQASrU43JIIZzzY8jnebXgHlo9FUX9neRyT0OXr0qDI7O7s9Bq+4uFg+ceLE1MmTJ5vmz5+fyHHBugybN282pKenp2VkZKTt2rUrDACcTic5c+bM5KysLNPUqVNTqqur6a7W+fTTT3U5OTnt6ZQOHDigfuyxx1KzsrJMc+bM6dtWQW/16tXRGRkZaZMmTUo9duyYAgAaGhokbetMmjQp9dy5c+0HrRobGyWjR48e5PF4CABoaWmhpk+f3m/y5MmmmTNnJjc0NHS5Pfbll1+qhg8ffueV7eXl5czEiRNTL2175513DKtWreqyAtv27dvDP/vsMy0AbNq0qcP2S2VlJZOVlWXKysoyPf3008lt7/ezzz7Tpqenpz322GOp//M//3NdylaGrkC+6EF2eTqU7L76OKsbDBMUyGpD3HW3S+TXA20IxphL64Jpuaqqvmh/raWlBW73eahkLqiaB8MXaAQMKb1ip0jvINcwcPM+aDzxAIC6+h869Kmrq4NC3gzSFQZ/AEBY4s01UqRXMSYEC8U61PGQMN+BQS2MLUpIrW+hgSNBSYCwKPEsS6jz+uuvR+bm5ib4/f72Lcb169fH5OTk1BUVFZkDgQCxd+9ebVNTkyQ/P99YWFhYsmPHDvPatWvjeJ7H1q1bI9LS0twFBQXmCRMmtLzxxhudeueWLl0at379+j48z7ev88orryRs3rz5XEFBgTk+Pt63bdu2iBMnTii+++479e7du8+sW7eubMWKFQkAsHLlytj09HRLQUGB+bnnnqsxm80yANi3b59m5syZKa2tre3CfO3atdGDBw92FhUVmZ966qnGVatWdVqWuqqqin7vvfciWZa9LturM2bMaMnIyLABwHvvvddBSG/evDnykUcesRQUFJiTk5O927dvj/D7/UReihdDzAAAIABJREFUXl7c9u3bS3fu3GkuLCw01NfX/+J4t5ANmCO5YBovr+Dr8RhBEEDbONAxXiAgBxMReaPME/kVIAmXQxB4qH0GuDxysP4T7RXTjh8/jvDwGgCAvmUYvMIJIGJYL1sscjMhSQI+IYA+7v6oAlDX1DHVW01tDfr1tULqSAZPOgG5GGJxO6HUSSHXMHDF3gFX+THEjSoAV3UGDS0RcOjHICJOIx7Qu4n8cKg63Hy07rp4D9swPRDdfOfo2E6LUrSRkJDg27hx4/nnn3++3bNrMpncVquV4nkebrebomlaMBgM7N69e0/TNI2KigqGpmmeJEnMmzevsS2Eq7a2llGr1Z2WAR4yZIhz3Lhx1o8++qjds/rBBx+Yo6KiWADgOI6QSqX8sWPHVEOHDrWTJImEhAQ/x3FEY2Oj5NSpU6qUlBTP1KlTU6Kjo30rV668AAQr3r3//vvmyZMnD2ibt7y8XLZw4cIaAHjwwQedr776avyV9ng8HuJPf/pTwurVqyuzsrIGXPn61SgvL2cWLFjQ12g0+mtqaqQDBgxwvfbaa1WrVq2KiYiICFitVsrpdFKLFy+OX7NmTXuFvrS0NHd9fT0NBD3vUVFRwpkzZ2QxMTE+vV7PAcCdd97p/Pe//63Ozs5uvRabriRk/+dKEEzBw0p6Xm7aFXBB61WDZrwg/CoQYeLhilCGoEn4KS+0TDjsjWoolTU4e9YMr9eL4uJi6Iy18Fl0YPx6hDM/ABGiB/l2g5XwkHkN4HkSLuflBZk8Hg+cjmbIlS4oXEmgpK5eslKktyAIAsYENRxhSXAXF0OYuAGS+XthrxJgV8YjOlk86H07kJmZaaVpWri0LSkpyZeXlxc/ZsyYgRaLRfLwww87AICmaWzatMkwbdq0tEcffbRdeEskEkyZMiWloKDAOH78+E6F3ZQpU1qvLFkeExMTAICioiLdiRMn1NOmTWtxOp3UpSJboVBwNpuNamxsZDQaDfvJJ5+URkVF+detWxcFAGPHjrVHRERcJpZSUlI8//znP3UA8Le//U3n8/k66MWlS5fGz5kzpyE2NjZw5WtXgyAIAQBqampkeXl5FXv27Dlz9OhRbV1dXbvTdvHixfUqlYq7VBxffL/+goIC49ixYwceO3ZMO3nyZIvdbqdUKlW7/UqlknM4HD0vodwFIetBZqhg3Jcg7XnaJZvfBpVfC5quBulXgpCLsWOhDhUugc5ngL9CA0lCIw4dehs63VAArdAq6uEruwcAEKYuE7fPb0MIOQ1CoBBwKkAI1e07DEAw/lilagFBADJbMihVz3erREIHY7waVT/KwUICx+GjAEXBQkWCB4m4AfreNu+24s7RsS3deXtvFnl5eXHbtm0rGTRokHfz5s2G3NzcuDaxl5OT0zRr1qzmp556qv+hQ4eco0ePdgDAzp07S8+cOSPLycnpt2XLlrNLly5NBID09PSWp59+urmrtTZs2GA8cOCAfuvWrWflcrmgUqm4tthcAHC73ZROp+PUajU3YcIEKwCMGzfO+te//rXTsAkAWLBgQd0LL7wQn5WVZRo+fLjNYDAEDh8+rFq3bl0fAMjKymr64Ycf1NXV1bI33ngDTqeTmjt3bt+333673ZMgl8v5QCBwmbB2u92kVCrlASA6Otqr0Wh4ANDr9QGv19ut0zYvLy92+fLlFY888oj973//u3bBggVJixcvrnG73e1jXS4XpdFoeu4d7YKQ9SDL5Re/mBi+x2NsPhsYXgmG9oLyiRkLbgc0KdFQ0WHwn4+DKyBFeMRxlJaWYsi9jeAEAvILQ8DyAdDR4QD5i29IRW4xpOHBGFOiWQeVsgnNzf/3G3X+/HmoNMHfYpktCQpxw+m2JLqfDoIAOAf+BvUrX0HDipWwmx4CJSEQ00/X2+aJ9BIqlYptE2mRkZEBh8NBlZSUSGfPnp3M8zxomhYYhuEJghDy8vKiduzYob84jiNJEv379/fl5+eb8/PzzVcTx2vWrIkqLi5Wf/jhh2aDwcACwP333+88cuSIluM4VFZWMjzPw2AwsIMGDXLs27dPCwBHjhxR9+3b19vVvIcPH1Y/8cQTTQUFBebExETvnXfe6Rw5cqSzzaYnn3zScvDgwR/bnqtUKu5ScQwARqOR9Xg85OnTp2UAwLIsjh49qhk8eLAbAK70hl+JIAgd2lQqFdd2XaOjo/1Op1OSlpbmra6ulrW0tFA+n4/4/vvvVUOHDnVedfIeELIeZJVeDydLg5Rdm0AmIQPNiGWmbxfkSUa4v26BiojAP1uMmBx1AdnZKtTUfoOvmyOQEUiAm7SAiLym8CqREEHdNx5csx+ylhjwfatRVlYMg2EcAODs2bMIMzZCcKohCaihTlD2srUivUFMig5SpQT2u6Yj0nMWgfoGWGPvQXS4EhJGvKm+XVm+fHnl/PnzkymKEmia5letWlWZlJTkT0lJcU+aNCmVIAgMGzbMNmrUKGdqaqp34cKFSUVFRQae57FixYrynqxRX18v2bp1a0xycrJ7xowZKQAwbtw4y9y5c5uGDBninDRpUqogCMSLL75YBQAvvfRS9ZIlSxJ27dplVCqV3IYNG8q6mjslJcW7ePHipDVr1iAiIsKfl5dXca3XgCRJrFixomLp0qWJJEmCZVnioYceso4ePdpRXl7OdDc+ISHB8+yzzya9+eab7ddj2bJlVcuXL49/7bXXCADIzc2tZBhGWLRo0YWZM2em8DyPxx57rPlawz46I2QFstYYiWo/DVLKQeB5EGT3znKb3waClICmfZCwYpnp2wE6KihqlFIVfrAIGG/QorZuI1ysEi0/xSJMGgmX6yRgTOtlS0V6A0O/ZLi/OQqlPRkOHEdN7TcAxqG1tRVNTU1ISGwC2ZQIL8ciJiG2t80V6QUoikTSXQaUfdeI33z4MVwNNrS+VoLUEWIWpNuJpKQk/549e0rano8cOdI5cuTIkiv7LVmypA7AZQUaoqKi2A8//PBsT9YZNWqUY9SoUY62cadPn+5YBhbA0qVLawFcVko4MTHR//HHH3e5zuHDh0+1Pe7fv7/v008/7WB/Vxw7duxkZ+1dXYcrr1fb44t2AwB27dpVeuW4gQMHenfu3NmhPSMjw9aW/eJ6EboCOSIMXBUDkmHBu1yg1Opux9h9dlDyi2WmBVEg3w5Qehk4gYWWVqJfHYv/alyIITEUTtSyeLbxBGgdAx31HRA5u7dNFekFNBFKNLNuKDxpsAsEHM7T4Hke586dA824IZf7ILMlwSv4QYb3721zRXqJ5CEGlHxThwvn3Sj/wQaSJNB3iBhzIyJyKxO6McgaGXiOAckEwNl6lgvZ7reDlAfjuiWkmLvydoAgCfCMG1omAsn1MQiP4FDjjEbWCCli+WCaP6PmW8A4sJctFekN1OEyuDk/FJQBLqsKCnk9Dh8+jGPHjsEYGQxx0zgGgBNcgFb0GN6uxKXpodRJ8cV7P6HkmzoMHhsHnVH8DRERuZUJWYFMymkIrAwkHQBv75nX3e6zQXJRINO06kaaJ/IrQpWkgF4aA41bg+yRdhx8fhQYtRnhtB4+zgta5QdUxt42U6QXYGQSuAUWDCUHUcNApbbg0KGDsFgs0MY0g3VT0DoHAbQNoLosfiUS4lASEll/vAeGOBW0Rjnu/V1S94NERER+1YSwQKYgsFJQdAD+VkuPxnhtFpCyYFw3IxNPH98uKO9IBE0y0NFhOFB5AIIg4Lsfj0IvNcLlawQRNVDMaHIbE5AEw67UlSowtBf9+/PIyBgLDf0DfBVRIECCVjp62UqR3katl2HyorsxbdlQ0FLxcJ6IyK1O6ApkmQQEKwMp8cPd2tSjMYGWFlBSPwBAoRLjx24XpKnBVJB6WRhq68vwReUXGPhDOLRMBKSBUiDu/l62UKQ3kWiC5xEUZ+Pg8KkQk1QJXl4FmgxAqA4Wj1FG+HvTRJFfCQRBiJXzRERChJD9n0wwFMDKQEkCcDQ39GgM32IFxQST/av0HUqAi4QolJqBj7fCIOuDh36Kx4tfv4jBnkQAQB/lF0DcA71roEivoom9GF4jj0JpxRDw3q/RVL0KLrcUSlsqOIGHNkkMyRIREREJJUJXIJMEiIAMJMnD2drDctytbtCMDwJHQyaWmb6t0EQ7YJDFIaE5HGOp4YhX9IWXdUGp/AmIu6+3zRPpRfR9Y+HjPCBVURjgGASbT41SSwyqDsZBQ0fAyXHQJIoxpyIitzNHjx5VZmdnm9qeFxcXyydOnJg6efJk0/z58xM5Lni+afPmzYb09PS0jIyMtF27doUBgNPpJGfOnJmclZVlmjp1akp1dXWHAw1ut5uYM2dOcmZmpmn69On9GhsbJUCwit7YsWMHZmdnm7Kzs00lJSXSrvoeP35ckZmZaZo8ebJpzpw5fT0eT3vs4JX2nzhxQpGRkZGWmZlp+q//+q+4NvuvhGVZzJkzp+/nn3/eofTw9u3bw19++eXLqvXNnTu375dfftllWrE//elPcZWVlUxLSwv18ccfdyhFefbsWenUqVNTsrKyTE888UT/5ubm9ngml8tFPvroowM6s+XnELICGQAIVgYAcDh6VnmSshGgJT4QAQXIMLFE6O2EMkUNmmQQIQ1D7D9aESVPBDgziMg0QB7W2+aJ9CKa2Cg4WSdopRGDXU7sa34Hmj5vgKkGtLQBPsEH0pjS22aKiIj0Eq+//npkbm5ugt/vbxec69evj8nJyakrKioyBwIBYu/evdqmpiZJfn6+sbCwsGTHjh3mtWvXxvE8j61bt0akpaW5CwoKzBMmTGh54403oq5c49133zX269fPU1hYaM7IyGh5/fXXowHgzJkzylWrVpW3VbRLTU31ddaX53nk5uYm/uUvf6koKioyjxgxwl5ZWcl0ZX9ubm7CkiVLqgoLC80qlYr75JNPOoiic+fOSbOzs1PNZvN1q5L06quvXkhISPCfOnVKcfDgwQ6HwV544YWEBQsW1BQUFJinTJnSVFpaKmt7bcmSJfHdVee7FkI2DzIAEGywUIvL3bMDNBIXAwndCsKvBKEJv5GmifzKkA+/D/jXvzBY/1tUu6tAEhSi5flA3NDeNk2kl9EYlTjP+hEnM8JVshubl78MnmWxiWegpDWwB6oAXXxvmykicttT/Pnfwn/66kDE9ZxzwEO/bR7yaPpVvWwJCQm+jRs3nn/++efbt5JMJpPbarVSPM/D7XZTNE0LBoOB3bt372maplFRUcHQNM2TJIl58+Y1siwLAKitrWXUanUHd21xcbHq97//fT0APPLII/YtW7bEAIDZbFa89dZbURaLhR4xYoRt0aJF9Z31LS0tlWo0Gvbtt9+OLCsrk48YMcKamprq68r+5uZmZvjw4S4AuPfee5379+/XTZs27bKMB06nk3z11Vcr3nrrrQ6Cvju2b98efvjwYa3X6yVra2ulM2fOrJ8xY0ZLdna2acWKFZWbNm2KKisrU7z77rsRc+bMaQaCXvTW1lZ6//79ury8vNi0tDTXsmXLqgFg3bp1kUOGDPnF5aUv5bp7kE0mU6rJZLKZTCbZxecPmEymYyaT6WuTybTseq93NQg2WC7aJ7i77SsIAkhWCpr2gfIrAEaMKbydIHRRCI/7CmpahzTtnZCorVDQPwAJw3vbNJFeRhUmg42nwFAytDQ5ILAsGo59A5k8GJsskdkAUsxaICJyu5KZmWmlaVq4tC0pKcmXl5cXP2bMmIEWi0Xy8MMPOwCApmls2rTJMG3atLRHH320XXhLJBJMmTIlpaCgwDh+/PgOcaEul4vSarUcAKjVas7lclEAMHbsWMvq1aurPv7449Li4mLV3/72N21nfZubmyVnzpxRzZo1q/Gjjz4qPX78uObgwYPqruyPjo72ffnllyoAOHjwoM7j8XT4khs8eLBnwIAB3p9xyQQAcDqd1Pvvv3/urbfeOrd169bLRHZOTk794MGDHW3iGAAsFoukqqpKNmLECPvOnTvNdrud2rFjR/iBAwfUlZWVstmzZzdfudAv4bp6kE0mkwZAHgDfJc2bAGQBKAPwd5PJNMRsNhdfz3W7guKDnnc/0f0Jcw/rgQSyoEB2ycS0Xrch8nsHQtOwHdSY+VDUbARREwGkpfe2WSK9DEkS8EuDIYEBbSwcX3yBkm//Bb00GgAgC+v+BlxEROTGM+TR9JbuvL03i7y8vLht27aVDBo0yLt582ZDbm5u3Jo1a6oAICcnp2nWrFnNTz31VP9Dhw45R48e7QCAnTt3lp45c0aWk5PTb8uWLWeXLl2aCADp6ektSqWSczgcJAA4HA5KqVRyPM8jJyenUafTcQDw0EMP2U6fPq3orG94eDgXHR3tbRO0Dz74oO3kyZOK3/zmN51usa9evbr8z3/+c/ybb75JDBkyxEnTtLBp0ybD/v379QCwdu3astjY2MDVroFMJuP9fv9ljliPx0PK5cGSxSkpKW4AiIuL8wcCgW4dtnq9npXL5Xzb9Ro9erTt66+/1hw5ckRTX18vzc7ONl24cEFWWlqqiIyMLB8yZIinuzmvxnXzIJtMJgLA2wD+BMB9sU0DQGo2m8+bzWYBwD4AY67Xmt0hEYIeZE7CdtvX4XcAhBQSiQ90QCwzfVuSlg6NZCeU1S+DOPs5cP/vAVre21aJ/ApQGiXgBR4IT0TzO++gsfh7GGVx8PAC1LHi94WIiMjlqFQqVqPRcAAQGRkZcDgcVElJiXT27NnJPM+DpmmBYRieIAghLy8vaseOHfqL4ziSJNG/f39fW1zx008/3Tx48GBnW0zuvn37NHfddZfDbrdTEyZMGOhwOEie53Hs2DH1HXfc4e6sb9++fX0ej4c6e/asFACKi4vVKSkpXXp/v/jiC9369evLdu7cWWq1WqkRI0bYc3Jymtps6k4cA8Cdd97p/vbbbzVtYr2lpYWqqKiQt4n0q8ULEwQhCMJlTm0oFAqhT58+3q+++koFAMePH1f369fPs2nTpvJPP/20JD8/33z//ffb/vCHP1T/UnEM/EwPsslkmgPgD1c0VwL42Gw2nzSZ2g9CagBcWufZAaDvz1nz5yCVqMACEKSdn768FIffAUFCgab9oDnmxhsn8utDFw8MfQb4dgtAK4D7/r/etkjkV4IhSQ9Hkw0yRQyav/0Edf1jMUSegGaWx939xJSQIiIil7N8+fLK+fPnJ1MUJdA0za9ataoyKSnJn5KS4p40aVIqQRAYNmyYbdSoUc7U1FTvwoULk4qKigw8z2PFihXlV843Z86cpueeey5x8uTJJpqmhXXr1pXpdDru2WefrX7yySdNNE3z9913n+N3v/udzeVyOa7sK5VKheXLl1csXLiwryAIuOOOO5wTJkzossxwYmKid/r06SaZTMbfc889jt/97nc9K0l8Campqb7HH3+88fHHH09VKBQcy7LEH//4xyq1Ws13NzY5OdlXVlYm37hxo3HevHmNbe2vvPJKxfLly+Nfe+01Ijo62rds2bLrGlZxKcSVCv3nYjKZzgGovvj0AQDHAaQDOGo2mwdc7PMcANpsNr92tbkyMzOFwsLCX2zT0Y3vwzXgZTScGIBpiz+7at/vGr7Dodfew+Dxe2E4/zDu/P3//OL1b2dMJtMJs9l87/We93r9bVwVtwXwOYCwhBu7zm3KjfrbAG7c30fl9zWo2fojIiQc9l54C3KJDhPi5qLU24TfLOkPRN1x3de8XbmlvztEbiid/W2cPHmy4q677rphIkkk9Dl58mTEXXfdlXhl+3WLQTabzf3aHptMpgoA48xms9dkMvlNJlMygjHIjwBYfr3W7A6FKgIuAATDQ+B5EGTXESUOvwOkPBiKISHEbfXbGoU++E9E5CKGvgac5qWIl1BQ0RHgY4IH5SXUOcD4WC9bJyIiIiJyvbkZad5yAOwAQAH4p9lsPnYT1gQAaML0qGMlIGUceKcTlKbr3NF2lwWSNoFMKW6WiSIiIrcACg2DJjjghxpG01BIWTm8HgH6KLeYwUJEREQkBLkhAtlsNide8vgogiEXNx1lmA6ciwEpZcHZbFcVyJ6WRpCyYMw5Q1+XIiwiIiIhRES4DxV2Ane7BgIATno53J/Wp5tRIiIiIiK3IiFdSU+u14BnGZA0C8569fhyX0sjJNJgOji5UqycJiIicjmG5EiUu6VwkR5Uyq2oDrgRftfdvW2WiIiIiMgNIKQFMq1WgmeloOgAONvVBbK/xQKKCQpkpdZ4M8wTERG5hTCNuwd+ATjPncePjQziZadAxtzV22aJiIiIiNwAQlogkzIKAisFSfsRsFqu2tffbAdN+yBwEsjCDDfJQhERkVsFrVGBgal2lNtMAM9i+CgeoG7GMQ4RERERkZtNSAtkQiYBWBkoOgBnU+NV+/KtAUhoH4iAAqROd5MsFBERuZW454kR0NDNGHn3BWgmLultc0RERH4lHD16VJmdnd1eBKK4uFg+ceLE1MmTJ5vmz5+fyHHBegybN282pKenp2VkZKTt2rUrDACcTic5c+bM5KysLNPUqVNTqqur6Svnd7vdxJw5c5IzMzNN06dP79fY2CgBgOPHjysyMzNNkydPNs2ZM6evx+MhOI7DokWL4h977LHU7OxsU1txkLNnz0qnTp2akpWVZXriiSf6Nzc3t58wPnv2rHTcuHED2p6XlZUxWVlZpszMTNOzzz6b5HK5OujF4uJieWZmpik7O9v05JNP9q+vr7/MY/Dll1+q586de1nti5dffrnP9u3bw7u6jnl5eVHHjh1TeDwe4r333ovobM3OruuGDRuMGRkZqRkZGamrV6+O7mr+ayGkBTIpo0CwMlASP+zNHUqbXwbnIkBLfCACShA6McWXiIhIR5RRkZi+LhsDfp8jlqMXEREBALz++uuRubm5CX6/v/1LYf369TE5OTl1RUVF5kAgQOzdu1fb1NQkyc/PNxYWFpbs2LHDvHbt2jie57F169aItLQ0d0FBgXnChAktb7zxRtSVa7z77rvGfv36eQoLC80ZGRktr7/+ejTP88jNzU38y1/+UlFUVGQeMWKEvbKyktmzZ4/O7/eTu3fvLlm0aFH1ypUrYwHghRdeSFiwYEFNQUGBecqUKU2lpaUyANixY4d+wYIFfW02W7swf+WVV2Iff/zxpsLCQvN9993neOONNyKvtGnlypXxL730UlV+fr75t7/9beuGDRs62H2tLFq0qH7o0KHu+vp6uqioqINA7uy6nj9/nvn888/Di4qKSnbv3l1y9OhR7cmTJ39xvt6Q3h8kGAoEKwclCcDV2mm58XaEAAUJ7QMVUIOQi4f0REREOudq+dRFRER6D+c3teGu7xo6iKpfgvLuyGbVgzEtV+uTkJDg27hx4/nnn38+qa3NZDK5rVYrxfM83G43RdO0YDAY2L17956maRoVFRUMTdM8SZKYN29eI8sG08zW1tYyarW6Q/nf4uJi1e9///t6AHjkkUfsW7ZsiSktLZVqNBr27bffjiwrK5OPGDHCmpqa6nv//fcNI0aMsAHAsGHDXAsXLlS63W6itbWV3r9/vy4vLy82LS3NtWzZsmoA0Gq13CeffGL+7W9/217xqLKyUj5u3LhKABg6dKhz5cqVcVfatGHDhrKYmJgAAHAcR0il0h5Xnvvyyy/V77zzTpREIuHr6uqkY8eOtSxevLj+//2//5c4YcIEy759+8Kqqqrkq1evjl6yZEnd1a5rXFxcYOvWrWclkqCk5TiOkMlk3Vbr646Q/qYnCAJEQAaS5OFwdCOQORo07QPllwNS9U2yUERERERERORWJjMz00rT9GXiMCkpyZeXlxc/ZsyYgRaLRfLwww87AICmaWzatMkwbdq0tEcffbRdeEskEkyZMiWloKDAOH78+A5b3i6Xi9JqtRwAqNVqzuVyUc3NzZIzZ86oZs2a1fjRRx+VHj9+XHPw4EG1y+WiNBpNu8gmSVJobGykq6qqZCNGjLDv3LnTbLfbqR07doQDQHp6uk2lUl0mKPv16+f++9//rgOAzz//XOf1ejvoxTZx/PXXXyt37txpzMnJaejJ9SIu7r41NDQwW7ZsOV9YWFjy4YcfXuZ9nj9/fl18fLznUnHc1XVlGEYwGAwsz/N46aWXYvv37+82mUy+nthyNULagwwABCsDALjZqwtknpBAIvGBDkjFrVMREREREZFbDNWDMS3deXtvFnl5eXHbtm0rGTRokHfz5s2G3NzcuDVr1lQBQE5OTtOsWbOan3rqqf6HDh1yjh492gEAO3fuLD1z5owsJyen35YtW84uXbo0EQDS09NblEol53A4SABwOByUUqnk/n/27ju6qip74Pj3lftaKimQEBJIgRsQSJAiTcGCSIeADXFojmaQwZ/oWJgxiqhgYWwoWBgRRVEpg4URVEBQKUqJiHApIQQCIY0kL3kvefX3B6ARgoomBML+rMVayX3nnbPvY6+bnZNz7wkPD/dGR0dXtmnTphKge/fupZmZmbaAgABveXn5T+uL/X6/rnHjxm6r1eo7OdaVV15Z+vXXXwcDNX5eGRkZhx566KG4ZcuWRfTo0aMkJCTEs3jx4kbvvvtuY4AHHnjgYKdOnRzvv/9+o7lz50a/+uqrexo3buyp3ofFYvG53e5fFFQOh8NwcnY3ISHBqSgKiqL4TCbT75p9PtPn6nQ6dXfffXcLm83me+qppw78nr5+S4OeQQYwnCiQK/WeM7bx+rz4DAYUxYXJc9raeCGEEEKI3y0wMNBzcha3SZMmbrvdbti1a5d53LhxiT6fD0VR/CaTyafT6fwzZ86MWrBgQdiJ93n1ej0tW7asWrRokbZo0SJtzJgxhampqeWrVq0KBVixYkVwSkqKPSEhocrpdBpO3oS3devWoFatWlV27NixfO3atSEA69evD4iPj3fabDZ/TExM5dq1awMBNm3aFJSUlOQ8U/yrVq0K/sc//nFo0aJFmsFgoFu3bmXDhw85GuqWAAAgAElEQVQ/djKmTp06Od55552whQsXNn7nnXe0xMRE16l9tG7d2rl3717b4cOHFQCn06nLzMwMTE1NdfzW56fX6/H7/afNVtb0ufp8PsaNG5fUqlUr57///e8DJ5da/FkNfgbZ4D1eIHtM7jO2KXeXo7P40en8GH2mcxWaEEIIIRqgqVOnHpg0aVKiwWDwK4rimz59+oH4+HhXq1atHEOHDk3W6XR069attHfv3uXJycmVkydPjl+6dGmkz+dj2rRp+0/tb/z48QV33XVXi2HDhqmKoviff/75LLPZ7J86dWr25MmTE/x+P+3atSsfMGBAqdfr5euvvw4eOnRost/vZ8aMGdkAjz/+ePbUqVPjnnnmGV10dHTVww8/XHim+JOSkirvueeeBEVR/PHx8c4nn3wyp/rrHo+HmTNnxkVGRrruuOOOJIBLL73UPmXKlMMn24SEhPgmT5588Lbbbksym80+j8ejv/HGG/NbtmxZlZub+6vFVuPGjd1ut1v38MMPx0ydOjX31z7XDz/8MHT79u1Bbrdb/80334QATJ48+VD37t0rfud/V410fv/vXlN9zqSlpfmXLFlSK32tmfkY3g5vcGRlZ0bNWFhjm5zSHBY9PYOUq1YQvedq2tzxaq2MfTFTVXWzpmmdarvf2swNUT/qKjdA8qMhkGuHOJOaciMzMzM7JSXljIWeEL8lMzMzIiUlpcWpxxv8EguzLgAAv8XLmX4ZsBcdwWA9PsNs1P3pJ4MIIYQQQogLWIMvkC3KiU0/LF78jpqXvdjzczFYjq9RNhpt5yo0IYQQQghxHmrwBXKA9cSmH1Y33tLSGts4C49gMB+fQbZYgs9VaEIIIYQQ4jzU4Atka0AwPp8eg9lzxgK5Mr8Ag+n4DZg2m2wSIoQQQghxMWvwBbIlNAiP24z+VwrkivxCFFMVfr8OS/AZtwgXQgghhBAXgYuiQPZ5zBhMbrwlZ1hiUexCMbrQuW0YQ0PPcYRCCCGEEOJ80uALZCU0GL/HjEFx4yoqrrFNZYUfo1KF3h2APiTkHEcohBBCiAvZhg0bAkaMGKGe/H7r1q3WwYMHJw8bNkydNGlSC6/3+M7Pr7zySuTAgQNbDxo0qPUHH3zQCKC8vFw/evToxOHDh6s33nhjq0OHDp22Y5nD4dCNHz8+MS0tTR01alRSfn6+EeDFF19s3KdPn0tGjBihjhgxQt21a5f5TG03bdpkS0tLU4cNG6aOHz8+wel0/rQRx6nxb9682TZo0KDWaWlp6v333x97Mv6aPPPMM1G33357wqnH58+fH/7II4/EVD92++23J6xZsyboTH1NmTIl9sCBA6aioiLDwoULw059feXKlcH9+vVrM2zYMPWpp56KBnC5XLoJEybEp6WlqYMGDWr90Ucf1Uoh1+ALZH1QIHisGBQ35UcLamzj8ehRjFXoXQHogmUNshBCCCF+n2effbZJRkZGc5fL9VPB+cILLzRNT08/snTpUs3tduuWL18eUlBQYFy0aFHjJUuW7FqwYIH23HPPxfp8PubNmxfRunVrx+LFi7UBAwYUvfTSS1GnjjF37tzGSUlJziVLlmiDBg0qevbZZ6MBdu7cGTB9+vT9J3e4S05Orqqprc/nIyMjo8WTTz6ZvXTpUq1nz55lBw4cMJ0p/oyMjOYPPPBAzpIlS7TAwEDve++9d1qxCvC///0v+Kuvvqq1P70/8cQTB5s3b+7avn277eTOgSd5vV6mTp3afNasWXuXLl2qZWdnW9atWxf47rvvhoWGhnqWLFmizZs3b/eMGTPiaiOWBr+Tnt5qBI8Fg7WIsvyaZ5A9GDEqVRgdYejkJj0hhBDigrNp06bwbdu2RdRmn6mpqYVdunQp+rU2zZs3r5o1a9a+e++9N/7kMVVVHSUlJQafz4fD4TAoiuKPjIz0LF++fIeiKGRnZ5sURfHp9XomTpyY7/Ecf9Ts4cOHTUFBQadN127dujXwr3/9ax5A3759y15//fWmAJqm2WbPnh1VXFys9OzZs/See+7Jq6nt7t27zcHBwZ5XX321SVZWlrVnz54lycnJVWeKv7Cw0NSjR48KgE6dOpV//vnnoSNHjvxFEbVnzx7ze++9Fzlx4sTc999/P/JsPtf58+eHr1u3LqSyslJ/+PBh8+jRo/P+8pe/FI0YMUKdNm3agTlz5kRlZWXZ5s6dGzF+/PjCEzEZAwMDvSe3tU5NTS3ftGlT4O23357v9/uPAfj9fgwGw9mEckYNfwbZajy+ttjoorzYXmMbj96IolRiclvAImuQhRBCCPH7pKWllSiK8oudyOLj46tmzpwZd80111xSXFxs7NWrlx1AURTmzJkTOXLkyNbXXXfdT4W30WjkhhtuaLV48eLG/fr1O3bqGBUVFYaQkBAvQFBQkLeiosIA0KdPn+IZM2bkLFy4cPfWrVsDP/7445Ca2hYWFhp37twZOHbs2Px3331396ZNm4JXrVoVdKb4o6Ojq9asWRMIsGrVqlCn0/mLqtNut+szMjLiZsyYccBoPOu5Vj9AeXm54a233to7e/bsvfPmzfvFrHl6enpeamqq/WRxDBAZGempqqrS79y50+LxePjqq69CnE6nPigoyBccHOwrKyvT/+1vf0ucMGFC7qkD/hENfgZZZzZi8NgwGF2U22veKMRj0KMoVShuBQwN/iMRQgghGpwuXboU/dZs77kyc+bM2DfffHNX27ZtK1955ZXIjIyM2KeffjoHID09vWDs2LGFt956a8vVq1eXX3nllXaA999/f/fOnTst6enpSa+//vqeBx98sAXAwIEDiwICArx2u10PYLfbDQEBAV6fz0d6enp+aGioF+CKK64o3bFjh62mtuHh4d7o6OjKNm3aVAJ07969NDMz03bVVVfVOHM4Y8aM/Y8++mjcyy+/rOvQoUO5oij+OXPmRH7++edhAMOHDy8oLi5WJk6cmFheXm4oLi5WZs6cGXXPPffknezDYrH4XC7XLyZinU6n3mq1+gBatWrlAIiNjXW53e7fnLDV6/VMnz59f0ZGRpyiKP7ExERno0aNPAA5OTnK3/72t6Qbbrgh/6abbqp5ucBZqrVqUFVVA/BvoBNgBh7RNO1jVVW7As8DHmClpmlTa2vM30Nn0KF3W9Dr/ZTiOe11v9sNFj96vQ+j23QuQxNCCCFEAxQYGOgJDg72AjRp0sS9devWwF27dpmfeuqpZq+//vo+RVH8JpPJp9Pp/DNnzoyKiopy3XLLLcWBgYFevV5Py5YtqxYtWqSd7K+srMywatWq0Msuu8yxYsWK4JSUFHtZWZlhwIABl3z66ac/BAQE+DZu3Bg0fPjwIqvV6ju1bUJCQpXT6TTs2bPH3LJly6qtW7cGDR8+vPBM8X/22WehL7zwQlZERIT3/vvvj+3Vq1dZ//79S9PT03+6mevmm28uBlizZk3QO++8E1m9OAZo376947XXXmtqt9v1QUFBvqKiIkN2dra1TZs2lZqmWXU63anD/kSn0/n9fv9px7/88svgt99+e4+iKP7x48cn3njjjYV5eXnGsWPHtpoyZUrO1VdfXfNSgT+gNqdLbwUUTdN6qKoaA1x/4vgcYDiQBXyiqmoHTdO21uK4v0nvsQBQZTq9QHYXF6MLOL6LntF32o2jQgghhBBnZerUqQcmTZqUaDAY/Iqi+KZPn34gPj7e1apVK8fQoUOTdTod3bp1K+3du3d5cnJy5eTJk+OXLl0a6fP5mDZt2v5T+xs/fnzBXXfd1WLYsGGqoij+559/Pis0NNQ7YcKEQzfffLOqKIqvc+fO9v79+5dWVFTYT21rNpv9U6dOzZ48eXKC3++nXbt25QMGDKj52bdAixYtKkeNGqVaLBZfx44d7f379z9j2zNJTk6uuv766/Ovv/76ZJvN5vV4PLr77rsvJygoyPdb701MTKzKysqyzpo1q/HEiRPzTx5v3Lixe8iQIa3NZrOvX79+RW3btq188MEHY8vLy42zZ89uOnv2bADmz5+/22aznV5hnwVdTRX6H6Gq6rvAD0B3QAf8HSgANmqa1vpEm7sAk6ZpT/9aX2lpaf4lS5bUSlwAa164D2/bxeQuuoJR/56N3mL56bXC77/jreWv0L7LKprv6kfShFm1Nu7FTFXVzZqmdartfms7N8S5V1e5AZIfDYFcO8SZ1JQbmZmZ2SkpKWecCRXit2RmZkakpKS0OPX4H5pBVlV1PHD3KYcLgEpgIHAF8AYwEiir1sYOnPasvLpm8llxAh6bD09hEaZmPz+Wz374AEbL8RlkRWc916EJIYQQQojzzB8qkDVNmwvMrX5MVdWFwMeapvmBL1VVbcXx4rj6A6GDgJI/GOsfZiYAJ+AP8OAtLoJqBXLFwQMYzccLZLMp4FyHJoQQQgghzjO1+Zi3r4D+AKqqpgA5mqaVAS5VVRNVVdUBfYF1tTjm72LVB574wo2n8Jc3uBbn5qKYqgCwyTOQhRBCCCEuerVZIL8G6FRV3QC8CqSfOJ4OLAA2AVs1TdtYi2P+Lhbj8Wcb660uPEW/XKpUkl+GolSCV8EcLNtMCyGEEEJc7GrtKRaaplUB42o4vgHoWlvj/BGKJQi/T4fB4jptBrnc4UVRqtC5AtEHB9ZThEIIIYQQ4nzR4HfSAzAH2fC6rRgtLpyFv3xSicNvQFEqMbiCMDSSXfSEEEIIIS52F0WBbA0JwOe2YTS7KC/4+aEafr+fSqMJRalEcQWjC5UCWQghhBBnZ8OGDQEjRoxQT36/detW6+DBg5OHDRumTpo0qYXX6wXglVdeiRw4cGDrQYMGtf7ggw8aAZSXl+tHjx6dOHz4cPXGG29sdejQodM2ZXA4HLrx48cnpqWlqaNGjUrKz883Arz44ouN+/Tpc8mIESPUESNGqLt27TKfqe2mTZtsaWlp6rBhw9Tx48cnOJ3On3bqODX+zZs32wYNGtQ6LS1Nvf/++2NPxl/d2rVrAwcNGpQ8ePDg5Icffjjm1Nfnz58f/sgjj/zi+O23356wZs2aoFPbnjRlypTYAwcOmIqKigwLFy4Mq6mNx+Nh/PjxCZ9++mnwyWMZGRnNhgwZkjxw4MDW//nPfyIAsrKyTMOHD1fT0tLUCRMmxFdUVJxVzXtRFMjG4EB0rgAUk4uSop83WfEWF1NlUTApVZjcVnQBEfUYpRBCCCEuNM8++2yTjIyM5i6X66eC84UXXmianp5+ZOnSpZrb7dYtX748pKCgwLho0aLGS5Ys2bVgwQLtueeei/X5fMybNy+idevWjsWLF2sDBgwoeumll6JOHWPu3LmNk5KSnEuWLNEGDRpU9Oyzz0YD7Ny5M2D69On7Fy1apC1atEhLTk6uqqmtz+cjIyOjxZNPPpm9dOlSrWfPnmUHDhwwnSn+jIyM5g888EDOkiVLtMDAQO977713WrE6Y8aM2Oeffz7rww8/3PXjjz8GbNmy5U8/K/eJJ5442Lx5c9f27dttq1atOm3Wcu/eveYRI0Yka5r202PHVq9eHXTw4EHzsmXLdi1atGjX/Pnzo4qLiw2PP/54s+uvv75gyZIlWufOne0vvfRSk7OJpTZ30jtv6UNC0O0PxBh0jNLSn2eQ3UfycJkUFKUSo0sBW3g9RimEEEKIP+rgofnheUeW1upMV1T0sMLYZn8p+rU2zZs3r5o1a9a+e++9N/7kMVVVHSUlJQafz4fD4TAoiuKPjIz0LF++fIeiKGRnZ5sURfHp9XomTpyY7/Ec3+n38OHDpqCgoNOma7du3Rr417/+NQ+gb9++Za+//npTAE3TbLNnz44qLi5WevbsWXrPPffk1dR29+7d5uDgYM+rr77aJCsry9qzZ8+S5OTkqjPFX1hYaOrRo0cFQKdOnco///zz0JEjRxZXj2nZsmU7FUXBbrfrKyoqDIGBgb+5Q95J8+fPD1+3bl1IZWWl/vDhw+bRo0fn/eUvfykaMWKEOm3atANz5syJysrKss2dOzdi/PjxPz1doby8XP/EE09kz549+6dfIrp27VqekpLiANDpdHi9Xp2iKP4DBw5Yr7322gMAl112Wfljjz0W+3vjg4tkBlkfEoLBFYiiVGLHgNd+fBbZk3cEv9WP3uBFcRvBJDfpCSGEEOL3S0tLK1EU5RfbEsfHx1fNnDkz7pprrrmkuLjY2KtXLzuAoijMmTMncuTIka2vu+66nwpvo9HIDTfc0Grx4sWN+/Xrd+zUMSoqKgwhISFegKCgIG9FRYUBoE+fPsUzZszIWbhw4e6tW7cGfvzxxyE1tS0sLDTu3LkzcOzYsfnvvvvu7k2bNgWvWrUq6EzxR0dHV61ZsyYQYNWqVaFOp9NwakyKorB+/fqA/v37XxIWFuZu1qyZ63d+ZH6A8vJyw1tvvbV39uzZe+fNm/eLWfP09PS81NRUe/XiGCA1NdXZpk2byurHrFarPywszOtyuXSTJk1qMXTo0IKgoCBfUlKS45NPPgkF+PTTT0MrKyvPqua9OGaQA80orhB0iovyIBOu/fuxtm+P68gR9Nbjm4QYPArodL/RkxBCCCHOR7HN/lL0W7O958rMmTNj33zzzV1t27atfOWVVyIzMjJin3766RyA9PT0grFjxxbeeuutLVevXl1+5ZVX2gHef//93Tt37rSkp6cnvf7663sefPDBFgADBw4sCggI8Nrtdj2A3W43BAQEeH0+H+np6fmhoaFegCuuuKJ0x44dtprahoeHe6OjoytPFpfdu3cvzczMtF111VX2GsJnxowZ+x999NG4l19+WdehQ4dyRVH8c+bMifz888/DAJ577rmsZs2aubt161axbt267dOmTWv63HPPRU+ZMuXwyT4sFovP5XL9oih1Op16q9XqA2jVqpUDIDY21uV2u//UhG1xcbEhPT09sWPHjvZ77rknDyAjI+PQQw89FLds2bKIHj16lISEhHjOps+LYwbZpmByHV/L7Q4GV3Y2AOU52Ritxz8vo++i+F1BCCGEEHUsMDDQExwc7AVo0qSJ2263G3bt2mUeN25cos/nQ1EUv8lk8ul0Ov/MmTOjFixYEHbifV69Xk/Lli2rTq4rHjNmTGFqamr5yTW5K1asCE5JSbGXlZUZBgwYcIndbtf7fD42btwY1K5dO0dNbRMSEqqcTqdhz549ZoCtW7cGtWrVqvJM8X/22WehL7zwQtb777+/u6SkxNCzZ8+y9PT0gpMxNW3a1J2WlqYWFxcbAAICAnx6vf4Xs9Dt27d3fPvtt8Eni/WioiJDdna29WSRrvuVSUmdTuf3+/1nfL06h8OhGzVqVKthw4YV3n///UdOHl+1alXwP/7xj0OLFi3SDAYD3bp1K/u1fk51UVSFOqMeszsAB+AN9lC1fz8AuVn7Maceb2Py/em15UIIIYQQTJ069cCkSZMSDQaDX1EU3/Tp0w/Ex8e7WrVq5Rg6dGiyTqejW7dupb179y5PTk6unDx5cvzSpUsjfT4f06ZN239qf+PHjy+46667WgwbNkxVFMX//PPPZ4WGhnonTJhw6Oabb1YVRfF17tzZ3r9//9KKigr7qW3NZrN/6tSp2ZMnT07w+/20a9eufMCAAaU1xQ7QokWLylGjRqkWi8XXsWNHe//+/X/RVq/XM2bMmKNjxoxpqSiKPzw83D1z5szs6m2Sk5Orrr/++vzrr78+2WazeT0ej+6+++7LCQoK+s21yomJiVVZWVnWWbNmNZ44cWL+r7WdO3du5JEjR8yLFy+OXLx4cSTAU089tT8pKanynnvuSVAUxR8fH+988sknc35r3Op0v7dCP5fS0tL8S5YsqdU+dz7zNIcvnYO29nIGlzQiZuYzLBt6I0cHKiS13ET7naOIvHNqrY55MVNVdbOmaZ1qu9+6yA1xbtVVboDkR0Mg1w5xJjXlRmZmZnZKSkrhmd4jxG/JzMyMSElJaXHq8YtiiQWA4rMAoLe6qcrOpmrvXsosNszmCvAZsFqCf6MHIYQQQghxMbhoCmSj3gaAwerEnluM47vvqAiwYTI7MFSFYgiw1HOEQgghhBDifHDRFMgm4/FnShstLsoNwRS/OR+nzYLZ7MBUGYYhRNYgCyGEEEKIi6lADrLgc1swWryUtbwEd04OlVYFi8mBsbIRhkbyDGQhhBDiAuPz+XzyjFbxh5zInRpvGrx4CuQQK3p3AIqpiqLkeAKvvBK32YDJ7MBYFYq+UaP6DlEIIYQQZ+eHgoKCECmSxdny+Xy6goKCEOCHml6/KB7zBmAMDsBoD0ExVXCkJB/DfQ9gWDAbvcGLqdKCLvistugWQgghRD3zeDy35eXlvZ6Xl9eWi2jST9QKH/CDx+O5raYXL5oCWd8oCEt+EyxhmVS5y/lu7XpMZgcApioDBEXXc4RCCCGEOBsdO3bMBwbXdxyi4bloftvSN2qE2RGFxeLAZ3Sxf99ezKbjBbLZBdjC6zdAIYQQQghxXrhoCmRDWDgmR2MAlJBKystLMSvHtyA3+Yygv2g+CiGEEEII8SsumqpQH2xFcRxfZ2wOqcJjNWBWysGvw2I013N0QgghhBDifHHRFMg6ox6zMwgAi9WOXzGjDy7FWBWKKUCp5+iEEEIIIcT54qK5SQ9A8evBbeZI4+9ZoxTQPrgUS2krDMEygyyEEEIIIY67aGaQAQxmF2ZHGM1MQTgNhYSYK7CUJqKXTUKEEEIIIcQJF1WBbAzyYXZEEWFQmNr+XgCsJYkYIsLqOTIhhBBCCHG+qLUlFqqqhgALgUCgChilaVqeqqpdgecBD7BS07SptTXm2TKGKSiOOGyGbVSU7sXo12Epa4Y+wlZfIQkhhBBCiPNMbc4gjwG2a5p2OfAe8I8Tx+cAI4GewGWqqnaoxTHPijEqBHNZc/Q6P1b3EnTlTVB8FeiCZZMQIYQQQghxXG0WyNuBoBNfBwNuVVWDAbOmafs0TfMDK4BranHMs6LERBFY0IFjB9tj1FURUJaAosuCoKj6CkkIIYQQQpxn/tASC1VVxwN3n3L4TuBaVVV/BMKAyzleKJdVa2MHEv7ImLXB2KIFOopoWzSAV6qac2d+Z0zGDWAOrq+QhBBCCCHEeeYPFciaps0F5lY/pqrqEuApTdNeUVW1PbCY48sqgqo1CwJK/mCsf5ouIBCDvphIn4WHr8ygfO4OlMjVoNPVV0hCCCGEEOI8U5tLLI4BpSe+zgeCNU0rA1yqqiaqqqoD+gLranHMs2Y0l+IpN2HMdwKgxMkTLIQQQgghxM9qc6OQh4DXVVWdACjAX08cTwcWAAaOP8ViYy2OedaMgS4chU1xZeehpxRD/CX1GY4QQgghhDjP1FqBrGnaYaB/Dcc3AF1ra5w/SwnT4y+w4tTsmPT70DW7ur5DEkIIIYQQ55GLaqMQAFsbKxb9RvwuAybjfmjcur5DEkIIIYQQ55HaXGJxQdB3GErExp64ChdgbB4HekN9hySEEEIIIc4jF90MMqYAGPYqJkM2+uaX1nc0QgghhBDiPHPRzSADENsZ0r+C0Lj6jkQIIYQQQpxnLs4CGaCJPL1CCCGEEEKc7uJbYiGEEEIIIcSvkAJZCCGEEEKIaqRAFkIIIYQQohopkIUQQgghhKhGCmQhhBBCCCGqkQJZCCGEEEKIas7Lx7zt2LGjUFXVA/Udh/hTmtdFp5IbDUKd5AZIfjQQcu0QZ1Jn1w4hTqXz+/31HYMQQgghhBDnDVliIYQQQgghRDVSIAshhBBCCFGNFMhCCCGEEEJUIwWyEEIIIYQQ1UiBLIQQQgghRDVSIAshhBBCCFHNefkc5OpUVdUDLwMpQBVwm6Zpe+s3qvqhquoWoOzEt/uBV4DnAQ+wUtO0qfUVW32Q3PglyY9fkvz4meTGL0lu/JLkhxCnO+8LZGAoYNE0rZuqql2BmcCQeo7pnFNV1QLoNE3rXe3YNmA4kAV8oqpqB03TttZTiPVBcuMEyY8aSX4guXEGkhsnSH4IUbMLoUDuCXwKoGnaBlVVO9VzPPUlBbCpqrqS4/9vjwBmTdP2AaiqugK4BriYLmKSGz+T/Did5Mdxkhunk9z4meSHEDW4ENYgBwOl1b73qqp6IRT2tc0BPAP0BdKBN04cO8kOhNRDXPVJcuNnkh+nk/w4TnLjdJIbP5P8EKIGF8IFoQwIqva9XtM0T30FU492A3s1TfMDu1VVLQXCqr0eBJTUS2T1R3LjZ5Ifp5P8OE5y43SSGz+T/BCiBhfCDPLXQH+AE2vFttdvOPVmHMfXyaGqalPABlSoqpqoqqqO47/9r6vH+OqD5MbPJD9OJ/lxnOTG6SQ3fib5IUQNLoQZ5KVAH1VVvwF0wNh6jqe+zAXmqar6FeDn+EXNBywADBy/03hjPcZXHyQ3fib5cTrJj+MkN04nufEzyQ8haqDz+/31HYMQQgghhBDnjQthiYUQQgghhBDnjBTIQgghhBBCVCMFshBCCCGEENVIgSyEEEIIIUQ1UiALIYQQQghRjRTIQgghhBBCVCMFshBCCCGEENVIgSyEEEIIIUQ1UiALIYQQQghRjRTIQgghhBBCVCMFshBCCCGEENVIgSyEEEIIIUQ1UiALIYQQQghRjRTIQgghhBBCVGOs7wBqctlll/ljYmLqOwzxJ+zYsaNQ07TI2u5XcuPCV1e5AZIfDYFcO8SZ1OW1Q4hTnZcFckxMDEuWLKnvMMSfoKrqgbroV3LjwldXuQGSHw2BXDvEmdTltUOIU8kSCyGEEEIIIaqRAlkIIYQQQohqpEAWQgghhBCiGimQhRBCCCGEqEYKZCGEEEIIIaqRAlkIIYQQQohqzsvHvAkhxMUotzyXOZlzWHNwDXFBcQxvNZxhScPQ6XT1HZoQQlxUZAZZCCHOA0XOIm5bcRsrslfQLbobLp+Lh795mEfWP4Lb567v8IQQ4qIiM8hCCFHP/H4/k9dMptBZyNy+c2kf2R6f38esrbN4bftrONwOpl8+HaNeLtlCCE3AmY0AACAASURBVHEuyNVWCCHq2aqDq9iSv4VHuj1C+8j2UJ6PvrKMSW3GEGwKZubmmRj1Rh7v+Th6nfzhTwgh6poUyEIIUY98fh8vbXuJFsEtGNL0cvjw77DlLcAPBjNjkgdQpd7CLG0BZoOZjG4ZUiQLIUQdkwJZCCHq0bpD69hzbA8zuk/DuHAkHN5GWbv/wxhzCdaib9FlvsPt2nIqU67j9T2L8eMno2sGBr2hvkMXQogGSwpkIYSoR//d+1/CLGFcu2MlufscfGV4l8LPjhe/jaLS6HrteOKzHmLS5v9iaNmFV/YsweF28ETPJ1AMSj1HL4QQDZP8nU4IIerJscpjrDm0hoGRnTi8cScflT6KWxdI16vC6NLNit/j4X/zc/nC/TCe3o8yce93THZb+DT7U+784k4q3BX1fQpCCNEgyQyyEELUk+X7l+Pxeeizax+flvyD0AiF9llz0X3wNQCpOj37O49G29iJgoNd6d/vPcZ+Po5GwUE8otvIuBXjePnqlwm3htfzmQghRMMiM8hCCFFPlu9fjmptyoFdV6AzKCStfZqyHzL5T9uBvNj3Tt5p05eQ75eQmvkiZUdK+GChhUO9P2SoS8cLBaVkHdvD6E9Hc7j8cH2fihBCNChSIAshRD3Iq8jj+4LvuSY3gUOuVOILv4TiXF4dMpn02Q/z8vMTefCdp9Ceep1vIhrTef00DCVH+fCtEna0W8QVthhePXyE4oqjjFsxjtzy3Po+JSGEaDBqdYmFqqoK8B+gBWAGHgMOAh8De040m61p2nu1Oa4QQlxovsj5AvwQkNURn6GUmG1LePmKsUy/dxhNgi0ABJqN3HZtW3I6PsusJ95g6BfPkq3ewprFYO/zGpcp/8drBzP5ayyMXzGet/u/TYQ1op7PTAghLny1PYM8CijSNO1y4DpgFtAR+Lemab1P/JPiWAhx0fv8wOd0Lu9AmTuB6L2fkRmRwA33jP6pOK4uLtzGozPS+Sj9UUwHP6Hp4a/Y/Fken/meIjmiI3Nycyly5PP3L/6O0+Osh7MRQoiGpbYL5A+Ah058rQM8HC+QB6iqulZV1bmqqgbV8phCCHFBKa4sZkv+Fi7N7oKFMmJy1rF10BiuUBuf8T0WxcDjt1/NvgefZJ9rPwlZH7JnSzHLih6ilTWZJwuOsaNoBzM2zTiHZyKEEA1TrRbImqaVa5pmP1EELwL+BWwC/qFp2hVAFvBwbY553quyU7z2KT557TIWvNSGj17rgrbsdnw5G8Hvr+/ohBD1YO2htQQ4Q9GVt6FJ7ga2RCZy25i+v/k+vV7H/YPaEfGvh1geaqX1j/PI229n0ZEMOlY15TannyV7lvBx1sfn4CyEEKLhqvWb9FRVjQVWA29pmvYOsFTTtM0nXl4KdKjtMc9X3vydPPlmD67Kms8DJgczAg1MMTkZUbKeaz4bw/Q3LkPbOk8KZSHqya7iXSzaveicj7vm4Bo6FvRA5/cRk/Ml2b0H0arJ7//j2pieCfT559+Z1epSWu94FUdBOYvypnL94UAu9Zt4bP1jHLQfrMMzEEKIhq1WC2RVVZsAK4H7NU37z4nDK1RV7XLi66uBzTW+uYHxFu3lnqXDeNvsZ1jTy3lv4Ht8eeOXLBuyjMcu+xepjZJZpHcy4vuZ3PZmF77Z8Q5+KZSFOGfyHfnc8dkdTF0/la9yvzpn41Z5q1h/aD2t8joRVqFRoCj0GT3krPsZnNKUiffezLRLB5Kw6zUoLeHDwke5e28gem8VD657EI/PUwdnIIQQDV9tzyBPARoBD6mqukZV1TXAZODZE1/34PiTLRo2dyWv/PdmvrAo/KPNOB6+djZtwtsQZgkjITSBIck38u+0pay6YQ13N+5Bls/BHd9NZ9S7vdic+019Ry9Eg+f3+5mybgpOj5OYwBimb5yOy+s6J2NvPLKRiKIW6D2hNM1ex/dtL+eyhD+20cdVyU14bNJAMrqOpGnWW1jseawv/Bd374slsyCTeTvm1W7wot5VebxkFZSzN99Opdtb3+EI0WDV6mPeNE27C7irhpd61OY457stn93HKwYngyM6MrzVBL77XzYHfyymssKNYjYQHG6haatGxKdEMK7fHEbZ81j26UTmlO1gzOd3MDymN//oNYMAJaC+T0WIBmlH0Q425m3k/s73Exccx51f3MmqnFVcF39dnY+95uAaWhd0RvGV06hoB3H/vBedTveH++ueFMFzd/bhTqOJf218G0NUPwqYxHDlbV7SzeLymMtRw9RaPANRH0ocLp5ZqbFs22Hslcf/MmDQ6+gY14ihHWIY1iEGq8lQz1EK0XDIVtO1zHtsP0/kriTKHMCoJo/zzkNf43JBsDMXi6sUry2YQ9Ym7Pkun7ULd9OiXTjtrmzGiBEfMHDPSmZ/MZk3D60mc1F/XhzwNs2CY+v7lIRocD7Y/QFWo5WhSUMxG8wYdAZ2H9td5wWy3+/n6/3rGVh8F5FF37IjMoEBV6b86X67xIcx52+9ucNg4P6Nb9PIczl+/kInfSBT1t7Pu4Pex2Qw1cIZiPrw/aESbp+/mcLySi5vV05ASBYV3mO4q4LIPhLCPz88wDMrw/n7VUnc2rU5RoPsASbEnyUFci1b9ukkNJNCRsCDrHpdI8ieQ8qh/+JOjEUXZiE0Nxu0H3FYm1DU7SYO7VbZn1lIoygbl1zehgnXr6brytu417mPW5YO5qU+r9C2aZffHFcI8fvYXXb+t/9/9I+9isDDmRAQQVxwHFmlWXU+9s7inQTlxqD3m4jO+YbMPv0Jsii10nfH5o147Y7LGa/Tc9+Gt4j0uUgljU3+T3gpZhZ3d55cK+OIc2tXXhm3zt2ELaCIdp3/S/EuDXVvC6IqmuH126kw7SQ74jDfNtMz49t43tjWlseuG8YViS3qO3QhLmhSINci99EfeNmxl8urOlGwPpTQkr0UVX3PrZ3HUGU8MXuTDC2Ty5lYsZ1WX79KjMtLxcB0DhhS+OqDPaz/r56WHWfwUugKHix+lXErx/Niz+lcljSwfk9OiAbiw30f4vQ4GfHt+7BqNig2krqOYE/Jvjofe83BNSQVXorNk4+54hAdRg6t1f47xDViXnpPxhr0TNz4DlFeF10YQObyL9jUbBNdouWX7QtJqcPNuDe+RQncgzVgHoPf74rHejMuUzAVocfbGIBEJ6jflePz7mF700wmrXmHyI0qEzvfRL+Ea+WvB0L8AVIg16Lla/7FMQLp8MMNGByFbPPsZ/fVN/N870TaxoTg8vjYnlvKJ98f4e6dgYRe1Z6HCr8h+aNZtDeb0d8ygdzIruzZXMCuqhTGRD3PGtt8Jq6bwvOVpXRve0t9n6IQFzSf38eCnQtI0dlo68yHvk/AiikkuKr4wp6Dy+uq02Limz0b6Fr6FyLyPmNHXDtuuaRZrY/Rvlko7/ztcm41GrnpuyUk5FYCV7N01lpa/rMVjWyhtT6mqH1+v58Hl35PgWs/7cwfMOSr2ygPaUkT3246BL5ElG0v+uAoymjKkdxQDlXEkmdszyXFHWhXWMmhwO94uuxZnvr2Sca2G83I5JHYFFt9n5YQFwwpkGuJrziLeWW7GLFrHC6vlcrStVjHjWbpoEvQ63++ASchMpAhqTEcLHbwytp93P9tENFBqUw5vJq4156hWdNo2k68m9zgFH74Mpd2WeNIyi3g+YIVeMqLuKLrpHo8SyEubF8e/JKD9oNMyi+EK6dA1wnw3X9IzNuNT+8juyybVo1a1cnYhc5CPFkB6NATdeRb7DeN/lM35/0aNSqIRRN6MmquwqXbPqdP9sfAQN54eDETp43GZJFL//nufz/ksfyHA7SP+S/9v7sDh7URlxteon3ybuj9ICQPAEsIVqAJkOqqwLvna/a8+RE/ZjXGT1du3taTMvMelh39gnd+XMh9Xe49JzeiCtEQyEr+WrLhq+k4K1oSXNGJsLyvKbphBFMH/7I4ri42zMZjQ9vx5X29ufzqjkxMvpF/9ppAgc5K4ZT7CHnlXoYNUeh3RztiwptyRdYovlrYmA/feAG/T56XLMTvMW39NJ7+9ml8fh8Ot4MXt75AlA+uscVS3P6vbDtUSkmrESQc/gGAfXW4zOKbw9+QWNgBm/sw+qpiuo0cVGdjAcSF21gyoTv7e/TnjdimJO5/F3NZc968dxEVpVV1Orb4c5wuL49/spPYmHX033ITHmMI15keo/2VIXDnJkgdCZaQX77JFIDhkmtJfupZhr45icFx35CQ8zGRpRFcp/2Vfl+lM/+9j/nnqoeocFfUz4kJcQGRaYTaUFXO4tx19Nv5ACZXCZtaRjP9hk6/a3YoOsTKY0PbcccViTz3eQy3NmpBn6ZbuX33CipH3UpQ374MmzSJvfluPvngCAc3tmXuj4vpO7oXsW0jz8HJCXHhig6M5vktz3PUcZRydzl7S/bycn4+WteXuPmptdhdXpLNTfivwY0eXd0WyLs30Mx+FZF5K9iVdCm3xITV2VgnRQSaWfjXrvxjkZVp3zbi7uzXKIgYy7v3fszA9BSiOibVeQzi7L2ydh9HHPv4W3YTvEoUV1XNIH5YV+j/NPyOnyv6gACa/esRoo4dI//pJ9izLpeDsb2xudOoOujg4U0vceuNA0mJb3MOzkaIC1ODmUH2+rxsPrqZksqScz520ZY3KCjqglEXh794M+n33oxFObvnUcaG2Zh5Qwqf3XMl1oGDueWKe3i3TV+KV69h/6BBNPrgVcbd3JzdyYsodPn5cNZ2PnpuEwU59jo6KyEufONDU7ktfjArs1eyPvcb7ikuI7lRV+74xMZtBXrur7IRVN4UPSZiDbY6e5KF1+clb4cdHXqa5G0h4Nq+dTJOTawmAy/e3IFbhvTi0eSB2JXn8Xl0LJ2zh60z3sbnOjcbpIjf51iFi9fX7aevYS82utCy+COSBzaHfk/9ruK4OmOjRjR94mm6vvEoXVwf03Hz0zQr/JEW2R348qlDzHv5U0ryHXV0JkJc2C6IGWStWMPr99ImvObfdrcd+ZZHvvon+xxHCDDamNzpHm5Qbzhn8S374S06H/g/bM7DVIy4GjUq6A/3lRAZyLM3pjLxqiRe+TKRceu7MURbzaAvVmNevpy/t72E5Qmz2RzeFv+ea8l5opzESxvTdUgCoU3kBgwhqitd8TiTDq1mQoseeHO34rE0YdTOGxhZocPsKsVcVkqv4AR2WJOJ8rjIq8irkzh+LPqRqILWmN1H8bmO0f2mAXUyzpnodDom9E6idXQwU97Tk2SeSXdtLN9kJ3B09NNcPvlaAjp3PqcxiZq9ui4LdLtpe6g7QY799OryLbohX4D+j89nmZOSaPnBMkpWfEpQxr9I0paxrV0fyrZ34+3t60nsEEmn6+KJjPvjP7uEaGguiAJ53g9vsDz7f4xvO570lPRf3GW+8vs3mbLlGSI8Hh4pKeWTcBPTN02nR0wPYgJj6jw2f+5WfjjUikRDFM6qtYy78aZa6TcxMpCnRqSQf63K2xtS+fvXu+nw4zcMztlAnx/yuMqQx5aEryhqdhXZmdeyf1sBbXo2pWO/5gQ2stRKDOIcyN8Fuz+FvO347Yc55q2i2GyjPCACb2gsgVEphDfrSqPAaAx62SXrbP3LcBcdPQrXHvqRfaYezMy5mgF2G3q/kz6dy7Fv2MwaEvix/ApCK5eR4yyskzi+y95MTFlLGh/9gv1qJy4LC6yTcX7LlWpj3rtzGHe+bePjLtPovGs40I3SJ7+ma+tPaXbf/2EIkiLJ4/Owr2QffvyojdQ6u5nyVMcqXLz5zX5uKPei01np6puLeex8UKx/um+dTkej6/oR0qs3WTOm0XXRe1Qal7Mh5Sr2bOtF1pZCWrQLp2P/FkTFh/x2h0I0cBdEgfyv/KMYnV5e2/4aK7NXMrL1SJrYmrAy8zWWH9tBe7eXu2MnkKMr5/FDzzAwLobZ22bzWM/H6jy2Hze9RMLhvtgqjxA6biA2U+1+pI2DLUy+VuXvV7dk9a7OvPddGoc2bqHHgS1ceXQLnfd8gktZi5bcnx1re/Lj17kkd29Khz5xhDaWGeXzkt+P44eP2b/qeb4ptXHEF0OFJxK3twluvR+HycmxgBKOWb/jWPYneA1ujH6INQXTNrwtXRP6cWXzqwkySSHzW9I2bqGs6BKmN7sSW6WbYRVBOC02+g4JJm5AGs7eXdjy+EYqAtsSXbWA1c4i/H5/rRdEe7bsI8YfR+P8TIpuG1erfZ+tuHAbH0wYzENLwvi+1d0EHDtEV38an+cco33abah3jyaoX79zVhSeT/LtlXz04zaWHHyGnAoNgJvUm/hn13+ek/HfXJ9NqDeHSEd7mh5dSdJdwyGidteJ661WkqY+gSt9Irv/NYleG/6LjxVsaXslB3/sS/b2ImJahZLaJ47mbcMvyjwQAi6QArki7mam7P2BfrocnvbC9E3TATD6/Yz3BXOk4k5mvHeEwqCmFAVfy42l61mw7yMmpE6gaWDTugvMXcnK7wsxGWJwe75mcN+RdTaUYtBz7SVRXHtJFMUjUvjv1mt5ZOMBHNk7SXO8RXzOe3TZ8xkH465l59pu/Lgul6bNraiXt6BF+whswfKg+PPBzj172fN+BtqxVKzl96PDQDgQ4fOi83vx6wz4q88U+30YDSV4LXkUW/PIsZUxb/syXlPeJjm0EVe37ctVKYMxGeX/tyaGSzqSu8NL+1I7XoOJSgtcPSSS5gMuBcDSpg3RrnfQ9FcT5ozA5avC7rYTbAqutRh8fh9VuUHofeUYHXl0GX7u1h+fiUUx8PSNvVjy3Qd88s0YlrY7xMCdY/k24TYKn/uE1osWE/3gA5hbtqzvUOtUUXkVbq+fzQeOsXjLIdYd/gxz9CLwGQkoH06vFA8LtYV0ie5Cn+Z96jQWh8vDvK+zuaXUguIqo0uzr9D3WlNn45mim9J27iLs+3eyfdodJP2wnOAfVnGoWU8O+/vyye4SwiIVOg5uSVLHJmd8IpMQDdUFUSB/9sJWrKX9sEYd5j+2g5TpCig0B2H39GT3shxuOvgMXnMIVmch9uv6EGm381ZIEBuPbGRYy2F1FpdH+wRDbh9M7hJa3NoHwzm6gIQFmBjXM56xPVrw3YH2vLW+Kyu1FbSxvo1y6D267P4fNrpzxHkZqw9UAn6aRBlRL29B0mXRWAOlmDrXHC4P899eiGdHFrqK2wjyOGl6ZA0RukM0bR+PLak5VQHBFJU4OJxbTNHBIiisINCr4LZE4LQ1Rm+Jp5Hxl39q3bcedutWo7eVE9U4mKaJzYlsHkJk8yBCIqzoLvIfar3+3otmGw+ye9UeTBYDqWntCW/e6KfXdTodiZ2i0bLBWpIM0ZkUOYtqtUDed2wfTY61JOyYRlZiezqF117ff1Zap0Q6x3/KG++M58OUx+mQfTN+3WCOOvNIGvMA8b1b03jinSjR0fUdaq17c8sqnto6BU95a/xVkVhC9mKJ2UNbv41n8vMIq3yJj74dwn5VZeZ3M7km7po6nU1dtPkQEc6j2DyxNMt7h+hZT4Kh7n9EB8W3pvt/1pKz80sWvHMP5qxVXPr9anymThyo6Mtnc918M+87Lmlvo/3NXTEHy18mxcXhgiiQ44f2Z+tnRzF6K3GsWE+Zq4DAqhIae/YQGtWFDZf/BR8G9Hhpue09IlpGExgNm458V6cF8tq1yzDox6A4vuSafnU3zpnodDo6twijc4swiisuYcm3wyjjSfYkrWaN7lNStBV0O5iIyd2KgooOrM3zsu79PUQHV9C6YyMS+1+KElw/ayHPBb/fz1HHUXLKcmgR0oLGtsb1EkdOkYP3XngZS34iem83YnM/J/kSH7F334qlTZtf/NCNBVJPfO31+fk+p5hvv9xK7vpvCdm/itYluUS6XLhMwbhNQVSEhVMQHEyxN5wDjkjy9vvQoQBgVCAsykZkbCBN4kNonNiIRlEBF91MUOJlsSReFnvG15v074XhhYMox2KATAqdhcSHxNfa+JsyNxDgjiGiYCf2oVfXWr+1JTY8gH/d+S6dFz/FKtds/hfZhSv2j6Ci3Z0cyNpLwoi/0aJPKuFjx2Jq3ry+w601g+Li2bojnHWh23DhIcyvY2zRMUa6ylAuGcyhowXckPsBBYW9mWPIRTumkRyWXCex+P1+3vx6P/3LjFicBXTokI8uoUedjHUmca178eC071j2zetM3/kSVRWbuW73Jtrk96DU1JNNW+PY8u0qYs1HUXvE0mJITwwBUiyLhuuCKJC7j2iH2i2er9/czEHDVaDT4QDyAbPVQOtOTWgSH8LujUfQ/DejZHvpnLKWDYc21F1QzmPs/T4Onc9NVP+O9b5OKyzAxG29Vfy95vLDD5lc9UUGuxK38O+O+6hyZ3F51nZ6FqdgKA/nqFvlizUevv70f7Tw7SE5NYiwa3phadsW3Z+4U7o+FFcW8+KWl4gPaUHzoAR8XiOHcrey48hqNjv2ksfPj7DqFXM5T/Z6mgAl4JzFt/NIGR8/+zq20lQCKw6TWPIOnZ55FEvr1r/5XoNeR4cW4XRocQ2MvobDJU6+2lvIlz/kULRlG1EHdpFYkkvcwS10chxDjx+fzkBFQDT2oDjKA5pSXtCMXftj2fHN8Rs39T43AZ5jBBic2Gx6LCFWApoEExIXQVjLpoQmNEap5XX05ztrskqA81uc5jgAipxFtdr/ge8PE0IMocd2kThseq32XVv0eh39rr+fy3Z1Z8tH43nuku0EHruCrrkDKAmZRPbOXSSMuIPo1DhCrx9B0JVXolOU+g77TzH8uJO0ZdGMN7sw2SpwWFpzRNeFBe5oPAcUggN8GAJCueHQB7zaPIYvcr6oswL5m31F6I8WYPE1oenRN4ia+UKdjPN7DOl+G/27jmbumn+zMPBdFhg2Euv8mr572xNadjUH3M3Zv9aI6fMVxFiLSerSlIQh3TGGyo19omE5Jz8JVVXVAy8DKUAVcJumaXvPpo/wmEAGT+lF+bFKju4vo8rpISjcQtPEUAzK8aKuZafGLM5YheYeyhXZX7I6MJ8CRwGRttrfUKNi63/xersRaM+kz6h7a73/P0qn09GuXSq0+5COh7Zx1con+Mi5kfnJh1ipP0xMeSjmglI6lbclWmdml78re350EvP5Qpo7M4nonkrQVVdh69wZQ/D586fgM9F2fsf6HQtZZPplYW/z+Uh1euntDKIdLg4ajvGafx1//XQsr/b9D4Gmup851/LK+HjmAmzlqUQUbiM+ajudXn8LveWPPWWkaaiVGzrFckOnWBjTg1KHmz35drKLHPxYWEblwUNU5R3BfmwbOscP+PXf4tN5MXh12HyNaeRuhuJthotoqvzhFFQE4a20Qr4etpcBZeD/EZvrGEH+EkLMlTQK8tKoiZnQ2HDMsTGY4uJQoqIu+OKoOp3JRJC+nAL98VnmosraLZDdRwMxVeWRGxpGx+ZNarXv2haWfDnXxK6n/Xu3M9/2CfNTN9Au72o6KddS3Og+Iuy7SXjwSUKs0wgZPJiQIUOwqHWzNXddsytJ/BB+E37diWuHG4xuB2FVBzF5HRytSsJXOpji4B209zn5IucL7ky9s05ieeubbPpWeLA6C2jd1YMuokWdjPN7KXqF/2fvzcOjKLO+/29Vd/W+ZOtOZ09nqwTCKoJssigoQpBAFEUEAYdfxlfRB3VGZp4BeVFx1AyLoCCoiKKyhCAqirIpoywKYU86Cdn3rZPet6r6/RHCy5JAEpoEkvpcVy7o6rvOfaoI3d8697nPSR37d8xjF2LrsY/x3YXP8UniebDEBfjaJXiwYAjCG/qjyB2KgiMiiA/tQxBbAr1egJB7oyHt1xdUSEiXB454eG6FzgoVTQEgMRgMQ2mavg9AGoBHO2JI4StptYyZUCTA4JRe2LPRAP+igUCiASeqTtyW3vM/p2eCFUyBO9YDgeDOjLoKQ/sjbO42PGeuwlOnPscWwzZsldahTP8tBM5dsJg0cNY+AJF5ADzhD6CYGwttzhmE7F8Fn8aLkMTFQjpwAKSJfSDS6yGKCIfAz++O+tCLYnSYe2g+hIQZoMxghAKA8AVLBsDJSeFkCZxl3bD7FuE/rrVYSGThraNv4K37376tftWYndjxn13wsdDQVRyBNi4f977ziVfvnVpGYVCkHwZFNndka64TPhsA4PYw+LM8B7+XnkR+1Ulkm3Ngdxng4WxwEB7UCgUg3ATCa5UIMfog1BwAX6cGHBeKBlKHKugBCwlYACKXgcRRAonjFCTOBkgIB6QyAnIfMeR+MojlIkh8FJBpVKD8fCBQq0BKpRBFRXX4gaAzUasIlDFqSN0S1Hqx1JuLcUHRGAq/+nOw9LtL6gzL/aGdswOvnEvH/T//E29qv8WnQQdxT/Fk9BUOR+29/0AIShG6fTPqP/kE0n79oE6eAuVDD0Ho63tz+3cIoUPjMLevHhWni+Gub4RMTUE3MBrCS2kD5bt+xve7rfi95hmMMy7Bu6QTpeZShCpDvepHncWJ7HMV6MPqEFj9FSLef9+r9m8FiqQwc2gqZg5NRVVtAXbvexvZ1qP4JW4/qoW/QOSm8ODFexBlHIQirhcKK4UQ7WhAwPqPobXkIihYCHnveIjjYiGOiYEoKoovI8hz19BZAnkEgB8BwGAwHKVpetDtmihiYDCkRCYqyTGQuLPxa/Gf3hfI9gbU1/WGhKtE8iv/n3dt3w6UgVCPfAXPjXwF8+oL8N2JNdhScRh7xPWAZjtiXVtAWkIhqXwELjIR1f79wbEO+NguIvTQH/Dd8S1EbisAgFQqIYrSQxwZCSo0DKLISKgemQBC0DU1eiUBgWB9QlDtloMhxQAAgvVA7DRDxNogZTzwlwSCMeuQWyvCfOFqfIjvcX/Y6Nvy4AQATg+D1Wk/QGcKha7yKBSaIxjxzred/mBBCQUYGp6AoeEJAJ66+k2PE46qbOTkH8X5GgPyraUocJXgq/pODwAAIABJREFUv7iAMoETHgIQMhT8bMHws2mha9TCzxYAlcMPIlYHAioQhABgAdRe+ikCwLEQuYyQ2bKhsFbAN8iM+zes6NTr7gh+IUqgGIhq1KDG5j2BfCHvAiSMEmpzIYgHZnrN7m2HIIA+KRgc9zB2HPsAm05vwIaIrTgb8j2G5z8GpnEAygb9E/oAM8LObIX99aWofPMtKIYPh2LsGChGjQIVeGdHywFAIqegHxbd4nvBU8ah16kvcapSj4EFsYB/LU7VnPK6QN59uhzjrXWgXAx0fU0gVAFete8tAgP0+MsT6wEA1pIz+O/hdThlPoLzkb/gJ/oISEaK6NpE9KvsD6d4CMoxEqc5BqqzRVAf/hNKSwbklnIoJW5I9BEQR+lBhYZBqNFAFBYKKjwCQq3mjgrA8PRsOksgqwA0XvGaoWlaaDAYPN6eiCQJxCVIcPpCAkYXqHBO3a5MjjZR8O3XsEviAM/P8FPfvtJutwOxnx7TxqVhGoDcOgN+zfoaR0sP4yBVBZvfJggYCpHGRMTWDoRHSKNR0RugARdhA8lZIGNsUDuM8M0qhfLgHigspYiO0kPau3eXXI86MhBPrE0BAHhcDFiGBSURXv6Q5TgOjZnn8MuHR1EquQchJ2YgYdRurDrxH4yLGHdbmm/855Oj0FUq4Fd3BnLXLoxd88ud96EvFEMS0g99Q/qh7zVvuVk3Ki2VKLeWo7ChHNUWIxrMdbBa6lFszwXntkDotkNsZyGyC0G6KMBDgXGLIHApQbkCIJIHQeQ7FFmqM7i/Sy6wfWhoHVAMxNboUNpY7jW7hpOnAISDspei3wP3ec1upyFWgLr/b/jLkOcw6fgHeCf7c/wU/xm0ju0YXjANTM1A5Ac/i4AhAgxkTsNxcBcshw41nRoXB8X9IyEdNAiyAQMgUN99Oar3/s9knF+4DwWWFEi49Thfex6ToiZ5dY4fjpZglCcUgVU/oN+7XZd73B7kYX3x0IwP8BAA1mpE7skfcDLnWxjkZ1AQ9xvyhRKIbTRCG+MQZIqCRjUGZLPc4BiIPEbIc6sgO1UGsfMCKLcFYmcDZJwZKn8RxFotfGc+BeXYsV16nTw9m84SyCYAV66rkLdDHDcTO5bG6Qu5iKuOwmFbkdftn/6hCBDHQTKx9Z3xdwOx/jRiRyzBPDTVaq2oOoP87AwUlPyGKvHvKA8mYHfFgHTEg3BoIXGpIHf5wEr1Ro18ABCcBDfhhoWR4k746heKBACuFrwEQcBnYB8kreuF3Qu3ogwP4Zkj2fj76HwcKDng9dqmGYcLoM5sgNhej+CSTYjd/hUoya13wepMKJJCmCoMYaowDGlPdS+OAxyNYE2VsNWXwlFTCJW+62v+tgW/vtEgf8yD1qxDpuWM1+xWFllAMU7UqWXwUYi9ZrfTESsQNPJvWDH8FZw+9Qk+OvcxMhI+h499N8YUjwdbch9+5hJhv7c/AoMZ9HYaID1/FHWfbQY2fgyQJCSJiZAPGQzZvfdCOmDAXbHULlIrEOhvR1ljHO6rJHEu4JRX7edVmxFVnAuCC4c8KA9C/zs/6n4tpNwX9MgZoEc2BYs4xoOSvLPIuXAQpTWnYFT9jnrWBDvjA48nEJwzBJQzEDJnIBROPcTMNZUwODfEzkqEHDuLCbxA5ulCOksg/wYgCcC2SznIZ2/nZJpeoRAwZyG3R8HGnYGH9UBIeudSPQ4b6tneEDhyMWHcFK/YvBMgCRIhuv4I0fXHSADwOIGi34GL+4GCw0DVeViFHhSphSgRUCgmglHKxsLqCYRS9BSAqC6+ghtDCgSY9N50bHruG1SwT2FI2TJ8dvYTrwrksjobiraegsQjRJ+z62F76zkEh928WkW3gSAAqQ9IqQ8UgfFQ3EWXLo6MhNz2O5xcEBpcv3jNrqdaiQBzEWwJA71ms0shSfQb+CzWDnwWF0t+x9bj7+E78Ta4mT3oUzUYvaqHwZSlxRHEoVYRA9ekWQgRWRBhK4Wm5Cysn30JwYaNAABxQgLCP94IoZ/fTSbtWvo+OgCln5djcG4vrA7J9ur3yZ5T5QhzBEJTexp9/3XnbPa+FQiBEOH0AITTAy4fY1gOxfU2lNSaYawpg6mmDKbaYpgbz6DRUQ6SsIECCZJRgHPpwLnCYIf3VnJ4eDpCZwnkDADjaJr+HQABYM7tnIwkCfgKTbCTUeAIDoWNJYjx9U5d08yNn8IuTYBR9i2CFXdB/nFHEYqB6DFNPwDgcUFuLESv+nz0MhYA5grAXAW464HguyOSLqQEGDtvAH7YVICkP8fgf4MPoLCxEJHqyFu2zXEcNq88BJVHjV5Z65H1SCBmPzz/1p3m6RQIioKUtMPF+sDCWsByLEji1jbfMgwLkU0HlekQiEdHe8fRO4josGH4R9hOvOK24+jpT7H/4rf4LugA4AhBeEMvhDbGIrAxEhyrQCHiUegTDwx7DE7CBQnbAH/UIJAQ3vG1RiOH0hB8kgPKNgAO9iwuNlwE7Ud7xXbh72cQTfhD6j4G7YDuIZBbQkAS0AfIoQ+QA/E6APdcfo/jODTa3ag2O1FtcqKqvgFEXR4S+6R0ncM8POgkgWwwGFgAqZ0xVzNaHYWscn+ozRSOleR4TSBXHikFlAkQjemaphNdhlAEaOKafu5iou7TQ771LKrVYzAw7yAOlRzCM+pnbtnu1u+yoaqRIKj8F1SrszD5H4du2SZP5yKTAXWMDxiwMDlN8JH43JK9yqJSkKAgtZcjfMRt25fc5YgoKe4f9BzuH/QcOJZFcdEvOJf3PbJrMpBlrUSxRwEn4w+l0w9qhwaB1mBorKHwuGJRVG1EL987u5wkQRKgpFY0EL0QWC/A+brzXhHIRXVW6KtrIXIK4P+QdwT33QhBEPCRieAjEyEuUAkgAEBMV7vFw3PHP7x3mODeOlyocKJvWRhOV+bhqb63ngtpt1hh5KIBTzHu7XcnZN3ydIRhTw3CzxuzkXyyNzIG/4BnEp+5JXtVdTbU/HARMqcJwaUZsGz4X/jK7uxlY57rkSspMBY5BAyFBmfDLQvk/AvnAEhgFZkQE9Izfh8IkkSEfgwi9GMwsfmgy4baylPILjuCgroLKDKfRbajFiaWwQy/r7vS3TbjNyAU5X+4cV9hGC7UnMHU2Km3bPOnP/JBMtHQ1PyCAU+/7AUveXh4vEm3Fcih9/cG9p1EVK0eRxoKvWIz84sdMKuiUCL/DjMDO7+1NI93iBkYhAPkKdgUI2E/8yGM443wlXS8fuuWD36HmJGg9/kPcPxxGi8MfMyL3vJ0FnI/CWAB1HYVzC7zLdurKKwEEInGAGmPa+99FSIZAsKHYUT4MIzoal86SPyYXij/4zSi6iLwe815r9h0HfkNIOJAqHIgUfeMBygenruJO7PDhReQa30gddXBxxWEKmuxV2zW/ZYFAKhJMEItvvtKFvE0QZIEYu+PhNEvAaPOqvBr6a8dtvXr8VKIy4Cgyv/ioq4Y0/7PyjuvpBtPm1Bom5b6dY0+qLY23LI9U6kbEnstOPqemw/muaOJi/QD6WqE2KNHobnklu053AyoagYSey20E4d7wUMeHh5v020FMgAoCBMI6GBnbn03LMuycNrUAGtBfJ94L3jH05UMHB0BAIiq74M/Lx7qkA2WZXHiq0wIPVYEle4G8/KzCFGGeNFLns5EdSkNIsCsQknjrbebdpvkkNsqEdC3++Yf9xQEJAGnwAG7NBKORgtsbtst2Tt5Pg8eNho+xrMYmPysl7zk4eHxJt1aIKvlLFwiLdxkIxrtzluydfG3P9GgjEOjKAcDdfwX3t2Or04OsdgBo29fMD/9Co7j2m1j+64ciOxyROV/jx8fUeLJEf/nNnjK01moInUAAF+bGpVm4y3ZYlkOLKOB1FaJ8L69bn4Czx2PO1ABp9gXfYpVKDbf2qpk+aGD4AgRWHkBxDKFlzzk4eHxJt1aIPvo5GAFYugaVThbUXZLtnIz9sMp8UW2LgeJAYle8pCnK4kdrkeDbxz6ZKHdX3guN4OqfbmQWctRJfkdE//6DigBdZs85ekM5OE6CDwOKJ0+qLXW35ItU7UVICiwXCWiQzue385z5yDr07TqFFsVgULjrXVodeU3QOBxQN6uTjw8PDydSbcWyH6xTcvdkXVaXKi5tbwxV1FTTqIxuByB8ruv2xHP9dD3BoMjBNBae+PP8/vbde72ndkQsHKEF3+H7DlDMTh4yG3ykqezIOVyiN0myNxqmKxVt2Sr/mLTA5dNYoRM1G33QvcoohMCQLAe+DoiUVhxosN2rGYjzI5o+BmzEfPINC96yMPD40269Sd3QO9wYH8BdI1a5NV1PA/ZY3fAzfkDrBGR4eFe9JCnKwmMUEEkdMDo1xuVGTuBoXPbdJ7Hw8J4MBcKqwUHE87hmQd33WZPeToLCaxwsWqY7dm3ZKcq7yIAOUy3VimO5w4iPliNi54GiLhg5NT91mE7OYcPwkP6g2MOIDb2f7zoYc/kxIkTWqFQuBFAIrp50I/H67AAznk8nmfvueee6mvf7NYCWR0XBoHnAnw9gThuquiwnYu/HoNJGYl6SSESNf286CFPV0KQBMLjFShwJCDij8/BcVybKlB8szsbBFRQ1aUDcx5BjC9f1L67IBW6YOL84XDfWhWLqoIqCDzBcITxD9TdhTA/GcxwQywNgrGs4znINZnZAO6DK9TKV7zxAkKhcKNOp0vQaDRGkiTbv5mEp8fCsixRU1PTq7KyciOAyde+362ftkihEHJ3LSQeLapuYcm0YP8xOKQByA8o5POPuxlRg2PACBXQWMORk3moTefU/JAJkbMB6feewjMD+HbS3QmZlAMjVMPhsdySHVMdC4mzHtLefOpNd0FAErCopHBK/CAsdXVoYy8AmMo4CN1WqIdEe9nDHkuiRqMx8eKYp72QJMlpNJpGNK0+XP9+J/vT6ShJE0gyEGZnZYdtuHKb0jNKfYvQ27+3t1zjuQMI660BwKLGvxeyPt900/G/H7oAhgwE6fwdPsOH8tHjboZcLQZHUiAct/Zd63TKIHbUI6b3QC95xnMn4A4NAADoarQwuUztN2CuQoNbD3VjPsKHj/Oydz0WkhfHPB3l0u9Oi1q42wtktdIDD+UDjqmD08O0+3zO4wGcEoBjIPCz3nL7WZ47C4mcQqDGgfKgROgOZ4Jjbvw7kvfJPgAcMgYcxTN9/9I5TvJ0GnJNUwMgtVlwS3Y8UANsPXrzKRbdCt/wpookgSYdKupz231+xclf4BTowDJ5iA/nH566E0ePHpWnpKTQza8zMzOlkydPjk9OTqYXLFgQyVz6blm/fr1m0qRJCUlJSQnbt2/3BQCLxULOnj07etq0afT06dPjSktLWy2JtGvXLp/U1FR98+v9+/crH3300fhp06bR8+bNi7JarSQAvP3220FJSUkJU6ZMiT927JgMAKqqqoTN80yZMiU+Ly9P3GynurpaOGbMmES73U4AQF1dnWDmzJkxycnJ9OzZs6OrqqpaTclds2aN9vXXX7+uCUBBQYFo8uTJVzWO2LBhg2b58uXBrdnavHmz/7fffqsGgHXr1mnaOufWrVv9kpKS4qdMmRL/8ssvhzMMA4fDQaSmpuonT54c/+STT8bm5OSIW7PXEt1eICv9JQBBIsgOlNTb231+5dlsmJUR8JAliNLwS2LdEX2/QHhE4ZC4ZKj/eV+r4/J+PgynIAxgz0Okl2NQIF8Pu7sh0zQ9ACtsYjBsx4JSLocHLCmHm6xHoFLqTfd4upiwMBXAuqF06VBedard5xeebCoPZ/KthkQo8bZ7PF3EihUrAhcvXhzhcrkuJ5WvXr06ODU1tSIjI8PgdruJPXv2qGtqaoQ7duzQ7ty5M3vLli2GlStXhrEsi02bNgUkJCTY0tPTDRMnTqxbu3atrqV5Fi1aFLZ69eoQlmUvz/Pmm29GrF+/Pi89Pd0QHh7u/OyzzwJOnDghO3nypPKbb77JWrVqVf6yZcsiAOCNN94InTRpUn16errhxRdfLDMYDBIA2Lt3r2r27NlxRqPxsjBfuXJlUP/+/S0ZGRmGp59+unr58uXXCWCbzUb89a9/1e/YsUPrrXs5a9asuqSkpEYA+PTTT68T0i3NabPZiA8++CD466+/ztm1a1e2xWIR7NmzR71p06YAqVTK7t69O3vJkiXFS5YsaVfEoltv0gMAdVgAUAEEmqUoqrMiRtu+ouyFv/0JszIcZao/EePPd9DrjkTeF4+j+/5AflginKtXwe+h8ddtnuHcbuSu+hqu0GnYF30MM/o8y2+w6YbIAtUAzJA7pKizOKFVtV/EmGubHsSdVAP/O9LN0Gvk+JMxgRMGoarsHNC/feebC20gOAZIVN8eB3s4n/1e6L/zZGmAN21OHRhaO3tY5A1ba0ZERDjXrFlz8ZVXXrkc2aVp2tbQ0CBgWRY2m01AURSn0Wg8e/bsOU9RFAoLC0UURbEkSeL555+v9ng8AIDy8nKRUqlscSlzwIABlvHjxzd89dVXlyOrX3zxhUGn03kAgGEYQiwWs8eOHVMMGTLERJIkIiIiXAzDENXV1cKzZ88q4uLi7NOnT48LCgpyvvHGGyUAQJIkPv/8c0NycvLlrkYFBQWShQsXlgHAsGHDLG+99dZ14tLhcJDJycl1Q4cONeXn57frw7KgoED00ksvRWm1WldZWZm4V69e1vfee694+fLlwQEBAe6GhgaBxWIRvPrqq+Hvvvvu5V2xLc0pFou5rVu3ZsvlcvaK+8BdvHhROmrUqEYAiI+PdxYXF7fLx24fQfahm35f/S1q5Ne1v/h/3ZmLYIRSFPqXItYn1tvu8dwB+IUoIJOYkRfRB6r8AtiOHbtuTNGqNTBJYgA0olqbh4lREzvfUZ7bjlzX1G5a7pKjwmTukI3GwqamRDaZ1Wt+8dwZRATIYSQYWOVBMOW3M8XC44LR6g+ZtRK6offdHgd5uoSpU6c2UBR11ZKTXq93pqWlhT/44IO96+vrhaNGjTIDAEVRWLdunWbGjBkJDz/88GXhLRQK8fjjj8elp6drJ0yY0GIrz8cff9x47UN3cHCwGwAyMjJ8Tpw4oZwxY0adxWIRXCmyZTIZ09jYKKiurhapVCrP1q1bc3Q6nWvVqlU6ABg3bpwpICDgKlEeFxdn/+mnn3wA4LvvvvNxOp3X6UU/Pz9m/Pjx7U7GJwiCA4CysjJJWlpa4e7du7OOHj2qrqiouBy0ffXVVysVCgVzpThubU6BQIDmh4QPP/xQa7fbBQ8++KApPj7edvDgQTXLsjhy5Ii8vr5e1Pwg0ha8FkGmaVoN4AsAKgAiAAsNBsMRmqaTAbwHoLlTxxKDwfCLt+a9GT69YkFwx+Fj90NeXRmAhHadz1SYgBCgVl6GGB9+Q1Z3hCAIxMSQMJ+nUauUgFu8FPG70kHKZAAA2x9/oP6L7agdshSngw5icvQEyChZF3vNczuQBQcAKILcpUBRQy36hbaaAtcqjbmFAESwqtr+QcxzdxCkkqBKRCFA6AuUtK8UIFd5Bo1EJBSOLMTFTbk9DvZwZg+LrLtZtLezSEtLC/vss8+yExMTHevXr9csXrw4rFnspaam1syZM6f26aefjj148KBlzJgxZgDYtm1bTlZWliQ1NTVm48aNuYsWLYoEgEmTJtU988wzta3N9f7772v379/vt2nTplypVMopFAqmORcZAGw2m8DHx4dRKpXMxIkTGwBg/PjxDf/5z3+uS5to5qWXXqr45z//GT5t2jR6+PDhjRqNxn348GHFqlWrQgBgzpw5lRMnTmy80T2QSqWs2+2+SljbbDZSLBazABAUFORQqVQsAPj5+bkdDkeHg7YMw+D1118PLS4ulnz00UcXSZLErFmzapcsWSKdNm0a3bdvX0tMTIxNKGy77PVmBHkhgP0Gg2EUgGcArL10/B4AfzMYDKMv/XSaOAYAylcNsdMIudsPxe2shcy5XCA9YoBj0CCtQpRP1G3ykqer0Y/sAwEnwvaxiUBxEcr/8U8wDQ2w/PILiuanwhD+IEAQOKf7HY/3mdPV7vLcJkS+KggYJyRuGcoaO9Zuur6kHgTrhitQ7mXveLoakiRgv7SRU1Dbvn/fhuxMuAVqWKkSRKn575LujkKh8KhUKgYAAgMD3WazWZCdnS2eO3duNMuyoCiKE4lELEEQXFpamm7Lli1+l85jSJJEbGysc8eOHYYdO3YYbiSO3333XV1mZqbyyy+/NGg0Gg8ADB482HLkyBE1wzAoKioSsSwLjUbjSUxMNO/du1cNAEeOHFFGRUU5WrN7+PBh5RNPPFGTnp5uiIyMdPTt29cycuRIS7NPNxPHAKDVaj12u508f/68BAA8Hg+OHj2q6t+/vw3ATVPQ2lNK8ZVXXolwOp3kJ598ktecavHHH3/Ihw0bZsrIyDBMmjTJGBQU5GyzQXg3B3kFgObJhQCab/w9AAbQNP0SgOMA/m4wGDo1tCJhjHAT/qi0Xtco5YZUnsmCTR4MjqxCiCoAYkG7NkDy3EWE9ImAWJwJGYZic38PZv/4I8w//QSwLCp9g1ATch9qVBfQS+sLvVp/c4M8dyUEQUDosUAMBSotHWsWYqxzQOIwgozgN/V2RxSBCqDKBrElAOA4oI155iWZ+QCiYfSt5zfo9QCWLl1atGDBgmiBQMBRFMUuX768SK/Xu+Li4mxTpkyJJwgCQ4cObRw9erQlPj7esXDhQn1GRoaGZVksW7asoC1zVFZWCjdt2hQcHR1tmzVrVhwAjB8/vn7+/Pk1AwYMsEyZMiWe4zjif//3f4sB4F//+lfpa6+9FrF9+3atXC5n3n///fzWbMfFxTleffVV/bvvvouAgABXWlpaYXvvAUmSWLZsWeGiRYsiSZKEx+Mh7r///oYxY8aYCwoKRDc7PyIiwv7cc8/pP/jggxvejxMnTsh++OGHgN69e1umT59OA8DMmTOrhg8fbnn++edDNmzYEKRQKJh33nmnXdfQIYFM0/Q8ANf2yJxjMBj+oGlah6ZUi5cuHf8ZwC4ABQDWAUgFsKYj83YUBWGGmdSj3tHq70KLFB3LhFkRinp5HmL86JufwHPXQpAE+vRi4MiMw57hx/Ba0Kt43pWDPygtjnGxGO+U4GTQb3h14Atd7SrPbUbE2cFwctTaOiaQbXYhRC4jfCLal87Fc3egCVIAZ2yQuLWw1+dD6t+2B6G6Ig/AsXDG8eK4O6LX6127d+++3KN+5MiRlpEjR17Xs/61116rAHDVcrZOp/N8+eWXbUpqHz16tHn06NHm5vPOnz9/sqVxixYtKgdQfuWxyMhI19dff93qPIcPHz7b/PfY2Fjnrl27rvO/JWbNmtVqWktr9+Ha+9X890t+AwC2b9+e05Y577nnHlt2dvaJlsZt3bq1VRs3o0MC2WAwfAzg42uP0zTdB8DXAF65IpXiE4PB0HDp/W8ATOugrx1GKXGilFDD7THB4vRAIW7bZTdcuAinZAzyfMsxiM8/7vYkTBiKPzKzENwQjNp4Lf5SEIgAKYVnG0jUS4shC6zCqPAxXe0mz21GRDjg4BRosHcsxcLFSiHiyhEd0Ovmg3nuOsK1clgZE4TQorz0GKLbIpBdVhhtWsg81SDv7Xv7neTh4bllvJaDTNN0LwDbAcwwGAw/XDpGADhD03TopWEPAGhR5d9OVD4EQJAIcTlQZmx7LWRnRVO72RpFOSJUEbfLPZ47BFV4CMIC89G3fAzGhOdh70v3Y83AGDB2Er/od2P+oJf4sl09ALHQDZByOJ017T6X4zi4SSXcpBkxfkG3wTueribcXwYbbHBItKjKur7iTYtUnoORCIfAVYaokBa72vLw8NxheHOT3nIAEgCraJo+RNP0NwaDgQPwLICdNE3/AkAGYIMX52wTKl1T7eNwC1BqtLX5PMLWlCBeL6vgBXIPYfzc+8EJbLDt1cGwJwsnvi9EoW8mwoLseCBmcle7x9MJSMUAK1DA6Wp/BNntYMCSIjgoEzRyr5Zj5blDCPOVoUZAwi7TwnQxr03nuErOwkFpYBWW8+VCeXjuEry2Sc9gMDzayvGfAPzkrXk6gk+UDsgBtDYxStsYQXbW1YOl1CA5G2yUCWHKsNvsJc+dgDQiHsP7fYF95xJRctyCvIBjOBW1Ddsm/ACS6PZlw3kASOUCMB4pCPtNN2lfh7W+6QHcKjLBR8y3pe+OhPrKUCqSIQIK2EssbTqn4lQugCjUKCsRpuK/S3h47gZ6xDe+uhcNcCyUTkWbI8hFJ87BKgsCJyiHQiiFn8TvNnvJc6cw6Jl/4rFHMnGs78vw7X0QGx/5GBpFi50/eboh0kvd81TmdlUEAgCYiysBADaJlX+g6qZIRQLYVU110Flj20q9VeU0NZ2pC3aBIqmbjObh4bkT6PatpgFApKchcuVBJvDBhbq2dceqOn0BVrkOjfLTCFeF8bmnPQlKiuiH/o3N7HKA5EVOT0PqrwRKAJUN8DAshIK2/w6YC0sAEHDI2y+uee4eFP4SoNYFwq4BPC5AeIOKVR4njI0qCCgnuET+QZuH526hR3z7E5QEYo8RYsYXxaa21UI2GfLhFqlQoq5GBF/UvWfCi+MeiUzrDwBQOYVotLvbdW5DaVM9f4ev193iuYPwD5QBHAOS1YAzFt54cHUWjFwYRI4yRIfz5UK7K0ePHpWnpKRc/gfOzMyUTp48OT45OZlesGBBJMM0dXJev369ZtKkSQlJSUkJ27dv9wUAi8VCzp49O3ratGn09OnT40pLS69bZrDZbMS8efOip06dSs+cOTOmurpaCDR10Rs3blzvlJQUOiUlhc7Ozha3Nvb48eOyqVOn0snJyfS8efOi7Hb75cjftf6fOHFClpSUlDB16lT673//e1iz/9fi8Xgwb968qB9//FF17XubN2/2f/3116/q1jd//vyoQ4cOKVu7j//4xz/CioqKRHV1dYKvv/76uqVXBCgjAAAgAElEQVT7n376STVhwoReycnJ9DvvvHPVTuhrr+FW6TEKQMwZQRJ+KGujQGaqmiLNxfIahPMb9Hh4egzykKYon8wlgtHmate55hoLCJaBO0B6O1zjuUMID5DDg0a4RYFw5924MBNXcQYmKgwuogJRPnyToe7IihUrAhcvXhzhcrkuC87Vq1cHp6amVmRkZBjcbjexZ88edU1NjXDHjh3anTt3Zm/ZssWwcuXKMJZlsWnTpoCEhARbenq6YeLEiXVr1669bqnh448/1sbExNh37txpSEpKqluxYkUQAGRlZcmXL19e0NzhLj4+3tnSWJZlsXjx4sh///vfhRkZGYYRI0aYioqKRK35v3jx4ojXXnuteOfOnQaFQsFs3br1OrGal5cnTklJiTcYDF5rG/rWW2+VREREuM6ePSs7cODAVRs5GIbB0qVLI9asWZOXkZFhKCwslBw+fFjR2jXcKj0ixQIApEIz6oQ+sDGlaLS5oZbdOA+MdDY9O9TJK/kKFjw8PQhZSACAckhdUtRb2xdBtlkYUG4TRFp+Kb07E+onQw5pg02qRe25Ywge+mSrY83Z5+EWPgSToBwj1Mmd6GUP5PhH/jj1lXfLx/R/shaD57faCAMAIiIinGvWrLn4yiuvXH4Comna1tDQIGBZFjabTUBRFKfRaDx79uw5T1EUCgsLRRRFsSRJ4vnnn6/2eJoaDJeXl4uUSuV14drMzEzFX/7yl0oAeOihh0wbN24MBgCDwSD78MMPdfX19dSIESMaX3755cqWxubk5IhVKpXno48+CszPz5eOGDGiIT4+3tma/7W1taLhw4dbAWDQoEGWffv2+cyYMeOq0j4Wi4V86623Cj/88MN2f+Bt3rzZ//Dhw2qHw0GWl5eLZ8+eXTlr1qy6lJQUetmyZUXr1q3T5efnyz7++OOAefPm1V7ySahQKJjo6GgXAPTv399y/PhxxciRIy0tXcOt0mMiyEqpExxJwZe1oeQmG/VstXVgRL4gOQcsoga+ggUPTw9CFtiUHyHySNsdQXY4BRB4TPDz4Wsgd2fC/WSoEAE2mRb1uYYbjq04UwUAKPErR6QqshO84+lspk6d2kBRFHflMb1e70xLSwt/8MEHe9fX1wtHjRplBgCKorBu3TrNjBkzEh5++OHLwlsoFOLxxx+PS09P106YMMF47RxWq1WgVqsZAFAqlYzVahUAwLhx4+rffvvt4q+//jonMzNT8d1336lbGltbWyvMyspSzJkzp/qrr77KOX78uOrAgQPK1vwPCgpyHjp0SAEABw4c8LHb7YJrferfv7+9V69ejg7cMg4ALBaL4PPPP8/78MMP8zZt2nSVyE5NTa3s37+/uVkcA4BGo/E4nU4yKytL4vF48N///ldtt9vJ1q7hVukxEWQ/XxKoB8JsdpTU25AYom51bNHJ87DJdBCQlQDBIVQZ2upYHh6e7oWQEoBknKBYGYzW9glkFysGx9UhSM0L5O5MuJ8M5ZQIvQRiNJTfQB+wDGqqxIAEKAq3QyFSdJ6TPZHB8+tuFu3tLNLS0sI+++yz7MTERMf69es1ixcvDnv33XeLASA1NbVmzpw5tU8//XTswYMHLWPGjDEDwLZt23KysrIkqampMRs3bsxdtGhRJABMmjSpTi6XM2azmQQAs9kskMvlDMuySE1Nrfbx8WEA4P777288f/68rKWx/v7+TFBQkKNZ0A4bNqzx9OnTsrFjx7ZYueDtt98u+L//9/+Gf/DBB8SAAQMsFEVx69at0+zbt88PAFauXJkfGhp6wyU2iUTCulyuqwKxdrudlEqlLADExcXZACAsLMzldrtvGrAlSRLLly8vWLx4cThFUVx0dLTd19fXc7PzOkqPiSD7Bjd9MIU4PDeNIFedM8Am1cIlqYCUFMFf4t8ZLvLw8NwhCBgbBKwM9e2MILtIBTyECVoFXxayO6NTSWASNpUDtDcqAa6VwFV9PurdoRC6GqEM4dNuehIKhcKjUqkYAAgMDHSbzWZBdna2eO7cudEsy4KiKE4kErEEQXBpaWm6LVu2+F06jyFJErGxsc7mvOJnnnmmtn///pbmnNy9e/eq+vXrZzaZTIKJEyf2NpvNJMuyOHbsmLJPnz62lsZGRUU57Xa7IDc3VwwAmZmZyri4uFaf7n7++Wef1atX52/bti2noaFBMGLECFNqampNs083E8cA0LdvX9sff/yhahbrdXV1gsLCQmmzSL9RdTCCIDiuhf9Xv/zyi+qLL77I/eKLL3JLS0vFo0aNMt3Mj47SYyLIPlGBwDkg0CVAcf2NBbIlJx8OyQOoU9YgWK7jS7zx8PQwBJwdLCdFbTsiyCzLwS1UgGFNUItaX6HiufshSQJSXzXQwMHjCgRnKgehDrl+YMVpNAjCwLHloP2jO99Rni5j6dKlRQsWLIgWCAQcRVHs8uXLi/R6vSsuLs42ZcqUeIIgMHTo0MbRo0db4uPjHQsXLtRnZGRoWJbFsmXLCq61N2/evJoXX3wxMjk5maYoilu1alW+j48P89xzz5U++eSTNEVR7L333mt+5JFHGq1Wq/nasWKxmFu6dGnhwoULoziOQ58+fSwTJ05stRtSZGSkY+bMmbREImHvuece8yOPPNLuzknx8fHOxx57rPqxxx6Ll8lkjMfjIf72t78VK5VK9mbnRkdHO/Pz86Vr1qzRPv/885erK2i1Wvejjz6aIBaL2QkTJtQlJiZ2JMWjTfQYgayIiYaAsUPJSZFXf+NuekxlA6AjUSWvQQi/QY+Hp8chgB2ADDXWttVNBwBbrQkgSFhFZqjFvEDu7gRq5WAL6uEWauHJPgJqSMp1Y9y5f8AqGQsz8QuifeK7wEuezkKv17t2796d3fx65MiRlpEjR2ZfO+61116rAFBx5TGdTuf58ssvc29kXy6Xsxs3bsy/9vhTTz1V/9RTT9W3ZezYsWPNY8eOzWqL/0lJSY1JSUltEsXvv/9+YWvvzZ8/v2b+/Pk11x6fNWvW5VQYqVTKHT58+CwA7Nix43JS//79+89fe97cuXNr586dW3vt8Zau4VbpMSkWpF8YKJcRYkZ10xQL0tq0gbRQUYcQPv+Yh6fHISSdAClDna3tq3eW4qYgh0lihkp8XUlQnm5GRIACNoERNlkgnJm/tzim+kQuWJJCuaoCejVf4o2H526ixwhkKLSgmDqQ8EVpvR0s23LOmN1sgYBoKulXIa1BiKKFZTMeHp5ujUDgAkvKUN8egVzeFBBplFrgI/a5yWieu50IfxmqJDZY5MFwZLUQlPO4UF3clJ6Xq+MFMg/P3UbPEchiJSjUgRX4w8XaUWVuOW2l4MQF2GVaiFAPj8CFUAUfQebh6WlQIgaMUAa3pW2NhQCgsaxpFdEot0El4iPI3Z0IfxkqxS44JX5oKGyhcELVWdQ4IwCOQZW/EUFyvrIJD8/dRM8RyAQBscgIViiDgmvExWpri8PKzmTBJtNCKCwHAIQo+QgyD09PQyQFGIEYYnNlm89prGpKA7QoHRCSPWZ7R48lwl+OmkvfoDVmf4C5elM/V/wH6okowFMJrSIIAvK6MrI8PDx3MF77FKdpmgBQCqA50fyIwWBYRNN0EoDFADwAPjEYDBu8NWd7kSusgAuIchiRV23GiNjrG+6Ys3Ngkw4FZEcAgE+x4OHpgUjkQsAMqK0mMCwHAXnzSjY2Y9PmX4cPX/WmJxDiI0UtKQYAWBAKtvAPkNHDLr/vPPkLGhVPwii+gBjfqK5yk4eHp4N4M8wRDeCkwWBIaj5A0zQFYAWAewFYAfxG0/Rug8FQ5cV524yvlgNKAb3bgdxqS4tjuNJKeIJlsMmqoBLKoRQpO9lLHh6erkailgKVgJ/biUa7G35y0U3Pcdk8EHBWyGV8M4iegEhIQq7QwlNjg1UeAvv+dMibBTLLoiazGB5KgUJNAfr79elaZ3l4eNqNN1Ms7gEQQtP0QZqm99A0TQNIAJBnMBiMBoPBBeC/AO734pztIjiyaeNMMEMirwWBzHEcROamZbJqWTUfPebh6aEo/JpyiNUeBg1tbBbicpMQMBb4Sn1vp2s8dxD6AA3qZFUwK0Jg/f2KShblJ1FR19QY5KKmmN+g1wM4evSoPCUlhW5+nZmZKZ08eXJ8cnIyvWDBgkiGaaqOtX79es2kSZMSkpKSErZv3+4LABaLhZw9e3b0tGnT6OnTp8eVlpZS19q32WzEvHnzoqdOnUrPnDkzprq6WggAx48fl02dOpVOTk6m582bF2W32wmGYfDyyy+HP/roo/EpKSl0c3OQ3Nxc8fTp0+OmTZtGP/HEE7G1tbWX835yc3PF48eP79X8Oj8/XzRt2jR66tSp9HPPPae3Wq2t6sV//OMfYRs2bNBce/zQoUPK+fPnX7V88vrrr4ds3ry51e5raWlpumPHjsnsdjvx6aefXr/M38KcmZmZ0pSUFLr5JzExceCPP/6oqqmpET755JOxU6dOpefPnx91o2toiQ4JZJqm59E0fe7KHwCVAJYbDIYxAN4C8AUAFYAr6+iZAXRZgVBdRCQEHjvUbmGLArm63gwx0dQdqUhRixBVeGe7yMPDcweg0jZ9Lss9BIy2mzaMAgB4WBEI1gx/eauf6TzdjPhAJaql9bAog2E21ACupr0t3LldqGFiAM6DejlfwaK7s2LFisDFixdHuFyuy/lVq1evDk5NTa3IyMgwuN1uYs+ePeqamhrhjh07tDt37szesmWLYeXKlWEsy2LTpk0BCQkJtvT0dMPEiRPr1q5de13bxY8//lgbExNj37lzpyEpKaluxYoVQSzLYvHixZH//ve/CzMyMgwjRowwFRUViXbv3u3jcrnIb775Jvvll18ufeONN0IB4J///GfESy+9VJaenm54/PHHa3JyciQAsGXLFr+XXnopqrGx8bIwf/PNN0Mfe+yxmp07dxruvfde89q1awOv9am6ulr41FNPxf72229e03Uvv/xy5ZAhQ2yVlZVURkbGdR+mLc05YMAAe3OHvyeeeKJ65MiRxocfftiUlpYWNGHChPqdO3caaJq2ffLJJ+36cO5QioXBYPgYwMdXHqNpWoamPGMYDIb/0jQdjCZBfGWOghJAQ0fm9AZC3xAI3XUgCBnqrC7UW11XLZ3mnrgAu0wHIZzIl5oxmI8g8/D0SHxCQwFUQsKQbY4gewgJGKIGPlJeIPcU4gKVOEnZwJJSNNiD4Dm9F8JBybDu240G6V9hIYxgSQaRqsiudrVH8FXWV/67L+726n/AydGTa59MeLKFMiX/j4iICOeaNWsuvvLKK5efhGiatjU0NAhYloXNZhNQFMVpNBrPnj17zlMUhcLCQhFFUSxJknj++eerPR4PAKC8vFykVCqZa+fIzMxU/OUvf6kEgIceesi0cePG4JycHLFKpfJ89NFHgfn5+dIRI0Y0xMfHOz///HPNiBEjGgFg6NCh1oULF8ptNhthNBqpffv2+aSlpYUmJCRYlyxZUgoAarWa2bp1q+GBBx64nAtUVFQkHT9+fBEADBkyxPLGG2+EXeuTxWIhX3jhhfKDBw+2WyAfOnRIuWHDBp1QKGQrKirE48aNq3/11VcrX3jhhciJEyfW792717e4uFj69ttvB11qrnLTOS0WC7lu3brgr776ygAAZ86cUbz44osVAPDAAw80vvfeeyEvvPBCm0sTeTPFYgmAlwCApul+AEoAXAAQS9O0H03TIjSlVxzx4pztQxkMcHXgLgWxr40iV57JglUWCIWwCk4SCFYEd4WXPDw8XYwsqCmAI/ZQbY4guwVyOEkLVHwXvR4DrVOiTNwUNTb60rBuWwUY9qDunB0mdRTyfSuhk4VARsm62FOe28nUqVMbKIq6qrmCXq93pqWlhT/44IO96+vrhaNGjTIDAEVRWLdunWbGjBkJDz/88GXhLRQK8fjjj8elp6drJ0yYYLx2DqvVKlCr1QwAKJVKxmq1Cmpra4VZWVmKOXPmVH/11Vc5x48fVx04cEBptVoFKpXqssgmSZKrrq6miouLJSNGjDBt27bNYDKZBFu2bPEHgEmTJjUqFIqr2j/HxMTYvv/+ex8A+PHHH30cDsd1ejEqKsp13333tVwS7AYQRFOgvaqqSrRx48aLO3fuzP7yyy+vipovWLCgIjw83H6lOL7ZnJs3bw4YO3asUaPReADAZrNdd8/a46c3N+m9DeALmqYnoimS/IzBYHDTNL0QwF40ifFPDAZDmRfnbB+qIEBQC7cwHgTrQV61BYP1fpffbjyfBVY+BGrROQB8BQsenp6K2KdJ5FKsqE0RZMZuh1uogIOwIlDMp2b1FGK1StSDgkVkhFHXB7WHDkFGzESJ9UGwJIXCgNPo5c+3mO4snkx4su5m0d7OIi0tLeyzzz7LTkxMdKxfv16zePHisHfffbcYAFJTU2vmzJlT+/TTT8cePHjQMmbMGDMAbNu2LScrK0uSmpoas3HjxtxFixZFAsCkSZPq5HI5YzabSQAwm80CuVzO+Pv7M0FBQY5evXo5AGDYsGGNp0+flsnlcsZisVwWgxzHEVqt1i2VStnmucaMGdP422+/qQC0eL8WL15c+q9//Sv8m2++CRg+fHiDWq32pKen+3711VdaAHjttddKBg0adMO2xBKJhHW73VeV9bHZbAKJRMICQFRUlJ2iKFAUxYpEopa7t7WDH374wW/t2rUXm1/LZDLGbDYLZDKZx2w2CxQKxXWR+RvhtQjypY14Ew0GwyiDwfCAwWDIvnT8W4PBcK/BYLjHYDCs9dZ8HUIZBIhrwArEoBkbTpf8v2wPhuUgKSqES+wLj6SpBjIfQebh6ZkIhAKQjAMCTgpjGwSyvbwGHCmAVWSBmo8g9xikIgE0knCUqg2oC+gFp1mEi9/rUOvXByzBotI3E/H+9M0N8XQ7FAqFpzmKGxgY6DabzYLs7Gzx3Llzo1mWBUVRnEgkYgmC4NLS0nRbtmzxu3QeQ5IkYmNjnc15tc8880xt//79LQcOHPABgL1796r69etnjoqKctrtdkHzJrzMzExlXFyc45577rH8+uuvagA4cuSIXK/X22UyGRcSEuL49ddfFQBw/PhxZUxMjL01/w8cOKB69dVXS3fs2GEQCAQYOnSoadq0acZmn24mjgEgISHBnpeXJysvL6cAwG63E6dPn1b079//pueSJAmO49pcM7OhoUHgdrvJ8PDwy0t+ffr0sezdu1cNAPv371cPGDCg5fJlrdCzqtkLxSCV1YAZGCt04pu8WnAcB4IgcKGsEYEONxoAmCVNzQH4CDIPT8+FZG0gOGmbUizMpbVNf4otfGnIHkacbxxKmU2Ir7kPxBN/hfDoHjTE3o8ixgRW4EGcb1xXu8jTBSxdurRowYIF0QKBgKMoil2+fHmRXq93xcXF2aZMmRJPEASGDh3aOHr0aEt8fLxj4cKF+oyMDA3Lsli2bFnBtfbmzZtX8+KLL0YmJyfTFEVxq1atyheLxdzSpUsLFy5cGMVxHPr06WOZOHFiI8Mw+O2331RTpkyJ5zgOb7/9diEAvPnmm4VLly4Nf++994igoCDnkiVLalvzPyYmxvHyyy9HURTF6fV6+7///e/i9t4DtVrNLly4sOTZZ5+NEYvFrMfjIadPn14dGxvrLCsru2HtTK1W63a73cSSJUtCli5detPMg5ycHLFOp3Neeex//ud/KhYuXKjfuXOnRq1Wu9euXXvdfb0RPUsgA5CEmGHPBsKdVpQ12FFcb0OEvxyZmTkIpZoiPzWyKviKVHzeGA9PD4bg7CAgRWMbBHJDWT0AEo0yK99muoeRGBSML23l4MChKnYcoh6bAev7p5HnXwoAoH35CHJPQK/Xu3bv3p3d/HrkyJGWkSNHZl877lJO7VV5tTqdzvPll1/mXjv2SuRyObtx48b8a4+PHTvWPHbs2KwrjwkEAqSlpV0naPv372/PyMgwtDbHsWPHTjf//b777rN+//33Wa2NvZJFixaVt/ZecnJyQ3Jy8nXFGUaPHm0ePXq0+dq533///cLmYz/++OOFts45ePBg2+DBgy9eeawt9/VG9DiBrPUToZGxQ2hlAQnw37xaRPjLUfbHKfgoQiAgGJTIjQhW9O9qV3l4eLoQgrABhKxNKRYNlUYA/jDK+QhyT6N3sBq2XDUKwk6BOEzAcLwKhJpCnt85yIVyPlWPh+cuxZtVLO4KgpQ6cEw5HE4pgtUS/JZXi6I6K+znzsOkjECAohZlYhFClKFd7SoPD09XQjrAkm1MsagxAQBqlbxA7mkMi/EH5wzC/uAtCIpVQyAkkBUthlBVBtovDiTR475meXi6BT3uf65OFQmrqBI2KgDjw2X46XwV/vrFSUQ3lMOiCodWUoByAcHnH/Pw9HBIgROMUAar6eb7Ohympr0uZokNCopvNd2TUEkoRChjwJBuJMyS46ml9+HXqiqwomL0Dejb1e7x8PB0kB4nkP189KiRV8BNKTBXw2JghC8MZUbEOW1gSBHE3Dm4wfECmYenh0OIXHALZWAabt7byG3zgGBd8AhcvEDugYyMaBLCJ6rOI7veCgthAAcPRoSO6GLPeHh4OkqPE8iEnx6N/k0bIs3ni7B57mB82IeAnWpqvuMQNeXUh/Ntpnl4ejSkhAErEENibYTDfePymR43ASFjgUIggYBsVy16nm5AUkJfcIwY3+X+iv/8nAO5Og8SgQQDtQO72jUeHp4O0uMEMvyiAGUJAKDqzxyIhST6FpyC2UcPoRCollUB4AUyD09PRyBtqlsfzDTcdKMew1IgOQsUlLwzXOO5w+gT4gcVMxjnGn7F4YvFUPldxJCgIRAJbljJioeH5w6m5wlkZRACCBMY1KHG6QPH2bMw79sHa3BvaDRulFBCUIQQOpnu5rZ4eHi6LZSyKRKs8VhgtN54o56HkICDBUq+xFuPhCQJrJ6YCoL0QKPfjUZPJYaHDO9qt3g6kaNHj8pTUlIu1/TLzMyUTp48OT45OZlesGBBJMM0rUKtX79eM2nSpISkpKSE7du3+wKAxWIhZ8+eHT1t2jR6+vTpcaWlpVRr8+zatcsnNTVV3/x6//79ykcffTR+2rRp9Lx586KsVisJAG+//XZQUlJSwpQpU+KPHTsmA4Cqqiph8zxTpkyJz8vLEzfbqa6uFo4ZMybRbrcTAFBXVyeYOXNmTHJyMj179uzoqqqq66qeFRUViaZPnx6XkpJCT5s2jc7OzhZf+X5BQYFo8uTJV7WS3LBhg2b58uWtlnbZvHmz/7fffqsGgHXr1mlaG7dmzRrt66+/fjkX9v3339eOGzeud0pKCp2SknKVL9fes7bS8wQySUInViJHcxb1fgkofGEhLI0uGDk/hPpVopiiEKoM5ZdJeXh6OCKfps9XH8Z5w3bTHMPAI5DBQ1qhFPt0lns8dxiDgvuil38vOESn0Nu/Nx7RP9LVLvF0EitWrAhcvHhxhMvlutz5bfXq1cGpqakVGRkZBrfbTezZs0ddU1Mj3LFjh3bnzp3ZW7ZsMaxcuTKMZVls2rQpICEhwZaenm6YOHFi3dq1a1uM0C1atChs9erVISzLXp7nzTffjFi/fn1eenq6ITw83PnZZ58FnDhxQnby5EnlN998k7Vq1ar8ZcuWRQDAG2+8ETpp0qT69PR0w4svvlhmMBgkQFNnvtmzZ8cZjcbLwnzlypVB/fv3t2RkZBiefvrp6uXLl1+3Mevdd98NnjFjRvWOHTsM8+fPr3jnnXduufzXrFmz6pKSkhoB4NNPP71OSNtsNuKvf/2rfseOHdorj///7N13dFTV9sDx79RMMiWFJJAEUiE3NOlCABWkiSDSBEV9iqAPy1NE+dlRFB9Yos+OBTuIKKAIqKiA0rEgPZeWBEghjdRJJpny+yOAkS5MGAj7s9Zbi7lz55w943l3dvace8727dvNU6dOTTu8019SUpLjRJ/Z6bro1kEGaOQfzsKwzTTP60G+oTGewVfBAQ2KZQ17PQHE2GJ9HaIQwsdMoTXVYKvLReFJEmRXcTHVBgsOfTk22Wb6ojapyyQ25W9ieOJwDNoTFgFFHSn8dGaD4q+/DvVmm4HXXpsfctONBSc7JyYmxvH666/vfvDBB49UKRVFsRcVFencbjd2u11nMBg8YWFhzsWLF281GAykp6cbDQaDW6vVcs899+Q6nU4AsrKyjFar9bg3PbRr166sb9++RZ999tmRyuqnn36qNmrUyAngcrk0fn5+7nXr1lk6d+5cotVqiYmJqXK5XJrc3Fz95s2bLYmJiRUjR45MjIiIcEyZMmUf1Gzr/Mknn6hDhgxpcbjdtLQ004QJEzIBunbtWvbf//73mHmnTz755P7AwEAXgNPp1BiNRvfpfq5paWnG8ePHx4eHh1dlZmb6tWjRovzFF1/cO3Xq1MjQ0NDqoqIiXVlZmW7ixInRL7zwwpFNTyorK7VDhgwpSE5OLtmzZ4/p8HFVVQPeeuutRoWFhYbu3bsXP/DAAzkn+sxO18VXQQYaWRuTbduD3l9D6dD72UcsEU0DsZWuZZ8Omtia+DpEIYSPWUJqkl1/NxSWnzhBrs7Lx2kIoNxYjsUoK1hczFqGtuSGpBskOb7IDB06tMhgMHhqH4uLi3OkpKRE9+7du2VhYaH+iiuuKAUwGAxMnz49bNSoUc2vuuqqI4m3Xq9nxIgRiXPnzg3v37//weP1M2LEiIMazd8LoZGRkdUA8+fPD/r999+to0aNKigrK9PVTrIDAgJcxcXFutzcXKPNZnN+/vnnOxo1alT1yiuvNALo06dPSWho6N+S8sTExIolS5YEASxcuDDI4XAcky+GhYU5jUajJzU11e+ll15qPH78+BPuqFebRqPxAGRmZppSUlLSFyxYsH3t2rWB2dnZR4q2EydOzLFYLK7ayTFASEiIq2/fviVHt9mnT5/CadOm7Z09e/aODRs2WBYuXBh4os/sdF2UFeYEKNQAACAASURBVOSIkGZ4itbjH1dO2qaaMd2uZzy5K/ZRGRhJjDXGxxEKIXzNFlwzXcLPraOg7MQJ8sF9eQAUm8oJMjY4J7EJIY4VctONBaeq9p4rKSkpTT766KPUVq1aVb799tthkyZNanI42Rs3blze6NGj82+++eZmy5YtK+vZs2cpwJw5c3Zs377dNG7cuKbvvffezkceeSQWYODAgQW33npr/on6eu2118J/+umnkA8//HCnv7+/x2KxuA7PRQaw2+26oKAgl9VqdQ0YMKAIoG/fvkUvvfTSCdezHT9+fPZjjz0WPWzYMKVbt27FYWFh1StWrLC88sorUQCjR4/OGTBgQPGyZcusU6ZMiZ42bVra4WkNh/n7+7urq6v/lljb7Xatn5+fGyAiIqLSZrO5AUJCQqorKyvPqGjrdrsZN25cblBQkAvg8ssvL966dWvAwIEDi8+kvcMuzgpyWCsAqlv9xqB729L71uYo8QXsNdTMO5YKshDCGlyT7BownrSCnLe35vu4wL9cdtETQgBgsVicNpvNBdCwYcPq0tJSXWpqqt9tt92W4Ha7MRgMHqPR6NZoNJ6UlJRGM2fODDn0OpdWq6VZs2aOw/NpT5Ycv/DCC402bNhgnTVrlhoWFuYEuPTSS8vWrFkT6HK5yMjIMLrdbsLCwpytWrUq/f777wMB1qxZY42Pj688UbsrVqywXn/99Xlz585VY2NjKy+55JKyyy67rOxwTIeT42nTpjWZMWPGzk6dOtmPbiM8PNxZUVGh3bp1qwnA6XSydu1aW9u2be0Ap6rsejyekz5/WElJiW7AgAEtS0tLtW63m3Xr1llbt259TDz/1EVZQbaEtyDE5SKjbAdNWoTUHNzwE3v1NR9HjE0qyEJc7CzWhmjceWg9J0+Qiw8UARYOmsuxGiRBFkLA5MmTM+69994EnU7nMRgM7qlTp2bExcVVJSYm2gcPHpyk0WhITk4u7tGjR1lSUlLlhAkT4ubPnx/mdrt55pln0k6nj5ycHP2HH34YmZCQYP/Xv/6VCNC3b9/CO+64I69du3ZlgwcPTvJ4PJrHH398L8ATTzyx/+GHH4754osvws1ms+u1117bc6K2ExMTKydOnBj3wgsvEBoaWpWSkpJ+9DnTpk1rUl1drTk89zo6OrrypZdeyjj8vFar5Zlnnkl/5JFHYrVaLU6nU3P55ZcX9ezZszQtLe2UayDGxMRU3HXXXXFvvvnmST+PoKAg11133bX/hhtuUAwGg7tTp06lV1999VlVjwE0p5uhn4qiKA8DVx16GAQ0UlW1kaIo9wNjgbxDz/1bVVX1ZG0NHTrUM2/ePK/EdVwuJ2Pfa0G5tSGfjVpRc+y7R5m663O+Cg5l9Q2rZRWLs6Qoyu+qqnb0drt1PjZEnaursQHeHR+ljhI+ufs7gkrSWND7cmbfkXzc876d+BZ7ShW+bP0c9/S5g2GJw7zS/8VKrh3iRI43NjZu3Jjepk2bE1ZYhTiVjRs3hrZp0yb26ONeqyCrqjoNmAagKMpC4P8OPdUB+Jeqqr97q6+zptPTzBjC3KoiXG5XTTKcu42tZhvNGzSX5FgIQYDBjJsK0JhOWkF2lDhAAxUGmWIhhBD1hdfnICuKMhQ4qKrqkkOHOgCPKIqyUlGUR7zd35lKbNCSCg3sL9gO1ZU49/9KqtZNywYtfR2aEOI8oNPqcGntuLQBFJQ6Tnie89AScJV6u6xiIYQQ9cQZVZAVRRkD3H/U4dGqqv4KPALcUOv4bOANoASYryjKQFVVF55Jv97ULLYHHFzPzl3fEhPckt0eBw4kQRZC/MWttePUN6KypBS324NWe+xNJe5qD1p3JS5dNTbZSU8IIeqFM0qQVVWdAcw4+riiKC2AIlVVdx16rAH+p6pq8aHHi4B2gM8T5IRm16D54zl2Zq2jd85utllq1jxtGSoJshCihlNfgVMfgMVRSlFFNSHmY+8rcbv16N1lADLFQggh6glvr2LRG/i21mMbsEVRlOZAOXAl8L6X+zwj/v5BRGNgR0EqFJSwNUbBSjlNrLLEmxCihstQSbUhAGt1LoXljuMnyBjRUg5IgiyEEPWFt+cgK8CRZUMOVY4fBZYBK4Ctqqou9nKfZ6xZaAu26jW4HMX8btDQvEFztJqLcmloIcRxuI0OPFoDQQ77cTcLcZeX49Kb0WhKAWSZNyGEqCe8mg2qqnq3qqpfHXXsE1VVO6mq2l1V1Se92d/Z6tfqZrJ1MLHbKHbZsxkQP8DXIQkhziMusxOABlWO465kUZ2XR5XBjEtXhp/WiEEnWwwLcTFau3atefjw4crhxxs2bPAfNGhQ0pAhQ5R777031uWq2cn57bffDhs4cGDza665pvkXX3wRDFBWVqa95ZZbEoYNG6aMHDkycf/+/cdcSOx2u2bMmDEJQ4cOVW666aamubm5eoD169cHDB06VBkyZIgyZsyY+IqKCo3L5eKBBx6Ivvbaa5OGDx+u7Ny50w9g586dfiNHjkwcNmyYcv311zfLz88/smTXzp07/fr27dvi8OM9e/YYhw0bpgwdOlS566674mrvzFf7PQ4dOlQZPny4csMNNzTLycn526yE5cuXW++444742seeeuqpqI8//viEW46mpKQ0WrduXUBFRYXmgw8+CD3ReY8++miTd999N+zw4/fffz90wIABzQcNGpR0eJvpgoICXceOHdsMHz5cGT58uPLGG2+En6i947moy6X9YvrRqkErfshaSXxgPIMSBvk6JCHEecRldQMQXF1JwXES5OLMA1QbLFQZyrDKDXpCXJRefvnlhpMmTYqpqqo6chfvq6++Gjlu3Ljs+fPnq9XV1ZrFixcH5uXl6b/88svwefPmpc6cOVP93//+18TtdvPhhx+GNm/e3D537lx1wIABBW+88Uajo/uYMWNGeNOmTSvmzZunXnPNNQUvv/xyhNvtZtKkSbHPPfdc+vz589Xu3buXZGRkGBcsWBBUVVWl/frrr1MfeOCB/VOmTGkM8Nhjj8WMHz8+c+7cueqIESPyduzYYQKYOXNmyPjx4+OLi4uPJObPPvts4+uuuy5v3rx5aqdOnUrfeOONhkfHNGXKlOgnnnhi75dffqn26tXr4GuvvXZM3P/UAw88kNO5c2d7Tk6OYf78+cckyLm5ufobb7yx2apVqwIPH8vOztbPnj07fO7cuakff/zxzldffTWqsrJSs2HDhoBevXoVHt797+677879J7FclDvpHabRaHiw04Pc89M9PNjxQfTai/rjEEIcRXto1bYGzuNXkHPTs3DpA7H7l2H1k+kVQvjSpmX7G6hrs09YdTwTSpeI/Et6Ni442TkxMTGO119/fffhHeUAFEWxFxUV6dxuN3a7XWcwGDxhYWHOxYsXbzUYDKSnpxsNBoNbq9Vyzz335DqdNb9WZWVlGa1Wq+voPjZs2GC5/fbbcwD69etX8t5770Xu2LHDz2azOd95552Ge/bs8e/evXtRUlKS45NPPgnr3r17MUBycnL5hAkTzHa7XXPw4EHDjz/+GJSSktK4efPm5U8++eR+gMDAQNfnn3+u9urVq/Xh/jIyMvz79u2bAdC5c+eyKVOmHHOD1muvvbYnMjKyGsDlcmn8/PxOe+e55cuXW999991Ger3enZ2d7denT5/CiRMn5vznP/+JHTBgQOH3338fvHfvXv9p06ZFPPzww9mHX1dWVqb9z3/+k7Vs2bIjCfJvv/1mbt26dZnJZPKYTCZXVFSUY9OmTf6bNm0yq6pqHjZsmBIcHFz99NNP7zsc7+m4qCvIAB0aduCXkb9wWePLfB2KEOI8YwyouUSG4DpugnxwX80GXiUBdpl/LMRFaujQoUUGg+FvyWFcXJwjJSUlunfv3i0LCwv1V1xxRSmAwWBg+vTpYaNGjWp+1VVXHUm89Xo9I0aMSJw7d254//79Dx7dR3l5uS4wMNAFYLVaXeXl5br8/Hz99u3bLaNHj8797LPPdqxfv962dOlSa3l5uc5msx1JsrVarSc3N9ewd+9eU/fu3UvmzJmjlpSU6GbOnNkAYODAgcUWi8Vdu7+mTZvaFy1aFATw3XffBVVWVh6TLx5ONletWmWeM2dO+Lhx4w6czuel0dQU2g8cOGB87733ds+bNy911qxZf6s+33vvvdnR0dEVtZNjgPj4+KouXbqU1z5WWlqqs1gsR95vQECAq6SkRNe0adPKe+65J3Pu3Llqr169ip544ol/tAqDlExB5g0KIY7L31xziTR7NOSXHbtZSFluMQCFFjsWWcFCCJ+6pGfjglNVe8+VlJSUJh999FFqq1atKt9+++2wSZMmNXnhhRf2AowbNy5v9OjR+TfffHOzZcuWlfXs2bMUYM6cOTu2b99uGjduXNP33ntv5yOPPBILMHDgwAKz2ewqLS3VQk1CaDabXQ0aNHBFRERUtmjRohKga9euxRs3bgwwm82usrKyI/OLPR6PJjw8vNrf3999uK+ePXsWr1q1ygYc9/OaNGnS/ieeeCL666+/Du3WrVtRYGCgc+7cucGfffZZOMDDDz+8r2PHjvY5c+YEz5gxI+Kdd97ZGR4e7qzdhslkcldXV/9t8Xi73a4zmUxugPj4+AqDwYDBYHAbjcbTrj4fzWq1uux2+5H3a7fbdYGBga5LL720PCAgwA0waNCgounTp0f+k3Yv+gqyEEKciL/VDwAjenKKK4953lFUAUCxyS5LvAkhjrBYLM7DVdyGDRtWl5aW6lJTU/1uu+22BLfbjcFg8BiNRrdGo/GkpKQ0mjlzZsih17m0Wi3NmjVzHJ47e+utt+a3bdu2bOnSpUEA33//va1Nmzal8fHxjoqKCt3hm/A2bNhgTUxMrOzQoUPZL7/8EgiwZs0ac1xcXEVAQIAnKiqq8pdffrEArF+/3tq0adOKE8W/dOlS28SJE/d/+eWXqk6nIzk5uWTYsGEHD8fUsWNH+6xZs0Jmz54dPmvWLDUhIeGYn9iaN29esWvXroCsrCwDQEVFhWbjxo2Wtm3b2k/1+Wm1Wjwez7E7Mx1Hx44dyzdu3GipqKjQFBUV6TIyMkytWrWqePDBB2Pnz58ffOj9WBMTE0/Zb21SQRZCiBMwm20UeSoBA1lFx36XOMurwAhFhjKaGmSbaSFEjcmTJ2fce++9CTqdzmMwGNxTp07NiIuLq0pMTLQPHjw4SaPRkJycXNyjR4+ypKSkygkTJsTNnz8/zO1288wzz6Qd3d6YMWPy7rvvvtghQ4YoBoPB88orr+zx8/PzTJ48OX3ChAnxHo+H1q1blw0YMKDY5XKxatUq2+DBg5M8Hg/Tpk1LB3j22WfTJ0+eHP3iiy9qIiIiHE8++WT+ieJv2rRp5QMPPBBvMBg8cXFxFc8999ze2s87nU5SUlKiw8LCqv797383BWjfvn3po48+mnX4nMDAQPeECRP2jR07tqmfn5/b6XRqR44cmdusWTNHZmbmsYvK1xIeHl5dXV2tefLJJ6MmT56cebJzIyIinNdff33uddddl+R2u7nnnnsy/f39PQ8//PD+hx56KPbzzz8PN5lMrueffz7jZO0cTePxnHFVu84MHTrUM2/ePF+HIc6Coii/q6ra0dvtyti48NXV2ADvj4/5G99j/5s2InL38FBSa3Y8ezW6WttNfzHkCXIb9uSTSx9ixCU3MKHjBK/1fbGSa4c4keONjY0bN6a3adPmhImeEKeycePG0DZt2sQefVymWAghxAmYzWFUa8qoNljwd9jJLf37NAuNW4fO7aBcW4nFKBVkIYSoLyRBFkKIEwgwheDQl1NtsBDkKPvbNAuPywUaP4yeEtCARaZYCCFEvSEJshBCnIDZaKHCUEaVwUKwo5Ssor8qyCU5eVQbrRgoAZCb9IQQoh6RBFkIIU7AbDBTZiw7VEEu/VsFOTctkyqDBb1WEmQhfMjtdrtPa7UDIY52aOy4j/ecJMhCCHECFoOFEv8y3DojjVxVZNda6q1gXybVRitafcmRc4UQ59yWvLy8QEmSxT/ldrs1eXl5gcCW4z0vy7wJIcQJmA1miv1rNm2KxMX2WhXkgp0ZVBkU3KaazUKkgizEued0Osfm5OS8l5OT0wop+ol/xg1scTqdY4/3pCTIQghxAmaDmQpjGQChHhdZxX8lyOV7s/DoW+I0lQKSIAvhCx06dMgFBvk6DlH/yF9bQghxAnqtHrehJim2OF1k17pJz5VXBIDDr+Z5SZCFEKL+OKsKsqIoQ4DrVFUddehxF+AVwAksUVV1sqIoWuBNoA3gAMaqqrrr7MIWQohzQ+vnAMBUWUVBeRXlDicBRh1+ZTWJscNUhQYNZoPZl2EKIYTwojOuICuK8gow9ag2pgOjgO5AZ0VR2gGDAZOqqsnAw0DKmYcrhBDnlsHkBEDjcKN1u9iwt4h9hXbMzppdSMsDqjEbzGg18oOcEELUF2dzRV8N3Hn4gaIoNsBPVdXdqqp6gO+B3tQky98BqKq6FqiTLWaFEKIu+Pnp8OCkWh9Aw8oi1qUVsHNXFhhqplSUBJTJ9AohhKhnTjnFQlGUMcD9Rx0erarq54qi9Kh1zAaHVsyvUQrEHzpeXOu4S1EUvaqqzjMLWQghzh2L0YxbW7MWcldTJev2FBJmKibQFIyBCkqNTizGQF+HKYQQwotOmSCrqjoDmHEabZUAtcsoVqAICDjquFaSYyHEhcJitFFpKMZhDKSjoZxv9hXRomIHzU0hWDT5lOo0WA1SQRZCiPrEa5PmVFUtAaoURUlQFEUD9ANWAKuAq+HITXybvdWnEELUNbNfIMUBhVT6h9K0uogql5uyjH1U+gVj1edShkemWAghRD3j7btKxgEzgfXABlVV1wHzgUpFUVYDL3PsdA0hhDhvWUzBFPkVUGkKoUFJLjaTnl6BThz+DbDq8yjxuLAYZRc9IYSoT85qmTdVVZcDy2s9Xgt0OeocNzWJsxBCXHDMphAKTdtwaw1UZBXy+xt9SB/xAXvCzFh1eZS6q2SKhRBC1DOyLpEQQpyExc9CiekgAKUFlZCTTXFaDgBmXR6lrkoC/eQmPSGEqE8kQRZCiJOwGCyU+BUAUKELJOvhR6g0NQBAp8/Hg0cSZCGEqGckQRZCiJMwG8yU+hUCUB2dhP3XX3FGNgXAY6g5bjPafBafEEII75MEWQghTsJqtOLSVWPUF+O5pOYWC1dCazQaN45AHYBUkIUQop6RBFkIIU7CbDADYNDlUqEPIvL553DGtsBsLKPUEgxIgiyEEPWNJMhCCHESFkPNEm5afS6l+eXYrrmG3MxKQo37KQmoSZBlioUQQtQvkiALIcRJHK4ge4z5lB6spjC7nJL8SqINv1JsqkmepYIshBD1iyTIQghxEocryJ4AFY8Hln2SCkC0di3FRn9AKshCCFHfSIIshBAncbiCXGnZSoNgBwfSSrCF6AjU51CiN+Kv98eoM/o4SiGEEN4kCbIQQpyEQWfAT+eHXaenfbM0AKKjnQAUazVSPRZCiHpIEmQhhDgFs8FMmZ+FpraNtO0TTetmBwAoxo3NTxJkIYSobyRBFkKIU7AarZQZ/dGWZdJtWFNCdHsBDSXuKgKNcoOeEELUN5IgCyHEKQQaAynWG6Aks+ZA8X6whFNcVSIrWAghRD0kCbIQQpxCkCmIg1oNlGSBxwMHtkBIAiWOEpmDLIQQ9ZD+bF6sKMoQ4DpVVUcdetwLmAJUA7nAv1RVtSuK8jUQeuh4haqq/c8ubCGEOHeC/ILYqXGDsxLSV0LWn9DzUUr2fSEVZCGEqIfOuIKsKMorwNSj2ngTGKyq6uXATmDsoePNgO6qqvaQ5FgIcaEJ9gvmoLsKNFpYNAHwUBl7GZWuSqkgCyFEPXQ2UyxWA3cedayHqqoHDv1bD1QqitIQCAK+URRlpaIoA8+iTyGEOOeCTcFUuhxUxF0O+TvAP5iSBrGA7KInhBD10SmnWCiKMga4/6jDo1VV/VxRlB61D6qqmn3oNUOBnsATQBiQArwChACrFEVZr6pq7tmHL4QQdS/YFAxAUVJ//Pcsh/ielFSXA8gyb0IIUQ+dMkFWVXUGMON0G1QU5X5gOHCVqqqViqLkANNVVXUCuYqibAAUauYoCyHEeS/ILwiAg006EtGwNbS5geKqYkC2mRZCiPrIq6tYKIryGHAZ0FtV1fxDh3sDXxx63gK0ArZ7s18hhKhLRyrI7iq4cyUk9qWosgj4K3kWQghRf5zVKha1HZpr/CTwB/CtoigAn6uq+paiKP0URVkLuIFHayXPQghx3jtSQXYcPHIst6LmR7DwgHCfxCSEEKLunFWCrKrqcmD5oX8fAIwnOG/82fQjhBC+FOx3qILsKDpyLM+eh06jO/KcEEKI+kM2ChFCiFOwGq1oNVoOVtaqINtzCfUPRafV+TAyIYQQdUESZCGEOAWdVkegMfBvCXJeRZ5MrxBCiHpKEmQhhDgNQaagv89BtucS5h/mw4iEEELUFUmQhRDiNAT7Bf9tDnKuPZewAEmQhRCiPpIEWQghTkOwKfjIFItKZyUlVSU0DGjo46iEEELUBUmQhRDiNAT5BR2pIOdV5AFIBVkIIeopSZCFEOI0BJuCKaoswuPxkGevSZDD/eUmPSGEqI8kQRZCiNMQ6h+K0+OkoLKAXLtsEiKEEPWZJMhCCHEaEoMTAVAL1SMJskyxEEKI+slrW00LIUR9djhBTi1MpchRhJ/OD5vR5uOohBBC1AVJkIUQ4jQE+gUSZYkitTAVgDD/MDQajY+jEkIIURckQRZCiNOUFJLE5vzNlFSVcFnUZb4ORwghRB2ROchCCHGalBCFzLJMSqtKuTbhWl+HI4QQoo5IgiyEEKepeUhzoGZ6ReeIzj6ORgghRF2RBFkIIU5TUkgSAAPiB6DT6nwcjRBCiLpyVnOQFUUZAlynquqoWo9fBPYdOuVJYAXwJtAGcABjVVXddTb9CiGELzQyN+Lt3m/TJryNr0MRQghRh844QVYU5RWgH/BnrcMdgP9TVXVurfOGAiZVVZMVRekCpAAyeU8IcUHqGtXV1yEIIYSoY2czxWI1cOdRxzoAtymKskJRlBRFUfRAd+A7AFVV1wIdz6JPIYQQQggh6tQpK8iKoowB7j/q8GhVVT9XFKXHUcd/AL4C0oDpwDjABhTXOselKIpeVVXnGUcthBBCCCFEHTllgqyq6gxgxmm2976qqkUAiqJ8DQyjJjm21jpHK8mxEEIIIYQ4X3ltFQtFUTTAJkVRGh861Av4HVgFXH3onC7AZm/1KYQQQgghhLd5bSc9VVU9iqKMBeYpilIBbAPeBVxAH0VRVgMaYLS3+hRCCCGEEMLbzipBVlV1ObC81uMlwJLjnDrubPoRQgghhBDiXPFaBdmbtm7dmq8oSoav4xBnJaYuGpWxUS/UydgAGR/1hFw7xInU2bVDiKNpPB6Pr2MQQgghhBDivCFbTQshhBBCCFGLJMhCCCGEEELUIgmyEEIIIYQQtUiCLIQQQgghRC2SIAshhBBCCFGLJMhCCCGEEELUcl6ug1yboiha4E2gDeAAxqqqusu3UfmGoih/ACWHHqYBbwOvAE5giaqqk30Vmy/I2Pg7GR9/J+PjLzI2/k7Gxt/J+BDiWOd9ggwMBkyqqiYritIFSAGu9XFM55yiKCZAo6pqj1rH/gSGAXuARYqitFNVdYOPQvQFGRuHyPg4LhkfyNg4ARkbh8j4EOL4LoQEuTvwHYCqqmsVReno43h8pQ0QoCjKEmr+uz0F+KmquhtAUZTvgd7AxXQRk7HxFxkfx5LxUUPGxrFkbPxFxocQx3EhzEG2AcW1HrsURbkQEntvswMvAv2AccAHh44dVgoE+iAuX5Kx8RcZH8eS8VFDxsaxZGz8RcaHEMdxIVwQSgBrrcdaVVWdvgrGh3YAu1RV9QA7FEUpBkJqPW8FinwSme/I2PiLjI9jyfioIWPjWDI2/iLjQ4jjuBAqyKuAqwEOzRXb7NtwfOY2aubJoShKJBAAlCuKkqAoioaav/5X+DA+X5Cx8RcZH8eS8VFDxsaxZGz8RcaHEMdxIVSQ5wN9FEVZDWiA0T6Ox1dmAB8qirIS8FBzUXMDMwEdNXcar/NhfL4gY+MvMj6OJeOjhoyNY8nY+IuMDyGOQ+PxeHwdgxBCCCGEEOeNC2GKhRBCCCGEEOeMJMhCCCGEEELUIgmyEEIIIYQQtUiCLIQQQgghRC2SIAshhBBCCFGLJMhCCCGEEELUIgmyEEIIIYQQtUiCLIQQQgghRC2SIAshhBBCCFGLJMhCCCGEEELUIgmyEEIIIYQQtUiCLIQQQgghRC2SIAshhBBCCFGLJMhCCCGEEELUovd1AMfTuXNnT1RUlK/DEGdh69at+aqqhnm7XRkbF766Ghsg46M+kGuHOJG6vHYIcTSvJ8iKovwBlBx6mAa8DbwCOIElqqpOPlUbUVFRzJs3z9uhiXNIUZSMumhXxsaFr67GBsj4qA/k2iFOpC6vHUIczasJsqIoJkCjqmqPWsf+BIYBe4BFiqK0U1V1gzf7FUIIIYQQwlu8XUFuAwQoirLkUNtPAX6qqu4GUBTle6A3IAmyEEIIIYQ4L3k7QbYDLwLvAc2Ab4GiWs+XAvFe7lMIIYQQQgiv8XaCvAPYpaqqB9ihKEoxEFLreSt/T5iFEEIIIYQ4r3h7mbfbgBQARVEigQCgXFGUBEVRNEA/YIWX+xRCCCGEEMJrvF1BngF8qCjKSsBDTcLsBmYCOmpWsVjn5T6FEEIIIYTwGq8myKqqVgGjjvNUF2/2I4QQ9Y3D5eCtP9/ix70/0sDUgJHKSPrH9Uej0fg6NCGEuOiclxuFCCHExaTKVcVt341md+Zert7Xj4DiJJb/vJvVzR5n0q1PYtQZfR2iEEJcVGSraSGE8LG3Nr5Fas5Obtv8b8LyLyWIImLKGhHxay+ef/p1KkqLfR2iEEJcVCRBOoyNcgAAIABJREFUFkIIH0otTOX9zTMYlXo91dURLA6B/b27onaMoDBoNcEH2vLG059TeWCvr0MVQoiLhkyxEEIIH3r3z7eILo7BVNqODTYnr0/oTkwDMwDbsi5h+vsv0TSzG9Of+5477+2EX2xbH0cshBD1n1SQhRDCR/aW7OXHfcvom9GLKo2TW25pReDPS0gbOoxdvfsQ8H938XBoJLub/ILOHseMV1dSvn25r8MWQoh6TxJkIYTwkY+3fkh4WSTa8ks4EOVP/Psvkf3oo3jcbvzbt8Njr6D4fy9z55yFGKu+wWNvwWfv/k72+gW+Dl0IIeo1mWJRRzweD1/v/pov1C/IKs8iITCB4YnD6RPTB51W5+vwhBA+5nA5WLz7GwZl9cWNm+v5jZJFiwi7714ajBt3ZHk3x+7dFLz7HpcvWEBaYwdp8SP48bPfUAoruPSqkT5+F0IIUT9JBbkOuD1upq2fxhOrnsDutNMt9BLyCvfx8PJHuGnxjewp3uPrEIUQPrZs3zLKq6sIPHgpJf7V+H02g8BrB/0tOQbwS0ggctpU4hcupHmMk8Sdcyip6MjuhVnMnD0bt9vjw3chhBD1k1SQ68AHWz5gVuos/hXdjyFr97E1O4aIqmsBOOifyePbnue2wdfQO3GAjyMVQvjKgu2f07owEbfbSsfC5WhNJsIfeuiEG4P4xccR+867MO9Tqqd/Slr8KIKW7mJK2df83y3XYDLIL1NCCOEtUkH2ssyyTKZvnM6VIa3p/206SzLGkFXZlEb5K4nNWESTPBfd9oxgS0oOKa//H2UOp69DFkKcY4WVhazK/Z3OB9pTTTWN18+lwdgx6ENCTvo6jUZD3LCbiXxpFCE5H1CsSSBhdQ4Pvr+UKqf7HEUvhBD1nyTIXvbCry+gwcMt6w/wc8ldWMr30X3Vk7R3b6RD9wb0UTJRChbi7wwnYGNP5v/7XmYt24TTJV9uQlwslmb8hMatQ1falqCqfej8TQTffPNpv75t6940SLkJyj6myNCU5NWpPDDrV5luIYQQXiJTLLxoT9Eeftr7E6PtgWzM/zd+jgI6bH2bJinTsPbre+Sn00igxdo/WDx9PSWm4YS9+Q2P/riKMf+5CaWR1bdvQghR537Y+RVtCxLwePxI2P0TgQOuRmex/KM2+jbtz4FH88hLmUOR//V0+mElrzQM5P5+SXUUtRBCXDykguxFH2/7GD+Nnra72mB3N6BV6sfEvfsWtqv6HTOvMLJLe66bPopS23LyGiRzyR4d8ydMYvGmLB9FL4Q4F4odxawv2Ez7vFa4PU5CcrcQdN11Z9TWzS3/BXcqOB2LKTW3w/jp1yzenO3liIUQ4uIjCbKXFFQU8M3ubxhQpGVH2QDC8/4g8c4RBHTocMLXBJpsjHt6AruUBRTbYgjXX0ruI4/w8S87z2HkQohzafm+Zbg8oC9tT3D5bvybxmFq3fqM27u/4wQKbjGgq/gdAjqw4n9fkJpT4sWIhRDi4iMJspcs3LOQKncVyRmX4tKYUMwZBN980ylfF2QK4qm7JrPx0q8o9zdT1XAo5meeYvrijecgaiHEufbjzq9IKm6Mx22h8d5V2AYMOOHKFadDo9HwxOVPs3nQJgyOfcRomvJSykKKK6q9GLUQQlxcJEH2Ao/Hw1e7vqKlQ8/e0qsIzd9EswdvP+0vvUC/QF7+14vs6PUDdr9q8mJGEZHyIm/M/7WOIxfiInZgG/z2Puz84Zx1aa+2sybvT7rkJeHxuAkp3Ibt6v5n3a5Ba+C5a97it07z0Lor6ZRvZNJ7K+WmPSGEOEOSIHvBtsJt7CraxcB90VRrrSQ0LMe/TZt/1IbZYOalYS+RddVqyvxKyEy4iag33+XdryRJFsLrSnNwv9MTz4L7qfrwetz2onPS7aqsVTg8LgJK2mOu2I81KQFjdLRX2rYYLTx76wy2RX+AU2+h1a97eWNJqlfaFkKIi40kyF6wYNcCDGgwZvXA6Cii+e0Dz6gdg87A1GteoGrQVopMe8mMH0HQu7P5eMF6L0csxMWtetXr2HM8rP22GemLGrB71dfnpN8fd35NpN2GqyqSyOzfsPW/yqvth5nDGX/3NPL8PqYqoAmez1by47Ycr/YhfK+wvIo1uwtYt6eA/QfteDzyS4EQ3ibLvJ0lt8fND+lL6HHQSJ6+NfGOTZjbDj3j9nRaHY/2m8Is68vsnLMZmgwg5P3v+Mzj4oZrk70YuRAXKXshrhXvk7E8FJvZgKtSR+X82dDnljrtttpdzYrsNQzMvQSABgVbsPZ9yOv9xIa1ZNh/RrJ06nx0/kNYm7KIiKeH0zIq0Ot9iXPr1/RCXvxeZV1aIWic4Kn5Cg+1+NGnRTgDWkfSJT4EvU5qX0KcLUmQz9KfuX+SV5lP1x2dOKDR0uqaVl5pd1TX+1ljmsGiWUuh0ZVYP/udWRXVjLr+cq+0L8TFyv3Hp5SmatG4PCR89im7Rg3BvHEPTqcLvb7utmvecGADpe4qQovb4qkqJjgmBGOTJnXSV0vlWqpu/pMNM5aC7UpmPfsN46YMpUlIQJ30J+qW2+3h1Z928vq6rzCH/UpsTBpx+yuIKPMj2BOM096Q3ekx/N9SBVdEFNdfGsONXaIJt5p8HboQFyxJkM/SkowlGDxQUZ6MmWwaDxrhtbaT248hTvMRb30+C9wj8fs2kxnF3zLm32d/U48QFyWPh7IVM8jbaSW/fRvyjPsxdW+PbdE6tnz9BW2HXV9nXS9P+w6TS0e1PYmovDXY+veus74A2l05Cef+60hdZISQ7rzyzAL+b/Jgwm2SNF1onlq4gTnpL5Nc9QfXzdfTLL3q0DMVh/6XBWwAoDAoiEW/dWbgd8n0SE7irh5NiQ01+yhyIS5ckiCfhZrpFd/TL9tEiX8CLYP2ozEYvNpHo3a38HhlGW8ufBHdgXvQrHPwv4Of85//G4FOe+ZLQwlxUdq7FuemPDRVgbzTIofYV3cS7BhMH/0Wqlf9AHWUIHs8HpZn/MgV+U0AAw0Kt2LtPapO+jpCo6HTDR/jzuvJjl/NxNGOZ575hsefuIaGkiRfMD5as4Ov0ybxn1V76JZqJa/plewYdCkOXQBuwGDwYAiootCYTkbm1zTfks3N279n1I4f+WH7pYxY3Zehfdpyb6+mBBjlK1+I01U/Jip5PFC0F/J21Pz7HNleuJ3cinw67moHQIshHeukH0Py3dzX63JCIyYD1fjtsvL8Q+9Q5nDWSX9C1FclP79Fvmphd2wYl+TeR0RlLEanmd0JA9Fm7a+zftNL0tlXdZBmB1uB20WYtRK/Zs3qrL8jjAF0vn0usc0/xFq8naSSYJ6aspB9hfa671uctW3ZRby87hEeW5RG08IerOk6hR3hfSgtL8dUvhWrfQO6IpXCvQ7Kd7QirPxh8jr8h+dvbM/ytjr6ZqzjvR+nkffeDAa8vJz1aYW+fktCXDAu/D8n3S72PzoE1+otGMwugm69noCRz52Trn/Z/wsaD9irOmH25BHe+cq666znowx3O/n55ydQ9z2KrSSeN+5+jeun3UGM/HwmxKnlqbiX/YDLHsS65pfRsMLG1fe35PnZ09F6utNob90tqbgmcyUArpK2BBXvIrjX5We1Ocg/EtiYy/49k6rXR7A/bQKtiOfZZxZx/0NXoTSynpsYxD9W5XRzx9f/5YEfU9H738CuiK7E+v1K14glBLfvCo07QVAT0PvjcZRycM8+Un8tRE1rRMfCMThDinht6DJ6bFzD2K0L2Zf1B4/vGU6Xqy/joauSMPtd+F//QtSlC7uC7PGw78FrKf1qJ4XlVg5mBFDw3hzI2XJOuv8l4yd6ZhkpCYgjNraOLzYaDfSaxBVX/ovk2MfQO1Qs+jYsvO9dVm6qu8qXEBeyD5am8vm6NADyvnyc3E1WMqJiCK/sQWKXcOKURlRdkg0aLcWauDqLY+2e70go98fjCqNB4Tasvet2/vExIi6h121vER77IpbSXbS2B/P65AX8li4VxfPVf5cupPumRQR6BpMd0ZWOgV9z9b8iCP6/H6DvM9BiEES2g/AkNE06EXLFULo+OJZbXh5I/6vLiDXm0TpvCDkxj/PB1Zdjceby8orXcH/wFgNeXsbaPQW+fotCnNcuiD8h7b//jsfpwtz50r8dz31hHGWLd3MwKpj42d+y4pHJtFq5mPJPHsA88fs6jSm/Ip8tB1Ue39mefD8tSde0r9P+gJokueejtDZasPw0mQX7/o3eeiWpLywls18cI2+6rO5jEF5T7ChmbfZa0ovTyavIo8RRgtPjJMQUQlJIEldGX0mIKcTXYV7QzDMWobOX8kvcRuI3b6DKbmZDt5FYNR66D1UA6JzQgUpPEWXGKJz2CvQB/l6Nwel28lvhdq4pSAIg1JPzjzcS8oqEnvS/8Tnmzn4Qz+7xJNla8vXTCyh/6GquUMLPfTzihPYXFbH+9+eYsK0jalIvWgf9zKUP3I0mLPGUr9UaDcQPGkT8ACdZC2eydqkdg30ka7v1xj93LqP+WEbXgg08tO9mruh7GRP7KVhN3r13Roj64IJIkL977Sc8RU66Jv9Iw/EPoDUYOPjinRR++DMVof74v/Mp64qXk3t9M5xrdRz8aQfm+8rBWHdTD1ZlrgLAXdkek76Ehm1j66yvY3S7lzhzGMMX3cdbxek0rh5BwS923v59Jjf99zrM/sZzF4v4x1ZnrebTbZ+yOms1Lo8LjdvDJQf8aZlhICq3Gr3DTonew3uBT0JUDHGdBtOz1yhCbRZfh37BaZLoxx/Z7TBtK6cocxdreo/GVhVD55ujCLDV/P+ka2RXvjEso8zSmANbtxPVybt/7G4v2E6pp5qgorZoq8uITG6BRuujH+9aDmHY4BI++P5JTFvvoJG1Cxv++y0Fd1zO0G51V0EX/8x9i6cy+hcjOxNvINJPpfvEMWga/MMdF3V6Iq+9hSFX5pI+8w1Wb06gyHYHP/bJpen2xby6/HUW5H/DVX+OZuKgrlzbNvLcTfsR4gJwQSTIxlbBZOxKYP2KZTT/vD06PzdVB8HewMTuJ1/ji20PkVpYs6WqVbHSeacTz951aJrW3Zzg1ft/oVWOliJrEglRjnN/YWl7A1G2SMZ/+S8eDdtJp00jqdK25ZO7v6H58BZc3j9JLnbnmWJHMc+ufZZv078l1C+Y4Y4E2qwMotzRhmJzHE6DmdIwMDhLsdj3k5S/l6DdGQR+8w7pT73Mj41DONjyKmIHDKZTh0RCLX6+fkvnvS6T7qbsjTXsoD97E67CXa3B3iyLjt3+ujbEB8aTZ/6EwKok8n7/zesJ8tq9y8ADnrIkQg6q2G49x9MrjtbhFkZXlTPdOBXnliwMpsHkvfsrr6bu5+7R3WV1HB/7LVMlav23VASPx6Bx0PeeLmj/aXJci8YaTty4ycSkfs/O2Z/we/4VpDW9lb3xQ+iYvpxu37/IzJxYZrQcyxMDOnBpnPxqJQRcIAnywAdv56OUZeynJwa/YhoeXMHmxvFo7n2WpWVT2VW0i5d7/I8N+zbyW8wMOm3VUr5mEZY6SpDdHjdrM1dx644E7AYDzXon1Ek/pxR/BaFjlpIyexT3dJtOwsZ2RLmGsWVBNlu+z6DHjW1p3rEhWvnC87k9xXu4d+m9ZJZmMtbTmI6Lw9mmH8xe/0BM+kJCgwqwJfljCArDXhTMwcwG7D+QxD6PBnCjr84guGAnrVf+iXXRPFaEWFGb96JB/6u4sntLEsKkunw8c9Q52K+ooGOHS1n408/sDvqTN8f+/SbeAEMA+aEFJBTrKErN8HoMf+77hUtKg/FoLATb0zF3vs/rffxjyXcxzlXF+7oX2bI/E8V5K4a1ZTy35TNufXIwkUEX94Yi7myVavUPjN2Ho9Gf2+kHk5dMYczOHmQ2iaVPjxzMzdp5pV1tUj+UR7uT+PMLZCybyZ/2weyJvxaNZwADstbj2fMs/92tYGt9Kw/0aU6bJkFe6VeIC9UFkSB/vPVjinsUEe1/OWmbBrO75y10uTqWBdn/Q923m/urn2fXizoCqttiDroJD59Qtm4VlpvrJp4dB3dQ6CzHUtqKyqAqoi+Nr5uOTkeDBKxjf2T6vDt4rPV6fitJ5ZZV3SkKuYLl729jxRyV5AHxtOwWid5Yd7uEiRNTC1VuX3I7Gnc1r6tu0jOG8KelKbbqLHoMiadp357HrfY7q13k7ytj3/ZC9m62csAvhrxGfQHQVRcRXZyDecYi1rw/hzmhjTD06ESXrq3oFBeMXx3uCHch2Ve6j4+2fQSAPlrPC1e8QJDp2C9+baQLdkNFvneXTvR4PGwu2UO/wprtpRsnNUBjPE+mQHUfz20aDZ+7n2dWeC7Xbr2VQF0Cc8fPo/FNnRjSW/F1hOeevZDcp0dR/P0enBU6tP5PEzn1aaxXXXdOuv8xbQ2dV6WRHXkj0QG7aDZirHc7MJrR9HmK2DbbiV1wLwfT32Cz5la2ajvjcXfm1l0rqUydyJT1XQhKHsEjV7cgXv74FhepCyJB1mg0vLvlXdpH/8EAz1jyNhezOm0taGK5uXwy5TotScmN8Lg8sLozqc2KuTRtNlTVzTzkNZmrCS7xUOLfivBABzqDjxcD8bPiP3ImL65+jbd/f4mpg5Zzy+q1tNqqkB7dh5Wfu1i9YA9dr42n9WVRaHUX9uIlp62yBA5sATQQ2RYM3r356nRklGRw+5LbMbid/G9VBevLH6PK30aHNtV0HnfjSafB6A06GsUH0ig+kE4D4qh2uMjeXUTOlh2kpu4iN9+EztEFrcaEDdCtrED97jO+01dxsEMr2ndMpHfzcGIaXLzLAD7Y6UG6RXVjc/5mrom/hghLxHHPa9AoGI27kopq7y57llmWyUFPNSH5Seiqy2g0sLNX2z9r3e5jJNBo5X957PLXGbH6coz6/mTPSWfqku0Mv/9KmkXYfB3lOeHcuYasB26jfAeUBNtIb9uctpvWk/XkZBJ7DkLjV7dTmjweD6/+OJXri4dTEuyhx/j+dTdXPbw53PY9wRtncflPT9OBKtZzH9s0l6F1deGWjGUYN9/H9MXtsPQfwS3XdLqoryPi4nRBJMg3t7iZEFMIU9dP5RnLncQntiEhvz0JBoX23WNo2T0KW6g/Ho+HfcWZZLt7ULhlIY1zNkN0F6/Hs3bvMq5ODaHSP5T4zsFeb/+MaLVou9/HnXHd6bLg3zzdtZSfEjdx93dbMVdGszlxOCtnu1jxXTpX3JhE69Zhvo64bjjKYMd3uNZ9SunKX6nI06HRgK2ljYCx/4Nm527+Z7GjmLt/uhtcDl75uZx1jklUGwK4ekwCMV3++SYRBj8d0S0aEN0imUtJhuoKSv6cxc+/f8W2/QYMuW3xN7chQm+lyeZy9KvnMIsyimNjad6nM1d2iKdJyMX303lyZDLJkcknPScqsDEaZw4VulCv9r3lwB8AaCrisZWkYb18tFfb94pu93GF0cInSx5i4mUrCEj7g747rsOjvYTvHvuR2W1DuGlUJ+Lq2Xrrqeu3kPr0fzE1SyCiZCv+f2zBVaFje6dkWrzwFJ393fz59LMoi1aSm/IoDR9NqdN4vkv7ie5r9BxscAmdknKwRjep0/7QaqHdTdByKOZf36Xnqldp5zGw2vUf0nRXoXH3oFvWaiJfmcSKD8x80qEfTYdcTb/2sQSbz5NfQYSoQxdEggwwIH4APZr0YNGeRVS7q2nZoCVtw9v+7RyNRkOHHvH8vDWdAn1bXPtT0Xk5QXa6nfxZsJXeeZ3IDYH4K86znyGjOtBu7Eq++Pk5Fpa8y4wbrURu3cN1K6bhMLdnmzKS5W9s4tMwPa36RnNNhyiCAi7ci507fz9FKePRGZ1oqwtx7k+nPEtLWbY/HpcNZ4ARncvDwV3VNNh5G+EvzYLY7nUel8fj4fFVj5NVmsnbv5bzW8UTVPnbGHhPa5pcEuWdTgz+2DqN4ZpOY7imaC/V2xfwW+pb/LHDD0dBMq6g1ti0/thKoOLzDL6duZkqLXjMFgxWK/4B/vj76TCbjdgamAhtYiUqMQhb6LmvtPtalCWKA5p9VOkjvdru5r3LsTn8celDCfbfjc52nlZjO40hzhbJrHl38HG4nbdjPmLwimYEch3abW6+uH8WaV2ace0VSfRqHo6hHvwKZXMeQDm4Eb79AzRQGWLij3E3syR0M86PpxBijyA0oQ1xEb9RNPdbwh95sc5ufPZ4PLy99BWurR6BR1tA+zvPzZQOAIwB0O0+6HQ7QX98zNWrX6VAq2Ot62bSdVewL6oH1tJUuv22joCfZjG7YTQ5bXsQ3rMHnZIiuaRxICaDTOkS9c85SZAVRdECbwJtAAcwVlXVXf+0HbPBzAhlxEnPadkyjh+0f5Ib3pGyTb8T2PXWMwn5hHYe3InDWYXLo2DS2AkMOw8rcgYT+t5PMrj1cAYvnkha+Dp+vDWSsu0qyeueIrvxYLR0J+/Trdzw1Tai2zbk2rZRXJkUfsFd6H5d8Ss70vsSXLSLsPyNWMqslARoWdM2kC0JIRRbGxBQ5U/3rYVc9scm/KbeQuDzv0Cgl5LUE5i7cy7L9y3n8XQ3u3LvpTyoEb1HJ3ovOT5aUDSG5HtITr6HZEcp7FnO7q1fsU7NpiA3AqcrggBXEIGOAKgoR5OXjVsDBw0mDujNaAw2NJqa//ZOfy2aSH8C42xENQuiUWgAYVY/Qi1+9XaFg0hLJHv1WzFqmuN2ONB66ef0LXmb6ZpTswJB9CXeTb69TumP8fZljP3iVoZnbuWz/lH8lPsGV6y/DLO5Jx1+PcDKX1bwrNKWQd2acWPnGCKDLtw/pgy2SDZ2e4yQkFxKEiysL8vGsdtNlz9vQufR49G50eRo+Vm5jyt/eQnHb0sxdepVJ7Gs2L+CrmvDsJujuPKySvR+PliX2BgAXcZBpzE02DqfAb+9T3nam/zm6M8WU1+22Ubj8bgIsOfQRt2L6Y/X2O6fzdwwB/vj4zA07cD/s3fe8VGVWdz/3Ttzp7dkMsmkkZ5J6L1KVVADAVIAUVZ4zcrGxqoLLrgrC6sYX10WFFBEVIiKIvFFFEFWKSsqTQhFSIZAJr0n0/vMve8fQ9hQQgqhTe7385nPx7n3uc89GZk75znPOec3MmIYhkf3QHKozC8WUSzdm9sVQZ4OQKDVakdoNJrhAFYCmHYrbkSQBCyqSjR6eqLp4n8h7+L5T9QeR2IFAaMsEVE9BF08excT0guY9x1izu/Bk/99A0xIPgozg1BR/R/EnzmKqsjZmEKEgvjxJHbt2Yt/hURiwNCeeLhPKO5LCLonnGXpkL4oPPwjQuWTUBr1EACAAQM+CAyqA1DnG+eRAT+PqMKQE+vQe8c/QD2+8ZbZVGGuwJvH3sRYuwCik5NQFtITfScGQTM86pbd8wr4UiA5FXHJqYhjGKCpGPSFvSjS/QeH68+iuMEDVxOF8DqgRzmDMD0gchCwitXQKzRoCkyC3qKB5aIV2h8qoXU2weNqhNNrAc2lwYgFIBUKiFRKSFQqSEMCoQgUIkgtglIqQICYBzGPc0+1GQyXhsNKGSAihLCU10IW3/m2Ws3QDI0CRx1GVA8CTXsR8cCgLrD0FhMUD/zxRygOvI6nfl2LP/Il2DO7Fw7+/jmiz09EaMAo/Pn0Lyg+sQvzvh6A+FED8eiwaIyMU95z3XLO8ZpwCiZElPQFSoAoxAI8Gj1Hh6HPmEgowyXI+XwdZD8lQZv4CALzNiHsFjnI6/e/g/HeRyCgy5H06OO35B7thkMBfWcCfWdCXK/F2BO5GH3mZdQ2SZHvGYwKWW9US/sCtC9tKcbjwIBTFyA+eAwNwk+wJYhGsbQXeD0eRM/EJPSJUKBfhAIRAcJ77t8IS/fmdjnI9wH4HgC0Wu1hjUYz+FbeTNJbCqaWi6p6Prq69X1++X8xShcKD1+EqJF3sHtFeyEIQPMQkPggiJKfkXz0fSR7dsM81ou9rhq4K0eB5k1CsiAaY0pOQfbbDmgpDr4K7wX5uDGYNCIRI+PuXme5Z0QcVvzfOFiMDlRom2CstQMMAZGMB5lKCHmQEJSAg83f/gzrrwE41uevkG5/DfEpRUBQx/OA24JhGCw7tAyEx4UZe3ri95D7ERDJYHRG3y6/V7sgCEAZB1IZB82w+dAAgN0AT+05FFUdwpn609hpq8IFkx5WfR1CG2sRov8JQUYulK5oEGQ8nII42MRR4HJaRAtNvpftohU2WFELQMvQIFx6uNwG2Bg7HEIacZOHY25a19cBdDVh4jCYBEaoLEDdxeoucZCrrdWwgwbP3gMkXQtJ31vjXHU5lACY+E+g7yOgflyGKUc/xWSeBAcfZHDwZALAjIDcY8eLF/4D6vgX+DkoDtvie2Nw6v2YMjLxnslPHRU/DK5nbGiob4LKHYbEoASExyrBaRH5nDc1HcsuvAeCGYvG/D24FXsAZxvPovevwXDxAzFmgvTuWliqNMCDK0BO/CdCq08itPi/QPH3YMqPwewQo9adiApHX5RxB6JR2RsAkGBvwJDiIshOfQ+u40NYCTP280VokCphU0eAiYuDsk8vxEaFIzpAjgCREBIB955bVLP4P7fLQZYBMLZ479VoNFytVtu1PZUu0adPPLR7XdA7lV06L8MwOF5/BiMMA1ETAvTod/2K+LsSggBiRvtelnpIf8/D9FOfw83fhD2C3ThtmAEvMQL1qgHguC0YbS6HYPs+lH/zA1aJZLD0iAa/bzyiouSIU0kRHSRCqFx412y5S+QCJA1t/efr6Tn34zH7/8XIY71xhP9HRH33Bqi5H3a5Hd9c/AZHqo8g56Ac54IeB0kY8cjiW7JZ0nmECnCjRyI5eiSSWxx2eBy4YLiAIn0RSg3FOGG4iCZLMezOfHhdNghtIgSaBZBbuRA4SHhdNBgHwLNTkDmkoOgQgBsBjqAHKEoKOQDy64PAPeAgC7gCOMQ2wAI0llQjvgvm1NX/DgAR9p80AAAgAElEQVTwkKFQcJvunHpeZwnpCTz2JVB1EsTh9zDm7HaMppzY2WsC8isfgodKA0lPQnL1EYw/tAui/2zAgcBI6PsNRUJaCkbcPxTcu3ibnUtyMTFqInCDjZ0wSRhChlJgtgMl3OHoWakFJ7xr6042//oe4lwTIfJeROKMLm7r1lWQHCB8kO81+kUQXjdkdecgqzmDhIbzYBp2wFBtRkV9AMopDSqEvVAT+r/CWI7HhACXGUFWBvTvXHjP1UBHmVBMUmDggpuwwco1Q8/3wCSWgi9XY/rERDxwt6clsfg1t8tBNgFo2T+JvFXOMQAkR8SgyH0IFkQAtiZA1DXKQNXWapjtFri5Ggg5dogV96iSmUQFDH8KGP4UqLoCTDm9FVPOfIUK4Uc4yAxHFT0KVqMaPEckSEICGQCZHsB/m2D1lOKYqwY74MEFMR+CxGj8+4lRCJXf/bmIqx95FkvKFmEAmYnffjiKEY/au7T1m9llxqrjqzCmUYB619MA5cLkv0+4Z9rqCbgC9A7qjd5BvW880NYE6HWAuRaw1MJpqkClsQSVziIUe/JR67XDbuVD3BCB8ISbj8TeLugAL1ALmKubumQ+XfVxBJqEcPPkUKldXTLnHSGsP5D+PvDg6yDOfInU45vxkPAlbA0YhgLzZHg4Y1ERPgGADWJLGZTlNbD86wvsXPkZ7JFhkI/sg4QHRyFaLb8n81LH9RyFn3efBi90FCz/+Qry//Nyl83d5GgCtdcDD0+O+L7eeyeCyqGA0H6+FwACQACAAIZBH3M1mNpzMBdr0VhSj8o6JyotFOxuIWgvCdLtAdfphsxqA2XzgnTz4KaksAuDoBKp4bGKgToaF0q/wgPvPHdH/0yW7s3tcpB/AZAK4MtLOchnbuXNQkQhoJlK2KhIoEnXZQ5yQWMBNOUMTLIYREbdhcV5nSE4GXhgGXD/PxBRlY/ZZ/8f8PtHAFkJG4eHM5FDUMiNhbUI4JZzwLOHgSNKQjQlRTQDyI5ehHWYChjZ707/JW2ikoph6xsMzncXcJY3GUPOfQ9uv7Qum//9U++jyd6A+49loloWjMD7JOgR3tVZ8HcBosArvlN8ALGXXqPvlE1dQZCvMMqut3fJdLqmQgwuDwEAhPW9xS27bgdipW9hPSwbVNkhzDn8HjyFy7CvRxAOU5NgNcdCIlTDIIsGRf+vPqPpKFD10w84aC+GhWOBM1QFQXIi4gf2xEMDetz1TuGI0BF4N+IDBF3sh4vHazCwCzv1fXsqF5HmByBy6jDsT/O6buI7BUEAsjAQsjDIEh6ADPhfmqPdABjKAHO1b5Ft1wO2BtD6anhqzsLdYIKp0YyyJhoNLiXUQ/3gO8NyT3O7HOTtACZqNJpf4Vts3tJmoFySCwe3FgTVE67K8+BFdE1xzLmqI+hToYSbJ0HkwOgumfOugSCA8IG+1wP/BCp/g6jgWwwr/A7Dmn7x/V8bmAhD+ED8wqtEYQkDh04KC0cFS6D3Tlvfbl4Z+wQ2/bwIPZx/QuH279G7ixzkKksVthR+hmd+06BaPgZOuhyzHrvDxTYsHUIWqADHY4fLS3fJfDpzOYY1JMDLA0KH9+ySOe8KCAKIGglEjQTXUI5Jv32ESSc/A4ha2MKUKI8fjzJlEsoYBRqqTWBOGUE3BIHD6wcOyYfU5ETA94XA51+hdN3fEJ3U1ZUiXYuIEkGYIANR5EJ1U9fJLzMMg7O7TiOK6gtZYA1Izt1Z59FlCBW+V+iV9RgkAN6llxjAPZS4yOLn3BYHWavV0gCyb8e9mrGKLRDYOag/U4LwLhKvOld7AuObolCvBtRJfiq0AfgayEcO9b0mvQo0FAHn9wC6n6A4vweT7XpMBgAJ4JFxwQ2YdKctbjfJwT1wpicBzS+1OF2eiF5OCwj+zUuprju5DjIzBxzboyC8dRj694fZiu17DJU0BByPAS50TYstncuA++3hsHAckIb64U4CACgigQf+AYz/G3BxL0Snt0Jzbjc07jzfeVUSMHQgEBKMMn4jfijSo+4sDTs3AvVBfRBP3RuL60nxY2F1X0Q9lQg4jIDg5v9/nqv4BRFVQyBwN2DYkowusJKFhaUruWeEQjqKPRhAKVCjs6GrOs+ebyrBJG8KSHgQGOZfqlI3JCjB9xr5rO+9tQFovAAYysFlaCAw7s7a10FGJE0E9v4EvWgGmvIPQzn85tT1ig3F+Pbit1h4dBrMfDkMsWYMSQjuImtZbhdB0lB4aCNcxM2nT5lcJjQybtBEGERc212fRnDTcLhA4oO+l9sBVP4GlP4KVBwDLvwAnNqCHgCyAIADGEMplATEIT74mztsePsYET4Uefx3QCMNxmM/QT469abn/O7HjyHmPAa++ReERt24vz8LC8vtx28dZCo2GGSxC3VNXdOruMHeAHmNA2ZpNAICie4dHRQH+V63QMb7dvB/BqRgVehGxDpnoGj/+Zt2kN8/tR59K8Jh5o8FbdbiD0/dhXLCLG2iEKtRSxTCxbn5xU2J/iKURsAmCoNaecvqke9OKIFPrbKlYqWtyVcPYqkFTJWQm6rQDwC6YPfmdhAjj0Gx8gL6NwK6/xai/006yLTHBdcpNSS0B+KRiV1kJQsLS1fitw5yaHQiBI5GGKmuKaYraCxAXBUHFkkE+vpzekU3IEIWCl20Av2PFqO4VIqbcfN1Rh2+1+3Bn4sWwENa0PRwf/RQ+kkBZzcjUBCIMtIAiisHQzMgbmIRXFpzHNENIni5QoTE3Bt9gW8pVxV23mtwSS5qYwSgqs2orOCi/03Od/rEhwiwDoTcWIiRf2AX1CwsdyP3Xs+ddtJLHQfS2wQ7ArpkvsKa44huCAVDcqHuxZYR3OtE9xwPifEU9AiHqbK20/N8fOp9jC/sC7sgBrUuHeanD+lCK1luJwqBAjbKBIbkwNpkvam5qhsLEdno68OuSrq1suYst4fwsD4Q2ErQ6L75AMm+wz8DnAA4yCaEBEjbvoCFheW247cOcu/gWNBME5ycQIC++UKQotp8qC2+puVBEewD7V4nVTMWjcLTAICSgyc7NUettRY7L+xGr7rJEFirEfjYAwi8R1TEWK4lgB8AK98CALBVNdzUXLWmCoSZfBHTgGh2x8kfGBLWDx6Uw8xVw2XUd3oextIAqy4OJO0Gf8A9oMbKwtJN8VsHOUCggAd6eDkSuPWdjxA2U1qvAxehIOGFTHX3i2Kw3JiRkf2hDW2CwF6PsjONnZrjs9Mbcf/ZIXDxglHK0+OJ+/2olVc3RCFQwMr3RY6t9cY2Rt+YGkcDFA6fgyxVdk0dBMudZWzUAJipMoAg0XDmXKfnKT+9BQHW/ghoOoekafeI/DgLSzfEbx1kgiDg4pgAAOaK6puai2EYkJV6WMURkMq6eYGen8Dn8FEV0wOBei2qGhWgO9j71u6x4yvtV0hsegBCawV6/XEyhDw/72Pq50gpKax8GwDAVG++qbmqnUZQ3iBwGCd4Ar8t9ehWxCiiUSupAgDUnCnp9Dw/nz4EglTA5q1F/wQ2XY+F5W7Fr5/cTr4VfADmynoE3oTQW62tFuHVNCyScMTGdU1OM8udR9VrGMQ7tajCfajTNUEdH9Tua/9TtANDziXDxQ+GnleEJcOib52hLLcFgiDgEfokoY036SDbLA64KSUEgq4RHWG585AEiYYgAWIr9Kgt6aTaosOIsjIFpAAc4Upw70Hp7buN48ePB3O53I0AesOPg34stwQawO8ej+ePgwYNqrv6pF87yHaJF3wnYKhoQNRNzKMz6NCjUQq3XAJVPNvf1l94MGEkmgQ7AQAVxwqgjm+/UHLeqY0YW/soQNRj5ItTwGF3FfwCj8Tn0Nr1pk7PYffYIWtiYBcoIWfTK/wKlzoa0oIyNAjCOnU9feFHcIy9ILJWQ5gysIut655wudyNarU6WaVS6UmSZO60PSz3DjRNE/X19T1ramo2Aph69Xm/Xm05FQIQtBemuk6u9i+hqzsJlcW3FRYUcW/07WRpmxHhg1GstkBsKUdFQVO7r7vQpAWngIJTGA2L0IzxfTr3Y8ly98GR8kDQXjgtjk7PUWupRmgj4BAooYxkd5z8CWlkMsSWcphoJdzOjve3PqvdA6EnHlKjFpoRN9ssjuUSvVUqlYl1jlk6CkmSjEqlMsK3+3Dt+dtsz22FCAoB36mHQX9z35sLtWcg8vhaNSnDWQfZX1AIFCgPVyJQfx419UJ43O3rdvLtiXcxQjcKpNeJ4dmT/F8lrRvBlynA9Vjgsnc+NaKmsRDBZhkYkoug6Pan7bDc/SQFJ8KNaoAgoS+u6PD1x4v1IAgejIwRvSLYxVMXQbLOMUtnufRv57q+sF87yEJVGAROPUz2m2u9VVlxHl5eCLikCwIJ1UXWsdwNEMl9oTAUwctwUVvcducCmqFx9PQR0PzBIJgaDO/X4zZYyXK7CBAGguOxwe3q/O9tTdN5KGy+HsiykG4kSd8NGBCaBKOgBgDQdKG0YxebqlHbGAYwNIxqJXhcv/75ZWG55/Hrb6giLBoCRxNs3pvrW+ytboBdGAyx3K9TtrslA3qNhIe5ADA0Kk8Wtzn+eNkBDDjXFzSHh+SMQbfBQpbbiVKkBEnb4PF0viNJrbEUUpevxZtMybaE9Cf6h0ajTtoEgnajqbSD7SFLDoJjToDEWgX+gJuoGme5Kzl8+LA4MzNT0/w+Pz9fOHXq1KS0tDTNggULor1e3w7l+++/r5oyZUpyampq8rZt2wIAwGKxkHPnzo3LyMjQzJo1K7GioqLVSNzXX3+tyM7Ojml+v3fvXum0adOSMjIyNFlZWbFWq5UEgDfeeCM0NTU1efr06UlHjhwRAUBtbS23+T7Tp09PunDhAr95nrq6Ou748eN72+12AgAaGxs5c+bMiU9LS9PMnTs3rra2tlUH6MCBA5JRo0b1vfq4TqfjTZ06NanlsQ8++ECVk5PTal5ibm6u8ttvv5UDwPr161ttIr927drgZcuWXVZh2rp1a2BqamrS9OnTk/7yl7/08Hq9yM3NVWZmZmoyMzM1U6dOTerdu/dAvV7f7oe7X3t84apIeD1H4IKs09KxTq8T0kY3bEIVIiMVt8BKljvJmB6DcTDEAYmtApUFrjbH7zq+AT0ck+Dh1WPMQ+Nvg4UstxOVVA0vY4WH6XwqVY2lCr3cwTADEMlZ4Rh/QsSj0CCVINhUh8aqjv181l74EQLPNEiNx6AazspL3wo2/1qi/H8nKro0ryl9YETD3JHRN1wNrVq1KmT37t1KQYu2Ne+8805YdnZ2dUpKivGpp56K2bVrl3z48OHWvLy84O++++6cw+EgHn744d4ZGRn6TZs2BSUnJ9sWL15cnZubq1y3bp06Jyen/Or7LFmyJPLIkSOy+Pj4y4VVK1asiNqyZUuhWq32LF++PHzz5s1Bw4YNs5w4cUK6Y8eOgvLyct4zzzwTt3PnzoLXXnstYsqUKU0zZszQ79+/X6rVagXx8fHOPXv2yFavXh2h1+svO+arV68O7d+/v2XhwoU1P/74ozQnJyd89erV12yblJWVUR9//HGIx+PpklzDxx9//PJn/fHHH4dlZ2fXtzxvs9mIv/zlL9EFBQXicePG6ZuPvfvuu2G7du06JxaL6T/96U8xu3btkj/++OONzfMtWrSox7Rp0xoCAgLarRzn1xHkmAA1PIQJIDhwWNp2fq5HlaUK4Q08uPgKBEUru9hCljtNvCIe5yMoBDQVobaWumEespf2wnikATZJNAJiRWzusR8SKA0GDRs8BL/twa1Qa68Hh5GBgIftgeyHWBRqiK3VaDJ2rEPJsdIKEIQQLk89+rDqin5FVFSUc+3atRdbHtNoNDaDwcChaRo2m41DURSjUqk8u3btOsvj8ZiamhqKoiiaJEk8++yzdQsXLqwGgKqqKp5UKr3uD9GAAQMsr7zySlnLY59++qlWrVZ7AMDr9RJ8Pp8+cuSIZNiwYSaSJBEVFeXyer1EXV0d98yZM5KamhrerFmzEnfs2BE4duxYMwCQJIlPPvlEK5VKL1ee6nQ6wYQJE4wAMHLkSMvp06eviRrY7Xbi5ZdfjlqxYkXZ1efaQqfT8aZNm5b05JNPxqakpCQvXLiwBwDk5OSEffDBB6q33npLbbFYOIsWLboij9HhcJBpaWmNTzzxxGWBCz6fz2zdurVQLBbTLT6Hy3lyx44dE+l0OmFWVlaHJFL9+ukdExiC06SvXZOt0QihrOMt2ioNOqhNKhglgILNJ/Q7OCQHxsR4BBzXojzyflQXGRHZM/C6Y/Mv7kJSxRB4xF5M+tO422soy21BJgpGFXEaNEfU6TmsBhM8lBxczs1L3LPcfdDBUZD8VoU672C4HO1cBNmaUGRUgQeggQtEBLCpN7eCuSOjG9uK9t4K0tPTDTqd7ortopiYGOebb77ZY+PGjaFisdjb7IxSFIX169erNm7cGJ6ZmXlZ5pfL5WLmzJmJOp1OuGHDhvPXu8/MmTP1Bw4cuCJnNCwszA0A27dvVxw/fly6ZMmSyjVr1qgVCsVlZ1ckEnmNRiOnrq6OJ5PJPFu3bj3/xhtvhL799tvqv/3tb1UTJ068pq9lYmKi/T//+Y9i4MCB9p07dyqcTuc1AdUlS5b0yMrKqo2IiHB35PMiCIIBgMrKSsEnn3xyXiQS0ePGjetTXV19+cu0aNGimry8vJC33nrrCuc7MDDQO2nSJFNubu7liCWHw0HzIuG9994LttvtnAceeODy3/Tee++FPvPMM1UdsRHw8wiymMeHg7IAAGz1nfvOVDSchdzhW+0rQtiHmj8SP3gs+PbzIBkXSo6XtDrux/0fAvzhEJG1kKluLq+d5e5EwpfBzbGCJnnt7mpyDQYnXDwZeCK/frx2WyThSRDbfMErfXk720NW/Aa7JRE8lwm28FB296kbsHLlysjNmzcX7tu37+yUKVMaly5dGtl8Ljs7u/6XX345deLECen+/fsv/5h8+eWX53Nzc7XPP/98XFFREb85f3bTpk03TBtZs2ZN8ObNm9WbNm0qEgqFjEQi8TbnIgOAzWbjKBQKr1Qq9U6ePNkAAJMmTTIUFBS0Ggl4/vnnqysrK/kZGRmaiooKvkqlch88eFDSbNPnn38eePr0aem6devCMjMzNRaLhTN//vzYlnMIhULa7XZf8SC02Wwkn8+nASA0NNQhk8loLpeLwMBAt8Ph6PRD0+v14pVXXok4fPiwbMOGDRdJ0jeVXq/nlJeXC8aPH99h9Se/f4Lbeb5UHVtj2x0KrkdJVQE48DnIclXno0osdy8TYkfhQqgHClMhSk7Xg2Gu7WDA0DTI4yK4eVL0n3LdloksfoCEksDF8clNO60d73PLMAx4ZhounhwiBSsS4o/0UCeC8fgc5PZ2smDKDkNgi4HMVAKqZ/KtNI/lLkEikXhkMpkXAEJCQtxms5lTWFjIf+KJJ+JomgZFUQyPx6MJgmBWrlyp/uyzzwIvXeclSRIJCQnOvLw8bV5ennbevHmtpga89dZb6vz8fOmWLVu0KpXKAwBDhw61HDp0SO71elFaWsqjaRoqlcrTu3dv8549e+QAcOjQIWlsbGyrDd8PHjwofeSRR+q/+uorbXR0tKNv376W0aNHW5ptmj17dtO+fft+b34vkUi8GzZsuKLSPTg42GO328mzZ88KAMDj8eDw4cOy/v372wC0uVC83m9xayxcuDDK6XSSH3300YXmVAsA+PnnnyWDBg3qlPKTX6dYAIBN4IYIgLWpc8pYhrJi2EVjQHHdoPidr2xnuXvpE9QH30RwMfrCWWjlfWGotSFAfWU6zbETuVBZRsItMKBvCluc56/IeDLYuTbwAdgMNogVHctFtrqtUJgBJ0+GsBDZrTGS5Y7SSxULk6ARBOOGvuwaddrroiv9DXz6PkjMxxDcP+UWW8hyN7B8+fLSBQsWxHE4HIaiKDonJ6c0JibGlZiYaJs+fXoSQRAYMWKEcdy4cZakpCTHiy++GLN9+3YVTdN49dVXde25R01NDXfTpk1hcXFxtscffzwRACZNmtQ0f/78+gEDBlimT5+exDAM8fe//70MAF555ZWKxYsXR23bti1YLBZ716xZ02rrpsTERMeiRYti3nrrLQQFBblWrlxZ0tHPgCRJvPrqqyVLliyJJkkSHo+HGDNmjGH8+PHmq1NSrkdUVJT96aefjnn33Xdv+HkcP35ctHv37qBevXpZZs2apQGAOXPm1E6fPt1w8eJFQUREhLOjtgPdwEF2iniQOF2wNnROTY+ubYRNGAxJAFuN7q/wODwYkuOgPPI7AEB3ogoBKQlXjDn09XZwpX9GRHA9SFZW2m+R8CSw8axQeAB7vRGI7piYQ5OtDkEmLrxCIZThbNcbfyRGGYj/SjngO+qgr23HrqLXgzPVviJxh7cJSVGseIw/EhMT4/rmm28Km9+PHj3aMnr06MKrxy1evLgaQHXLY2q12rNly5ai9txn3Lhx5nHjxpmbrzt79uyJ641bsmRJFYAr8m6jo6NdX3zxRav3OXjw4Jnm/05ISHB+/fXX19jfGkeOHDl1veOtfQ5Xf17N/33JbgDAtm3brpuLDVzZ7WLQoEG2wsLC49cb9/zzz9de73h78PsUC4800Jf3ZejUAgJcgx12oQrKcDYa5M8kjpkIB8cAheMCCg6WgqH/t7XjNtVBUD4UpNeFB5596A5ayXKrEVNi2Hi+FAt7Y4dT1tBkLEWgVe6bS86mWPgjYQoh6iRiSCw1aGpqx65ifQHKnL62tbUkg8QQtn6BheVewO8dZFqhAs9lgtnccelYs8sMhYELN08KZY/rdzZg8Q/GRo3Bb4kE1KU/waAnUXbuf8U3uzYvh5c/BBKyEOJg+R20kuVWQxIkHALfbpNdb+3w9U3GMkgdPgdIzPZA9ksEFAeN0gBIrDUwOSTwuNoo5qz4DTZHHIT2ehiC1JAKWDVWFpZ7Ab93kHmBweC5TLA6Op5NUmmpRJDVt8UqZRWx/Jpeyl4o7KWEuuYkhEwTTn53DgzDwN5QhtpTiSDAYMy80XfaTJbbgEvgq1ux6TuelqW3VIHv8S2iRPLO91JmubuxKtQQW2sAkDBUt7HTUPkbeLZoSE2lYKJjbzyWhYXlrsHvHWRRYCj4LjOcno47uFX6YsjszZKx7HapP0MQBBIemA4Hz4vIxh9RoXPj4Kenseetz+Dm9oHcvhdRI1hp6e6AV8SAoL2wmlst8G6VJmstKMaXjiWSsRFkf4VRxUBsqwHQdieLSl0BeN5AyMylEGkSb4d5LCwsXYDfO8iKkHBQbhPcjBBeb8fSLKobCiDy+BxkKesg+z0Pa6Zg5xAS4b//Fz2JXTjzSyMqjcOgqjuOIS88fKfNY7lNMCIBOF47HJ1wkPXmOoCUAaAhlLBb6f6KOLwXhPY6gKGhL6tpfaDDhNNNvp0EgbUCag0bQWZhuVfw+y4WwcowkB4TQJBwmN0dattUXaaFnBMIgGa3S7sBiQGJuPhwL+hP/Q7y2E+IjtQhVFeLwqF8JAxcdKfNY7lNcMRicD0OOG3t78HZjLWxES5eL3BILwi224nfEh2mgZ3nAeWth77qBjsFVSdQ7kkAGBqNpAtxbOs/FpZ7Br+PIEfIguAlLslNm1wdutZWVgaHIBB8vpdt7dUNIAgCf5/wGj6YTIHiOBBbcA7HkywY/6/cO20ay21EKJCA47XD7ex4Ya/LYIKLJwOHXU/7NVGBAaiXccBz1aCx8QadLMqPweyKh9BehXKxCnEqcetjWe5pDh8+LM7MzNQ0v8/PzxdOnTo1KS0tTbNgwYJor9dXzPn++++rpkyZkpyampq8bdu2AACwWCzk3Llz4zIyMjSzZs1KrKiouGb7yWazEVlZWXHp6emaOXPmxNfV1XEBn4rexIkTezUr3BUWFvJbG3v06FFRenq6Ji0tTZOVlRVrt9svOzZX23/8+HFRampqcnp6uuavf/1rZLP9Lfnpp58kqampSVOnTk36xz/+EX71+dzcXOWyZcuuOD5//vzYq+WyW/Lyyy9HlpaW8hobGzlffPHFdbsjeDweZGVlxX7//fdXrDitViv50EMP9Ww+XlVVRc2cOTMxPT1dM3fu3DiTydQhn9fvI8gR8kAUk5ccZKMdQPtb7DANetgFSlYRqxuRGJCIyY/+HX9LXocgO4UXJi5DqOya7z2LHyPhyUDQdng8HfdyaZMDLp4EPDGbXuHPhMqFOCMRQmSpRIOoD9wuLyjetY4yU/orOPYnoDCexEVlGALFbF76LeXoBiVOft61jab7z27A0PmNNxqyatWqkN27dysFAsHlVfU777wTlp2dXZ2SkmJ86qmnYnbt2iUfPny4NS8vL/i7774753A4iIcffrh3RkaGftOmTUHJycm2xYsXV+fm5irXrVunzsnJKW95jw8//DA4Pj7evmTJkqqtW7cGrFq1KjQnJ6e8oKBAnJOToxs8eLCteeyaNWtCrh67YsWK8qVLl0avWbPmYkJCgvPjjz8OKi0t5SUlJTmvZ//SpUujXn755bJRo0ZZX3311bCtW7cGPvroo1doq7/xxhuRa9euvRgbG+uaMWNG4okTJ4QDBw7snOjEJV5//fVyADhw4IB03759ikceeeSKe164cIG/cOHCmIaGBgrAFQqDixcv7tFSnW/t2rXqqVOnNs6ZM6cxJycnbPPmzUHPPfdc+9R90A0iyAEiAZxcX7smW0PH5Ka5RjscgkAEhrHbYt2JGYkzsH/WAWyb9wNGho+60+aw3GZkAjnAOOChO/54JKxuuLliCGVsCNmfCVcIUSeSIbCxAgxINJU1XTvI60GjrgSUVwyZqRSeyJg2pXVZ7k2ioqKca9euvdjymEajsRkMBg5N07DZbByKohiVSuXZtWvXWR6Px9TU1FAURdEkSeLZZ5+tW7hwYTUAVFVV8aRS6TXh2vz8fMm4ceOMAPDggw+afvvtNz6/3n8AACAASURBVBkAaLVa0XvvvadOS0vTrFy5Ut3a2PPnz/NlMplnw4YNIRkZGRqDwcBJSkpytmZ/Q0MDb9SoUVYAGDx4sOX48eOSq23asWNHQWxsrMtsNpNWq5UjkUjave2Wm5urfPLJJ2P/8Ic/xN9///29cnNzlQCQmZmpKSgoEKxfv1598uRJ6YcffnjFgsdisZCvv/56yYABA65oH/P222+HDBgwwBIfH395ofDaa6+Vz549u9Hr9aKmpoZqlv5uL34fQeaQBOzUpcb/hvbLTTMMA6EZcIlkCAxje9+ysHQXFKJAMIwdXqZjUWCGYcC1M3BTEkiU1/yWsPgRKikfdeIgBFyoBAA0FhQhJF515aDa3/G7KxIAIDOXQpg4+3ab2f0YOr+xrWjvrSA9Pd1wtXRyTEyM88033+yxcePGULFY7B07dqwZACiKwvr161UbN24Mz8zMvKzyxuVyMXPmzESdTifcsGHDNQpyVquVI5fLvQAglUq9VquVAwATJ05sysrKqpfJZN6srKy4nTt3yq83tqGhgVtQUCBZtmxZWXx8vHPu3Lnx+/bts02YMMF8PftDQ0OdBw4ckIwbN86yb98+hd1uv2aLhKIoHDp0SPzSSy/FRkVF2SMiItqbx8oAgMVi4Xz++edF58+f52dnZ8e3VMfLzs6u2bJliyorK+uKKHH//v2viVDv3btXWlpaKvj3v/9d+txzz11++JIkCZfLRaSkpPR0uVzkCy+8UH31tTfC7yPIAGAXAATtgt3Q/sb/RqcRMpsCIEi2BzILSzciUBIEmrDDQ3RsO9zkMkFq48DLFUCmYh1kf4ZDErDKIyB0NIKEHQ2663SyKDuEUk8yGMYJwlmPkLio228oyx1j5cqVkZs3by7ct2/f2SlTpjQuXbo0svlcdnZ2/S+//HLqxIkT0v3791/O+/zyyy/P5+bmap9//vm4oqIifnNe8aZNm4LEYrHXbDaTAGA2mzlisdhL0zSys7PrVCqVh8/nM2PGjDGePXtWdL2xSqXSGxoa6ujZs6eDx+MxI0eONJ46dapVrfQ33nhDt2HDhtCZM2cmBgYGehQKhWf9+vWqZpua86RHjBhhPXjw4BmNRmNbvXp1aMs5BAIB7XK5rvAz7XY7KRQKaQBITEy0AUBkZKTL7XZ32h/dtm1bUHFxsTAzM1Nz9OhR+apVqyLy8/OFAMDj8Zgff/zx7NKlS0v+8pe/xHRk3u7hIAsF4LkssBttbQ++RK21BlIH2+KNhaW7oZCo4CUc8JJ8MEz7O1no7Y2Q2X1FWHK2643/o0oAAQY8ogqN1e5rz5f+CqOrF/iOElRIghEXzC6auhMSicTTvKUfEhLiNpvNnMLCQv4TTzwRR9M0KIpieDweTRAEs3LlSvVnn30WeOk6L0mSSEhIcObl5Wnz8vK08+bNa+jfv79l3759CgDYs2ePrF+/fmaTycSZPHlyL7PZTNI0jSNHjkj79Olju97Y2NhYp91u5xQVFfEBID8/X5qYmNhqL8sffvhB8c477xR/+eWX5w0GA+e+++4zZWdn1zfbFBYW5k5PT9c0XdJbF4vFNEmSVzww+/btazt27Jis2VlvbGzklJSUCHv27OkAcMOUI4IgmPY+f9evX6/7+uuvC/Py8rRDhw41vvDCCxUDBgywL1q0qEfzAkQikVxjX1v4fYoFANjFMgTrzbAb2x8RqjUUQ+RRAACkgeyPHQtLd0EmCoaHdAAECbfTC56gfY9Jk6kSEqcYJgBCCVuM5e9IwnsCAEjUocEYBoZh/veD7/XAefE3kPa5CGragzKpGpPZDhbdiuXLl5cuWLAgjsPhMBRF0Tk5OaUxMTGuxMRE2/Tp05MIgsCIESOM48aNsyQlJTlefPHFmO3bt6tomsarr76qu3q+rKys+j//+c/RaWlpGoqimLfffrtYoVB4n3766YrZs2drKIqihwwZYk5JSTFarVbz1WP5fD6zfPnykhdffDGWYRj06dPHMnny5FYLs6Kjox1z5szRCAQCetCgQeaUlJQrxpIkiXnz5tXOmzcvgaIoRqlUuleuXFnSckxSUpJzxowZdTNmzEgSiURej8dDvPTSS2VSqbTNXOW4uDhncXGxcO3atcHPPvtsuwvrWvLEE0/UvfLKK1HvvvsuQxAEli9fXtaR67vMQdZoNASACgBFlw4d0mq1SzQaTSqApQA8AD7SarUfdNU924tLEgCq1gKbJaDd11TVFkDG+BzkjvROZmFhubeRCORwc+zgAHDZPe12kI3mSghdIpgACFiREL9HFaqCjUeAcFbDxRsBU7Ue8rBLXanKDqHSrAYBEsH15/FLRCJ6BLIOsj8TExPj+uabbwqb348ePdoyevTowqvHLV68uBrAFbmwarXas2XLlqKrx7ZELBbTGzduLL76+GOPPdb02GOPNbVn7IQJE8wTJkwoaI/9qampxtTU1Bt2Npg6daph6tSphhuNmT9/fv38+fPrrz7eMt9YKBQyBw8ePAMAeXl52ubje/fuPdvavGvWrClp63hycrKj5XwdpSsjyHEATmi12tTmAxqNhgKwCsAQAFYAv2g0mm+0Wm1tK3PcEmhZEHhuC0yO9meUNOgKIeBHgEO4wKVu0OeShYXFr5BSUjg5DogAOO0eSNq5rjbZ6iDw+LbRWRU9/yc0QIQ6iQA8vRbWEKDy12OQZz7oO6ndhQK6H2h4ITfpYA97ADxut8hoZGHxG7ryGzsIQLhGo9mv0Wh2aTQaDYBkABe0Wq1eq9W6APwMYEwX3rNdcANUoNxmODvQ19RSVQEHXwE+W5/HwtKtkPKkcFK+1DxnB+SmjdY6ULQvSihg+yD7PeEKAaolcgTVVUDI0aP8jK+jBRgGKNyJSnognEQZOLQbVGzcnTWWhYWlw3QqgqzRaLIAvHDV4WcA5Gi12m0ajeY+AJ9eGtMyRG8GcNt7pgkDQsBznYGXoeB2ekHx244IMw0GOPkKCANaLfJkYWHxQyQ8CexcOwK8gENvAdA+3QGrvh4Kri+CzDrI/k+YQohfxGoMqahBo6oRFXXBYBwWELVnYG60wW2OgMC1GzYuH8rYHnfaXBYWlg7SKQdZq9V+CODDlsc0Go0IvjxjaLXanzUaTRh8DnFL6TopgBvmq9wK5CGRoNyHAAB2swtUO8LCXKMNTr4C6jDFrTaPhYXlLkLAEcDBswN2wNmB1pDOpgZ4uMkgCC84FLud7u+EyoUoF0aDS5+EXWmCoyYeDT98BlX5JhQxkwEA0fVnoJOFIjak/QquLCwsdwdd+RT/B4DnAUCj0fQDUA7gHIAEjUYTqNFoePClVxzqwnu2C1WgGgTtE12xW67Tjuc6CE2AmydFYCj7YGNh6U4QBAE3zwkAcJrar5rqMJjgoiQgu0VvIBaZgIsmhS8ybHD76oCKD+SDqT2Hc/QU1EiLEVleBZ08FLFBbIs3FpZ7ja50kN8AMFaj0fwXwL8BzNNqtW4ALwLYA59j/JFWq63swnu2i3CZCm7CAsAXQW4Ll9cFic2XCSINYHsgs7B0NzzNDnIHcpA9Zis8lBhcARs97g4QBAFvhE/7wVlxFnH9g5DvyMRR1XoYm7ioFv8GnsONYlkYYtkWbyws9xxd9iS/VIg3WavVjtVqtfdrtdrCS8e/1Wq1Q7Ra7SCtVruuq+7XEcKkCji5vgiyw9T2D169vR5il89BZlu8sbB0PzwCL8DQcFraq5wKMBYnXJQYFJt/3G0ICA2GlU9BWG1Av4xQcAU8/PZ7CFzhelB0PgCgNigCwVL2d8TfOXz4sDgzM1PT/D4/P184derUpLS0NM2CBQuivV4vAOD9999XTZkyJTk1NTV527ZtAQBgsVjIuXPnxmVkZGhmzZqV2KxS1xKbzUZkZWXFpaena+bMmRNfV1fHBYA1a9YET5w4sVezwl1hYSG/tbFHjx4Vpaena9LS0jRZWVmxdrv9slLH1fYfP35clJqampyenq7561//Gtlsf0v27t0rnTZtWlJGRoYmKysr1mq1XuFT5ubmKpctWxbe8tj8+fNjDxw40OrW/MsvvxxZWlrKa2xs5HzxxReB1xvj8XiQlZUV+/3338taHrdareRDDz3Us/m4xWIhn3nmmej09HRNampq0pEjRzpUVNYtNgMVYh4cXJ+Knk1vanN8vbkKAo+vt5MkgH2wsbB0Nxg+D1yvAw5b+x+RhN0NNyWBRMbuOnUXooMkqJQqEdZUi6PGX/Hw/DGoLTHhFfPTmHE4CIAJvISEGyqGsXQdnxd8rvzm4jftq6ptJ1PjpjbMTp7deKMxq1atCtm9e7dSIBBcFsB45513wrKzs6tTUlKMTz31VMyuXbvkw4cPt+bl5QV/99135xwOB/Hwww/3zsjI0G/atCkoOTnZtnjx4urc3FzlunXr1Dk5OeUt7/Hhhx8Gx8fH25csWVK1devWgFWrVoXm5OSUFxQUiHNycnSDBw++LBW8Zs2akKvHrlixonzp0qXRa9asuZiQkOD8+OOPg0pLS3lJSUnO69m/dOnSqJdffrls1KhR1ldffTVs69atgY8++ugV/ZZXrFgRtWXLlkK1Wu1Zvnx5+ObNm4OefvrpTol6NPP666+XA8CBAwek+/btUzzyyCNX3PPChQv8hQsXxjQ0NFAAGlqeW7x4cY+W37U1a9ao4+Pj7evWrSs5deqU8PfffxcOGzas3ZLK3WIvUCbgwsb3gKBdcBgsbY6vbzgPLliREBaW7goh5IHjccBhbV/NAgBw7V64KTFEAWxvyO5CTJAIZcIwROhJ7C7ZjXBNAJQjgDJrGRIb+aiVBCEqQnWnzWS5xURFRTnXrl17seUxjUZjMxgMHJqmYbPZOBRFMSqVyrNr166zPB6PqampoSiKokmSxLPPPlu3cOHCagCoqqriSaXSa8K1+fn5knHjxhkB4MEHHzT99ttvMgDQarWi9957T52WlqZZuXKlurWx58+f58tkMs+GDRtCMjIyNAaDgZOUlORszf6GhgbeqFGjrAAwePBgy/Hjx69JpP/000+1arXaAwBer5fg8/ltKuQ1k5ubq3zyySdj//CHP8Tff//9vXJzc5UAkJmZqSkoKBCsX79effLkSemHH354xYLHYrGQr7/+esmAAQPMLY+//fbbIQMGDLDEx8dfdoAPHz4soyiKmT17dsKaNWtCH3jggbYjpC3oFhFkgiBgE/BAuS2wG9v+8WooPQcRTwESrnaraLGwsPgPpEAIrscOp6N9IkEMw4BykPDKhJDK2QhydyFKKcZZSTAeKPfiZMlh6B16bDyzETySh4ASPX6WhSIhhC3Qu13MTp7d2Fa091aQnp5u0Ol0V+jLx8TEON98880eGzduDBWLxd6xY8eaAYCiKKxfv161cePG8MzMzMuiaVwuFzNnzkzU6XTCDRs2nL/6HlarlSOXy70AIJVKvVarlQMAEydObMrKyqqXyWTerKysuJ07d8qvN7ahoYFbUFAgWbZsWVl8fLxz7ty58fv27bNNmDDBfD37Q0NDnQcOHJCMGzfOsm/fPoXdbr/mYRgWFuYGgO3btyuOHz8uXbJkSXtrzBgAsFgsnM8//7zo/Pnz/Ozs7PiW6nrZ2dk1W7ZsUWVlZV0RJe7fv/81ldN79+6VlpaWCv7973+XPvfcc5e/cEajkWsymbiff/550aeffqr85z//GbFu3bqSdtrYPSLIAGAXCsBzWWAzO9scqy8rgYOvAMW7NueGhYXF/+EKxeB67XA72xcQcXgdEDl96W1yBesgdxdigsTQyUIBABE1Hvzz0D/xzcVvME81BaiuwdnAGCSwLd66JStXrozcvHlz4b59+85OmTKlcenSpZHN57Kzs+t/+eWXUydOnJDu37//8j+QL7/88nxubq72+eefjysqKuI35xVv2rQpSCwWe81mMwkAZrOZIxaLvTRNIzs7u06lUnn4fD4zZswY49mzZ0XXG6tUKr2hoaGOnj17Ong8HjNy5EjjqVOnWs3JfeONN3QbNmwInTlzZmJgYKBHoVB41q9fr2q2qTlPes2aNcGbN29Wb9q0qUgoFDIt5xAIBLTL5brCz7Tb7aRQKKQBIDEx0QYAkZGRLrfb3Wl/dNu2bUHFxcXCzMxMzdGjR+WrVq2KyM/PF8pkMs+kSZMMAJCSkmLQarUdqpbtNg6yTSQFz2WG3eRpc6yzrg5OvgJ8Ka/NsSwsLP6HiCcFQdvh9rQvd9TkNELg9j17JTL2udFdCFMIUaSKAQDMsvfG/vL9EHKFyLAmAQBOB8UhkY0gd0skEolHJpN5ASAkJMRtNps5hYWF/CeeeCKOpmlQFMXweDyaIAhm5cqV6s8++yzw0nVekiSRkJDgzMvL0+bl5WnnzZvX0L9/f8u+ffsUALBnzx5Zv379zCaTiTN58uReZrOZpGkaR44ckfbp08d2vbGxsbFOu93OKSoq4gNAfn6+NDExsdWuBT/88IPinXfeKf7yyy/PGwwGzn333WfKzs6ub7YpIiLC/dZbb6nz8/OlW7Zs0apUqmucq759+9qOHTsma3bWGxsbOSUlJcKePXs6ANwwN58gCIZhmFbPt2T9+vW6r7/+ujAvL087dOhQ4wsvvFAxYMAAe79+/Sx79+6VA8DPP/8sjY6Obn/fTnSTFAsAcIoDwKs2w9ye9Gy9EU6+AkqVrO2xLCwsfoeEkoJhHPDQ7YshGK21ELpFMAEQiNguFt0FDklAEapCgyoCw2ql2PPyHji9ThBvfQCXUIwGVSTUbNFmt2T58uWlCxYsiONwOAxFUXROTk5pTEyMKzEx0TZ9+vQkgiAwYsQI47hx4yxJSUmOF198MWb79u0qmqbx6quv6q6eLysrq/7Pf/5zdFpamoaiKObtt98uVigU3qeffrpi9uzZGoqi6CFDhphTUlKMVqvVfPVYPp/PLF++vOTFF1+MZRgGffr0sUyePNl4PdsBIDo62jFnzhyNQCCgBw0aZE5JSblibE1NDXfTpk1hcXFxtscffzwRACZNmtQ0f/78+uYxSUlJzhkzZtTNmDEjSSQSeT0eD/HSSy+VSaXSNrfm4uLinMXFxcK1a9cGP/vss50q/Hv++eerFy1aFD1t2rQkLpfL/Otf/7rmc70R3cZB9siUvgiykwLDMDdcuXBNLrh4MgSEsyp6LCzdEYlACgZ2eJj2ObtGcxX4Xl99A1/cbR6rLABilGIUBsch+MQxRPKVILhcXDh6FLrQBMSqZWwHi25CTEyM65tvvilsfj969GjL6NGjC68et3jx4moA1S2PqdVqz5YtW4puNL9YLKY3btxYfPXxxx57rOmxxx5ras/YCRMmmCdMmFDQHvtTU1ONqamprTrQarXac/bs2RM3shkA5s+fX9/SaW6mZb6xUChkDh48eAYA8vLytM3H9+7de7a1edesWVPS1nGlUun96KOPLl5vXHvoNikWHLkKPJcZNMOB23Hj3GK+TQgQJIKC2ebuLCzdEZkwADQc8BLtc5BNlhpQtO95wRexDnJ3IkopxmFpD9A2GxwFhXDX1MBdWobDsigks0qsLCz3LN3mSS4ICAHl9i0kbCYXeMLr/+kurwtChwJuABJWRY+FpVsiEwbCQlSBIbjwumlwqBvHEkymWojhq3fhsykW3YqYIBG+lkcDAMw//ACv2QRwODgYlIQ/9wi4s8axsLB0mm7jIEtU4eC5fC3w7GYXFCHXL95ssDdA6JbDBEDC9kBmYemWBEhVMHB89SsuhwdC6saFd7amavC4IgAM+K0svln8kz4RCjQJ5bCMHA988AFAEGi4PxWVYhUGsg4yC8s9S7dJsQhShoPj8YmE2Myty8fWW6rA97IiISws3RmFJAiuFg5yW9ibGuDhikAQXhAkm3PanegVJoOAIvH95D9C2K8fOAEB+M+QqZALKcQGsWl6LCz3Kt3GQQ6XqeDiNEeQW1fHqq8+B4KUA4wXQgm7VcrC0h2RCgP/5yDb2+6H7jIa4aZEILjta0vE4j9QHBIDIgNwtMqGqE9yEffdThxucGNgDwVIdrHEwnLP0m0c5GCpFA6uFQBg01tbHacvPQcnXwEO6WQjQSws3RQxJYGD8jnITlvrO07NuE0WeLhiELz2Ke+x+BdDogNwtsoIK03AwhejqM7CplewsNzjdBsHWSGiYBUw4HgtsOvNrY4zlpXAyVeAYuvzWFi6LWKeGPZmB9nQ+oK6GcZsh5srBJct0OuWDI4OBM0AJ8sM2HXG18FrWKzyDlvFcjs5fPiwODMzU9P8Pj8/Xzh16tSktLQ0zYIFC6K9Xt9O1Pvvv6+aMmVKcmpqavK2bdsCAMBisZBz586Ny8jI0MyaNSuxWaXuenz99deK7OzsmOb3e/fulU6bNi0pIyNDk5WVFWu1WkkAeOONN0JTU1OTp0+fnnTkyBERANTW1nKb7zN9+vSkCxcuXM4jraur444fP7633W4nAJ+ox5w5c+LT0tI0c+fOjautrb2muKKqqoqaOXNmYnp6umbu3LlxJpPpCp9Sp9Pxpk6dmtTy2AcffKDKyckJa+3vy83NVX777bdyAFi/fr3q6vPFxcW8jIwMTXp6uubpp5+Oaf57AcDr9eKxxx5L+OCDD665rjN0m2oShYgHk4gLym2G3dC6Woizrh4cvhx8ufA2WsfCwnI3IabEvgiyE3Aa21YXImwueCgRKAlbt9AdGdBDAQ5J4JPDJThXbUK/CDmGRLMR5NtN06efKY07dgR15ZzyadMaAuc81nijMatWrQrZvXu3UiAQXBbAeOedd8Kys7OrU1JSjE899VTMrl275MOHD7fm5eUFf/fdd+ccDgfx8MMP987IyNBv2rQpKDk52bZ48eLq3Nxc5bp169Q5OTnlV99nyZIlkUeOHJHFx8dfVoRbsWJF1JYtWwrVarVn+fLl4Zs3bw4aNmyY5cSJE9IdO3YUlJeX85555pm4nTt3Frz22msRU6ZMaZoxY4Z+//79Uq1WK4iPj3fu2bNHtnr16gi9Xn/ZMV+9enVo//79LQsXLqz58ccfpTk5OeGrV68ubWnP2rVr1VOnTm2cM2dOY05OTtjmzZuDnnvuuU6JejTTsj/yxx9/HJadnX1FD+UVK1ZEzJgxo/6RRx5p+vjjj4PWrVsX8tJLL1VfOhduNpu7bBuv20SQxTwOzAI+eE4zbGZn6wP1Jjh5CojVrEgIC0t3hUfy4OBdiiCb2lYn5dg8cHPFEEjZrafuiFRA4aUHNdhzthblTXYsuD+BFQjpRkRFRTnXrl17hSCFRqOxGQwGDk3TsNlsHIqiGJVK5dm1a9dZHo/H1NTUUBRF0SRJ4tlnn61buHBhNQBUVVXxpFLpdQsfBgwYYHnllVfKWh779NNPtWq12gMAXq+X4PP59JEjRyTDhg0zkSSJqKgol9frJerq6rhnzpyR1NTU8GbNmpW4Y8eOwLFjx5oBgCRJfPLJJ1qpVHq5Ilmn0wkmTJhgBICRI0daTp8+fY1m+muvvVY+e/bsRq/Xi5qaGqpZWrs96HQ63rRp05KefPLJ2JSUlOSFCxf2AICcnJywDz74QPXWW2+pLRYLZ9GiRT1aXldaWiqcNGmSEcD/Z+++o6OqtgeOf6e3ZNIbECAk5IYOSlVBLAjSm6DYARGVZ8OCBZ6IiqL8UFEeKj4RBSkRLIAFBXyIIEoTAgw9kJBAeiZlZjLl90dAQ0dJMpDsz1pZK3Pn5p59w+Fmz7n7nkOHDh2KtmzZEgDw+eefh6hUKl+nTp0KLzSG86k1I8gqlYpCs4XoQjulRWf/N9QWgDvASGhMUDVGJ4S4lKhUKlz68g/SziLHeffXOry4A82YA889HZyoue6/Np4yj5e9x4q4PinS3+HUSqF33J5zvtHeqjBw4MD8AwcOnPSfPy4uzjllypT6s2bNirFYLJ4TyahOp2PmzJkRs2bNqjt48OCjJ/bXarUMGTIk8cCBA6b3339/95naGTJkSN7q1atPWn2mTp06ZQBLliwJ3rhxY+AzzzyTPn369Ojg4OA/k12z2ewpKCjQHDt2TG+1Wt0LFizY/eqrr8a89dZb0c8999yRbt26nZZUJiYmln7//ffBV1xxRenSpUuDnU7naQOqarUal8ul6tmzZ1OXy6V+7LHHMk7d50xUKpUPID093fjJJ5/sNpvN3q5du7bIyMj4Myd98sknM5OTk6Nef/31kz4QJCQklCxbtiz4zjvvzPn222+DHQ6Hetu2bcZly5aFfvDBB/umTJly1vKNv6vWjCADFJmD0bvslBSf/ZO93lHe96KiZXoeIWozj96LyuvBVXT+h/R0Th0+tYZAqyTItdmY6xvz5q1tZPRYMHXq1NiPP/5418qVK1N69+6dM2HChNgT740ePTpr7dq1Wzdt2hS4atWqPxPehQsX7p4zZ47t0Ucfjd+zZ49h8ODByuDBg5XZs2efs2xk+vTpkR9//HH07Nmz95hMJl9AQICnYm1uSUmJJjg42BMYGOjp1atXPsBNN92Uv3PnzjMvCAE8+uijGenp6YZBgwYpaWlphoiIiLI1a9YEnIhp2bJlQQB6vd73ww8/pEyYMOHg2LFj4yoew2QyecvKyk7KM0tKStQGg8ELEBMT47BarV6tVktoaGiZw+E4b046YcKEtNWrVwcPHjxYUalUvqCgIPeiRYvCs7KydEOHDlWWL18eNm/evKhvv/3Wer5jnU+tSpBLrRHoyuy43OWrY52qzFuG0VVeNxYUftZ+I4SoBXwGDRpPKa7zzGLh8rgwuMo/UFutUoMshICAgAD3iZKDqKioMrvdrtm1a5dh+PDh8V6vF51O59Pr9V6VSuWbOnVq9Ny5c0OP/5xHrVbTuHFjZ3Jysi05Odl2zz33ZJ+tnddffz168+bNgfPmzbNFRES4Adq3b1+0bt26II/HQ2pqqt7r9RIREeFu3ry5/bvvvgsCWLduXWCjRo3OentszZo1gbfeemvW559/bmvYW+dLvQAAIABJREFUsKGjZcuWRZ07dy46EVOvXr0KnnzyyfonEvyAgACvWq0+aZ7LyMhId2lpqTolJcUI4Ha7Wb9+vbV169YlwHk/SPp8p0+buXLlSuuTTz6ZlpycbNNoNHTq1KnwxRdfTPv66693JScn23r27JkzbNiwoz169LjoUotaU2IBgDUCvSsTKF8sJDD05HrBnJJsjO5QAAJD5Q+dELWZ16BF63bgcpx7Zgq7y47JbaIAsAbJdUMIARMnTkx9+OGH4zUajU+n03knT56cGhcX50pMTCzp379/kkqlolOnTgVdu3YtSkpKcjz++ONxS5YsifB6vUyaNOnAhbSRmZmpnT17dp34+PiSu+66KxHgpptuyh01alRWmzZtivr375/k8/lUzz///CGA8ePHp40bN67BokWLIi0Wi2f69On7z3bsxMREx5NPPhn3+uuvEx4e7po6derBU/cZPnz4sfHjxzeYMWOGT6VSMXHixJPKIdRqNZMmTTr4zDPPNFSr1bjdblWXLl3yr7vuOvupJSln0qBBg9IHH3wwbsaMGX/+PhISEhxjx45tpNPpfHFxcaWvvfbaoXMd42LUqgRZF1YHg9MGQHG+87QEOStvPxpCwOfFLH/ohKjVVAYjWo8Dp+Pcd5PspTno3eX7GC0yzZsQtVFcXJzrq6++2nXidefOnYs6d+6869T9xo0blwGcVKsbHR3tnjdv3p4Laadr1672rl272k/8XEpKyqYz7ffMM88cAY5U3NawYUPX/Pnzz9rOmjVrtp34vnHjxs4vvvjitPgratKkiSM5Odl2rn3O9ns49fd14vvjcQOwaNGi02qxO3bsWLxs2bKdZ2uv4s9frFpVYmGJbIDRmQdAUd7pM1nkpG7DpQ9FrSqWFZCEqOXURhMatwOX49wPZtuLMtF5yxNkg7lWjTkIIUSNVasS5OjwWHzefACK8k4vvclPteE0hqDRnX0paiFE7WDQm1F7HbjKzr18tN2egdYnI8hCCFGT1KoEua41nGJ9CSqv64wJcmH6IRyGEPQB8kdOiNrOpAsAnwO359x3k+y5R3Bryx/SkxFkIYSoGWpVghwRaKTIrEbnzqU4p+i090uPZuM0hGCICvVDdEKIS4lFF4APB27vuRdmKsnJwK01A150hkpbxEkIIYQf1aoEOTxAj92kQe/Kpyin+LT3VXngU2uwxlbKMt5CiMtYgCEYLw7cnPuOkjMvuzxBVrll/lshhKghalWCHGoxUGg0YHDkU5R/+tymuuLylRQjYwJPe08IUbsEGoPxqBx4VTo8ntPnTT/BlV9Amc6MSqorhBCixqhVCXKwSUeuyYKlOI/iIvB6/3r4xuvzYnAGA1CvniTIQtR2VnMobnX5swpl55jJwl1YSJnWDHoprxCitlq/fr1l8ODByonXmzdvNvXt2zdpwIABysMPP9zQ4ym/hrz33nsRvXv3btKnT58mixYtCgEoKipS33333fGDBg1Shg4dmpiWlnbabauSkhLViBEj4gcOHKjccccdCceOHdNC+Sp63bp1a3Zihbtdu3YZzrbvhg0bzAMHDlQGDBigjBgxolFpaemft7xOjX/jxo3mPn36NBk4cKDy9NNPx56I/0zeeOON6FGjRjU6dfucOXPCXnjhhboVt40aNarRqctlV/Tss8/Gpqam6nNycjTz588/Y72r2+1mxIgRjSquljdp0qS6ffr0Serbt2/SiePn5ORo2rZt2+rE7+bdd9/9W2vA16oxD7VaRYEpCJMzH59PRWmhC0tw+XzHOcXHMLjDAAiLlFX0hKjtQgIiKDyeILtK3WedocJtL8GtNaM2yzLTQvjTH6vSwmzrM865LPPfpXSMyW55Xb2cc+0zbdq0qG+++SbMaDT+eavp7bffrjN69OiMnj17FjzwwANxy5cvD+rYsWNxcnJy5LJly3Y4HA7VzTff3HzQoEF5s2fPDm/SpEnJuHHjMubMmRP27rvvRk+ePPlwxTY+/PDDyISEhNJnnnnmyIIFC0KmTZsWM3ny5MM7d+60TJ48+UDbtm1LTuw7ffr0qFP3ffnllw9PmDCh4fTp0/c1btzY+dFHH4Wnpqbqk5KSnGeKf8KECQ2effbZQ1dffXXxpEmT6ixYsCB02LBhuaee+zfffGP9+eefgyMjI8+95OgFeuWVVw4DrF69OnDlypXBt95660lt7t271/DEE0/EZWdn64BsgE2bNpm2bdtm+fLLL3elpqbqR48endC1a9cdmzdvNt9www25r7322uEzNHVetWoEGaDEGo7BWT7Vm73CTBaZR7aAJgqV147eWKs+NwghziDUGolTczxBdrjPvmOJE7fOjNYiiwsJURs1aNDA+c477+yruE1RlJL8/HyN1+ulpKREo9PpfBEREe7ly5en6PV6X2Zmpk6n03nVajVjxow59sQTT2QAHDlyRB8YGHjacO3mzZsDunbtWgDQvXv3wt9//90KYLPZzP/5z3+iBwwYoEydOjX6bPvu3r3bYLVa3e+//37UoEGDlPz8fE1SUpLzbPFnZ2frr7766mKAtm3bFm3cuDHg1Jj27NljWLBgQcSYMWPS/+7vbM6cOWH33XdfozvvvDPhhhtuaDZnzpwwgMGDBys7d+40zpw5M3rLli2BH3744UkfeIqKitSvvPLKwTZt2thPbLviiitK586du1utVpOamqoPCAjwAPzxxx8Wm81mGTRokDJy5MhGR44c+VtTlNW6TNAZXgeDIxWA4jwnxJVvP7b7N0rMMag0p89uIYSofUIDInDqHGgBV+nZby+qS8oo05oxB8oIshD+1PK6ejnnG+2tCgMHDsw/denkuLg455QpU+rPmjUrxmKxeK699lo7gE6nY+bMmRGzZs2qO3jw4KMn9tdqtQwZMiTxwIEDpvfff/+0FeSKi4s1QUFBHoDAwEBPcXGxBqBbt265I0aMyLJarZ4RI0bEL126NOhM+2ZnZ2t37twZ8MILLxxKSEhw3n333QkrV64suf766+1nij8mJsa5evXqgK5duxatXLkyuLS09KQaMrvdrp4wYUL9adOmHdi1a5fpb/7KfABFRUWazz77bM/u3bsNo0ePTrjrrrv+/LcbPXp05rx58yJGjBiRXfEHW7duXXqmA+p0OiZNmlQ3OTk5cuzYsYegfFnqli1bpt944432zz77LHT8+PGxH3744VmX1z5VrRtBVkU2xug8sVjIX6vpFRzYTYklGixSRyiEgEBjIA5d+Qiyw376vOknqEu9uLUmzBZJkIUQ5aZOnRr78ccf71q5cmVK7969cyZMmBB74r3Ro0dnrV27duumTZsCV61a9Wc97sKFC3fPmTPH9uijj8bv2bPHcKJ2dvbs2eEWi8Vjt9vVAHa7XWOxWDxer5fRo0cfi4iIcBsMBl+XLl0KUlJSzGfaNywszBMTE+No2rSpQ6/X+6666qqCrVu3nrWe9NVXXz3w/vvvxwwZMiQxNDTUHRwc7J45c2bEiZiWLl0anJubqxszZkz8q6++Grtly5bAEyPYJxiNRq/L5TopzywtLVWbTCYvQGJiYglAbGysq6ys7KLz0fHjx6evWbNm6yeffBK9d+9eQ9euXQtPLMvdt2/f/L179/6t+tlalyCHhiXg0hSj9pZScPSv0eKSw/m4tWY0MVF+jE4IcakI1AdSqisv63Pmn/3Oks6pB5Uai4wgCyGOCwgIcFutVg9AVFRUmd1u1+zatcswfPjweK/Xi06n8+n1eq9KpfJNnTo1eu7cuaHHf86jVqtp3LixMzk52ZacnGy75557slu3bl20cuXKYIDvvvvO2qpVK3thYaGmV69ezex2u9rr9fLrr78GtmjRouRM+zZq1MhZWlqq2bNnjwFg8+bNgYmJiWf95L9ixYrgt99+e//ChQt35+fna6655prC0aNHZ52I6bbbbsv97rvvdiQnJ9vGjRt3uHXr1vaxY8dmVjxGy5YtS3777TfriWQ9JydHc/DgQVPTpk0dwDmnxVSpVD6f79yrmJ6wcuXKwCeffLI+gNFo9Gk0Gp9arfY98cQTDZcsWRJyYp8TCfmFuqgSC0VRBgC32Gy2YcdfdwTeAtzA9zabbaKiKGpgBtAKcAIjbTbb3otp92LUsYaTbVVhcKWTfSjkz+2uXBNoIahxjL9CE0JcQkxaEyV6B7jBkX/m66rP50NXVj4oEWCVBFkIUW7ixImpDz/8cLxGo/HpdDrv5MmTU+Pi4lyJiYkl/fv3T1KpVHTq1Kmga9euRUlJSY7HH388bsmSJRFer5dJkyYdOPV4I0aMyHrkkUcaDhgwQNHpdL633nprf3BwsOfBBx9Mu+222xSdTudt166dvWfPngXFxcX2U/c1GAy+iRMnHnz88ccb+Xw+WrRoUdSrV6+Cs8XfsGFDxx133KEYjUbvlVdeae/Zs+dZ9z2bpKQk5y233HLslltuSTKbzR6326166qmnDgUGBp593szj4uPjnfv37ze98847kWPGjDl2rn27dOliX758eUj//v2TvF4vQ4YMOdaoUSPXuHHj0p5++umGCxYsiDQajZ4pU6ak/p34VReaoZ9KUZS3gO7AFpvNduvxbVuAQcB+YBnwHOVVvn1tNts9xxPoZ2w2W79zHXvgwIG+xYsX/6O4zuezDYfwTOyD1tyfwphrue/N61CpVXx0+/2UBA6l1QNNuaZV9PkPJM5JUZSNNputbWUftyr7hqgeVdU3oPL7x4PjWtEsfxpXdgqg493tT3u/1F3KN736kRE3ji73NqFFB/mAfbHk2iHO5kx9Y+vWrQdbtWqVfbafEeJ8tm7dGt6qVauGp26/mBKLX4AHTrxQFMUKGGw22z6bzeYDvgNuBK4BvgWw2WzrgSr5w3ih6gSbyAqwEJyXRpkLCnMceL0e1J4oVF4H9WUOZCHEcW69F7XHhbPIecb3C50FGDzlI8hBwTKLhRBC1BTnLbFQFGUE8Ngpm++12WwLFEXpWmGbFSis8NoONDq+veLQvEdRFK3NZjvHvElVp16IiaXmUK7aXz4rSU5aEYWOPahVUajd2cQE/92HMYUQNZVXr0HrceAsPnP5REFRJrrjCbIlQEoshBCipjhvgmyz2T4EPryAYxUCFYdfA4F8wHzKdrW/kmOAusEmMkxRWIp/A7xkp9kpPrCMEksnSlWH0Wlq3XOLQoiz8Bq0aN0lOEvO/MG5MD8NNRYADOa/NcWmEKJyeL1er0qtVv+zelFRq3m9XhVwxproSssGbTZbIeBSFCVeURQV5fXJa4C1QE/48yG+bZXV5j9h1GkoCopF4y3DxFGyD9s58nsubq2ZoyGnzYMthKjFfEY9WncprrMsNV10NJUyXXnybLTUumnlhbgUbM/Kygo6nugIccG8Xq8qKysrCNh+pvcr+4o+GpgLaCifxeJXRVF+A7opivILoALureQ2/zZNVCIAevchMvbWwV3UFK2nmOKkeD9HJoS4lPhMxvIE2XnmwamSrHQ8WjPgQauXOdSFqG5ut3tkZmbmrMzMzObUwqlrxUXxAtvdbvfIM715UQmyzWZbDayu8Ho90PGUfbyUJ86XjJjIxmQGQ/jRHzloaIdH3Yzg/F+Iq3eLv0MTQlxCDFozKm8pTteZE2RHThZo6+NT+a1qTIha7corrzwG9PV3HKLmqZWftuqHBrKxQTAxB9LpHDQTtceBy/MHjaNkBgshxF+MGhM+XyllnjNfKl35ubh15sq/FyeEEMKvamWCHBtq5rfIZujdcCh3E11+fpJtJgNKtCTIQoi/mLQBeFQllPnOnAF7Cgpxa8149ZIhCyFETVIrE+R6ISa2BHTBpYU6Pxvw4eWP4E40DLP4OzQhxCXErLfiUZXiVWlxl53+oJ63qIQyrRnMMgeyEELUJLU0QTbj9IWxLy4QvRu+urkH6vhm6LW18tchhDiLAH0wZRoHAM6SM9QZ2x2U6cxoLTIHshBC1CS18r5gnWAjahVsGzgKg+4I32V0prnUHwshTmExh+LSHADAVerGEnTySLG6pIyyQDN6mQNZCCFqlFo5ZGrQariyQQjrCxWuH/Ich3JLUCRBFkKcIsgSgUNXAoCz9PQRZG2JCq/GhDlQRpCFEKImqZUJMkD3ZtHszChk8eY0fD5IlARZCHGKEGsMJbrjJRZ252nv61zHl5m2SoIshBA1Sa1OkAEmfJlC3WAT1yZG+DkiIcSlJjqkLqX6UgAceUUnvefz+dC6yx/stQbJQ3pCCFGT1NoEOTbUTJMYKx6vj+d7NcEkq2AJIU4RYw3DbjiRIBef9F6puxS9p3x5+uBgY7XHJoQQourUyof0Tnj4+gQ2pubRo3m0v0MRQlyCQk1BFJlKoQQcBSUnvVfgyEfnLR9BDg2VBFkIIWqSWp0g39wihptbxPg7DCHEJUqr1uIylKHyeXDaHSe9V5h9CK+mfAQ5LMzkj/CEEEJUkVqdIAshxPn4dCq07lKcJ5cgU5SxF5e+PEE2B8g0b0IIUZNIgiyEEOfgNWjLE+SSky+XxUcPU6YLwIcDtabWPs4hhBA1klzVhRDiXIwGdGVFOB3ekzYXZx+hTGfBpzrDCntCCCEua5IgCyHEOWi1JrRldhwnlyDjyD5GmS4Aj1RXCCFEjSMJshBCnINJY0HtseNwn3y59GTnUqYLwG2UGSyEEKKmkQRZCCHOwaQNxEsRTq8en8/353Zfnh2XLgCvRWawEEKImkYSZCGEOAeLLgSX2o4PNc6Sv+qNNQUOynQWtBZZZloIIWoaSZCFEOIcLIYQSnXlc7yV2l1/btfb1fjUOgwWKUIWQoiaRhJkIYQ4B6spkiKjHYCSwr8SZIPTDIBR5kAWQogaRxJkIYQ4h6CAaApM5SPIxUfzAfB4PRhc5ctMW6xSYiGEEDWNJMhCCHEOIda65FjKR5CLMvIAKMjNRKUKBMAaZPBbbEIIIaqGJMhCCHEOkSH1yLaWAFCSVZ4o5x6y4TSGABAaIbNYCCFETSNLTQshxDnEBIaRE+hFV1ZESV55vXFh6g4chlB8eIiJDPBzhEIIISqbjCALIcQ5hJiNOE0+dC77n7NYlKTvx2EMpUxVQoSUWAghRI0jCbIQQpyDRa9Fq9GgddtxlHoBcGZm4DCGUqrxYNbLjTghhKhpJEEWQohzUKtVWDx6VD47Dlf5JdOdnUOpMZRSgyTHQghRE0mCLIQQ52HxWHCr7Di9x+c8zi3GpQ/CZTb7NzAhhBBVQhJkIYQ4DxOhlOiKKFMb8ZR5MR7TgUqNL1BmsBBCiJpIEmQhhDgPs7YORfosALJ2pqFzWAEwhcgDekIIURNJgiyEEOcRaIojLegwAAcXfI/DGFa+PdToz7CEEEJUEUmQhRDiPIKDm/KLkoPG7SBzWxrFplB8+AiNkBpkIYSoieQRbCGEOI86oQmU5fjQcwR7QCxlZOJRlxAeJCPIQghRE11UgqwoygDgFpvNNqzC6zeAw8d3+TewBpgBtAKcwEibzbb3YtoVQojqFB1kJdQN9qAj6FXt8agjydeWEG7R+zs0IYQQVeAfl1goivIWMPmUY1wJPGWz2boe//oJ6A8YbTZbJ2AcMPViAhZCiOoWaTUQ7NZyIPIAXo0elcrCBr2X8EB5SE8IIWqii6lB/gV44JRtVwLDFUVZoyjKVEVRtMA1wLcANpttPdD2ItoUQohqFxlowFxm4qAlFYA86zZStIGEyQiyEELUSOctsVAUZQTw2Cmb77XZbAsURel6yvYVwBfAAWAmMBqwAgUV9vEoiqK12Wzufxy1EEJUo4hAA2pXEPtD09gcu5SIgG2oMx8l2CwJshBC1ETnTZBtNtuHwIcXeLz/2my2fABFUb4EBlGeHAdW2EctybEQ4nJi0GrIKu1Ds7J3+LXeCm4riSHUYkCjVvk7NCGEEFWg0qZ5UxRFBfyhKEq945tuADYCa4Gex/fpCGyrrDaFEKK6eMzN6eh9iLlHjhJddiURUn8shBA1VqUlyDabzQeMBBYrivITYAY+AJYADkVRfgGmcXq5hhBCXPIirQZWe9vQcvQGPrR3RYkK8HdIQgghqshFTfNms9lWA6srvP4e+P4Mu46+mHaEEMLfIgONbDiQS44uhnR7CvfUCfJ3SEIIIaqIrKQnhBAXIDLQQJbdScqRQgCa1rH6OSIhhBBVRRJkIYS4APXDzLg8Xj7flAZAM0mQhRCixpIEWQghLkCvFjHotWq+3HKEusEmmeJNCCFqMEmQhRDiAgSb9fRqEQNIeYUQQtR0kiALIcQFGtahPgBNYyRBFkKImuyiZrEQQojapG2DEKbe0oouiRH+DkUIIUQVkgRZCCEukEqlYtCV9c6/oxBCiMualFgIIYQQQghRgSTIQgghhBBCVCAJshBCCCGEEBVIgiyEEEIIIUQFkiALIYQQQghRgSTIQgghhBBCVHBJTvOWkpKSrShKqr/jEBelQVUcVPpGjVAlfQOkf9QQcu0QZ1Nl1w4hTqXy+Xz+jkEIIYQQQohLhpRYCCGEEEIIUYEkyEIIIYQQQlQgCbIQQgghhBAVSIIshBBCCCFEBZIgCyGEEEIIUYEkyEIIIYQQQlRwSc6DXJGiKGpgBtAKcAIjbTbbXv9G5R+KomwCCo+/PAC8B7wFuIHvbTbbRH/F5g/SN04m/eNk0j/+In3jZNI3Tib9Q4jTXfIJMtAfMNpstk6KonQEpgL9/BxTtVMUxQiobDZb1wrbtgCDgP3AMkVR2thsts1+CtEfpG8cJ/3jjKR/IH3jLKRvHCf9Q4gzuxwS5GuAbwFsNtt6RVHa+jkef2kFmBVF+Z7yf7cXAIPNZtsHoCjKd8CNQG26iEnf+Iv0j9NJ/ygnfeN00jf+Iv1DiDO4HGqQrUBBhdceRVEuh8S+spUAbwDdgdHAR8e3nWAHgvwQlz9J3/iL9I/TSf8oJ33jdNI3/iL9Q4gzuBwuCIVAYIXXapvN5vZXMH60G9hrs9l8wG5FUQqA0ArvBwL5fonMf6Rv/EX6x+mkf5STvnE66Rt/kf4hxBlcDiPIa4GeAMdrxbb5Nxy/GU55nRyKotQBzECxoijxiqKoKP/0v8aP8fmD9I2/SP84nfSPctI3Tid94y/SP4Q4g8thBHkJ0E1RlF8AFXCvn+Pxlw+B2Yqi/Az4KL+oeYG5gIbyJ41/9WN8/iB94y/SP04n/aOc9I3TSd/4i/QPIc5A5fP5/B2DEEIIIYQQl4zLocRCCCGEEEKIaiMJshBCCCGEEBVIgiyEEEIIIUQFkiALIYQQQghRgSTIQgghhBBCVCAJshBCCCGEEBVIgiyEEEIIIUQFkiALIYQQQghRgSTIQgghhBBCVCAJshBCCCGEEBVIgiyEEEIIIUQFkiALIYQQQghRgSTIQgghhBBCVCAJshBCCCGEEBVIgiyEEEIIIUQFWn8HcCYdOnTw1a1b199hiIuQkpKSbbPZIir7uNI3Ln9V1TdA+kdNINcOcTZVee0Q4lSXZIJct25dFi9e7O8wxEVQFCW1Ko4rfePyV1V9A6R/1ARy7RBnU5XXDiFOJSUWQgghhBBCVCAJshBCCCGEEBVIgiyEEEIIIUQFkiALIYQQQghRgSTIQgghhBBCVHBJzmIhhBC1WvpG2DALCg5DaCO4+hEIi/d3VEIIUWvICLIQQlxKNn8KH9wAO78Gjwu2fw4zOsKGD/wdmRBC1BoygiyEEJeKnUvhyzEQfx0MmYNPH4Cq6Ch8/QgsfwKchdB5rL+jFEKIGk8SZCGEuBS4SuCbpyC6OSs73cfaSX2pszOLMLeRyKu60q5BP3Q/vgjBDaDFYH9HK4QQNZokyEIIcSn45W0oTOeH1vfiHDmWwZlQGmbBrnUT8tEydhq01OnUlLAv/4UqsilENfV3xEIIUWNJDbIQQvibqxh+eYdDiTeRO3UO9bNURL0xhTY//8bVq35n7dTb+KOeh6zV+RxebcUzbwS4nf6OWgghaixJkIUQwt+2LwaXnR//sNNin5uApx4htHcfVCoVWrWWkb0mUPDSg3zQXY09U8uBudk4P3vS31ELIUSNJQmyEEL426Y5HApOIOn7VLKb16XhXaNO2+XB1g9hHNyPCbepcPiMpL7xHY7/LfZDsEIIUfNJgiyEEP50bBekbeCXtCCCS6DRo+NY9HsavaevofWL39PzrTUkb0zD64N/X/VvjK1bMe4eAx6ditR/PY9zz25/n4EQQtQ4kiALIYQ/7fiCYtTU+18mR5UIFpTE8tTnf+DxQu+WMahU8MSirdz93w04y9RMu24aJVFWXh0RAbg5PPwu3Lm5/j4LIYSoUSRBFkIIf9r5NWvVCmGFPo52uZm3V+5laNtYlj98DS/1b8HXY67hlQEtWL8/h8H/+QVPWSCTO09mkzmfH4aG4M7NJ+3BB/C6XP4+EyGEqDEkQRZCCH/J2QdHt5O7x4tTp+ItewuuqB/MywOao1KpAFCrVQzrUJ85w9uTke9g0IxfCNM0466mdzGzbgkFnUso3fIHmeMn4PP5/HxCQghRM1TqPMiKouiA/wINAQPwErADmA34gO3AQzabzVuZ7QohxGVp11IyVRrittvZm1SfIw4V/+nTDK3m9LGLqxLCmX9/R+7+728MeW8ds+6+m/UZ63nqqoN8kpNFwZdfYmzWjNC77vTDiQghRM1S2SPIdwA5NputM9ADeAf4P+D549tUQL9KblMIIS5Ptm/5zdUAayl8HdyOfq3r0Co2+Ky7N6sTxKLRnTDpNNz9383c0/g5ilQ+3rjeREBiIEdfe42STZuq8QSEEKJmquwEeREw/vj3KsANXAn8dHzbN8CNldymEEJcfhyFkLaBwnQNZRpYH3Qlw6+OO++PxYVbWHB/R0ItesZ9doz+DUeyyqxnW4fD6CJDSH/iCTz5+dVwAkIIUXNVaoJss9mKbDabXVGUQCAZeB5Q2Wy2E4VxdiCoMtsUQojL0sE1FPs8RO0pwVYvjPjYcFrWu7CZQ6ogAAAgAElEQVTLY70QMwtGdSLKauSzFQ1pFNCEl+uGY7qmAPexLDKkHlkIIS5KpT+kpyhKLLAK+MRms80DKtYbBwIytCGEEHt/5DdCqJvjY12Ywm0d6v/5YN6FiA4yMv/+jtQNtrBre28cah0T65YQ0acl9hUrKPj88yoMXggharZKTZAVRYkCvgeettls/z2+ebOiKF2Pf38zsKYy2xRCiMvSvh9JzQsDYFPYVfRtWedvHyIy0MjC+zuRFB5PUUZv1plMfBuxBvMVLch8+RWc+/ZVdtRCCFErVOosFsCzQAgwXlGUE7XIjwBvK4qiB3ZSXnpRu3i9kPpz+YpZegvUawsRir+jEkL4S/4hfHkH0R+oT1agngatmxNk1v2jQ4VY9Mwb2YHRc7VstW9nWuhu2rVLQ33QSPqjj9Fw4QLUJlMln4Dwp1J3KUv3LyUlOwWrLoCrotrRIbbL37oDIYQ4t0pNkG022yOUJ8SnurYy27msZO2Gr8bA4V9P3p5wI1w/Huq09k9cQgj/Sf2F/Vot8alufq3XkF7/YPS4IotBy4d3teOh+Q+z0fkEz1py+PD2G8h4ZzUZ4ydQ5/UpkjzVEDtydvDv756g4bpUWh3yoXf62G76L7/WUdHj2p4oAyaBzujvMIW47MlCIVUp9wDM7gXZe6DvdBhrgzEb4YZ/w5HN8H5XWDYWXMX+jlQIUZ1S17LFFUKgA7aFtuCmZlEXfUi9Vs1/butCkvFBdhv0zHYvI+LuARQuXUrOrFmVELTwt8ziTGa/cQ/jphxg+AovHY94aUso7Y7ouOlHL94JS9l4XRuy35ggM5kIcZEqu8RCnOAsgk8HgbcMhn8PEYn4vF582iBUHcagajcCVk2GX2fC/p/g1rlSdiFEbZH6C9l5VqAUbeuuBJv1lXJYrUbNnFvvoc/cX/koaC1ty5KJ634TWVP/D31sLNYePSqlHVH93F43s9+4m3uX2FFFujAMbsG7cU9R4NETHWjgCn0W2ateIXJTOuZZi8j+ZAmhw0cSPmqUlNgI8Q9IglxVVr0MufvgnmU48iD7xYcpXrcOb1ERAJqQEPQNGmCoMwRz5ioCZ96IetjHEH+9nwMXQlQp+1HKcvZiTq1HptVIuw5NKvXwWo2a+UPeoMf8XkwMzmK6YR+mrCs48tTT6KKjMbWWsq7L0Xff/Yfe8w9RWqeMtGua80jRCCIOlhBqcbNuXw6fON0YTY/T+t6tlGbMY+gvZbT5z0wKv/qa6IkTCbjman+fghCXFUmQq8KRzeUjw21HkLfuMJmvPIjGYsF6883oG9TH63LhzjyK68ABCn/aRH6xFrUhkKDfhxPywLMYeozy9xkIIarKoV/YpjegHPKyrm4sA5tcfHnFqYKMgbzbYzr3fHsn72ts3NfzLnRZWRz+17+IS05GF1X5bYqqU1xSgP619ykx+1C3t/JxxKMs6N2Kdg1DUKlUuD1eNh3K56ut6Xy5RUOpKoC3+31IUmsXY3/M5fDIkQQPHUrUuKdlNFmICyQJclVY/SoYg8nLa0Hmyy9iubYLUS+/hCfIglFrRK36q/Tb5/FQumkTeZ98TP6PP5L36DQC235N5Kv/QV+vnh9PQghRJQ79yjZXIO0dcKx+W2JDzVXSzBXRrXio9cO8s/UtWh+dRfvRE1G9MoO0h8bQ4JM5kihdRn565zniMt0Udy1hfvwU5t7TBaNO8+f7Wo2a9nGhtI8L5dmeTVj0u8K7/4vicMwU7rm7lMnro2DBAko3byZ25n/Q1bm4h0KFqA3kIb3KdjQFdn9LadRgMl95HV3nTsy+PZKO39xEh3kduH7h9UxYO4EdOTsAUGk0mNu1o+7b75Cw8gfCu0RRvGU3+3v2IG/eXFkNS4iaJu03cvMCAIi5qnOVNnVfq+F0iuzItLAgcna/gO7xh3CkpJDx3HP4vN7zH0D4ncNRhPXzVaTV9bKtQV8m3d3rpOT4VGa9lruvashPjw/i5oYfkuAMYGznHBbfEoXrSDoHhg7FsXNnNZ6BEJcnSZAr289v4tMEkPH5TggP5ZHOB/gidRnX1unJTTHDqWNswfL93zJ06VDu+eZe1mes//NHtVF1iZj5I42euQlzaDGZL75E2oMP4s7L8+MJCSEqTZmD0sytmNPLyDfqaH91yyptTq1S8/r1bxBmjGRCZCCl+ycTMGo4hcu/IWvatCptW1SONbMnE1bgRZ3ko/M9EzHpz54cV2TSa3iieyum3baC3qWhzE/I4dWBKhxeSL3zLorX/3r+gwhRi0mCXJmKcyBlCXnFnXDu2cd/unnI13qItD/NFyuu4vOVifyyrgfZO5/GcbQnv6Xv4b7v76Pb3Hv45PcNFDrKQK1Bd/t0YiePI7JNIUU/reZA374UrfnZ32cnhLhYGVvZrNPQON3H7si6tGkQUuVNBhmCeKvbdPJ0BqZEqCgu+pTAQQPI+WAWefMXVHn74p/zer0w/yuOhvlwtb2LhJiwv32MOqFWJo9axXhtE1JiSpgwqIAck5lDI0eS/8UXVRC1EDWD1CBXpm2L8LrKyP5fOhlJ4fzUwI7dNgJtQCST+sXRLi4UnUZNTpGLjIKO2I7eyQ9HkjniWspr20fy8tp2xDKAjg0a0im+L52fq0/cR/eTvhYO33cf1p49iXj8cfT16vr7TEVlyt4LB9dAYToYAiG6JdTvCDqpEa1x0n7jD5+Ba/Ngd5u26DTVM0bRLKwZE6+eyLM/P8vnQQUM1vwPS+eryXzpJfQNG2Dp2LFa4hB/z6Y1ydTLdJN6lZerBj36zw+kVjNk2AKUVRN52LeQCbdlMzY5AsY9Q+mWLUSNG4faKIuLCFGRJMiVafOn5OcoeHLzmXmzhtKsGxjaqj3/7tPspJqx+IgT39XlKZpztGgMr/wynVWqLznm28riA535ZMM14DVyc51JvNpzEo7tXvJ+WIF9xQpChw8nfPT98pDN5a44B757Bv5YCJxSa64PhKb9oMP9EFO1t+FrE4/Xwxd7v+DHQz9yff3r6RffD53mny3x/I+kbSArPxDwEn3VVdXXLtAnvg87c3fyyY5PaOHcT1IjE/oj9Ul7+BEazpuLISGhWuMR57f34xk01YChfT+CrAEXdzCVilbXv8AcW1tGrR3HS8OO8eg34TSfv4CS33+n7pQpGJs2rZzAhagBpMSismRuw5e5jZxtKvY1sJASE0z/uDt5ZUCLcz5QARAVEM5bN03ky/5LuLHhtahDfyCm2TR6XLWXfGsC/ZwTKErSE9sjk5zEhuS89x77etxM/uef4ysrq6YTFJUqfRO81xlSlsBV/4KHN8OEPHg6FYYtgmb9YMcX5fvMGwqZ2/wd8WXrxIOuafY07vr2Ll5Y9wIpOSlMXDeR139/vVpjcaRvQp8JZWoVV9xQ/aO2j135GG2j2vLviEjcvs34rlah0us5NGoUZUePVXs84uyy8tOJ33iUzEYe2tzyZKUdt4HSmzn9vyBMb+HV3nlsu0lH4dEsDgy9ldy58mC4ECdIglxZtn9O8VET7uxCvmpTSoyvJ6/0vwKVSnXBh4gLimNq16ks6L2A5hFNWJs3C0/0W0x5qBW2nskcCU3k6hY/seXaRA76jGQ89zz7bu5J/uIl+DyeKjw5UamObIE5/UGtgREr4KZJENoI1GowBUPiTdDvXXgsBa5/Hg6tg5md4cuHoCDd39FfVh5d+QjdP+/OAz88wIAvB3Ag/wCTO09m9ZDV9I3vyxd7v8DusldPMMU5bHMeI+GIl0MRkdSPqfr641Pp1DreuPYNwi0RjIqJI8S9Fl3PGDz5+Ry+/348xxcyEv636pMpBDhB3SyB4LDISj12VGgCc4asoElgfSZd6WN7/wzskQEcnfQSh++/n7KjRyu1PSEuR5IgVwafD1KWkJ9ZH7tJw4Y4KzP6jkb7D+sLm4Y15f1u7/PGtW+QXZrNyBV3sokviPzXElxt7uW2mNU0vOEIH3fswV6Hmoxnn2V/334Ufve9fPq/1BVmlC9BbgyCe5ZDnXOsamYKhi5PwiNbodNDsHU+vNUKloyGgz+DTNN1XiM+Ocaz7+fj27WXfvF9WdhnIb0b9UalUjGsyTBK3aV8ve/r6gkmcysb9QbiM8AZ77+ymTBTGG9f/zYOnY+7Y5oR6/oO0+CWOPfu5fDo0XhLSvwWmyjn8/lw/7iaYpMP5a4XqqSNYGMws/ov5sY6nZlSL4hVfdMJuKKU4nW/sL9nL3I/nStTAYpaTRLkynBkM+6MQxTuLmJ1Cy9toweSGBV6UYdUqVR0b9idr/p/xbAmw1i0exF9vh7E10064x06l4SAMl5t+F8sPTR82L4nabklpD/yCKm33kbJ779X0omJSuX1wOL7oKwE7kiG4NgL+zlTCHR/Gf61Ca68G3Z+DbN7wVstYeVLkH+oauO+jMUN6kcdu4ZH3knjlkeWUtLtFvbe1J2M8RNIMjSgRXgLFtoWVk8wGVs5VGTE4IbIDv59KK5JWBP+3enfpOoLeCi8NQ1cSwi46wZKN23m8IMP4XU6/RpfbffHwd9putdFXiMtsU3bV1k7Rq2RN26Yzh1N7uDTYCtPXhtGVI8MDIH5HH3pJQ7deTuuQ3J9EbWTJMiVIWUJhYcsqLw+VrYw8NINIyrt0AH6AMa1H8eC3guIC4rjhXUvcNu+T9g6dBZ0eYprVFt4vdGHOG/S8+kV3ck9cIjUO+7k0IiROPfvr7Q4RCX4bVb5bBU3T4EIBbfXzdr0tczYMoPJv07mzY1vsmTPEvbk7cHrO8PITUgD6DUVntgNAz+ACAX+90b5qPKieyFtY/Wf0yVOc/RT4rpnEP3wXVh79cTa82aMSiL5ixeTOWEC3erfyL6CfeQ5qn6ucfeRLXiyyx8IbHZj9T6gdyZ94vtwR5M7+CUwl4lBTYgp+Rjrg7dSsn496Y+Pxed2+zvEWuun2a9gcENo5+5V3pZGreHp9k/zQqcXsJm99G/RglXXNSCqXQGOrZvY3+tmcma+I/1B1Doyi8XF8vlg59ccSw9jf1QZYQk3ER1wcaPHZ5IUmsTsHrNZfmA5/7fx/7jzx9H0atSLsfevJmLrArqtn8ENiRt4v34PjqZezaBNqyju24+we+8l/IHRqM1Vs5ytuEDF2bDqZWh0HbS5g8U7v+CLb6YSnJZL3RwIcWjx+jwc1HrZrQONxkCIMZLo8ETik64mvGUbLPENMRj0qPUWaDmk/Cv/MGx4H37/CFIWQ50roM3t0GwgmCu/H15unikbweM8Q/1jr0L9q8qnzqtjJ7sshKzl39CyeQxoYFfuLjrV6VSlsew9toWGGVBoNpHUqEGVtnWhnmj7BJnFmSTzAyGeeozKfhvuG0PhB/M58tRT1JkyBZVW/kxUpzJvGSGbd1Ns8dH6vvHV1u6gxEHUt9bnsdWP8V6Ci+TAfzEyag1tN+/k2JvvUrj0K6Jffh1Tq1bVFpMQ/nR5XPmKjoFGV36r+VJzbAfO1EP4jkbx8/Vqnu98X5U1pVKp6NWoF9fFXsesbbOYnTKb1YdXc3/L+xn20AYMq17hga3zyGkSzow63Ym1FdHhgw/IX7KE8NGjCR44QBJlf1n5EriKOdh+PO89O5QbV2/jmeODli61lkK9CfBh8LrQe8pQ+5yoOITWewgfP5AFpGk02EJi2V63OQdbXYMlth6J0YG0qf8vrmj/GEG7FsKmObBsLHzzNNTvBAk3QuNuENkU/sYDozXFgwNu5J73YZDnG4bmbSXIbERnCSYsPpXCLT50X/0IA8CWa6vaBLk0n63ObBKOWLHHJf6th3erkkat4dUurzJ29Vg+4CdKNRH8q2AG3HUvhXO+xOfxUuf1Kaj1en+HWulcHhc7cnbQKLgRVr3V3+H86Zvt39P8gJfCpEC0luBqbbtddDs+6/kZY1aOITV8AZ9EDWWWtjvTG36Ae+NBDg69lZD+3Ykc/zJqi6VaYxOiul0WCfLuxWPQHNtE/O2fQ8zpn17LPGUcLjqMWWsm2hJdvcHtXEp+qhkvsKdVEk3Cq34uUbPOzMNXPEy/hH68tuE1/m/j/zFv1zzubXYvNzfvR+j//o/x3rlkto9kTr1rSdyRgfLSSxx96y1CBw4g+JZbZM7T6pSzD9+mOaRE9GftE49w194cjkQFcWzMaKI6tqdeYhwGg44Sl5vcYhfFTg8lbg9lHg+2jN85YPsO197fiM4ooNmhVIZtPYh361JsdRP4PrINC8ITyLKEoMQ0o2Pc+9zcJotWBSsx7P8Bfvh3+VdIQ2g+CK64q/z7WiIxKpD/PnAT47+sw+t7sgEINutoG1bGpEZPk78plXhvNLvydlVtIEdT2KEyMCQHHDe3rdq2/iaDxsC066bx3M/P8SnfcEwTyUu5H6C+/Q7y537H4fx86r45DW3IJThAcRHW7fsfk79+lCNhKqIDYogNjCUxJJEecT1oGd7Sbx9iNi5+h8ZlENqtn1/aj7XGMrfnXJ79+VlWHZ6H0r4Dg1Oe5faI1dy66wfyvviWop9WU+elFzDf0N8vMQpRHS6LBPnZEhWHAg1ct+QWBnd4nBat7gEgJSeFZfuX8X3q9xQ4CwC4JfEWnu/4PGpV9ZRX+3Z8RUZ6EHvq+7j12uHV0uYJDawNmHHjDNZnrC+vY90wmddUalrFtOKaRvfTec9anvAuIrNuPT4+fA2h+wq5+pO55H48B11SE8KG3oK1Tx80ARc5Ab04J9/qyZT5tPyxxMY1abnsHNSOAS9+hEpz8vzYAQYtkYEnr2Z1bWIvuLYXXp+XrVlbWXloJfO3rqDR+sNc98deHknfC4BXo8GpM2JX6zmmNfGtWo1BH4LZ0pWQQA+hxlxMv83EuHg6hvhGaJpcB3GdIa5L+ep9NVjDcAufjOjAH2n5/H4wj31ZRazadYwFIe3pzjq6HTDyQ6itaoPI2kVevh41EHdN1T109U/p1Dpe7fwq0ZZoPtr+Eem6WN7L+hjf7YMpXLiBg4MGU/etNzG1aOHvUCtN5JrtTPvAQ164irXXm9l6ZTHJu5P5dOenXBd7Ha91eQ2TtnoXYyp2FRO1I5UynY/Y2/9VrW1XFKAP4M3r3uSzXZ8xbeM01HFb+NF3PbO1zzK+3ve0Wb+F1IeewdrmTSLGvYi+VRe/xSpEVbksEuSXtoWRv07DmwNVDN/+Lmx/FxUqfPgwaU10je3K1XWuZnv2dubb5qPX6BnXflzVB1aQhtO2C0N+JL91sPBy4k1V3+YZdIzpSIfoDuzM3cnKQytZk76G6Ye+YboBQhon0dbhpIN5OVc2MvJHUVtSdxtJPJRGo4kvcuSVV7F07UrYgP4EdOl8edYbej3lcwpfirJssC2ZL7YqtDmcy293XsGdz378t0en1Co1bSLb0CayDbQdy56Be/hm/3K2/boMy+50Igu8hHohxmfCXKrFV6bH6dCSU+jEfbQQr8OO3htUfrAfC9EFLsYSMQ9jhBdD0+boml2LOqET6vpXgtECKtUlUwZQWVrWC6ZlvfJb1gUlZYz+oIye636m+dZjfJDgweF2YNRWzXK7uUf/ICBLA3ixtro0k0y1Ss3jVz5OQ2tDXlw3iT66hrx77Esib+1E4YpCDt42jIiHHiRs5EhUumpcfbCKJN37MLYjB4n4ajm9F9ro9rWBwmH3srubibe3vsPoFaOZ1X0WOnX1neu8Lctps8+HIy4QtSWo2to9E7VKze1NbqdL3S7M2DqD5QeWo038gTdd7fBaR/HKzqWotmZSeOsoAhOMhPTqgrnHrahi25WXRApxmbsssqG4x8dycNQenpuXwZ4WBnLaHqXMoCMhvClX1+uCpf5VUK8dfeP7UuYtY/6u+dzb7F6iLFFVG9ieFWSkWfCowNqtb7VeSE+lUqloGtaUpmFNGdNmDNml2fyc/jO/Zf7GhowNrNCWLyTS2LWVrhElRLWB3COxFO43EPnTT5Su+B5vWASRw24lZNhtl83t1Jz9GzF80o2ChNuoO/Dl8rmDLyEHvniJ4oxAWuwsZOO1Mdz2zOxKSTwbhzSm8ZWP4LviYQ7bD/Nr5q9syNjAVzkppNnT8B1furpuQF3qB1wJznDKDjnRHcwi9GgOzTKyaZqWjXm/B35NBeYc/zpOrUJjMaAyGNBYzGhCw9HWrY++YRz6uIYYEhIwxMdfnh+ogCCzjkf6tOPYd6GE78vH69WyN38vzcObV0l7W7O2E5/pwx4Scsn/3xrYeCDxwfE8tvIJbtd6GZW3lTuu1VB0+Aqy3nqbwu++J+bllzA1a+bvUC+KSq0mafybeB56nCNThmP6eT+GD2fiWdGI5194kkl7pvDpjk+5t/m91RbT9lVzuKYYQm7oVm1tnk+sNZbJnSfzYKsH+XjHx3y590scyi+MVxIx7m3FQ1t3kHQwHfubK9C9/w3WuDKsbRthSExAFd0M6rWHem0laRaXnWr566YoihqYAbQCnMBIm82290J/3hAfT3zyQtImvUyT5cso3REK9QOoE7QPJ5vwBb6BOdaCuu9rjGg+gsV7FrNw90L+1aZqb1F5d39PzmEzexuouKeayyvOJ9wUTv+E/vRP6I/P5yO1MJWf0n5ideqP/DdrKx8EewmNLuQapYjOxQ7a7PWStUdD9vTpHJv5HkE39yDsjtsxtfTfggYXYqcaHmxQF6NrNeFzr8JijCYyKpGYwHrEBcXRPLw5zcOao/HDCPP2lD+I3bec7A2R5MZo6T7l00r/EKVSqahvrU99a31uSbwFALvLTkpOCtuzt7MjZwc7cnaQUbwab6AXWgAtYBmg8kF0robYbB/WEjCUlX9Z3BDu9BJdWkRIWSFBTh+mtIOU7PmDwmIVx3NvVGYz5tatMXfogKl1a0zNm11WD+50bBTGkvpJhO3/lYh82Je/r8oS5J3F6TTNUKFtWjXHr2ytIlqxpH8yE395mff+n73zDo+qzP74997pPW3S2ySTTAKIoUiTSLCg9EBC0VWCZRULSBEX1pWywoJgbKA/FVzKCrtKkKI0VyGCSBESWkgmvfdJMr3f+/tjCAuEAAkTQpL7eR6fJ3Pve897cg13zj3veb+HOID/CoFUbjoCPMJQd6ISxVOnwWtmCnxeeQUs6f2zwa09sLxCEbLqv7Bn/YCG1AUgTheA89aXiP/rMPzf+f/DaMXoe7K3xWgzw1ddCBo0fKa83OHztZUQaQj+NuRveD3udezJ34OdeTtRrDyMFVECSIwPo/dpFiYU5iD0cg00WVVg8asg9PkJQrkNggAO+ENHgRjwrKusq5utTjF0T+5V+icRAF+tVg9VqVRDAKQCaNMOBLanJ8I//ACGZ57G2XUbwbqQicYCAHAtQ5E8AkGlbyBk5hKMCB6BtNw0vNL3FXBZHbT72mGD4cwxiHQSFDwajumS4I6Zxw0QBIFwWTjCZeFI6Z0CrVWLYxXHcLT8KH6tOI69Eh1Y/gSiBgPDK4zoc84Jx4Efod+7F+yB/eD/yqsQDx9+Xy65Dw7sjZUez+OXxizobZkgHGWoNlUhg8eHAS7dTk+eJ5KjkzGzz8x7tlvdaHUgZ9f7qMnygq8VkK5cArks8J7MLeFKMCRgCIYE/K8Zhd1ph8lhAk3TIAgCNE3D6rTC7DDD6rSi0dqIamM1Kg1VuFxXiPSmIlSbS2CnLS4DNOBlZ0Fhs0KhsSOgDvDTUAgsPA/x77+7hpAEEBwATkgw+F5ycL18IBn1BIQDBtyT37s9eA4aAaSfQkg9jWpjdcdMYmpAqdWOkU1cyAbdXxv0boWMJ8OHI9fgUNFj+NtvyzE5iMAUsRlzBVXQ54Sj4Z+boE3bCa/nZ8LzT38CS9KFa9kJApw+E+D3yUCwlo0HvV+DkRvrcGKyHd9c/gZvPfRWh7uwKeMnPFhIwRrAATswvMPnay+efE/M7DMTKb1TcL7uPHbm7cSh4kM4lmBGxqO+4FQ8itgsHgZrNOjfVAh+Zj2QCRA/HYPA8xfwgyUQJT4PYeKrIHm8zv51GBha5V4FyMMBHAQAtVp9UqVStftbQjxwAEZsGQCTzYF9Z0vw8x+F0Jy7iOez9oE6SiOYeB/Jc1ORXp6OMzVnMCywgwT5S08gp4INEQEMnPZSx8zRQch4MoyLGIdxEePgpJy4WH8RxyqOIaMmA//hZ8EQbgbfSuPxcyTGnc6E488vo9aXh/yRETCM6A95QATCpGGIkEXAX+TfqYGzM78QykUboATADgiAThYCJ1WNCHEZjHLgt/7xOCv3xYaLG7A7fzc+f/xzxHjFdLhfH/54FmOrf4MgT4iL43th6rApHT7nreCwOJCx2lbTSNEUKvQVuNxwGafKL+F8dT5y9DW4yGkAN1AHFmmFjiQgMrMQVUkjqpJGSH0V5AWVEF8CZCbgXM1ZPDlgRwf9VneP8onR0K9ZA2UdiWpTBwXIdWqYGl0v6rL7tP74VjypeBIPBTyEpcdW4zviAPaIIvGqjwnTgmvQeJlG3cefQPP1P+GVkgKvZ/8Elsf9VebUJqSB8Fn2A2xlCehzMRvD6/rgR96PeHPAmx1eQnc6YxceqwY8Jt6i/fx9BEEQiPONQ5xvHBYPWoxfSn/BDwU/4BT9G04EUDhHhaOx9hEENinxuhcw1FAMZ8ZxNJ6vQEPmlyBWfAnRA0pIJk6HeNSY+770iKHnca8CZCkA7TWfnSqViq1Wq9vdmkfIZWPK0EhMGRqJWl08/rJ9IJ7+59/AyXCi/5kdIAkSGTUZHRYgm7J/gr2Uj+xQDhIfnNAhc9wLWCTr6kMOAGiaRoOlAZVFh1FCfYQSRQlyi8QIynJg2LfZcOzIRk4IgfQgYJs3gcYQD7w/898IlYZ2iv/8Xr0Q/t23MJ46Bas6F6zCAtjKnKgzuoLBgYfP4eFIGlNen4cl2u+RciAF/3zqn+jt3XH1kycLNbCd+Rf0mQLoPUmMevf/OmyujoQkSIRIQxAiDcGT4f/r6OWkaBTVG5BVpoE25zBYDUchFlyGp9TqOr8AACAASURBVLISDpUDWpJEHosFDYtEEMfYib/B7QkO8cdlIYGIWgpHjVUdMoe2+hzEDSQACryYjn856wi8+F5Y98QanKmejsXp/8DHHDX+TxKF56MIPJeXB202hfr166H5eiOkY8fCc+pU8B944L5cdbot0kD4Ll0H/TNzMPZgCdKfNeN4xXEkhCR02JQ2hxPy3HMAAM+Jf+qweToKIUeI8ZHjMT5yPOrN9ThQdAB7C/bCTO5Fgz+BpcZwcLhKPPbyTDwdrYLy6C5Yf9oPQ7YahowVwLIVECgDIXyoP/h94iB4sB/YihgQJNPsl6HzuFcBsg7Atetv5N0ExzfiK+Xjqz8Px7KiZxCy5xPYDx2HasoQZNZmumuKFuSfPAivRgLFYwaBTXbNjUo3gyAIeAu84d1rCh6ITQZdcBj1Rz6Hh++vcDbS0JYKwK4SoXcpCYKmATRA2P88MLxzAmQAEPTte12tNE3TcNTUwJCRidytmyE9fx5eCz7GR3+ejHkBZ7AgfQG+HfctZDz37xK32J1YlHYeb9Yehq+GQO3fZsBD6uv2eToTFklA6SuB0lcCDHgBgKv+3my1o7G6GPqaQjTWVqJRq4V3zMOd6+wdYPfxQHBdA6oNHZNBzig5hbAaGmaZtMtnyQb698dP03ZgX/5hrDm1Dl9wCrChrwITYoDphaWQ5cuh+2EvtGk7wVOp4DFtKqSjR3e535vd50lIBgcg7FgNousk2JO/p0MD5O8vnUVsiQ12IQ3ekM5RQ3IXPgIfPNfrOTzX6zmoG9T4qeQnHCo8ghL9z/i54b/4+SQALiCcKIMvxxdRZTrEXtIhsqgCfv+uAEn/CABwPBGOB9Yd6NxfhqFHc68iu+MAxgP47koN8kV3T8BhkXhu7jMo+G0HODkODCBESKu7ALvTDo6bd8/SRg1KSpqgBBcjn5vrVtv3FQQBQvkY5MrHAIsWdReOoPjicZjrS2HTNYJjsEJvEYDw6w2fzvb1GgiCAMffH55jRmPwmNHITj8K519fBeuzXVjxehJmeezH+6ffxz/i/+H2udcfzoe/5lcEZdAoU/Dx+DML3T7H/YqAx4EgLAoIi+psV9pGuAJexxtQra3oEPOXmgoRVUuDE63qEPv3GoIgMC7qMYxVPooD+b/hw1Nf43tWJnb18YVnLNBPZ0J8kQyR6gZY//4eav7xD4iHx0M6dgzEjzwClqxz5cvuFL+/fgzd2OmY8IcTnwf8Djtl77Ayi++zDuGtIhrCGJ9ulTVVeamg8lJhdr/ZMNqNOF6ShT1Z53GmogBNtjpoWUaUSqQ4lUBC9LgTQrsevjV6+FWZETvsAXS9giSG7sS9CpB3AXhCpVL9DoAA0CG6OTEBUpwc9hQifvgnBuQW4Bu5BdkN2egrd68SQ8Ef+8At4aIsWIDY8K6xK/2u4csQOCgRgYNcnZPsTgoFdQbU622IjPDqZOduTWzCI8j9egeIVxIh/fx7vL7oSawr2oeX+r6ECFmE2+YpqDPgy6MFWF7xAyRmwPOd5SC70Zddd0XW7yGYj2ZA0mCG3qaHhOvezWal1gYkaAD5xJZdQLsyBEFgTFQ8xkTF40xZGVYe+R45+rM4I8zD0X56OPpZoahh4eHLFIZnHIVXejooEtAFecAZHQ6PRxLQe+rL920ZBksRB7ZCgn75epjtbGTVZ10tRXMnFEWDzE+HxALIH77/V1zai4gjwijlIIxSDgJN0yioM+JEQT3OljTiUqUO5U1mmGwuOVIIgBdFis51mKHHc08CZLVaTQGYdS/m6jv5SeCHfyI6swQY5YWMmgy3B8gnTv0bA2uA+pSRbrXbleCwSMT4S4F73Nm7vUTH9sLpv/wdnu++i4f++Tv4L3Hx1YWvsDp+tdvmWP7DZURR2eh9zoySviI8Nbzr1qb3JOQPDUMpvkTwFSULtwbIlBM2rR1sioQgtmvWH98JA0NCsGvGm8ip1uHrY0U4diELEzm70VfwB+rjHPj5IT5IrQw+xRS8K3RQHD8H1i/nUPZgf4TGPNTZ7reK1/hE2D/+BspK4I/qPzokQD5XXo/YshoAgGjM0263fz9CEASUvmIofcV4bmj41eMGqwMVjWYU1RvRJ6hrywcydH26XXqr35AH0CD1ACq5COJ64LLmslvtW+xOGAqKAQD9p7ziVtsMHcugsdNhHhQIbo0eb5TEYn/hflQZ3LMx62huHY7m1uGF/G8BGug3f7Fb7DJ0PLwIJQBAroXbpd4obQVYDS4Nbn4X3aDXFmL8pVg75UEc+usURI5ai+2CTThR9woiqvviaZsZLwcVYcqgcoRMrgFrWj2C5d6d7fItkT39OkDSeDyLxsmqUx0yx46Lv6NPiRM2H4Ad2TUULDoKMY8Nlb8ET/XxR7CnsLPdYejhdJ/dZVcgCALaB4fC+/f9iLRxkK+9434kd8QvZ/6ATwmg9eZCpIx2q22Gjsf3rY9gvjAFffdeAPEqjd0Fu/Hqg6/elU2KovGP/dkYihz0vqhHwSA2Hhw82U0eM3Q0LE9P0CzAS0+7XepNXXQK/vWAg02CGxbmVtv3MzIBB88NCcNzQ8JQoxuCEwUafFPWhJLaBhjrSkHpa+AEiU/hh5DOdvYWsGQeICJ8MbCgBhtrMmFz2tyurX+6+DieqQBkwwLcapeBgeHu6HYBMgAEP/kY6GMH8GC+Fieim+CgHG5Tmvj1zNd4rgygxnUdwX+G/+Gv7I/LA0LB/W81ptWqsCd/D17p+wpIov2LKQcuVSOnSocvL3wHnQAY/MwUplNUF4IgCEDMhY/OjnJdpVttXyg9i+B6wBbg22Xbct8tflI+EvsFIbFf0NVjFrsTJpsTXqIOauTkRqTxCaA37YDQYEWWJgv9fPu5zbbGYEVg2R9gU4DXoMFus8vAwHD3dLsSCwBQDncFr9FlTbBTdpTqS91it9FoA7soA2wKiJzctZqDMPwPybSXwRE58Mgv9agwVODUXSyd0jSNdYfzMNGUgdAiHYofskE+7M9u9JbhXkB6iOGvo5HfUOZWu4WNuQjS0JCoYt1qt6vD57C6RHAMAJ6jJgEAYspoZGuy3Wr7eEENelXXgSJoCEaOdattBgaGu6NbBshCfz9YBXz41lIAgIKmArfY3XspHyFlZth4BEQD79+NJQy3JmTwJIiiHfAu1UDVIMCBovZrbf6SXYuCikZMy9iLMh/gkaFRgJRZKu1qsH3l8NbTqNK6N0CuM1TDRwt4xnRcYxqGjoXfpw9oNom4UgoXai+51fZ/8zPQq9QJu5wCSzHIrbYZGBjujm4ZIAOAIUQBrsa1OSa/yT11yPsv/Yi4Qhqs3gE9drm0W8DhwzhsOEDSmJTrjV9Kf4GdsrfL1Kbfi/BcZTo8NUbkDbMhoE/ntpRmaB+i0BBIDIDOXOdWu3atHiQAXqT75AQZ7i0EhwMiMhQPlNK4WHnWrbYvl59FZBUgU0gBdtfIqDMw9BS6bYDM7tMPdh0boXaeWzLIBqsDnJL/wsMIBI183A0eMnQmfgnTIQm0oNfpKhgs2naVWeTX6nH5UhEmXvwZf0QReEqmBWLHd4C3DB0NL0wJFkWApdO6zaaTosHRunRduRGRbrPLcO+RDh8BeR2g0VbC5rS5xWaD0QZ5+XmwaEAe1700shkYugPdNg0aNKgfDN9vR1yVE5fldx8gH86pQkSNSxJM/CSTJezqSFQJcITboC+3YmiJCD8V/4ThQcPbZONfJ0qQoj4I0uGAegQXM7wHAeLu1Va6p8BRuLrcCfVW0DTtluYVBZVF8GgEaADc8J6jYNEdkQ2Lh+7rLVDUUMhrykNv77svmTld1IA+9eWgQUMwtOdq6t8tZ8+e9WWz2RsB9EE3TvoxdAgUgEsOh+OlAQMG1N54stsGyH4DHoQBQO8KC/aHF8NJOcEiWe22t/vyCTxRSsHmRYATqnSfowydA1cEU+/ewOlyjM6X4YOYI21SO7HYnTj5awY+LP4DBwcQmGyvAmLvTi6OofPgBIUCcEm96Ww6yHh33w75cnEGAjWA1UsIkse7a3sMnUezhnVoLZBTn+2WAPm3wlL0qbLA5EWBFcnUH7cXNpu90d/fP1YulzeSJEl3tj8MXQeKooi6urpe1dXVGwG06OzVbd+2OMHBcHLZCKu1wkE57krflKZpXKw+jphyGp6qLtI6juG2iPs+BY8QIxQX6mAyNCKjJuOOrz2UVY3kcz/CygUuj5Sjv9UKqEZ3oLcMHQk7wLWx0lsH1Js0brFZXHsZQRoaZAjzzOjqsL294RQLEFlLIbPkN7fYzKzMRFQlDY4vBXgzJTh3QR+5XK5jgmOGtkKSJC2Xy7VwrT60PH+P/blnEAQBm48XpE2updIyfft3p+fVGhBZfw58O+A5iFGv6C7I+jwFaagZHJsdg4rY+KX0lzu+Nv3QKQyvvIh9A4EpLBKEby/Ak1lG76qwPDxAsQh462kUNrRYaWsX1bpCBDQAsmhG4q07QEQoEVlDo6Du7ruzOikadPkZCG2Av8IbuIvVTQaQTHDM0F6u/O3cNBbutgEyAFBBoeBqXQ+eUl37tZAPq8vRq7oeNEFD+Og4d7nH0Nn49gIChLDzWRiTL8XhssOg6ds/Z6u0Zih/3gkrh8TZR/zweOkFIPqpe+AwQ0dBEAQoKRfeOqCoscYtNi2NleA5AGnUTZMTDF0Mj7h+8NUAVZa7f4EqqDMgurYYAOAZ1/eu7TEwMLifbh0g81R9QBlJCO0EyvXl7bbzU8FJqCpoOD0psCKZbkfdBoKANegh8EPsUGQ1QF9fhcua22eHfv4lEyPKM/FTPxoTg+LAphxMgNwNYHmI4GmgUa51TwaZbGwEAHDDFG6xx9C5iGJjwXYS4GodMNqNd2XrfFkTVJo6mAU0ODHMqmR34OTJk6Lk5GRV8+fMzEzBhAkTYiZNmqSaM2dOuNPpUrT58ssv5ePGjYsdP3587I4dOzwBwGAwkCkpKZFJSUmqadOmRZeXl3NutG8ymYgXX3wxcvLkyapnn31WWVtbywaA06dPCydPnqyaNGmS6sUXX4wwm82E0+nEggULQidOnBiTnJysysvL4wFAXl4eb9q0adFJSUmq6dOnR9XX119dusjLy+ONGjWqV/PnwsJCblJSkmry5Mmq1157TWE0GluNF//617+GbNiwQX7j8fT0dMnLL798ncblsmXLgrZu3erdmq3U1FT/U6dOCc1mM7Fp0yafO53zwIED0gkTJsSMHz8+ZuHChaEURbV6z+6UbrtJDwD8+vSCBgRiG9jt7qbncFLIb3TVinnECBmtym6GTBUPgSIdxXlyPJzDxqHiQ+jtc+sNONZvt4MmgJ+HCLBDZwAEnkAw03q8qyPw9IS0pAEaXftfppuhaRo8gwUAwAkKus1ohq4AXxUNAAirpVHckI/efu2XZsssr0F8rRUmHyeIAEbizV1s+b3Y+/uM8laDqvYwuX9wfcqw8FtuTPjoo4/8Dhw44M3n86nmY59++mngrFmzqsaMGaN99dVXFfv375cNGTLEmJaW5rtv377LFouFGD16dJ+kpKTGzZs3+8TGxpoWLVpUtXXrVu/PPvvMf9WqVdfVhX799de+SqXSvHjx4spvv/3W86OPPgpYuXJl2ZIlS8LXrVtXEBUVZd20aZNPSUkJNzs7W2Cz2cg9e/bknDhxQrRixYrgLVu2FLzzzjth8+bNqxg6dKjx+++/98jNzeX7+PgYt23b5rV9+3Y/rVZ7NTBfuXJl8JQpU+qmT5/esGnTJp/PPvvM7+2336661qfa2lr2vHnzFOXl5TyFQmFxx/1esGBBNQAUFRVxd+3a5fP888/X325OnU5HfvjhhyHbt29Xy+Vyx0cffeRXX1/P/vbbb71vvGc33tdb0a0zyJIo14uLqtbe7hpkdY0eQYZsCGyANIbJBHU3WGHDwPe0o1Emw5hcIQ4VH7plmUVpcTX6XzqGE71IDHtwHGRFx4CIBKaGsBvA9/GB1AQ0Gdu/obeZWr0FAoPru5ITGHjX9hg6H25kJGiCQFgtjfyy43dl63zZJYTUA1xPO+DX6/YXMNzXhIWFWdevX3+dnqxKpTI1NTWxrmQyWRwOh5bL5Y79+/dncblcurq6msPhcCiSJPHGG2/UvvXWW1UAUFlZyZVIJM4b58jMzBQnJCRoAeDJJ5/UnTlzRpqbm8uTSqWOr776yi8pKUnV1NTEiomJsZ45c0Y8fPhwLQAMHTrUmJubKzKZTERjYyPn559/9khOTlZlZmaKBw0aZAQAmUzm/Pbbb9XXzldSUiIYNWqUFgAGDx5sOHfunPhGnwwGAzl79uzKp556qqGt9yw9PV3ypz/9KSolJSVy1KhRvdauXesPALNnzw4/ePCg9NNPPw0oLS0VrF69+rrWtDeb88SJE+KIiAjT8uXLgydPnqzy8fFx+Pr6Om52z9riY7fOIHPDwgEAkfVW7NKXtUvf9HRxHWLrXV+YggHMUli3I+BBOFk8aEOFCL9YBbrUiEv1l/CA/IGbDr/05WYonDbsHcRCqt8wQP8xEMFomHYH2D6+EJsBk+Xuu+ll19TAQ0fDJmSBFArd4B1DZ0PyeHD4yhFcX4vs8rOY2M5FIydFgyw962oQEiACeBL3OtqDSRkWrrldtrcjmDx5clNRUdF1y8sKhcK6Zs2a0I0bNwaIRCLniBEj9ADA4XDwxRdfyDdu3BiUnJx8dcMDm83G1KlTo4uKigRfffVV7o1zGI1GlkwmcwKARCJxGo1GVn19PTs7O1u8bNmyUqVSaU1JSVEePnzYZDQaWVKp9GqQTZIkXVtbyyktLeUPHz5c984771TMmzcvbNu2bd4pKSmacePGteiQpFQqTfv27fN47rnnNAcPHvSwWCwtEqoRERG2iIgI25EjR9qki9kch9XU1HAPHDiQZbVayfj4+L4LFy68mp2YM2dOVUFBgWDRokXXZa1vNmdDQwP73Llz0t27d2eJxWJq6tSpMYMGDTLc7J61xc9unUFmiUVwivgIbHDC7DBDY2n7v5vfSi5AVeGEU0CB03tIB3jJ0KmwuaAC+iNA0QCKxcLoTGB/0f6bDqXMZsgPfo/z4Rz4PzgEqrorCYNIJkDuDrB8A0ACIIyNd23rcpUaci3g9GKC4+4EJyIaoRqgWFvUbhvFGiPCm4oBAIFKpgV5dyU1NTVky5YtOYcPH84aN26cZsmSJSHN52bNmlV3/Pjx8xkZGZIjR45cfUP67rvvcrdu3aqeO3duZF5eHi85OVmVnJys2rx5s49IJHLq9XoSAPR6PUskEjm9vb2dAQEBll69elm4XC49bNgw7fnz54UikchpMBiuBoM0TRO+vr52gUBAjRw5Uk+SJEaOHKm9dOmSqDX/lyxZUp6enu6RnJysIgiClslkjp07d3o2+3TmzJnbPtz4fD5lt9uvy0qaTCZWcylKRESEmcPhQCwWU1wut91KJJ6eng6VSmUMCAhwSCQSKi4uTn/hwgXhze5ZW+x26wAZACg/n7uSesvSXER0BQ2+jw2E/82zigxdG274YPQRliJLOQCPXiRw6PIeWBwty6mKNn0DsVmPtHgKz/V6Dig4DHhHAR6hneA1g7th+QUDALjmu9uABQBV9Zfhq6XB83drOSRDJyNTKSFvAqpt7U9Sqqv1UDbWwsyjwY1ivlO6K2Kx2NGcxfXz87Pr9XpWTk4O74UXXoikKAocDofmcrkUQRB0amqq/7Zt27yuXOckSRJRUVHWtLQ0dVpamnrmzJn1cXFxhsOHD3sAwKFDh6QPPvigPiIiwmo2m1nNm/AyMzMl0dHRlgEDBhiOHj0qA4ATJ06IFAqFWSgU0kFBQZajR4+KAeD06dMSpVJpbs3/w4cPSxcuXFielpamZrFYGDp0qC4pKamx2aeBAweabncPYmNjzfn5+cLKykoOAJjNZuL8+fPiuLi4215LkiRomr6jJf9+/fqZioqKBHV1dWy73Y5Lly6JYmJizDe7Z3dir5luXWIBAGRoGFgnXBv0yvRl6Ofb746v1RissJly4d8EeERxAXGLTZoM3YHgh8CGEycCA/GA+jQGnNXi4PCDSFQmXh3iNBhg2PxP5ITwYIwJQXzAEKDkaSDumU50nMGdsH1dtcJcsxV2JwUOq/35g0Z9EXy0gCSU0cbuTggiI8B2AlaDAxTlBNmOvQfZlVqo6g3QySkQctXtL2Dokixfvrxkzpw5kSwWi+ZwONSqVatKFAqFLTo62pSYmBhDEASGDh2qTUhIMMTExFjmz5+v2LVrl5yiKLz33nstlihefPHFujfffDN80qRJKg6HQ3/yySeFPB6PXr58efH8+fMjaJrGAw88YBg7dqzW6XTi+PHj0sTExBiaprF69epiAFi5cmXx8uXLQz/44AMiICDAunTp0voWjl9BqVRaFixYEMHhcGiFQmF+//3326x0IJPJqPnz55e99NJLSh6PRzkcDnLatGm1UVFR1oqKilsqHvj6+trtdjuxdOnSoOXLl1fcaqyfn5/jjTfeKE9JSYkCgMcff7zxgQcesERERNhuvGdt8b/bB8ji6BiY04+Db6NRob/lPW7BubImROqLAQD8SCZL2G25okDh5amFUdUHU3/Pxmfx32Bi5MSrtVJ1H38Ctq4J/57Ewpv9XwdZeQ6wGwHFI53pOYMbYXm7lIf4VgdqdBYEe7a/PILWlIPrBMThMe5yj+E+gKdwbdT2bgTq6y7D16/tGeCsynI8Xk+hIdYJMAFyt0GhUNj27t2b0/w5Pj7eEB8fn3PjuCs1tdfV1fr7+zu2b9+edyv7IpGI2rhxY4sA79FHH9U/+uij2dceY7FYSE1NbRHQxsXFmXft2qW+8Xgzp06dOt/885AhQ4z79u3Lbm3stSxevLiytXOTJk1qmjRpUtONxxMSEvQJCQlXM7rNc69bt664+djBgwdb1V29cc5p06Y1Tps27br6uNbu2Z3S7UssPFSuHcKRjRxUGNoWIGeUVSGiwfX/ld+bEXPvtkj8QctCMExQjH8PmQqRmUL/XZev1iIbT55Ew7ZtOBQnQFOYAqPCRwFFRwEQQPjwzvWdwW2wPL0AAGIzUK69uzpkXqNrCZ4bEX3XfjHcP3CvBMiBDUBJ+al22WgoyQTXAYhlNsCH+ftgYLhfcVsGWaVSyQB8A0AKgAtgvlqtPqFSqYYA+ASAA8BParV6ubvmvBN4Ia66wkgN1eYA+Y+qC3i0hgYloMCOZLQquzNE8EMYmPc7XtaL8Pr0Z/DE9m049u7fUPZIEYyfb0SNNx//SbBjxZBFIAkSKPoV8O8DCL0623UGN8H29AAASE1AWVMdhqD9+sUCvQEAwAlTusU3hvsDlpcXHAIBAjUW5FWew0MD2na90eqAuMaVwPPzFjDPDwaG+xh3ZpDnA/hFrVaPADATwGdXjn8B4BkAwwEMVqlUd14E7AY4wa4AOazB0eYAuVCbh/AaGnwPO/Om390JHgiZrRreVAOOPfo08OwkxJ+1wPDRZyjzJfHOn2zwFU7FqIiHAbsFKDsNhDPlFd0JgsuFk0dCaqJRqW+zrOdVzDYnhCYbAIAdEHCb0QxdCYIgQIeGI6iBRmlj21duc2v0CNO7VoYDIyPd7R4DA4MbcWcN8kcArNfYtahUKikAnlqtLgAAlUp1CMDjADLdOO8tYXl6guaQCG6yo8ZUAztlB4ds0cWxBRqDFVZ7MYI0gCSGWQrr9oS4Wogn+pTjnydK8afFK5A/8Ul8lvUl1LQBdSVxWDnyZdfYslOA0woo4jvRYYYOQcyD1GRBoaH9AXKl1gyhiYKdA5CiVlWUGLoooshIBB3Nxm/Wtrckz681IFTbgEYpwA5k6tMZGO5n2hUgq1SqFwHMu+Hw82q1+g+VSuUPV6nFXLjKLXTXjNEDuKfCjwRBgPaUwEdXD4qmUG2oRog05LbXZVXqEGYsB5sC+H58Zimsu+PfF2AL8KeAKnx10YTvMyswdeAIvK96GI+l/gqVmIsR0b6usUW/AgQLCHu4c31mcDssqQgSswV6Q9XtB7dCiUYLiZGGTcxqc2MihvsfqTICtv1Ao63tcoAFdUbENRmg93S6JCIZGBjuW9oVIKvV6q8BfH3jcZVK9QCA/wB4S61W/3olg3xtmyAJgBa7GTsalp8cwnLXpplyQ/kdBcgXKhoQ3uRSQOFFhnekewz3A2wuEDwQocbzeCBoCj78KRex/lJ8d6YMVVoLPpneDyR5Jdgp/NWlfMFvU9dKhi4Ax0MKaUU9jKa2ZwebyW+ogLeBBi29pYoRQxeFG+ZSNLIbABg1gMj7jq/Nr67HmAYnKgOdgDdTn87AcD/jthpklUrVC8AOAM+o1eoDAKBWq3UAbCqVKlKlUhEAngRwzF1z3in8sDCwDCRA06g0tKpGch1nKtUI1jhBkzS4ytgO9pDhviB0CIiqC1g9LgIOisb49b/hXydL8MzgUAxSXFlBMDcBlRmAYkTn+srQIXC9fSA1AZa7aARR3FgFLz3A9mRaCHdHuFe0rQU6Esbq87cZfT264kxwnIBAZgd8mAC5O3Hy5ElRcnLyVd2+zMxMwYQJE2ImTZqkmjNnTrjT6Wri9uWXX8rHjRsXO378+NgdO3Z4AoDBYCBTUlIik5KSVNOmTYsuLy9vUQfa1NTEmjFjhjIpKUk1ceLEmN9//10EuBqBjB8/PiYxMTFm9erVAQDgdDqxYMGC0IkTJ8YkJyermhuJ5OXl8aZNmxadlJSkmj59elR9ff1VIe+8vDzeqFGjejV/Liws5CYlJakmT56seu211xRGo7FFvJiVlcWfNGmSKjExMWb27Nnhdrv9uvPp6emSl19++bqqgWXLlgVt3bq11bfK1NRU/1OnTgnNZjOxadOmVjst/fWvfw3ZsGHD1eYU69at8x0/fnzM+PHjr94Hh8OBxYsXhyQmJsaMHTs29scff2xTS2x31iCvAsAH8IlKpQIArVqtnghg5q4r8gAAIABJREFUFoBtAFhwqVi0TxvnLpBExcD84y+Qmok73qiX15CLx+sBQuYE4ccEyD2C0CEA7URvOhf73xyO/0svwKMxvoiPuqZBTMlxgKaAiITO8pKhA+F5+0JqAqz29su81WuL4GkA+PI7zywydB24oa4VSP9GoLTyDGIjH72j6+xOCvwalyyuj5QCZIy2vts5/ZU3zv3bve0r456ux6CXb/nG/NFHH/kdOHDAu7mFMgB8+umngbNmzaoaM2aM9tVXX1Xs379fNmTIEGNaWprvvn37LlssFmL06NF9kpKSGjdv3uwTGxtrWrRoUdXWrVu9P/vsM/9Vq1Zd1/r3888/9xs0aJDujTfeqM3JyeHNnz8/Yv/+/dnLly8PW79+fUFERIR1xowZyoyMDEFJSQnPZrORe/bsyTlx4oRoxYoVwVu2bCl45513wubNm1cxdOhQ4/fff++Rm5vL9/HxMW7bts1r+/btflqt9mpgvnLlyuApU6bUTZ8+vWHTpk0+n332md/bb799Xe3Z2rVrg+bOnVsxYsQIw+zZs8P37dvnkZiYeFdVAgsWLKgGgKKiIu6uXbt8nn/++euamdTW1rLnzZunKC8v5ykUCgsAFBQUcA8ePOi9Z8+ebJIkMXny5Jjz5883nT9/XuhwOIjdu3fnlJeXc3bv3u3ZFl/cFiBfCYZvdvwkgCHumqc9cBWul7qIRjbKDeW3HW+xO1FvL0GwhoZYymzQ6zEEDwIIEig9Cd+IBCwd37vlmIIjAEcIBD90z91j6HjYcj+wKYBl1rbbhrWhCDwHIPYLdKNnDPcLLJkMNpEQ/o1m5Ndk4U7TJ6UNJgRdUbAIDvQDWN2+T1ePISwszLp+/fqCt956S9F8TKVSmZqamlgURcFkMrE4HA4tl8sd+/fvz+JwOCguLuZyOByKJEm88cYbtQ6HAwBQWVnJlUgkzhvnePXVV2t4PB4FAA6Hg+ByubRWqyXtdjuhVCqtADB06FDd0aNHpXV1dZzhw4drrxwzzp8/X2QymYjGxkbOzz//7JGamhocGxtrXLp0aTkAyGQy57fffqt+7LHHrna+KSkpEYwaNaoEAAYPHmxYsWJFi9rUjRs3FrDZbFitVkKj0XCaW2vfCenp6ZINGzb4s9lsqqqqivfEE080LFy4sHr27NnhY8eObTh06JBnaWmpYPXq1QFXmqsAcGXbZ8+eXXnkyJGr2eCQkBD75s2b89hs178pp9NJ8Pl86vjx41KlUml+9tlnlQCwbNmyshaO3IIe8S+Uc+WNX6EBCu6gm15+rQECsgLyJoAf7GCWwnoKfCkQEAcUHAYSFrU8T9OA+gAQMdJVs8zQ7WDJXbJsPIsBFEX/r+68DfCaXM8YSSDTZrrbEhgMv8Y8lGvvvPtuYZ0RwXoNGsVAbACTdOkQBr2suV22tyOYPHlyU1FR0XVfCgqFwrpmzZrQjRs3BohEIueIESP0AMDhcPDFF1/IN27cGJScnFzTPJ7NZmPq1KnRRUVFgq+++ir3xjk8PT2dAFBVVcVeuHBhxF/+8pdSnU7HEgqFV4NSsVjsLC0t5RmNRta1wSpJknRtbS2ntLSUP3z4cN0777xTMW/evLBt27Z5p6SkaMaNG9ciI6BUKk379u3zeO655zQHDx70sFgsLUos2Gw2iouLuTNnzowWiUTOvn37mu7kfjVvXq6pqeEeOHAgy2q1kvHx8X0XLlxY3Txmzpw5VQUFBYJrg2MAiIiIsEVERNiuDZC5XC4tl8sdFEVh6dKlwVFRUSaVSmXVarXs0tJS/tatW/OPHj0q/stf/hK+c+fOVjsJ3ki376QHXKuFbEep/vYvEDnVeoQYqkAC4HnQgDS4gz1kuG+IGgWU/wGYbiLzVXUe0JUDMWPuvV8M9wSWjz8AgG+zQGex32b0zeEbXN/PnGDFbUYydFVEiggENNKostXffvAVCuoMCNLpofWkAW9GA7m7k5qaGrJly5acw4cPZ40bN06zZMmSqxnYWbNm1R0/fvx8RkaG5MiRI1c3K3z33Xe5W7duVc+dOzcyLy+Pl5ycrEpOTlZt3rzZBwAuXLggmDFjhmrOnDnlCQkJBqlU6jSbzVfriA0GA0sqlTpFIpHTYDBcPU7TNOHr62sXCATUyJEj9SRJYuTIkdpLly61qkO5ZMmS8vT0dI/k5GQVQRC0TCZz7Ny507PZpzNnzggBIDw83Jaenn4pOTm5btmyZddlmfl8PmW326/LMphMJlZzKUpERISZw+FALBZTXC6Xbv/dBsxmM3GlVpq1Zs2aEgCQSqXOkSNHNpEkiYSEBEN5eTm/LTZ7RIDMEosBPgvBWgearI0w2Ay3HH+pshohTS51Ol6oP7MU1pOIGuWqMc7/peU59X5XCUb0U/feL4Z7AsvD1U2Pa7ej3mBr8/VOiobI5Hq+sEMZGa/uijRSAW8dUO+0AE7HHV1TUKNHUKMVNhmjYNETEIvFjuYsrp+fn12v17NycnJ4L7zwQiRFUeBwODSXy6UIgqBTU1P9t23b5nXlOidJkoiKirKmpaWp09LS1DNnzqzPysriz507N2Lt2rWFo0eP1gGATCaj2Gw2nZ+fz6MoCidOnJAOHjzYMGDAAMPRo0dlgGsTn0KhMAuFQjooKMhy9OhRMQCcPn1aolQqza35f/jwYenChQvL09LS1CwWC0OHDtUlJSU1Nvs0cOBAU0pKijI3N5cHACKRyHmjrGVsbKw5Pz9fWFlZyQFcQez58+fFcXFxt800kyQJmqbvaAmPoii88MILyujoaPOHH35Y0lxq0b9/f/2vv/4qA4Bz584JfH192/RQ7zGRH+klhlxXD4CDMn0ZYr1brxy7UJuLgRoaNAlwFcyDrEcR2A8Q+gB5PwF9p1x/LmcfEDIEELl3DwjD/QNL5lq141kdqDdYofQVt+n6BqMNkuYuesFMlrC7wg0NBUkDZiMLaCq5o4xwVVkpxFYaLKkT8GL+Nro7y5cvL5kzZ04ki8WiORwOtWrVqhKFQmGLjo42JSYmxhAEgaFDh2oTEhIMMTExlvnz5yt27dolpygK7733XtGN9tasWRNkt9vJFStWhAKASCRybNmypWDp0qUl8+fPV1AURQwePFg3ZMgQo9PpxPHjx6WJiYkxNE1j9erVxQCwcuXK4uXLl4d+8MEHREBAgHXp0qWtLoEolUrLggULIjgcDq1QKMzvv/9+i3qil19+uertt99WcDgcisfjUc2Z22ZkMhk1f/78spdeeknJ4/Eoh8NBTps2rTYqKspaUVFxyzpFX19fu91uJ5YuXRq0fPnyW9bG7t271+PixYsSu91O/v777zIAmD9/fvnMmTPr33777bAJEybE0DSNZcuWldzKzo30mACZ6y8HVeBa+rxdgFysL0BiPcCSOEHImQC5R0GSgPJxIO+Qq6U058qKTPkZoOYSMHpN5/rH0KGQUpe2Nc9GQdOODHKd3gqxyQkbFyDFbQuuGboOzVrIMLBA1eeCvIMA2VF+AQAgFtsBH2Z1obuhUChse/fuzWn+HB8fb4iPj8+5cdyVmtrr6mr9/f0d27dvz7uV/S1bthTc7PjQoUON184LACwWC6mpqS0C2ri4OPOuXbtarcE9derUVd3CIUOGGPft25d9K58efvhh48MPP9zid7yWSZMmNU2aNKmFskVCQoI+ISFBf+Pc69atK24+dvDgwcut2V28ePFVzd7ExMSmxMTEjJuN+/TTT4tvdvxO6BElFgAgDA0BYWABNI2yW9QhNxptMNLlCNIAQokN8L6njf8Y7gfingHMjcCF//zv2O/rAJ7MdY6h29KcQeZYgXpDq6uPrVKrt0BipGAVMx30ujPcUFeA7NME1NZcuO34JpMNXo2upKDcgwTEfh3qHwMDw93TYwJkTlgEaCcBfz3vlgFyTrUeHHY1/Jpo8KQOwIsJkHscikeAgAeB39cDFAVoCoDsvcDAmQCPaf7QnSF5PDjZBMQWGlW6tst5lmk18DDSoMQ9ZnGuR8Ly9oadx4V/I42C6qzbji+sNyLYUA0bCwjxDwaYFuQMDPc9PSZA5ka6GsSENbBuEyDrEGCuAosCeBIHUyvWEyEI4OE3AU0esOd14JvJAEcEDHqlsz1juAdQQjZEFqDW1HYt5DJtHaRGgJDwOsAzhvsFgiDgCAiAfyNQpm1RLtqCojojgvWNqPMEpHKmvIKBoSvQYwJkToRLdzK0nkKprvUA+XxlOUK0RgAA15MAZIzEW4+kVyIw9A3g4neu9tIzdgOyoM72iuFeIORCbAEaTG2XU63W10NmAriyVtWTGLoJwrAI+DfSqLHeXuqtqN6IIK0BOk+aUbBgYOgi9JwAOcgV3IQ1OVBjqobNefMNOFmaHARe+V7khgYBJOum4xi6OSQLeHIlMPssMOs3IHhgZ3vEcI8gxAKILDQspurbD76BRl0lRFaA7+nRAZ4x3E94KCPg2wTUUlbAqr/l2OLqRvhp7XDIGAULBoauQo8JkEmBAKSQhWCtDTRuvlGPomhUGPMRqKFBigiw/Jk3/R6PZzjg0aLDJkM3hi0RQ2wGbG1oAnEVjUtFSOgtd7NXDPcbvPAwsClAa2ED9bcUIIC2IBcsGuBKHEwGmYGhi9BjAmQA4PqI4atzibrnNbV8oJU2mEBxKhHawAZfbGO6HTEw9EA4Hp4QWQCHve0lFly9S71J6suU43R3uKGuVuIOPQvQ5Lc6jqJokNUutSqZhPle6a6cPHlSlJycrGr+nJmZKZgwYULMpEmTVHPmzAl3Ol2dn7/88kv5uHHjYsePHx+7Y8cOTwAwGAxkSkpKZFJSkmratGnR5eXlnNbm2b17t8esWbOutun85ZdfJBMnToxJSkpSvfjiixFGo5EEgNWrVweMHz8+NjExMebUqVNCAKipqWE3z5OYmBiTn59/dbNEbW0te+TIkX3MZjMBABqNhvXss88qJ02apEpJSYmsqalpsfO4srKSM3Xq1OjJkyerUlJSInU63XUxZVFREXfChAkx1x7bsGGDfNWqVYGt/X5bt271/uGHH2QA8MUXX7SaaVi/fr3vsmXLWjxo582bF9Z83OFwYM6cOeGJiYkxkyZNUl28eLFNnfR61FZrbqAc/IsaAATyG/OB8OvP51TrQPIqENRAgRtkA7yYVrEMDD0NnqcPxBaAoppA0zRu7A51KwQGV4tynh+zd6G706yFLNSR0NdkoTV9m0qtGQE6lyStvycPEHrdIw97Hv/O/rf33oK9bu3kNCFyQv3TsU/f8m35o48+8jtw4IB3cwtlAPj0008DZ82aVTVmzBjtq6++qti/f79syJAhxrS0NN99+/ZdtlgsxOjRo/skJSU1bt682Sc2Nta0aNGiqq1bt3p/9tln/qtWrWqxzL148eKQU6dOSa/tgLdy5cqw7du35/j7+zuWL18etGXLFp/BgwcbMjIyJHv27MkuKyvjvv7665E//vhj9ooVK4LHjRvXMGXKlMYjR45I1Go1X6lUWg8dOiT9+OOPgxsbG68G5h9//HFAXFyc4a233qr++eefJatWrQr6+OOPr2u0sX79ev8JEyZonn32Wc2qVasCt2zZ4jN79uzau7nfM2bMuHqvN23aFDhr1qy6a8+bTCZiwYIF4dnZ2aKEhITGa89t3LjRp7CwUNCvXz89AOzbt88DAHbv3p2Tnp4u+eCDD4Ja05O+GT0rgxwSAoeRBYnFA/lNLd/4z5XXwdNRB77ZeUXBgpF4Y2DoafC9/cC3A2xKC5PNecfXWR1OiCyuWlS2PxMgd3fYvr5wcNjwb6SRX3Op1XF5tQaEGGqhkQBh8vB75yDDPSMsLMy6fv366wIvlUplampqYlEUBZPJxOJwOLRcLnfs378/i8vl0tXV1RwOh0ORJIk33nij9q233qoCgMrKSq5EIrnpg6dfv36Gd99997oGIN98843a39/fAQBOp5Pg8XjUqVOnxIMHD9aRJImwsDCb0+kkamtr2RcvXhRXV1dzp02bFr1nzx6vESNG6AFXW+d//etfaolEcrVvelFREf/RRx/VAsCwYcMMFy5caNH5aMWKFWVPP/20xul0orq6mtPcWvtOKCoq4k6cODHmz3/+c8SYMWNi33rrrVAAWLVqVeCGDRvka9eu9TcYDKyFCxeGXnudxWIhJ02apHnhhReua7Zy/Phx0YULF8RJSUlXA+qJEyc2paamFgNAWVlZq/e1NXpWBjkyCsARhNRwkStvWWJxuuIyQupdL4A8mZ3ZTMHA0ANh+/gDAMQOExqMNoh4d/aYrDfYILFYAACsQGb1qbtDkCQcfn7wb6xEqbYY/VoZl19jQJCuCfWegFDe65762NN4OvZpze2yvR3B5MmTm4qKiq5rnaxQKKxr1qwJ3bhxY4BIJHI2B6McDgdffPGFfOPGjUHJyck1zePZbDamTp0aXVRUJPjqq69ybzbP1KlTG9PT069brAgMDLQDwK5duzzOnj0rWbx4ccW6dev8PTw8rga7QqHQqdVqWbW1tVypVOr49ttvc1evXh3wySef+L/zzjuVTzzxhO7GuaKjo80//fSTR//+/c0//vijh9VqbZFQJUkSNpuNGDNmTC+bzUbOmzev6sYxN4MgCBoAKioq+P/6179yhUIhlZCQ8EBVVdXVh+3ChQur09LS/NauXXvdC4GXl5dz1KhRuq1bt3o3H6usrOSsX78+cOPGjQU7d+70vHY8h8PBG2+8Ef7bb795rlmz5o6zx0BPyyBH9wUARNXTKNeXwez4X6csiqKR16hG8JV9OVwPRuKNgaEnQnr7AgAENjMaTXfeblpjsEJotcFJ0iB9mGdHT0AUGYlADY1qe4OrqdBNyK3WIVhrhtGDAuQxNx3D0P1ITU0N2bJlS87hw4ezxo0bp1myZMnV3d6zZs2qO378+PmMjAzJkSNHrga83333Xe7WrVvVc+fOjczLy+MlJyerkpOTVZs3b75l2ci6det8t2zZ4r958+Y8gUBAi8ViZ3MtMgCYTCaWh4eHUyKROMeOHdsEAKNGjWrKzs4WtmZz7ty5VRUVFbykpCRVeXk5Ty6X248dOyZu9mnfvn0yAOByufTPP/+ctWTJkuIFCxZclxkQCASU3W6/Ls40mUwkj8ejACAgIMAilUopNpsNLy8vu8ViaVdMunv3bk+tVstOSUmJ2rx5s/9///tfr2sD6PXr1xcfOHDg4t///vcwg8Fwx3P0rAA5xvWOr2ywggaNQm3h1XMFdQbYOYUIb+CA5LPADgxhJN4YGHogLA9XjSjfbkODsS0Bsg1isxMWIUDwGB3knoBHTAz8G4FKAoC29KZjqosrILJSgMzJBMg9CLFY7GguOfDz87Pr9XpWTk4O74UXXoikKAocDofmcrkUQRB0amqq/7Zt27yuXOckSRJRUVHWtLQ0dVpamnrmzJmtSuqsXbvWPzMzU7J9+3a1XC53AMCgQYMMJ06ckDmdTpSUlHApioJcLnf06dNHf+jQIRkAnDhxQhIREWFpze6xY8ck06dPr9u5c6c6PDzc0rdvX0N8fLyh2aexY8dqFy5cGNoc4IvFYookSfpaG76+vg6z2UxmZWXxAdemuZMnT0rj4uJMAG67v4Om6Vueb+a1116r3b9/f/aVe1X9xBNPNMyYMUOzbds2r9TUVH8AEAqFFEEQuNHHW9GjSixYXl4geYBC5/qbyGvMQ2/v3gCAzLImsISFUDUJwPM0gGB2GjMw9EhYMikAgGeztymDXKe3QGSm4BAwbYR7CjylEiwa0BvZQG22SxbyGmiahrPQpWDBl9kBueomVhi6I8uXLy+ZM2dOJIvFojkcDrVq1aoShUJhi46ONiUmJsYQBIGhQ4dqExISDDExMZb58+crdu3aJacoCu+9997t2zMCqK6uZm/evDkwMjLSNGPGjGgAGDVqVMPLL79c169fP0NiYmIMTdPE3/72t1IAePfdd8sXLVoUtmPHDl+RSORct25dYWu2o6OjLQsXLlSsXbsWPj4+tuZa3mt54YUXat99992wzz//nCYIAsuXL7/uLZEkSbz33nvFixcvDidJEg6Hg3jkkUeaRo4cqb+xJOVmhIWFmV977TXF559/fkf340YmTpzYNG/evPCkpCSVw+EgFi5cWCYUCpkAuTW4Xjz46i0gKD4u1F1AojIRAHC8OA8ktwl+dRzwfI2MFA8DQw+FJZMBAHg2JxqN9ju+rkrfiAgTDVrErDz1FLgRro3cRBMbqMkCVKOvO1+tsyBAqwYA+DJle90ahUJh27t3b07z5/j4eEN8fHzOjeMWLVpUBeC6Wl1/f3/H9u3bby2mfYWEhAR9QkKCvvm6rKysjJuNW7x4cSWAymuPhYeH2/7zn/+0Os+xY8cuNv8cFRVl3b17dwv/ryU2NtaSlpamvtWY1u7Djfer+ecrfgMAduzYcdNabOB6tYvWjovFYmrDhg2tvgTcjh5VYgEAXD8PsHQO2IyROFp+7GoK/2zNH5AaaXB0ZvAkFkbBgoGhh8KSujLIXCvVpgxylaEeUhNAim+bGGHoJvAUrpJLSSMJfeWFFufzagwI11egSQRE+IYCbZAMZGBg6Fx6XoAc5A+nEeA0RaLGVI2CpgLk1ehR78hGRIPANUbqAHyiO9lTBgaGzoCUSEAD4FrpNtUg1xobIDUBbImg45xjuK8ghUKYfDwQpKGRW9dS6i23Ro8wbT3K5UCAT2wneMjAwNBe3B4gq1SqGJVKpVWpVPwrn4eoVKpTKpXquEqlWuru+dqKa0mMwIN1Lj3soxVH8X1mIdjiHDxscTVl4TG1YgwMPRaCxYKDR4JnBRqM5ttfcAWdtg58O8CTtdYygqE7wo2IRJCGRomtFnBYrzt3rrQBoY1GGDwpkL7MBj0Ghq6EWwNklUolBZAK4NqnxBcAngEwHMBglUrVmlzkPYH/4CAAwNPsRlDWAOwvOIidhd+AYBsx3OgPlogLtocEEPt1ppsMDAydCCVkQ2gF6kwt5EFbp9FVOif0ZDql9STksX0QpAHyWSyg/vqSyYrL+eA5aMDTCQR26lcfAwNDG3FbgKxSqQgAXwH4KwDTlWNSADy1Wl2gVqtpAIcAPO6uOdsD98GHQbAo9DFWwt4wBOqmbJhFB6EUD4IgrxwCfzYI32imVoyBoQdDCzgQWwC9qeGOr+EZqgEAInlAR7nFcB/Cj44C1wHUmrmujXpXqDdYwa9w7V+SSO1MgMzA0MVoV4CsUqleVKlUl679D8CPAPap1erz1wyVArg2BaMHIGu/u3cPIZGD7wWgpAITIpNgr3gecnYsVg16E7aCQvBlesCHKa9gYOjJEGIBhBYaVkvtHY2naRoio0uqVCIP7EjXGO4z+H36uH6oZ8NW9j9BgXOlTYjS54MiAP9Ab4DfqV99DAwMbaRdAbJarf5arVb3ufY/ACoAL6pUqnQA/gB+gis4vrYgTwKg6S59vmt4QVJYKrRYOfH/2bvv6KiqroHDv2mZJJNeCQkJoV2QXqRXCygIAUEQRFFERWyo+Fle66u+oIgiYkOUjqIoIk0sgBQBqdIvAUIoIb1OkplM+/4YwKiAqDMZAvtZK2sld2bO3pccbvacOfecxmx57CFW3fY5tTIs4HIREFwI0XKDnhBXMm2QCZMFnLaci1qsvthiJ6TCDIA+RkaQryTGevWwGQ3UzNSQmbbu7PGdxwtpnJ/O0RioF9/ChxmKqrBp0ybToEGDzo6u7dixI6Bfv34NBwwYoDz88MO1HQ4HAB9++GH0TTfd1Khv376Nvvjii3AAs9msHTFiRN2BAwcqQ4YMaXDixAnD+eJ8/fXXYaNHjz67Y92PP/4YnJKS0nDgwIHK3XffXefMDnoTJkyI69u3b6P+/fs33Lx5cyBAVlaW/kyc/v37Nzx06JDxTDvZ2dn6Hj16NCkvL9cA5OXl6YYPH15vwIAByogRI+pmZWWdd1ngNWvWBHXq1KnZH4+npaX59evX73eT7z/66KPo8ePHn3cUYfbs2ZFLliwJBfjggw+iz/e8qVOnxrz44ovxZ35esGBBRN++fRv279+/4eOPP57ocDhwOBw8/vjjiSkpKQ0HDRqkpKamGs/X3rl4bB1kVVXrnfleUZSjQE9VVS2KolQoilIXOAL0Al7yVMx/yr9OAoU7D6DJzCA4MREAy273Ej3+ETYZQRbiCqcPCcFkBaO2mBKrnRD/8/69AtzbTAdXlAGgi611weeKy4tGp8PZIJl6GQc5XppGoqUI/EP5NT2Pa3Pz2NQUeie093WaV4T8ufMiixYvvuC2zH9XaEpKbsTw28655u4Zb731VuyKFSsi/f39z+43PmXKlJqjR48+1bt376L7778/efny5aHt27cvXbhwYcyyZcv2WSwWzY033thk4MCBBTNnzoxq1KhR2VNPPXVq9uzZke+++26N8ePHH/9jnKeffrrW5s2bQ+rVq3f27uFXX301af78+Qdq1Khhf+mll+JnzZoV1a5dO/P27duDFy9evP/48eN+DzzwQN2lS5fuf+WVVxJuuumm/FtuuaVg9erVwaqq+terV8+6cuXKkMmTJycUFBScvdBNnjw5rkWLFuZx48Zl/vDDD8Hjx4+Pnzx5cvofczp27JhhxowZsXa73SPzUiuvYzxjxoyao0ePzqn8eFlZmebxxx+vvX//flP37t0Lzhx77733ai5fvnyfyWRy3nfffcnLly8PtdvtmoqKCu3ixYsPbNy40fTKK68kzJo16/DF5lIVy7yNBuYBvwA7VFXdXAUxL8i/sXv3PMvOLWePle/ajSEmDL3RKSPIQlzh/MIiMFnAqCuh4CKWessrrSDIasWpcaGNkikWV5rw1ldTOxsO6fS40jeSU2Ile8du/G1OXNE2NAltfJ2i8KKkpCTr1KlTf1d4KYpSVlhYqHM6nZSVlekMBoMrOjravnz58r1+fn6uzMxMg8FgcGq1Wh588MHscePGnQLIyMiwQHNmAAAgAElEQVTwCw4OdpwrTsuWLc3PPffc73armzt3rlqjRg07gMPh0BiNRufmzZuD2rVrV6zVaklKSqpwOBya7Oxs/e7du4MyMzP9hgwZ0mDx4sUR3bp1KwH3jndz5sxRg4OD7WfaTUtL87/mmmuKADp27GjetWtX0B/zKS8v1zzzzDNJr7766rn3Wb+AtLQ0v5SUlIb33HNPnd69ezcaN25cIsD48eNrfvTRR9ETJ06sYTabdU888URi5ddZLBbtgAED8kaOHHl2sxWj0ehasGDBAZPJ5Kz07+DaunVrUOfOnYsAOnToUHrw4EHT38nRKzvpqapau9L3m4BL6u2zsVlbNNqFlP28lpB+A3FVVFC2ZQum5AAwhkBYkq9TFEL4kH94FDYbGCkmv7SCpMgLX1fzzFZMFhsWf9AEeXQAS1QD4a3aUjZzHkfMAeTuXc2XmfVpVOBeFzkmBoht4tsErxARw2/L+6vRXm+4+eabC/+4dXJycrL19ddfT5w+fXqcyWRynClGDQYDH3zwQfT06dPjBw0alHXm+Xq9nsGDBzdIS0sLmDZt2jl3kBs8eHDBmjVrfreOZM2aNW0AixYtCtu2bVvw008/ffKdd96pERYWdrbYDQwMdBQVFemys7P9QkJC7AsWLDg4YcKEuLfffrvGf/7zn4zrr7/+T8v1NGjQoPy7774La9WqVfnSpUvDrFbrnwZUn3766cS77747KyEh4eK3HAU0Go0L4OTJk/5z5sw5GBgY6OzevXvTU6dOna1Jn3jiicyFCxfGTpw48XfFd0REhKNnz57Fs2fPjjxzTKfTceZNwvvvvx9TXl6uu+6664qXL18eHhIScvbNhlarddlsNgyGC38iePb5f+ekLhfauEYE1bRQvGo9LpsN87p1OAoKCKllhvjWoJWtYoW4kvlHukeBg+zmi9pNL9dcgcniwBbgcr/JFleUgObNAbDl+FFwcDWf/XKMdmWHyAmBZo06g152V7zSTJo0qdasWbMOrFq1au9NN92U9/zzz5+dezV69OicDRs2/Lp9+/bg1atXny14P//884OzZ89Wx44dWzc1NdU4aNAgZdCgQcrMmTMv+K77nXfeiZk1a1aNmTNnpgYEBLiCgoIcZ+YiA5SVlenCwsIcwcHBjj59+hQC9OzZs3D//v2B52tz7Nixp06ePGkcOHCgcuLECWN0dLRt3bp1QWdy+vTTTyN27doV/O6779YcNGiQYjabdffee+/vtiAOCAhw2my239WZZWVlWqPR6ASIi4uzhISEOPV6PRERETaLxfKPa1KHw8Fzzz2XsGnTppBp06Yd1mq1mEwmh9lsPlvQuVwuzcUWx3CFFsiE1ya0rg1HcRnmdeso+vprdJERBPmnQsLVvs5OCOFjhsgaAATYy8kv/evBkdwSKyaLC7u/RpaIvAIZYmOx165J+/1OsjXpxGZvpVH6MQ4mQr3mI3ydnvCBoKAg+5nRy9jYWFtJSYnuwIEDxpEjR9Z1Op0YDAaXn5+fU6PRuCZNmlRj3rx5Eadf59BqtdSvX9+6cOFCdeHCheqdd96Ze744EydOrLFjx47g+fPnq9HR0XaAtm3bmjdu3BjqcDhIT0/3czqdREdH25s0aVKycuXKUICNGzcG16lTx3K+dtetWxd866235nz55Zdq7dq1Lc2aNTN36dLFfCanoUOH5q9atWrPmZ+DgoIc06ZNO1K5jZiYGHt5ebl27969/gB2u51NmzaFtGjRogxA8xfXyou5QfqMcePGJVmtVu0nn3xy6MxUi9atW5vXrl175nxNycnJF7/zE16aYnHJ0xkIuroZui3p5Lw1GevRo0T07YZGswdqtfV1dkIIH9NFuD+9C7BZLmoOcnZpMVeVuyBMPn26UsUMuQ39axNZZQnn9eKFlFmdZDbRoE3u6uvUhA+89NJL6Q8//HBdnU7nMhgMzvHjx6cnJydXNGjQoKx///4NNRoNHTp0KOrevbu5YcOGlsceeyx50aJF0U6nk5dffjntYmJkZmbqZ86cWbNu3bpld9xxRwOAnj175t977705LVu2NPfv37+hy+XSPPvss8cAnnvuuRNPPfVU0hdffBFjMpkc77zzzpHztd2gQQPLE088kTxx4kSioqIqJk2adPTv/htotVpefvnlo08//XRtrVaL3W7XdO3atbBHjx4lf5ySci5JSUnlY8aMSX7vvfcu+O+xbdu2wBUrVkQ1btzYPGTIEAVg+PDhWSkpKYUbNmwIOf3vwIQJE/7WOWj+ToVeVW6++WbXV1995d0gq8eT+/675KXVxFAjloQ7WuC3dwr8XxoEyk5Y/5aiKNtUVfX4nSlV0jeEV3mrb4Dn+kfZjh2kDx3GrH6BhF8zjydvuPA2wSPnruSeN8fiqm+k44Kd/zr+lay6XjschYXs69yJnQ20NMioIDtAS/wLw2jV/TmvxbzSnKtv/Prrr0ebN29+3hFWIf7Kr7/+GtW8efPafzx+ZU6xAKjdmairSlDmvkSdJUvws6VCZH0pjoUQ6ELc84iNNvtFjSDnmvMJLgd9kL+3UxOXKF1YGLqe3Wizz05IoZZjPRtJcSxENXZlTrEA91xjnRHS1rlvzDuyGloM83VWQohLwJkC2a/CScZFFMiW4ix0LjCG/K1VhMRlpuH4tzh6yxqWHPyawQOf93U6Qoh/4cotkA3+7vnGB1eAowLsVmj/gK+zEkJcArSnC2RDhfOiRpBdxe4tqQPCwr2al7i0aY1G6nToxSMdevk6lSuJ0+l0arRa7aU3X1Rc8pxOpwZwnuuxK3eKBUD7MVB4DLZ8BFelQFS9v36NEOKypzUacejBYHWR/xfLvFntDgLL3UuvmiJkDWQhqtienJyc0NOFjhAXzel0anJyckKBPed6/ModQQZo2BuGfwWr/wfdn/Z1NkKIS4jdX4fB6iS/9LwrIQGQZ64gqiIfgJDouKpITQhxmt1uH5WZmTk9MzOzCVf6oJ/4u5zAHrvdPupcD17ZBTJAnW7uLyGEqMQZaCDQaqXYWoLD6UKnPfcAVZ65grCKEgCM0bLNtBBVqXXr1tlAP1/nIS4/8m5LCCHOwRVoxGQBk6aQovLzbxaSa7YSWlEKgC4moarSE0II4UVSIAshxDlogwIwWVwE6QvIv8CNejlmK8EVFuw6F9qIGlWYoRBCCG+RAlkIIc5BGxyEyQKBusILFsh55gpMlgos/qAxRVZhhkIIIbxFCmQhhDgHv9Bwgizgrysmz2w97/NyzVaCLA4q/F0QIMu8CSHE5UAKZCGEOAe/iCgCLWCkmNy/KJBNFicOfxf4BVVhhkIIIbxFCmQhhDiHgKg4tECws5ickvMXyDnmMoLKXbgCtKCRpViFEOJyIAWyEEKcQ0C0e0WKEGc5ORcYQc4pzSe4DLQmWTVTCCEuF3JFF0KIc9BHulekCHKUk1Ny/pv0CkrzMVnAEeRfVakJIYTwMhlBFkKIc9CFhQHgX2E97whyhd2JoyQLLeAXHFiF2QkhhPAmKZCFEOIcdGGhABisNnLPMwc5u8RCqKMAgMDQ0CrLTQghhHdJgSyEEOegCwkBwGC1k1NixeVy/ek5WcVWQm1FAJjCZQ1kIYS4XHhsDrKiKDrgTaANYAReVFV1qaIo7YG3ATvwnaqqL3kqphBCeMuZAllvdVLhcFJssRMaYPjdc7KKLURUuEeQQ6JrVnmOQgghvMOTI8i3AwZVVTsBKUC908c/AIYBnYF2iqK09GBMIYTwCo2fHzY/DQaLE+CcS71lFlmIqDg9ghwTX6X5CSGE8B5PFsi9gJOKoiwDPgKWKIoSAhhVVT2sqqoLWAlc58GYQgjhNfYALX4W9/fnKpCzii2EV5QCoJMCWQghLhv/aIqFoih3A4/+4XAOYAFuAroCM3CPHBdXek4JUOefxBRCiKrmCDTgb7WCxnbO3fQyiy3Ut1mwGlxow2J9kKEQQghv+EcFsqqqHwMfVz6mKMpnwNLTI8U/KYrSAHdxHFzpacFA4T/MVQghqpTLZCSo3EKgtui8UyxaWiqw+AOBEVWfoBBCCK/w5BSL9UBvAEVRmgPHVFUtBioURamrKIoG9zSMdR6MKYQQXqMJCiTIAmGGgnOuhZxdYiXQYqciwAUBUiALIcTlwpM76X0EvK8oyiZAA4w+fXw0MA/Q4V7FYrMHYwohhNfoQ4IJKj9FbKD5TyPILpeLzCILpnIHDn8XBIT7KEshhBCe5rECWVVVKzDyHMc3Ae09FUcIIaqKITQMrQWiAko4WVD+u8eKLXbKbTZMZS5csRrQeXK8QQghhC/JRiFCCHEe/pGx+DkgwlDCsfyy3z2WVWxBoysjpBy0gVIcCyHE5UQKZCGEOA9TdC0AQuwFZBSVY7U7zj6WWWTBnwICKsAv2OirFIUQQniBFMhCCHEegbFJABitxbhccKLSNIu03FLCbTkA+IeYfJKfEEII75ACWQghzkMfFQOArty9GcixvN+mWRzKNlPD6V61Mig8rOqTE0II4TVSIAshxHnowk+vTFHmHjlOzys9+9ihbDMJWjMAodExVZ6bEEII75ECWQghzkMfGQmAxmwl0E9HeqUb9Q7lmImzu0eQQ2MTfZKfEEII75ACWQghzkMXFoYL0JrtJEYEnp1iUVRuI6fESrilGABDzSQfZimEEMLTpEAWQojz0Oj1WAO1+JU5SYwIPDuCfCjbPbUiqNRMudGFNizOl2kKIYTwMCmQhRDiAuxBBgLKXNSK8OdYfhlOp4vDpwtkf3MZ5YGAKdq3SQohhPAoKZCFEOICnCFGQkqhXrSdCruT7ccKOJRjxk+vJaCkgooAlxTIQghxmZECWQghLkAbGkRoGTSNKcXfoGXRjpOsPZiDEhtMoNmBI8ApBbIQQlxmpEAWQogLMESEE1oKVssprmsUy6e/HONAZgkjOsUTVOZCE6gBg7+v0xRCCOFBUiALIcQFGKNiCKyAgrx0UlrE43RBo7gQOiRpCbKALsjP1ykKIYTwML2vExBCiEuZqUYipYA58zi920dzU7M47upUm8Ks3WgBY0iAr1MUQgjhYTKCLIQQFxAUXxeA8tws/PRapg5rReukCIpPHQPAFB7qy/SEEEJ4gRTIQghxAQHxdQCw5uf/7njhqaMARETGVnFGQgghvE0KZCGEuABddA0A7IXm3x0vP54OQHRC7apOSQghhJdJgSyEEBegj4wAwF5c9rvj9pMnsenAL062mRZCiMuNFMhCCHEB2oAAbH7gMtt+d1yflU9JiAtNiEyxEEKIy40UyEII8RdsJj2GUic2529FcmBeGZYg2SRECCEuR1IgCyHEX3BFmogpdJFZfBIAm9NGWKEdV5ATQhN8nJ0QQghP89g6yIqihAKfAUGAFRiuqmqmoijtgbcBO/CdqqoveSqmEEJUBUPNaOJ+KSIjZze1wmqTmXuU0DKwBjkhJN7X6QkhhPAwT44g3wnsVlW1C7AAeOL08Q+AYUBnoJ2iKC09GFMIIbwuOLkOQRbITN8JQFbaXgBM4YGg1fkyNSGEEF7gyQJ5NxB8+vsQwKYoSghgVFX1sKqqLmAlcJ0HYwohhNdFKK0AKDx0AICCtIMAhMfK/GMhhLgc/aMpFoqi3A08+ofDDwA9FUXZB0QAXXAXysWVnlMC1PknMYUQwlcCGrkLZOvJDADKjqcBUCOxrs9yEkII4T3/qEBWVfVj4OPKxxRF+Qp4XVXVDxVFaQZ8iXtaRXClpwUDhf8wVyGE8AlDXQWnBjSZRQDYT5zEroXApKt8nJkQQghv8OQUiwKg6PT32UCIqqrFQIWiKHUVRdEAvYB1HowphBBep/XzoyxEg3+eFQDniQxKgl1oImr7NjEhhBBe4bFVLIDngOmKoowBDMA9p4+PBuYBOtyrWGz2YEwhhKgSFRF+hOdbOZSfSuKRUqwJdgiv7eu0hBBCeIHHCmRVVTOA3uc4vglo76k4QgjhC2GxERh3nGLqZ49yXznoYsqlQBZCiMuUbBQihBAXoWYDBZMV2n9zBIDkeB0EhPs4KyGEEN4gBbIQQlyE0NtHYw920Pyoi4JYLYZa9UCj8XVaQgghvEAKZCGEuAjahGYkdvYHICq6BJoO9nFGQgghvMWTN+kJIcTlS6Mh5MYUtCXTCIzTQDMpkIUQ4nIlI8hCCHGRNI36EpxgQdeyHwRG+DodIYQQXiIjyEIIcbHi28C1z0Pjm32diRBCCC+SAlkIIS6WVgtdHvd1FkIIIbxMplgIIYQQQghRiRTIQgghhBBCVCIFshBCCCGEEJVIgSyEEEIIIUQlUiALIYQQQghRiRTIQgghhBBCVHJJLvO2d+/eXEVR0n2dh/hXkrzRqPSNy4JX+gZI/7hMyLVDnI/Xrh1C/JHG5XL5OgchhBBCCCEuGTLFQgghhBBCiEqkQBZCCCGEEKISKZCFEEIIIYSoRApkIYQQQgghKpECWQghhBBCiEqkQBZCCCGEEKKSS3Id5MoURdEC7wHNASswSlXVQ77NyjcURdkOFJ/+MQ34EHgbsAPfqar6kq9y8wXpG78n/eP3pH/8RvrG70nf+D3pH0L82SVfIAP9AX9VVTsoitIemASk+DinKqcoij+gUVW1e6VjO4GBwBFgmaIoLVVV3eGjFH1B+sZp0j/OSfoH0jfOQ/rGadI/hDi36lAgdwa+BVBVdZOiKG18nI+vNAcCFUX5Dvfv7UXAqKrqYQBFUVYC1wFX0kVM+sZvpH/8mfQPN+kbfyZ94zfSP4Q4h+owBzkEKKr0s0NRlOpQ2HtaGfAG0AsYDcw4feyMEiDUB3n5kvSN30j/+DPpH27SN/5M+sZvpH8IcQ7V4YJQDARX+lmrqqrdV8n40EHgkKqqLuCgoihFQESlx4OBQp9k5jvSN34j/ePPpH+4Sd/4M+kbv5H+IcQ5VIcR5A1Ab4DTc8V2+zYdnxmJe54ciqLUBAKBUkVR6iqKosH97n+dD/PzBekbv5H+8WfSP9ykb/yZ9I3fSP8Q4hyqwwjyIuB6RVF+BjTAXT7Ox1c+BmYqirIecOG+qDmBeYAO953Gm32Yny9I3/iN9I8/k/7hJn3jz6Rv/Eb6hxDnoHG5XL7OQQghhBBCiEtGdZhiIYQQQgghRJWRAlkIIYQQQohKpEAWQgghhBCiEimQhRBCCCGEqEQKZCGEEEIIISqRAlkIIYQQQohKpEAWQgghhBCiEimQhRBCCCGEqEQKZCGEEEIIISqRAlkIIYQQQohKpEAWQgghhBCiEimQhRBCCCGEqEQKZCGEEEIIISrRe6NRRVFigG3A9YAdmAm4gD3AA6qqOr0RVwghhBBCiH/L4yPIiqIYgA+B8tOH3gSeVVW1C6ABUjwdUwghhBBCCE/xxgjyG8AHwNOnf24N/HT6+xVAT2DRhRpo166dKz4+3gupiaqyd+/eXFVVoz3drvSN6s9bfQOkf1wO5Nohzseb1w4h/sijBbKiKHcCOaqqrlQU5UyBrFFV1XX6+xIg9K/aiY+P56uvvvJkaqKKKYqS7o12pW9Uf97qGyD943Ig1w5xPt68dgjxR54eQR4JuBRFuQ5oAcwGYio9HgwUejimEEIIIYQQHuPROciqqnZVVbWbqqrdgZ3AHcAKRVG6n37KjcA6T8YUQgghhBDCk7yyisUfPA58pCiKH7AfWFgFMYUQQgghhPhHvFYgnx5FPqObt+IIIYQQQgjhSbJRiBBCCCGEEJVUxRSLK05qVgmzNh6loNRGl/pRDGydgEEn70WEEEIIIaoDKZA9bO3BHMbM247L5SIs0I9lu08x8+ejzBrZltgQf1+nJ4QQQggh/oIMa3pQntnK2PmbeSDwe7bV+4T11x/nw6FNOZ5fxi0fbORUUflfNyKEEEIIIXxKCmQPenPlPj52vsj95R/hn7UDzZKH6bXzAebf1Zz80grumrGFEovN12kKIYQQQogLkALZQw7nmInd8TYttanQ/wMYdxBS3oW0dTRf/wDvDW1OaraZhz7dgcPp+usGhRBCCCGET0iB7CE/rl3LA7qvsTQegq3mtZx66SVSH57G4bWNyfxiC53SpvNyShPWqDlMWLHf1+kKIYQQQojzkJv0PMDmcBK+ZyZOrR5Dl6dJv3sUFceOEdSjBy6LhYK1+RQ/NZt+/41H7XA1H61Lo15MEEOuTvR16kIIIYQQ4g+kQPaA9buP0Nu5hpzkm3C8+DrWo0dJnPYhpg4dcDgdlP76C7ljRnL8qdd56KknOVK/Ef9ZtIdaEYF0rBvl6/SFEEIIIUQlMsXCA3I3zMSksRIUdR3mNWuIGfsI+Y0TeHjVw3T8tCOddt3L2NFRZCbZyRn/GuOLN5EcGcjoOds4lF3i6/SFEEIIIUQlUiD/SzaHk7o533HSWJf8z75FHxPD/h7JDFwykC2ZW+hbty9jWowhKaEF44b4s7qZhpIPP2By0Y/46bSM+GQL2SUWX5+GEEIIIYQ4TaZY/Eu/Hkillesgh/RDcGxdi+GJMfzfpmdJDE5k6rVTqWGqcfa52bkqn5T1Y6VeR6/PF/K/Xsd5JHgwI2duYcG9HTAZ5dchhBBCCOFrMoL8L2VuXYxW4yIg04AmIIAXQ9eg0+p4+5q3f1ccA8REKTzV+SX6XpXFlvZB1Fq5maey32b/qRwenL8du8Ppo7MQQvicywUHlsGSR2D1/yD/iK8zEkKIK5YMWf5L4ce/J4cYytZvobidwq+lexjfZTzxQfHnfkGzIdTd8xVJrrX8FNSBtj8c4PGrX2OidgwvLgng5ZQmaDSaqj0JIYRvOeyw8C7s25eSezCC4jQdLucs9DVjiBj5EGH9+6Px8/N1lkIIccWQEeR/4VReAa1sO8m2NMNZVMz8xJM0imhE7+Te53+RRgN9J6M3+HFNsyKsg66nx5ZiHk17i/k7NvDx+rSqOwEhxKXhhxewbVvK4Q31yVED2BjRhPzEUDQFp8h8/gXU3jdh3rDB11kKIcQVw6MjyIqiGIBPgNqAEXgF2AfMBFzAHuABVVUvi7kEh7evobOmAkOmHmuIidVx+bzXajxazV+87wipCX3fRvPFnTTv1pVUv5u5fv5XOHiP8RondaIHck3D2Ko5CSGEbx1ehWv9VNI21cdcWMGkXo/Qc9B1WCMDObb+Ldr88glHdug5fvcowoffRsz//R9aGU0WQgiv8vQI8nAgT1XVLsANwFTgTeDZ08c0QIqHY/qM9eBqbE4trv1H2VPfj9rhdelYs+PFvbjxAGh1B5oNb1F/YFuMwwZxwzYbYw59wMMLl5KaJcu/CXHZczrhhxfJTU/AkV3K9G538frzt3Fnp2S6N4yl+6gJOIf+hya9jpFTL4yCufM4cuswbBkZvs5cCCEua54ukL8Anjv9vQawA62Bn04fWwFc5+GYPhObt4mjJXVxFhWzulYRQxsO/Xvzh2+cCPFt0Hx9P8n3DsE4bBC9t9q4c/8U7p67gmKLzXvJCyF8b9/X2A7tJnu7hg01m/LAM3eSEB74u6eE9HgEzTX/R9c2+9jWoSHFqYc5NGgw5bt3+yhpIYS4/Hm0QFZV1ayqaomiKMHAQuBZQKOqquv0U0qAUE/G9JXM7GwaOlKxFNXAqdWQWs9E37p9/14jBn8YMheMwWgW3Eby42PR3ZpCn20V9Nn+Gg98uhaH0/XX7Qghqqefp5CTnoDT4SJ/xBiaxP92eTRXmDlSeIS0ojRsXcdB86EMT1rFj9d3Icvq4shtt1P87UofJi+EEJcvj9+kpyhKLWA1MEdV1flA5fnGwUChp2P6Qtq2H9BrnOhPlJGaoKVzo16YDKa/31BInLtILs5A88UI6v/nJewDrqfftjLqrHmO8d/u8nzyQgjfy9iJI30n+QdgU60W3De4EwA7sndw98q76fxZZ1IWp9Dv6360nd+Owfo83qzdhD4xX7B24AAOBNXg5Nix5M6c5eMTEUKIy49HC2RFUWKB74AnVVX95PThHYqidD/9/Y3AOk/G9BVb2gbKy/Vw7BTbk130qdPnnzdW62roNxWOrkOz5CGavPIWpde349bNBeQvepTPt6Z7LnEhxKVh20wKj4agq7BjGzCYEH89U7ZP4Y4Vd3C06Ch3NbmL17u+zv86/4+RTUYS5BfMHF0ZQ+Ki2B/9MRvu6cD6uCbkTJjA8dcm4nLJp01CCOEpnl4H+RkgHHhOUZQzc5EfAaYoiuIH7Mc99aLai8jfzvGCJKCcEw0iuDr26n/XYPMhUHgMVr+CJiyR1m9NZ9PIQdyzTuUt44Mkhs+gfd0oj+QuhPCxijJcu74gMy2G1PAY+g/tyeTtk/lkzycMqDeAp9o+RaAh8E8vK7QUsnz/fObveI892oXsuzuekgWNuXHGJ6Rm5VD/9f+h0cvy9kII8W959EqqquojuAviP+rmyTi+VlpaSn1bKnsLmuLyK+eqTjeh0+r+fcNdx0HRMVg7EU1ITdp9tICfh/TmoVWHeM3/IaL+bxr1YoL/fRwhhG+lrsSabUGbb+HUjT3YX/Qzn+z5hEENBvF8++fPe7NvmH8Yw1qOYUh8D5YtGMA7phPMGAjmVfHcsnwJu3LzaTptKlp//yo+ISGEuLxU641CjueXsUbNJrvEUqVxj+xaj1Fjw3WqhP2JGq6ve4NnGtZooM+bUL8nLHsc7ZHvaD97EUXx4Yz7difPT36kys9VCOEFe74i/3gkNo2O+EHX8MLGF2gU0Yhn2j5zUSvh6GIa0e/WxXyTZ+GecidfXpvDx9cHof9lA9tuHYHDbK6CkxC+4HK5yC+t4GRhudzELYQXVdvP4hZuO8H3X37EE/rP2Rncmp5PzK2y2MUH12Mr0xKYW8rR1sEMi2rqucZ1BrhlJsxOgYUj0Q/7nLafLmbrzb15fNlGHvF/lA//bwoh/gbPxRRVyu5wsi29ADWrBJcLrqoZQvOEMPz01fr9qrhYVjMu9Tvyj8ayK74hB1zfUGorZULXCRh0f+P/dbRCwB3f8HzlrY0AACAASURBVPDMPvSocDGuSxRTAiw8uGQ3v9w8lKsXzEYfHu698xBVqri0lJVzZ5Lz86/Yci3YHToKAsMw1KtP056d6dXlKkzGavsnXYhLTrX837Q3o4idi95iUu4czOYgukav4MSmhSS0H1Ql8QMyt5KW697pLrRj57/eOe/v8jPBsM9h5k3w2TD87lxKq8++ZufAvoxdtIb7/Mby8aNvEygXw2rF5XKxYk8mLy/dx6mi338SEB5oIKVFPLe1S6R+rEyjuawd/JbyTCe6MhtF/ZvzzeEFjGg8gjqhdf5+W7FXwYglNJ3djy+OH+fp7h2Z5LeFx746zM/9h9D6szmY4mRXzmrN6eDYov/BrBk0SfUDlwat3olLr8NlccG+b+Gbd/ghMglz52vpev9watWO83XWQlR71W7IqthiY+Ksr7hv61ccXxtJwXYjaRtiCP7uCXB4f2MNl9NJYvk+ThQGU2qENh0HeidQYATcvghM0TBvMP5GC80//RKNwcjDn6/inikPYrU5vBNbeJzL5WLCtwcYM2874YF+vHXrVUy9O4CHbj7KDV03Ep28nAWH36fP7BfpOf0N3l6/ktyyIl+nLbzhwDLyM8KwavVsuSqVUGMo9zS755+3V6MJ3LmMEKeLd/aup/2NQ3jtFi0heSfYNmAg2alpnstdVK2KMvLfvgHHpJmYDxrRdW1LnWkv0eCD+2l4bxjKoFMkDdCj69eNCAO0WvwJuX1u4LMRj7J3h+rr7IWo1qrVEKTF5uC/c37k6R9fw3zCn6h778SvQRMyxo3DedCCNWMPxlotvZpD5vFU4ijEmBXGoUQ9A+Pbei9YcCwM/xI+7gmz+xMw8luaffYluwcP5IHPfuJu3X188vAH+Mld65e8KT8e4sOfjjC0bTgR/jOYuGsbJS73G7pgv2D0Bj2BUWVUOK2cAqYfhumHNIToatE+rj1Dm/SmdWyrv7dTo7j02Ctwpf5I4bFQ9iYms610G4+2fpQQv5B/125MI7hrOdpZ/Ri97mOa3fxf3gh4j7Gf5nFoyEDy3p5Goy5tPHMOomrYKyidOZjCz9MoK/InbNIkEvq473cpt5ezsVYz9h9aSm7aGiosK9E3SSBWewMxy9Np/Mt3OId9x4KmnVGeGEuLqxv5+GSEqH6qRWX18z2j0BxU2V+rAXcd3oizQIPpngFsv7kFHeI6UFG/ATl79mPat554LxfIp/ZtIMqiJSKvgkNdG2DQenkucFR9uP0rmNUPZvXFf8QSmn76BbuH3sKYeRu4Rzuajx/6EL3OA6toCK9Yn5rL5B8PMqLhPjYVzeZUsYs+hWXcnFpBzQwNGrsNV1gdNHHt0MTGUBYTykaDgy9tGaSa97DyxJd8d/JzgnVxDK4/lPta30qAPsDXpyX+iWM/U55Rhq7MxN6WDkKNoQxRhnim7aj6MPJbmN2Pjkufol7/qbwUPp9bp++jbMwIfhj3PNeN8FAs4XWO1RMo+WYX1gITptfeIKHPDRRXFPPRro9YeHAhZpsZrUZLeHA4xgAjNmse+drvcfTSENleQ8ovWq7ZsQ7NiHXMbdGFFk/9H02a1fX1aQlRbVSLAjmmZhHsyCRsay7aICc/j2jElJgV2H9aQrgxnP/c2JPEKQep2LkOej3k1Vzs6ZvZXxCEAYjteI1XY51Vs6V7JHnuQJhxI/53fH26SB7M6DkbuMd1Lx89PE2K5EtQUZmNRz/fSd/o71jp+oFwp4Z5R9ti/H4/jsJCSvQ6dIFaNKdSce09gt2qA4eT1kCbwECMzZqRljiYBYGlbAjdwccH3mTmvunckDCcZ7veRZBRlvOqVtRvKT5pwqbV8kPtdEY2evCf7cB5PuFJMPI7mDuQmC/vY8qgj3k/6QDJ42eRNOFF5u7ZzLDX3kCrrXaz664sJ7ZRtvBdCg5FUNz3Fhql3MjWzK08/tPjFFgKuCH5BgbWH0jz6Ob4609fA/KPYP96DMdPbWFfrVZsH9WCVw/voPMPGfTYuRb7sHVMb9uB61/8H0mJMi9diL9SLQrkYyPvZ3Pnb/DLyuQb3QkKbWncUv8WuiZ05Y2tbzBPu4anAX3qfq/nEpq3C7UglCS9g9bdBns93lm12sIdi91F8vTr8b/tc5p8+jm7hw7m/lk/M6ZiJFMf/1imW1xiJv94kJq2n9ha8weSywz896c62HdtJKBHDyJuH05AmzZo/fzg5Db49mlc6ZuxhbTGUnMwZYdyKNu2jbhNcxgLPBoRSVrdZiyJyWSV7V2WHZtP56ghvHTNXcQEe7DIusxZU1Mp+uYbNBoHYYMGY0isXXXBD35L/skQ9icE4QqyM7ThUM/HCI6FO5fCvEHovriLB2+exuZPprPt8Qdou2QFnx7ayQ0ffUZkVIznY4t/z+nE+tUjZGwLozA8hnavPsuKtBU8s+4ZEoITeP+697kq8qo/vy6iDvo7l5O89WOSf3iRPke342o3GvWtm1mx+UuCZy+l088/k9H/Gr7sfS23PfkqscFyQ7AQ51MthhHUQpUlOb8w35VK67i2zOs9j2fbP0vXhK6MaTGGnf6Z2Axa9JlFYC3xWh5OWwVJFakEZEFGUhDRIVV8p3B8K7j7O/ALhE9uJKB0C82//Bp7oIkxc37hmReGy417l5DUrBKWbv4FW8KXhFg0vPhtTRwH06g58XVqvf8epo4d3cUxQHxruOtbNAPexc+ZTsjBp6jR5Dh1PnyZ+uvWEjd+PMEd2lM39QgPLctgxjsaHltqpWjH+1z7WS9GfPE26flyU98fVaSnY01z36RmLygg87//5UhKCnnTp5M7bQZHh/bFVVpYNcnkHcaafgxNsZ0tDc2k1E0h1BjqnVgBYe6bfBPbw5ejaJe/j4EL1vFjr0a0OHCKbf2vZc3ab7wTW/w7uxZQsj4Np1lLjeeeY13WRp5e9zTNopsxr8+8cxfHZ2i10PYeeHgHNB+KZuNUGs4dxqOJV3Hbpz/z6//uJjdcz40Lv2f9gA48+eHjnCg+VXXnJkQ1Ui0K5Pub38/Pw35my/AtvNn9TZpENTn72LWJ1xIVGEN6nB+WfANk7PRaHhmp27E6HcRlO3A2beC1OBcUVR/uWe0eUf76foxbX+bqBZ+RWzOSu778lbfv70dpeYVvchO/88Z3Ko1rfECGVsMbq5JwHj1BwjvvENq377lfoNVCy+Hw0Dbo9AjsWwwfdEb/9a2E1Sog/r9PUX/DepLmzSXylsF0zNDw3GdO3v+oiDorpzFi5g0MW/AGh3MLqvZEL2GZL7/CkRt7c6hnLw51607BZwsIrltOaEo5qZ0SsefZOfpgn6pJ5tCPmE+6545vre9ieKPh3o1nDHZPzWrQC5Y9TtDa13nwrYXseeJ+QksdBD/0JO+/8SB2p927eYiLZ7diWfoS2ftDyLyqNY4OtXli7RM0jGjIu9e+e/E3cwbFQMpUuPsHCE2AxQ8Q8PEN3NqsBX1WbuPEfcOolafh9snL+fz+67jv0zHsz/P+J7BCVCfVokA+41zrDRu0Bm6ufzP74qxYCg2UH93mtfh5qZvZbTahc0Fc+x5ei/OXTFFw+9fQ4z+w5ysMn/elx5tPo7ZKou/6I3wz6BpyM7J8l59gb0YRmcensy24jP/uroFu9xHiXnieoC6d//rFAWFw/Uvw2H7oNR4qzLB0LLxRH82sPgSW/USNUX2pv2YN8W9OolaTtgxe7+TdaYX0nfkJr0+4lmFzX+Bwbrb3T/QSV9Q9CUfXujgiAtA2DaNOr0xOtQ5mTrfnUCZMo7B2DNZfcik+stv7yRz6gbyMEI7E6GjYsAu1Q2t7P6YhAIbMg6tHwYa34dMhDBl6O/4fz+NUeBDdp//IzNu6kHpij/dzEX/t188o3mZGY4N6zzzCo2seJVAfyJRrphDkF/T326t1NYz6AQZ+DNYimDsQ7ZwUrr/5Wlr9uJai66+n13YnoyasZs6zgxi6cDhrT6zF6XJ6/tyEqGaqVYF8Pm1qtOFwnAacGvJ3ee8PnfPkTk7mBQLQqEuK1+JcFJ0euv2f++JnDEK3cBj9ewezsW8jmqTlsT+lJ2kbNvs2xyrmcrnYc7KIN1aq3DXjF55cuIv9p4p9kstb3++gMHY9nbNc1P8+m+BevQgd+DfXzA6MgA5jYMwmuG8tdBnnLpZ/fAmmdUM7pREhtmUkvTSauj98T8yYMTQxhzN2aTmPvvE5Xz9yHQ9OfZSDOVduoZxTnE2DuJ9RGq4mSNnPw/VbMaaeP3OzJzNo+U3suC4Zl0NL2ucfejcRmwXbgfXYcmFbAye3NRrm3XiV6fTQ+w3oMwkOr4b3O9M8tJAey9ayoWMbOuwoJOPmwcyd8zIul2xd7DNOB+XfvUluajAZrTrzkXUJx0qOMbHbRGIC/8V8cY0Gmg6CB7fCjRMhLxVm3Ij+2/vp9OKjJH+9GFuDlty+2skDE7bzzWv3c/MX/Vl+ZDkOp0zZE1euy+KOrqsir+JIDff6sJaD3lsUP6RwH7ocPXk1AmgUGe21OH9LfCsYvR42vY923SRGmoqZdWsDkpeaKb73LraNGkOrR8aguUzvWs86nsm6Z8aRGxBCtsVFiDmXeuV5dNJWUBRkZMbmVgwe8yRtkqOqLKcjOWayCiZSEOriwY010ZpKqPHC8/98DWONBuKau7+u+Q+UZMGRNXB4FexZBDvm4hfVgOgWQ4gaNpuy1GzUmR9x/fpNGLZ9i7rwOxZf1YSrhzxGt65tr6i1lL9t7M8LYY0JxEimPQfIpndSb/rU6cOyI8uYZVlCdw34bd/g3USOb6bsuBOtCw42jOHZ+E7ejfdHGo17FLlmS/jqPpjTH9NV/Rn1xn9Z/O02gqe8TMtX5zNt1Q/0fu0TasXIcmBV7sAyzFvz0NiDqRjZiUWHJjGq6SiurnG1Z9rXG6Hdve5pXL9Mg7UT4d22BLa9l46zppK38yB5r77O3d/vJ3fjERZ1eoIPO77LqDajuTH5RvTay6JcEOKiXRY9PsQvBP+ERJyaNDTemn/psGGwp5F0KpKyTvW8E+Of0huh81hocxdsncGIHXP5pl8xJ34OoeWH77Lt+0U0nfI+xno+mjftRYf2LCL80DYan/61OzVQEAQal4ukwxru3nuCU7admF/9miBT1az08O5PazgWls4jew1o958g5oXn0UdEeC5AcCw0H+L+sr4BexfBzvmw6mU0q17GFNecVoOvw35vX7av2olx+TJuWrULVt3JipgwHB1u4Oq7bqdGw3+wtXE1c3ODm/HT+VFgLaBPeD9S6qWQFJIEQOvY1uzJ3cPRGkdolFFM9qnjxMTV8k4iaT9xKjOQAhO07jzU89vTX6z41jB6HWyYAuvfggNLSWl2KzkfvMXXr02h60aV1JS+/PDwbdwx5Cl02itn6UiXy0VqZiFpezYTaAqiZau2BPn7VVl865p3yU0NIr1RCybmz0YJVxjTfIznA/kFuv9eNBsMq16Fje/CtllEtr2HTp++y/FfVLJee5N7VqZS/NNRVrd4knkdJjOwx2j61e2HUWf0fE5CXIIuiwIZ4KqYJuQHp1GruNQr7Rek7+Kg1UC8BQKvruLRn4vlH+q+8HV6hH4ZO1jb8G1mrdvCoDUZHOrXj7AOScQ+9Aj6Zr3gMvnD17HXfWyPhmMnduNyaXCERZJjCuXLk2vQHjrGy19qiV+TzsH3H6DVuJlez6eozMau7DcJ9nPS5RcTeqU2YYO9uBygMRha3eH+KjwGe7+GA0th/WT0Lgdt0cAghd2aBqzffYr4A4XUX/wZBYs/Y1/NOHRdrqPxwBQimzS6LD9laB/XnvZx7c/5WIA+gHub3cvO2k9Se5OBzLVfETPkEa/k4Tr0E9YMI9sb6rizRRUuD3kuhgDo/qS7z6x7A3bOJ3rnXEa1qcn2uon4f3uCq/87l3e+W0rLp16jm9LVt/l6Sd6BVFKffR57kAlK8wjMO0ZwaTGKn4OgOCtFSgC5ty+idoOm3k8may+l63dDRSg7e4eRZ9nHO9e+g0HnxY2oQmpC/3ehwwPw0wRY/xaan6eQWL8ntV67hbSTwRTM+IqbNm8lZVMGuxa9wFMtXqde/9u4pdmwfzftQ4hqoEoKZEVRtMB7QHPACoxSVfWQJ2M0jmxMdugS4swOsFvdo6oelHNwMxmF/sQDtTv28mjbHqfRQHwrug6aRe3rjvLE/LvpvPYU1/ycTvEvjxLdDCKG34q2470QGu/rbP8VjVZL6zb3wx920R1UcR8jV47k+cGHePUTPdHf/4RzZDraiCSv5vP2umVkmnJ4dZMBR1Y+NV+ZgKaqNnAJS4ROD7u/rCVwYiuc2AInttI05wBN406iJmj4XBeC44g/7fefImnBHHIWzCFH78IvUkdgvD+m5EgCGiVjqN0IwmpBRF336il+l99ay10TuvJ5bT0DNtpgx0bwRoFsKaZg1178KsI51rAh4f7hno/xT4TEueclX/s87F+KJvU7Wmu3Ye95ku27I+i1sZD82+5jUodg2gwZQdd2o9AYLp/Rw007F1BRtJNah11otFAeCDlRJoJtfoTvKkF/1IG/axC5D/1IVGyCV3NxbppG3sEgjsfFMc9vPSMajaBxZGOvxjwr9ioYPBvyDsO2GbB7IRp1OXWAOtc2xNy7FQc3FlH71+M0+9pM8coP+aT5R+R0aEyPa4bTJbGb95YrFMKHqmoEuT/gr6pqB0VR2gOTAI/e5dYkqglbQzRYCnRQnAERyZ5sHuuJXThyDViNOgLrXmJTLC4gMaw280av5LVmHzNu4wcMXWvl6m0u8vZ/SkyT6YTeeB3a9qOgdmd3YX2ZCPILYnKPyfQp7MPO9om02nCUrHlPE/fQfK/FdDqdrDr2Ngl2O8p2E/7tWmLqfBGrVniDMRjq9nB/nU3QgVJewHMVZjLzDrIwbQnTDmyi5tEy6p1y0fAUxP9aRuH2MuA4+oDV+Ifb8I+oICDShn+tcPSJDSGyPoTXhhpNIEqB4BrVtu+EGkMxNW0On24l4PhR7wQ5tpH9uQGEaKF+jzu8E+Pf8A+Flre5vwC9OZu2J7aQvmIh+d9spvf3JZStncqMhlMxtojgmq6DiGt6q7vArsZ6pDzIB2En+ar4KNkuC+UuO05cFFmLaJ2q5YkvQb+znMNfPE/Ug594LxGrmeLli7CbTfzYW0tMQAz3t7jfe/HOJ7Iu9HwFrn8ZsvbAoR/h6DqCsrfTKvEUrgQnZVl+nDwcTN/Nfmg37SZzxpPMSdJQGK8nJDmS+skNuSquDbXi26INTQD/sGp7bRCiqgrkzsC3AKqqblIUpc1fPP9vU8IVvg0FbakWV/4xNB4ukB0F+4nO0lBWP67qRgQ9RK/V85/O93G8aX/GJk1g6YHvGb5ag/OXELL3bCKqwfeEta2Jru1waDLQPWp4GagZVJMB9QYwo+grWmzQwA8b4J4id0HgBR9vX0GeXy6TNmpwFpUS/cgjl9YNcVqde4lAUxQ1wmvzYL2ejLnOyY7sHfx0/Cempq/jRFEqdTKh3kkNdU8EUS/bQdyecs6chS4gFb+g/RgCrfgF291fYUYMtWqhj4lzr78aFOv++Da4BiR2BFOkT0/7r3RQrqMwcCumwgIcThc6rYd/Z2lrsWUYOVjTwOD2l/inT+D+HTbsQ1LDPiSOdbHjmyUcn/kmrfdm4fdrPruXTWN5nQ+IrmOiU5vuRNbv6b5ZOKh6feQeGBDGYze8/6fjZbYyFh1axIrjE+izOYBa+1ZSlJ9LaISXbvTdu4iiA3oKTUZW1s7kf21e9+z243+XRgM1mrq/Oo91H3M60FiKMFWU0qAsl5KjBzmy+HsMv+6m8/4SjL/agEwKTJmsTviJkzGgD7MRGQkNQkNo5B9FdGC0+9rrH+Zemzksyf1GO7y2e160EJeYqiqQQ4DK23w5FEXRq6rqsRXqg/yCKAoxonFZsBzdT0C9bp5qGoBTthMkZfvhuKa5R9utSrVCY/ly8Fv8nL6f/yS+QY2jm+m/UUuznaHk7CsjfM0kwuq+jLFRM6h3LdS7HhKudm9gUU2NajqKRamL2NcommapWUTv/gb91bd7PI7L5WL+nsnUKbORtDuAgE6tCWzV0uNxPE2r0dI6tjWtY1vzWJvHKLQUsjVrKxtObGHRya2cLE8lwKoj+RTUPmkiPsdAzWINCQUWQtPNlVrKR28qxD9yL8agUvzDrRhDbfi17YPm1jk+O7+L0SWhCzsiJ1Db7CQtI4t6CTU82v6J/WuJzdGwsVM9BgZUrykKGo2GVin9aJXSj/T0LFZN+5CIn5fRbksxul/KSVu0gnWJyzDGW7kqXk9izWQ0wXHu4ieqvnt6TmRd95umS+nN4gUEGgK5rdFtrHomguJbHyMjPZDAZVPocPt/vRKv7PuPKcsy8n03Lc3iWnFj8o1eifOvaHXuZScDIyCs1v+z9+bxTZV5//fnnGxNmqRbkibd0yVpoWIBBUFQqoj6g2JL+VGHWzZ9nnnKjA/2RrkfuZ0BfUCLYhUUEdAZQQcVaK2gwwzcOsyI7ALKYptu6b4nTbNv55zfH6EdoJS2ECik5/168bI9uc73+uaY5nzOdX0XSKLG4t7JeQAAh8uDn3/8Gfp/HgHzyw9IaKnFRJ0DPfLCFGzHd4oGdEY0gAwFQsUuqILtSCFciPZSvlqzQaG+hZmwBN9nR6IC0mb5fmdhGSZul0A2A7i86TvpT3HcgztCBqAR1iodhNP9Z5extqPdQiGBBlQThrFBiJ+YHJ+GQ4v/hG/LzmJd/LuIaDuDWScITNJJYKwQI+iMAdKoDyGNLQJPHgEkZgKJDwNxk4Aw9V0lmKPEUZigmoAfxvyK9F9JGPf9BYpbIJC/q/0nOolW/PGEF7TFCdnzv/f7HLeD0KBQTI+fjunxvj8gs9uMn9t/xunWn3Gq+QIOW6ph8frqKgvcHMhMJBSdwYg0CJDURiPJ6IKqkQSH9q2AeSk57nl62N7OoEiQJuBABAdJ5QwaKs4iOcaPAsXjxKmKZqSCD/792f6zOwzEx0diyeur4KH+gH/9VI2fvtkFyYVDGNvQgrBKIewADkU0wRrbjIjIf2FUqBlhxKWGE1yhL0Y+IhlQpAGRo30l5/y80+dPHtE+idLJHyDpn9XwVOwBcAsEcmclLEerQZFiHBzjxtb7/787a9dpEAgFPEx69H5MevR+AAXosrnxU1kjak/+AvvFXyBsuICozkakNVgg8NIA+AD4aAgGTkQQMIXzYJcJEGT3QGU+h9Tq75HgtgNdDeDNfHOY3x3LSOZ2CeQjALIA7L4Ug3xLunkQqmgAjXDV1/nVrrH2F9iNvnI/IWP9Hh0ybMxKG4tZaZ/i619PYGPUh/jEchpTLzJ45Fc+4s5K0f5zCERqKaRl/4JEXgyukAb4Yt+NLeZ+37+osXd8LOL0+OkorD+C33IJeM/qAKd/wywYhsGGk+8hxuFF1MVgCB8YB9HYO3/1eDBI+VI8FPMQHor5dyUDi9uCyq5KVJn0uNBWjWpTLc7aW3DI3QYXYwfPSyCmg4O4DgZMjBMfDKP/g4EkSHhj5BD83Aqb7hTwiB8FcsvPcLTyYBESGP/wDP/ZHUZ4HBLTJ6Zg+sQ/wEP9N87WdeGvB76F86cDSKyvxKgLVgh+FqGeK8KhWD7MCVKIk0KQHMLBaEMleBV/BxgKIDjACz/7hPMdyn1LXoL1+6X4pd0DeeV5xKX4t6IF/dPnMOpFOKkhMXVMFkbLblNi3i0kLJiPx+5LBO5LBJADADDZ3ahuM6Oioh6GsgtwV59BUEs1IgwdyCizINjl7j3fFBSK/5GG4bSnC3+8TV3gWViuxe0SyKUAHtNqtUcBEACW3IpJpLHJAE7A2+bfNsvGml/AN3Bgk/DBi4z0q+07gexRE5E9aiKO15djvWw79t93CCoTB1MvCJBZQSGihoNWQgWhJhrSUSGQdLaCV/8eQHt9N7n8H32Z0Hcoj8Q+grW8tbiYEIJxjV4wlf8AcU+O3+yfaT+DemcV3jnlAGMFZPn/j99s34lI+BKMixyHcZHjME975WsWtwX1lnrUm+tRZ65DhiJjeJwcIsKUVACtENT84le79dUHEd1EoCxSgdzE29es5nbB45CYkBiBCUsXAViETqsLP1yoRdn3JRCfPwptQyPSDnUChzphEwAlKhKNilQ45DJIoxLwfwdF4k6OPo0Z/zCOqsSQVllRebLEvwKZYWD6Zg/gJvGPDC7Wj13mP9t3GKEiPsarZRivlgGPjwPw72RVhmHgaWpGx8XzaDh/ClZ9BbhtrZiRmj58DrOw4DYJZJ1ORwPIv9XzJKiSYA0C0OXf9sKtbWcR1Q64E29tqZ/h5oG4VJTErYPBZsXbR4rxbchB7JryK+IMHEzQEZii60B0aSPaAHAS7oMkPRmiJBmkoQm4kzcFI4QRGKcYhxOjq3BvFQf2w39FsB8F8p9+2Q6ph0bMeTGCxoyGaOJEv9m+25DwJRgdMfr2lajyE5Fp4wD8E7zOer/a/eHXQxjfDRy5dwLEgoApO98vMrEAcx7QAg/8NwDA4aZQWdGA2n/8Fe7TPyKitgajf+oCl+4CUInKR37CvWPv0Lry8MVgh8yYgdBPv8K/Gg/gUbzqP+NNZ9BeZkenVIDEzDyoxHf2TtytgiAI8GOiER0TjejHnxhud1hYegmob2xtRAI6pQDP4h548BBoslRidCdATB8ZT7QRwWIUzlgMYDHKWjux4+z3+FfESRTfp0O0pQHj9V7co2+A5mADRG4G7ffMQMqUO/cmBwBToqfgTwmn8FsAlpOnEeynBlUN5gb82PJP/Pc5O2AOQsRzz911MYQsQGLqRHg4AGW1wkvR4HL8EGfPMGiobsN4AKJx/k0avlsQ8jkYk56AMem/B+CLy2fcbtjra2G2dEKZMWl4HRwE6keeQv2Or2DsNMBi6YZE4p/wLM+PfwHVwse/JnHxnxOHoawbCwvLdQkogRwrFAeSQAAAIABJREFUiUGNlIDSyAAM47esaXOXEVyaB3nGtTtyBTJpShnWPZkHIA8UzaCizYi/V53CgY6f8ZH1AhhbC95W3/lbx/cp78MGEYEuKR/B9SbA0QUIb75hw+6K3SBpBhmneeDGxUIy/VE/eMtyu0mO0OJfYQDPQqG124GY8Jsvs2XsLIe4GXDwSagn3IZubHcJBJ+P4GQNgqEZblcGhXBsBrw8EqJmAidPleLRRxbfvFGGgf7vB0AyBNonPXrnNI9hYWHpJaAEslKsRLcIQDMBuMz+ScSyG2Hv9gltyegxN2/vLoZDEkhTRSBN9QSAu2srbFTEKAi5QpRFcxFR7QRTewxE2v+6KZse2oN9VXsxt8YFxsBF+O8X33U1sll8CDgCWEJ5kHczaGltRUx40k3bPFX1LdLqGehlCtwff+c/RLJcG5LPB3lvOu7Rn8PpuoN4FItv3mjreXTUUDCqOHh25vKbt8fCwuJ37p56XYOAR/LgEvLBcxJgrB1+sWlvrQDXwIWHS4Aff2vbFLPcOngkDxnyDFxQE6DdJNwn/37TNo80HYHR1YX/dZoChEKEPuXX5pAstxkqXAKhFehqqfGLvbM1RxBtBMrlYxAbLvSLTZbhIfKRxxFjAFoMFX6xZzj8GcLbSfycFIuMqDu3igcLy0gmoAQyAHhEInBoAnRnk1/s1df9AkUnAbMqDAQ3oBbcRxz3Ke/D+VhfvxrbmbM3bW9v1V7EdgPCWgHC5uaCDB7G7lcsNw0vUg6xg4CtudIv9lqrfOUm6bSxbFz6XU7wfb7ynky7HTRF3bS9U98dBAAQD/q/JjsLC4t/CDiB7JVIAQBUq39qIVe1/oK4DgZ0UqJf7LEMH+Mjx6MtDHAGkbBXtfri1G8Qu8eOw40/4NnTDoAGwubP96OnLMNBcEwCAMDRfOGmbbXaWhHc6ksWlo8d2aFZgYAgNRU0SUDRAZwo//6mbDHdzWAqXaiXczBj2s2FebGwsNw6Ak4g09IIAICzudEv9lo6KhFiB2Rp7E3ubictPA0EQaJBHgR3JwNYb7xe9rHmY3BRLqSWkfBoUiBQ37kdwVgGR0hCGgDAY6i9aVunGn+EupWBNZiHFE1gl4ccCZB8Pui4KCS1AD+UfX1Tti4c/wRxLQQuxKoxLi7UTx6ysLD4m4ATyGSE72Zkamnwiz1nhy+WOTp9nF/ssQwfIp4I8dIEVMh5cJm5YBpvvCnEPxr+gXuaAI6ZA/lv/sOPXrIMFwq1r3YzYzHctK1fG48gqZVBc0gkRkVJb9oey/ATft8DSG5hUG66uR2Gn/+1HyQA871z/VNOkIWF5ZYQcH+dQoUv4cHU0eoXe5TJCQAISmRDLAKBtIhU1ETRAEPA9cvRG7Lhpb34oeFf+N8/u0FzSChmsdukgUBUgq/OOc9ug8t7c3Gm1c0XoewCqmRJUEqD/OEeyzAjuvdeiFyAzWS6YRuU1wNPRRfsAiDt4YcGPoGFhWXYCDiBHKb0CWS7yXjzxhwmcMwARQL8GHabNBAYFT4KeqUdAOC6eO6GbFzovIBupwkplQTMo0aBI5H400WWYUIgDYVDAPAcXrR1u27YDkVTcNb6HtBNSWyCXqAgTPc9QIV2UOhydt2QjTO6r6CtZVCrDMMDyQp/usfCwuJnAk4gR8lj4eQBbovtpm3Z2nUQmwiYQ4NA8Hh+8I5luEmLSENzBECTgLPmxhI5T7ScgLYR4DhJcB6f42cPWYYTq4QDnh3o6LbcsI06cx0i230r0NJ7Rkb3zZGAIDkZNIdAUiuDs/XHbsjG2aN7EG4FLkY9gPgIkZ89ZGFh8ScBV7csPlSJNhHA2G58BaiHi/UnEGUEnJFyP3jGcieQGu7LRu8M40HS3A1QXoAztD+DU60n8Vg5BYYA0nKevEWesgwHrlAhBDYrzB2NQGLkDdm4aLiIaAMDL4+AWsPWuA0UCB4PlEqB2I52nKj+Jx7RDD20qut8FQDAPeEJdmfBT5w+fVrB5XI/BpCOAFz0Y7ml0AAueL3e/2v8+PHtV78YcAI5NiQCVUJAYvfetK3K1nKkG4Hu+5L94BnLnUCIIAQRAiX0ciNUtRzAVAdEDL5rmpty4+e2M8ivpNEZHY1REWwWeiBBRIRA2mZFh7EOwPgbsvFr5wUkGRjYxCKksQl6AUVQshYJp1txwHhxyOe22loR0eCGLZhE+jjtLfBuZMLlcj9WKpVpcrm8iyTJG6/dyTLioGma6OjoGNXa2voxgNlXvx5wT1siPhc2IQmO4+b/TkwtteBTQFja2Jt3jOWOITk0GVUKApSTA6/+5yGde67jHGQdHgSbSXSMn3ZrHGQZNoJUKoRZgXbDjTcLKW//BbEGBu2ScCTJxX70jmW4CRmTgTALgSZr85DP/bFyH1IbGbREhOP+xIhb4N2IJV0ul5tZccwyVEiSZORyeTd8uw99X7/N/txyCIKAXcgB3wHA674pW+42X7mnqNFsHGEgkSZLQZ3CF4LjvnB6SOeeajuFe2t838PSJ/o8cLLc5QRHxYFkAGfHjbebbuqshdRKoD0iBkE8jh+9YxluRFoNAEBs9MDgGFo5wHM/70eEBdDJR0MdwXbd9CMkK45ZbpRLn51rauGAE8gA4BTyEeQAGFvnTdkhun3VDqTqeH+4xXKHkBKWjCa57/vUVaUb0rk/t53FRD0NVzAP94xLvRXusQwj0lifAPJ2t9zQ+d2ubgS1WQEApuhRfvOL5c5AkOQLx4rpZKDrGvx3B83QsP/qe+hqGz0NJMnGH7Ow3On4TSBrtdoQrVb7jVar/ZdWqz2m1WonXTr+gFarPaHVao9otdrV/prvejhFIvAoAoyh6abscC1e0ATAVbDleAKJpJAkdIYAFAdw1w7+M0IzNC62/YKkRgYNqmhESgW30EuW4SA85lJsqO3Gynjpu/WIMvoevogUducp0ODFxoLmkIjpZPBr6+DDs6pN1Yht8MLDA1Tj2K6sgcjx48eD586d2xtcfvbsWeHs2bNTc3JytMuWLUugKF9lm61bt8pnzZqVlpWVlbZnz54wALBareSiRYuScnNztXl5eZrGxsY+ZbNMJhNn4cKFybm5udqnnnoq9ejRo8EAUFlZKcjLy9Pk5uZqn3766ZTOzk4OAKxbt06VlZWVlp2dnXrixAkRALS1tXF75snOzk6tqqrqvYm1t7dzMzMz0x0OBwEABoOB88wzzyTn5ORoFy1alNTW1tZvztqmTZsUr776avTVx/V6PX/27NlXrCR99NFH8sLCwqj+bH366acR33zzTQgAbNmypd8KCVfPuWvXrvCsrKzU7Ozs1BdffDGu53r3vO8HH3xwTFlZ2ZCK0vtzBXk5gO91Ot3DABYD+ODS8S0A5gOYAmCiVqu95QG9XpEvMcbdduPtphmvB0FWwCrmgOAGXC7jiEYdogZDEDCGcuBqHXzR/3pzPRQNNvDdBBq0k9ks9AAkWKECAJAO+w2dr+/WI9rAgCEAmXbwyZ8sdwcEhwMmUobkDgbnmgYfnvVT8wkkNzMwhQcjI4GNPw403n333chVq1bFu93u3pvCe++9F5Wfn99SWlqq83g8xP79+0M6Ojq4xcXFiq+++qp8586dug0bNsTSNI3t27fL0tLS7CUlJbqZM2caPvjgA+XVc2zevDlywoQJ5pKSEt2bb76pX7t2bRwAvPLKK/EFBQVNJSUlunnz5nVUVFQEnT59WnTmzBnJ3r17yzZu3FizZs2aeABYu3ZtzKxZs4wlJSW6F154oUmn0wUBwIEDB6SLFi3SdHV19QrzDRs2qDIyMqylpaW6BQsWtBcWFvYRwHa7nVi6dKm6uLjYb6uICxcuNGRlZXUDwCeffNJHSF9rTrvdTmzevDnqyy+/rPj666/LrVYrZ//+/SEA4Ha7iZdffjmez+fTQ/XFn8rvXQA9tdW4AJxarVYKQKDT6aoBQKvVHgAwHcBZP87bB1oaDqAaXa16qG7QhtGoQ5gZsIcI/ekayx2AiCdCKC8SjeEGRDW5AKcZCBq42sD5zvNIr/WtDtKTZ9xqN1mGAU54uO+/TjdomhnyVrjerEeMAfCIuEiICrsVLrIMM6Q6EbHn2lDVXT3oc85W/Q8WtgNnNDGYGcNWvrlV7DhaG/HVmUaZP23OGRfTuWhywnUDzuPj412bNm2qfumll9Q9x7Rard1kMnFomobdbufweDxGLpd79+/ff5HH46G2tpbP4/FokiTx/PPPt3u9vspbzc3NfIlE0qeV59KlS9sEAgENAF6vl+Dz+Yzdbie6urp43333XWhRUVFMWlqabfXq1Y3btm1TTJw40UySJOLj490URRHt7e3c8+fPizUajSMvL0+jUqlca9eubQAAkiTx2Wef6XJycnrjwvR6fdDy5cubAGDy5MnWN954o0/NSqfTSebk5BgmTZpkrqmpGdLqrF6v5xcUFCQqFAp3U1OTYNSoUba33367vrCwMEomk3lMJhPHarVyVqxYEbd+/fr6680pEAiYXbt2lQcHB9MAQFEUIRAIGABYvXp1zNNPP93x0UcfDVkO3tAKslarfU6r1V64/B+AFJ1O59BqtUoAfwGwEoAUgPmyUy0AQm5kzqFASnwPFt2GoWca99DQdh4yM+AOZW9ygUiMWA29nIDHzgXddGFQ55zrOId76mm4QnjQpLJx6YEIKRbDywF4TgpG+9CTfPWmGsQaaVjFIiTK2ESsQEQy+l5ILQQ6nAa4qIHr7TMMg/ayC+AwQGVUBiLEbGhWoDFnzhwTj8e7IlFQrVa7ioqK4qZPnz7aaDRyH374YQsA8Hg8bNmyRT5//vy0J554old4c7lczJs3T1NSUqJ48skn+8R4hYWFUSKRiGlpaeGuWLEisaCgoNFoNHLr6+uDpkyZYt69e7fObDZzdu7cGWG1WjmXi2yRSER1d3dz2tvb+VKp1Ltr164KpVLp3rhxoxIAHnvsMbNMJrtClGs0GsfBgwdDAeDbb78NdblcffRieHg4NWPGDPPVxweCIAgGAJqamoKKiopq9+3bV3b8+PGQlpaW3kXbFStWtIrFYupycdzfnBwOB0ql0gsAH374ocLhcHCmT59u/vTTTyPCwsK8jz/++JB9BG5wBVmn0/0JwJ+uPq7Vau8B8CWAl3Q63b8urSBf3odXAuDGG9kPEl6Yb1XebOhT93nQ1LT8Co0ZaFayLaYDEW14CmrlxwEA7vMnEJQ0ecBzLjSfxqwmBvWxCtwXc8uf81iGAYIg4BSR4DlpdFhckA1RzOi7qhBhBhqiQvBAKLv7FIiEpGlhBRBpZFBtqsaoiOsnY9aaa6FodAIAnGMevA0ejlwWTU4wDLTae7soKiqK3bFjR3l6erpz69at8lWrVsX2iL38/PyOJUuWdC5YsCDl0KFD1szMTAsA7N69u6KsrCwoPz8/+eOPP65cuXJlAgDMmjXLsHjx4s5z584JX3zxxcTly5c3TJs2zWq32wmhUEj3nJ+Zmdl95MgRqVqtdtpstl5Ba7fbOaGhoZREIqFmzpxpAoAZM2aY3nnnnT5hEz0UFBS0vPLKK3G5ubnaBx98sFsul3sOHz4s3rhxYzQALFmypHXmzJnd17sGQqGQ9ng8Vwhru91O9qyEq1Qqp1QqpQEgPDzc43Q6bzjsl6IovPrqqzH19fVB27ZtqyZJEnv37pUBwNy5c6XV1dXC//qv/1Jv27atUqVSDapRhj+T9EYB2ANgvk6n+xsA6HQ6MwC3VqtN0mq1BIDHARz215z9IZT5djlsphvX4m31leAwgDButL/cYrmDGKPQ/LuSRfnAK8huyg1XZRX4HgK/qkZDKR3SbhLLXYQ32FcFp6VraIsObsqNzq5mBDkJWMOU4LCVCgISvtp3f4kyMig3lg84/kzbGSS3MPAICSSkqgcczxIYiMVir1QqpQAgMjLSY7FYOOXl5YJnn302iaZp8Hg8hs/n0wRBMEVFRcqdO3eGXzqPIkkSKSkpruLiYl1xcbFu8eLFnRcvXgwqKChIXL9+fc2TTz5pBgCRSMRER0c7f/jhBzEAnDx5UpKcnOyYMGGC9dixYyEURaGuro5P0zTkcrk3PT3dcuDAgRAAOHbsmCQxMdHZn/+HDx+WPP300x0lJSW6hIQE55gxY6xTp0619vg0kDgGAIVC4XU4HOTFixeDAMDr9eL48ePSjIwMO4AB83gYZvDV+1566aV4l8tF/vnPf67qCbUoKSnRlZSU6IqLi3VJSUmOt956Sz9YcQz4Nwa5EEAQgI1arRYAunU63VMA8gHsBMABcFCn053w45zXJCzSFyrjslhu2IatrdVnK5kt1RSIpIQloSUMYAjAVaMfcHxlVyVS6n07UE3pj7IJeoGMVASpxYmmDh2Awe8gNVobEd7tywOxKxNujW8sww4/znd/ie9k8KvhV8xJmXPd8WdaT2F6MwNjWCjSo9mdp5HCa6+9Vrds2bIkDofD8Hg8urCwsE6tVrs1Go09Ozs7lSAITJo0qXvatGnW1NRU5/Lly9WlpaVymqaxZs2aPjelt956K9rj8ZA9yXnBwcHeHTt2VL/++uu1r732Wtzbb79NqFQq1+rVqzsFAgEzduxYa3Z2dirDMMQf/vCHegD44x//2Pjyyy/H79mzRxEcHEy9//77/RZ812g0zhUrVqjXr18PmUzmLioqqh3qNSBJEmvWrKlduXJlAkmS8Hq9xEMPPWTKzMy06PV6/kDnx8fHO373u9+pN2/efN2b9OnTp0V/+9vfZKNHj7bm5eVpAeCZZ55py87OvqmIBb8J5Eti+FrHjwN4wF/zDAZFuApeEvDaHDdsg7q0ehSe1CcunSUAUIeo4eUSsISQkDZ2DDj+ouEi0hoZeMUEFCls6/FAhh8eipA2IyqMlQAeHfR5jZZGyLp9Kx6e+LRb5B3LcEOKRKCkImg7rShp+2XA8WX643imC/hRFYcctvV4wKJWq9379u3r3VKYOnWqderUqX22GF5++eUWAFcUWlcqld7PP//8uu07d+zYcc2s0IyMDEdpaWmfotwrV65sBnBFIlZCQoL7yy+/7Heew4cPn+/5OSUlxfX1118PvEUCX+WJ/l7r7zpcfb16fr7kNwBgz549FYOZc/z48fby8vLrlpUpLi4eWtMDBGijkNBgEexBAGMfOIGiP3hmX4KOIpFNxgpExHwxgohwNEbw4OpwAtT1d11+7biAtAYGxvAQpKrYm1wgI5IrILUDJlvDkM5rtDRCcWnTUaROuQWesdwp0ColoowMKrqr4KX7/+7osHeAX+t7AC9T3TvkmHYWFpbhIyAFsiSIC4cAIJyDDjXpg9BMwyEgwJWI/egZy52EjB+LahkBt5UDur3qumPbfj0BqR34NUKNVKXkumNZ7m7EkfEI8gAOy9DqqDdaG6HsBhgSiIzvtw4+SwDAS9JA2kXCTXtQ091/W/Iz7WeQ6IvWgzv9tm6ksrCw3CSBKZAFXLgEBEhnn1KCg8JNuSGxAjYJ2yAkkImVJKBGQQEMAfe5o/2Oc1NuCHS+jnv/jBiHZAX70BTIiKMTAQC0ZeDQm8tpsjQh1sTAK+IgJoIt8RbIhKbfC46HQIgN+NXwa7/jTrWegqaFgVdEIjGZrYjEwnI3EZgCOYgHJ58EzzX4DMjL6bQ0IdTKwBXMbocFMtrwZNQrfElVrov9966pNFUipYEGJWBgTBiHIB7ndrnIMgxwI2MBAKR9wCTtK2i0NkJhomETCREbJroVrrHcIUg0vhCahM4BBHLLCWhbaBjCQpDOxh+zsNxVBKRADuKRcAlI8G8wBLndWIFQG+AVs1vpgcy9Si1awgGGYOCq6j/E4lfDr0htZGCXC6CNYrtgBTpcma8VMMcx+CRfhmHQaGlAqBnoFkshFbK7T4GMINFXri2jjcL5jvPXHNNh70Bbmx6h3QQqQ2PYChYsLHcZASmQCYKAh8+D0AlgCHX0emgz1CDEBjChEf53juWOYZxSCy+XgC2EA3dDW7/jqiqOIcoINISq2PjjEUBPu2me0zPoOpwmlwkehx1BDgKWUAVbBjDA4apUoHkc3NPuQZmxDFa3tc+YU62noG7zfX7Oy8dAFcLWTmdhuZsISIEMAG6BACIn4HYMvQxeW1MluDTAiei3yQxLABAuDAdJh6BJxoWz1QbQ9DXH2c+cAgCciBgNrZLdJg10uJcEMt9Jw+YeXB5Do6URskt9RZxyNtY00CEIAt5IOaIMAMVQONN+ps+Yk60nkdbqe1Byjn6AfWgKcI4fPx48d+5cbc/vZ8+eFc6ePTs1JydHu2zZsgSK8n2XbN26VT5r1qy0rKystD179oQBgNVqJRctWpSUm5urzcvL0zQ2NvKutm8ymTgLFy5Mzs3N1T711FOpR48eDQaAyspKQV5eniY3N1f79NNPp3R2dnIAYN26daqsrKy07Ozs1BMnTogAoK2tjdszT3Z2dmpVVVVvHGl7ezs3MzMz3eFwEABgMBg4zzzzTHJOTo520aJFSW1tbX22xerq6vh5eXmauXPnanNzc7Xl5eVXxKXq9Xr+7NmzUy8/9tFHH8kLCwv7zWL+9NNPI7755psQANiyZYu8v3GbNm1SvPrqq70i7eTJk6I5c+Zoc3JytM8991yiw+EgKIrCiy++GPfUU0+lzp07V1tZWTmkuNmAFchegRAcBugeoDrBtehu8WWvC1RJ/naL5Q4jhIzHBRUHHgsJqu5cn9cdXgfCKoyguAwOSu9jV5BHAKRIBIoLBDkZtHQPrpteo7UR4RbfaiF9KcmPJcBRJ0PQRYILDk61nrriJYZhcLT5KMY30vCKOVAns4stgcy7774buWrVqni32937FPTee+9F5efnt5SWluo8Hg+xf//+kI6ODm5xcbHiq6++Kt+5c6duw4YNsTRNY/v27bK0tDR7SUmJbubMmYYPPvhAefUcmzdvjpwwYYK5pKRE9+abb+p7Goa88sor8QUFBU0lJSW6efPmdVRUVASdPn1adObMGcnevXvLNm7cWLNmzZp4AFi7dm3MrFmzjCUlJboXXnihSafTBQHAgQMHpIsWLdJ0dXX1CvMNGzaoMjIyrKWlpboFCxa0FxYW9vkQr1+/Pmr+/PntxcXFut/+9rctb7311k2vDixcuNCQlZXVDQCffPJJHyFtt9uJpUuXqouLixU9x2iaxqpVqxLefPPN2tLSUt2UKVPMdXV1/H379oW63W5y79695S+++GLj2rVrh+RfwAbKeYN8lQa6WqshT7h/SOc6DJ0AAF4se6MLdKJESbgQcw65ABxHDkCszrjidZ1Rh9F1NBwqDjzCMESHCofHUZbbilfIhcRBQd/VghRF+IDjm6xNCL/UuJOboL3+YJaAIPiesfAc/hFj7GKcbD15xWu/dPyCFlsLYpsptIbLkB7Fxh/fFk5ui8DPX8j8ajPjN52Y8Nt+G2EAQHx8vGvTpk3VL730Um8vca1WazeZTByapmG32zk8Ho+Ry+Xe/fv3X+TxeKitreXzeDyaJEk8//zz7V6vryxtc3MzXyKR9Nm6Wrp0aZtAIKABwOv1Enw+n7Hb7URXVxfvu+++Cy0qKopJS0uzrV69unHbtm2KiRMnmkmSRHx8vJuiKKK9vZ17/vx5sUajceTl5WlUKpVr7dq1DYCv491nn32my8nJ6W0drNfrg5YvX94EAJMnT7a+8cYbfbqmrV69ujEkJIS6zKdrb8NeA71ezy8oKEhUKBTupqYmwahRo2xvv/12fWFhYZRMJvOYTCaO1WrlrFixIm79+vX1Pec5nU4yJyfHMGnSJHNNTU0QAFRUVAikUql327ZtkTU1NcIpU6aYUlNTXZ999pl8ypQp3QAwadIk2/Lly4dUXihgV5AZkS+ZytIxtFqmAMCYfHc6aRzbJCTQSQnToEbFgAEDx9lTfV4v1/2IuA6gW6mERikBSbLbpCOCYAEkdqDe1Dqo4U3WJkRbfV+nYQkJt9AxljsFxb3pAIAHmjwoN5bD5Px3ON+B2gNQWDng2UhcDFNjNFvBIqCZM2eOicfjXZGwoFarXUVFRXHTp08fbTQauQ8//LAFAHg8HrZs2SKfP39+2hNPPNErvLlcLubNm6cpKSlRPPnkk11XzxEWFkaJRCKmpaWFu2LFisSCgoJGo9HIra+vD5oyZYp59+7dOrPZzNm5c2eE1WrlXC6yRSIR1d3dzWlvb+dLpVLvrl27KpRKpXvjxo1KAHjsscfMMpnsClGu0WgcBw8eDAWAb7/9NtTlcvXRi3K53Mvn85ny8nLBO++8E1NQUNB89ZhrQRAEAwBNTU1BRUVFtfv27Ss7fvx4SEtLS++i7YoVK1rFYjF1uTgGgPDwcGrGjBlXbO11dnZyy8rKxEuWLGn/4osvKk6ePCn9xz/+IbHZbBypVNr7vkiSZDwez2BcBBDAK8iMxPcQaTW0DDCyL4TFV/4iPI4t9h/ojI0cha+bCLjCOXDqavu8bvrhfwAAx8PGsOEVIwiORASx3YY6U92gxjdbm/GAGWB4gFIZdou9Y7kTEF4q9fZAYxc2pwjwVdVXeDb9WVA0hQO1BzC7MwRAO04pxmEZWxf79jDht4aBVntvF0VFRbE7duwoT09Pd27dulW+atWq2B6xl5+f37FkyZLOBQsWpBw6dMiamZlpAYDdu3dXlJWVBeXn5yd//PHHlStXrkwAgFmzZhkWL17cee7cOeGLL76YuHz58oZp06ZZ7XY7IRQK6Z7zMzMzu48cOSJVq9VOm83WK2jtdjsnNDSUkkgk1MyZM00AMGPGDNM777zTb+xPQUFByyuvvBKXm5urffDBB7vlcrnn8OHD4o0bN0YDwJIlS1pnzpzZfejQIcnatWvj1q1bp09NTb2idphQKKQ9Hs8Vwtput5M9K+EqlcoplUppAAgPD/c4nc4bWrSNiIigVCqVc9SoUU4AmDx5cvcvv/wiCg4OpqxWa29dVoZhCB6vT3h3vwSAMg3eAAAgAElEQVTsCjIh8YlbR1fnkM/l2yi4eUCEjN0WC3Tuj9GAoXlojBLA0WgFc1WiHu+CHi4+g5Kg+6GNZAXySEEYHgapAzBYB9duutnaDLmZglfIQVQIG4YzEuAqlaD4XKgMTkyUZ+CL8i/gpb34W+3f0OHowAN1ToAA+Onj2J2nEYhYLPb2rF5GRkZ6LBYLp7y8XPDss88m0TQNHo/H8Pl8miAIpqioSLlz587wS+dRJEkiJSXFVVxcrCsuLtYtXry48+LFi0EFBQWJ69evr3nyySfNACASiZjo6GjnDz/8IAaAkydPSpKTkx0TJkywHjt2LISiKNTV1fFpmoZcLvemp6dbDhw4EAIAx44dkyQmJjr78//w4cOSp59+uqOkpESXkJDgHDNmjHXq1KnWHp96xPG6deti//SnP1Xef//99qttKBQKr8PhIC9evBgEAF6vF8ePH5dmZGTYAQyYuDrYKkKJiYkuh8PB6UnCO3v2rESj0TjHjx9v/eGHH3reb7BarR587U4E8AoyL8wXLuM0D62Khc1jg9jGwCkiIeCyDSECneiQYDAuFS5EdSL5AgGP7gz4afcBABpMdUit9MAWy0EXGcJWsBhBBEcoIPmlAmbHwDtQDMOg1daKMDMNh1AEuYRtMDQSIAgCLlUUnF025IrT8V8dP+PNk2/ir/q/YozsHij1P8EQKsI9iYqBjbEEHK+99lrdsmXLkjgcDsPj8ejCwsI6tVrt1mg09uzs7FSCIDBp0qTuadOmWVNTU53Lly9Xl5aWymmaxpo1a/RX23vrrbeiPR4P2ZOcFxwc7N2xY0f166+/Xvvaa6/Fvf3224RKpXKtXr26UyAQMGPHjrVmZ2enMgxD/OEPf6gHgD/+8Y+NL7/8cvyePXsUwcHB1Pvvv99vn3SNRuNcsWKFev369ZDJZO6ioqLaq8esW7cu1uPxED2x13Fxcc533nmnd9uNJEmsWbOmduXKlQkkScLr9RIPPfSQKTMz06LX6/kDXcP4+HjH7373O/XmzZv7XI/LEQgEzGuvvVa7fPnyRIZhcM8991hnzpzZTVEUjhw5Ir10HbBu3bo+7+F6BKxA5sh8AtlttgzpvE5HJ0JtDJyiAf/fsQQAJElAjET8EN+IbADWr3Yg/BWfQP71758izgq0ZCYDANJU7ArySIEbIUewE7C6Bt6BMjqNcFJOiG0MjJFicNjVwhEDOeY+OPfXIbXRgEfjHsWXui8h5ArxRvw8ONpPozIhFmPj2JCbkYBarXbv27evvOf3qVOnWqdOnVp+9biXX365BcAVT95KpdL7+eefV17P/o4dO6qvdTwjI8NRWlqqu/r4ypUrmwFcEROckJDg/vLLL/ud5/Dhw71db1JSUlxff/11H/8v58CBA/23kbxEf9fh6uvV8/MlvwEAe/bsqejP7sKFC68IpXnkkUcsjzzySNnlxzgcDoqKiupxgwRsiAVP5iufR1mHtKIOg60dYVbALWKLuo8UYoRj0CijQcmA7n8c7T3u3P93OHnAqeS5iAkTIpR9aBoxcGSRIAHQduOAY5utzSBoBjw7AYd04IoXLIGDcspkMBQB4sJJbMjcgAO5B7Anaw9kx34AQ5H4H9l4ZMSy3TdZWO5G/L6CrNVqUwGcABCp0+mcWq32AQAbAXgBHNTpdK/5e85rIRUJ4OQDjH1o/aYN5jqE24D2WHY7faQwVj4eunYS1ePk0BzsgLu6HJwYNaLPGdGYROBv3dG4h20TO6LgyH05DKSjb4e0q2m2NSPUBhAMAWdEn/KlLAGM7IH7YQIQVFsH0DSixL7PTcfRowABNGsnIiyYfbBmYbkb8esKslarlQIoAnC5Kt0CYD6AKQAmarXasf6csz8kQVy4+ADp9A7pPEOHHiIXACnbZnqkMCZaCdoRg2/SfclVhndfR8XK/xfBToB5MAW1RgfSWYE8ouAoVAAArnPgB+wWa0tvDWQqsk+pUJYAhhepgFMaDG8HA7Sc9R10WWCr7IQlPBijktlKSCwsdyt+E8harZYAsA3AfwOwXzomBSDQ6XTVOp2OAXAAwHR/zXk9xAIe3AKA4xxcq9geLK2+cBUyXHUr3GK5A0lVSuC1J+GUoBXi0QxM3/0E7D+MbycSCM18CQBYgTzC4IT64kb5Li+c3n4TvQH4VpCjbL6EXjIu5Zb7xnJn0Z2SAXsHH66TnwAAqBN/gcPAxRlZCh5JZRP0WFjuVm5IIGu12ue0Wu2Fy/8B+BbAX3U63S+XDZUCuLygswXAbVEakiAuPDwCXNfgyoT0YG33xc6TMvbJf6SglgUD9lGgQePvy/8DsmkU/n4/YModjwqHr0xkOlvof0TBDfPFjUocQH339ZuFNFubEWfxCWSRWnPLfWO5s5A8MAmUkwPvj6WAowuWzzcBDIH9kZMxVePfpm4sLCy3jxsSyDqd7k86nS798n8AtACe02q1/wSgBHAQPnF8eeq/BMDQ6q7dIJIgLjx8EgIXM+haegDgMvoa2HAib7qlOMtdAo9DIkk6GqHMWHxU+w02zJuJP0/n4n8/8CLON3UjKiQIEWK2dNdIghP6b4FcZWy67thmWzOUZgYgGCji2J2nkcY9/zEHbg4X3Re5YD5+DMazLnSFhSN4/H2QBg2+KQELC8udhd9CLHQ6XbJOp5um0+mmAWgFMEOn05kBuLVabdKlEIzHARz215zXQyLgwcPjQugCHN7BV7Kgun1JObwots30SCJVKYGrbSa8tBffNHyPuZq5GCMbg59qu3Avm4U+4iBEIjAcAhIHg1pT/91TGYZBs7UZMjMFOoiEMoztmDbS4IeHoWbCdHTVB8PwCwNXNw9/Vj+GR0dFDrdrLLeR48ePB8+dO1fb8/vZs2eFs2fPTs3JydEuW7YsgaJ84Z5bt26Vz5o1Ky0rKyttz549YQBgtVrJRYsWJeXm5mrz8vI0jY2N/T5Zff3116H5+fnqnt+///57yVNPPZWam5urfe655xJ7OuitW7dOlZWVlZadnZ164sQJEQC0tbVxe+bJzs5Oraqq6l35aW9v52ZmZqY7HA4CAAwGA+eZZ55JzsnJ0S5atCipra2t36IOmzZtUrz66qt9uvLp9Xr+7NmzUy8/9tFHH8kLCwv73aL/9NNPI7755psQANiyZYt8sHPu2rUrPCsrKzU7Ozv1xRdfjKMoCp9++mnE3LlztXPnztXOnj07NT09fVxXV9egG1zcjjJv+QB2AjgJ4KxOpztxG+aEOIgLD48LkQvodnUP+jzC5os3DI6OvVWusdyBpColaO8S48NHPsE3Od9g9aTVqDM60GRy4MFkdpt0pEEQBEgRDxI70GTuP8Si29UNm8eGMLMXniAuFGyTkBGJ8rklYBgCHT/a0RUqx0n1fZg1hg3TGym8++67katWrYp3u929RdDfe++9qPz8/JbS0lKdx+Mh9u/fH9LR0cEtLi5WfPXVV+U7d+7UbdiwIZamaWzfvl2WlpZmLykp0c2cOdPwwQcfXLMczsqVK2Pfe++9aJqme+d5/fXX47du3VpVUlKii4uLc+3YsUN2+vRp0ZkzZyR79+4t27hxY82aNWviAWDt2rUxs2bNMpaUlOheeOGFJp1OFwQABw4ckC5atEjT1dXVK8w3bNigysjIsJaWluoWLFjQXlhY2EcA2+12YunSperi4mK/BdsvXLjQkJWV1Q0An3zySZ8/omvNabfbic2bN0d9+eWXFV9//XW51Wrl7N+/P2ThwoWGns5/Wq3W/p//+Z/1YWFhg05MuyWNQnQ6XcJlPx8H8MCtmOd6cEgCXh4fIpcNJmcXVOKBtz4ZhgHP5gVFMgiJYJOyRhI9SXg2ixLx0b6Vnx+rfE0iprACeUTCEQsR6nDjjK1/gdxk9YVfiK0UHCIJeJyALS3Pch3un5SO/Nkvob3TjKrQaKz4X6OhDGFr6d9uvij7ImJf9T6/fmHPTprd+Zu03xiuNyY+Pt61adOm6p6OcgCg1WrtJpOJQ9M07HY7h8fjMXK53Lt///6LPB4PtbW1fB6PR5Mkieeff77d6/VV3GpubuZLJJJririxY8daZ8yYYfriiy96V1b/8pe/6JRKpRcAKIoiBAIBfeLECfHEiRPNJEkiPj7eTVEU0d7ezj1//rxYo9E48vLyNCqVyrV27doGwNfx7rPPPtPl5OSM6rGr1+uDli9f3gQAkydPtr7xxht9SvQ4nU4yJyfHMGnSJHNNTc2QPvB6vZ5fUFCQqFAo3E1NTYJRo0bZ3n777frCwsIomUzmMZlMHKvVylmxYkXc+vXre5t9XGtOgUDA7Nq1qzw4OJi+7Dr0xtaeOnVKpNfrhZfbGQwB/W3u5QvBpYHuruvHEPZg99oR7GDgFhIID2ZXgkYS9yWEIZjPwXdl7b3HjlR2IjpUiPgI0TB6xjJccEMkCLMx6HL0H2LRaG0EAPDtgEvCJnKOVLgcEhv+/wUY99R0PDI+EQsnJQy3Syy3kTlz5ph4PN4VyU5qtdpVVFQUN3369NFGo5H78MMPWwCAx+Nhy5Yt8vnz56c98cQTvcKby+Vi3rx5mpKSEsWTTz7Zda155s2b10UQV3bqjIqK8gBAaWlp6OnTpyXz5883WK1WzuUiWyQSUd3d3Zz29na+VCr17tq1q0KpVLo3btyoBIDHHnvMLJPJrhDlGo3GcfDgwVAA+Pbbb0NdLlcfvRgeHk7NmDHDfPXxgSAIggGApqamoKKiotp9+/aVHT9+PKSlpaV30XbFihWtYrGYulrUXmtODoeDnoeEDz/8UOFwODjTp0/vHfPhhx+qfv/73/f/Rd4PAdtqGgC8fDEAwNJeDwyi+pLBYYDUDrgFJKRCNrliJCHgcjA1RY7vy9rAZKeDZoCj1Z14Ml2Fq7+QWEYGvLAQhLQ1wOxu73dMk7UJHIoBXCRcIWwXvZGMWMDFq7NHD7cbI5rfpP3GMNBq7+2iqKgodseOHeXp6enOrVu3yletWhXbI/by8/M7lixZ0rlgwYKUQ4cOWTMzMy0AsHv37oqysrKg/Pz85I8//rhy5cqVCQAwa9Ysw+LFi/vte//+++8rvv/++/Dt27dXCoVCRiwWUz2xyABgt9s5oaGhlEQioWbOnGkCgBkzZpjeeeedPmETPRQUFLS88sorcbm5udoHH3ywWy6Xew4fPizeuHFjNAAsWbKkdebMmdeNXxUKhbTH47lCWNvtdlIgENAAoFKpnFKplAaA8PBwj9PpvOFFW4qi8Oqrr8bU19cHbdu2rZokfaa6uro4DQ0NQT3XeCgE9AoyE+Rb0bEbWwYY6cPgNEBiZ+AJ4oJDsqJopPFomgJtZhcuNJnx9wutMDu9eFjbb44AS4DDCQuHyAFYqWsu5gAAmixNiHP6dhi8bBc9FhaWS4jFYq9UKqUAIDIy0mOxWDjl5eWCZ599NommafB4PIbP59MEQTBFRUXKnTt3hl86jyJJEikpKa6e+NnrieP169crz549K/n88891crncCwATJkywHjt2LISiKNTV1fFpmoZcLvemp6dbDhw4EAIAx44dkyQmJvZb5P3w4cOSp59+uqOkpESXkJDgHDNmjHXq1KnWHp8GEscAoFAovA6Hg7x48WIQAHi9Xhw/flyakZFhBzDg4tNQKpC99NJL8S6Xi/zzn/9c1RNqAQA//vijePz48UNe5QYCfAWZFvmK/Tu6+l8BupxORyekdsAbzoZXjEQeSVWAIIAtP1TjXKMJqUoJHh/Nip6RClceCYETcNAWUDQFDtk3+bnJ2oQkhxCABVCylW9YWFh8vPbaa3XLli1L4nA4DI/HowsLC+vUarVbo9HYs7OzUwmCwKRJk7qnTZtmTU1NdS5fvlxdWloqp2kaa9as0Q9mjtbWVu727dujkpKS7AsXLtQAwIwZM4y//e1vO8aOHWvNzs5OZRiG+MMf/lAPAH/84x8bX3755fg9e/YogoODqffff7+mP9sajca5YsUK9fr16yGTydxFRUW1Q70GJElizZo1tStXrkwgSRJer5d46KGHTJmZmRa9Xj9gD/b4+HjH7373O/XmzZuvez1Onz4t+tvf/iYbPXq0NS8vTwsAzzzzTFt2drapuro6KCYmZuCWqNcgwAWyr120q9s4qPEGWwdS7EBXtPhWusVyhxIhFuD305Kx6VAVAOCz5yawOwkjGI5MCQIExE4GRqcRclHf3YQmaxOmWXwbcbx4toseC8tIRa1Wu/ft21fe8/vUqVOtU6dOLb963Msvv9wC4IptbaVS6f38888rBzPPtGnTLNOmTbP0nHfx4sUz1xq3cuXKZgBXxN0mJCS4v/zyy37nOXz48Pmen1NSUlxff/11H/+vxcKFC/sNa+nvOlx9vXp+vuQ3AGDPnj0Vg5lz/Pjx9vLy8tPXGldQUNA28Du4NgEtkCmpbwXZbRlcmbeurnqI3IAhmK1gMVJ56XEtHkyWobrDiqkpbHjFSKanWZDUDrTb2/sIZJqh0WRtQmS374FaomYFMgsLC0ugENAxyFSI74bmtdoGNd7W5kuW9EojbplPLHc+k5Ii8MwD7Hb5SIcr95XZlDj+Xa3icjrsHfDQHkSY3ADBIDKerXvLwsLCEigEtEBGqK+eLW2zD2q4s8O3Ek+FsiuHLCwjHU64ryqF1M6gyti3fGZPDeRQkwuMgIQqnO2ix8LCwhIoBLZADvMJXcbuHtRwT5cvW52KGLipCAsLS2DDCfOFaCksQLWpts/rdeY6AIDE4oJHyEUQb9AdTFlYWFhY7nACWiAHiyXw8BiQDs+gxlPdvjJ5RCTbZpqFZaTDvSSQo6xAg7nvCnJNdw34JB9BNi/cwcLb7R4LCwsLyy0koAWyWMCFhw9wXNSg6ukRFl8lEJ6qT0dFFhaWEQbB44EI4iDSRqHF3jcGuaa7BgnSONB2wM120WNhYWEJKAJaIAcLuKD4BIJcgMPruO5YN+WGwO4FQzAIVvbbXIaFhWUEwZEIIbdT6PZ0wum9sqZ+takayXwFKBcHnjDZMHnIwsJyJ3D8+PHguXPnant+P3v2rHD27NmpOTk52mXLliVQlK+T89atW+WzZs1Ky8rKStuzZ08YAFitVnLRokVJubm52ry8PE1jY2OfVr4mk4mzcOHC5NzcXO1TTz2VevTo0WAAqKysFOTl5Wlyc3O1Tz/9dEpnZycHANatW6fKyspKy87OTj1x4oQIANra2rg982RnZ6dWVVX1Nn1ob2/nZmZmpjscDgIADAYD55lnnknOycnRLlq0KKmtra1P1bPm5mbevHnzNHPmzNEuWrQoyWw2X6Ep9Xo9f/bs2amXH/voo4/khYWF/WY0f/rppxHffPNNCABs2bKl34SwTZs2KV599dVesbZz587wxx9/fNScOXO027dvl13vmg2WgBbIEgEXFI+AyAWYXKbrjjU6jZA4AK8ACJME3SYPWVhY7mR4IWJI7b7dp0bLv1eRHV4Hmq3NSLb57i+0ImZY/GNhYRl+3n333chVq1bFu93u3sL57733XlR+fn5LaWmpzuPxEPv37w/p6OjgFhcXK7766qvynTt36jZs2BBL0zS2b98uS0tLs5eUlOhmzpxp+OCDD/p0qNq8eXPkhAkTzCUlJbo333xTv3bt2jgAeOWVV+ILCgqaSkpKdPPmzeuoqKgIOn36tOjMmTOSvXv3lm3cuLFmzZo18QCwdu3amFmzZhlLSkp0L7zwQpNOpwsCgAMHDkgXLVqk6erq6hXmGzZsUGVkZFhLS0t1CxYsaC8sLOyzcrhp0ybl7NmzDV999ZUuNTXVsWPHjpteKVi4cKEhKyurGwA++eSTPkLabrcTS5cuVRcXFyt6jnV0dHC3bNkS/fnnn+v27Nmj279/f7her+f3d80GS0DXQQ4WcGHhkxC5KHS5uhAl7r8Mk8FpuCSQCciEAzZ4YWFhGQFwQqQIMvjuefWWeiSHJQMAartrwYCBsuNSWFZs4rD5yMLC4sP4l50R3Xv3+nU7J+SppzrDn/mPfhthAEB8fLxr06ZN1S+99JK655hWq7WbTCYOTdOw2+0cHo/HyOVy7/79+y/yeDzU1tbyeTweTZIknn/++Xav1wsAaG5u5kskEurqOZYuXdomEAhoAPB6vQSfz2fsdjvR1dXF++6770KLiopi0tLSbKtXr27ctm2bYuLEiWaSJBEfH++mKIpob2/nnj9/XqzRaBx5eXkalUrlWrt2bQPg63j32Wef6XJyckb1zKfX64OWL1/eBACTJ0+2vvHGG33E5dq1axsYhgFFUWhtbeWNGzdu0B3r9Ho9v6CgIFGhULibmpoEo0aNsr399tv1hYWFUTKZzGMymThWq5WzYsWKuPXr1/cmgTidTjInJ8cwadIkc01NTRAA1NTU8BMTE+0REREUAKSlpdlOnjwZfK1rNlj/gABfQRYHcUFxuRA5gW7n9ZuFGB1GSOwAJSARIuqzu8HCwjIC4YSHg+O8JJAvS9Sr6fZ1aJW1WwEAwSlpt985FhaWO4I5c+aYeDzeFeJLrVa7ioqK4qZPnz7aaDRyH374YQsA8Hg8bNmyRT5//vy0J554old4c7lczJs3T1NSUqJ48sknu66eIywsjBKJRExLSwt3xYoViQUFBY1Go5FbX18fNGXKFPPu3bt1ZrOZs3Pnzgir1cq5XGSLRCKqu7ub097ezpdKpd5du3ZVKJVK98aNG5UA8Nhjj5llMtkVolyj0TgOHjwYCgDffvttqMvl6qMXSZIERVHE448/Pvrs2bPSnvc4EARBMADQ1NQUVFRUVLtv376y48ePh7S0tPQu2q5YsaJVLBZTl4tjAAgPD6dmzJhhvvxYSkqKq66uTtja2sq12WzkTz/9JHU4HJxrXbPB+NdDQK8giwVceLlciF0udLr6fN6uwOA0QOpg4BXwIREE9GVhYWEZJFyZHLSLBI/ioc5S13u82lQNDsGBpN334K3QaIbLRRYWlkuEP/MfhoFWe28XRUVFsTt27ChPT093bt26Vb5q1arYHrGXn5/fsWTJks4FCxakHDp0yJqZmWkBgN27d1eUlZUF5efnJ3/88ceVK1euTACAWbNmGRYvXtx57tw54Ysvvpi4fPnyhmnTplntdjshFArpnvMzMzO7jxw5IlWr1U6bzdYraO12Oyc0NJSSSCTUzJkzTQAwY8YM0zv/h737Do+qyv84/r7Tk0nvISEktEvviEgTRVFBRNGfioAirnUtWHZ1FV3silhWxd47ItiVJipIlU6AS0sgnfQ2mUy7vz+CGgUFYZJJ+b6eZ59lbmbO+U44Dp+cnHvOk0/+6Q1Xt9xyS97dd9+dMmHCBHXIkCHlsbGx7uXLl4c888wzSQBTp07NHzNmTLnFYtGXLFmSvmTJktDbbrst7ZNPPtF+aSMoKMjndrt/F6wdDofhl1ndxMREZ1hYmA8gKirK7XQ6j2vSNioqynvbbbdlXXfddR3CwsI8nTt3dkRFRXkA/vg9+zvt+m0GWVVVo6qqz6iq+pOqqj+rqjr20PWTVVVdc+j6ff7q71jUBWRr3Rpk518H5BJnCSE14LVaMRiUv3yuEKJ1MMYlg08hsSKYbYXbfr2+q3QXKWEpmIpLwAAJbQ9bMiiEaMVCQkI8YWFhXoD4+Hh3ZWWlcefOndYrr7yyg8/nw2w26xaLxacoij579uyE9957L+rQ67wGg4FOnTrVzps3T5s3b552xRVXFKWnp9tuueWW9rNmzdp39tlnVwAEBwfrSUlJzh9//DEEYO3ataEdO3asOemkk6pWrVoV7vV62b9/v8Xn8xEbG+vp0aNH5cKFC8MBVq1aFdq+fXvnn9W/fPny0EsuuaTwk08+0VJTU529evWqGjZsWNUvNY0ZM6b8jjvuSFm2bFnoobp9BoPhd7PocXFxnpqaGkN6eroNwOPxsHr16rA+ffo4ABTlr7PWsew+BuB2u0lPTw/+5JNPtJdeemnfgQMHbIMHD6460vfs7/DnVOlkwKxp2hBVVZOAiw5dfxGYAOwDvlJVta+maRv92O+fCrYYqTUFYfJBRUXhXz632FFEmAOKbXIalhCijimhbk90tcTC4siddT9Im0NYm7+WcR3GYaiYizvIgMnYolerCSH+ppkzZ+6/6aabOhiNRt1sNvseeeSR/Wlpaa7OnTs7xo8f30VRFAYPHlx+6qmnVnXp0sV56623pi1YsCDW5/PxwAMPZPyxvccffzzJ7XYbfrnRzG63e9566629Dz30UObMmTNTnnjiCSUxMbH2vvvuK7JarXrfvn2rxo8f30XXdeWee+45ADBjxozsO++8s93HH38cZ7fbvc8+++y+P6u/c+fOzjvuuCNt1qxZxMTEuGbPnp35x+dceeWVB2fMmNFuzpw5uqIozJw583fLIQwGAw888EDmXXfdlWowGPB4PMrw4cPLRo4cWZmRkXHUm73atWtXc/3116fNmTPnsO9HfWZz3bLYMWPGdLNYLL4pU6YUxMbGem6//fZ2R/qeHa3fXyjHmtCPRlXVD4BtwCmAAtwIFAJrNE3reug5NwMWTdNm/VVbF1xwgT5//ny/1DXvsnF0X7+br2efx21jHv3T59377S1cestCDgzszOh3PvNL362ZqqrrNU0b4O92/Tk2RGA01NgA/4+PquXLyfrH1aw6M56n+hcza8QswsxhXLPkGp4//XnaTPwH1YTQ+8f1fuuztZPPDvFnjjQ2Nm/enNm7d++iQNUkmr/NmzfH9O7dO/WP149rBllV1WnA9D9cLgScwFhgOPAGMBGoP61dCTTq7d7OoNC6/y/J/8vn1RTmAeAKjWjwmoQQzYMpOhoAtdJBkNHO6tzV2Ew2rEYrA2P7klPjwxMfGuAqhRBC+NtxBWRN014DXqt/TVXVD4EvNU3TgR9UVe1MXTiu/69HKPDXGxL7WU1w3QlXteV/vQbZVVK3rt8VFt3gNQkhmgdTfDwAUc4q2gUPZXn2chRFYWDCQDguAu0AACAASURBVAxVZXhqDPiiogJcpRBCCH/z58K5FcA5AKqq9gYOaJpWAbhUVe2gqqoCjAaW+7HPo3IF180Ieyr+en22p6zubnRPxJ8e3CKEaGWMkZFgVAiucdLGMoiDNQcpcBRwVupZFO/dge4xoMT/+f7qQogG5/P5fHJnvTguh8aO70hf8+dNeq8AL6iqupq6NcjXHrp+LfAeYAQWaZq2xo99HlVtaN2MsK/qz3f38Pq8KJV1R1H7ouRudCFEHcVgwBxhx1RTTbS7L+suW4fb5ybUEsrOd58EwJqcGtgihWjdthUWFnaLjY0t/+MuCkL8FZ/PpxQWFoZTd//cYfwWkDVNqwWuPML11cDJ/urn73KHHDpUp/pPdzM5tMVb3X9Xhvi/dRKhEKKFM8VE4CktxlGcjc3UDxt1R9E7MzSsQGTX3oEtUIhWzOPxXJWfn/9qfn5+D1r44WfC73zANo/Hc9WRvtjiT8TwRNYtmbA4fdR4aggyBR32nKKaIkJrdHRFxxSX3NglCiGaMFNcLLW5mVQV/f4QJj0nE4C47t2O8CohRGPo37//QWBcoOsQLU+L/2lLCY3FZ9QJduqU1x75uOnCmkJCa0C36oSEhTdyhUKIpsyckITbYYCKXJzu305jtRQVgQHMCbIsSwghWpoWH5AtQWHoFp0QJ5TVHnkDjeKaYkIdgBUigsyNW6AQokkzJaeiew0kuQvZV1gN1J3wZC2vxBdqQTEaA1yhEEIIf2vxATk0yIxugeBaKP2T46brZpB1sBgID5aALIT4jTk5DYBk50F2H6wEoLCsAmOVF6LlN05CCNEStfyAbDODGex/MYNcVFNEuAO8FhMRQUc9/VAI0YqYEur2Qm7jLGHPwbrdcLL27sRdbcLYRrZ4E0KIlqgVBGQTmI0EO3WKao58GuUvAdlptRAuSyyEEPX8clhIW1cxuwvqAnLJ7k14XQZCOnUKZGlCCCEaSIsPyCE2Ez6zkZBaKHQUHvE5RdWF2GvAYQ3CZm7x3xIhxN9giosDIKK6nIyCEgC8e7YCENatT8DqEkII0XBafBoMs5lwmc2EOOvWGh+Jo/QgBh1qgkJQFDmQRwjxG4PFgjE0GG+NgrF0Dwcrnfgy9wBgad8lwNUJIYRoCC0+IIfazDjNFoJqodBx8LCv67qOu6hu6UWNPayxyxNCNAPm5CRclSZUDjDp1TUkVBbUXU+Rg4WEEKIlagUB2YTDbMPog/Lyw2eQHR4HlqpaAGoOHUsthBD12Xr0xllm5tz4YrIKioh3lGAItmAMDQ10aUIIIRpAiw/IIVYT1ea6o2EdpYcH5EJHIWGOumOma8PjGrU2IUTzYOveA5/LwEBfDqfa9uAuNWFNSQp0WUIIIRpIiw/IdouJKnMwAL7KSmq9tb/7+kHHQcIcdX92RcmJWEKIw9m6dQVA372bZ/sVU1NiJviUEQGuSgghRENp8QHZYFCosdX9GtR+hJ0scqpyfg3IvlhZTyiEOJy1c2cwKDjzHNQufBd0heBBJwe6LCGEEA2kxQdkgJrgutOujrQXcm51LmEOHYPZhylCZpCFEIcz2GxYO3TEqag48g2gKAT17x/osoQQQjSQVhGQa+2RAITUHL7VW25VLnE1RoxWH0HhUYEoTwjRDNi6dcNZ4KJaGYitW1eMISGBLkkIIUQDMfmrIVVVw4EPgRCgFpikaVq+qqonA88AHmCRpmkz/dXnsaoJiwUgrObwJRbZldmc4lDQrQoRwdbGLk0I0UzYhw6l/LPPqCkqIuqKKwJdjhBCiAbkzxnkK4CtmqYNAz4C7jh0/UVgIjAUGKSqal8/9nlM3GFxoOhEODjiEovwah9eq5HIYEtjlyaEaCbCxo6h3fvvEzV1KpETLw10OUIIIRqQ32aQga3AL8dKhQFuVVXDAKumaXsBVFVdCIwCNvqx36OzR2G0+oh1Wsmod1iI2+vmoOMg9moftXFmIoLNjVqWEKL5UBSF4H59Ce7X6D/jCyGEaGTHFZBVVZ0GTP/D5RuAM1VV3Q5EAcOoC8oV9Z5TCbQ/nj5PhMEejcnqI9qhsKZeQM6vzsfn82Kp0am0WkmWgCyEEEII0eodV0DWNO014LX611RVnQ88rmnaS6qq9gI+oW5ZRf2jpkKBsuOs9bgFB9nACpEOnYyKjF+v51TnEFwLBh9UWYKIkCUWQgghhBCtnj/XIJcC5Yf+fBAI0zStAnCpqtpBVVUFGA0s92OfxyTMZsZjNRJa7SO/Op9KVyVQt4PFL3sgV9pCsFuMjV2aEEIIIYRoYvwZkGcAU1RV/RFYAPzj0PVrgfeAtcBGTdPW+LHPYxJqM+GymrFWewHYW7YXqNvBIqKm7ltQHRyOoiiNXZoQQgghhGhi/HaTnqZpucA5R7i+GgjokVOhNhMOi5XQWgdGr87ust30ievDnrI9dHSFAcVUh8UEskQhhBBCCNFEtIqDQkKtZqqsQQDEuYPYU7oHn+5jfcF6erjqDgepjkoMZIlCCCGEEKKJaBUBOcRmosJad+pVN2NbdpftZnfpbipcFaQ5zCgGHWdkcoCrFEIIIYQQTUGrCMihNhMllrrNNDrrsewu3c26/HUAxJW5MQV50UMSAlmiEEIIIYRoIvx5UEiTFR5kpsgaDkCqO4iy2jI+0j4iOSQZc0klepAXU3h8gKsUQgghhBBNQauYQY6yW8g316017uONoVdMLzIrMhmYMBB3SQV6kIEQuz3AVQohhBBCiKagVcwgB5mNFAXV7VJhLivnjbPe4IOdH3Bq8qnUlH+CO0qOmRZCCCGEEHVaxQyyoih4g2IwWnx4iwuxGC1c3v1ykpVIdLePalsQkXKKnhBCCCGEoJUEZADdHo3R6sVTUvrrNU9BAQClQaESkIUQQgghBNCKArLRHoXJ5sNTUv7rNfehgFxkiyA2VAKyEEIIIYRoRQE5LMSOEgKug2W/XvPkZAKQZ4smJsQaoMqEEEIIIURT0moCcmSwGU+oCW9FLd6qKgA8WRkA5ATHEx4kN+kJIYQQQohWFJCjgi1UhdgAcO3fD4A7NwujxUdNSCKKogSyPCGEEEII0US0moAcabdQaI8EwJWZCUDt3v1Ywtx47XJIiBBCCCGEqNN6AnKwhX32RKAuIOteL87MXGyRbgyhcQGuTgghhBBCNBWtJyDbLWQaEzEFeXHv2Ylr/370Wg/GKAgNiwx0eUIIIYQQook4oZP0VFU9H7hI07SJhx6fDDwDeIBFmqbNVFXVAMwBegO1wFWapu05sbL/vshgM/v1eCyhHmr37cWZvh2AsogQYkJtjV2OEEIIIYRooo57BllV1WeAR/7QxovARGAoMEhV1b7AeMCmadpg4E5g9vGXe/wigy1kHgrI7pw8nNu3oxhhZ0hb2eJNCCGEEEL86kSWWKwErvvlgaqqYYBV07S9mqbpwEJgFHVh+VsATdNWAwNOoM/jFmm3kKdHYwr14a1yUrlkMdZwFztoR0yoBGQhhBBCCFHnqEssVFWdBkz/w+WpmqZ9pKrqqfWuhQEV9R5XAu0PXS+vd92rqqpJ0zTP8ZV8fOwWI0ajGTqGYT5gwZ2Vjb2jm516CsNkBlkIIYQQQhxy1ICsadprwGvH0FYFEFrvcShQBgT/4bqhscMxgKIoRNrNlFiS6DTRSWnJYELLP2KnL0WOmRZCCCGEEL/y2y4WmqZVAC5VVTuoqqoAo4HlwE/AOfDrTXxb/dXn3xUZbCHXkIChcj/R/WzokUHkIsdMCyGEEEKI3/h7m7drgfeAtcBGTdPWAAsAp6qqK4GnOHy5RqOJDbWy1xMHteWwaxEHgzpiNhrkmGkhhBBCCPGrE9rmTdO074Hv6z1eDZz8h+f4qAvOAZcabefDrP5Mi1qGUrKXzMiBxIXa5JhpIYQQQgjxq1ZzUAhAaoydPc5wSiYvhbMe4y19DO1j7YEuSwghhBBCNCGtKiCnxQQDkFkBvpOuYWVJKB3jQgJclRBCCCGEaEpOaIlFc5MaXTdbnFlUTXyYFYfLKwFZCCGEEEL8TqsKyMmRwRgUyCyuJjqkbmu3TnGhR3mVEEIIIYRoTVpVQLaYDCRHBpNRVP3rzhUygyyEEEIIIeprVQEZ6m7U21/sIMRqIspuIcouh4QIIYQQQojftLqAnBYdzMb9pVhMBpk9FkIIIYQQh2lVu1hA3QxyZa2HjQdKJSALIYQQQojDtLoZ5HN7tyGntIbc8hou7J8c6HKEEEIIIUQT0+oCckyIlXvGdgt0GUIIIYQQoolqdUsshBBCCCGE+CsSkIUQQgghhKhHArIQQgghhBD1SEAWQgghhBCiHgnIQgghhBBC1CMBWQghhBBCiHqa5DZv6enpRaqq7g90HeKEtGuIRmVstAgNMjZAxkcLIZ8d4s802GeHEH+k6Loe6BqEEEIIIYRoMmSJhRBCCCGEEPVIQBZCCCGEEKIeCchCCCGEEELUIwFZCCGEEEKIeiQgCyGEEEIIUY8EZCGEEEIIIeppkvsg16eqqgGYA/QGaoGrNE3bE9iqAkNV1Q1AxaGHGcBLwDOAB1ikadrMQNUWCDI2fk/Gx+/J+PiNjI3fk7HxezI+hDhckw/IwHjApmnaYFVVTwZmA+cFuKZGp6qqDVA0TTu13rVNwARgH/CVqqp9NU3bGKASA0HGxiEyPo5IxgcyNv6EjI1DZHwIcWTNISAPBb4F0DRttaqqAwJcT6D0BoJVVV1E3d/bfwGrpml7AVRVXQiMAlrTh5iMjd/I+DicjI86MjYOJ2PjNzI+hDiC5rAGOQwor/fYq6pqcwj2/uYAngBGA9cCbxy69otKIDwAdQWSjI3fyPg4nIyPOjI2Didj4zcyPoQ4gubwgVABhNZ7bNA0zROoYgJoF7BH0zQd2KWqajkQVe/roUBZQCoLHBkbv5HxcTgZH3VkbBxOxsZvZHwIcQTNYQb5J+AcgENrxbYGtpyAuZK6dXKoqtoGCAaqVVXtoKqqQt1P/8sDWF8gyNj4jYyPw8n4qCNj43AyNn4j40OII2gOM8gLgDNUVV0JKMDUANcTKK8Bb6qqugLQqftQ8wHvAUbq7jReE8D6AkHGxm9kfBxOxkcdGRuHk7HxGxkfQhyBout6oGsQQgghhBCiyWgOSyyEEEIIIYRoNBKQhRBCCCGEqEcCshBCCCGEEPVIQBZCCCGEEKIeCchCCCGEEELUIwFZCCGEEEKIeiQgCyGEEEIIUY8EZCGEEEIIIeqRgCyEEEIIIUQ9EpCFEEIIIYSoRwKyEEIIIYQQ9UhAFkIIIYQQoh4JyEIIIYQQQtQjAVkIIYQQQoh6JCALIYQQQghRjynQBRzJoEGD9KSkpECXIU5Aenp6kaZpsf5uV8ZG89dQYwNkfLQE8tkh/kxDfnYI8UdNMiAnJSUxf/78QJchToCqqvsbol0ZG81fQ40NkPHREshnh/gzDfnZIcQfyRILIYQQQggh6pGALIQQQgghRD0SkIUQQgghhKhHArIQQgghhBD1SEAWQgghhBCinia5i4UQQgghfuMtL6fkvfcwWK2EjBiBtWPHQJckRIsmAVkIIYRowmo2bybr+hvwFhcDUPjM/0h+9n+EjBgR4MqEaLlkiYUQQgjRRPlcLnLv+g+K1ULagvl0/OF7rJ06kfXPG3GsWxfo8oRosSQgCyGEEE1U8auv4tq3D2X6ndy9vYS7Vqaz5677sbRpQ85tt+MpKQl0iUK0SBKQhRBCiCbIV1NDyRtvUjVwKGN3/sDCyhtYWHEz07dczvNjeuMtKyNvxr3ouh7oUoVocSQgCyGEEE1QxTff4qus5LEEH+a4zxmcOJj7Tr6fBKvK4vCv+WJEClVLl1Lx9deBLlWIFkcCshBCCNEElX70EQWRsWjd1jO0zWm8fOYcLlTPZ8ll79LNdhHv9Msgt20EBQ8+hKe0NNDlCtGiSEAWQgghmpjaPXtwbt7MV90VbCYbDwydgaIov379vQvvIcp3FrPPrMRdXkbhk08GsFohWh4JyEII0YRkLfiAn4cOYMWok/j27iuorpKZwdaoYvFiAFb3LeYfvaYRk7ESPrwM5l8Nmz/EpMB7E2aSFdKDLwYqlH08D8f69QGuWoiWQwKyEEI0EZtn30fVXfdTYHJw0OKm3SdrWHP2cHak/xjo0kQjK/hmETvjQ6gKtfJ/e1bD3MmQswEyfoQF18BbY0kyVXPvoAeYOyiaojAjOTNmoLtcgS5diBZBArIQQjQBRRvXYHx1LitVGzcNvZ1bez3IzNPGEV7hJf8f17F55w+BLlE0End+PsZdO/m5i5Mx1gQits6DEXfC9G1w6w4Y9xzkboS3zuWizhF0D7uRV85U8OzLoOi11wJdvhAtggRkIYQIMN3nQ7v9JspC4KPB1/LxuI58PwHa9R/OjMFTiKzUyf7nP8kuyQh0qaIRlC5eCsA6VeeSveug/xVw6p1gMIKiQL/JMHEulO6H9y/i6TGj2BIzhlVdFA7OmYNr//7AvgEhWgAJyEIIEWB7F88nKqeCTwZ2ZEHcN/T7+lxSv5rIo9mTebj7Fp4bcBbtsz0snT6RGk9NoMsVDezAN4vJDbdApInuxmAY9d+6YFxf2jC46A3I3UT0kuk8evo/efWUNJwGDxkz7pK9kYU4QSZ/Nqaqqhl4HUgFrMCDwHbgTUAHtgE3aJrm82e/QgjRnO1+4VnC7XBjuwzs+WVwxv3Qph+K9g29177EQ53b8E6Fypg1Gu8/dQ3T7ng70CWLBqK7XJi3bmJrTw+jK6pQRtwJQZFHfrJ6dl14XnIfZyUN4Mt2t/He8Fv5x+KNlHw8l+j/u7gxSxeiRfH3DPIkoFjTtGHAWcBzwJPAPYeuKcB5fu5TCCGarfztG0jdeZBdPcykuQrgso9hyM11M4RnPYwy5TPiDJVM7pXOjsRw+r29jq+XvhToskUDKVu/CYu7li1pcIbHAP0u/+sXDLkZuoyFxffy+AAbqzpczrZ2CrkPP4QrO6dxihaiBfJ3QP4YmHHozwrgAfoDv9xd8g0wys99CiFEs7X81afxKTAsOQ/lrEeh3eDfPyF1KMqk+cSZquk6qJpasxHzfc+wM3dLYAoWDUr7agk+BQ628dGz28VgCf7rFygKjJ8D4ckEf3kdL5x7Ec8O64vL52bXLdehezyNU7gQLYxfA7KmaVWaplWqqhoKzAPuARRN035ZDFUJhPuzTyGEaK50XSd69UYykyEtWa27GetIkvqh/N9bdLUdIGdQPG2KdNbeNo2K2opGrVc0POfqVexNVOivO1EGTju2F9nC4fwXoXQ/fbbPYsIpd/LKqDCM23aT++zTDVuwEC2U32/SU1W1LbAMeEfTtPeB+uuNQ4Eyf/cphBDN0dofviSxxIOpXQ2G0Q/W7VLwZzqdAUNvZUL8z/zUsx0DN1Yx/79T5GasFsRdWUVMzl62pMIpwSkQ0+nYX9zuFBhyE6x/kxsTsyjscTPf91Aof/k1qpYvb7CahWip/BqQVVWNBxYB/9Y07fVDlzeqqnrqoT+fDch/qUIIAWz94DW8CvTskghpI47+gpF3Q9uTmdJjM6vbxzFogcbXL97Z8IWKRrFz8XKMus6OFIWTu0z4+w2MvBvie2L44kZeGzuct4ecyf5YyJx+M64DB/xfsBAtmL9nkP8DRAIzVFX9XlXV76lbZjFTVdVVgIW6pRdCCNGq+Xw+UtJ3k5vko82omw7fxutIjCaY8ApWq5nhg6vYlmQn5dnP2TT/lYYvWDS47B9W4jWAJcZNeM//+/sNmKww4RWorSRi8XRemHAPj49pg8PjJOPaa/BWVfu/aCFaKL9u86Zp2s3AzUf40jFMjQghROuxdNV3tC3ykTNYhx4XHPsLI1JQxj1Hh7mTWTtyLBlLtpB2z5NkG8NJPu84QpVoMgxb1rMnEQaGxEFowvE1Ete1bpvAb/9Nn04LmDLyYZ50XM09czPJ+de/aPvs/1CMf7GURwgByEEhQggRENs+fQOAjoOH1M38/R3dxkH/qVzq+ZLvzjyb3W0MlN95H0UfvN8AlYrGUFlaQZv8THa0VRiUctqJNTboGuh4Biy8m6ltbUT3v4Y3Rxmo/u47Ds5+0j8FC9HCSUAWQohGpus6idu3URam0+7s64+vkbMegfgePGmYy5ujx7OpvULhzAcofOEFuXGvGdq8aAUmXWdPMvTqOfHEGlOUul0tgqPg4yt4dtQlbBk0lG/7GSh5/XVKP5rrn6KFaMEkIAshRCNbtWs36gEXVe0UlOQBx9eIOQj+720MupdPgpfxytln8mN3haJn/sfBRx9F98mBpc3JwZXr8AG2RAPm2C4n3qA9Bi56E8oOYFhwDfMmzGLuqHZsaG8kb+ZM2dlCiKOQgCxEALi9blbkrODZjc/y0uaXWLJ/CdVuuYGmtVjx5avY3BDbr8+x3Zz3Z6I7wIVvYC7awaLwXN496xS+GqBQ8tbb5N1zjxwScZzcOTmUvPsenpKSRuvTuHMD2bHQN171X6MpJ8PZj8HuRYSteIIPzn+FZ8eFkxmjsP/Gm6jZlu6/voRoYfx6k54Q4uhW563mwdUPsr9iPwbFgE+vm+mzGW1M6jaJaT2mEWIJCXCVoiEFb1mOT4Hu519z4o11GgVnPYblmztY3GcKZ40agMP2MxfNX4CnopLk2U9gsP7NNc6tmM/p5MB11+PatYuDs2aR8uorBA8c2KB9Opxu2ubt46duCiPSzvJv4wOmQUE6/PQMqdEdeX7cy9zqnsL97zjRr7ySjm++ga1bN//2KUQLIDPIQjSibzK+4ZrFdaHoqVOfYs3ENayftJ43Rr/ByJSRvLr1VcZ/Np4VOSsCXKloKHnlDlKyyimOA3Pn4f5pdNDVMHQ6tk1vsygugZWnn8QbowxUL1nC3ksn4srO8U8/rUDBrFm4du3i5bMMVBlcZH7wRoP3uWXVZoJcHjIToVt3P+9Eoihw9uPQ4TT44mb6l+xk5rgXePBSC6V6NXsnT6Z65Ur/9ilECyABuYGtyVvDzFUzufyby7l28bU8t/E5siqyAl2WCIDl2cu5c/md9I3ry9yxcxnVbhQ2kw2L0cKAhAE8Pvxx3j3nXULMIVy35DoeWfMItd7aQJct/OyTVd+Rlq/j6xAJBj9+BJ9+Hwy6Dsval/giOIQDp49g1gQDFXs09owbR8n776N7vf7rrwVy7thB6Xvv8/UAhZAOTtJTjdSsXNXgNz1mrVgLgDHJiskW7v8OjGa4+F1oezJ88g9Orczi3+fN4d5JVrKDatl/1VUUvfiijA8h6pGA3ECq3dVMXzadqxZdxcKMhaD7KKnO5+UtLzP207E8uPpBymvLA12maCT51fncteIuOkZ0ZM7pcwiuKYeVz8EHE+GtcTDvSvjpGXobw/jo3I+Y1HUS7+98nynfTCGnSmb/GoorO5v8Bx8i8+JLGm09ZunydzD5oNNIP/8qXVHqdrYYdhvmje/wvqOIuFMv4o5psCVGp+D+B9h33ngqly6VXS6OQNd1dvzrFqqCIH2gkRuLPdQkegkuc+LYpTVo357Na6myQVrq3zha+u+y2OGyuXXrkj+5ilElO7l//OvcMymMn1QDhU8/w4GpV+LOzW24GoRoRiQgN4AyZxnTFk5jWdYybko5h2XuaN5a9yVzNy1j8YFsLnYZmad9zHmfnsfS/UsDXa5oYLquc/eKu3F73cw65WEK5s3A/VQvWHQ3eXs3k1NYQm3mGlh8L/yvD9YF1/Hvrlfw9MinyarI4v+++D+WZ8sd5/7mraxkx6QpHPzwA8p2biXz7n83+Ayaz6cTnbkLj0En8Vw/rD/+I0WB0++FMbMx7FnCozs+5/pB1/HIpUZmn2clp/gg2Tf8k8wJF0pQ/oO9r7+CbfcBPhli4M5L3idz2FOoMaUA7F70cYP1q+s6CTnp7ElU6J96gvsfH401FC6bBx1Ohy9vYVj6e7w9/l1eHNuWOWMMlG3awL5x51H2yXwZG6LVk4DsZ16fl9t/uJ3dpbt5JqQn//jhRfTCDLK7X4PjrGeIH3EX/6k182FODnHOSm75/hb+u/K/ONyOQJcuGshXGV+xNn8tl7e7DN+LE0nTXuVrfTA3xrzK1eEvMaLkP6hFj3NN9Btk97gBdnwBz5/E6RXlfDT2IxLtiVy/9HqeWv8Ubp870G+nWdHd7iP+Q+/1+lg+ZSrGgjzuvwRePFMBbS8l8+Y1aD1bckpIznNSGm/EEBHfcB0NvAqu+ArcDi5cdC9fJZ1Bfr9u3Hh1Nc+fGUvRwbqgnHH+BVQuWdIqw5C3rIzSDz7AW1FB8bZt1D79FLvbgDLmNDrH92TgaefTxhhOTjSULf+hwerIyC0hrqyKzATo2fXCBuvnV5ZguPRDOPl6WPsSXT+/kqVnPsLOPsOYPk1nZyTk3X032Tf8E09xccPXI0QTJQHZz+ZsnsOa/DX8yxfDiC2f86rnHHoVPcjQn4fR/bNYJmrDWDJiAeqoR3gvJ59pVU7m757PpV9dys6SnYEuX/hZtbuaJ9Y9Qbug9py9+Dliq/NYXz2ZvvlJ3Prdhzy/6U2+s/zMc9F5ZB3UGfrzEO5r8zKu8DSYN5W2PzzBu2e8yoWdL+T1ba9zyZeXsLlwc6DfVrOx4fJ/sPXiSfiqf9tCT9d1frzhcuJ3pPPuaQamRRo5L7aYvQmQ+c7LDVrP1xu+Iy0fTB0bMBz/ot1guG4ldD+f5JXP80XuVu5qcy4r+3mZdmUZr5yl4qisJPufN7J/8mQcGzc2fE1NSPZWjbz7H2DH8BEUXHQRtQadl8+3c+uIGQAoikJ+SD/K4nSs+wsarI7dKzdi0KE23kSQPabB+vkdo6luOc7F70JpJhFvnsHCpBR6tr+KeybW8vbIUCqWL2ffueOo+vHHxqlJiCZGArIf7SjewWtbX+N0XxQXZ6zmxeLxJOUn8MmW1/lq2YPM/ekpTvv0BZ59ai4T1nVl7/hvuMWUyMt5+VRU5nDpsm0k/gAAIABJREFUl5fw3MbnZDa5BXl3+7sUO4u5dtdubLtc5H4VS/AXS3FnZWGMicZbXk7NF5/T4bXZzJ43g3d2f8D2NQfol3M7G1OugPVvYnvrXO7rdBnPjHyGMmcZk76exHVLrmNVbsPfPNTcfd9mJ8atG9g44UIcB7KoKc1n4/Wjif9hHWtUheiJF3P2dRvpZUgjJxksGbn4ahvuxsjK9R9j8kHqkAb+VfovgqNgwqtw+ZcoQeFcsmoO39f4ODO0P4v7ZDBxYglfjxtI7b4M9l86kZxbb8V98GDj1BZg6b413HmFwoG21fzUD/59hYl/n/8UccFxvz7H1XYoZruHsHIPnlpng9RRtH49AJHtkxqk/b/U9Vy4YR10HYfhx8d4Zt+bPJJ4GV8NtHDbZIVCm0LW1ddQ8Njj+Fyuxq9PiACSgOwnXp+X+1fdT4hu5r/7N7M8fRAjFq8l7efvCW8TT9ToM0ns3Y1hBdt59KeXuOLDh7n16eU8EPcU/bpNYkHGXka7FV7a8hJjF4xlzqY57C3be0wBSNd1fLW16C6XHAzQhFS4Knh965v0LLfQa1kNZRuDCBk6lLTPP6PDV1+S8vLLpM37mM7r1pL26QJirruWhIMHuP/HF3lqzatMX9eDe4PvwV1yAF4axmnZ2/n8vAXc3O9m0ovSuXrx1Zwx7wweWPUACzMXUugoDPRbbnLsowbw1HgDluwM9p99BjmjhhG0LAst2cAPk3pwy+C7wGDAetqdhEU7MXmhfOumBqnF4/URk7UHgPizpzRIH38qbRhc/SOc/zJh7lqeSF/Ap7UhpBlTeLP7RiZP0dl93hAqlyxl35ixlM1f0OJ/+Dp98DSG9h7GjIvsfH5BKjeOe5hhycN+95yYHqcTZPdgAAr2bWuQOiy7VlIRBJ3UQQ3S/lGFxMKFr8HkBWCyMXb1wyzxBeGKTuXGiWUs7x9PyRtvkHnJJbj27w9MjUIEgBwU4idf7PuCbcXbeCi3hKyfOhCTlUXkxInE3XYrBrv91+f5nE7KP/0Mw5w5PLH8eb498DOjB4zjnpP68MjuR7jYVcSc5FBe3PwiL2x+gShbFKlhqUQHRWMx2KhxgWl/GcnbC2ibUUp8QSUR5Q5MnnrHytrtWJOTsXbqhLltMpakJMzJbbGkpWGKi0U5kZO7xDF7YcOb1LoqmfFpDdW5NuL/cxeRkycf9v1XDAZsXbpg69KF6GuuoWzePIzPPsecH57m+9whnJN2J48nLKDvorsJ2vQ+V535AJMvXMTiA0tYnLmYL/d9ydxdcwGIC46jc2RnukZ1pXdsb3rH9ibCFhGIt98kXDP6WSrCHuSmxI+YskIhyhXCumQ3K4dG8s7ZT2E2mAGI6XsuQV/cDXjYv2YJkQP8H1a255WTlO+kLFrBGJ/i9/aPymCA3hdDjwmwdS4dlj3CZ3nb+LHNQP5tULi72xrU5ATu+zGYvP/8h4ovvyB+xgysaWmNX2sjsFrs/OusF7nV58GoGI/4udi1U0fyg4IAyNu1iaSux3ks+J/w+nRiCw6wL0FhaMez/dr239bhNLh2BWx8h7jvHmBxTSmPJg3h2VHZrG5nZ/qiTDImXEjiQw8RNvrMwNYqRCNoFgHZ4/Xh8voItjTNcl1eF89ueI6OTp0eS4OpzXaQcN+9RF566WHPNdhsRF5yMeHnjqXw2ec46513GJm7mS83ncQLHW5iWod05mR8TLHiZklYIivsClllmei5O+m+z8mZe9wkltbN7BwMV9gbDwUdodpmAB0MOoTWOGhTupfUnzIJL3eh+H6bCTKEhWHr3Blr167YunUjqHcvLGlpzTo0Oz1ObCbb7y9WHaQwYxmL8layQ/GQEteLs9ufQ9vQto1SU427lg93fMCd33gg10LC/f8l8v8uPurrDFYrUZddRtg551D07HOM/Ogjhu9bw7K0QSxIVrna9zXJ715AmTWViMRzOS3pPIZ1uYVSTwY5zp3kVO8ls2wPK3NX4dPrdmRoH96evnF96RvXl96xvWkX1q5Z/33/HYqi8K9TZtCrzUBmJc6izFlGj5g+fDD8ceLt8fWfiD1+MCUhy3FvWNcgtSzRNjAsT8fVLapB2j9mRhP0mQjdL4B1rzB8xVOsdBTzdmRPngmu4rIxedzcvS9DvtxCxrjziLriCqKvuQZjiP3obTdDJsOf/7tiMxupDU8FMinL3OX3vvflFBNT6mR9J4XkxIY9re+YGE0wYCp0H49x6QPc/fPrnB8cwfXt2nDTlAru+cKO7+abcVx2GXG334bh0A8PQrRETTNx/sFz06cTuWM7Ve1PJrZ/P5L79SA6OR4dqHR6yC51kFHkIKe0hArfaiIiahnZuSejU0djNBgbvL652sccrClg1g8V1Gbbifv3v48Yjusz2O3E3/lvIi66kMLnnmfCwkVcuOcHasw2ltlUgkwuevmqOcmVi9dpAF0BRcceX0tIfychibV0DfEyHKhVFMoNBsqMBkoMBrLMZrZYLbwaZKNYMRJboXNKoYF+JTY6VVjwFe2j7KNN6K665RiGsDBsXbpgSU3F3DYZc2IbLG2TMbdpgzEqCsXY8N/D47U5aw2TvruKroY4+ptSSaisIXjfdqoLq6muMmPwgTdJ5+XuP/BG+hu8d877tI9o3+B13bnwbYZsq6D3VoXoS8cfUziuzxQZScK9M4iaMpmil15m1BdfwC4PedEp7IjvRkLIAfrlvIh5+/NUm2zscyeSVhVKTZUFX42CXhtDFT4qzT4c9hIKwz/ls7CPeT1MwZccz9DOZ3Juh3PpGtW1VYTls1LP4qzUv953OKTdcLISfiR5Z0aD1JC99XNCnGDu1atB2v/bzDY45UboPxVl3StMWfksl5QV82BEW55O3cr8aZE8vKMPxa+8QtmnC4i98UYiLrgAxdQs/tnwG0ucituYiXO//8dF5sYdJPtAj7eh+PPQmBMVFAljn4QBV9Jt8b0s3buU58MTuONiB1N+tDH6vfeoWrGcxPsfwD7opEBXK0SDaBafdOG2jSRXF9Lmh3nwQ902TA6LmaqwYMxmD6keJ8m1Hsw1ClY3OKywJVXh0asW8p+xTzdoAPD4PMzZ8Apn73MTtNFO2DnnEHXF5cf8emuHDiQ/9STugwep/mklzvR0ovPy8DhrMVrMWMLDMUcGY0uNI7hLEkZ7EBgtdZu+W0JQDEZsXjc2Tw3xbic4yxlcU8r4qmJyCw7yc8k+VlmyWJFaxvzOTsBJB5eb4VU1jMh3kZqn4yyuwZFZhWPrBqj5wxpmowlTXCym2FjM8fGY27bFkpaKtX17LGlpGCMjAxqwgjMreOHdWg6acjDW5pJSCDY3gImqYCO6z8ypW2u4fG0tt02Em777Jx+OnUuIJaTBasoqqWbHjnd4bLGXoA4xxN7z4HG3ZUlNpc0jDxP3rzuo/PZbKpctI2z9BnzVLvYT++vzgqghiZpfHytGHwaTDrqCz6Og++r/HeVSHPom26LeYnN4ELEJqaS060lsSncsbVMwJ7XBnJCAYjYfd93NUUy3EWTEziRyjwtPWRmmCP8uTQnOrFvbnDR0nF/bPWHWEBg6HWXQtVi3zGXG2te5IG87d8e6mdS/lMtTUjl/lYX8e++j5M23iL3pRkLPPLNpBbqGFNWJsrBv0bP9f4BGyaY1JAMxaQ3/Q/txSegBk+dj3Pc91y97lNH5P/OvYbGs7mjg1oWFuC+/nPDzziPu9tswxcYevT0hmpFGCciqqhqAOUBvoBa4StO0Pcf6+iuu/i/L+zzNk8X7cBTptC/U6VvgJK7YictjJN8KRTEGQiNC6BqVhDWrlIHp+Wj/W8S7MbOZPPj2hnprfLDtS2pqi5i00IcpNo6E++8/rsBojosj4vzxcP54v9RlAVIP/e9C6m7kW7lf4/PdS9hQ+BNvmrfzRpQPYxcjbR3B9Kx1c1ptISdXl2OqMlBbZSK3OpoCRxg1tQaMJRWE5BURvux7DJ7f9uI1xcXR7t13sKQEYE0lkNq5N6a004jJy8ETbsU9IB7D4JNIHXYO1phYalwe3pz1DkPen81j79Yy+R8HmLdrHlf0uKLBarrnq2+4cmkRZh3aPP2iX2bgTZGRRF56KZGXXoru9eI6cAD3gQO48wvwVVViCA7G3KYN5rZtMcfFYjD5oDIfivegF2zHsz+dqj07IS8bb7lOUIUZm8OMq8yHbed2vK7t5Nfv0ACW6GAsSXFYUtphatsRQ0wShtAwjOHhGCPCMdhsGMLCMIaGogQFNfuZ6NTkJH62WwAfubs2kHKS/3aayCuvIaaoBI9RxzZgpN/a9StzEPS/HEv/y+lTqPHI0jd4v/Br3o7J4suzvdzVzkTH9YXk3DIda+dOxFx/PaFnnNGkf8PkD9a4TtSE6tgKK/3etr53FT4F2vca6ve2/ar9qZjan0rnrHU8/s1sFoSv4bqpCpcvNzDqyy+oXLKYmOtvIHLyJAwWS6CrFcIvGmsGeTxg0zRtsKqqJwOzgfOO9cVKx9MY3vE0huk6P+es4LPdn/J6cTrFrjLigxMYkDCAizpfhBql/vqad+64hwFffMLCl9/Ee9ItGI0N81bnbHiFyT95MZcZSXz54Sa7Tk9RFIakdmFIahfgn1S7q1mdt5qVOStZm7+WLyoy+YJQFMJIscbQ3melQ3UVakUOXZzlJLs91BLEek9Htle2o7AmllhjGB1sCm3tDTcbezTm+DjSXn7xT78eZDFxzV1X8ITby7kfzub65W4+CnmbKd2nYFD8PwO2KauMsLWv0DtTJ+KSQVg69fB7H4rRiDUt7eg3T9nCIVZF6TIGMxAJoOvgKCG4NJeyjEyys3PZV5zBbscuqj354KwkospHQqlOWpGDdgf2EbYtA6PnKAclGI0YIyMwxcZhjovDFBeHOSmJ0DPPwNq+ic6O/YHZaMARmgRkUbRvu18D8prMHNoUeqmONaHYbEd/QYApsSq9L3mUzq6HiP72fb7Oe5Hbe1fQpXMFd2yoxrxJI+eW6ZgTY4iaMpWw8edjiowMdNkNIrxtF4pCvUTsdePTfX793LAXZpMfCd06jvJbmw1JaTsQ9eoPuTTrAN75M/lq6Bq+6APTF1XjmzWL0rdeI2b6bYSPO6/F/+AkWr7GCshDgW8BNE1brarqcd0KrCgKA5OHMfAPW/EcyWl3383PW5YyeFMZK1c9y7Ch04+ny7/0waZVmKr3c+ZandDhgwgZPtzvfTQUu9nO6Smnc3rK6QCU15azuXAz6UXpbC/Zjlayi2XuMoixA3YUINZgJc5VSRvnauK8HvDBVk8UiUUX0jM6wDce/QWDQWHqbZP5fOVShqzdyNzeB1mRs4Lhyf7/+3ru2/VcvvoAJTE6XW5/0u/tnzBFAXs0wfZo+iT3pE+9L5VWu9hXVMHKrM1sLdrCj47tFLm3U6uXY3NBkAviHQodKz10qK4lvtZHjNNHRI1OsBOMtdXUVhZTU7gX38+gV7uo1baS9NRzAXu7f5cvsQ+QRfke/x7GsipjHRfl6xj6NcIBIX4UZDHyr3GTubr6Yu797l2+L3iTaUNKSeln4d9bSmm7OZeCx2ZRMGsW9h4dCR07npDRYzHHN6/3+VfaxMVSZDcQ4oT8gr20Sejkl3adbi8RpVUciIHTYrv7pc3G0q5tCnfd+Cppa/fx1upHmHHROrru93Dtd0W477qb4qcfJfaaqYRefLUEZdFsNVZADgPK6z32qqpq0jStwTbtTYoI4p2h0+j83myWLniDYUNuqQsHfqLrOs+ve4+JP/gw+hTi7nnAb20HQrg1nOHJw38XGqvd1ewr20dGRQbZldnkVeeRX53PrqocVlQfxOGrxYKXcfaqAFZ+bGJDrXDDbfjumsKENV4+7fau3wPytpxykpc9T0wlOCf1RQmJ9mv7DS3SbqG/PYb+7U4HTv/1enFNMVqpxs6Snewu3U1meSbfV+ynyv37XzkbdYUIt4FEj48Ubw2JThdtLbuZ0Mjv40TEth+M0/wFjgP+3e+1Zs8S7LUQ2quvX9ttLBF2C/8790oqaiby0PK3WJz7ITcMcmHtG8KY/QoX7yzAnbGT/IefgIefwJIQSnCfngSdfCrW7n2xdmiPITg40G/juMSH2agNCgJcHNyX7reAvDunjMhyH1pnU7NcnmQwKEw8uQNj+7zAnB8280HVa/xz6k+ctMvLFT9U4Lr/f1ie+R+RI7sRdv7FmHqcDvbm9ZkoWrfGCsgVQGi9x4aGDMe/6DXubIq+/B/Jm904cn4mONl/2+gs3J5NcMUKRmz1ETlmWMDW4DYku9lOz9ie9IztecSvu71udHQsxuax5uzSs/vwwQu9GbJtI59krsXr8/p1l5PXFm3jsu072Z4G51/+mN/aDbTooGhOCTqFU9qc8rvrZc4ycqpyyKvOo8BRQIGjgJzKXDLLs/mpuoAqdxmnJw1qVgE5KqUHZWFAYYlf27Xn7gYg+qQz/NpuYwsLsvHYmdfwkG8aC7RveHf7R8y3bGF+p2BsNdEMyTZwzr5iOuUVUbF0BWXfrvz1tcaYcGxp7TGndcSc3BZb1y7Yhw5t8uHQaFCoDY4G8qjIz/JbuxmbttHJB0pi816aEmYzc+foAVw/ojcvrtjIRzXvsXrack7eU8sFq3Xafbqdgs/uJTj2TkI7BmEf2BNLz8EobfpAYq+6HTOEaIIaKyD/BJwLzD20BnlrY3Q6smsCs9p356KNm9i8/AUGX+q/gPy/VZ8z9mcXiqIQfdtMv7XbnJiNzWuXg2CLieKxEzE9t4mBm93sLE6ne6x/ttw6WOkk+Ov3sTt1yk6NxhDR8n5g+qMIWwQRtgi6xzSvXw//ldjYePaGgK3Uf8cKlzvcRJaWo6Nj7dPEb8Y6RiaDiYu6nstFXc8lvzqfbzK+YemB7/guaDNLO+kohBHujqJbrof+ByvpXlxBVGkBrr2F1GzZgK+2LhSnffMVtqa6g0M97rC2QB6O/AN+a7Ny02IAojupR3lm8xBmM/OvUSdx22kD+XF3Nm+Ez+OeTj8QV7qHU7b7OGVnEIkrfbByM4agDQRHubBFeLC0icLSsSuWnidj7HAyJPSs21lFiABrrIC8ADhDVdWVgAJMbYxOgyxGPH3Oho2bOLBuNYMv0f2yzGJHXgU1Rd9y6hadiMEdMCe28UO1ojGMPm8Yue9HMCS9jFU7PvZbQJ730x7G7/6Rje0Vhoz+h1/aFI2vTUQQW+0G4gq9fmtzS04xsaVuqiMMvztVs6VIsCcwtcdUpvaYSnltORsKNrCpcBPpRensCNnFynYe4LflFRafQlyNlySnj9u9ZXQJXOnHLq4LsJbaAv/NIBuy6rb9S+nnv5tBmwKjQWGk2paR6nRgOruK9/Pu1q94LH8Fvrx0euz30DVLoUOehYRcL4Z0NyzeAmzBaH0Bc4gXa6SFiEmTCL7k7kC/HdGKNUpA1jTNB1zbGH39Ubfhw6h571G8WV7I/hnanvgs8qsrdnDa7n2YvDoxN//HD1WKxtIrOZzZHYcyZu2XLEn/HvywDNnr08n5cB4jnR7WnGTk0p6TTrxRERBhNhMOu41QhwNndQU2e9gJt/nTge30L9TRE0KP/uRmLtwazsiUkYxM+W0ru1JnKTlVOWRXZZNflc/BmoOU15ZjNlhITukcwGqPnSWxE14F3MXFfmvTWlJAqR16dBnttzabos7R7bj/1OuB63F6nKzP38S3e1byacEmiqp2EVNaRWKJTmIJtCk207YM4gu87F6/kxGXBLp60Zo1i4NCTsSADrGsTogkMacE565vsJ1gQHa4PCzau4QXN/vwpVmx9Drl6C8S/8/enYdHVZ79A/+eM3NmX7LMZAOyJ5MAsggSEFD4KVEkQCAUlCqIevlGL6U0yPuTWkF+YkExKotWKr6CFSyQBajS4qtCQSTQAkVBckjIRvZ19n3O+f0xSQrZIRtJns919ao5c5Y7J0Nyz3Oe577vGhRFQfzQI8C5ryD+pQ5OtwMiobhb5zzNVuGRn/6GvBAgfMwosmp7AKMoCjalHwArynNzEDkhsdvnzL9xFkn1AJMw+KfdtMVX4gtfiS9Ga3q+5GFfUQeFwSrlwTUYe+R8PM9DZrKhQQ2opHdvBaCeJhFKMHX4ZEwdPhmA9z5UWipxuuRn/Fj6M47WX0ONvQx2To/7tePwYD/HSwxtgz5BjtLK8WmwDhPOnsHly99g4kPrunW+Y1cqMaX6e/iZgWHPDOwFN0PVfdPHo+5DMcblOZFf+C1Gxszp1vn+tf8rzLYa8fkjNF4a+3TPBEn0G4fvCAClqM090yMJMlP6Twh4IGDUHVW3JO4CKs1w2GWA0NQzc9PrLU4oTB6UBw/6P8EdoigKwYpgLBoZjEUju/9vjSB60qDvFUpRFNyjZgAAytkywN69EYCMC0WYmVsBq5yH8vFVPRAh0dcmhPni4rA4jCrhwV492q1zmewuBB7/ChY5kB8jwD0R5Jf8QMeFjAUAGApyu30unufhU1sGAJDeS8bDBip/tQJOCSCy9EzxpeIqPdQmwO03MEvfEcRQMOgTZACImjgZDiHgqBcCxT92fkA7qo12XC38B+4p5EGNVoDyG96DURJ9hRHQMI5NhJAD6i5e6Na5vvv2PO6tYvG/44Cp/iN7tGwc0T/EkdPBAbBXVHT7XPUWJ7QNVnhoHuKR93Y/OKJf+CvEcEloyKwceJ7v9vmqLudAyAFMoLYHoiMIojcMiQR5YqQGRRopZLVCoODEHZ/n2C9VeKjqJAQ8EP3ooz0XINHnImdMgYcCUKAHOO6Oz6PPyABHAX8bL8B03UCq+Eu0JzAgAFYp4DF0vwFOXo0BvnoPbGoalLh7c92J/uMjZeAUCaGyAmZX998XevYHAIBv5OAo8UYQg9GQSJBHD1Mj30+L4GrAUvCPOz7PsSsVuL+oFA2+PJSznu65AIk+NyF+OMo0YmjKAK7qzspym6wORF36AXWhQIOSwqTwhzo/iLjrhfhIYJEClNnR7XNdKCtAgJ4H5y/tgciI/kLTFJxSCeQOoNZY2e3zucpZAEDwqMndPhdBEL1jSCTIEkaA6uBoSJ1AfkkRYDd0ekxLBpsL166dQ+wNDi4dA0oT3fOBEn0mWqvAL0HDEVkBlFw5ckfn+GfWN9DYDMgZ5UasRAs/ydBZjT6YhailsEloMJbu10JmK68iSA9Ig8mj9IHOJfWW6auvKOj2uQT11QCA4aPJvHSCuFsNiQQZAJjYBABAhUEM3PjnbR9/gq3G1JqToAFEPzClh6Mj+hpNU6iLTQDjAQr/eWdPFcyHD8PFCJAdL8Kk4eQP3WARpJbAKhFAYuv+XFNrxQXIHIBvOPlAPdB5FBoAgP5G9xdvSkwW6BWAWhXQ7XMRBNE7hkyCHDl2ChxCwN7AACVnbvv4b69WY2pZPmp9eITMfKoXIiT6WtBkb8UJy7Uy4DYX3rhsdgy/+i/YowCziEZCKEmQBwsJI4BNIobcBvAOS7fOJa7JBwCodeN7IjSiH/HqYQAAS3n3RpBdHg5SkxsG1ZD580sQA9KQ+Rd6T5g/CjUSSGoZoCTnto51ezic+6UAuhsONETwoELJvLHBYMLIaFT40hBWegBD6W0d+8vX30HqdqAw0gwKwITACb0TJNEv7FI5FDbAXJd/x+dwezgoDbUAAPFIUgN5oBM0Tquz13SvukmNwQqlCbCrJT0RFkEQvWTIVCkfGaLCKT8/zLheDk/peQjcTkAo6tKx/76hR3z5cQg5QDM2FBAwvRwt0RfGjfDBF4EyjC0xgS/JAeUzosvHVh/9BgFCAU5GCBGtDIVSNPjbCA8ldrkPaL4KdSWXoGysi3y7Ko12qM3exhIMqVYw8A2LAQA4u9luuqa8ACozUONHfmf0hPPnzwcIhcJdAEZjCA36ET2CA3DZ7XY/N2HChOqWLw6ZBFkhFqImYARkv5SjzOJGaOVPwPCujeocZ6vxQPW/YZQCY2Ys6uVIib4iFQlQFDIc03Jz4bh0HJIxv+rScbzHA5+LZ0ANY3BRSeHR4IRejpToa05VEAAWDTdYhN/hA6PiOhPUBg9sCgq0hIwWDnSikEh4KB58N8v/VRb8C6EegNGQhZs9QSgU7goKCorXarUNNE13f+EAMWRwHEfV1NSMrKys3AVgXsvXh9SnLT5iDACgzCgFbpzr8nEnrlZhdGk9isM4KOKTeis8oh84okYBAMovdv39UHvuAhQ2E5iwOpgoYKz2zkYYibsX5xcOADBVl9zxOdjaUgTqebj9SHI8GGh8lLBLKNDdLP9nKPaWlVQOj+iJsAhgtFarNZLkmLhdNE3zWq3WAO/Th9av93E8/SpkzHRwFGC0KIEbXZuHXGt2wJX7E5Q2HnykGGhcqEEMDkFjJ8MpABqK6wBH10aGrn/9v+BA4Wq4t+0sSZAHH3FgFADAUtvqqVuXFdZeR6AeYIJI+b/BwF8hgkMMCG3dazdtry0CAGij7+mBqAgANEmOiTvV+N5pMxceUgnymIgwVPgI4KlnvCPIXahccOZ6HabUnwEHYPhE0ip2sJkePRaFQYCnVgiUd63ttPtsDqz+UlxUy+AjViNMFdbLURJ9zTfQ+zO1Nejv+BwNNVfgZwbkw0lL+sHAXyGGQ0RB4LjzzpsAwOlrAACa0JE9ERZBEL1kSCXII0NUKNQooKp2A6YKwHCj02N+vF6LyVUsCoKBcROf6IMoib40YcQw5AWLIK0VgC/svPyfu6EBvjfy4R9ixU8KNcZox4KiqD6IlOhLPiGBAAC3yXbnJ6n1VsDwCY3tiZCIfuYvF8EpFkDs6N5gJW3xPqnyGxbZE2ERd4mcnBz5okWLmlfjXrx4UTpv3ry4BQsW6FauXBnu8XgbD+3cuVOblJQUP3fu3PiDBw/6AoDZbKaXL18elZKSoluyZElsaWlpu5UADh065JOamto8P+e7775Tzp8/Py4lJUX37LPPRlosFhoANm/3u2fxAAAgAElEQVTeHDx37tz45OTkuLNnz8oAoKqqSth0neTk5Lj8/Hxx03mqq6uFM2fOHG2z2SgAqKurEzz55JPRCxYs0C1fvjyqqqqq1Zq18vJyZvHixbELFy7ULV++PMpoNN6SUxYWFormzZsXd/O2Tz75RLtp06aQ9r6/zz//3P+vf/2rGgA+/vjjdifq79ixI+CNN95o9Uj/t7/9bVjL7S1/Nl01pBLkAKUYN/y08DdwsDupLs1DvnjlBkKrrSgP4yGPnNHrMRJ9SyigURyigdBDwX7hVKf71574ATR4+ATVohBOjNa0OXWJGOD81QpYxQBvcd3xOcR6bzkwWSR5jwwGEkYAJyOExAG4PHf+vhBaHXAJAKHapwejI/rT+++/H7hu3bowp9PZPFqybdu2kNTU1Irs7GzW5XJRR48eVdfU1AgzMjICsrKycvfu3ct+8MEHIziOw+7duzXx8fHWzMxMds6cOXUffvhhUFvXWbt27Yht27YN4ziu+TpvvfVW2M6dO/MzMzPZ0NBQx549ezTnz5+XXbhwQXn48OGrW7duLXjzzTfDAGDjxo3Dk5KS6jMzM9nf/OY3ZSzLSgDg2LFjquXLl8c2NDQ0J+YffPBB8Lhx48zZ2dnsU089Vb1p06ZWyeiOHTuC5s2bV5eVlcXGxcXZ9uzZo+nuvVy2bFnd3LlzDQDw2WeftUqkrVYr9cILL0RkZGS06rKza9cuTUFBgfTmbW39bLqqx6pY6HQ6NYAvAKgAiACksSx7RqfTTQawFYAbwDcsy27oqWveLoqiYBkeA5zNR4nNB7ElZ4B72q9KcaPeCv+8C6B5gIn1A4TidvclBi5jZBSActh+vgopxwF0+58bS//3OISMEAXBFHgAo/xH9VmcRN/RKESokNAQ2NxAJ++JtnAcD6nZCABgIuI62ZsYKFxiETR2Owy2emgUgbd9PM9xYGwczHIhefLUC/b8WOSfdaG020nazRbeO7x2+f3hHdb2CwsLc+zYseP6K6+80jyyq9PprHq9XsBxHKxWq4BhGF6r1bqPHj16hWEYFBUViRiG4WiaxksvvVTtdnvntpeXl4uUSmWbfe7Hjx9vTkxM1H/55ZfNI6tffPEFGxQU5AYAj8dDicVi7uzZs4qEhAQjTdMICwtzejweqrq6Wvjzzz8rYmNjbUuWLIkNDg52bNy48QYA0DSNP//5z+yCBQua5/0UFhZK0tLSygDg/vvvN//hD38IbRnPxo0bb/A8D4/Hg8rKSubee+/t8grWwsJC0apVqyIDAgKcZWVl4pEjR1refffdkk2bNoVoNBqXXq8XmM1mwZo1a0K3bNnSvFrabrfTCxYsqJsyZYqxoKCgeQX06dOn5T/99JMiJSWl5ubtbf1suqonR5DTAHzHsuyDAJ4G8GHj9o8BLAUwDUCCTte/LaVkI71toqtdQUDR6Q73/fF6LabX58AqBiLue6AvwiP6QXDUSNQrAGOVG6hl292P53nQ/zoLLlCIX3y9fxxH+pN5hIORv0IMi1QAxkYBtobbPr7W4oDc6v1bIQwmC3sHC5dYCrkDMBrvrLqJvrYcjJWCTUlq6Q8mCxcu1DMMc8vcm4iICEd6enroww8/PKq+vl744IMPmgCAYRh8/PHH2qVLl8Y/+uijzYm3UCjE4sWLYzMzMwNmz57d5i+dxYsXN7T8YBUSEuICgOzsbJ/z588rly5dWmc2mwU3J9kymcxjMBgE1dXVIpVK5d6/f/+1oKAg59atW4MAYNasWUaNRnNLUh4bG2v75ptvfADgq6++8nE4HK3yRZqm4fF4qEceeWTUxYsXVU3fY2coiuIBoKysTJKenl505MiRqzk5OeqKiormQds1a9ZUKhQKz83JMQD4+fl5EhMTjTdvKy8vZ3bs2BGyadOmVv8w2/rZdFVP1kF+H0DTpwchALtOp1MBELMsex0AdDrdMQAPA7jYg9e9LWPj7kO9ArDUUIDmF8BSC8jb/sD5Y34tnqgsweUwCvPH/LqPIyX6yqTh8cgbRsG3XAwUngIC4tvcz5GXB6mxHpo4M/b7xCFQyEMj7dHBCuIu4SNlYJKI4GNxAeYqQO5/W8eXNdggs3rgFAEChbyXoiT6mluqhMhdBWNtIRBy320fX1+WD5mFgktL3hO9Yfn94XWdjfb2lfT09BF79uzJHT16tH3nzp3adevWjWhK9lJTU2tWrFhR+9RTT8UcP37cPHPmTBMAHDhw4NrVq1clqamp0bt27cpbu3ZtOAAkJSXVPf3007XtXWv79u0B3333nd/u3bvzpFIpr1AoPE1zkQHAarUKfHx8PEql0jNnzhw9ACQmJurfe++9dj+9r1q1quK1114LTUlJ0U2dOtWg1Wpdp06dUmzdunUYAKxYsaJyzpw5BpFIxH/77bdXvv32W+Xq1asjMjMzm0eZpFIp53K5bkmsrVYrLRaLOQAIDg62q1QqDgD8/Pxcdrv9jgZtDx065GswGITLly+Pqa+vFzocDjoyMtK+bNmybr0X7igYnU73rE6nu3zz/wDEsCxr0+l0QfBOtVgL73SLmzN9EwB1dwLurvGhGhRoJZCUNy6+KW57FJnneVz/dy7UZjcqwij4BJKSPIPV+OAYXAuhQJkEcF/+tt39ar//BwDAJ8iMX2g3GT0exGiagkUihdwGuM2331r4el0t1GbApSIjhYOJR+4LADDW3NkIcnU1C7UFgD8p/TfYKRQKt0ql8gBAYGCgy2QyCXJzc8XPPPNMFMdxYBiGF4lEHEVRfHp6etDevXv9Go/z0DSNmJgYR0ZGBpuRkcF2lBxv2bIl6OLFi8p9+/axWq3WDQCTJk0ynzlzRu3xeFBcXCziOA5ardY9evRo07Fjx9QAcObMGWVkZKS9vfOeOnVK+fjjj9dkZmay4eHh9jFjxpinT59uboppzpw5hjVr1oQeP35c2Rg317LcXkBAgNtms9FXrlyRAIDb7UZOTo5q3LhxVgCdTjPiu1BpDABefPHF6qNHj15tvFeVs2bNqu9ucgzc4Qgyy7KfAvi05XadTncPgL8AeIVl2X80jiDf3E9TCeDO6yb1gAh/Ob7098W9RRXgIAVddBoYOb/VftdrzIgt9Jb9Eo8iZZoGsxHKEWCH0wA4WP/5T6hWeABa0Gq/6u//AU4lgU3JoMheiyQy/3hQs0uVUNhrYdTfwO2mMwW1RYgz8oAvGSkcVBTedUGW2rI7Ory6Nh+xNsAaSKbdDHYbNmwoXrlyZZRAIOAZhuE2bdpUHBER4YyNjbUmJyfHURSFKVOmGGbMmGGOi4uzp6WlRWRnZ2s5jsObb75Z2JVrVFZWCnfv3h0SFRVlXbZsWSwAJCYm1j///PM148ePNycnJ8fxPE/9/ve/LwGA119/vfTVV18NO3jwYIBcLvds3769oL1zx8bG2tesWROxZcsWaDQaZ3p6elHLfZ555pnq119/Peyjjz7iKYrChg0bbvnkSNM03nzzzaK1a9eG0zQNt9tNPfDAA/qZM2eaCgsLRZ19f2FhYbYXX3wx4qOPPurS/ehpPblIbySAgwCWsCx7CQBYljXqdDqnTqeLAlAA4BEA/bZID/CODDUMiwD9rwrUi0ZBU/RDm/v9eL0OD9SdQ6UPoBv/SB9HSfQlRsCgdkQQbKIyWG54oKq4BAy7teY1Z7FA9MtPkEQ6cDVsAsCXkhHkQc4h94XIXYiG+qLbTpDrGq7C3wRIIskUnMGE9vEmttaGO2sgY64tBgCoQ0mJt8EmIiLCeeTIkdymr6dPn26ePn16bsv9Xn311QoAtzyWCgoKcu/bty+vK9eZMWOGacaMGaam465cudJmAf+1a9eWAyi/eVt4eLjzL3/5S7vXOXXq1M9N/x0TE+M4dOhQq/hvFh8fb8/IyGh/4Q7avw8t71fTfzfGDQA4ePDgtfbO294IcVvbW16rq3pykd4mABIAW3U63QmdTne4cXsqgL0AzgG4yLLs2R685h0R6yYAAG7YNUD1FcBQ2mqfM2wlIqtr8XMEhXvjl/R1iEQfG+EbgcsjxLBUiMFfP97qdfOpUxC4XQgeXg82yFvXNt6/7bnKxODgUXqTW1Nt698PnbEY8uFjBuTDWi38JgYwoaaxgYz+9hduAoBL702s/UibaYK46/XYCDLLsq3nKXi35wCY3FPX6Qn3jJkGo3Q7jCVWIBxA7lEg4fnm190eDsZzZ8G4eJRGShCkIo/DBrvRAVH4d2QO7rsuhOvMIYgeWH3L69VHj8EpFkKs5ZArEkIr1ZIFeoMco/IuzDPV3f5ooUBfChqAMpyUeBtMZBrvFAuHqWtt6VviTd5F/upg0n2TIO52Q6pRSJOpEVHIHSaENK8c0MQC7Ne3vH6pVI9Z5SfAUYBiwrj+CZLoU5E+Efgp0ttC1vxTPlB3vfk1zumE/eQ/IA1xwhE6FVcNBYjzI4nPYCfy8SZDVsPtjxaKjN41NZJw8pRhMJH7e5t7eCzWOzuBzbsmSq4N7qmQCILoJUMyQR7hJ8O1YA3866xwB/8foOgHwPaftYOn8moxujofeSHA2Hvm9WOkRF+JUEegyheoUCphLJYBPx9sfs3yww8Q2G0IGdEAenwKCg2FJEEeApR+3lrXFlOXSnveQmq2AACEw0b0aExE/1L4e6tY8DbnHR1PObwd+AQ+pIseQdzthmSCTFEUjNHeBVZ1thCAcwM/7W9+veJfpyCvd+NCNI2JwZP6K0yiD0X5RAEUhb/FhcJWK4L9u32Axw2e51HzyS5wUhqe4Urkh9wDD+8h84+HALXGO8rnsnS5ORQAwOxwQ2prbBIS0KobKjGAqX0VcNMAZWuz0VnHHGbAAXhogFYoej44giB61JBMkAEgbOJMOIUAe/EaEHo/8MMHgNsBvdWJh37+AgBQMlqDYQoy/3go8JP4wVfiix/Hy+ERCNBwQQ+c+xOsZ8/BcfEigkfWo2HsM7hqyAcAxPuRBHmwUwZ4a1d47I3tpruo2miH2M6BowCBul/LvhM9zFcmhkNMgXZ2/f3QhDNWgrbTsEoFpM00QQwAQzZBnj92GvKDAc+lS8CD/w2YyoHTW3Hx+wzEVhajVgWE3zujv8Mk+lC0TzREQSZ8N/xe6AvlqN22BZWv/ha0lIMjUobhD7+I3PpcKBkl+eA0BKi13gSZcwKw1Xf5uAqDDRIr4JALQNFD9lfsoOQjY2AX0RA6AHSxiUETS+0NCBwUHDLSPGYwysnJkS9atEjX9PXFixel8+bNi1uwYIFu5cqV4R6P96nDzp07tUlJSfFz586NP3jwoC8AmM1mevny5VEpKSm6JUuWxJaWlrZ6k+j1esGyZcuiU1JSdPPnz4/78ccf5QBw5swZ+dy5c+OSk5PjNm/eHAwAHo8Hq1evDp0/f37cokWLdHl5eWIAyMvLEy9ZsiQ2JSVF9/jjj8fU1tY2F/zPy8sTJyYmNtcuLSgoEKWkpOgWLlyoe/HFFyNu7sx38/e4cOFC3aJFi3RPPPFETGVl5S2FH06cOKF8/vnnb6lp+MYbbwz7/PPP221Nmp6eHnT27FmZzWajPvvss1Yr4du75rZt2wIfe+yx+KSkpPhDhw75NJ1r0aJFukWLFukeffTRkQkJCWPbu25bhuxv7xhNEC6HKRBUWgeXVAdEzwKOv4UHc16EpUqM89EUpg2f3t9hEn0oUh0JK1+OXaOToI/UoeaiBJy+Fsopdvw4/VMI5b64XHsZIzUjyQjQEOCrlMImogAH7W033UU36sqgsgIepbgXoyP6g4QRwC4SQOQAeLux8wNuYqotgcQGuBSyXoqO6C/vv/9+4Lp168KcTmfzH4Zt27aFpKamVmRnZ7Mul4s6evSouqamRpiRkRGQlZWVu3fvXvaDDz4YwXEcdu/erYmPj7dmZmayc+bMqfvwww+DWl7jo48+Cpw0aZIxMzOTffvttws3btwYCgAbNmwIe//99wuzsrJyL1++LL9w4YL0yJEjPk6nkz58+HDu6tWrSzdu3DgcAF577bWwVatWlWVmZrKLFy+uuXbtmgQA9u7d67dq1apIg8HQnJi/9dZbw3/1q1/VZGVlsffdd5/pww8/DGwZ08aNG0Nff/31koyMDPahhx5q2L59e6u4b9fq1asrExISrJWVlUx2dnarBLmtazY0NAj2798fkJ2dnfv5559fe/fdd0c0naup859Wq3V2tQFLkx4r8zYQFd07CvjhLIoOHkLMy/uhP/sFcnbsRpi7EjmjGDwbnNDfIRJ9KNonGla3BWPvUeNl5X/hw/kNyKoz44zDH3+fMQ0OjwN5DXlYPmp5f4dK9AEfmQglYtr7ON1cDQR2rXNiVc0viLTwoHzIPNPByC4WQeZwwmoqhVza9Sk0NXWFUNgBfhiZdtNrzv3JH//+smfrb457ohaTnu+wbXFYWJhjx44d11955ZXmAtc6nc6q1+sFHMfBarUKGIbhtVqt++jRo1cYhkFRUZGIYRiOpmm89NJL1W63GwBQXl4uUiqVrSa5v/DCC1VisZgDALfbTYlEIt5gMNAul4uKjo52AMCUKVOMJ0+eVNXU1DDTpk0zNG6zpKWlya1WK9XQ0MB8++23Punp6cPj4+Mt69evLwUAtVrt2b9/P/vQQw/d03S94uJiaWJiYjEAJCQkmDdu3NhqxfH27dsLQkJCXADg8XgosVjc5ccqJ06cUH7yySdBQqGQq6ioEM+aNat+zZo1lS+//HL4nDlz6o8dO+ZbUlIi3bx5c3Bjc5V2rymXy7nAwECnxWKhLRYL3XIAKzs720epVHoSExNv61PtkB1BBoBZD87HtRCgMvsgQAvwx4b7wOVRKA8WQ3LvOChFys5PQgwaUT5RAIB5E2mIxCIsua5GtnkE1iRPgUwkBFvPws27MVozup8jJfqCUiyERcRA6KAAS02Xj9MbCqC2ACINqZM9GDnFEsjtgMl0e+2mG0wlUFoBgW+7T5eJAWrhwoV6hmFuSQ4jIiIc6enpoQ8//PCo+vp64YMPPmgCAIZh8PHHH2uXLl0a/+ijjzYn3kKhEIsXL47NzMwMmD17dqvakr6+vh6ZTMZXVFQI16xZE7lq1apSo9EokMlkzcm0QqHwmEwmgcViEahUqubtNE3z1dXVTElJiWTatGnGAwcOsEajUbB3715/AEhKSjIoFIpbJtZHR0dbv/76ax8A+Pvf/+5jt9tb5YtNierp06flBw4cCEhNTe3So7amBLaqqkq0a9eu61lZWbn79u27ZfR55cqVFaGhobabk+OOrhkQEOB87LHHRqWkpIxcvHjxLXF8+umnwb/97W9v6SrYFUN6BDkp5iFsHCXEiv+txIH/+SvO/5CHZGMF/jiNxvThD/R3eEQfi/aJBgDYqHIceflx/PHEdSwYPwyjG0d8LtdeBgCSIA8RNE3BIhZD5LDfVoJstpTAxwLIAsk89cHIKZFD5qiF0VSJ23merLdUIMoG2MgHp94z6fm6zkZ7+0p6evqIPXv25I4ePdq+c+dO7bp160Zs2bKlBABSU1NrVqxYUfvUU0/FHD9+3Dxz5kwTABw4cODa1atXJampqdG7du3KW7t2bTgAJCUl1T399NO1P/30k3T16tWRaWlpN2bMmGE2GAy0zWZrnkdsNpsFKpXKY7fbabPZ3Lyd53kqICDAJZVKuaZrzZw503D69GkVgDbv17p160pff/310MOHD2umTp2qV6vV7szMTN8vv/wyAABeffXVGxMnTrQeOHDA99NPPw3+05/+lBcQEOC++RwSiYRzuVy3DOdarVaBRCLhACAyMtLGMAwYhuFEIlGXR59bXvOvf/2ruq6ujjl+/PjPAPDkk0/GTpo0yZyQkGC9cuWKRKFQuGNiYm6vHBGG+AiySqSC/sEJqFILEP7+erx2bg8sWiVyRgmRFJnU3+ERfcxX4gt/iT+uNVyDRiHG60kjm5NjALhSdwV+Ej8EylpNxSIGKZtEBqkdsJsqOt+5kcdSCcYDKIZH92JkRH9xSZWQ2wGz9fY6LFqtDRBygCqQNAkZChQKhbtpFDcwMNBlMpkEubm54meeeSaK4zgwDMOLRCKOoig+PT09aO/evX6Nx3lomkZMTIyjaf7s008/XXvlyhXJqlWrIrds2VIwe/ZsIwCo1WpOKBTy+fn5Yo7jcObMGVVCQoJ5woQJ5pMnT6oB7yK+iIgIm0wm44cNG2Y/efKkAgDOnTunjI6OtrUX//fff69as2ZNaUZGBisQCDBlyhRjSkpKQ1NMEydOtO7bt8/vL3/5S8C+ffvYqKioVsXB4+Pjbfn5+bLy8nIGAGw2G3Xp0iXFuHHjOu20Q9M0eJ5vtdinrWuq1WqPWCzmxGIxL5VKeYVC4TYYDEIA+Mc//qGaOnXq7S0YaDSkR5AB4OF7HsP/W/ovvHdQCrGvBqvn1WBa1DQEykkSNBTdo70Hl2outfna5drLGK0ZTRboDSEOqRyKakBv7vpoocDsrXghDQnvtbiI/uNR+EHsBqpNt5cgOy3ehjMqTUhvhEXcZTZs2FC8cuXKKIFAwDMMw23atKk4IiLCGRsba01OTo6jKApTpkwxzJgxwxwXF2dPS0uLyM7O1nIch7YWk73zzjvDXC4X3bQ4Ty6Xu/fs2XN9/fr1xWlpaREcx1EJCQnGyZMnWzweD06fPq1KTk6O43kemzdvLgKAt956q2jDhg2h7777LhUcHOxYv359bXvxR0dH21evXh3JMAwfERFhe/vtt0tuft3tdiM9PT1Uq9U6/+u//isaAO69917T7373u+apDGq1mktLS7vx3HPPRYvFYs7tdtNLliypjomJcZSVlYk6un8BAQEul8tFrV+/ftiGDRvKOrvmDz/8YJ0/f34cTdMYO3as+eGHHzYCQGFhoWTatGkkQb4TiWGJ+CjoI7yxUoZ7h43DjfwsbIh7or/DIvrJOO04nLhxAg32BvhKfJu36+16FBoKMTtidj9GR/Q1t1wFuR0wWKu6nCAzNu/giMCfzDUdlBTen6vZcHsJstvuAMBAoe32Qn/iLhQREeE8cuRIbtPX06dPN0+fPj235X6Nc2pveSQVFBTk3rdvX15H59+zZ8/1trZPmTLFcvN1AUAgECA9Pb2k5b7jxo2zZWdns+1d4+zZs82jQ5MnT7Z8/fXXV9vbVygU4vz58//uKGYAWLBggX7BggX6lttnzJhhmjFjRnOb0qZrb9++vahp29///vdfunrNxsS81Tzjpmktd2JIT7EAAB+JD9JnpKPYXoGD+VlYGrcUEwMn9ndYRD8Zq/WWSWw5ipxTmQMePCYHT+6PsIj+olBD7AYMpq5Na3S4PWDs3ieNQjLXdFASqbwJstXQah1V+5wWuJzeKZZCskiPIAaEIT+CDAATAifgj7P+CLFAjPEB4/s7HKIfjdKMgpAS4lLNJcwYMaN5e055DpSMkizQG2IEKm+zEJOx1QBIm+rMTojs3sXgQjKCPChJ1Y0JssnQ9YPM1XA5vONRAh+f3giLIIgeRhLkRmRkkAAAqVAKnZ/ulhFknufxY/mPmBQ8CUKa/JMZSsRq7yiwxWz1dk7rZP55rdEKxsZ720z7+na4LzEwyXy8P1enpdN1Rv9hrgbvbEyQfUmCTBADwZCfYkEQLY0PGI+fa36G2WkGABQbi1FhqcD9Iff3c2REX5P7e+eL2p0c4Oh8nUdDzQ1IbRScMiEogaDT/YmBR+qjAgC4bF2vGsWZKkDZKXAABCpVL0VGEERPIgkyQbTwWMRjsHvs+KrgKwDA14VfAwBJkIcgpX8AAMDhEgDmzmshV9fmQm0BPGrSTniwkvl6Sz967K4uH+NoqITQQcEhZcgHJ4IYIHr8ebFOp4sDcBZAIMuydp1ONxnAVgBuAN+wLLuhp69JED1ptGY0RvqPxH52P2ZHzMYXv3yBWWGzMFw5vL9DI/qYQuN9HO520d5mIZqOaxvr9QUIsPCgfUk74cFK4asGD4B3tOoG3C5rQznEdgoOhaT3AiMIokf16AiyTqdTAUgHcPOzp48BLAUwDUCCTqcjq+CIuxpFUViiW4J8fT6W/W0ZLC4LXhj7Qn+HRfQDlda7SM/tpAFL52W9zJZSqKyASBPQ26ER/UTl3/jhxwXAZe/SMXpjKWR2wKOQ915gRL/KycmRL1q0SNf09cWLF6Xz5s2LW7BggW7lypXhHo/3A9XOnTu1SUlJ8XPnzo0/ePCgLwCYzWZ6+fLlUSkpKbolS5bElpaWMi3Pr9frBcuWLYtOSUnRzZ8/P+7HH3+UA95GIHPnzo1LTk6O27x5czAAeDwerF69OnT+/PlxixYt0uXl5YkBIC8vT7xkyZLYlJQU3eOPPx5TW1vb/DgjLy9PnJiYOLLp64KCAlFKSopu4cKFuhdffDHCYrG0yhevXLkiWbBggS45OTnu5ZdfDne5bn2qcuLECeXzzz8fefO2N954Y9jnn3/e7grm9PT0oLNnz8psNhv12WeftVsK6He/+92ITz75RNv0dVv3tb171lU9liDrdDoKwJ8A/A6AtXGbCoCYZdnrLMvyAI4BeLinrkkQveWxiMeQEpMCChR+Hf9rxPjG9HdIRD/waUyQeSfVpXbTVmc1lDZAHEDaTA9War/GOcROCrDVd+kYg7USCjsPKBW9GBnRX95///3AdevWhTmdzuZVvNu2bQtJTU2tyM7OZl0uF3X06FF1TU2NMCMjIyArKyt379697AcffDCC4zjs3r1bEx8fb83MzGTnzJlT9+GHH7Yqlv3RRx8FTpo0yZiZmcm+/fbbhU0NQzZs2BD2/vvvF2ZlZeVevnxZfuHCBemRI0d8nE4nffjw4dzVq1eXbty4cTgAvPbaa2GrVq0qy8zMZBcvXlxz7do1CQDs3bvXb9WqVZEGg6E5MX/rrbeG/+pXv6rJyspi77vvPtOHH37Yqnvali1bhq1atars0KFDuQDw9ddfd3sF6urVqysTEhKslZWVTHZ2dqsEuXnHe4kAACAASURBVLq6WvjrX/865vTp082P6dq7r+3ds666oykWOp3uWQC/bbG5GMBfWJa9pNM1f4hSAbh5ZYsJQCQI4i4nEUrwxv1v9HcYRD/zVctQLaQAJ92lOchORx3kDkBGmkEMWjIxAztDg3ZxgLUeUHXeGc9kr4XcDjBqMvWmN3159Uv/I9eP9GgB8nlR82qfiH+iw0LoYWFhjh07dlx/5ZVXIpq26XQ6q16vF3AcB6vVKmAYhtdqte6jR49eYRgGRUVFIoZhOJqm8dJLL1W73W4AQHl5uUipVLaav/PCCy9UicViDgDcbjclEol4g8FAu1wuKjo62gEAU6ZMMZ48eVJVU1PDTJs2zdC4zZKWlia3Wq1UQ0MD8+233/qkp6cPj4+Pt6xfv74U8LZq3r9/P/vQQw/d03S94uJiaWJiYjEAJCQkmDdu3DiiZUy7du26LhQK4XA4qLq6OqaptXZXnDhxQvnJJ58ECYVCrqKiQjxr1qz6NWvWVL788svhc+bMqT927JhvSUmJdPPmzcGNzVUAeEfbX3755fLjx483/2Nq7762dc+6Gh9whyPILMt+yrLs6Jv/B0AH4FmdTncCQBCAb+BNjpU3HaoE0LWCogRBEP1MyghgEQtBd3EEmbd5xwOkGpIgD1YURcEuEkDg6voIssVtgNwOSHz9ejk6oj8sXLhQzzDMLclXRESEIz09PfThhx8eVV9fL3zwwQdNAMAwDD7++GPt0qVL4x999NHmxFsoFGLx4sWxmZmZAbNnz27VhcbX19cjk8n4iooK4Zo1ayJXrVpVajQaBTKZrDkpVSgUHpPJJLBYLIKbk1Wapvnq6mqmpKREMm3aNOOBAwdYo9Eo2Lt3rz8AJCUlGRQKBXfz9aKjo61NI8J///vffex2e6t8USgUoqioSPTII4+MMhgMwjFjxnSp9iHVWC6zqqpKtGvXrutZWVm5+/btu+WX5sqVKytCQ0NtNyfHABAZGemcPHmypeU527qvbd2zrsTX/P3dzs4dYVm2efWKTqcrApDYuEjPqdPpogAUAHgEAFmkRxDEgEBRFKxiEUQON2Cu6nR/2u6dkyr0IzWQBzO7iIHY6YbDXAVxZztzHKweC0LtSkj9tZ3tTXTDE/FP1HU22ttX0tPTR+zZsyd39OjR9p07d2rXrVs3oqntcWpqas2KFStqn3rqqZjjx4+bZ86caQKAAwcOXLt69aokNTU1eteuXXlr164NB4CkpKS6p59+uvann36Srl69OjItLe3GjBkzzAaDgbbZbM3ziM1ms0ClUnnsdjttNpubt/M8TwUEBLikUinXdK2ZM2caTp8+rQLQ5v1at25d6euvvx56+PBhzdSpU/VqtdqdmZnp++WXXwYAwKuvvnpj4sSJ1vDwcOeJEycuf/bZZ5o33nhjxI4dO4qaziGRSDiXy3VL8Xir1SqQSCQcAERGRtoYhgHDMNztju62pa372vKe3c75+qLMWyqAvQDOAbjIsuzZPrgmQRBEj7BLJJA4ALu5ssP9PBwPOL2PSQVkpHBQc4jFkDoAk7mi851tDbB4AAEPyPxIgjxUKBQKd9MobmBgoMtkMglyc3PFzzzzTBTHcWAYhheJRBxFUXx6enrQ3r17/RqP89A0jZiYGEdGRgabkZHBPv3007VXrlyRrFq1KnLLli0Fs2fPNgKAWq3mhEIhn5+fL+Y4DmfOnFElJCSYJ0yYYD558qQa8C7ii4iIsMlkMn7YsGH2kydPKgDg3LlzyujoaFt78X///feqNWvWlGZkZLACgQBTpkwxpqSkNDTFNHHiROvy5cujr127JgYAuVzuoVo0UoqPj7fl5+fLysvLGQCw2WzUpUuXFOPGjet0pJmmafA833Fnpkbt3de27tnt6JW2YCzLht/03zkASJs6giAGJKdECrmVh9FcjY6KdNXr9aAa6/eQEeTBzSGWQepsgMlSjU4nvJorYXF5/9RKfHp0eixxF9uwYUPxypUrowQCAc8wDLdp06biiIgIZ2xsrDU5OTmOoihMmTLFMGPGDHNcXJw9LS0tIjs7W8txHN58883Clud75513hrlcLrppoZlcLnfv2bPn+vr164vT0tIiOI6jEhISjJMnT7Z4PB6cPn1alZycHMfzPDZv3lwEAG+99VbRhg0bQt99910qODjYsX79+tr24o+OjravXr06kmEYPiIiwvb222+XtNzn+eefr/jv//7vCIZhOLFYzL3zzjvFN7+uVqu5tLS0G88991y0WCzm3G43vWTJkuqYmBhHWVmZqKP7FxAQ4HK5XNT69euHbdiwoayjfePi4hxt3dfly5dHtXXPOjrXzSie7/aodo9buHAhn5WV1d9hEN2g0+nOsyw7safPS94bA19vvTeA3nl/fLkoGcGlLIYl6xHzf8vbbTedn3sJe7c/jsXfATE/nIJQQ5KhOzEQfndkJs+HovYagv/7AYyZt7Pjna9/j/Q/P4fH/iLGsG1boUpM7JEYhqK23huXLl0qGjt2bLuJHkF05tKlS5qxY8eGt9xOOukRBEF0gJerILcDBngAW6u1M82s1UUQ2L3Js8Cn29WOiLsYL1NA5gTMti5MdzVXw+n0/qkVqEgVC4IYKEiCTBAE0QFa4QOZAzBQNGBqfx5yQ10+5DbAJROBEvbK7DXiLkFJFZA6AKOjC0WZTJXeTowABCplJzsTBHG3IAkyQRBEB4RqP9A8YPLQgKn9RVlGYxFUNoDzIUnQYCdQqCF1AkabodN9eXMVPA5vQQGajCATxIBBEmSCIIgOyHy8lQcsbkGHpd7MtjIorYDAlyzQG+zEKl/QPGC2tyrH2orbWOntugdAoFb1dmgEQfQQkiATBEF0QOHnXWxndwk6nGJhddVAZeUh9Pfvq9CIfiJReT8E2W32Tvd1GiogdAIcRYGWy3s7NIIgeghJkAmCIDog9/fWNLZ7mA4TZIfHAKUNkJBat4OexMc7Eux08oCz41Fkk6UKcjvgkolB0eRPLkEMFORfK0EQRAeUGu9oocMtAjpoFmKDBSorINUE9lVoRD+RNE6VcLppwNpxJQujox5yO+CRy/oiNKKf5OTkyBctWqRr+vrixYvSefPmxS1YsEC3cuXKcI/H2/l5586d2qSkpPi5c+fGHzx40BcAzGYzvXz58qiUlBTdkiVLYktLS5n2rnPo0CGf1NTUiKavv/vuO+X8+fPjUlJSdM8++2ykxWKhAWDz5s3Bc+fOjU9OTo47e/asDACqqqqETddJTk6Oy8/Pb24EWV1dLZw5c+Zom81GAUBdXZ3gySefjF6wYIFu+fLlUVVVVa1WHhcXF4uWLFkSu2jRIl1KSoouNzf3lsaShYWFonnz5sXdvO2TTz7Rbtq0KaS97+/zzz/3/+tf/6oGgI8//rjd0YYdO3YEvPHGG8Oavj537pxs4cKFugULFuieffbZSJvNRtntdio1NTVi3rx5cU888URMU1OTriIJMkEQRAdUWu8IssslAEztzEG2G+FweyDkAMaPTLEY7OS+3gTZ7aIBSwcleF02WDgr5HaAUpLpFYPV+++/H7hu3bowp9PZXCR927ZtIampqRXZ2dmsy+Wijh49qq6pqRFmZGQEZGVl5e7du5f94IMPRnAch927d2vi4+OtmZmZ7Jw5c+o+/PDDoLaus3bt2hHbtm0bxnFc83XeeuutsJ07d+ZnZmayoaGhjj179mjOnz8vu3DhgvLw4cNXt27dWvDmm2+GAcDGjRuHJyUl1WdmZrK/+c1vyliWlQDAsWPHVMuXL49taGhoTsw/+OCD4HHjxpmzs7PZp556qnrTpk3DWsazZcuWkKVLl1ZnZGSwzz//fMU777wzvLv3ctmyZXVz5841AMBnn33WKpG2Wq3UCy+8EJGRkRHQtI3jOKxbty787bffLsrOzmanTZtmLC4uFu3evVsjlUq5I0eO5K5fv75k/fr1obcTC6lFRBAE0QGfAF80AOAcVLtVLHhDKaxOb6UCskhv8FP4qWEA4HFTgLW+/R3N1dALBFDYeQiDSAWL3lb/xV5/w+HDPdqhRz1/fq3fk7/u8DFBWFiYY8eOHddfeeWV5pFdnU5n1ev1Ao7jYLVaBQzD8Fqt1n306NErDMOgqKhIxDAMR9M0XnrppWq329umvry8XKRUKj1tXWf8+PHmxMRE/Zdfftk8svrFF1+wQUFBbgDweDyUWCzmzp49q0hISDDSNI2wsDCnx+OhqqurhT///LMiNjbWtmTJktjg4GDHxo0bbwDets5//vOf2QULFoxsOm9hYaEkLS2tDADuv/9+8x/+8IdWyeX69etL1Wq1BwDcbjclEom4rt7XwsJC0apVqyIDAgKcZWVl4pEjR1refffdkk2bNoVoNBqXXq8XmM1mwZo1a0K3bNnS3MXPbrfTCxYsqJsyZYqxoKBAAgDXrl0Tq1Qq95/+9KfAgoIC6bRp0/RxcXGOTz/9VPrggw8aAG+3vZKSko6aobZCRpAJgiA6IPZRgwNAOzhvFYs2uo9a60rgbEyQSZvpwU/l720EwzupjqdYmKuhp2nI7YDU16+PoiP62sKFC/UMw9zyiyEiIsKRnp4e+vDDD4+qr68XPvjggyYAYBgGH3/8sXbp0qXxjz76aPObRygUYvHixbGZmZkBs2fPbrMj0eLFixuoFp08Q0JCXACQnZ3tc/78eeXSpUvrzGaz4OYkWyaTeQwGg6C6ulqkUqnc+/fvvxYUFOTcunVrEADMmjXLqNFobknKY2Njbd98840PAHz11Vc+DoejVb6o1WrdIpGIz83NFb/33nvDV61aVd6V+0VRFA8AZWVlkvT09KIjR45czcnJUVdUVDQP2q5Zs6ZSoVB4bk6OAcDPz8+TmJhovHlbbW2t8OrVq4oVK1ZUf/nll9fOnTun+v7775VxcXHW48ePqzmOw5kzZ+T19fWipg8iXUFGkAmCIDpA0TRsIiEYOwfObQdtawBktyY7tpoSeBr/fgj8SCI02DXNQYabBqwdTLEwV0IvoBFkByS+ZOpNb/N78td1nY329pX09PQRe/bsyR09erR9586d2nXr1o1oSvZSU1NrVqxYUfvUU0/FHD9+3Dxz5kwTABw4cODa1atXJampqdG7du3KW7t2bTgAJCUl1T399NPtvtG2b98e8N133/nt3r07TyqV8gqFwtM0FxkArFarwMfHx6NUKj1z5szRA0BiYqL+vffeazVtosmqVasqXnvttdCUlBTd1KlTDVqt1nXq1CnF1q1bhwHAihUrKufMmWM4fvy4cuPGjaGbN28ujIuLc9x8DqlUyrlcrlsSa6vVSovFYg4AgoOD7SqVigMAPz8/l91uv6NBW39/f09wcLB95MiRdgC4//77DZcuXZK99NJLVevXr5empKToxowZY46OjrYKb6OJExlBJgiC6IRdIoLMwcNE00BDUavXnXXFQOPvdgEZKRz0BE3l2jodQa6CnqIhdwAiH5IgDyUKhcKtUqk8ABAYGOgymUyC3Nxc8TPPPBPFcRwYhuFFIhFHURSfnp4etHfvXr/G4zw0TSMmJsaRkZHBZmRksB0lx1u2bAm6ePGict++faxWq3UDwKRJk8xnzpxRezweFBcXiziOg1ardY8ePdp07NgxNQCcOXNGGRkZ2W6dwlOnTikff/zxmszMTDY8PNw+ZswY8/Tp081NMTUlx5s3bx7x6aef5t13333WlucICAhw22w2+sqVKxIAcLvdyMnJUY0bN84KAC1Hw1vi23ha15bIyEiHzWYT5OXliQHg4sWLytjYWPs///lP+f3332/Mzs5mk5KSGoKDgx2dnetmZASZIAiiEw6JDAq7DfUCGuqGImDYvbe8bm/Ih8ROAeAh9PXplxiJvkOJRHAJaIhcPFyWGrRbcsBYASMvAOMBBCrSJGQo2bBhQ/HKlSujBAIBzzAMt2nTpuKIiAhnbGysNTk5OY6iKEyZMsUwY8YMc1xcnD0tLS0iOztby3Ec3nzzzcKuXKOyslK4e/fukKioKOuyZctiASAxMbH++eefrxk/frw5OTk5jud56ve//30JALz++uulr776atjBgwcD5HK5Z/v27QXtnTs2Nta+Zs2aiC1btkCj0TjT09OLWu6zefPmES6Xi2qaex0aGmp/7733iptep2kab775ZtHatWvDaZqG2+2mHnjgAf3MmTNNhYWFos6+v7CwMNuLL74Y8dFHH3V4P8RiMb9hw4aitLS0SJ7ncc8995jnzJljqKmpEb700kvDPvnkk2CFQuF55513Wn0PHaG6mqH3pYULF/JZWVn9HQbRDTqd7jzLshN7+rzkvTHw9dZ7A+i998ffZs+G3VmE8IdrMX7aWmB62i2vX/4gAV9fNCHpggAjf/qp05ERon0D5XfHufHjcCbOiafm3QO/J/a3vdOhF7H62nE89z9A0BtvwPfxJT12/aGorffGpUuXisaOHdvBPBeC6NilS5c0Y8eODW+5nUyxIAiC6ASvVENpA+plvq2nWPA87I4KqKwA76MkyfEQ4RSLIXUApo7mIBvLYHN5H9SSNtMEMbCQBJkgCKITArUfFHagTu7fOkG21MBIOaGyAjSZXjFkuCQSyJyAyVbT/k7GCjStUaKVJEEmiIGkx+Yg63Q6AYD3AEwEIAbwBsuyX+l0uskAtgJwA/iGZdkNPXVNgiCIviDx00JhA2pESqC+6NYX6/JRL6ChtPJgwshCrKHCI5VB6uBhtNV7S/+18eSAN5aBcnoXbZIR5F7DcRxH0TR9980XJe56jU1X2qzf3JMjyE8BYFiWnQpgPoDoxu0fA1gKYBqABJ1ON74Hr0kQBNHrZBotBDzQ4BYBhlLA4/rPi3XXUScQQGUDJJqA9k9CDCq8TAGpEzDxbsCub72D3Qg4zRA6vXmbQKns4wiHjMs1NTXqm7vLEURXcBxH1dTUqAFcbuv1nqxi8QiAyzqd7msAFICXdTqdCoCYZdnrAKDT6Y4BeBjAxR68LkEQRK+S+3tHAU12ALzHmyT7NTbNqstHlYDBfVbSZnooEchVEJYBdQLa24Jc2qJBjKkCZoqCzOFNkGlSxaJXuN3u5yorK3dVVlaOBpk2StweDsBlt9v9XFsv3lGCrNPpngXw2xabawDYASQBeADAZ/COHN/c8cQEIPJOrkkQBNFfVIH+MAGw2xq7MDUUNSfIfF0+SnkJpE4eQtIkZMhglGqIHEARTXtbkAfE3bqDsayxzbT3SzKC3DsmTJhQDWBef8dBDD53lCCzLPspgE9v3qbT6f4C4CuWZXkA/9DpdLHwJsc3/1ZQAmjjWRRBEMTdSxXgTZDdlsY68/UFQNRMAICnJh9GpwiAgzQJGULEKh9InPA2jzFXtd7BWAE9TUPm4OERi0Ax7VZLJgjiLtSTjyN+APAYAOh0urEASliWNQJw6nS6KJ1OR8E7DeNUD16TIAii14kbp1gILHZApgFunPO+YDdCUJ8Hd9M8U1LFYsgQq5VgPICFbxxBbslYDr2A9o4gKxV9Hh9BEN3Tk3OQPwHwR51OlwPvHOTUxu2pAPYCEMBbxeJsD16TIAii1wnUagCA2GYFwqcBRT94KxcUn4ab90Dk8E69IFMshg6JWgUOgNUt8s5BbslUjipGCZkdEKjI9AqCGGh6LEFmWdYB4Jk2tucAmNxT1yEIguhrTQmy3OaGLTQB0l8OAQ2FQMEJVDEyqAyN+5EEeciQ+ahgBmDnRO2OIFcxCgTYnRD5kycLBDHQkBWfBEEQnaCEQtjFIihsPKqDRno3Fv0AXD+Oy6o4qKzeTQJf3/ZPQgwqMl/vhyaHS9DOHOQyVAokkNsBxoe8LwhioCEJMkEQRBc4ZDIobUClSALIA4B//Q9Qy+KSJAwqKw/QNASklNeQIfHx/qxdLrQeQeZ5oL4I5bQEcgcFIXlfEMSAQxJkgiCILvAoVFDYgTJzJRA3Byi/CNBCXKS18LEAtJ8vKIGgv8Mk+ggt9y6841y8dw4yf1MjN3M14DShmhJAYedBq9T9FCVBEHeKJMgEQRBdIFT7Q2HjkV9fCiS9D/zfYuDVEpR4PPAxU2C02v4OkehDtELu/X+nBx63DbAb/vNiXT4AoIHnIHHwpAYyQQxAJEEmCILoAomfHxQ2GkX6MoCiAKkPIJLD4q6Dn0UAIUmQhxSBwjuCLHUCRpr2No9p0pggcy4naAA0qWJBEAMOSZAJgiC6QK7xg8IGlJsrm7cZ7S44oYevhYdQQxLkoYS+KUHWC2ighv3Pi3X54AUiSFw2AICATLEgiAGHJMgEQRBdoAzwh9zBod7+nwS5qNYCgcAAlcVDRpCHGEoiAUdTkDp46IUioCb3Py/WXYdZFQa5ywmA1EEmiIGIJMgEQRBdwPj5QcADvKmmeVt+jREqdwNojodQo+nH6Ii+RlEUXGIJZA6gQR1ya4Jcfx1liuGQ270L92hSxYIgBhySIBMEQXSBMCAAAKAy22F2mgEAP1Veh6/V432djCAPOZxUBqkTqFMEAtVXGzd6gPoClEo0kDu8m0j5P4IYeEiCTBAE0QVNCbKviUelxTvNgq3Pg4/ZO0oo1JIR5CFHroDUAVSL1d5Fei4bYLgBeJz4/+zdd3SUVfrA8e87LX3SE0hCEupL772JIFUEFEFFQIoiiHXdVfe31l1X17ZYsQGCSBFUpIjSRDpI7wyEHtJ7n/77Y1Czll1NZjKZ8HzO8ZzMm+HeZ443M8/c97n3XtCGElTheprsYiGE75EEWQghfocfEuSIErhQeAWA1JILhJdc/b2UWFxzdMFGgiogQxsEOCHnNFzcBcA5JeTHBFkTKov0hPA1kiALIcTvoItxlVCEl8DJ7Is4nU7ybalEl7n2w5UE+dqjDzUSWKEhS7l6QEzWKTi5CowJnMefkHIn6LRogoK8G6gQ4g+TBFkIIX4HjcGA0xhKeJGWg5lHyC4x49ClE1cRhCYwUJKga5AhPIygCsi220AXAIcXQ8omaDmCQksBweUK2tAwFEXxdqhCiD9IEmQhhPid9DExhBUGcLLgAKbMQjSGHOqb/WSB3jUqICKMILOTImsx3PAMnPsO7GZoMYJiawHGch1aKa8QwidJgiyEEL+TX71YYsv1lNizmb9/A4rGRqxZQSsL9K5J+tBQAs0Oyq2F0G06NB0EYYnQoBvl9kJCKjRow8K8HaYQogp03g5ACCF8hS4mhnrHjwOwu/AjNH4QXGxBlygzyNcijTEEDaCUFbmOH79tEVjLQKPB7CjCWKHIDLIQPkpmkIUQ4nfSRUfjX1QE1iA0flkMqH8TSlYe+th63g5NeMEPR0j7VZTidDpBZ4CAMErMNhzaIkLKHTKDLISPctsMsqqqocBSIBgwA+NNJlOGqqrdgTcAG7DeZDI9564+hRCiJuliosFup4OmG2e4wD+a301qxQoMDRt6OzThBdpQ1wEgQWYHxdZijAbX49S8YhRdEYEVdplBFsJHuXMGeRJw1GQy9QE+Bf5y9fp7wDigN9BNVdUObuxTCCFqzA97IX/Q/V52TvwS5VI6AIaGyd4LSnjNDyfkBVU4yS3P/fH6qZw0DHY7eotdZpCF8FHuTJCPAj8cF2QErKqqGgE/k8l01mQyOYF1wA1u7FMIIWqM/mqCbM3KQlEULOfPA+AnM8jXJM2PCTJcKU7/8fqZ3MsEl7t+lgRZCN9UpRILVVWnAo/87PJMYJCqqieACKAPrkS5qNJzioFGVelTCCG87YcZZFtGJgCW8+fRBAejlUNCrkk/zCAHV8DZ/Mv0TnBdv1SUVilBlhILIXxRlRJkk8k0F5hb+Zqqql8AL5tMpvdVVW0LfI6rrKLyIfQhQEEVYxVCCK/SxcSgCQqiwnQKAMuF8xgaNZKDIK5RPyTIgRVwLj/1x+vpJekEXz1mWmaQhfBN7iyxyAcKr/6cBRhNJlMRYFFVtbGqqgowGNjmxj6FEKLGKFotAe3aUn7oMADmc+fxa5js1ZiE9yiBgaDVElTmx/nCnxLkXHMmxjIDgCzSE8JHuTNBfgqYqKrqVmAFcM/V69OBRcD3wEGTybTHjX0KIUSNCmjfHrPJhC0nB1tGhuxgcQ1TFAWN0UhgmZ6M0p9qkIus2URUuI4elxlkIXyT27Z5M5lMacCwX7m+G+jurn6EEMKbAtq3B4eDwlWrATAkS4J8LdMZjRjNxRRYsgBwOp2YySXS4g/IDLIQvkoOChFCiD8goF07AHLeeQd0Ovxbt/ZyRMKbNKGhhFm0lDtysTvsFFXYQFtIlMUPxWBACQjwdohCiCqQBFkIIf4AbWgohkaNcJSWEvPIIxgS4r0dkvAirdGI0QIoDrLLszmXm4uiKyPSqkMbGioLOIXwUW4rsRBCiGtF2NgxmE+fIWLyJG+HIrxMawwhxGIH4GLBFQ5cNAMQZdNI/bEQPkwSZCGE+IMiJ03ydgiiltAYjQSaLQAcy7rAjlTXYr1ImyL1x0L4MCmxEEIIIapIawxFV1oGTienci5gKtyHzmnEUGJBGy4zyEL4KkmQhRBCiCrSGkNQHA70RfHsyFxPmfYUDYM6YM/OlhMWhfBhkiALIYQQVaS5WkbR1NqLYnsaGl0p/WK7YS8sRH/1aHIhhO+RBFkIIYSoIt3VWeJ/dh4AthAARsW0cf1OEmQhfJYs0hNCCCGq6IckOMZSxgR1BkeyjxBV5qQUSZCF8GWSIAshhBBVpI+NBcCWlcVjd04AoOibdQDooqO9FpcQonqkxEIIIYSoIm1EBOh02DKzfrxmy3L9LDPIQvguSZCFEEKIKlI0GnTR0T8mxQC27GzQ6+WgECF8mCTIQgghRDXoYn6WIGdloYuOQtHIR6wQvkr+eoUQQohq0MfEYs3K/PGxLTtL6o+F8HGSIAshhBDVoIuJwZaV/eNja1aW7IEshI+TBFkIIYSoBl1sLI6iIhzl5QDYsnPQRUuCLIQvkwRZCCGEqAZdjKucwpaVhaOiAkdh9v0JzgAAIABJREFUoexgIYSPq9Y+yKqq3gyMMZlM464+7g68AdiA9SaT6TlVVTXAbKAdYAbuNplMKdULWwghhKgdftgL2ZqZCVcX5kkNshC+rcozyKqqvgG8+LM23gPGAb2BbqqqdgBGAf4mk6kH8ATwWtXDFUIIIWqXH2aLbVnZWC5eAkAfV9+bIQkhqqk6JRY7gRk/PFBV1Qj4mUymsyaTyQmsA27AlSx/A2AymXYDnavRpxBCCFGr6H44TS8zk7L9+0Crxb9NWy9HJYSojv9ZYqGq6lTgkZ9dnmwymT5VVbVfpWtGoKjS42Kg0dXrhZWu21VV1ZlMJlvVQhZCCCFqD01QELp69Sjbtw97cRH+LVuiDQ7ydlhCiGr4nwmyyWSaC8z9HW0VASGVHocABUDgz65rJDkWQghRVyiKgnHoUPIWLkRRFMInTPB2SEKIanLbLhYmk6kIsKiq2lhVVQUYDGwDdgDD4MdFfEfd1acQQghRGxiH3wg2G06rlcDOUkkohK9z9zZv04FFwPfAQZPJtAdYAVSoqroTmMUvyzWEEEIIn+bfsiWG5GRQFAI7d/J2OEKIaqrWNm8mk+k74LtKj3cD3X/2HAeuxFkIIYSokxRFIer++6k4ehSt0ejtcIQQ1VStBFkIIYQQLqHDbyR0+I3eDkMI4QZykp4QQgghhBCVSIIshBBCCCFEJZIgCyGEEEIIUYkkyEIIIYQQQlQiCbIQQgghhBCVSIIshBBCCCFEJZIgCyGEEEIIUUmt3Af5+PHjOaqqXvR2HKJakjzRqIyNOsEjYwNkfNQR8t4hfovH3juE+DnF6XR6OwYhhBBCCCFqDSmxEEIIIYQQohJJkIUQQgghhKhEEmQhhBBCCCEqkQRZCCGEEEKISiRBFkIIIYQQopJauc1bZaqqaoDZQDvADNxtMplSvBuVd6iqegAouvrwPPA+8AZgA9abTKbnvBWbN8jY+E8yPv6TjI+fyNj4TzI2/pOMDyF+qdYnyMAowN9kMvVQVbU78Bow0ssx1ThVVf0BxWQy9at07RAwGjgHfKWqageTyXTQSyF6g4yNq2R8/CoZH8jY+A0yNq6S8SHEr/OFBLk38A2AyWTarapqZy/H4y3tgEBVVdfj+v/2LOBnMpnOAqiqug64AbiW3sRkbPxExscvyfhwkbHxSzI2fiLjQ4hf4Qs1yEagsNJju6qqvpDYu1sZ8CowGJgOfHT12g+KgVAvxOVNMjZ+IuPjl2R8uMjY+CUZGz+R8SHEr/CFN4QiIKTSY43JZLJ5KxgvOg2kmEwmJ3BaVdVCIKLS70OAAq9E5j0yNn4i4+OXZHy4yNj4JRkbP5HxIcSv8IUZ5B3AMICrtWJHvRuO10zBVSeHqqpxQCBQqqpqY1VVFVzf/rd5MT5vkLHxExkfvyTjw0XGxi/J2PiJjA8hfoUvzCCvAAaqqroTUIDJXo7HW+YC81VV3Q44cb2pOYBFgBbXSuM9XozPG2Rs/ETGxy/J+HCRsfFLMjZ+IuNDiF+hOJ1Ob8cghBBCCCFEreELJRZCCCGEEELUGEmQhRBCCCGEqEQSZCGEEEIIISqRBFkIIYQQQohKJEEWQgghhBCiEkmQhRBCCCGEqEQSZCGEEEIIISqRBFkIIYQQQohKJEEWQgghhBCiEkmQhRBCCCGEqEQSZCGEEEIIISqRBFkIIYQQQohKJEEWQgghhBCiEkmQhRBCCCGEqEQSZCGEEEIIISrReTuAX9OtWzdnfHy8t8MQ1XD8+PEck8kU7e52ZWz4Pk+NDZDxURfIe4f4LZ587xDi52plghwfH88XX3zh7TBENaiqetET7crY8H2eGhsg46MukPcO8Vs8+d4hxM9JiYUQQgghhBCVSIIshBBCCCFEJZIgCyGEEEIIUYkkyEIIIYQQQlQiCbIQQgghhBCV1MpdLOqS7Wdy2HcxjwC9loEtY2kUHeztkIQQQgghxH8hCbKHVFjt3LfoAN+eyvrx2otfn2Jgy1ieHdGK+LAAL0YnhBBCCCF+iyTIHjL/008ZmPYyHePL0fsb6dZoNNsdI3ln60UG/XsLL45uy4h2cd4OUwghhBBC/IzUIHvAwbXvU5j7f7wQb+d9o4F39BVMSF3EucvjWXqHP83rG3lwyUH++sVRKqx2b4crhBBCCCEqkQTZzRz5l9l05mU+CQvh9ia3snvcbr4du5mZcf3ZpjEzY89MprXZwvTrGrPk+0uMeHs7x64UejtsIYQQQghxlVtLLFRV1QPzgGTAD3geOAHMB5zAMWCmyWRyuLPf2mTX8ml8EhpAl+Ce/K3XMwAE6YOYPvANhl35nsfW38ufzy7m1uA9fDDxdZ5ckcKod3bw4ICmzOjXGL1WvrMIIYQQQniTu7Ox8UCuyWTqAwwB3gb+DTx59ZoCjHRzn7VH5glmO8/i5zDwytCXfvHrxPiuLLxjK1P8Evi8OIU39o7mtdsNDG1Tn39vOM3od3eSklXshcCFEEIIIcQP3J0gLweeuvqzAtiATsCWq9e+Bm5wc5+1xu5vn+eIvx/dIm4jMjDsV5+j9w/hkdvWMjfxZmy2MmZum0lc/HJeu03lcl4Zw9/azrK9l3E6nTUcvRBCCCGEADcnyCaTqcRkMhWrqhoCfAY8CSgmk+mHbK8YCHVnn7VGaQ4r8r7H4NDwUO+p//25ikKX/v/gi96vcUepmSXnVjHbNJmnxtrpmBjOY58f4bnVJ7A7JEkWQgghhKhpbi94VVW1AbAZWGgymRYDleuNQ4ACd/dZG+QcXsT6IH/i7B1pHBX1u/5NkDqMv45dw6JihcjiHJ7Z8xjxzb5gYs9Y5u+8wENLD2Kz19lybSGEEEKIWsmtCbKqqrHAeuBxk8k07+rlg6qq9rv681Bgmzv7rC3WHF+OTVEY2vx/zB7/XHQz2kzayCJbODMLS9hwYR37bc9wzwB/1hxJ57HPjuCQmWQhhBBCiBrj7oNC/g8IB55SVfWHWuSHgDdVVTUAJ3GVXtQtxZlssWcSZg7jzo7d/vi/D4lFP3E10xfcRNesy/zZYGRl+V8Z3fshPt8OYYEGnhreAkVR3B+78I6idDj0CVzcBTo/iG0FLUdBvdbejkwIIYS45rk1QTaZTA/hSoh/7jp39lPbZB9Zwn5/PxpZOxMaqK9aI0GRMPFLOs4dxNLUKzzUtB2b8l6hf+d7mbcD4sL8ubtPI/cGLrwjZSOFX9zDVqWCC2FxGJ0K6qXNdNj2Cn4N+0H/pyChs7ejFF5WYrbxye6LfHnwClcKygkN0NM6LpSb2sUxsGUsBp1sCSmEEJ4iR027wdenv8SpUejR6LbqNRQcAxO+IGbODcy9fJEHm7RnT9ZsOracygtroVF0EP2bx7onaOEdqftYtXIyL8eEUagEo2DFiRPqRROg6BhQfobhi26kW+Ob0A15EYKjvR2x8ILLeWWM/2gLl4sv0TIuiGFJjSmv8Gf3uVy+OZ5BdIgf47slMb57IpHBft4OVwgh6hxJkKvLUsZ2cxrh2hDGtutS/fYiGsHYhQR+PJJ3shN5oH53dqfPIzFxEg8u0fHlzF40iQmufj+i5pXlsWzlXfwjKoxmIS0xZo/gxPkQ0FagDbiMJfg4a0OPsqaelqjCnQz/uDcjOj9E0673eTtyUYPSCosYueT/sEbsIijKwkXgYhE0CWvC+KH9iVS6suGQwqyNp5n9XQq3dkpgau+GNIqW94VrhdPp5ER6EWezS7HYHAT76WgQEUDTmBC5syCEm0iCXE1lZzexz99AfGlTGkYFuafR5F4w7BX81jzMG3F/4r5YGwezPkYfPIVpC/1YObMXIf5VLOUQXrNr3aM8H6TQNrAlew9MIDo4kL8NS6ZFfSNmm51TGcVsS0lnf9ZOikN3sjD4HPNPvkurUwu4s8sjDFVvRaeRP9m6rNhSzNgvp2AJOk3f+oMY3WIoeo2eM/ln2JG2g7nH5uBwfoAaqfLAqEFcvtyC5ftSWbTnEje0iGFGv8Z0Sorw9ssQHrT9VCqrVq9EW3CWImcQR50NueR03Vn012to3yCMrskR9GwSRcfEcEmYhagi+bStpl0nP8OqKCTF3OjehjtNgiv7CNj+b94aM58p1lLOKgu5dO4e/rI8hHfHd5RFez7EknWKf+buJsEQwt7D42hRL4yPJnclIsjw43MGtIhl5vVNyCzqwoqDt7J8/3GS7R+QHZbC/33/T9449AGP9XiCgUkD5f99HeR0Orl77Z8ocKYwMOoRZg2e/OPv+ib0ZWqbqeSU57DuwjrWnF3DfNNb6BQdA/r1Ich8HRsO5LHx3SwGtozlqRtbkhgZ6MVXIzxh18r3qXfwX3QMsfBdQgBZOi0xTmimDSAiqDUFur6kZtp5e3Meb36bQrCfjuvUaEa2i6N/8xh0WkmWhfi9JEGupm1ZBzD4wY0t+rm3YUWBYa9CxlGCVz3E7IlfMG7X/6Fv/AnrTgXz4bYwpvVt7N4+hccs2PgIF/U6EvLHEBYQ9IvkuLJYoz/Tr2vMvX0bcTztOnZt+ZrI1KdYGJbGo1sepXVYd94c+ALRgVKfXJcsPbWUE4W7MZaN5uWhd7l2ODm6DNIPu54QlkRUg27cqQ7hzhZ3crbgLCvOrGD1udXkVWymVcc2NNLeype7chj0+hb+PEhlSq+GaDTyZaouOL/iH+hNb3F3g1hyddAwOIHkwFicpblkFl3iYPkhLJrDEAytujaiUWBXbEVt2X0ql6+OpJMQHsCD/ZsypnOCfMEW4neQBLkanHkX2KWzEVUWS+8m9dzfgT4Axi6ED64jauUDvHPr+0zYOI3Ypkt4aV0QnZIi6JQU7v5+hVuV5qbwUcUl2hPFtvSWfDK1/W8mx5UpikLr+FBaj7ud8rzr6PnxWNaVnGeW43sGLx/By31f5oaGfWrgFQhPy6/I59V9s7CVNOOJbhPRr3kQDi4EQwjEdwSNFlL3wvEv4JvHIaErjTtO5M/tZ/JAxwdYmbKSD49+yPHSZ+jdqy+l6cN5/quTbDmdzWtj2xET4u/tlyiqoWj7h6Sdfpv76sUSH5LI633+SfuY9j89wenEenINp797jn0VGWxTMtlavBybcymtOrTijrDRbDts5LHPj/DFwVTeuL0DsUYZE0L8N3K/pRoumVaSptdh1Hb2XE1weBKMngtZJ2m69XX+1ftFyrhIaIMveWDJAQrKLJ7pV7jNZ9ufo1ir4VLaEG5qF0fvpr/vpMXKAiLqU2/mesbH92dFWipGs41HtszkpZ0feiBiUdPmHZuHxV5BrPkWbkp52pUc93oI/nwa7loFE1bAI8fgwYNww3NgLoJV98O/W+C35RXGJgxgzc1reLjjwxzK2ctZw3OMG5DN3gt53PTWdg5cyvf2SxRVlXWKy1uf4aGYGBKNTfj0pqX/mRwDKAr6ljfR6t5d3NXtMeZcusDmtHyeiB9EsaWYBWf/TnDyezw0zJ8jqYUMf2s7B2VMCPFfSYJcDdvPbQCgdeJwz3bUZAAMeAqOfU6/y0e4r/19WAP2kaf5jsc/P4LTKSft1VZWcykLcw/Q0uJHenl7HhusVr0xfQDaMR/RsP1k1qafoWV5EJ+ceZNpXz2FwylHkvuqnPIcFp9cgrWoPbOj9qKcWg2DX4SBfwfDz+qIIxpB74fhvt0waS0k9YKtr8Kb7fHb+Q5TW4zny5FfooarrE57jRv6bEavs3L7B7v5+mi6d16gqDqHg4JP7+apqFC0WiNzh7xPiCHkt5+v1UOvB2HGDsJiWnDn9jmsctTjH92eJK00jfkX/sTNAw4SYHBwx4e72Xgis+ZeixA+RhLkqnI62VN8jjCrlsFqDZx+1vtP0OoW2PAM0/wS6RPfB7/YNWxIOcAney55vn9RJZv3vUGmVoMtpyvjuiXSIKKaC6c0Whj2CoF9/szizBP0LzWyK+dLRn92Pxab3E3wRctMy7A4LLQoUmlxfgF0vAt6/I+t/RTFtdvN7YtcyXJyb9j0HMzuQVzOeeYNnsf0dtPZmv4NUc0+RI23cN/iAyzac7FmXpRwC+eRpay0XuCMn44nez5JTGDM7/uHkY1h0lfQ/0m0x79g1LdvsKrfO9zS9BZWXVhMrDqXhvUs3PvJflYdTvPsixDCR0mCXEX2rBPsMygYy+rToSbqgBUFRr4Dce3RfH43LzS5g8iACCIaLuefaw9xLrvE8zGIP+zzs6uJsTk4WjyYqb0buqdRRXF98N3wHK9nHeOOklBSyrYxfNk0zDaze/oQNcJqt/KpaRmO0qa8q/8CJaQ+DPrHH2skpjncsQTGfw5OO8wfhnbD08xsfQ+zb5hNVnkGBeGv0UUt5m8rjjFn2znPvBjhXpYyctY/y+ywcBoHdWJ44yF/7N9rtND3L3DnZ1CUSsj8m3gmfgiv93ud1JJLlES+SvPkTB5eepCVh6545jUI4cMkQa6ik6dWUKzVEBLQAz+dtmY6NQTCHZ9CYARhn03lXx0exqJkYohZxcOfHsJik9vstcmV7OPschTTqLgeQ9q4Yfb453o/jHLjv/lr9jHuLQkm3bqfYUvvwWyVmWRfsfHSRvIqcumQH0q98hRXcuwfWrXGmtwAM3ZCl3tg19swdyC9A+JZPGwxwfogzuteo3urDJ7/6iQLdl5w6+sQ7ufcN4/lhgrKtPCPvo9VfeeJJgPg7k3gb4QFNzGgtJQlNy4hwj+CK/5v0rjxcf607DDrjme49wUI4eMkQa6inZe2AtAxeWjNdhwS65oRsJnp+s1z3N38Tpwh33OicBuvbTDVbCziv1r5/SwALuYOdN/s8c91mYpy8/vMzDFxf7E/WfaDDF16DxVSbuETlp9ejs4eyUv2HRDbBlreXL0GDUFw46tw2yLIPw/vX0dy+gk+GfYJjcIaccr5Fh1anOOZVcf5fH+qe16EcD9rOXnbX2e+MZSmQT1oE9Oyeu1FNYWpG6F+W1g2kWTTBhYNW0SPuO5k6BcS1/BbHlh8gB0pOe6JX4g6QBLkqnA62V92mWizngHNvLAXcUxzuGMpFFxixtENtI1sTUjCl3ywcx9bT2fXfDziF5xOJ6uz99O2AvxjetGuQZjnOmt3G8rYj7k3/wIPFmnIdhzgpqX3Y7XZPNenqLbLRZfZm7GXpLxI4h0Z0P9voHHTW3KL4XDvVohoCEvvIHLXe8y94UM6xnbkLB/SoqmJxz4/wqaTskirVjr4Cav0FZRr4aneD7qnzaBImLgKmg2BtX8mePvrvHX9m4xpNoYCwzrCklZwz8d7OHy5wD39CeHjJEGuAlvmcQ4ZNARV1KdtggcTn/8mqQeMnoM+dR//KrLip1MIT/qMR5btJ6u4wjsxiR8dvvQdqYqN0MKGjO+e7PkOWwyHO5dzT3EuM4psZNh3MerTP2O3S9lNbfXl2S8BhUfLTmOPVF2JizuFJ8OUddB+PGx9meDPp/JOj+fpVr8bV3TzSWpwmvsXH+RoaqF7+xXV47BTsf1N5oeEE6NvSYd6blwEbgiE2z6BDhNg6yvoVj/EU12eYEa7GZT77cYvfjGT5u/irKxpEaIOJMhleWCt2YTwpGkFZRoNIf490Hvz6M6WI2DoSzQ4vYGn/Rti1Z+jPOhrHl12GIdDtn7zptWH5+DvcJBWMZib2sXVTKeN+sHkr7jPbGdiUQWXbJu447PnZRvAWsjusLMqZRVh5fH0cVxC23Oma/Glu+n9YeTbcONrcHYzAXMH86Y6iQ4xHcgLmk9IxBkmz9/Lpdwy9/ctqubUGr6z55CnhxkdJv/v5/9RWh2MeAuuewIOLUJZchv3NR/P410ex+Z/BHv0R4yfs520gnL39y2ED/HtBPn0Oni9LcwbBObiGut29+VtALRLGlRjff6mbvdCr4cYdnQto0OaoY34lp1pO5i7/by3I7tmWR1W1uUdo2uZk1Zt+xJgqKFFnAD128HUDTyKkeEl5ZysWM60L9+quf7F7/J9xvdklGVwY2ExZkM4tB3ruc4UBbrcDVPXARCwYATvhLRHjVCxRc3Hqj/NxHl7yC6WHVBqA8fOt5lvjMDPGc0tzT30GaMocP1fXYnyuS0wbzDj6/fh6R5P4ww4SUnYXO6cu4PcEhkT4trluwlyyiZYfBsY60PGMfhsCtTETJnTyb7Sy0RZdFzfrInn+/s9BjwLrUfzxNFNNAuIxZi4jFc27eRIqtSSecPuCxspVBwEFzVmbJfEmg8gPAnNlPU8Z0ikb1k5uws/5OE1H9V8HOI3rTq7Cj0BPFB+HE2nu1zHyntafCeYvhWaDSF447O8V+QgMTgOffx8Ms2nmTB3D4VlVs/HIX7blQOkZB7kuL+GIUm3oFE8/BHdcaJre8DCK/Dh9YzRxfB0j6ch8BRZ/nOZNH83heUyJsS1yScSZLPdjNVR6Y/UXAyrH3KtzJ32neub8Jn1kOf5/T0dOac5qtcQVF6PtglV3I7J3TQaGPUu/gndmHXuBP5aBwENFjFz8W6KKq6xNzenEy7thn3zIO2gV0JYd3wRIXYH5fphtIn30hgJisRw12peDWpDl4oKvs35N39es9A7sYj/UGIpYcPFjTQtDiEIB/ouk2qu84BwVw3qkJcIT9nMhxfOEWMIJiT5I84XnWLKgr2UW+w1F4/4T99/yGJjKDh1PNL9zprps/H1cM+3EBgFC0cxJiuVJ7o8jib4GGd5jzs+lJlkcW3yiQT56R1PM+SzIXx17itO55n4ZuUU3lGKeLP1AHLtFaDe6Hripd0ejyXl9GqKtRqC/Drhr6/BW+f/i84PbvuERL9IXsorwqm/Qk7gfB759EDdrke22+Dcd5C6z5UUv9cb5g2GNY/A3EFwcnWNhmOxW9iUd5SeZTbadh1Y9b1L3cEQRMC4T3kjsjdtzGY25LzM/V9+JDXJXrbh4gbM9gqmFV0gt14f104TNUlRoPt0mLqeaI2OOaePEqEoGBvN41DWEWYs2i97qntDaQ6lx79gdVAwzYJ6ExlQAwdQ/SCqCdyzCVqMgI3PcueRr3ms/YNoQ45xUfseN7+7RRbuiWuOTyTIbTKC0ZVV8MS2Jxi9+lb+Un6K98NDmXNxLRO/nkiqfzD4h8GlnR6PZd+lLQA0Txjo8b7+sOBoGLeUviXF/MUagC7kONtzP+LV9ae8HZnHODOPkbHoFhxzBriSYrsVRs6Gmd9D/fawfBLk19zxursub6UEB+HFiYzs0KDG+v1NOgMho+fybtww2prNbC34N1M+e1uSZC9afW41oc5Q+ltyMPa+x3uBxHeEe7cR13wE886biLJbCG04h22Xd/LAkgNYZQeUmnXgY9b5a7FoHdzXeXzN9+8XAmPmw5B/gelrJmx9j7+2mIQm+DgFIe8zavYmtsg2ouIa4hMJcsvyYtZcOMYH6bm8lJXDQk1j9o3bx8dDPybfnM/ze1+AxB41MoN8oOgcITYN/Ro393hfVRLbCkbPYXyqiXHaaAyRO5hzdB5Lvr/k7cg84qSfgYGJ8QxW2zC9ywj+1Lo3z5vPY9ICt84Fhw2OLKuxeNafWEKI3UFA6DCiQ/xqrN//SqPBOHwW7zW8nR7l5ewr+4DRi5/BapNb6TUtrSSNvRl76Zlvp0Qbjr7FMO8G5G+E0XOIG/IaH6deIdlaQUjSfDalrmXGJweosMoYqREOO879H7HAGIM/cfRP7uqdOBQFus+ASWvAXMy49a/w9wbDUQLPok94nykLNzD7u5S6fVdSiKt8IkHueNfL7Oz8DqnlPVibP5Vbj0+mywtb+HgzjGo0ll1pu8iObwe5KVCS5blAClM5onMQWh5Jp+QIz/VTXepQlEH/4PGU/Qzxj8cv5hue2fwB3xyre0eJNg9vzoNtnqVFbCcKnTZSClJYdXYVt625jYVpWyCpNxxZWiMLOK0OK99mH6BPWQXNu4/weH9/iKIQNOjvvNV6BiOKSzhjW8HAhXeTUVzk7ci8w1oBBz+Bo5+5toqsIV+d+wqA+0pSKGh6C2j1Ndb3b1IU6DyZ6ElfM78YOleUERC3nG25c5g4b6cs3KsJKRs5U5rOOT87gxuM8G5pFkBST7h3G8R35Oats3krpC16/zxCm7zDa1u/YtL8vaQXyjZwom7ziQQZ4Lrh47npyWWMHP8Af7upLQNbxrLmSDp7jzXE4XSwVnf11DAPziJnnN1Auk6Hn9ISo38t+GD7b3rcj6bL3bxwchd9AhPxq7eSR75+i+9MHvwC4QUnM4r55zJ/Lp8ay71N32DFiJWsH72ennE9mbV/FpebD3J9cbqy3+Ox7EvfRwk2Ekpj6d8m2eP9VYWhz6M83+0pHsgrIE/Zx7BlN/ON6ZC3w6pZp9fDWx1h5Uz4fCq80xVKPX/ErtPpZPW51STZw0m2W6jXz4vlFb8mviPGaVt5N6AV4wqLMUTu4KTzRUa8v0rqTz1t3zyWhEaCU8tD3W73djQuIbGuk/d6PkDfwytZbAkhPjiUwKS57C9awKBZG1i056LMJos6y2cSZAB/vZaBLWOZ3Kshr45px99HtmLvGR2xhmaszDngelKOyWP9H7n4HQAJMf081ofbKAoMfRl9y5HMOrGd64Mao4tZxYy1z7HueJq3o3OblvWNvHJrWy7nlTPpo730/Ncm5m7N5M+dnkSn0TGrLAU0Oji1xuOxrDMtJ8DhICa0f+1awPkzSpcpTBv8Nu9l5ROoZPLYzsncv3p2nSy5yF85g+JPboGz38LFXbBiOiwe41qzMHGl67/yfNj4jMdjOZF3gvOF5xmSl8fFgFbo67XweJ9/WGAE+vGf8dd29/FKVi5BfpcpCHuBUQteZe3RuvO+8ZucTteXJXsNHtNelEZFynpWBwaQ5N+N6KDImuv7f9HqYNDzcMuHNL5ylE8vnGNsXF804VvRJ7/GMxuXcNsHcvKeqJt8KkH+udu7JtK7SRSFuS05U5BCVkgMFHiu1vZIzgm0TujbqKPH+nArjRZumYNfk8HMOraZMcbW6CK28siW+5m386jt3e7VAAAgAElEQVS3o3MLRVEY07kB2x+/nnfv7EjL+kbe3pzCtI/OMLLhODakfsfFWBXSPDtL6nQ62Zy6nV7lFSR3He3Rvtyi5Uh63rGCz/Mq6GwuY0veu/RccBtfnfLO1nieMq34AgOtp3npq8nM+2IMz6ZtZIrakXGJiSy3ZWNN7gU9ZrrKLa4c8Ggsa86uQYeWCWWpmFvf5tG+qkWjheseY8iY5Swvgk7mIoj+nL/smMKMz5ZTZqnB5NGDMovTmLX5CQ6mrMVxdjOs+RO83AheaQyzu0Oq5+86AXBoMZsD/DFr7UxpV0vHRduxcPcGAnV+PLVrCQvih5McHklAwiJOKS9w44cf8P6WM9hlNlnUITWSIKuqqlFV9T1VVXepqvqdqqpuO2FjRLs48nJjADgVGuu5BNlm5pS9kAhzAF2SYj3ThyfoDDD2Y7TNh/P04bX8zdgBXeB5Xjsxg8fWfFlndjPw12sZ2qY+H03uyqK7u5FbYmb9ngQAtoXHQvohj9Yhn8o7RZ6znJZl/nRq185j/bhVgy7ETtvGh4ZknsrJA80Znth9F0M/eZgj6Ze9HZ1b1PN/mJKSliwODWVWRDgbwmOwhiZgddr5+66/8+zOZ6HPo6DRw/EVHovD5rCx9vxaWltC8HfoaHjdBI/15TbJvWhw7w7m1h/CC9k5xBpS2V76d3rPv5MVx/d5O7pq279nJUsvrGbijsfptvV+7khby4sJjUm/7lGwlsP8Ya4DNDzJ4cB58BMWhMSid0Qyqnk/z/ZXHfXawLQtoA6j4/bZLMsr56k2M4gJN6OP/4g3TdMYPPdFTmfVXE2/EJ5UUzPIowB/k8nUA3gCeM1dDQ9sGQvWOABMgcFQ4JkPdkfaQY776TFY4kiODPRIHx6j94cxC6DTJG4/vJIlugRC9HrW5jzDzYv/Trmlbi3C6dk4ilfHtONiZgDh+ni2aSyu2+gevLuw8dx6FKeThMAu6LQ+dGPGWB/tXV8xtuNMvkm9wugSM1ds3zLum1HcsfxZ0op8+8PutVED6RvxOIUn/0k7+9vM7vMVHw/9mGXDlzG59WRWnV3FvoIzkNgdUjZ6LI496XvIq8jj1rxUThl7ow+uxYt8K/M3oox8i5tGL+Or8iAezstHrz/B03unMGLJQ1wuzPR2hFXWv+89jNc+Svv01sSUtqI8oj2fOwsYlfYVGwb/zbUDzo43PBvElX1kFF3iuL+d7jFDPH9yXnUFhMHYj2HkO+gyjjH2q2f5Jqov/+rxHA3CIsg0LGH0mmE8vnEWpdZSb0crRLXU1F9jb+AbAJPJtBvo7K6Gw4MM9GyYgMYexUmtEwovg8P9+3dePL+JEo2GoICO3l9hXBVaHQx/HYa9Sqvzu9mQk0Y7XVPO2j7j+kW3Y8qpW9vA9W8eQ99m0eTnNGZvWRpliuKaRfaQDWfW0sZsIanVjR7rw2O0Orj+/4i8ZzPP+ieyOvUK15mtHCv7nMGfDWXG6lcpKPfNGkODTsPbd3TkuRFtOHChnJHv7KT/a1t48etT3NpwCnFBcbz4/Ys4m9wAWSc8NmO47sI6/BUDQyryUNrVkkVYf0TDPgRM38HUvs/zdb6VCUWFXDJ/y4gvhvDEutew2C3ejvAP8zfoeGDiFB6+4x0U5wMc2jeBXv4v0TC0IU8dfpOMNjfD/vlQ7MHdf46vYGWIERR4oKuPjAtFgQ7jXXvNN78R/dZXuXHl43wdfx2vdJ1FgDOJtVfmcd3SQSw8vhCrvW5NwIhrR00lyEagsNJju6qqOnc1fr0ag7k0lpO2UrBboMT9sxpH0vcC0KJ+d7e3XWMUBbreA3dvIiQggk9SNvAna31KOc+Y1WOYe9Bzt5hrmqIoPNi/CWUFzbA6bXwfGOixOuTc8lzOW9PoXW6mWdchHumjRtRrA1PXkzTyfd6xaPn0SjqdLWVsz1tA3yWDmL7qdXJKfS9R1mgU7uqZzK6/DuCFm9uQGBHIRzvOM/T13XSNGM3p/NOk1Lu6r7kHZpGtdiubLm2iU4UfZY4Q1N6j3N5HjdDqoNMkIh48zGM9n2VpoZ6eFcV8lTGfoR/1ZNHmOd6OsEo6JUXw5X29mH5dY1buqyDOcg8Op4Pn/e1gN8PhJZ7p2OHAcfxLlgWHEao0p0V0smf68RRjfRjzEUxZDzHNUTY8xZAVk9gZm8gwZRqlxTG8vO9lRnw5im8vfVtnyvnEtaOmEuQiIKRyvyaTyW0rPVrGGXFUxJFqK6RUUTxyK/144QX0Duid3Nrtbde4+m1h2haU6//G5IwjrM5IJ9aq8PqRp7nzy4cpsfheEvRrOiaGE6VrjoKOfeH1PTaDvOOKa2vBhs4G6AJC/sezazlFgTa3wsy9tBw+m48IZUFaJu2teezIn8sNSwcxY+XbZBX73u3T0AA947olsmBKVzY8ch3N6xv5dIsRgC1llyEkDs5ucnu/u9J3UWQp4pb8SxwNH4Cfn7/b+6hROj/oPJnmD+7nzSELeNqajJ5S/nXpDe59ry2Hvnm+RveWdgedVsMTQ5szrW8jvvi+gp6Rt7Mlax+nY5u7jrL3hNS9HLHkkK23MzT5Js/0URMSu8Fdq+Hub0Ediu7gfF469yTbKtLol9aKzPxSHtr8EFPWTeFodt1YHC6uDTWVIO8AhgGoqtodcOtfSfN6IdjNV+uQDQZXmYU7WSs45ywjzBJIxwY+Ujv4v+gMcN1jcP9ekpvdyNq0k0wqMHOkYBMDlo5gR6rnTyX0NI1GYVibBOwVsZzyD4SMYx7p55tTGwixO2iYMMAj7XuFVudauX7vNjresYIFoZ35ICOb1rYcthe8z7BP+zNh2cucyfb8/sGekBwVxIcTOxMdEIPW2oBvL38HDbpAhvs/wDde3EigYqBfeTH6dmPd3r7XKArahr0Yc/dqPr1lAzcpbdjv52RKxlL+NacTVxbcDIc/hfICb0f6uz02WKVTUjg7DzVCq2hZE1XftT2g1QOHYpxazdrgEHDouLfzSPe3X9MSOsHoD+FPJ2Hwi0QFB/CW+Wt2pR7i9iw/TmYcZdzacdy/6X72ZeyTGWVR69VUgrwCqFBVdScwC3jEnY2HBRqI0jcE4IxBDwUX3dk8ZJ/ijEGHny2GGKOPz/78XFgDGD0H/T3f8qfgRixMz8BoyWL6pnv487dPU2Tx7ZPWbmxTH3tFPU7ay3CWZoHFvTOfTqeTI7nf07WigsSOg9zadq2gKJDcC+X2T+gxfT8L1am8U2CllT2PQ+ULuWP1Ddw29x4+PXAYs4/toxwRZODZEa0oK2jOsZyj5EQkQ955tyZDDqeDbVe20c6sJ98ZTpseA93Wdm0SGpHACxMXs+Smb2iq68RiYzAjHWd4ccvjXJrVDBbcBLtmQ9apGjnVsqp0Wg2P3NCMrAI9yYEd+cqWg8Nuhst73N6X7ey3rA0MJkrbnqjAULe37zVBUdDjPpj2HTxwAE2fx5hhr2DTxRRm5hVy8NJWJq+bzJgVN7H45GJyyn3zS7ao+2okQTaZTA6TyTTdZDL1NJlMPUwm0yl399EyNgGcOq4EhLi9xCI3dTd5Wi1BBtWt7dYq8Z1QpnxN+5sXsLRIz4TCItZfWsGQTwex8sxKHE73L3ysCR0TwzE4EijCQo5WA/nu/fJ0ufgyhRTTudxKQJLb1p7WTqHxKP0ep+/9R1nQdxZzSKZnRSkntbt44cidjP2wF3+a+yCf7zlAYblvLMzp3zyGcNrixMlugwZwQrb7Dhs6mXeSnPIcBhde4XBIX4L9DW5ruzZqGhXPp+MX8EH/5UTq+rLYaOTGuFgmmy+wZvs/KHm3O7yUBPOHw+YXwGb2dsi/0KtJJO0ahJF+pSVZlkL2Bga6v8yiJIv9hSkU6pzckDTYvW3XJpGN0Q/4PyIeP0raLeuJtt/IuxfsPJ2TiybnDC9+/yL9l13PnUuu582Nj7D99EpKKnx7UkbUHbV8T5nfr0W9UBzWUNL9g9yeIJ9Ocy3QqxfZya3t1jqKAs2HEfnQXqZ3/BvvZ5STXJbHkzuf5NZlg9l6cbPP3RbTaBSahDYD4LTBAPkX3Nr+xgvbAWiqTXTVZl4LtHpoMZxud63mzcl7WdNiJuMcUZQZitig28w/Tk7k7gUdePTtfqzcsNDb0f5XWo3CuPbdcDq07Ku4OnOc7b7v71tTt6IA15eVYFd9uM70D+qe2Jx1E2Yz5/ovSdaN4ntNOH+NiaJ3UhJT4pJZYsvl8tEltbJWWVEUpvRKJjOjMTpFz47oZDi/1b2dnNvChqBAFIeOaZ2Gubft2khRaNqmK7c8OpuSCVvYFvQeSRdHcO/FBO4sAGfRFealbmDGrifptbQnt8xry/otnj/dUoj/xm07SXhb8/pGHOdCuaIvg6J0t7Z9KvcU6KBTXCu3tltraXUYe0+jW9cJOD5/nTOp81kansrM7x6khT6cSa0mMbDNBPQavbcj/V26xrfmTAaYDHp6uTlB3nJuN2F2Ow2T+ri1XZ8REEZitxk83m0Gf7GWc/T4MtaeXMX39vNs9M+h+PJcRlK7D8UY0zmZ91PqsTc/1XVgSNZJt7W9LXUbTe0BOOzBtO7hwzucVFG3pEasTvoHl/JK+PfW9Wy6tIk9AcfZayhBCdWy2ukgydtB/ooBLWIxaPwJ1TZkvy4brpwAh911yqAbOM9+y9aAQIKcLYkONrqlTV+gKAo9m0TRs8kILuYOYNWhNLYez+Di+Qyaa1JIijiDPiyTXF0eZb41FyPqoDqTILeoF4LTGkY6qW6flThrziGQADon1Ma3cs/RGALodcdfScq9n5LlcynKW8KOiCwePzSLVw/M4pbAJG5uPIr4TlNds8+1VLfkBBZeDuWUv9ntM8gXCg/T1mwhqmU/t7brizT6ANq1v4t27e8CoMxahkFb+0sK4sICCCSBtIoTOKOaoLhpBrnYUsyxnGNMLq7goL4DA6N8fIeTakiMCOb1UbdQYR3JuuMZrDh6iJT88xgI83ZovyrYT0efplEcKmjAieAUyu0VBOSdhyj3HAJ77uJW0sO19Arr4Zb2fFFSZBAPDGjKAwOaklFYwaZTmWw6mcX2lBwsNgcNYxrhoxsiijqiziTIiZGBOKzh5GLBWpaH3uEAjRsqSMryOKd1EmwJpmlscPXb80EJkSHcP/1hDly6i/Svt9MgazH54SY+UC4w59jrfG6sR+Nmw70d5m9qnxCGo6I+JwOK3JogF1uKyXPm0cZsRpPYzW3t1hWBet85cbJRaFNOWvaQHdWOmLTDbmnzcPZhnDjpUV7A5frX6B2Gn/HXaxnZPp6R7eO9Hcr/NKR1Pb77pgGBwQ6O+hnomnnMPQlycSbbHYVAOKPUOrTzTTXUC/Xnzm5J3NktiVKzjV1nc2kcc21+3orao87UIPvptARpo3AqkKUFKtyztZAzJ4VzBj2Bznr4691ze81XdUwM5617b2L6hHeJDZtLxfknIH0EpUG1+/CU8CADwZo4rmjBmX/Obe3uTT8MCjR0hLqOYBU+q2tcGwD2GUJdaxjM1d8L/GDWQTQotDVbCG1dN3evqMtuaBGLozwRUNjv7+86adEd0g+xLTAAf3MY/ZvU4YXfVRTkp+OGlrE0jArydijiGldnEmSAqIBYANJ1OijLdUubeVlHKdVoMPo3dkt7dUH7BmG8eUcH9jw2ln/f/BDNY2v/3tCJoQlYFSc5haluO4p807l9ADQNbeGW9oT3DG3WEYCdFVfPL3LDVpGHsg7RyKblor0B7Vs2r3Z7omaFBxlQo2Pxd8ZxMCQcMo+7pV3rlf0c9PMjTNcBg65OfQQLUafUqb/O+OD6AKRrtVDqnr0VL2a5Dg6IibhGFuj9AeFBBvo3j/WJN/nGYYkApGrsUJLhljaPZh4g2WIlrqGUV/i6lvViUWxhHCnPd10ovFKt9qwOK0ezj9C5tJCjfh2JCalj+6dfIzolhVNeHM8pnQYy3XPQ0PHUXVg0Cq2i6/iuSEL4uNqf2fwByaGuurYMnQ7K3JMgn8tNAaBZdFO3tCe8o1VMMgCpOp3b6pAzy8/QymLBP7GDW9oT3qMoCkZdAun2QteFap7GeTr/NOX2CjqayzHHdXVDhMIbOieHYy6LIR8buYXuKb05VHAGgH7JdXzfdCF8XJ1KkBPDw1BsgaTr3DeDfLksHcUJbWMbuqU94R0d41wlMlf0OihKq3Z7JZYSyjQlNLFYoX67arcnvC8moD7lmgKcGh0UplarrWPZrtnGtmYzoU17uiM84QWdkyJwmF2leykGffUPkSlK57jGQoDVj76NZNJFiNqsTiXIcWH+2K1hpLmrBtnpJM1eTIhNT5MYWYTly5rGhIM1mCs6HZRkVru9wxmuD8p4Z5DraFXh85KMCSjaMgqD60NR9UoszhScIdCpwW6JoFkTWb/gqxLCA4g0uLb3TDHooeBC9RpMP8xhfz+CbPFEBNX+LRCFuJbVsQQ5ALstjEyd3j0Jcmk2V7QQYA0mJuQaOSWtjvLXa9E6o7ms00Nx9Q+S2ZXqWtEeFyLJT13RPPpqIuQfWe0Z5DP5Z2hssXKEpjSJlu2qfJWiKHSMb4DGEcQZffVP4szKOEi6TkdUQHv3BCiE8Jg6lyA7bcHkuWuRXu5ZLul1+BODUosPwhC/T6g+llS9AYqrP4N8PNuEn8NJcj0pr6gr2tdvBIBJG1ytGmSn00lK/mmam8vIDG2LTlun3mavOa3iQrGUx5ISEFjtBPlAxiFXm/WkLl2I2q5OvXNHBhnQOIMp0Cg4SrOr3V5h7mkKtVqC/a6tE/TqqnqB8WRpFSzF1a9BTi8y0dBqxRgv23fVFY3DGwBgcl6tU3fYq9ROVlkWRdYSmlqsOOJkIZava17fiMMcyxmdFmf++Wq1ZSp0bR/YN7mtO0ITQnhQnUqQFUUh1BCOQ4Hi8urPIF/KOw1AVIhs5l4XNAxtgFOBVDeUWORbL9PIakWJauaGyERtEOkfieI0cM4JOGxQklWldlIKXDvfNLLYiGrc0Y0RCm9oXi8Eh7keZYqT9MLq7Y99yV5AqFVH+4RYN0UnhPCUOpUgA0T4hwOQ98N+ptVw4epsQUPZ4q1OaB7luhOQbs6rVjsllhLKtKU0tlghUsZGXaEoCsHaaFIdFteFKtYhn8l3beNlMIfTKinGXeEJL0kID8DPWQ+Ai+XZYLdWraHyfM7pnBitRlmgJ4QPqHMJcmSA61S3PEshOJ3Vaivtaq1qy+jEasclvK95dAIAeZjBUlbldvZdce1gkejQQ1CkW2ITtUN0QD2KdBWuB1WsQz5TcIZIu5NMRwM5LrcOUBSFxuFXDxrSaao8LqxZp7ig1xOiSXBneEIID6lzCXJMoCthyccGltJqtZVtzUfvgGbRMgtUF7SIcX0wZWu11TpN71DGOQBiA+PdEpeoPeKD47Hqrx4GUcUZ5PMFZ2liMZPl3wi9LNCrE1rHNkBxaqp10NDFtD3YFIWoYDmaXghfoPN2AO5WLzgKCnHtZFGWC35V32Ip11FOiC2A+mEBboxQeEuofzBah96VIBdnQESjKrWTkncJgIQIKa+oaxqGNWBbZgX5ukDCq7hfdmrRJW6wWqmIkLULdUWL+mGszg4lVVdc5QT5ePphABJju7gxMrF///4YnU43B2j9/+zdeXwUZbY//k9VdfW+ZOvsBBKSVKKoOC6Awgijo+NlMSEOOM4obuML5yrDBLkvHa9gvuJ1wYw6Lj8Z8avM/UVHJWRgRgf8edXBiyxzR0ThQrEmIXtn6b073V1Vvz86iYEsJLFJh+7z/iupru46No+d0089zzmIwUk/cl7JAA6GQqH7rrjiigGbTmIuQc42pwCNQCfHhhPkxDFWoAgF0M5K0Eo66NUx9zbFLY1igo2zhxPkMWp21iJBkpCccXEEIyMTQUFy+C5DnTZpTAmyO+BGV9CF7FAITM60SIdHoqQg1Yhg0IoGvnXMCfIxRy1YRsFV2TQuIkmlUm1MT08vtlqtXSzLfr91lSSuyLLM2Gy2i1paWjYCWHT24zH3bctqNICV1OhiOaDbOfYXcregjeOggzlywZGo03JJsKm475UgO/x1yAqFwKbkRzAyMhFkmcLVBepUpjF1XGxwh5dlpAeB5Ek0gxwrclMMkANJOM3zgGNsXRZrg11IDnK4OJP2LUTYNKvV6qTkmIwWy7KK1Wp1IHz3YeDj4xzPeZdsVIOVdOjiWMDvGPPryI4GtKk46DlrBKMj0WbWpKGNU0H+HgmyR25HVjAEJE6JXGBkQkjRhduG1zHaMZV5a3CFE2QlkIj89MSIxkaix2rSQCWnwMUycDjHtja9memGOaSjrqyRx1JyTMaqZ+wMmgvHXIKcYtRACRnCa5C/R4Lc2XkUIYaBUUs7jmOJVW+FjePg6xjbHzlJluDl3MgKSYBlUoSjI9Fm1YW/ENdDNbYZ5J4E2RtMR56VKljECoZhkKrLBAA0ekdfR13xOdCgYmFGEnVlJeQCEXMJcrJRDUkyhdcg+8e+xKKxI1zsP9E8NVKhkQkgy5SGbpaBfYztpo/YGiEzCtJlBtDRDGGsMfAGcNCgEQzg6wJC3aN6/mlnHSySDL86B1qeO09RkmiYbAlPljT4u0ZdQrSz7SC8LAuzOvN8hEYmgD179hhuvfXWvnVV+/fv1y1atKiotLRUWLFixRRJCnfm3LBhg3XBggXFCxcuLP7ggw8SAcDtdrPLli2bWlZWJixdurSwoaGBP/v17XY7d+edd+aXlZUJt9xyS9GXX35pAIDdu3cbFi5cWFRSUlL0zDPPZACAJElYtWpVzi233FJ06623CseOHdMAwLFjxzRLly4tLCsrE2677baC9vb2vg+pY8eOaW688caLen8/efKkuqysTFi8eLHwq1/9Ktfj8QyZL/72t7+d9MYbbwy43f7555+b7r///jN2wz/xxBNZf/zjH4dcZ1RZWZm+d+9evc/nY956662UkV7zb3/7m3nRokVFCxcuLFq9enWOLMsjel+HE3MJsl6tgixbwmuQv8cM8umucMekzMTcSIVGJoApCRkAANsYOy1+3Rwu8ZaqSgBoJijmMAwDoyoRHb2fjKNsWd9gP4HsUBBBM7WnjzVCcvjftIFTAO/omg3Vtn4NAEgx0r6FWPTCCy+krVmzZnIgEOj7o/D73/8+c/ny5c01NTViMBhkPvroI4vNZlNt3rw5dcuWLUeqqqrEF198cZIsy3j77bdTiouLvdXV1eL8+fM7Xn311fSzr/Haa6+lXX311c7q6mrx2WefPbVu3bocAKioqJj8wgsvnNqyZcuRgwcPGr766ivdtm3bEgKBALt169Yjq1atali3bl02ADz22GOTV65c2VhdXS0uWbLEdvToUS0AVFVVJa1cuTLP4XD0JZBPPfVU9k9/+lPbli1bxKuuusr16quvDmj/2NbWpvr5z39esGvXLkuk3stVq1a1zJgxw9vS0sLX1NQMSJAHu6bT6WR/97vfTXrzzTeP/+UvfzmSmZnZ3d7erhrJ+zqcmCzPoOMs6OJYyH7HmL8BtLhbAPa7Xe0kNhSmhGsXd4XG9uXpcHstACDLQDNBsSpJm4J2Vc8dBncrYBn5Z0CD6zQuCobAjLGEIJm4Cq2pUDWp0ahSAc7GUTUJOtpyGACQlXrp+QqPANj0ZW3ylq8ahpx1HIvFP8huX3bNlI7hzpk8eXL3K6+8cuLhhx/um1ETBMFrt9s5WZbh9Xo5nucVq9Ua+uijjw7xPI/a2lo1z/Myy7J48MEH20KhEACgqalJbTKZpLOv8cADD7RqNBoZAEKhEKNWqxWHw8EGg0EmPz+/GwBmzZrl3Llzp9lms/GzZ8929BzzlJeXG7xeL9PV1cV/8sknCZWVldnFxcWetWvXNgCAxWKR3nvvPfH666+/pPd6dXV1uhtvvLEOAGbMmOFet27dgDWFbrebfeihh5o+++yzUSfIn3/+uemNN95IV6lUcnNzs+bHP/5x5+rVq1seeuihKfPnz+/csWNHYn19ve6ZZ57JeOSRR/rWNQ12zd27dxvz8vK8FRUV2U1NTZrS0tL21NTU0Eje1+FEbAZZEASLIAh/EQTh74Ig7BYEYVbP8ZmCIOwVBGGXIAhrI3W94RhVCZAYBi7/sGN6WG1BJ1QKkJ8y4EsTuYBlm8P/ng5lbJ306nqaR0xOpgQoVln1KfBxPe2mR7FRT5IlNPo7kR0KQZtGM4WxJtdqABs0oVWlAlyjW4dc76wHoygozp5+nqIj0bR48WI7z/NnrLvJzc3trqyszLnhhhsu7uzsVF133XUuAOB5Hq+//rr19ttvL/7JT37Sl6SoVCosWbKksLq6OvXmm2/uOvsaiYmJkl6vV5qbm1WrV6/OW7lyZYPT6eT0en1f0mc0GiWXy8V5PB7ObDb3HWdZVmlra+Pr6+u1s2fPdr7//vui0+nkqqqqkgFgwYIFDqPRKPe/Xn5+vvfDDz9MAIDt27cn+P3+AfliXl5eYObMmaPuyNa7Dr+1tVW9cePGE1u2bDnyzjvvnDG7u2LFiuacnBxf/+R4qGt2dnaqvv76a/Njjz3WsGnTpmPvvPNOmiiKGuDc7+twIjmDXA7gv0RRfFEQBAHAuwB+AOB1AGUATgL4UBCEy0VR3B/B6w5g0SSiA0Cnvwtjnfdvl70whThkJtBGm1jSuwmri5PDnRbVo/v3tXkaYA2FoKcKFjEr25SGfSpf+JdRbNRr9bZCgozUIJCSQUssYk1usgFSMAEt6ubwDPIoNPnbkcQA+alJ5yk6AgDLrpnSca7Z3vFSWVk5adOmTUemTZvm37Bhg3XNmjWT1q9fXw8Ay5cvt919993td9xxR8Fnn33mnjdvngsA3n///aOHDx/WLl++PH/jxo3HHn300SkAsGDBgo677rqr/ZtvvtGtWrUqr7y8/PTcuXPdDoeD9fl8feuI3W43ZzabJb/fz7rd7r7jiqIwqampQZ1OJ/deayA23xIAACAASURBVN68eY5du3aZAQz6fq1Zs6bh8ccfz9m6dWvKtddea7dYLKHq6urEd999NxUAHnnkkdNXXnnlsDNNWq1WDgaDZ6xF9Hq9nFarlQEgLy/Px/M8eJ6X1Wr1mCuRJCYmhgRB8GRkZIQAYPr06a5vvvlGLwhCN3Dm+/r3v//94EhfN5JrkF8AsKHnZxUAvyAIZgAaURRPiKKoANgB4IYIXnNQidoEAIDje9RBtjMh6CU1jJqYXIUStwy8AbzCoY3jAM/o1yH7gs1IkyQgIec8REcmgmxzGsAF4GOYUc0gt3jCpQPZoAmTU8bewZNMTIkGNRQlFa0qDnA2jeq5LYobiUGeSrzFEaPRGOqdxU1LSwu6XC7uyJEjmnvuuWeqLMvgeV5Rq9UywzBKZWVlelVVVVLP8ySWZVFQUNC9efNmcfPmzeJdd93VfujQIe3KlSvz1q9ff/Lmm292AoDFYpFVKpVy/PhxjSzL2L17t3nGjBnuK664wr1z504LEN7El5ub69Pr9UpWVpZ/586dRgDYt2+fKT8/3zdU/J9++ql59erVDZs3bxY5jsOsWbOcZWVlXb0xnSs5BoDi4mLf8ePH9U1NTTwA+Hw+5sCBA8bp06ef87ksy0JRlBFt9Ln88su9p06d0tlsNlUwGMTBgwcNRUVFvsHe19EYU/YnCMK9AH5z1uG7RVH8hyAI6QD+XwArAZgB9M9SXQDO+73pFH0C0A04A2NMkKUQ7KwMnUQtpmMNwzAwwIh2zjmmTovdSidSQ9Ko1qWSC4tV31PqjbdAGMUMcm+C3B1MxqRE/XmJjUSXWW2FnePgczRgNH8dWjgJuUELWJY29saLioqKuhUrVkzlOE7heV5++umn63JzcwOFhYXekpKSIoZhMGvWLMfcuXPdRUVF/vLy8tyamhqrLMt48sknT539es8991xWMBhkezfnGQyG0KZNm06sXbu2rry8PFeWZWbGjBnOmTNneiRJwq5du8wlJSVFiqLgmWeeqQWAp556qraioiLn+eefZzIyMrrXrl075CxRfn6+f9WqVXk8zyu5ubm+Z599tn6074HFYpHLy8tP33ffffkajUYOhULs0qVL2woKCrobGxvVwz03NTU1GAwGmbVr12ZVVFQMe8smLS0t9OCDDzYsW7asAABuuOGGrksuucRvtVrbz/W+DmdMCbIoim8CePPs44IgXALgTwAeFkXx7z0zyKZ+p5gA2MdyzdFIMyQAXYAjOLZ1pvB1ooPjkCWbzn0uueAYOTO6uFZIbhtGU4hLkhUEWDesEtVAjmW9y3BOqcyjSpBbexLkEJMFnZpKvMWiVF0a7ArQ5qzHSL9ae92t6ORYTGep6VQsy83NDWzbtu1I7+9z5sxxz5kz58jZ5/WsqT1jXW16enronXfeOTbc62/atOnEYMdnzZrl6X9dAOA4DpWVlQMS2unTp/tqamrEoa6xd+/eA70/z5w50/Phhx8eHi6mXo8++uiQt1RKS0vtpaWlA/K+uXPnuubOnes6+9ovv/xybe+x7du3/+9Ir7l06dKupUuXnrHGeCTv63AiuUnvIgAfALhdFMW/AYAoik4AAUEQpgqCwAC4CcAXkbrmUNJN4fq0Tsk/pudL7lbYWRY6VUIkwyIThEmThA6OhatzdLWQT9vtCHIhpEoyYMo4T9GRaOvtplfL6ke1xKLVcQpGWYakp9KQsSrLFN5H1Owb+bhoag3nHAm6rPMSEyHk/IjkGuSnAWgBvCQIwueCIGztOb4cQBWAfQD2i6K4N4LXHFSmKbwRwqUEAFk+x9kDOey1kBkGBjV9449FibpUdLEcvF2jazf9v62nAQBJrAHgaG16rOpdYlHHaKCMoiV5q7MeaaEQFFqfHrOmJoWXVrX6Rl4H+XjTIQBAmoWaThFyIYnYX3lRFG8Z4vgeADMjdZ2RSDLooJI5OFkGCLgBrXlUz2/paRJi0VOt21iUasrA3g4WXsfIZ4EA4Fhn+I6OVU0d9GJZgiYBLDi0sKpRNQppdrcgLSRBkznl/AVHokqwZgO1QCuCI66CU9vTlXVS2iXnOJMQMpHEXCc9AEjQq6GSeDhZdkzd9Jrt4ZnCRDNtxIpFmeYUSAwDp3t0M8j19vCysXQj1caOZSzDwqAKNxtigl6g2z2i57V0dyFNkmBJpxrZsWpqciL4kDpcyWKEdxeaXI1QKQqmTqImIYRcSGIzQdbxYGX1mBPkNld4bWpaIv2hi0WTLKkAAId/dG2Em3o2bGVZ6BZ6rLNoEuHgespyjmCjXlAOolP2wRLikG4deYc1cmHJStSBCxnQolKNuEZ2W6ADKSEFOVa680TIhSQmE2SzjgcjacMJ8hhqIXf6wnWzc5JG1babXCCSdeE16u7g6AqqdPhaoJNlGMy02SbWpeiS4eV6GlGNYJmFzWuDAoAP6pGVQOUhY5VerYJKTkQrx424m16H4kFiiKOa+oRcYGIyQeZYBqyih2uMM8hdQQdYRcHkBJoJikVJ2nCC7FNc5zjzTP5AM9JCEhiqYBHz0g1WdI+i3XSrNzybqIQsSLdoz2doJMo0qjS0qDjANbIZ5HYmAItMX5pi3Z49ewy33nqr0Pv7/v37dYsWLSoqLS0VVqxYMUWSwl+4N2zYYF2wYEHxwoULiz/44INEAHC73eyyZcumlpWVCUuXLi1saGjgz359u93O3XnnnfllZWXCLbfcUvTll18aAODYsWOapUuXFpaVlQm33XZbQXt7OwcAzzzzTMbChQuLS0pKivbu3asHgNbWVlXvdUpKSoqOHz/e17mmra1NNW/evGk+n48BgI6ODu4Xv/hFfmlpqbBs2bKpra2tA77hNTU18UuWLClcvHixsGzZsqlOp/OMnPLUqVPqRYsWFfU/9sYbb1iffvrpITd4/fGPf0z+y1/+YgGA119/fchKCa+88krqE0880TdbtW/fPv3ixYuF0tJS4d57783z+XxMIBBgli9fnltSUlK0ePFi4fDhw6P6cI7JBBkAOMYIJze2BNkheWCSWKSa6EMtFvUmyF5myCZCgwooHUiVJCrxFgdSDcmQVD1lIj0jSJB71rOzTCp4LmY/VgkAszYLDo6D33XudtNBKYAODjCzVDI0lr3wwgtpa9asmRwIBPo6wfz+97/PXL58eXNNTY0YDAaZjz76yGKz2VSbN29O3bJly5GqqirxxRdfnCTLMt5+++2U4uJib3V1tTh//vyOV199dcDt69deey3t6quvdlZXV4vPPvvsqd6GIY899tjklStXNlZXV4tLliyxHT16VPvPf/5T/9VXX5m2bt16+KWXXjr55JNPTgaAdevWZS9YsKCzurpa/PWvf90oiqIWAHbs2GFetmxZYVdXV19i/uKLL2ZMnz7dXVNTI95xxx1tTz/99IBbp6+88kr6okWLOrZs2SIWFRX5Nm3alPJ938s777yzY+HChQ4AeOuttwYk0l6vl3nggQdyN2/enNp7TJZlrFmzZsqzzz5bW1NTI86ePdtZV1en3r59u0WSJObPf/7zkQceeKD5+eefH9Xt35i956NiLT1rkEe/xMKJbuglNbQ8FfuPRQk9rch9bAiQggA34Mv6AL6AhBDnQmq3BJho6U2sS9YlA2wQboaFcQQzyC2OcIMmFU8NZGJdhjEdp5xAi6MeU85xbkvnMSgMg0Q1bewdF/v+kIyv3/3eSdoZpv+sHVff3zHcKZMnT+5+5ZVXTjz88MN9RdAFQfDa7XZOlmV4vV6O53nFarWGPvroo0M8z6O2tlbN87zMsiwefPDBtlAoBABoampSm0wm6exrPPDAA60ajUYGgFAoxKjVasXr9TJdXV38J598klBZWZldXFzsWbt2bcMf/vCH1BkzZjhZlsXkyZMDkiQxbW1tqm+//dZYWFjoW7p0aWFGRkb3unXrTgPhts7/+Z//KZaWll7Ue71Tp05py8vLGwHgmmuucf/Hf/zHgM0369atO60oCiRJQktLC/+DH/yge6Rv66lTp9QrV67MS01NDTQ2Nmouuugiz/PPP1//9NNPZ6akpATtdjvndru51atX56xfv76v6Ynf72dLS0s7Zs2a5Tx58qQWAI4ePaoxm82hP/zhD2knT57UzZ49215UVNQtyzIjSRIjSRJcLhfLcb0bS0YmZqc6eFUivCyLoK/r3CefxcGEoFM05z6RXJB4loceanRwHPzOITttnqHZ4UOQ88EaogQ5HvTeZahXmUe2xMJ+EjpZhso05TxHRqItxxy+g9Q4gjXIR+v3AwCsxtG1tCcXlsWLF9t5nj8j+crNze2urKzMueGGGy7u7OxUXXfddS4A4Hker7/+uvX2228v/slPftKXeKtUKixZsqSwuro69eabbx6QuCQmJkp6vV5pbm5WrV69Om/lypUNnZ2dqvr6eu3s2bOd77//vuh0Ormqqqpkt9vN9U+y9Xq95HA4uLa2NrXZbA699957R9PT0wMvvfRSOgD8+Mc/dqakpJyRlBcWFvo+/vjjBAD461//mtDd3T0gX2RZFpIkMTfddNPF+/fvN/f+N54LwzAKADQ2NmorKytrt23bdnjPnj2W5ubmvknb1atXtxiNRql/cgwASUlJ0o033njGzGd7e7vq8OHDxrvvvrvt3XffPbpv3z7zp59+ajIajVJLS4v6hhtumPbUU09NWbZs2ai6g8XsDLJenQDIgMtnQ9JonhgKwM4ySJT05ys0MgGYWD262C50tbcgI/HcSyZOdLRBZhVYZQXQjWpEkQtQb4Jcy5lx0Qg26bW5mpAWkqBKokQo1hUkZwENQKt/2ElFAMCJtnBX32xr0TnOJBFx9f0d55rtHS+VlZWTNm3adGTatGn+DRs2WNesWTOpN9lbvny57e67726/4447Cj777DP3vHnzXADw/vvvHz18+LB2+fLl+Rs3bjz26KOPTgGABQsWdNx1113t33zzjW7VqlV55eXlp+fOnev2er2MTqeTe58/b948x65du8y5ubl+j8fTl9B6vV4uISFBMplM0vz58+0AcOONN9p/97vfDbnkYOXKlc2PPfZYTllZmXDttdc6rFZr8IsvvjC+9NJLWQBw9913t8yfP9+hVquVTz755NAnn3xiWrVqVW51dXVfK2udTicHg8EzEmuv18v2zoRnZGT4zWazDABJSUlBv98/pknb5ORkKSMjw3/RRRf5AeCaa65xHDhwQP9f//VflhkzZjjXrl3bWF9fz995553C3/72t0M6nW5EM8kxO4NsVoebgzj9o6tUAF8nOjkWOnZ0zUXIhcXCm9HJcXCOsN30ic7wbFGiygSwMfu/DemRrAtv0K2FDsoINmO1ettglSQYUqnNdKy7KDV8p9kWOvdkWZMj3HQqP/uy8xoTmXiMRmPIbDZLAJCWlhZ0uVzckSNHNPfcc89UWZbB87yiVqtlhmGUysrK9KqqqqSe50ksy6KgoKB78+bN4ubNm8W77rqr/dChQ9qVK1fmrV+//uTNN9/sBAC9Xq9kZWX5d+7caQSAffv2mfLz831XX321e/fu3RZJklBXV6eWZRlWqzU0bdo0144dOywAsHv3blNeXp5/qPi/+OIL02233Warrq4Wp0yZ4r/00kvdc+bMcffGNH/+fMfq1atzPvvsM1NP3DLLsmcknqmpqSGfz8ceOnRICwChUAh79uwxT58+3QsADMMMvHA/ijKyFRF5eXndPp+PO3bsmAYA9u/fbyosLPSbzWbJaDRKQHjmuWe5xfAX7SdmZ5ATtGbADzi6R7dJz+tqho9lYVDRpopYlqRNho1j4bGPrJtevSOcJFm1VMs0HiRrwwlyI6eF7G7FuXYjtAWcuDSkIMVKy29i3dSUJKglDh0IAUEfwA+9mbvN14oUWUJ2dsE4RkgmgoqKiroVK1ZM5ThO4Xlefvrpp+tyc3MDhYWF3pKSkiKGYTBr1izH3Llz3UVFRf7y8vLcmpoaqyzLePLJJ0+d/XrPPfdcVjAYZHs35xkMhtCmTZtOPPXUU7UVFRU5zz//PJORkdG9du3ado1Go1x++eXukpKSIkVRmH//93+vB4DHH3+84ZFHHpn8wQcfpBoMBunll18+OVT8hYWF/tWrV+euX78eKSkpgcrKytqzz7nnnnvaHn/88cmvvfaawjAMKioqzlgOwbIsnnzyydpHH310CsuyCIVCzA9/+EP7vHnzXKdOnVKf6z2cPHmy71e/+lXua6+9NuD96E+j0SgVFRW15eXleYqi4JJLLnHPnz/f8cMf/tBVXl4+ZfHixUIwGGT+9V//tdFoNMrnum6vmE2Qk3UJgB2wB0bWBatXuyP872vSRnadP5lYUo2pEDs5+B0jXIPcsw411UCbbeJB7xILG8uDOccSC0VR0CH7oZU0yEo8d+thcmHTqTloJT1aVa5ws5DEKUOe2yHZYZUYGHS0pyXW5ebmBrZt23ak9/c5c+a458yZc+Ts8x555JFmAGcsYE9PTw+98847x4Z7/U2bNp0Y7Pj06dN9NTU14tnHH3300SYATf2PTZkyJfCnP/1pyOt88cUX3/b+XFBQ0P3nP/95QPz9FRcX+zdv3jzg2v0N9T6c/X71/twTNwDggw8+ODrU6955551nLKX50Y9+5PrRj350uP8xk8kkv/HGG0N+CTiXmL1XnKIPzwA7AqOrddvSGS7dY9GnnuNMciFLt2TCzrLodo+sm16bN5xIp5io/Xg8UHNq6DgjOjgObMg3bLtpZ8CJAKOAC+qRmUA1kOOBDpYRtZvuYPxIkM85UUYImYBiNkG2GnoS5NDoat229exMTjAOWceaxIAkQxoUhoHbO/wfuF7Obhu0sgyjibroxYskbSKcvWsrhmkrbPOGv2QxSgJM2nOXDCQXPoPKilZONWw3PVmR0clJSIBpHCMjhERKzCbIGabwWlG3NOQa9EF19swopiZQPdNYltRTicIT6BzR+YFQG5IlGYyJlljEC6s+Be4RtJtuczUAAFQsjY14YdFno4Nj0e1oGPKcVncrggyDRJ6W6xFyIYrZBNlqNEIlM3ApwVE9z94dLj+YnjSgJjaJIYk9m+388rmrnARCMhR0IkWSACMlQfEiRZeMIB8u3j/crXRbZ3iZnFZLX6rjRap5MhSGQUPboMtCAQCH6r8GAFiNtCyLkAtRzCbIFh0PtczBjRAwwlIhAODsDtefzkmgb/2xLFETTpC75XNv4mxz+QGVuydBprXp8SJZl4xQb7vpYW6l2+zhDdYmM1UqiBe5ieGlVo2O2iHPOdF4EACQnVg4HiERQiIsZhPkBJ0aKlkFDwMgNOLuh3BJbuglBcnGoUv3kAtfb5WCAOtDUBq+6kuLw4+QykczyHEmWZcMifXCAx5wNg15XrOjASZJhtFKCXK8EFLCs8Kt3qHLRDbaw7PLBdmXjktMhJDIitkEWcuzUMlquDgW6B55JQu37IdRZqHlz1X5lFzIErThTZwBLoB29/BfoE53uRDkgkiWJMBgHY/wyASQogvfRTrGJQ6fIHvCTUIsabQsK15Mzww3hGkPDb1Ey+ZtglmSkDN52niFRaJoz549hltvvVXo/X3//v26RYsWFZWWlgorVqyYIknh/QwbNmywLliwoHjhwoXFH3zwQSIAuN1udtmyZVPLysqEpUuXFjY0NAzY7Wu327k777wzv6ysTLjllluKvvzySwMA7N6927Bw4cKikpKSomeeeSYDACRJwqpVq3JuueWWoltvvVXobaBx7NgxzdKlSwvLysqE2267raC9vb0v0Tl27JjmxhtvvKj395MnT6rLysqExYsXC7/61a9y+3fm63Xo0CFtaWmpUFJSUvTQQw9NCQbPXNL6+eefm+6///68/seeeOKJrD/+8Y/JQ72PlZWV6Xv37tX7fD7mrbfeGvJW/m9/+9tJb7zxRt8f5Jdffjl14cKFRQsXLux7H7xeL3PvvfdOXbx4sfCLX/wiv62tbVSljWM2QWYYBipFAzfDAqMo9eZmAtDLlBzHOp7lYYAKPi6ENsfwlU5OdYXXn6YwWkBFJZviRUpPLfRjjAXyMAlye9ABS4hBRhJ134wXKXoLtBIHG3yAPPgdqM5QJ9JDMngDNReKdS+88ELamjVrJgcCgb4ubb///e8zly9f3lxTUyMGg0Hmo48+sthsNtXmzZtTt2zZcqSqqkp88cUXJ8myjLfffjuluLjYW11dLc6fP7/j1VdfHdBx6LXXXku7+uqrndXV1eKzzz57qrdhSEVFxeQXXnjh1JYtW44cPHjQ8NVXX+m2bduWEAgE2K1btx5ZtWpVw7p167IB4LHHHpu8cuXKxurqanHJkiW2o0ePagGgqqoqaeXKlXkOh6MvMX/qqaeyf/rTn9q2bNkiXnXVVa5XX311wO3T9evXZ61cubKxt17yhx9++L07rK1ataplxowZ3paWFr6mpmZAgtzW1qb6+c9/XrBr1y5L77ETJ06ot2/fnlxTU3Nk69atR/bs2WM5cOCA7s0330zNz8/3bdmyRVy4cGHHCy+8kDGaWGK2UQgA8NDBxY5yBhkh6BTjeYyKTBQJnB52zoHOznYgJ2nI8+rs4RJfKRpKgOJJ7wzyKc4I2dE05GxCh+xDvqRGdiIty4onZsWIJpU7XOFkkOo2XfBgisQD52inSyLn3cPvJm87sS2iG4gWTV3U/rPin3UMd87kyZO7X3nllRMPP/xwX695QRC8drudk2UZXq+X43lesVqtoY8++ugQz/Oora1V8zwvsyyLBx98sC0UCm8IbmpqUptMJunsazzwwAOtGo1GBoBQKMSo1WrF4XCwwWCQyc/P7waAWbNmOXfu3Gm22Wz87NmzHT3HPOXl5Qav18t0dXXxn3zySUJlZWV2cXGxZ+3atQ0AYLFYpPfee0+8/vrrL+m9Xl1dne7GG2+sA4AZM2a4161bN2AX8saNG0+oVCp0d3czHR0dfG9r7ZH4/PPPTW+88Ua6SqWSm5ubNT/+8Y87V69e3fLQQw9NmT9/fueOHTsS6+vrdc8880xGT3MVAOHZ9oceeqjps88+60uQJ02aFHz77bePqVThlFaSJEar1cr79+83/vKXv2wBgJtuusm5cePGUdXvjdkZZADgWcOoE2QXq0AHKvYfDxJ5E7o4Ds6O4WshN/V00bPqhrwrRGJQb4LcyGnBupsH3ewrKzI6GAl8SA+rkbqlxZMELhlNKhXgbBzwmKzIaOdCsEIfhcjIeFu8eLGd5/kzPiByc3O7Kysrc2644YaLOzs7Vdddd50LAHiex+uvv269/fbbi3/yk5/0Jd4qlQpLliwprK6uTr355pu7zr5GYmKipNfrlebmZtXq1avzVq5c2eB0Ojm9Xt+XlBqNRsnlcnEej4frn6yyLKu0tbXx9fX12tmzZzvff/990el0clVVVckAsGDBAsfZLZjz8/O9vTPC27dvT/D7/QPyRZVKhdraWvVNN910scPhUF166aXekbxfTM+XxtbWVvXGjRtPbNmy5cg777xzxqz5ihUrmnNycnz9k2MAyMvLC8ycOdPT/5harVasVmtIlmU8/vjj2QUFBV5BELo9Hg9nsVgkADCZTJLH4xnV8oCYnkFWs6aeBHmE7aalIJwcgzyF2sXGgxRdAhqcLDz2oTfaAIDN2w7ogBQdVbCIJ8k9X4jaOB6s1A34ugD9mXcaOj1tkBgGaiSBZWmmMJ6k6LLwT+U43LZ6GLN+cMZjYvtpBFkgTU2fGePpZ8U/6zjXbO94qaysnLRp06Yj06ZN82/YsMG6Zs2aSevXr68HgOXLl9vuvvvu9jvuuKPgs88+c8+bN88FAO+///7Rw4cPa5cvX56/cePGY48++ugUAFiwYEHHXXfd1f7NN9/oVq1alVdeXn567ty5bofDwfp8vr6kz+12c2azWfL7/azb7e47rigKk5qaGtTpdHLvtebNm+fYtWuXGcCg79eaNWsaHn/88ZytW7emXHvttXaLxRKqrq5OfPfdd1MB4JFHHjl95ZVXeqdMmRL4/PPPD7711lspTzzxxKRXXnmltvc1tFqtHAwGz/hg9Hq9nFarlQEgLy/Px/M8eJ6X1Wr1yMuNDcLn8zG/+c1vpuj1evm5556rAwCDwSC5XC4WAFwuF2cwGEY8ww3E+AyyhjcjwDLo9g34MjaooLcdHpaFnqPOR/EgWZeMLpaD194+7Hn2QPjxZGozHVfUnBom3oxOrufzfZBSb622cCkvXjWqpW0kBmQm5qObZXGy6X8HPPbPU/sBANmWvAGPkfhgNBpDvbO4aWlpQZfLxR05ckRzzz33TJVlGTzPK2q1WmYYRqmsrEyvqqpK6nmexLIsCgoKujdv3ixu3rxZvOuuu9oPHTqkXblyZd769etP3nzzzU4AsFgsskqlUo4fP66RZRm7d+82z5gxw33FFVe4d+7caQHCm/hyc3N9er1eycrK8u/cudMIAPv27TPl5+cPuQHn008/Na9evbph8+bNIsdxmDVrlrOsrKyrN6Yrr7zSu2zZsvyjR49qgHAyypy1nKi4uNh3/PhxfVNTEw+Ek9gDBw4Yp0+ffs6ZZpZloSjKiGYdZFnGPffck19YWOj73e9+V9e71GL69OnuTz/9NAEAduzYYb7ssstGvpwAMT6DrOMTgCDg8tkwkpuf7V11AACjmjZVxINEvRV2jkXAMfQMcndIQlDuQJIkgTcN2DdBYpxVn4KO3junzmYg7eIzHm+1HQIA6PSUCMWbgvRioBmo7zyBswu5nWgKJ8hCJpV4i1cVFRV1K1asmMpxnMLzvPz000/X5ebmBgoLC70lJSVFDMNg1qxZjrlz57qLior85eXluTU1NVZZlvHkk0+eOvv1nnvuuaxgMMj2bs4zGAyhTZs2nVi7dm1deXl5rizLzIwZM5wzZ870SJKEXbt2mUtKSooURcEzzzxTCwBPPfVUbUVFRc7zzz/PZGRkdK9du3bI2aH8/Hz/qlWrsWR1+gAAIABJREFU8nieV3Jzc33PPvts/dnn3H///c3/9m//lsvzvKzRaPpmbntZLBa5vLz89H333Zev0WjkUCjELl26tK2goKC7sbFx2B3vqampwWAwyKxduzaroqJi4DqmfrZt25bw7bffmoLBIPvll19aAKC8vLzh3nvvtf3617+eUlpaKvA8r7z00ksnh3uds8V2gqxNBoKA09uFkazab+wI/9uatdQkJB4kGjIgMQy6fa1DntPi8EOj6qIayHEqWZeMVk3PGnXXwEoWzZ3hWreJKZcMeIzEtumZU4H9QItn4LhochyDWlZQmHt1FCIj0ZCbmxvYtm3bkd7f58yZ454zZ86Rs8/rWVN7xu2o9PT00DvvvHNsuNfftGnToG0bZ82a5el/XQDgOA6VlZUDEtrp06f7ampqxKGusXfv3gO9P8+cOdPz4YcfHh4upmuvvdZz7bXXDvhv7K+0tNReWlo6oB7i3LlzXXPnzu2b0e299ssvv1zbe2z79u0Db8/0ePTRR/v+xyspKbGXlJR8Ndh5GzduHFVS3F9ML7Ew9awhtI9wiUWbPfx+Www0UxgPEk3hDa3BoA3KEN0WG+0+cConrJIEGKkGcrxJ0aZAUvXUyXYOXGLRYK8HpyjIyrx4wGMktk2xhJdcdQZtAx7rDDRjUigIPnnqeIdFCImQiM8gC4JQBGAvgDRRFP2CIMwE8BKAEICPRVGsiPQ1h5KkC1cB6RphgtzhCs8UJVtGVQmEXKB6u+kxjANOXwgW/YDa7Gi2+6GoPEjxyzSDHIeSdckIMU50woykQWaQW302JEpArvV7l/8kFxg9r4dJ4mDHwGWNXXCiIMQCaqpiQciFKqIzyIIgmAFUAujfmux1ALcDmA1ghiAIl0fymsNJ7kmQnd3OEZ1v94Y3c6YlUkeseJCoDa81Z1UuNA3RLKTJ7kWQozbT8SpFl4IQ/DiuJCHUUTvg8Y6QG8YQj5wkqnwTj5JYM9pUMrpd3xUC8AaC6FQFkMpQPf1xIsuyTCVkyJj0jJ1Bu/1ELEEWBIEB8AcAvwXg7TlmBqARRfGEKIoKgB0AbojUNc8l1Rie1XEGPec4M8wRCM80Z6XknuNMEgt6Z5DBedHi8A96Tq29AzKrwCrLgJ7Wpseb3lrI37JpUNrPWiKoKOhgAtBIeqQYqcNiPMrRT8IxNY868eu+Y/9oOIUgC2Ro6Av1ODlos9kslCST0ZJlmbHZbBYABwd7fExLLARBuBfAb846XAfgT6IoHhCEvnbkZgD9p29dAMZtu3dvguwJjah2NdxBN9SsgvQEul0aD3oT5KCqG81DJMgNzhaABVJURoCN6SX7ZBC9CbLIJoB37wUCHkAdni1W3Da0cSwKmEScXd6IxIdLMy/HFye+wbFT+1B45fUAgC+O/Q8AQEguiGZocSMUCt3X0tKysaWlZRpifF8ViTgZwMFQKHTfYA+OKUEWRfFNAG/2PyYIwnEA9/Ykz+kAPgawAED/osImAAN2M54vaUYLGAVwS4MnP2fzyF6YAGj5UTVbIRcoNaeGheHh5XxoHmqJhasNsAApGir9F49S9eFGDydVBkAC0HECyAiX7nLbDsHHstCrac9CvLoqbw5wYhNOtn/Td+xQ0y4wjIKrJlMFi/FwxRVXtAFYFO04SOyJ2CY9URTze38WBKEWwI09m/QCgiBMBXASwE0Axm2TXoJOA43MwKsERnS+R/HDQHdp4kqKSg+nyoHuroHr1CVZgc3bDt4CpBioI1Y8yjSGk99WNR/eWdF+tC9Bbm78BwDAZMof6ukkxgkp4eolLcFwRS1FUdDefRj5XBDGrCujGRoh5Hsaj9sRywFUAdgHYL8oinvH4ZoAAJNWBY3MwovQiM73IgidTLPH8SRFbUY7x8Hb1TLgsSa7DxLrAABYjTRLGI8MvAFmtRlBPSCDAfqtQz7dGC67mWqlEm/xyqg2Il1SwcY54A2EcLzNBYe6AxcHFCCZvjgRciE7L41CRFGc0u/nPQBmno/rnAvLMlDLPDwY4RpkRkKSojvPUZGJJEWThK85Dpr2gd306jq84FROaGUZBlNWFKIjE0GmMRMtAQ9amFRkdnyXIDd1HQX0wMWp1EUvnuWrk1EnN6L6f+rQGWqFj5NxkT4boHXphFzQYn5Bu1rh4WUUQB60iscZPKwM3YiaUpNYYTWkoZ1jEXC2ojsknfFYbYcHWlUnUiQJDLWZjlsZhgxA1QUxlA7ZdjR8MOBFS7ATnMzgqkmToxsgiarpKQJO8yp89Nl2fPDVJwCAK7Jo/TEhF7rYT5ChgYtlgYD7nOe6WAZ6luqZxpMUYwa6WRZmthN1HWfeaaht90DNO8Jd9ChBjltZxiz45HacUDLCSyxkGWj5Bg0qDjrJjHQLNYOIZ7Mvvh0AoNduBcfvg0GWMTVv3KqZEkLOk9hPkBkd3CwLdA/sdtSf19uFbpaBQUXF3eNJinkSAECv6sBJ25lfomo7vGDVLqSFJMBICXK8yjBkoFv24X+QA1byA3X/DTR+hXpeBZ0qO9rhkSi7eNK1mAM9DiQ3odNYh9udLnDZV0U7LELI9xTzCbKG1cM5ggS5qf0UAMCophrI8STFFO6ayPNdOGE7s6FMbYcbfs6DjJAEmKjof7zqrWSxV5sHP2cEvvpPBI9+jNMqHmkmWn9MgAemlqGbYVAYCOCBhMsBrSXaIRFCvqeYT5C1KhPcLAPZP3z55eaORgCAube7GokLveXbtBoPTvZLkGVZQb3DBomRkSaFACrzFrcyjBkAAKtVwk7NXODbD2Cv/zu6WQbF1HWTALjkil/ixXYnXmUywS/9z2iHQwiJgJhPkHUqCxSGgcdrG/a8Nkc4QU7QW8cjLDJB9HZK4zQ+nOi3xKLJ4UOI6QQAZHB6QEWthONVpiE8g5xk8eL/eq8FoOCrxGkAgCuzqFsaAaBLxPW/3I30u7YDWnO0oyGEREDMJ8iGnhnhDlfrsOd1ucN1cJNNGec9JjJxmNVmqBUgyPlw0uaGoigAgK/q7WD58F2HdA3dVYhnCZoE6FQ6mE0u7PFPxjfXbcQfdDcDAC5JnRrl6MiEYc4EVFQFiZBYEfMJsrFnhrDdNfwMst3bAQBITaB6t/GEYRiksGp4WD+c/hA6POGui/841QmNNtxdL0NPG/TiGcMwyDZlg1W3IytBh/t3J+FbewsYsEinzZuEEBKTYj5BTuhZO9rp6Rj2PFd3FwAgM4VqmsabFJUBdgTBQMZXdeFx8I/aTqQl+aFRFCQk0JiId9OSp+FQx0Esvy4PLU4/zEY7Mo2Z4Fk+2qERQgg5D2I+QU42h2d4unxdw57nCTrBKwpSkmgGOd5YNYlo41hM0fqw/WALHL4gxFYXzHoHMoIhMImUIMe7y6yXwd5txwxBxu1XT4LOXI9LUy6JdliEEELOk5hPkNNMyQAAZ8A57HkeyQOzJINT0xqyeJNtzEKjisOiXBn/3+FW7DnZAUUBGMaGNEkCLDnRDpFE2aXWSwEAR7oO4r4fGWEPdGBGxowoR0UIIeR8ifkEObMnQXado5OeR/HBKDPjERKZYHISpqKbZXF5Widc/hDWbD0ItYqFI9SOjFAISJgU7RBJlE1NmAojb8SBtgPY27IXAHB1BrUTJoSQWBXzCXK62QJWUeCWvMOe50M3jHLMvx1kENkpFwEAtHwTLDoeIUnBy7ddivagE+khCUigGeR4xzIspqVMwzft32Bv815kGbMwyURfnAghJFapoh3A+WbRqqGTGXhl/7DneZkQUpWYfzvIICZZwzVtm131+OtDs2HW8nBJrVD+CaTLCrWZJgCAH6T+AK8deA3Hu45j4dSF0Q6HEELIeRTzGSHLMtDJLDxKYNjzPKwMo6wbp6jIRJJhzIBKAeq9LShN0gMADjScBADkqRMBlu4sEGDZxcsgKRL+0fIPlOSXRDscQggh51HMJ8gAoJM5eJngkI/Lsgwnq8DI6scxKjJRqFgVMqHC6e7v2pEf7ToKAMin2+ikh57X48HLH4x2GIQQQsZBXEyNacHDw0hDPm7zuBBkGRg50zhGRSaSSSoD6mVf3+9HO48iS1JgskyJXlCEEEIIiYq4SJB10MDDKEM+Xt/eAAAwayzjFRKZYCZpk9HAylCk8Bepo10iCvw+qmBBCCGExKG4SJC1jBZulgHkwWeRmzprAQAJPW2pSfyZZMiCi2Vh7zqBbqkbtc5aFAaCVMGCEEIIiUNxkSDrOAOcLAsMUQvZ1hWeQU42po1nWGQCyUsSAACHT+/ESftJSIqMwkAASKduaYQQQki8iYsE2aAyIsAy8Lltgz7e6W4GAKRZqM10vLqqqAx6WcbHtTv6NugVyhxgLY5yZIQQQggZb/GRIKvDa4tbOhsHfdzpCyfOmcl0Oz1eaSzZmBdk8YnzGD48+SEMCoMc68UAFxeFXgghhBDST1wkyCZNIgCgzdE06OOuQBdYRYE1KXs8wyITzE3mAjggYXfzbjxkd4LLuiLaIRFCCCEkCuIiQU7QhzfftTvbBn3cE3TAIstQGazjGRaZYK6ZfD3MkoQrTHn4mb0LyPxBtEMihBBCSBTERYKcaAwnvl2e9kEf98oeJEgyoDaOZ1hkgtHkzMKfmlrxSpc3/D9GFiXIhBBCSDyK2AJLQRA4AL8DcCUADYAnRFH8qyAIMwG8BCAE4GNRFCsidc2RsiaGa9k6fB2DPu6FH0aZARhmPMMiE036JZjEqIHT+4D0S4GkvGhHRAghhJAoiOQM8h0AeFEUrwVwC4D8nuOvA7gdwGwAMwRBuDyC1xyRnNRwomPvHjxB9jEBmBTajBX3OB64/X3gjhrgl5/SFyZCCCEkTkUyK7wJwEFBED4EwAB4SBAEMwCNKIonAEAQhB0AbgCwP4LXPaespAyoFAXOkHPQx71sCEaJH8+QyESVOyfaERBCCCEkysaUIAuCcC+A35x12AbAD2ABgB8CeAvhmeP+WakLwLjft2ZZFhZJgUsa2CjEHwzBzSkwhXTjHRYhhBBCCJmAxpQgi6L4JoA3+x8TBOFPAP4qiqIC4O+CIBQinByb+p1mAmAfY6zfi1lm4Vb8A443O50IMYBRZYhCVIQQQgghZKKJ5Brk/wbwLwAgCMJlAOpFUXQCCAiCMFUQBAbhZRhfRPCaI2ZUVHAzgQHHa+3h0m8JvGW8QyKEEEIIIRNQJNcgvwHg/xEEYQ/Ca5CX9xxfDqAKAIdwFYu9EbzmiBmhgY0duMTidGe4zXSCPnG8QyKEEEIIIRNQxBJkURS7AdwzyPE9AGZG6jpjZWb0cHJuKIoCpl91gsaOUwCATFNGtEIjhBBCCCETSFw0CgEAs8oEL8vA5jpzFtnmOg0AmJI0KRphEUIIIYSQCSZuEmSLJryE4qSt9ozjdm8zGEVBagIlyIQQQgghJI4S5GR9CgCgyXbyjOOugA1JkgyVKTMaYRFCCCGEkAkmbhJkqzkdANBqP33Gca/chVRJAgyp0QiLEEIIIYRMMHGTIGcmhpdQdLqbzzjuYzxIkSTAkBKNsAghhBBCyAQTNwlydvIUAIDD1953zB+U4OW6kSSrAJaLUmSEEEIIIWQiiZsEOcGSDZWiwBXs7DvWaHfDy0lIYrVRjIwQQgghhEwkkWwUMqEx+iQkSRI8krPv2NH2JigMkExd9AghhBBCSI+4mUEGr0OCrMAte/oOnewKr0dO1SZHKypCCCGEEDLBxE+CDMAqsXCwPoQkGQBQbw8nyJlm6qJHCCGEEELC4ipBzoYanXwAdZ3hWeTeLnqZCTnRDIsQQgghhEwgcZUg56hMCLHAPxtOAQA6XPVgFQVJlslRjowQQgghhEwUcZUgTzVlAwAOtB6HLCtw+JtglSRwxrQoR0YIIYQQQiaKuEqQ85MLAAAnOo6jtsMDn7oNQiAIUIJMCCGEEEJ6xFWCnJosQCfL6PIcxf/Ut8KrdqG4O0AJMiGEEEII6RNXCTKTkIOcYAheqQH/XfcNwAAXBUKALjHaoRFCCCGEkAkirhJkJEzC5GAQAVUXvqjfDwC4iLcAbHy9DYQQQgghZGjxlRmaszA5JMHPe+FjTyFBAtKShWhHRQghhBBCJpD4SpA5HtNYI2QGUFsO4OJAN5j0S6IdFSGEEEIImUDiK0EGMM8wCY/ICWAZBlf6fEDatGiHRAghhBBCJpC4S5CZhBz83N6FT6b9BsscTiDt4miHRAghhBBCJpC4S5CRkAM4m5DSfhw8ywMphdGOiBBCCCGETCDxlyAnTQUUCTjwJ8AqACp1tCMihBBCCCETSPwlyNMWAzmzAI+NllcQQgghhJAB4i9BVmmApVVAzjVA0fxoR0MIIYQQQiYYVaReSBAEC4A/ATAC6AbwC1EUWwRBmAngJQAhAB+LolgRqWuOmSEZuOdv0Y6CEEIIIYRMQJGcQb4LwLeiKM4B8B6A1T3HXwdwO4DZAGYIgnB5BK9JCCGEEEJIREUyQf4WgKnnZzOAoCAIZgAaURRPiKKoANgB4IYIXpMQQgghhJCIGtMSC0EQ7gXwm7MO/yuAGwVB+F8ASQDmIJwoO/ud4wKQN5ZrEkIIIYQQMh7GlCCLovgmgDf7HxMEYQuA50RR3CAIwqUAqhFeVmHqd5oJgH2MsRJCCCGEEHLeRXKJRRcAR8/PbQDMoig6AQQEQZgqCAID4CYAX0TwmoQQQgghhERUxKpYAHgcwEZBEH4FgAfwy57jywFUAeAQrmKxN4LXJIQQQgghJKIiliCLotgE4F8GOb4HwMxIXYcQQgghhJDzKZIzyBFz6NChdkEQ6qIdB/leJp+PF6WxERPOy9gAaHzECPrsIEM5b58dhJyNURQl2jEQQgghhBAyYcRfq2lCCCGEEEKGQQkyIYQQQggh/VCCTAghhBBCSD+UIBNCCCGEENIPJciEEEIIIYT0MyHLvPUnCAIL4DUAlwHoBnCfKIrHoxtVdAiC8BUAZ8+vpwBsAPASgBDCTVgqohVbNNDYOBONjzPR+PgOjY0z0dg4E40PQgaa8AkygBIAWlEUZwmCMBNAJYBbohzTuBMEQQuAEUVxbr9jXwMoA3ASwIeCIFwuiuL+KIUYDTQ2etD4GBSND9DYGAKNjR40PggZ3IWQIM8GsB0Id+UTBOHKKMcTLZcB0AuC8DHC/25PANCIongCAARB2AHgBgDx9CFGY+M7ND4GovERRmNjIBob36HxQcggLoQ1yGYAjn6/S4IgXAiJfaR5ATwP4CYAywG81XOslwuAJQpxRRONje/Q+BiIxkcYjY2BaGx8h8YHIYO4ED4QnABM/X5nRVEMRSuYKDoK4LgoigqAo4IgOAAk9XvcBMAelciih8bGd2h8DETjI4zGxkA0Nr5D44OQQVwIM8i7APwLAPSsFfs2uuFEzT0Ir5ODIAiZAPQAPIIgTBUEgUH42/8XUYwvGmhsfIfGx0A0PsJobAxEY+M7ND4IGcSFMINcA+DHgiB8CYABcHeU44mWNwG8LQjCfwNQEP5QkwFUAeAQ3mm8N4rxRQONje/Q+BiIxkcYjY2BaGx8h8YHIYNgFEWJdgyEEEIIIYRMGBfCEgtCCCGEEELGDSXIhBBCCCGE9EMJMiGEEEIIIf1QgkwIIYQQQkg/lCATQgghhBDSDyXIhBBCCCGE9EMJMiGEEEIIIf1QgkwIIYQQQkg/lCATQgghhBDSDyXIhBBCCCGE9EMJMiGEEEIIIf1QgkwIIYQQQkg/lCATQgghhBDSDyXIhBBCCCGE9EMJMiGEEEIIIf2ooh3AYGbMmKFkZWVFOwzyPRw6dKhdFEVrpF+XxsaF73yNDYDGRyygzw4ylPP52UHI2SKeIAuC8BUAZ8+vpwBsAPASgBCAj0VRrDjXa2RlZWHLli2RDo2MI0EQ6s7H69LYuPCdr7EB0PiIBfTZQYZyPj87CDlbRBNkQRC0ABhRFOf2O/Y1gDIAJwF8KAjC5aIo7o/kdQkhhBBCCImUSM8gXwZALwjCxz2v/QQAjSiKJwBAEIQdAG4AQAkyIYQQQgiZkCKdIHsBPA9gI4ACAH8DYO/3uAtAXoSvSQghhBBCSMREOkE+CuC4KIoKgKOCIDgAJPV73IQzE2ZCCCGEEEImlEiXebsHQCUACIKQCUAPwCMIwlRBEBgANwH4IsLXJIQQQgghJGIiPYP8JoC3BUH4bwAKwgmzDKAKAIdwFYu9Eb7mhBQIyfhMbIOO53DZpARYdHy0QyKEEEIIISMQ0QRZFMUAgNsHeWhmJK8z0f2zrhPlVV+iEO9AxblQJafiyh8sx7Lrr4BaRb1ZCCGEEEImsgnZKORC1uLw4z+q3kJGwpvobmYQkoHG5FNoqP8S7S9PxdKSF5GXmx/tMAkhhBBCyBAoQY6wx97biSmeN1G2RUGiW+k7fiqbw7vXnMKzH/0LfppUhuuX/B8wHC27IIQQQgiZaOh+fwR9Vd+FjNrH8YttCowJSch+7TVM+eADpK5+GAVKOn77voyba1T4vye2YuP/z959h0dV5Y8ff9/pM5lk0nsvJKGHXgUUUMRCUxS/9rLqiiKW1d21rb2w7tpWBVFUQJEiIErvvRMIkARCEpJAeiZTMv3+/ojwU5E+k8Z9PQ+PT2buPeczYzLzueee8zkf9cR0bEdzhyyRSCQSiUQi+QNpBNmLZi1dxI2r6nH5Keg4awHK8HAAtJ06EnznndTNn4/w4Ye88G0NG9o7+LtrAncnXEePUe+BQt3M0UskEolEIpFIQBpB9pqiagsJ2z4m3Aihz08+nRyfIqhUBN12G+2WLyfk4b/QL0/GXd8omLFtFV9+2gdPxeFmilwikbQUJpuTnYU1lNY1IIri+U+QSCQSiU9ICbKXLNm0gx57TZTFK0m86Z6zHifz8yN80iTSFi3GPyWTRxeL2Nfa+eesG7EcWNB0AUskkhZDFEU+XJVP3zdXM+7TLfR/azUTpm7jQKmxuUOTSCSSK5KUIHuJc9m7BFog+N7xCIJw3uPVyUmkfz+H4EcfYWCOSL8fFTy39G/Ub/u0CaKVSCQtydQNBUxZkUevZA33X1fBtVnLKDPPZcznP/LvFXk43Z7mDlEikUiuKNIcZC84UmEmNa+QykDof+vfLvg8QaEg4vHH0XXqhHvSE4yZC//0TOEtmQJdzwd8GLFEImkpdhTW8OYvh+nfoZ5i2WvsKDIjE0U8IQLa4KXsytXy95xreWj8U6RFBTV3uBKJRHJFaBMjyGtyK3hs1m7sLnez9L96+XISj3uozApBLr/4aw7/IUNI+3YmQXYN4+YqeH31m7gPLvRBpBKJpCURRZF3lh4mxFBHqeUtblxZy3dfCsz7OpB5K+N5/mgIxzRWlgf+yGdz+7FwxjM4GszNHbZEIpG0ea0+Qa6sb+DNL1axa8t+vt1a3CwxqFZ8ggxIu+2+S25D26kTGTNnEmBXMmixio9+ehJKd3svSIlE0uKsy6tkR2El7fw/4/UvHAzfIqBPyELToRsU1tPlhwq+/DqE5w7Gs1Et51+eX3hvandylr8PnuYZEJBIJJIrQaueYiGKItm33MF/iw7hlCv4q8HArT1i8dc03QYcVWY78QVlFETD9QPvuay2NO3bk/rZVOT330v9SjWLFBO46cG14B/plVglEknL8r+1R2kfspq7v6sk0C6Q+N0stF27AiB6PFg2bKD6i+l0XbSdrwL82drNn8+7lPNTyTTGffI1D478GP+kfs38KiQSiaTtadUjyOWr1hFddIiSzn1Rul0kFB1k4d6yJo1h07qtRFWK1GUGIcgu/+3U9+lN8Cuv0qEYyjfJyJk5Dpw2L0QqkUhakiMVZrYVVnBd9mriKkUS3nv9dHIMIMhk6AcNIuHrGSTMnoVfr170XlvGtM+VjN9q4Futk9tX3sf6HyeC29WMr0QikUjanladIBd//gU1Gh2LxzRg18joU3WY/HJTk8ZQt+QTAOKGX+e1NmPGjcV+950MyBFZuquK2vkPglQTVSJpU2ZvL6YLSxiyy4WjZzj64aPPeqwuK4u4jz4iadFC/Pv3Z/j6WqZ+HUhEiZqJdWv4aPpAxPoTTRi9RCKRtG2tNkG2FxTgn72TVT3sbG3IZk+CSM+KAxRUNt0CFrdHJCLvECWh0GP4RK+23eW556no04PrNwh8tXUrrpX/8mr7Eomk+dhdbubuPs7tBzbjUop0eOWjCzpP064dcR99RNzUqRiUWp6e4+T+NXo+V5h4fuY1OKV1CxKJROIVrTZBrvhhHm4BlneDz/WdOZAEAZYGbPlHmiyGA7klxJY5KUlRodN6t/ySIAgM/GwaJYlRXLNcwTcrv4Jtn3m1D4nkSrZwbymbj1Q1S99rDlcSbtxIl3w35j6hKJM7X9T5+oEDSF68CMPNNzNsm5GXfghkpULGpMW3Yc9f5qOoJRKJ5MrRKhNk0e2m9seF7E+W0VHmoOuID1Cl+AMQeewADY6mWd2dO+8L5B7w69HBJ+3L1GqumjmX6kAdnZZqWLzwVdg7yyd9SSRXkgOlRp74bi8Tpm3jb3Ozm7z/hXtLuePYL9gVkPXwc5fUhkyrJerNN4h44Z+0L6zlrW/07PWomLTyMezZ33k5YolEIrmytMoE2bJlK8raalZ1hruDs0AfRu/21+CQQwd7DseqLE0Sh2rXCswa6D7Sd5t6qEOC6fzNXGxKBaHL/Fn9w7OwZ6bP+pNIrgT/XpFHgEbB6KwYvt95nBqLo8n6rrc52Zm9n265Fko7yNF3HXnJbQmCQPAddxD36f+Irbfz+jc6ctxqJm36J/Ytn3gxaolEIrmytMoEuWLmLCxqgap4N336PgPAwO5/ocoAEfYTFFT5fh6yxeYgpqiWw4kCyYmDfdpXSHISkZ/OQBDlqJf5s+GHZ2D9u9LCPYnkEuw7XsfqwxVc0+0IfTIaL6b3FNc2Wf9L959kdMkclG5IGX09XMDW9Oejv+oq4qdNJdLh4dVvtBxyanhi77+xrXgBPNI21RKlmQsHAAAgAElEQVSJRHKxWl2C3JCTg33Nan7uCTfI9Aix3QEICUygNgACrDYKKn0/grxrxQb0VhFLmsEr5d3OJ7VHNxTv/w+FW4ZsuYE1y96HH+4Bu7SrlkRyMb7bcZxk/Rp6fPoxJe89SLh+E7ubMEFesLOIwfmFHI0XybjxwremPx9djx4kTP+CCDe8+o2GIzYNjx79Dsvcu8Fh9Vo/kuYniiInLScpMBZQZi7D5pJKgUok3tYqNgoRnU5EUUSQy6n49/tY1HKW9RD5qcv9vxt9sRnkBJS7m6SSReVP0wkB4gcO8Xlfp/QYNJB1b3+M6rnH0Cw1sEBYw+iKIXDLDIho32RxSLxjT2kxM/cv4Vh9ARZnPQB+Sn/i/GPIikrjqsROJBriEbwwwihpZHO6WZazk8nbfiarwINQIJBStoDZodcCGT7v/3iNFfnOxQSZRKqvDQW/EK+2r+3ShcSvZyDedz+vfuPhzVvhbtl2PvpyOJHjZ0NgnFf7kzSt/RWH+c+O6WTXbMLmqf/dc4HKQNqHdqBLeGe6hnWle2R31HJ1M0UqkbR+rSJBXnfvYwQd3I1/UgL2nBzmXS1jhMtBUNadvzvOE6hB32Dh+EnfjwYFHc7haBQMHOi7+cd/ZtDwwazwfIr2H48Q85Mfn91s4oGpQ5Bf+zr0uN8rt2slvrWjqJSnV71BtWwjguBBdKsRPHoARLuVvIYGVlXAe/tAiT8dgrpzW4frGZ44FKW86XaJbItWHapg7PFP6X5ERHfPtZTXHid94SHEwp9xe65CLvPt38+CPaWMKVpNtT/0HfuIT/rQtG9P8rffUHDfA7w8s4b/jlJzW1It7355NT1v/BRSr/FJvxLfMdvtPPnjG1gOziPACjd7FCT5WwnSWbHJBCoVcooVZg5YqthStglRAJ1cyzUJQxnbbizdwrtJF9oSyUVqFQnywa4lxFXZCCk6zo/D/dncxcRPqQ+AWv+745ThQYAF2ckSn8ZTWlRGRLmdg/3kBAUl+7SvPzPsugEsk0/H+feH6LnAxuvjYnj8l2cIzF8BN30I+vAmj0lyYT7dvIWPDj6DoKgnS381Txgi6WY8gqziIBhLEF0N1Cl1HNSFsU0RyDpRINu1jb0b1/Ly5kAmZEzgwS53olfpz9+Z5AzzNq7hwZ31VMcpyPjbf/DbvpjKhX+jW8V2ck+aaB8d4LO+PR6RtWt28nqJme19RQZ0GuezvtSpqaT+8D1H73+QZ+ceYdZVOh7oI/DwT/fyYPu7UFz9Aiik0cXWoOxkFbOfuYWJu0+iPF2gyQ2oUIaFouvRHk9WJrV6OZaSfQSU7aBKU8MqPx1LnT+xuGAx3cKymNTjSbLCs5rxlUgkrUurmIMcktWBF24T+ctEK8u7WXnSHUjgwKfPOE4fEwtARG02og8XsO2f8z0yQN4x3md9nM+1w3rCf76lUhfAzd838JI7hezjG+CTvpC7tNnikpzdf9Zt5MNDT6JSuJmh7cg3OV/TY9ObyI6tA0Ms7vQxOFPuRBd+Lb2UMTxpLWFh5XZ2H8/lnUoH4SY30w9+wlXfDePjXV9gd9ub+yW1KkcqTHTZ8h8CrZA88VEEQSCkx0hqAiD1ZBUHT9Sfv5HLsD6/kt45P+AWIH5QF58nqMqICNp9PxvVoCH83zoLT/7gz1faAO49NofjU68CaVORFq+iuIzscddy/Y6T1KU4ibvZj+T/vUDCrFlEvPBP1B26Ub9qN6Y3vkTz38Uk2TuR9H9L8Bu6mJ6eG/m2yMrzVTUUn9zFXb/cxeTVj1NmLmvulyWRtAqtYgR5/DXv0HlPBlsOzGR4cEdiBzwDMvkZxwUndwC2EtNQiNXhxk/tm5fn2bSYOh10G+y7EaALMaR/BzZ/Movix+7ngR/K+fjmEHona7h79nhkfR6Foa+AQtWsMUoa/ZxTwNS8F9ApPcyprCTBnI/J/yYsVQYack7gOHYMj3n/784RtDrUCYPQxvkzwF3FMOMucrUCrwTF8umB//D1wW95vNtfGZ85CoWsVfwpN6uZ33/JqN0mSjOUZN7UOL1BkMupTVaTdNDO5mojEOuz/mdvPMKDx3LZmwbjr5nss35+S+bnR+r/PuL4Z9Po8cF/eXuqhv+NUTI22sKT39/M+Mw7kA15HjSGJolHcuEaauvYN2EcUXVW9o2wcduQG+D6905fWOm6ZRF8xx24zWbMa9ZQ//Mv1Hw1g5ovphPWvz/tbr+N6o6vYP15Dv8smkFe0HG+8Kxmfcl67s28k3u7PoJOqWvmVymRtFytYgQZIDPrPu67cxWxI/8Lhj//EovM6IdbgHBbpc/qmrqcLiKPneRAskBWx9t80sfF6NcthbjpMzkamsjEH13sOmzl/nZdOL7zc/jyOqgrbu4Qr3gVJhvPrXsRubKaT0qL8D8UyJEVaZRM24Zx+UZkOh2Gm24i/JmniXrrTaKnvEfEiy8QeMs4ZIEh1G08RMkPxeQviCJgTxaf7zMz9Xg5kdYq3tr5CkNmj2DWwTnSSvZzyM4/Tq/5n+FQQvdX//2753SdU9E5wJr9s8/6L6m14l67GD+bB3sXJcrYXj7r648EQSD+4QeJmfE1WrmWf37jYNS2MN4MNnBf0TyKP+4O26eC29lkMUnOTRRF1jz0MFHVtSy5wcWtw2+DGz/407sOcr0ew403Eve/T0hbu4awJx7HfuQIJY9NxHnbGG62uYm55VtOqF7n2eJgrjbV8+nBr7j+u6uYufcz6XNDIjmLNjXsFBvdja0BEGg1UWW2Exfs/avjnJWb0NpFqpO1qFQt4+q7a0YMId99y667HuSvSw7xjb2eMb0TeKiumLs/G4Rq7LQrcmFOtdnO0pyTCAiM6BhJkF/Tj6aLosjD879G9NvHc/kmgldFUFlrw29AD4Lv/D/8+vZFUJ07LtHhwLpnL+a1a6n/+WfM+xUE6aL5OMlNQVINH6S5eHPHq/xn57vcnDaa2zLHkxKY0kSvsGVbfMdg9CU1qBpcxNeLFN2aSM9OQ393TNLAkdi+ziHg2CbgGZ/E8eWmQkYXrqIkBAYNGdMsi2mDenaj29LFbHxkMqPXbCH9SBSfja1nbIiDxza+wh1bPkQx6DnodCvI29RXQ6uz84OpJO3fx7xB8EhWT2TXvn5BvzOKsDBCH3mEkAcfxLx2LbWzZlP1wYfw8Sc8NGwoBQNfoDa/mEfrvmZ7SBlv7fuIz7M/Y2z8cMZ0+yuxAVKVE4nklDb1KahWaKgLAH+L3WcjyGWLZhInQHivbj5p/1LFRYcQ/OO3rL3zYe5cuYOI+ig+HOJgvl7GpPn/x7CsvyC7+h9whVRBWJtbwdM/7KPK3Ph7MHt7MT883BeN8sypOb60aP8xjjqnc12hi+4LdXhCgomb9jr6Af0vuA1BpcKvdy/8evci/OmnsG7bRt2CHzEtX05YTgCvB6qxJNbzU0crcz2z+C5vNh00kdycehPXtp9AsNa7pcRak5OxMkIqnKhkUH1rJjdNOnML5piuIzioeAe/6gqfxGBscLJt2SbGVZpYMdjDsN4TfdLPhVAGBTJ49hfs+PgrUv73Pi9/qmLu7e14LzKXJR4Zf//lCbqufxcGPw8dx0ET1HhvSURRxLxmDQ0HD0FgIGETbm+SOve/ZS4+jmLaB+xNEsjqoiZk9LSL/v8gKBT4Dx2K/9ChOIqKqP1+DnVz5xK2dBnPpaWR22MM64oVjNctoTTkCF8U/sTUoiX0VkdwU9pohna6B53Kz0evUCJpHdpUggzg1CsIPuHihNk3CbJ+/05yY+Gqnnf5pP3L4afXMeKH6ax7/O8MX72Y6OMxzJog5+kIkXbHZnPvV8u59qYvUYalN3eoPiOKIl9sPMbb6+aQqllPsuIk6oz+bNrVm3/+6M97t3RpslhsTjdvbPgvyUYz9y4QUSUlEffFVygjLr3KiCCX49evH379+uF+8QVMy1dQv+QnPFu2cstekZvCFBS1s/BD52LesH3O2/s/o4dMz4jQLIa2G4shoT8otV58lS3bg2+vxmk34WqoQ3uWGsAqfQRVgRBg9M0GQ7O2FTO8YAk2JST1TvV67eOLJQgCvR67l5MDenHk0Ync/+VBYvv2YOGwYu6MdjPcJfDo4kdI2fwBDPsXJA+5IspHOktLOfHiS1g2bTr92Nalm7nqs38T6Nc0FT9EUWTnpKcx4GbPEBdvj5oNl3mnUpWQQMSzzxD22F8xLllC3XffkzT7U15SKChP78oiXTeujSknIHYvm5yl/OPAp7y2/38MUYQwMrIvfVNvQBmdBVLCLLnCtLkEWfBTobW5qPbBCHJtcSmhVQ1sGCRjTPxAr7fvDTKFgiGfvMPhL7NIf+9N/vahkoUjhpDdNZvnHdV8sGg0d0YNZMw17+Kn9l1Jq6bS4HCzOLuMaIMWs93FnKVLiNn/NdMPVRD6a1GCk8GrUN+Yz7zdf+XJYe2ICWyaBPGDddvwd67mxTkuVGFhxH/1NYrQUK+1L/f3J3DsGALHjsFZXk79kp8xLlpEu02HeW6LnOKoAHIz7KzuaOJlcSOvVWyg50oHg7RR9E0YSlLH2xFCU70WT0ulVPujVPuf/QBBoD5QILjGSYPDjVblvbsMLreHuesO8e+iPLZmwt0Dm2Zx3oWI7NqBsOWL2D7peUZsXEnMkSSW3dmTDX7rWREbzdUOI3f8cBvdI3siG/YviOne3CF7nehy4a6rw7hwIVWf/A+Hy80X/dqxpZeH27ebuHbzahb86yPuffupJonn+KJfiDiYzTdXC0zMGo8Q7b0LeplOR9AttxB0yy3YDh3CuGgximVLeTBnJ+JOGQdDk7BG9mNgVwvGqHw2Oqv5uXQJQcWLuNbSwAhlGF2i+yJPGth40dTMF3oSia+1vQRZr0Frs1Ltg9GggwuWEAy400JbfNH1jHtvxzqgJzmPPcldC1ewZUdHCm4dTrH2R96p3Mz/Zg/gtoTr+L++zxGsCW7ucC/Z9u2r0f3jSepEOQENbp4xNRYKNSbICU+vRi4TcRwO4sE5ReTcsIZ5uzJ4/Jo0n8dVb3Py08F3eXahC42oIP6rb7yaHP+RMiKCkPvuJeS+e7EdPoxxwY8oliwhaZWFQevU7I+MoijZwaG0Ot5WVyMWzSHk6GyyBA0ZIR1ITRlOUlx/4v3jr8iKGPYgJcHHHJTVWkiJ8N6F48pDFbQ/tAaVS0TsokSTcrXX2vYGuV5Pn6kfcGLOPNq/9hrJH57gm24jqLtRyXblClapINpdyNXzxnB1WHeyrnkDRbjvdxxsCtY9eyi+625EZ+PixKNJcXw0rJKy4KN0tdv5boCKdgVyotf8SFHVwySE+nYE1dPQwIk3XqE2DKI6KYgb8oLP+tJkZqLJzCT82Wew5RzEtGolXVaspMP+5bAfDgUlICTdANcEUhe4hwWKXL4TGwiuWknv44vpsdxBVkh7EtNvRtl+FBhifBarRNJc2tw3oTxAj4wa7JUlQGevtt2w7kdq/aBTr2FebddXdGmp9PhpPsWfTaPnZ5/S/YPDLE/tz9XX6clW/My0op+ZUfQLI0O7Mr7nk3SIaFnzqi9Ed4PIlmAbjgYF1cECdUFO+obVkZmYBl0ehIAYND++yeEfrDy7ZTnv+V3HY0NSkfl4x7S3Vq3ghp25pJyAmPdeRZWY6NP+fkuTkYHm+ecIf/YZrDt2UvfLL6hWrqbX+kpYD3aZArNGgVsDVrWNGt0u9gfsYlmIwMkwGaREk5zYiy4R3egQ2oFkQ3KbT5rFUH+U7mpOHCkkJcJ7nxszNhdyT9kGjkXA8IG3tcipCoIgED1+HKF9enL0med4ZNsCCg9GsLDDtTAyHKffLuZU7uBbRz6BP41hkDaa4Z3vp2/GuFa9s+MhuYMN/YMQBRnbY00ciD1Be7ud91yRdOw4jsP7Z/N5NyMP/lzF3OkLeerZCT6NJ+ffHxFgrGf6bfD+0HebZCMXQRDQduyAtmMHwp94AvuxY9QvXUbqoiVk7l6Ie4+MXeHt0GTeQsOgIJz+ueww7eIXhxE4gTL3f8Qf+IAEhT/Joe1plzSUzLiriA+IRyZcWfPXJW1Pk3zrpaeny4BPgC6AHXggNzf3iC/6UgcGAsV4qrzbvOh2E1JQxLZUgdGdfPtB6U2CUknCY4/gHDuKo29P4fplvyDmiWii0xnez4/tsXtZXLmbBUvvprPcnwlpYxnW7VFUrWSeqr7jMIa98T4UbgJ7PehCIPMmiO1xOhnRRHbGVngdGZvURBQvY2dRD3ol+W7UvNbioHrTa9y5XcRvaFcCbhjts77ORZDL8evTG78+vYl++SUcxwqx7NpFyb6D2EsqqK8xYjPWE1xVR/viajRON+ABiikKL2Zz5nw+yRCoCRZIRUMnuZ4OykDa+8WQHNoBZVRXiOpy2XMkWwJNTCRQTXnONujvnQT5pNFGYXYu8RUmVl4lcn2vR73Srq+oEhLI+G4mpuXLEf/9X57Y+h21e/xZE9+NyH5PE9nHSVn596xuKGHhzjfw3/EmA/yTGJh0LQMzbyNQ27ruRNmseazrfpIauZwUh5PnrAZuG/wm8oyRIAhkdLuL0C/6YtJA4Ir52CePR63wzSJfR2kp4qwZbMoUuD41CV3atT7p53zUSUmEPfIwYY88jD0/n/J5C+i6aDG91n5LwwYVOyMy0IdfhTM9EjFDhkZ3DEfDQY41lLG+ejeumj2w6138kdNeFUSaNoJ0fSwdA9NICkhEro+AoETQBjbL65NILkZTDQuNAjS5ubl909PT+wBTgJt90ZEmJAwAubHIq+2e2LEXjc1DcaKciGbYXvpyKaOiyPjPezhKniRv+rckL/oR/7l16HRB9O6WRm2HE8zUH+e5w1/xzsEvuUmfyuhufyU5pYWPlgsCZN7Y+O9swtqRdfv97Nr3LRNy17H56F98miC/u/hbJqyqpSFIRvpbU33Wz8UQBAF1chLq5CSCb/n/j7vcHg6U1bPzWDU5Occw7dtDn4oddDhZwO3rLNy+DozBAnmJDeyOsTI9tJKqgHyc5WtI3+ck3ekiVRdJcngXYuL6E5JwFbrA5tth8lKFpWYAOTiP7vFamysOlTP05Fo8QHT3pFaRFAgyGQHXXUfm8OGY169HMes7Rm3ciCx/HfWzdBSFJzIo8zpUSSfY4HeY1Z58ftlfgDz7E3oKfgwNzGBQ6o1Epl3f4i+c+ve5k/6ZQ6C+DALjwT/y9wdoAxmfMYbFmQsYtP8QO/IqGNA+yiex7H/pNRSCm+39RT69/iOf9HGx1GlpxD/3LHHPPo11+w5ql/xMv1WrGbg3G/aCB4GTfsGU6MPICOhFWLCMMG0ZdlUlJVoTeboTbNaVs1x5ALdsKUo8JDtdpDgcpMh0JAQnE5/Yj9CMYciis6TSgpIWp6l+IwcASwFyc3O3pqen9/BVR35hjXOhVKZyr7Z77KfG+ceqjNZdJ1IVG0PHF/+G+Pxkcn5YjG3W98Ru3EH8RpF4Qyi2DkFsTzrJ7Oh8vto4mW4blIyIGcLQXpMINbTe167u+xcKusyg+yYLG7duh6HtfNJPlclG3ML/EmqE2H//DZle75N+vEUhl9E1LpCucYFwVQoezzXkVZjYXVRH/v58lJvXk3hkD532FdJz9+83krArFdiVcqyqWsp1a8nzW0eN/g2MAeAIUOAJ8afvVbdzU7/HmunVXbiYdj0wyechO1notTaX55zkgdI95MbB1YNa9ujxHwkyGf6DB+M/eDBuo5HaVasxrlhP+P4DhK5ailz0MEYm5/qEFBRpGg4FVfBTSA2vsZvXdu6m/aZ/co0mggGJ15LR5S5kZ9ncqdkZYs+68RRASt8nsS7/Ac0eOVuWb2BA+1u9HoJ55y50G9cyt7/AgxnXIAtO8nofl0OQyU7fiYr518u4yspoOHgQ66FcOHAIQ1ER8tJ9qPLNyBABSAauQgBEwP2b1uSA9tfHj1LNUSqEbzD7gdVfht2gxR0WiiKmHd3vfISwlMymfrkSyWlNlSAHAMbf/OxOT09X5ObmurzdkX9UMiKgbqhBFEWvLaZz7V5DcSj06NQ8t768TVAq6ThhDB0njOHEsVI2zZiHe+N6MrbmcvNmF9erVFQnatkWb+KL2mW8WbKULFUw/eIG0bPdaDqGdW5d8w/9QkkY2AHXlsNE7l2EwzUBlcL7c+SmT3+DkXscVHUPoMP1La8U4PnIZAIZkQFkRAZA73h44BpsTjcFJ42U7jtE1aE8bCcrcNXVgdWKx25D1lCHvqGKmCojHYob0Nk9gBOooXjLdFjY8hPk6OhubAgEXVWVV9qrtzk5tj+X8Fo7h7sKBLW73ivtNge5wUDomNGEjmmcKlRcUsWmecup3rKN6KJc0lYUkCV6yAIcQYHUR6k4ElBPdmAVawtmYtvxDQkGLe0jutAudQTp8VcRoYto8QudgcbPjfYpuH4qxLZlJUzyboIsejzkvvASNj3UdBXpOexNr7bvbYIgoIyJQRkTQ8CwYfx2zF0URSz1ZvLzSyjOK6b8+Emqq4wYjRbqzTZEtxsEAQ8gk1lRyOsJFCsJc1cQbDMTYHWir7RgKLCgcxSxPH87d8zc2lwvVSJpsgS5HvhtnSWZL5JjgMDYTGoBncOM2e7CX3P5SZzo8WAoLSc7U+B2H4wgNLeopBjGvfw4Hs9ENh84zva5SxF2badLyWFuzvNw80owG+QcTKxkbeoCvjj0I6JWQVZwewYmj+D2jAnIZU27Acel6D7wryz6fiL9inPJPl5LjyTvlimqNdnoPH8eZj/o89Z0r7bdnDRKOe3jgmkf1x9u+PMNTtwekfoGJyabi/paI6bCEhzHi8joldXE0V4aTUAs9f4QaPbOtrub8qvoXtn45R6T1R5awd/HhYqPDSX+iQnwxAQKKs2s3FvM0S17cOUcILm6mISSk3SzuOnj9pw+xyM0UBWwlaqAreQGCJgDlWgyMrjz8Wn4n6sEXwvQK3Mk2TEf075kL4VVFhK9WM2iZuEidMeO8uUNApO6PQAt/L04F0EQ0Bv8yeqRSVaP34/8ejwiFSY7VWY7ZrsLp9uDR2yc4mV3eRBFkMsEBKcRR8VWako3MbiHT2ZhSiQXrKkS5E3AjcCcX+cg7/dVR8GR6VTKwM9ho8bi8EqCbMk7gtouUh4lJ9Q/2gtRtkwymcCAzvEM6PwQNuf9bCmo5qdN2Zg3biKxIJsuB47Qa58DUYD6ICdHI3ezJ24f3Z+IJTN5SHOHf166xMEUp0CXYw62bd5LjyTvbr+96LW/0qvcw7GxiajjOni17ZZOLhMI8lM1bucdooPUKKBnc4d14WQy7DoBXbV3rtv3lRjpW7OXGj10Hfh/XmmzJUoO0/PQsPYwrD02p5u9x+s4UGpkS4WJuuJSbMdLUJwsI9xSTVJDCQm2EhKLzGgO2mHzPsoHbMG/7/DmfhnnlNphPPMTPuaGjSb2HThG4uCOXmnX09DA8XfeoSQSAlKVpPZ9wivttkQymUCkQUOkQXOeIyOBdODuJohKIjm3pkqQFwDD0tPTNwMCcK+vOlIp1Zi1oLE7qLU6SfDCIGHhmg3IAXeC7+rYtjQapZwh6eEMSR8K9w3lWJWFrYdPULp5O/LsPUSU5JFRUETWITuMcDZOOmvp5ArkHULxrKzCtWYl3OG9BNlYWU3m8s0UxMDw52d4rV1J03Hq5OitLq9MzcoprWXYiTpyUqB/u5FeirBl0yjl9EkOoU/yqQ/dxk0unG4PlSY7lb+OIB4x23GWHSS8Zj8DswY1X8AXSNCHoYhXI8POic07wEsJcuWXX6GureXbO2S8P+Cfbeoug0TSFjRJgpybm+sBHm6KvgAatKBxuDDZnOc/+ALUb1qOTAfx7VpfnWBvSQr1I2lAKgxIBSbgcHkorrFiNlnpnBTW3OFdsMy0PhRE/UTU0W1ebXf98w+S3ADFN2eh1F/6VtKS5uPSq1C4Xdhr69AEB11yO6IoYtp/AJ1NxJ3iD61prr4PKOUyogO1RP9uB8t44LrmCumipbTvjEfYgevQJrwxvuOqraVi6ufsTYOUKD1RHcZdfpASicSr2mQlb7tWhsbmwWzzzu1S5dE88mIEemeO8Ep7bYFKISM1XE/XlHCfb7rhTVkZY8mPFoipKqfB5p3tyE3HCknccoidHWDUXz7zSpuSpif6NyZwNcdPXFY7J4w2ulStAyCmZ+/LjkvS/DqlX8/xUIgpO4jd5T7/CedR/fnnyGw2vh8k46+DX22RG8hIJFe6Npkgu3RyNHYRkxcSZI/Vil+tjWMRkBk3wAvRSZpTZHQvKiJB7fRQsOuAV9rc+cJf8QDu6/uiaMWLbK50MkNjneLKwsvbZOhAqZF001GMOujS905vhCZpZokpwymKhNhqI4fL6i+rLVdNDdXfzmRzB0gOMhCd2rLnYEskV6o2mSCLfiq0DWCyX36CbM0/ggA0hCrRKlrH7nKSsxNkMtwxjbWJy7ftvuz2bPn5hO8qYH0WTLjjv5fdnqT5qEMa1xgYj+deVjsHyuqJrDVRGg7h0T4r+S5pQnJdMOYIGXqbh0P78i6rrdpvZyI4ncztJ+eePpO9FKFEIvG2NpkgC3otOhuYLNbLbqt8914AlBHSvNK2IiQ+HosaXNmXnyDn/OtZHAowXdUFjUYaPW7N9JGNG+FYTxy7rHYOH68mrMaNOUKJIGuTH7FXJE1C4+6bVbv2XnIbnoYGqmbO5GAy+BnUdJPmHkskLVab/PRWGPxReMBVXXjZbdXs2YhDDsFJ0o4+bUVaeEeORAn4Hc2+rHbsBcfQ7DzMim4C99zyby9FJ2kuoVFJOOXgqTp5We00HM1H4QZ53KUv9JO0PNEZHXHJQJN/6ZtX1C9bBkYj3/eVMzLxBi9GJ5FIvK1NJsjqoMYvJrHq8uYSAjiP5lISCpnxraimq+SckmP6cCQaAquq8dgufWOIsimv4pTDse4xRAe13frYV4ro0BTq/ECordwQBV0AACAASURBVL3kNkRRJKZsCwCB6RneCk3SAqQnDqQsBEIq8xFF8ZLaqP/5F8x6gdxYkTF9H/dyhBKJxJvaaIL8a71iY8nlt1Vew/EwgU7JAy+7LUnLkBzTh8IIAZkI5txLm0/oLC/HumYLK7sKDOo/ycsRSppDdFgKtXpQ1psvuY1qi4NUYx4OBSRmeXcjGknzSk0ezolgCDMaqbFcfAUcd10dlk2b2J4h0kEeQZDOuzt5SiQS72qTCbLW8OsHT0PdZbXjrq9HZ3ZRFgpRhngvRCZpCQyaQOpCG4vyl++5tEoWtTO+AFFkc5aGW7Ok8n9tgdo/CrMfqC32S26jpLaBGGM1xWGQkiJVJ2hLVH6hmIIFgupdHC29+LsMplWrwO1meUc5IzPH+yBCiUTiTW0zQQ6KAEBmM15WO/YjjVM0rMFKZEKbfKuuWNrQABwKEWPOwYs+12OzUf39HHamCYTHDkImLcRqG2RybDrQWi69+k1JrRWDyUF9oIBWG+jF4CQtgRiqQSZCycH8iz7XtHwFZn+BgkgY0ekWH0QnkUi8qU1+s+tCGueDKmymy2rHdOQoAGKI9EXX1iQbEigJEyA356LPNa1YCRY7v/SQMTpLqnPblti1AlqriOi6tCS5pMpMgEnEHaT2cmSSlsAvtnHwpfbgoYs6T3Q6sWzfRl6Sm3gCCNYE+yI8iUTiRW0yQfYLbSzXpLA3XFY7VQd2ARAQmXTZMUlaltTQTI6FC6iOF170ghvjvNmY9CLHo3UMS+3qowglzcGpkyOjcTOHS1FTUIRcBHl4gHcDk7QIISntABAKdl7UeQ3Z2YgNNtalKOgWJi34lkhagzaZIPuHNya0CselzyUEqC88RI0eEqM7eyMsSQuSENmFonABZYMNV2XlBZ/nqqnBsn0PazvISPDrL02vaGNEbePIr7vu0tYveAoba+RqoyK9FpOk5UiI60ZVAPiXH72o8yybNiMKkJ0gcG1nqfaxRNIatMlvd5VfAC4ZKJ0O3J5LK8cD4KmsoCoA0mO7eTE6SUsQG9qBonABAPtFVLKoX7oUPCLrOsq4LuMmX4UnaSaCtnG3TNclJsjaisY57YFJ7bwWk6TlSIjtS0mIQHBdDQ6X54LPs2zZQk0Y2DUC3aOk3RUlktagTSbIgiBgU4Pa6cZsu/QFN6paC5UGgfTYTl6MTtISxPjHcPzXaoC2w4cv+DzTz0uoD/JQGipnTPt+PopO0lwU+sapEZVlF18iUhRFAupKcMkgIlW6qG6LgoJSqQoWCTHaKKm9sJ1a3WYLDfv2cTjBQ6IsFK1C6+MoJRKJN7TJBBnArgKl043J7ryk80WPB229k5oACJQWVLQ5arkatVaFWS9iusAFN67aWqy797CrnUCwGI9erfFxlJKmpgxsLBFZW3rxmwxVmR0Em+uoCoDoGClBbosEmQxHkAK1E0qOHL+gc2z7s8HjYUOSgvYhXXwcoUQi8RZFcwfgKw6VgNLpwXSJI8iuykrkHrD5yxAEwcvRSVqCCHkgJ8It+B28sEoW5nXrwCOyLFNBcnB/H0cnaQ7qwMYqBdbKExd9bnm9jUCzjSoDBAZIddPbKnm4P1BL9eF86Jt53uOte/YgAodjBManS7WxvW3Xrl3hCoViGtCRNjzoJ/EJD3DA5XI90L1794o/PtlmE2SXWkDlFDHbLy1BdpaWAeDwV3kzLEkLEqOPIT/iBKnbjuOx2ZBpzj0ibF61GpefSEEk3JEi7azYFukDw3HJwFlz4Qs3T6ky2wkwuTgeKV1Ut2WG+FigFmv+QeD86xAa9uzFEixg1Qh0i5LuLHibQqGYFhkZmRkWFlYrk8kufdGR5Irj8XiEysrK9idPnpzGn/wxt9mrLbdajsohYrJd2hQLZ0nj7TN3oFSuqa1KDsvgYJQMwePBnn/uW+oeux3zhvUUJblRiApuzJBKNbVFQf5RmLXgMV78Ir2aKiP6BnAGKX0QmaSlCE/MxCEHefG+8x4rejw07NlDWZSLAFFFhC6iCSK84nQMCwurl5JjycWSyWRiWFiYkca7D2c+38TxNBmPRoHKwSVPsTDmNd52l4dKH2htVUpUl99Usjj3Qj3rtm2INjub0mQEiAloldKdhbYoKCAKswYwX/wmQ+bixoV98lCDl6OStCSx4Z04GQz+VedfyOk4ehSP2cyeOBkp2kTpzoJvyKTkWHKpfv3d+dNcuM0myGiUqC8jQa45eoh6LQQFJ3g5MElLERuQQEUguJQCtkPnTpDNa9ciKGWsSFEQ5S9tDtJWhQXFYdaC3GK76HOdpY2/Q/4R4d4OS9KCxEX34ESwgKHWeN5Nhqx79gCwOV5Bl9i+TRGeRCLxkjabIMt0arQOqLdeWCmeP3KcLKU6AKKD07wcmaSliPOPQxQETCEitkNnr2QhiiKmNWtxRLuwK2X0ipIS5LYqNDgKiwYU1kvYZOhk4++QISrRu0FJWpQgQwIVQRBoclJRZznnsQ379uHSyDgRDL0T+jRRhJLmsHXrVr9x48aln/p5z5492ptuuilj9OjR6Y8//nii2+0G4LPPPgu74YYbMm+88cbMH374IQjAbDbL7r777pSxY8emjx8/vl1JSckZ87Tq6urkd911V+rYsWPTb7755ozNmzf7AWzZssXvxhtvzBg1alTGW2+9FQXgdrt56qmn4m+++eaMcePGpefn56sB8vPz1ePHj283duzY9Ntuuy2tqqpKfqr9/Px89fDhw9uf+rmgoEA1duzY9DFjxqQ/+uijSRaL5Yx8MScnRzN69Oj0UaNGZUycODHR6fz9lNa1a9f6P/TQQ8m/fezll1+O+frrr0PO9j5OmTIlctu2bbqGhgbhyy+/DD3bcX//+9/jpk6dGnbq5+effz7u+uuvzxw3blz6uHHj0uvq6uSVlZWK22+/PW3MmDHpDz30UPKfvYZzabMJssJPi8oFFuPFr0YHEI311PkJJMVINZDbKoPagE5UUBHhwpaTg8fh+NPj7Hn5uE6c4HhC4/PXp/duyjAlTUij1WPXgPIS7jzJ6xoX9gbGpXo7LEkLIggC9iA5cg+UHio457G27GyMYR4QBDJCMpooQklTe//99yNefPHFBIfDcXoOzQcffBD98MMPn1iwYEGu0+kUfv75Z0NlZaVi7ty54fPnzz88c+bM3P/85z9xHo+Hr776KjQzM9M6b9683JEjR1Z//PHHZ2zF+cknn0T06tWrft68eblvv/32sddeey0e4JVXXkl4//33j82fP//wgQMH/Hbv3q1dtGhRoMPhkC1cuPDwU089VfLaa6/FAvzjH/9ImDRpUum8efNyb7311sq8vDwNwMyZM4MnTZqUbDQaTyfmr7/+euwtt9xSOX/+/NyePXuaPv744zPmm7777rsxkyZNKv3xxx8PAyxZsiTwct/Lp5566mTv3r2tJ0+eVC5YsOCMBLmiokJxxx13pG3atOl3c9kOHz6smzFjRv7cuXNz586dmxsYGOieMmVK1IgRI2rmz5+fm56ebp0+ffpZE+4/02arWCj89AA46y6sVuUfyU02jCGQGfOnc7clbYAgCITJg8iLNZO+z47tQA66bllnHGdatRKAzWkylC4DGWHRTR2qpKkIAg41aBoufJe0U9T1NVhVEBqZfv6DJa2aEOYHGKk8mA/9Ov/pMW6zGfuRo5T0dBIg+hGqvajvZsklmLG5MGT+7hKvvtFjusVW3d0vsfpcxyQkJNg/+uijo08//XTSqcfS09OtdXV1co/Hg9VqlSuVSjEsLMz1888/5yiVSgoLC1VKpdIjk8l47LHHKlyuxovysrIylb+/v/uPfTzyyCPlarXaA+ByuQSVSiUajUaZ0+kUUlNT7QB9+/atX79+fUBlZaVywIABxl8fs0yePNnParUKtbW1ypUrVwZOmTIlNjMz0/LSSy+VABgMBvf333+fe80115weESwqKtIOHz68CKB3797m1157Le6PMU2bNu2oQqHAbrcL1dXVyoCAgDPiPpu1a9f6T506NVKhUHhOnDihHjZsWM0zzzxzcuLEiYkjR46sWbZsWVBxcbH2rbfeinruuedOj3SazWbZxIkTy9asWXM6QXa73ZSWlmr+9re/JdTU1ChHjx5deffdd1dnZ2frn3jiiRMA11xzjfG9996LmThx4hnl3M6mzY4gK/1/rT5hOnnR54qiiMbqokELBq3ey5FJWpJIvzi2JzTeZWrYvetPjzEtX4E2IYCtwRoMCmkUqK1zahpLRIpnuaNwNlqzmVo9hEjTsto8fXzjRbI17+xTs2z794MosjtOTrxWqovdlo0ZM6ZOqVT+bkJ6UlKSfcqUKfFDhw7tUFNToxg0aJAJQKlU8umnn4ZNmDAh87rrrjudeCsUCm699dZ28+bNCx8xYkTtH/sICgpy63Q68cSJE4pnnnkmedKkSSX19fVynU53OinV6/Vuk8kkt1gs8t8mqzKZTKyoqFAWFxdrBgwYUD9nzpzc+vp6+cyZM0MAbrjhBqNer//dqEBqaqr11Ijw0qVLA2022xn5okKhoLCwUHXttdd2MBqNis6dO1/QnNZTi1XLy8tV06ZNOzp//vzDs2bN+t2o+eOPP34iPj6+4bfJMUBycrKjT58+v5vbZLFYZOPGjav48MMPj3399dd5c+bMCd+3b5/WarXKDQaDG8Df399tsVjkXIQ2O4KsDmgc6RcsF1/P1GMyIXeDS9tmrx8kv0oMy2Ru/S48IVqsO3cR8sADv3veUVyM/fBhdP1kVChk9As6/8YAktbNpZIBbtxGI4qwsPMeD+DxiOisNur0EKCP8m2AkmYXFZVGjf4QyoKzl3pr2JcNwOY4BddFSWUhm8Ld/RKrzzfa21SmTJkSN2PGjMMdO3a0ffbZZ2Evvvhi3LvvvlsM8PDDD1fee++9VXfeeWfamjVrzEOGDDEBzJkzJ+/QoUOahx9+OHXatGn5zz//fCLADTfcUH3PPfdUZWdna5966qnkyZMnHx88eLDZaDTKGhoaTid9ZrNZHhAQ4LbZbDKz2Xz6cVEUhfDwcKdWq/Wc6mvIkCHGTZs2BQB/+n69+OKLJS+88EL8woULQ/v3719nMBhc8+bNC5o9e3Y4wHPPPXe8R48e1sTERMfatWsPfPnll6Evv/xy3EcffVR4qg2NRuNxOp2/K91itVrlGo3GA5CcnNygVCpRKpUelUp1yZVIdDqd5+GHHy738/PzAHTv3t104MABrU6nc5tMJrlOp3OZTCa5Xq+/4BFuaMMjyJrAxi82wXrGhdh5uaoaf1+c2jZ7/SD5VWZEOm5BwBYha9zxyvP7W+um5csBOB5TA0CfmDOnYEjaFrem8e/ebTRe8DnGBid6qwurn4Aga7Mfq5JfxYW2pzhMIOBk8VmPadi3D0egAqNWRs94aYOQK41er3edGsWNiIhwmkwm+eHDh9X33XdfisfjQalUiiqVyiMIgjhlypTImTNnBv96nlsmk5GWlmY/NZ/2nnvuqcrJydFMmjQp+d133y0YMWJEPYDBYPAoFArxyJEjao/Hw5YtWwJ69+5t7t69u3n9+vUGaFzEl5SU1KDT6cSYmBjb+vXr9QDbt2/3T01NbThb/KtXrw545plnSubOnZsrl8vp27dv/dixY2tPxdSjRw/r3XffnZqXl6cG8PPzc/+xjGFmZmbDkSNHdGVlZUqAhoYGYd++ffquXbued6RZJpMhiuIF1UXMy8vT3HLLLRkulwuHwyFkZ2fru3TpYu3UqZN52bJlBoBVq1YZsrKyzBfS3iltNgPUBoXjBOQN9Rd9rru6qvG/fufeWU3S+iUaGm99GsMt6A66sR08hLZjB6Bxqo3xpyVoUmLYH2IGEa5Nk77o2jqPRgXYLypBrjTZ0FtE7PqLuoMnaaXionuwMQw6FpvwuFzIFL//KhVFkYZ9+zCGOQElmcHSnacrzSuvvFL0+OOPp8jlclGpVHrefPPNoqSkJEe7du2so0aNyhAEgb59+xoHDx5szsjIsE2ePDlpwYIFYR6Ph1dfffXYH9t75513YpxOp+zU4jw/Pz/XjBkzjr700ktFkydPTvJ4PELv3r3r+/TpY3G73WzatClg1KhRGaIo8tZbbxUCvP7664WvvPJK/HvvvSdERUXZX3rppaqzxZ+ammp76qmnkpVKpZiUlNTw9ttvn3E1+NBDD5149tlnk5RKpUetVnveeeedot8+bzAYPJMnTz7+wAMPpKrVao/L5ZKNHz++Ii0tzV5aWnrOzQTCw8OdTqdTeOmll2JeeeWV0nMd2759e9uIESOqR40alalQKMSRI0dWd+zY0fbkk0+emDx5ctL8+fPDDAaD8+OPPz7jfT2XNpsg+wVHUwfI7Rd1wQCAq7JxWoZHL80/buvi/RsT5Iq4OqJVIRgXLDidIDfs2oX98GEix7Vnv1qL3B1BdMBlL9KVtHCiVg2YcNVd+G56NeU1GNzg8pd20bsSRIWkUxIGCrdI+aEjRHX6/doEx7FC3DU1HO/iRC1qifWPbaZIJU0lKSnJsWjRotMF9QcOHGgeOHDgGQX2f51T+7t5tZGRka5Zs2bln6v9GTNmHP2zx/v27Wv5bb8AcrmcKVOmnJHQdu3atWHBggW5Z+tj27Ztp+cM9enTx7JkyZKzT7IH+vfvb+nfv/85NxEYPXp03ejRo8/4MB08eLBp8ODBp3dkOtX3hx9+WHjqsaVLlx48W7vPP/982W9/njRpUvmkSZPKf/vYhbyv59Jm7wX6hTdu8KFwnPUOwlmZSxt/D2WGYK/GJGl5QrWhKEQFRf5y/PtnYVy8GI+tcZOImm++RWYwYAguJFulJUSZ0szRSpqCoGu8MLbVXPj6hbqSxs9qwaDzSUySlkUhU2APbbwYKtuTc8bzpxb87oiXEaeOQSa02a9aiaTNarN/tX4hjSODSsfFF/yvLT6KRwB10BmlCCVtjCAIBKsiKVEo0GRF4Kmvx7hwEdbdezCtXEnQTSOoshzDqPCQFijdJr0SyPSN1YMsFee8q/c7luONgzXqEOkOw5VCFRWEB6g/eOYgm3XXbkStii0RStpHSusWJJLWqM1OsZD56/EAyoss1QRgLS/DpYVg/xjvByZpcaL9kzhiKcajLEPTsSMnX34ZQaNBFRdH8KAENmxunCrVJ6ZLM0cqaQoqvyDcApjLLzxBdpblAaCPkC6qrxSJIQmUB5Ujyz9wxnPW3buwRcixyj10lxb2SiStktcS5PT0dAEoAU7N99iSm5v7fHp6+o3Ai4ALmJ6bmzvVW32eiyAI2NSgdLgQRZE/rq48F1d1NfV+EGI4oy62pA1qH9qO2dUboHIfCTO2UP7Ou9hycoj9+CMU215nr0aPKMq4Tlqgd0XQa0OwaEC4iCkWQlUhAIaYBB9FJWlpkkIyyY/eQa+CXESP53T1EldlJc6iYup6uQE1mSHSnSeJpDXy5ghyCrA7Nzf3xlMPpKenK4H3gZ6ABdiUnp6+KDc3t/wsbXiVQwVKlweb04NWdRGry40m6vwE4kOkOadXgm6RmczKg0pnGWEyJ1GvvNz4hMcD+SvY6h+I0h1GZIDhnO1I2gZ/bSgWDWiMF75IT1FXQYMKQsKSfRiZpCVJiOrB6sRvuCrHhj0vD01G40I98/oNABTGO5ChISVQ+h6RSFojb85B7g7EpKenr0lPT/85PT09HcgEjuTm5tbm5uY6gI3AVV7s85ycSlC6RCwO10WdpzDbMOogLjLVR5FJWpK0X3c+y1ep4Ni6//9EyXbcpjLylG4i1dL2wVcKgz4cixpEk+n8B/9KZTFi1EFIYNL5D5a0CYkRXclOarwzWbV2w+nHTcuXQ3AA26MVxKqjUcnPWc1KIpG0UJeUIKenp9+fnp5+4Lf/gJPAm7m5uUOAN4BvgQDgt8VETUCTDcO5lAIKpwer/aI2T0FtcWHViUQYgnwUmaQlifePR4aCA0o/ODD//z+Rs4ACjQ6XzEWXsM7NF6CkSQUaYrBoBATLhVfAUVutGP0gVNpm+ooRrA3BqZdREyRQvW4jAG7T/2PvzuOjqu7+gX/uzNzZMplJAgmEJZCQcENdQFFCClaoiiAgSxAUqyJSjf6EYiKtGyAVWwQjKmqlYgWfB1RMgtDCg9UqYkG0FYyC5BJ2AgnZl1mSWe79/TEJBrIAkmRC5vN+vfrqzLnL+TIcL985c5Zq2HfuhCfWgn1GA66M5vjjYLFr166QKVOmnOlJ2bNnj+n2229PnDRpkjRnzpy+Pp8/D1m5cmXkuHHjBowfP37Ahx9+GA4Adrtdc9999/VLSUmRpk2b1j8/P7/RepEVFRXae++9Nz4lJUWaMGFC4s6dO0MA/0Yg48ePT5w4cWLikiVLogHA5/MhPT09ZsKECYlTpkyR8vLyDACQl5dnmDZtWv+UlBTpzjvvTCgpKTnz03peXp5h1KhRv6h/f/jwYX1KSoo0efJk6ZFHHol1OByN8sU9e/aYJk+eLE2ZMkW66667EgoLC88albBt27bQBx988Kyf1Z599tme7777bpfmPseMjIzuX3/9tdnlcgnvvPNO13OP79u3zzhp0iRp4sSJibNnz+7r8XgAACtWrIgaP3584vjx4898DhkZGd2nTJkiTZkyRRo9evQvkpKSLmoi0c9KkGVZfluW5Ssb/g/AfwBsrDv+bwA94E+IQxtcGgrgwn+3vERevQZ6z8X1ICtOJ0SPilqTAFHbaRf5oAZ0Gh3Cxd7YJUZAPfAxUGv3D6/4cSO+7Op/Xtwcx61ig0VXWy84jYDWeeEr4BidblSbgRDzhW1NTZc/QRDQR7ThSB8ftHu/g+J0wv7554DHA1e3ElRoNbgumvMWgsHy5cu7LViwoI/b7T4z2enVV1/tkZqaWrBhwwbZ4/EIW7ZssRUXF+syMzOjsrOzc9euXSu//PLLvRVFwerVq7sOGDDAmZWVJY8dO7b09ddfbzTb94033ug2ZMiQqqysLPmFF144Ur9hyKJFi/osX778SHZ2du7evXtDdu/ebdq0aVOY2+3WbNy4MTc9PT1/8eLFvQDg6aef7jN37tyTWVlZ8tSpU4sPHDhgBIC1a9dGzJ07N66ysvJMYv7888/3uuOOO4qzs7Pl66+/vvr111/vdm5Mixcvjpk/f/7xzMxM+aabbipfsWLFJc9STk9PL0xKSnIWFhaKGzZsaJQgL1u2rOfcuXNPfvTRR7kAsHnz5rBDhw7pt27d2mXDhg25GzduzN21a5ctJyfHlJ6eXli/819kZKS7qQ1YWtKaY5AXwr+n91JJkgYCOAHgRwAJkiRFALDDP7zixVass0WKQQuxygfnRSTIvrrNAbxGJsfBpE9oP3zvLITgdQG5/wBqKoHqAmzrehVUXzV+FcuJNsEiNDwSNQYVupoLf26YXD7UmISLmgxMl78rIhLx8RWluPY7N0794Qm49u6Frkc0CrvnAuiCgZFc+aZdffPXLvjuvUZJ1SUZdFcJhjxY2tIpffr0qX3ttdcOPf7442fGWEmS5KyoqNAqigKn06kVRVGNjIz0btmyZZ8oijh69KheFEVFo9Hg0UcfLfJ6/c+bU6dO6UNDQxv97P3www+fNhgMCgB4vV5Br9erlZWVGo/HI8THx9cCQHJyctX27dutxcXF4vDhwyvryhxpaWkhTqdTKC8vFz/99NOwjIyMXgMGDHAsXLgwHwBsNpvvgw8+kG+66aar6us7duyYadSoUccAICkpyb548eJGqxasWLHicI8ePTwA4PP5BIPBoF7ox7pt27bQt956q7tOp1MKCgoMt9xyS9m8efMKZ8+e3Xfs2LFlH3/8cfjx48dNS5Ysia7bXAUAsGrVqkM6nQ61tbVCaWmpaLVafb179/asXr06T1e3o6XP5xOMRqNSf82GDRvCQkNDfaNGjbqorZVbMwtcAuBGSZK+APASgBmyLHsApAH4GMBX8K9iceFrJ10iVa+F3g043Rc+xKI+QVYM3BErmAyO/gW8ogsnzDHApjnAP+cDCbfie18pQhEPva7TrohI57CGhMBjAAw1Pqjq+Z/3bo8XZpcKt5nJcbC5MuZGfBejhTywJ6o/+QRKdTUwayJ+MOlhFPToZ+MEvWAwefLkClEUz3pYxMbG1mZkZMTcfPPNV5SVleluvPHGagAQRRFvvvlm5PTp0weMHj36TOKt0+kwderU/llZWVFjxowpP7eO8PBwn9lsVgsKCnTz5s2Lmzt3bn5VVZXWbDafSXAsFouvurpa63A4tFar9Uy5RqNRi4qKxOPHjxuHDx9etX79ermqqkq7du3aLgAwbty4SovFojSsLz4+3rl58+YwANi6dWtYTU1No3yxPjnesWNHyPr166NSU1MvaAGG+o6E06dP61etWnUoOzs7d926dWf1Ps+ZM6cgJibG1TA5rv+cjh49qr/11luvqKys1F199dVOvV6vRkZGehVFwfz583slJCQ4JUk68xPg22+/Hf3YY4+dtfPehWi1f/VlWS4HMLaJ8r8D+Htr1XMxVKMOeg9QdRFjkH2VlXXXGtsqLOqAru9xJd7aBzzZdRb+17QLOL0P/xmSBt/O3+LaiAmBDo/akUGngVcPaH2AWlMDwWRq8fzywlJoVMBn5peoYHNVj6EAgLxrqzBw2GxE3zgM8hd/wm6jCVdGDoRWcxGrJ9GlG/Jg6fl6e9tLRkZG7zVr1uReeeWVNStXroxcsGBB72XLlh0HgNTU1OL777+/5J577kn4/PPP7SNHjqwGgPXr1x/Yv3+/MTU1NX7VqlV5Tz75ZF8AGDduXOmMGTNKvv/+e1N6enpcWlraiREjRtgrKys1LpfrTCOz2+1aq9Xqq6mp0djt9jPlqqoKUVFRHpPJpNTXNXLkyModO3ZY4f/lv5EFCxbkz58/P2bjxo1dhw0bVmGz2bxZWVnh7733XhQAPPHEEyeuu+465/r168Pffvvt6L/+9a95UVFRZ/3sOQ5g3AAAIABJREFUZjQaFY/Hc1bPgdPp1Nb37sbFxblEUYQoioper7/g3ue+ffu6t23btvedd97p+uyzz/Z+7bXXjrpcLuGxxx7razablaVLlx6rP3ffvn1Gi8XiTUhIuOhd4zr1OALBoIfJDVS5nBd8jae0xH9tiKWtwqIO6Npu10IDPXLs++Gduhb4XQ7W5v0HAHDXVaMCHB21J0EQ4DX4n+m+qvOvZFFV4O80UUMMbRoXdTyxtliYoYXTVIqPpBuhlfojuvwLHNTrMLg7xx8HM4vF4q3vxe3WrZunurpam5uba5g5c2Y/RVEgiqKq1+sVQRDUjIyM7mvXro2ou86n0WiQkJBQWz9+dsaMGSX79u0zzp07N27ZsmWHx4wZUwUANptN0el06sGDBw2KouCrr76yJiUl2QcPHmzfvn27DfBP4ouNjXWZzWa1Z8+eNdu3b7cAwDfffBMaHx/f7Ezkzz77zDpv3rz8zMxMWavVIjk5uSolJaW8PqbrrrvOuW7duoj3338/at26dXK/fv0a7co2YMAA18GDB82nTp0SAcDlcgk5OTmWQYMGnTcp02g0UFW10c9y9913X/yBAwcMABASEuITBAGKomDmzJnx/fv3d7300kvHdA1+8f3iiy+sw4YNu6ihFfU6dZeH1myE0QNUO0oAXNj6pPbTR/3XhnAFi2Bi0BqQYL0G+937sfdkJQbFhOObop3Q+qIwvC/HHwcbn14DwAelqhLoFtXiudWFxTABEELN7RIbdRxajRZXhPaBXLsf/Xetw3+9ErxGFaoAXBPFFSyC2aJFi47NmTOnn1arVUVRVP785z8fi42Ndffv3985ceLEREEQkJycXDlixAh7YmJiTVpaWuyGDRsiFUVBU5PJli5d2tPj8WjqJ+eFhIR416xZc2jhwoXH0tLSYhVFEZKSkqqGDh3q8Pl82LFjh3XixImJqqpiyZIlRwHg+eefP7po0aKYF198UYiOjq5duHBhSXPxx8fH16Snp8eJoqjGxsa6XnjhheMNj3u9XmRkZMRERka6H3rooXgAuPbaa6ufeuqpM0MZbDabkpaWdmLWrFnxBoNB8Xq9mmnTphUlJCTUnjx5ssX1D6Oiojwej0dYuHBhz0WLFp0Zmvvggw8W/P73v48VRVExGAzK0qVLj23atCnshx9+CPV4PJqdO3faACAtLS3/l7/8pePIkSPG4cOHM0E+l87s/2m0pqLgPGf+pPr0CQCAaGvdcf7U8Y2JGwm56mv8IzcHXW2DUKXmQrKw9zgY+Qw6AD74qs7/XLUXnIQJgD7c2uZxUcdzVcyNeLfqMF5U/wfur41Y0S0MVr0VQ7oPCXRo1I5iY2PdmzZtyq1/f8MNN9hvuOGG3HPPqxtTe1ZS0r17d++6devyzj23oTVr1hxqqjw5OdnRsF4A0Gq1yMjIOH7uuYMGDXJt2LBBbq6Or7/+Oqf+9dChQx2bN2/e39y5Op0O33777XctxQwAkyZNqpg0aVKj1ctGjBhRPWLEiDM/0dXXvWLFiqP1ZVu3bv3x3OuGDRvmGDZs2Fl/3okTJ1ZMnDhxd1P11w9r+Tk69RALfd0wCXdV4QVf4yg+jRoRsIRe8moldJm5rd+vAQDv7duEuz98DoLGi/sGcvxxMFIMdbOhLyBBrinw/7tl7tJyTzN1TknRQ+EVgN0hHtiMHvzbasEtfW6BqOVEb6LLWafuQdZb/Eswq9XFF3yNu7wMPhNgDeE/dsEm2hKNod2GYxc+Qakq4GrrLbg98ZeBDosCQDUYATigXECC7CvJhwLAFtWzzeOijmdoj6GID4vH30J6QBhwD1z/fQG3xd4W6LCI6BJ17h7kUP+mfT5HoxVTmqVWVsNuBCJCe7RVWNSBvX7LK7gh+laE67vhjTELAh0OBYhq8o8nrq0oO//J5SWwm4CoCCbIwUgjaDDzypk46DiFp/67FD0tPTG42+BAh0VEl6hT9yAbQiP8L1yVLZ/YkMOJapOAWFujNbEpCOi1erwx6kWoqspNH4KYxuz/9clVdv5fn7TVFagMAfqE9mrrsKiDGh07Gv935P/Qw9IDD139EJd3I+oEOnWCbLR1QQ0Ajev8SzXV0zpr4eiiIrJrn7YLjDo8JsfBTS+GwqkHtGXnn78gOpwoMQsIs/GZEaxEjYg3bn4j0GEQUSvq1EMsTOH+iXZCreOCrxGdXtQagfDQ0LYKi4g6OJMYBqcRcJc1uwrSGUZHLapCgLAwJshERJ1Fp06QQ8KjAQBad80Fna+qKgw1CtxGwGLs1J3rRNQCkyEcdiPgrmi0OlEjRpcXThNg0HNzIaJgtWvXrpApU6ZI9e/37Nljuv322xMnTZokzZkzp6/P59/Rd+XKlZHjxo0bMH78+AEffvhhOADY7XbNfffd1y8lJUWaNm1a//z8/EZLoFRUVGjvvffe+JSUFGnChAmJO3fuDAH8G4GMHz8+ceLEiYlLliyJBgCfz4f09PSYCRMmJE6ZMkXKy8szAEBeXp5h2rRp/VNSUqQ777wzoaSk5MxYoLy8PMOoUaN+Uf/+8OHD+pSUFGny5MnSI488EutwOJrNF99///2ICRMmJJ5bvm3bttAHH3zwrE0onn322Z7vvvtul+bulZGR0f3rr782u1wu4Z133ml2vd2nnnqq91tvvRVZ/37FihVR48ePTxw/fvyZz6HeRx99FJaamhrb3L2a06kTZFPExSXIisMBrQJ49RpoNfyJnShYhZgi4DQAynl20lPdbhhrVbhb3o2aiDqx5cuXd1uwYEEft9t9JnF49dVXe6SmphZs2LBB9ng8wpYtW2zFxcW6zMzMqOzs7Ny1a9fKL7/8cm9FUbB69equAwYMcGZlZcljx44tff311xutM/vGG290GzJkSFVWVpb8wgsvHKnfMGTRokV9li9ffiQ7Ozt37969Ibt37zZt2rQpzO12azZu3Jibnp6ev3jx4l4A8PTTT/eZO3fuyaysLHnq1KnFBw4cMALA2rVrI+bOnRtXWVl5JjF//vnne91xxx3F2dnZ8vXXX1/9+uuvd2vqz757925TdnZ2V1W94J2iW5Senl6YlJTkLCwsFDds2NAoQS4qKtLdfffdCTt27LDVlx06dEi/devWLhs2bMjduHFj7q5du2w5OTkmAHjyySd7v/rqqz0VRbnopK5Td5Nq6jb70Hk8F3S+r8I/mc9r7NTfG4joPELNkag0CoCj5R1RveX+HmaPic8MokB7b/97XTYd2tSqu3zd3u/2krsG3FXa0jl9+vSpfe211w49/vjjZ3opJUlyVlRUaBVFgdPp1IqiqEZGRnq3bNmyTxRFHD16VC+KoqLRaPDoo48Web1eAMCpU6f0oaGhvnPrePjhh08bDAYFALxer6DX69XKykqNx+MR4uPjawEgOTm5avv27dbi4mJx+PDhlXVljrS0tBCn0ymUl5eLn376aVhGRkavAQMGOBYuXJgPADabzffBBx/IN91001X19R07dsw0atSoYwCQlJRkX7x4caOVC0pKSrQZGRm9nnnmmRPPPPPMRY0x27ZtW+hbb73VXafTKQUFBYZbbrmlbN68eYWzZ8/uO3bs2LKPP/44/Pjx46YlS5ZE122uAsDf2z579uxTn3/++ZkEuXfv3p7Vq1fn1W8x7fP5BKPRqADANddcYx81alTFe++9F9koiPPo1E91jdEIrwbQuS8wQa70/2Pn03fq7w1EdB42SzTsRkDjqG3xvNpi/yoXPjM3hSAKVpMnT64QRfGsLtTY2NjajIyMmJtvvvmKsrIy3Y033lgNAKIo4s0334ycPn36gNGjR59JvHU6HaZOndo/KysrasyYMY3Wpg0PD/eZzWa1oKBAN2/evLi5c+fmV1VVac1m85lk2mKx+Kqrq7UOh0NrtVrPlGs0GrWoqEg8fvy4cfjw4VXr16+Xq6qqtGvXru0CAOPGjau0WCxKw/ri4+OdmzdvDgOArVu3htXU1JyVL3q9Xjz++ON9n3766RNNJfQtqZ8Ef/r0af2qVasOZWdn565bt+6sXvM5c+YUxMTEuBomxwAQFxfnHjp06FkTy/R6vRoZGelVFAXz58/vlZCQ4JQkqRYApk6dWv5zJ913+kzQrQd03gv7u/PVjTdUjIa2DImIOjibtTscRkB0tfzlurqwbhm4ED4ziALtrgF3lZ6vt7e9ZGRk9F6zZk3ulVdeWbNy5crIBQsW9K7f9jg1NbX4/vvvL7nnnnsSPv/8c/vIkSOrAWD9+vUH9u/fb0xNTY1ftWpV3pNPPtkXAMaNG1c6Y8aMku+//96Unp4el5aWdmLEiBH2yspKjcvlOjOO2G63a61Wq6+mpkZjt9vPlKuqKkRFRXlMJpNSX9fIkSMrd+zYYQXQ5Oe1YMGC/Pnz58ds3Lix67BhwypsNps3Kysr/L333osCgMcffzz/5MmTxvqhJcePHzc99dRTvf/0pz+dqL+H0WhUPB7PWdmp0+nU1vfuxsXFuURRhCiKil6vv6QxGi6XS3jsscf6ms1mZenSpccu5V71OnUPMgC4RUD0KPD6lPOe66nwf2mr3ySAiIKTxdYFtSZA51aguN3Nnmc/7U+QhVBO0COin1gsFm99L263bt081dXV2tzcXMPMmTP7KYoCURRVvV6vCIKgZmRkdF+7dm1E3XU+jUaDhISE2szMTDkzM1OeMWNGyb59+4xz586NW7Zs2eExY8ZUAYDNZlN0Op168OBBg6Io+Oqrr6xJSUn2wYMH27dv324D/JP4YmNjXWazWe3Zs2fN9u3bLQDwzTffhMbHx7uai/+zzz6zzps3Lz8zM1PWarVITk6uSklJKa+PaejQoY5PPvlkX2ZmpvzKK68cjomJcTVMjgFgwIABroMHD5pPnTolAv4kNicnxzJo0KCWx64B0Gg0UFX1grp+FUXBzJkz4/v37+966aWXjtUPtbhUnb4H2VuXIDs9Pli1LX8fcBad9L8I4RJvRMHMbA6Bx+Dv0PBVVEAT1fTW847CkzAA0IfZmjxORMFp0aJFx+bMmdNPq9Wqoigqf/7zn4/Fxsa6+/fv75w4cWKiIAhITk6uHDFihD0xMbEmLS0tdsOGDZGKouC55547cu79li5d2tPj8WjqJ+eFhIR416xZc2jhwoXH0tLSYhVFEZKSkqqGDh3q8Pl82LFjh3XixImJqqpiyZIlRwHg+eefP7po0aKYF198UYiOjq5duHBhs+tYxsfH16Snp8eJoqjGxsa6XnjhheMX+xnYbDYlLS3txKxZs+INBoPi9Xo106ZNK0pISKg9efKkvqVro6KiPB6PR1i4cGHPRYsWnWzp3E2bNoX98MMPoR6PR7Nz504bAKSlpeX/8pe/vPA1fpsgtNbMw9Y0efJkNTs7u1Xu9dmIK1BpUJG8fje624wtnpu3bAG8b3+IjenJeOK3f2uV+oOVJEnfyrJ8XWvftzXbBgVGW7UNoPXaR6XLg6Xzr8Zv/gHEbtoIY//+TZ731bzHYNm8Ff9+bgQeTvnLJddLfHZQ85pqGzk5OUcHDhx4/gXLiZqRk5PTdeDAgX3PLe/0Pcg+vQDRq8Dh9p73XFdJIRQdYDQ3u0QfEQUBi0EHr14AoEKpbH6rem9JIarMQEToRU+QJiKiDqzTj0FW9Fro3YDLff6JejXlpXAYgVBT0z+nElFw0GoE+Az+OS7eFjYLUStKUWUGuoZGN3sOERFdfjp9gqwadNB7AEft+XuQvZVVcBgBm6XRGt1EFGSUugS5pR5kbXU1qswCuoc3WiKUiIguY50+QYZBB4MbqK5tfiZ6PcXugMMIhIX2bIfAiKgj8xn8c0h8LfQgi3aXvwc5PKa9wiIionbQ6RNkjdEAkxuocLa8ZSwAaJw1cBgFRIT3aofIiKgj0+qM8GhbHmJhcHpQaQbCbBe1iRQREXVwnT9BNhlh8AKVjvNPctW5PHDrVVjDOAaZKNjphRBUm4DasqafHUptLfRuBU4zYDBymTcios6k0yfIYoh/04/a8hPnORMQXT64DYA1pOXl4Iio89NrLbAbm0+QfWVlAAAvHxdEQW/Xrl0hU6ZMkerf79mzx3T77bcnTpo0SZozZ05fn8+/UMDKlSsjx40bN2D8+PEDPvzww3AAsNvtmvvuu69fSkqKNG3atP75+fmN9q6vqKjQ3nvvvfEpKSnShAkTEnfu3BkC+DcCGT9+fOLEiRMTlyxZEg0APp8P6enpMRMmTEicMmWKlJeXZwCAvLw8w7Rp0/qnpKRId955Z0JJScmZ3fby8vIMo0aN+kX9+8OHD+tTUlKkyZMnS4888kisw+FoNl986qmner/11luNlvLZtm1b6IMPPhjXsOzZZ5/t+e677za7VFhGRkb3r7/+2uxyuYR33nmn67nH9+zZY5o8ebI0ZcoU6a677kooLCw8sxqbz+fD3XffnVAfi9PpFB544IF+kydPln7zm9/EFxUVXdTKbZ0+QdZb/Jt+uCuKWjxPVRQYalV49YDV2KhtElGQMWhtsJsAb1lxk8e9dQmyx9TpH6NE1ILly5d3q99yub7s1Vdf7ZGamlqwYcMG2ePxCFu2bLEVFxfrMjMzo7Kzs3PXrl0rv/zyy70VRcHq1au7DhgwwJmVlSWPHTu29PXXX2+0UsAbb7zRbciQIVVZWVnyCy+8cKR+w5BFixb1Wb58+ZHs7OzcvXv3huzevdu0adOmMLfbrdm4cWNuenp6/uLFi3sBwNNPP91n7ty5J7OysuSpU6cWHzhwwAgAa9eujZg7d25cZWXlmeTn+eef73XHHXcUZ2dny9dff33166+/3u3cmIqKinR33313wo4dO1rtJ7T09PTCpKQkZ2Fhobhhw4ZGCfLixYtj5s+ffzwzM1O+6aabylesWHHms3r++ed7VldXn0n633777aj4+HhXdna2PH78+NLly5df1HJDnX4dZKPV//em2FseYqHY7RAAeA0CjKK2xXOJqPMziGGwmwT4mlnFor4HWTHxeUHUEZT979oulRs3NkqqLoVtwoSSiN/cXdrSOX369Kl97bXXDj3++OOx9WWSJDkrKiq0iqLA6XRqRVFUIyMjvVu2bNkniiKOHj2qF0VR0Wg0ePTRR4u8Xv9KW6dOndKHhoY2Wpf24YcfPm0wGBQA8Hq9gl6vVysrKzUej0eIj4+vBYDk5OSq7du3W4uLi8Xhw4dX1pU50tLSQpxOp1BeXi5++umnYRkZGb0GDBjgWLhwYT4A2Gw23wcffCDfdNNNV9XXd+zYMdOoUaOOAUBSUpJ98eLFjZbqsdvtmtmzZ5/6/PPPLzpB3rZtW+hbb73VXafTKQUFBYZbbrmlbN68eYWzZ8/uO3bs2LKPP/44/Pjx46YlS5ZEP/HEEwX1161YseJwjx49PADg8/kEg8G/5WlWVla4IAhqcnJyVf25e/bssfz2t78tBIBbb721atWqVT0uJsZO3/VhDA0DACiOshbP81X5P1Ofnv/YERFgNkai2gSoVfYmj3uL/V+6lRBDe4ZFRB3M5MmTK0RRPGtb4tjY2NqMjIyYm2+++YqysjLdjTfeWA0AoijizTffjJw+ffqA0aNHn0m8dTodpk6d2j8rKytqzJgx5efWER4e7jObzWpBQYFu3rx5cXPnzs2vqqrSms3mM8m0xWLxVVdXax0Oh9ZqtZ4p12g0alFRkXj8+HHj8OHDq9avXy9XVVVp165d2wUAxo0bV2mxWJSG9cXHxzs3b94cBgBbt24Nq6mpaZQvxsXFuYcOHXrR2zkLgr+j/fTp0/pVq1Ydys7Ozl23bt1ZveZz5swpiImJcTVMjgGgPjnesWNHyPr166NSU1NP//DDD8bNmzdHPPXUU6canutwOLQ2m80HAKGhoT6Hw3FRCV7n70G2dUUNAMFR1eJ5Sl2CrOg7/UdCRBfAbIpEoRHQ2GuaPF5b5B+2JYRa2jMsImpGxG/uLj1fb297ycjI6L1mzZrcK6+8smblypWRCxYs6L1s2bLjAJCamlp8//33l9xzzz0Jn3/+uX3kyJHVALB+/foD+/fvN6ampsavWrUq78knn+wLAOPGjSudMWNGyffff29KT0+PS0tLOzFixAh7ZWWlxuVynUn67Ha71mq1+mpqajR2u/1MuaqqQlRUlMdkMin1dY0cObJyx44dVgBNfl4LFizInz9/fszGjRu7Dhs2rMJms3mzsrLC33vvvSgAeOKJJ05cd911zpY+A6PRqHg8HqFhmdPp1BqNRgUA4uLiXKIoQhRFRa/Xq03fpbH169eHv/3229F//etf86KioryvvfZa9+LiYnHatGnS6dOn9TqdTu3du3dtSEiIr7q6WgMA1dXV2pCQkPPvGNdA5+9BDvOPGxdqWl7mrb4HWTHq2zwmIur4rJYesJsEaDw+KDWNk2THyVNwGACjyRqA6IioI7NYLN76Xtxu3bp5qqurtbm5uYaZM2f2UxQFoiiqer1eEQRBzcjI6L527dqIuut8Go0GCQkJtZmZmXJmZqY8Y8aMkn379hnnzp0bt2zZssNjxoypAgCbzabodDr14MGDBkVR8NVXX1mTkpLsgwcPtm/fvt0G+CfxxcbGusxms9qzZ8+a7du3WwDgm2++CY2Pj3c1F/9nn31mnTdvXn5mZqas1WqRnJxclZKSUl4f0/mSYwAYMGCA6+DBg+ZTp06JAOByuYScnBzLoEGDznutRqOBqqrCueXr1q2LeP/996PWrVsn9+vXzw0Af/zjH/P//ve/52ZmZsq33XZb6fTp00+PHj26atCgQfbPPvssDAA+/vhj68CBA8+/3m8Dnb67NCQ8GhUANLUt/33UVtSNJzRwSjoRAaHWHnAa/Z0avooKaLqfPW/Geeo4KkIAqz4sEOERUQe2aNGiY3PmzOmn1WpVURSVP//5z8diY2Pd/fv3d06cODFREAQkJydXjhgxwp6YmFiTlpYWu2HDhkhFUfDcc88dOfd+S5cu7enxeDT1k/NCQkK8a9asObRw4cJjaWlpsYqiCElJSVVDhw51+Hw+7Nixwzpx4sREVVWxZMmSowDw/PPPH120aFHMiy++KERHR9cuXLiw2clZ8fHxNenp6XGiKKqxsbGuF1544fjFfgY2m01JS0s7MWvWrHiDwaB4vV7NtGnTihISEmpPnjzZYm9kVFSUx+PxCAsXLuy5aNGikwDg9XqRkZERExkZ6X7ooYfiAeDaa6+tPndoRb0HHnig+He/+13fSZMmSaIoqq+88srhi4lfUNUL7tVuN5MnT1azs7Nb5V6eI/txcMxkfDqyG2b/ZVuz551Y9w7sf1yKj+6Pw5N/2NwqdQczSZK+lWX5uta+b2u2DQqMtmobQOu2j3/n5uPD1bcg9SMgduNHMErSWce/u30M8mqOoeLh2/DbSS+2Sp3EZwc1r6m2kZOTc3TgwIHn3+iAqBk5OTldBw4c2Pfc8kvqQZYkaRKAO2RZnl73fiiAVwB4AfxTluVFkiRpALwBYCCAWgCzZFk+eCn1XgxthH9lEq27tsXzXKWFAABNCHuDiAgIDbFAqevj8JU3mjMDlJWjIgoIC+HGQkREnc3PHoMsSdIrAP58zj3eBDAdwHAASZIkXQNgIgCjLMvJAJ4AkPHzw714QmgYFAA6t7fF82pLC6EIgBgS3j6BEVGHZjWJ8Jr8r70lZ89jUVUVuko7yi1ApO2iVg4iIqLLwKVM0tsJ4OH6N5IkWQEYZFk+JMuyCuBjADfDnyxvBQBZlncBaJOfVpsjaDRw6wGdx9PiebVlJXAYAJOh2Q1eiCiIhBp1cNdtAuItOnujIcXhgNbjQ0WIgJ5d+wUiPCLyUxRFaTSZi+hC1LUdpalj5x1iIUnSAwAeO6f4flmWP5AkaUSDMiuAhmupVQOIqytvuNK+T5IknSzLLXfptiK3HtC5m/zzn+GprESNEbCYWnWNcSK6TIUadYBWh1rR3ShB9hb7d9ersAC9uktNXU5E7WNvcXHxLyIjIys1Gk3Hm1RFHZaiKEJxcbENwN6mjp83QZZl+W0Ab19AXVUAQhu8DwVQAcB8TrmmPZNjAPCIgN7TcoKsVFXDbgSsIY12eCSiIGTQaSGqelRY3IhsJkGuMaswhUQEIjwiAuD1emcVFhauKiwsvBJBsHQttSoFwF6v1zurqYOttsybLMtVkiS5JUnqB+AwgFsBLALQC8B4AOvrJvH90Fp1XiiPXoDeo8DtVaDXNfPfj6MGTqOAaCvHExKRn6gaUWaxw9NMguwzBSIqIqo3ePDgIgC3BzoO6nxa+9tWKoC1AL4BsEeW5a8BbABQI0nSTgDL0Xi4Rpvz6QWIHsDlbn4TFa2zFjUGFWZrZDtGRkQdmQgTyiwCPEWnzyqvT5Bh4tb0RESd0SX1IMuyvA3AtgbvdwEYes45CvyJc8Aoei0MVR443F7YzGKT54guL9wGwBzKVSyIyE8ULCgLBbxHiqCqKgTBPxfIV1ICjxbQGAwBjpCIiNpCUIzXUQxaGNyAs5keZFVVoa/xwWtQERoS0s7REVFHpddZUW4RgJpaKHb7mXJvcTEqQwCLYA5gdERE1FaCIkFWDSKMbqCqpultx9WaGuh8/qEYVmPTPcxEFHz0ujCUW/yvG65kUZufj2IrEKINbeZKIiK6nAVFgiwY9TC6gVJndZPHfVX+1em8BgEWY6vNWySiy5xZH4myUP+wirMS5COHcaqLAIvIIVlERJ1RUCTIWqMBeh9QYS9t8rivwr9Ms0+vhVbD9caJyM9iim7Ug+yrroZaVoGCCAFWIyf1EhF1RsGRIJv94wQdpQVNHleq/AmyomfvMRH9xGzpg+oQ/94D9Uu9uY8eBQAURABh5uhAhUZERG0oKBJkvcXfBVRb3nSCXFtRDgBQ9cZ2i4mIOj6dNRoWrQK3QQNvkX9pt/oE+VSEgC7WmABGR0REbSUoEmST1QYA8FQWNXncUVYIAFANnJFORD8xWWyI8KqoChWCkkIXAAAgAElEQVTgyc8HALiPHIUqAKfDgG5d+wU4QiIiagtBkSCbw/wTaTz2siaPO0v9PUOC2dpuMRFRx2c16WDxaXA8WoArJweqqsJ99CjsNhHQAt2i4gIdIhERtYGgSJBDbP6JNKqjosnjtWWnoQAQzGHtGBURdXRWowijT48fe6jwlZXBffQo3EePojxcgzCfgi42W6BDJCKiNhAUCbIlvDsAQHVWNXncXVYEpxEw6SPaMywi6uC6WAwQvUbs6e1/79q9B+6jR1EUpsLqE2ASudU0EVFnFBQJsjnCnyBrXPYmj3sry2E3AiEmLtlERD/patEDXgvyuwKCNRSlq1ZBcTpxKMqHcK94ZutpIiLqXIIiQRa79gAAaJvZSc9XWQ2HEbCYurVnWETUwVkMOqg+G1RBgHpFPNxHjsDQvz/+7yoVFoW76BERdVZBkSBruvjXKhVrapo8rlY74DACoaFc05SIfiIIArQa/y9LzsTugFYL09Nz4RQ1sGi6BDg6IiJqK0GRIAsmK1wGFfpaT5PHtY5a1BoAUyj/wSOis4l6/xfn/Bt6ot/HH+N0F/8X7VB9r0CGRUREbSgoEmQIAtwGQF/ra/Kw6PLCa1BhsnZt58CIqKMzmPoAAEpcBdD36okTxfsAAGGhCYEMi4iI2lBwJMgA3AYBhiYSZFVVYXD54NOrsFjDAxAZEXVkBmsMzIqCEudpAMDh0jwAQNcuVwcyLCIiakNBkyB7DAKMtSoURT2rXHW5oFUAxQBYzfoARUdEHZUxPAqRXh8KXSUAgPyqfHT1+tClO3uQiYg6q6BJkH1GLUy1Kpyes3uRfVX+tZF9ogY2kxiI0IioA+sSGoJYt4q9Nf4dNwvcZYj0At3CuIoFEVFnFTQJsmLUwVQLVDjPXsnCV1mXIOu1sBh0gQiNiDqwrhYDetSYUKjWoshZhNOKE1aPHt2shkCHRkREbSRoEmTBpEdIDVDkKD+r3FtRBgBQ9Dou+k9EjXS1GOBzxgAAvj31NYo0Phg8IehiYYJMRNRZBU2CrDEbYfQAReUlZ5U7igsAAF4T/7EjosYiQ/U44boaekXFK9++BEUQEO6NhlbDL9RERJ1V0CTIOosFAFBekn9WuaPoFABAMVnaPSYi6vi6WgzYrSTiF243TtaUYECtG6J2WKDDIiKiNhQ0CbLeagUAOIvPTpBriv1LNyHE2t4hEdFlwGYSUaGNQKLXP4l3aqUWBV2ZIBMRdWZBMyvNHObfJc9Tduqs8priQniNgEnkGshE1JggCOgSYsC13gT0Lv0vch1TEGUzBzosIiJqQ0HTg2zt0g0A4K0oPqvcU1KEKjNgFrmLHhE1LbZrCL72/Ap3hyRgXc0N6GY1BjokIiJqQ0GTIId36+1/UX32KhZqeQUqQ4BQY7cAREVEl4OhcV2wplTC34f8L5ww4qqetkCHREREbShoEuTQqF4AAMFRfVa5UGmH0wSYQqICERYRXQaS4iKgqsBLnxyAWa9FUlxEoEMiIqI2FDQJsjayp///nY6zysXqWrhNKjQWDrEgoqYN6h0GvU6D42VODIvvCoNOG+iQiIioDQVNgqyxRcKjVaGr+WknPdXng9HhhWJUobdyiAURNc0oanFtTBgA4NeJ/LWJiKizC5oEGQYraoyAWOM5U+SrrIQAAEYFpjAmyETUvGH9ukIjACMlJshERJ3dJS3zJknSJAB3yLI8vcH7FwGcqDtlIYAvAbwBYCCAWgCzZFk+eCn1/iw6PTz6cxLk0lL/CwPQJSy03UMiosvHrBviMDIxCt1tXMGCiKiz+9kJsiRJrwC4FcB3DYoHA/i9LMtZDc6bDMAoy3KyJElDAWQAmPBz670UXgNgqPGdeV9T6l/yTdXr0NXCraaJqHkmvRZXcvUKIqKgcClDLHYCePicssEAZkqS9KUkSRmSJOkADAewFQBkWd4F4LpLqPOS+EI0sNlVeHz+XuSqwuMAAEWvR7hZH6iwiIiIiKgDOW8PsiRJDwB47Jzi+2VZ/kCSpBHnlH8C4CMARwC8CSAVgBVAZYNzfJIk6WRZ9v7sqH8mNVSHrsc8OFFVgLjwGNiL/Lvq+YwWaDVCe4dDRERERB3QeRNkWZbfBvD2Bd7vb7IsVwCAJEkbAaTAnxw3HOCrCURyDAA6mxkGbyWOHMtDXHgMnCWFMAPQGMMCEQ4RERERdUCttoqFJEkCgO8lSepVV3QTgG8B7ABwW905QwH80Fp1XixjF//i/qcP7QcAuIuLUG0EDGJkoEIiIiIiog7mklaxaEiWZVWSpFkAsiVJcgH4EcBbAHwAbpEkaScAAcD9rVXnxbJGxwA4guoTh/0F+adQHAYYDdGBComIiIiIOphLSpBlWd4GYFuD9/8E8M8mTk29lHpaS5c+CSjFF1BP+Sfn6U+VoLAbEG5hgkxEREREfsGzUQgAS9/+8GhViCXFUFwumEtdsIep0Fm58D8RERER+QVVgmzq0gt2C2Aqt8N97BgAQLR6YQzrHuDIiIiIiKijCKoEWbBGoyZURWhVLSoO7AMAhFk8MIdzm2kiIiIi8guqBBkhkfCaFYRV+1C4fzcUAD2NtQiLYIJMRERERH6ttorFZUGjhWrRIKIaKNqfA40N6K7oYbOaAx0ZEREREXUQwdWDDMBmMUKjArbdh1AUIaDSG4UuFm4zTURERER+QZcgR/SPxsFYASY3UGtTcFTTF6I26D4GIiIiImpGcA2xAOAL7Y7o5FysTLQgsWs1NMb+gQ6JiIiIiDqQoOs61diica2vAmPGzsJ0XyX0Pa4MdEhERERE1IEEXYIc3TsWGkGFNWcnrIqK6IRrAh0SEREREXUgQZcgW6++HR7okFz9MU6qXXBFvz6BDomIiIiIOpCgS5AR2h17o24HABzR9EHPMFOAAyIiIiKijiT4EmQAwvC58KhaVNh+AUEQAh0OEREREXUgQZkgX3HFVXjU+go8Q2cHOhQiIiIi6mCCbpk3ABC1GqxMvyfQYRARERFRBxSUPchERERERM1hgkxERERE1AATZCIiIiKiBpggExERERE1wASZiIiIiKgBJshERERERA0wQSYiIiIiaqBDroO8b9++EkmSjgU6DrokfdripmwbnUKbtA2A7aOT4LODmtNmzw6icwmqqgY6BiIiIiKiDoNDLIiIiIiIGmCCTERERETUABNkIiIiIqIGmCATERERETXABJmIiIiIqIEOucxbQ5IkaQC8AWAggFoAs2RZPhjYqAJDkqTdAKrq3h4BsBLAKwC8AP4py/KiQMUWCGwbZ2P7OBvbx0/YNs7GtnE2tg+ixjp8ggxgIgCjLMvJkiQNBZABYEKAY2p3kiQZAQiyLI9oUPYdgBQAhwFsliTpGlmW9wQoxEBg26jD9tEktg+wbTSDbaMO2wdR0y6HBHk4gK0AIMvyLkmSrgtwPIEyEIBZkqR/wv/39iwAgyzLhwBAkqSPAdwMIJgeYmwbP2H7aIztw49tozG2jZ+wfRA14XIYg2wFUNngvU+SpMshsW9tTgAvArgVQCqAd+rK6lUDsAUgrkBi2/gJ20djbB9+bBuNsW38hO2DqAmXwwOhCkBog/caWZa9gQomgA4AOCjLsgrggCRJlQAiGhwPBVARkMgCh23jJ2wfjbF9+LFtNMa28RO2D6ImXA49yDsA3AYAdWPFfghsOAEzE/5xcpAkqQcAMwCHJEn9JEkS4P/2/2UA4wsEto2fsH00xvbhx7bRGNvGT9g+iJpwOfQgbwBwiyRJOwEIAO4PcDyB8jaA1ZIk/RuACv9DTQGwFoAW/pnGXwcwvkBg2/gJ20djbB9+bBuNsW38hO2DqAmCqqqBjoGIiIiIqMO4HIZYEBERERG1GybIREREREQNMEEmIiIiImqACTIRERERUQNMkImIiIiIGmCCTERERETUABNkIiIiIqIGmCATERERETXABJmIiIiIqAEmyEREREREDTBBJiIiIiJqgAkyEREREVEDTJCJiIiIiBpggkxERERE1AATZCIiIiKiBnSBDqApSUlJas+ePQMdBl2Cffv2lciyHNna92XbuPy1VdsA2D46Az47qDlt+ewgOleHTJB79uyJ7OzsQIdBl0CSpGNtcV+2jctfW7UNgO2jM+Czg5rTls8OonNxiAURERERUQNMkImIiIiIGmCCTERERETUQKuOQZYkSQTwNwB9ARgALAbwI4DVAFQAewH8P1mWldasl4iIiIiotbR2D/JvAJTKsnwDgNEAXgPwEoBn6soEABNauU4iIiIiolbT2gnyhwDm170WAHgBDAbwRV3Z/wG4uZXrJCIi6tQURcV3JypQ7nAHOhSioNCqQyxkWbYDgCRJoQAyATwD4EVZltW6U6oB2FqzTiIios5sz/FyPPbBd3CUnkKiWIDhAwfgt5Nvg0YjBDo0ok6r1SfpSZLUG8DnAP5HluV1ABqONw4FUNHadRIREXVGJfZapP7vtxjs+Ra7zHPxP9rn8Nsf7sb3f7kXcDsDHR5Rp9WqCbIkSd0A/BPAH2RZ/ltd8R5JkkbUvR4D4MvWrJOIiKizeiLrB8Q4f8Qy31JooySo92zEzqg7cXXR31H49l2AzxvoEIk6pdbuQX4KQDiA+ZIkbZMkaRv8wywWSZL0FQA9/EMviIiIqAUHi6rx6f5CvBr+ITTmLsC9myD0G4Hkh/+Cv4Y+gu6nt8H593mBDpOoU2rtMci/A/C7Jg7d2Jr1EBERdXbv7DiKUWIOoqu/B8a9DJgjAABajYCb730K77x2GPd/9zcg8RYg8bYAR0vUuXCjECIiog6m0uVB9u6TeNryDyC8L3DNb846Hh9lQc2NC7BP6QN39sOAvTgwgRJ1UkyQiYiIOphPfjyNXt5j6OP6ERjyEKAVG53zwI2JeCl0HgS3Hd4tfwhAlESdFxNkIiKiDubjfYW4z7wTqkYHXHVHk+fodRr8NuU2vOaZAN2PWcCBj9s5SqLOiwkyERFRB+J0e7HjQCEmCF9CSLgVsEQ2e+7QuC44fkUqDqi94N00F6itbsdIiTovJshERB1N+VHg3y8DXywFCnICHQ21s+0HijFQ+RGh3lJg4J3nPf8PY6/Gs+pD0NgLoH66qB0iJOr8mCATEXUkeZ8CKwYDny4EPv8TsPJXwEf/D6ipCnRk1E7+tb8It+n3QNUagPibznt+d5sRv75lHN713gL8ZxVw4j/tECVR58YEmYiooyjcC/XD+1Bu6Ydtoz9F2SM/AsPTgJx1wOqxgLMs0BFSG1NVFTsPluBW3XcQYn8F6EMu6Lr7ftkXG7s8gCJEQNk0G/C62zhSos6NCTIRUQdRtfH3qHBrcGvRHMz4qAgj3vgBmyJ/C0xfDxTLwJrbAVdFoMOkNnS8zAlD1WFEeU8B/W+94OtErQbPTB6Cp90zoCneD3y1og2jJOr8mCATEXUA9oM7YS3YgXW6SXh51mhkPZyMflEWzHlvD1Yc7wvctQ4ozgXenw54agIdLrWRnYdK8WvNHv+bi0iQAWBwnwhEXjcJW5UhULa9AJQdboMIiYIDE2Qiog7g2Ed/RJlqwQ3T/4BfxnfF4D4R+PChZEy+picyPjmAFcf6AJPeBI7tBD5KBRQl0CFTG9h5qBQ36fdBjUwEwmIu+vonRifiFfEBuBQt1M2PA6raBlESdX5MkImIAuzo0YMYUL0L+3tNxdVxPc+U67QavHjHwDNJ8gc1Q4BRzwH7NgD/4moFnY2qqvjPwUJci1wIsTf+rHvYzCIeGncDXnSnQDj0LyD3H60cJVFwYIJMRBRg+/65GhpBxS9undXomEYj4IUpV+NX/SPx1Ia9+Dx8KnDdTGDHy8D36wMQLbWVE2Uu9HL+CINaA8T+6mffZ8KgHjjY9y4cQAx8W54A3M5WjJIoODBBJiIKoDKHG71PbkG+sT/CY65o8hxRq8Ff7r4WA6JD8ci6Pfj+6qeAPsOBTbOBgu/bOWJqK7uPl+OXmh+hQgD6DvvZ9xEEAc9OHIhnvTOgrc4HdnLCHtHFapMEWZKkJEmSttW9jpck6d+SJH0pSdJfJEliUk5EVGfbrq9xtXAI4qCpLZ4XYtDhbzOuR0SIHjPfzcHJW/4CmMKBD2dwjeROYs/xcgzX/QhED/T/3V6CfpEWDBo+Fv/wJcH35UtAZX4rRUkUHFo9WZUk6fcAVgEw1hW9BOAZWZZvACAAmNDadRIRXa6qv9sIAOg2dNp5z40KNWLNzOvh9vpw3/ojsI9f6d91b8vjbRwltYe9x4twjZAHoe/wVrnfo7+OxzummfD5fFC4wx7RRWmL3txDACY3eD8YwBd1r/8PwM1tUCcR0WWnqKoG8ZU7UWLud8ErFsRHhWLlPdfhWKkDqduN8N3wOPD9B8DerDaOltpSjccHXeF3EOEB+vz84RUNmfU6/Pb2EXjLOwaaH9YD+d+2yn2JgkGrJ8iyLGcB8DQoEmRZrl9nphqArbXrJCK6HP0r5yCGCLnQ9B91Udcl9+uCP0++Gv8+WILnqm4Del4H/OMxoOpUG0VKbW3vyUpcC9n/pndSq9331iu6YW/sAyhRbXBvnsflAYkuUHuMB274X2MoAG4DRUQEoGjPVoiCDxGDxl/0tVMG98KDv4rD6l0nsanfQsDnATY+ynVvL1M5+ZW4TiPDG5EAhHRptfsKgoAnJl6PZcp06Au+BXLea7V7E3Vm7ZEg75EkaUTd6zEAvmyHOomIOjSn24seJV+iRmsBeg/5Wff4w+hEjJAikfapHUevfQI49C/gm7daOVJqDz+eLMd12jzo+ia3+r37dAlBzMiZ+FZJQO3WZwBXeavXQdTZtEeCnA5gkSRJXwHQA8hshzqJiC7IqbJqfLB6BQqKS9u13q8PlSJZ2At7j18CWvFn3UOrEfDKndcgJsKMKf8dgJq+vwb++Qxw+sdWjpbamj1/H2ywA72Htsn9H7wxHqvDZkNbW4GaLU+3SR1EnUmbJMiyLB+VZXlo3esDsizfKMtysizLM2VZ9rVFnUREF+uH/Ep8tiIV044+g0Mf/KFd6/5+73foJZTA9otLm7dsM4n4673Xocar4sGqB6AarcCH9wG11a0UKbW1Go8PEeU5/jcxbZMgi1oNHrlrEv7mGwvjD2uBw1+c/yKiIMY1iYkoaG3L/gt+o/4DFdoIDCnORkV+brvV7T24DQAgxo+45HvFR1mQMXUgtp8S8Gr4E1BLDwIb/x/HI18mDpyuxlU4CLdoAyLi2qyeAdFWKL/6A44o3eDMfJhfoohawASZiILSsVIHbix5HyXmeJRN3woPdCjc9Md2qftUhQv9nbvh0EcCXfu3yj1vvaI7nhyTiOUHo/F5r0eAHzcCX2a0yr2DzakKF/73k6+xb8My1FScbvP69p2qwkDNYfiiBwGC0KZ1zfr1FXgzYh4MzlNwbPp9m9ZFdDljgkxEQenTL7bhas0R6K+/D3H9JHxnTIKtpH3Wif3qYAmSNT/C2+eGVk2IHvxVHO5OisHMvGQcib4N+Ow5f6JMF0xRVLy3+lVM/fcYXJGzGAczF7R5nQfyT0MSTsAYc32b16XTavDIPdPxtjoBIfvWwfc9pwURNYUJMhEFHa9PgX7v+/BCC+uQ6QAAV0QiopVCqO2wbfPh/bvRVahCaOLIVr2vIAhYdPsVGClF4bajU1ERMQjImgUc+rxV6+nMPtiVh7vK34TdmoBvdIPR9+Q/AI+rTeusPZEDnaBA6DW4Teup16dLCKJufxb/VfrDu3EOUHygXeolupwwQSZqZ//OK8HCd7fizSVp+GLJJOS+MhEl7z0M9Zu3gIoTgQ4vKGzPLcCtvu0o6zECCOkKANB2vwIAUHokp83rF47vAABoYltnS+GGdFoNXpt+LRJ7R+GW04/CEdoXWDeNPckXwFHrRf4nr6OHUIbwSS/gYPz9sKh21PzQdp+dqqqwlv/gf9Pz2jar51wTB8fin4nPo9qrhWv1JMBe3G51E10OOl2CXF3jQXF1baDDIGrE7VXw7Eff4fs1j+Hpw3cjteZtXOH+HrqyA9DlboSw5XHg5SuhvjMW2P937njVhn788iNECRWIGHb/mTJrrD85KT+8p03rPlHmRP+a7+EwRALhsW1SR4hBh3dmXI8ukd1wU+njqIr4BbD+PuCrN9qkvs7i/Z25mKFkozp6GIS4EYi9bjSOKVGwf/0/bVbn6apaSL48OAxRQGj3NqunKY9NuQl/sj0L2IvgWpMC1NrbtX6ijqxTJchHSxwY88qXGPKnT3Hf375Bpctz/ouI2oGqqnhy/X+Q9O3jeES3Cdqr7wB+l4OuCw4h8okcbL3tK9xvWYllnqkoOn4A+OA3wMobgIP/CnTonU6Zw43YU5vg1Nnw/9m77/ioqvTx4587vU96oSWBkCFIRykCKi6yKqAUF9BVEXX9Il+/yqLsT9e+uIuKrGLFtlbWFQmsZVFcK0pVkCoMLRAS0tvMZPrM/f0xQVFaykxCkvN+veYFc+fecx+GSea5557zHJXttz9tz8jKwSEbCBZvj+n5Nx6sZIhiD8Gu58d0QlacQcPbNw/FHJ/GyOI5HE3/Day+Bz68AwLemJ23rfIGQlR98w+SJQfmS+8DYHBmIpukvugqd8bsvHtLnfSRDuFL7hezc5yKXqPk/938ex5Qz0VTvoO6pddC0N/icQjC2ajdJMhVdX5+9+J66nxB/jCqO2v2lfP8V/tbNyifCza+BO9cDUtGwatjI6WXdq2M+Zg24ezy3Jf7Gfzjo1ym/A5+uwDl5CUQnwlE6thOH5rBq3OnYZv6MFN1z3OHfzZllVXw9mR49zqoq2jdf0A78u432xkjfY+v12RQaX7anmjSsl/KQF8V21Jvh/btIE2qxpxzYUzPA5Bk0rLsf4bTq2sqI/Nv4Ovka2Dz6/DqGKg8EPPztyUvfrGH34dW4kg5DzLOB0CjUhBO6IEpWBOz1ecOHC2nu3QUXdf+MWn/TFItOv7nlv9jgeIWjAVf4lp6bWTZckHo4NpNgvzcl/updPl466ah/Hl0Gjeco+H1tYcorm2dRNS/70t8f+8HH8/DUfgjdZokZKUmcuv8vRtgYU/49H6R+MSYLMt8srOYl9YcYP2Bll0p7Zj9ZS4OffEPrlF9gTzijzB89kn3UygkrujfiU/vvBjb2JsY43ucJ8PTCO35GPn5YWD/pIUjb/u8gRDycbWAq+v8+Ne/jFYKEn/+Db/YV5IkygzZpHj2x7Z+8OF1ACgyR8TuHMeJN2p466Yh3HxBNjcUjucu1Z/xVxUgv3gB7BAVDCDyMxr6djGdpCosY+/+xWtyQnbkz4rYdLi4juxEKckYug6ISfsNkZ1iYvqs+1iouAlT/mpq375OJMlCh9cuEuQjVW7eWn+Y6/ub6fP5DHgskwf3X8X/Sct4dc3BFo9n68evoFw6mQKPjsm+h+hX+TfO2Xszo0rn8sSAj6mYshxyxsK6Z+DpgbD2aXFbKwZkWeZvq3Yz6+0t/G3VHq59dSNbCmLTC3S6GJ5c+Q0PqF7H33kY0sX3nfEYrUrJ7Iuy+fjOMezpeQuXe+eT7zHCO9Mit8fFOMEG++6p6Xz82O+pdnmRZZnnV23gRt7HlTkWOp2YkHjibRhkD3JtYUziqXUH6ObajkdlhWRbTM5xMlqVkj9fnsvyWcPZaRrOhY5HsMvdIO8m+OD2DnlHa09RJXc+t4y/frSLB1/8J/+nXI4350rI/uXKhqqUSJ1q19HY3FlQlNUP30jrE5P2Gyo7xcxVs+fzlHIm1vyPKXtDJMlCx9YuEuTnv9pPvOTgvpLbI70zF94N/aZzm3IFXXc+06KxfLT6Y3ptuJs9qlwqr17Fa/ffxhd3XsiCyX3JTjHx/NeHGPJPP39wz2bz+FXI3YbDf++Hly6Ewu9bNNb2TJZl/vLRj7zyzQEezz3IzrF7mGTaxR3/+gGXL9hicazdX8nYwqcxSgE0k54DparBx3aO0/Pidecy99pJzFQ9xpLgeMKb38D/9Hmw7V0Itdy/o61K7zmIy73/4asnr+d/X/iQQdv/glHyYxr3yEn3NyZnAFBbdjgm8Ww5Us25CjvutPNiviDEyQzOSOCj/xvJbZMu5Ab5IZ4LXgFb3sC75OION+QiufJ7FpX/gd9vmsQbobuR9AnornzyhP3iOmUTlBW4i+1Rj0GWZeIcdnwKPcRlRr39xspKMnL1HY/ykv4mUgo+5tCL05CDYtK70DG1+QS51OElb3Mhrye8gcpZBDM+gNH3wKQl5CdfzCTvvykujf1KSADf7inknLV34FbF0eO2FQzLzcRqUNM92cTVQ7rx+swhrPnTaGZd2IMth6uZsryaMSWz+WLgYsKeanhlDHxyD7RAHdZTCYVlKlw+9pU62VPi4HBlHdV1fnzBX96qPpvJssyCj/eweu33fJH0d6bm34dpzV94wv8Iw2o/5t8/FLVYLJ+s/oArleuQR/4RkrKb1MZvz0nj47vG4LvoIWbID2N3amDlLTgfP4fKjx5CLv1RLCl8CtlX3k1x75uYFFrN82XX8VvlZqTf3HfK3ltTcjcAHGWxKbe3Z98+uitKMOeMikn7DaFSKvj90Ay++NNvCI1+gNny3XgqCvA+O4KjX73aYT5LiX0ugYkv0CUzG+WQm1DN+hqMiSfs1znJyhE5mVB59IdYlDp8ZMuHqLXYQHF2fB2nWnRcM+dx3kmYTWbZ5+xcPAWvt+PdYRCEhndnnaX+8W0+V7OaXMdauPRR6DYs8oIkIV0wD0veZRz68gXSpz8U0zjKnF52/ushRipK8U7NQxd38nI9XeIN/OnSXtwxpif/2V7MG+sOceP6ZFI0f+PppH8zdMMLsGM50pA/wDmTIDH7lz1N4RB4ayNjlz1VkS8znYWAMZ1q2YDLG0SSJAwaJVa9Gq1KgSRJyLKMPxSm0uWnuNbDkSoPRTWRR2G1hyNVbipdPpy+4Cm/HzUqBYlGDQlGDUkmLWkWHT1TTVw7LCVrAQAAACAASURBVAOdWhmDd7XxXL4gD7y/k8qtq/ivcQkGfxgmPA29r0BefiOPHniFB77LhWE3xjyWzYer+E3p63h0cehH3tGstgwaFXeM6Unt+bP59w8T+GjDckbWvM+I755C+v5JXEorHlM3iOuGIrEH+oR09EkZSIk9IaF7o3qu2xVJIn3q36HoWrB/jCLnt9Dl3FPubkruCoC3KjZDLLwHI+OPNVktM/74dAwaFbf/pic1w+9k2ecjGPz9nxj81Vx2fvce8VOepHP33NYOMbYUChhwDaoB15x2ty7xejbJnehfG/0e9vxyF+dIBdQlT4p6281h0qqYdtvf+OItAxfnP8HGJ8aTMPMdenZOae3QBKHFtOlvzSNVbr5d/y0rNf+EHmNg6KxfvJ7RZzgbVvQnd9+bEL4fFLFL4l7/6CvmyCtx5kzCbBtzxv21KiWTB3Vh8qAubD1Sw9sbDjNz+zX0DJ7LPfIyhn/5V/jyr3iVZtyGTkgKFdpADXp3MRIn1sdVA5Js5Wi4CwflThTJSdRipFY24pV0+GQlMhIyEkFZQRAVTvQodRYs8Un0Tk8gyaTBqleTYNQQb9SgVipw+0M4PAHc/iBOb5DKOj/VdX7KXT52HXXw/rYiRvZMoleaJQbv6pmVOrw8+sFm4i1x+INBjuxayxT/B1yhWY+ckIs07e2fem6lqW/iX3gOF5e9SXHt1aRb9TGN7bPPPuH/KbfhH3E/aE1RadNqUDNjRHcY8SeKav6Pj3bsxLXzE4xlW0isKqVr9Xd0ObQKpfTzVY4PLft1vck3n0t50lCk9P5kpMaRlWgk1aJDrzn9z4UsywTDMmFZRpYhEAojA2atCqkVhgk0SedBDVqEITE5HZ+sIlhzNOohhMMySZVbCCg0qNNbp2LBycQZNNwy4QJqR3/F5+8tYNihF1C+MYpVidMxXnwXw3p1Ras6Oy6AW4NZp+aoshOj3J9HapNHsae3rOgAwyU3wS59o9ZmtCgUEhfPuB/7R2bO+/4hNr80gbxLXmbyiL5t5+deEJqhRRJkm82mAJ4H+gM+4Ga73d7s+1VP/HsdTymeQqkzwZXPnzCmT5Ik9ne6gmFF85GLtiB1jc069z8eddDjx2eRVArMExY0+vgBXeMY0DWOh644hzV7+/PR/tG8WbSPLtUbyfDvI81fhQIZBxkckc+jSjbjUcejMCSSaNbSSeejM5V0Chyit/sgQ+o2ogk0cJiGDFQB3iSIzwBjMlRrQG2IlMCSFCCHI3+qdJBogW7JkRJlST0JmzujUGvOcJLYUZZsZ9H+8XhkNWophIYgYY0WRv4/pJFzQa37eWetGe/g/+E3Gx8n79uvmDLuspjFVe700efQG3g0ZvTD/ycm5+gcp6fzqPNg1HnIskyJw0tBpZvtDjeOihKC1YdQVx8g0bGbHM9Wxpe/DOUv4/tRzW65K+vDGeyRu3FUkYZHk4hPZaEGM96QhDcEnrCSQChy5+FkdxXUSol4Q+SOQpxBTZJJS7JZS5JJS5JJQ7JZy+BuCVgN6pj8+2Mh2ayjVI5HchZHve1DlXX0k/dQHd+PFFXr/cycitWk4zczH6aiaAYleX/i8qq3KH/vfZ6Wr2Bft6vI6pRGRqKRbgkGMhINdIrTo1R0jETJYcxAU+cF51Gwdolau56juwGwdm3dCXqnYxs/h9rUNAb85zaSP72Kv+yez+zpE0k2a1s7NEGIqZbqQZ4I6Ox2+3CbzTYMWARc2eCjw2EI+X+R7Lz76RpuOnQXWaoylL9bDubUkx6q7XUJ4cJHcO74GGuMEuR3Vn3GQ8pvCZ47GyzpTW7HpFVxed90Lu+bDvQFJhMKy1TV+XF6A/hDYfopFaRadBi1Z/iv87kiQzE81RBw/zwbWQ5DOBh57nNEHu4qqCmIPBxFkYoaQU9kn3AokhwjRxYX8Dkif6+nUBvhlq8gOafJ/+7mSOoxCK54GkPpTiSVFpJsKHLHg8560v3jL5pN3cZnSNr1KsQwQf543RauVnyHq8/N6LXmmJ3nGEmSSLfq63vFE4GuwK8+765y5MNrCedvoHvhVnIrt6ANfBl5LVT/+EWjIKskAhodPrUFtyaRoEJHUGXCq46jWrJSIVsoCZop9pjZV21hQ52FCv/PCfG4vuk89/uWWz63uTQqBRWKRCye6M9b2FVQyqXSYRwZsfvcRUNS5+4k3b4cf/46lJ/MZ17p29QV5rHs8EW8GLyEw3Jk+JhGpaB7kpFeaWYGZcQzqFs82Smms2a4VTSFLBlQB9QWRjVBpnIfAMpW+v3ZUNbzphNOySJl6TXcUzibZxatIe7iOVwzrPsZ70AJQlvVUgnySOATALvdvsFms516EOBJbH9mGr2qv6Q6rg9Yu1JbVcIkx2ZQqpCmvgXdT11wPyczg61yD7rv+y/wQLP+ESdzoNzFwMOvElLr0F40N+rtKxUSyWZt46/WtabIw9o5ugGFQ+CuhKqDULEvkjA346Kg2ZQqGHQdDe7H0sezL2E0Ayq/JuD3odZEvxdElmXC37+GUgoTf+GsMx/QUkzJSOdMRH/ORPQQGb/uKo1cGNVVRP5fPdUghyIXUUE/EjKagAeNuxKzqwyCXvDVgPsA1JVHLlyPpwA5MQVfgg2noQu6gdNa41/aLE51Imm+gqi3W7F3E2opRFzP86Pedixoss4n4daPoWgLxg3Pc8OulcxUfowj5Tx2p05grXo4Oyph/cFK/r01MiRFqZDoGq/HlmamV5qFzCQDySYdVr0ao1aJRqVAp1Zi0qraVCKtT0iHYpBdpQ3/XdMABkc+bsmAwXT2j+1VZAzFcMdGXMv/lzvz32bbZ+u448tryTrvMiYP6kpOqkkMvRDalZZKkC1A7XHPQzabTWW32xtUpyo08i4++NRAt6rdpFetxy+Z2Jw0kXOvm48y7vQJoC3NzAvhAQyszoskAcakZvwzTvSvL75nnmI9of4zo972WUmhBFNK5HFsQmQbE8i5DOuGVRz44b/0GDo+6u1vK6jkMv9qSlJH0imhe9TbjxpJAnNa5NEUshy5QKqrAGdJ5O5D7RGkyoPoyn5Ed+RTSEiEXqOjG3eMubUpxNVtiXq7yqObI3/G6E5WzHQeBFNeQbpkPmz7J5at7zB0xwMMVaig23Dk0ZdRknohW1yJ7ClxcKDcxZ5iJ5/+WHraghidrDr+fdsIUsy6U+90lrAkRb5nXJVHidb9IFmWSfQVUG3MwNBWEktjEqbr/4W8M4/cVX/mJc9f+GHDP3n220v5Xj+SAVkpDOwWR78ucfTrYsWgadPTnIQOrqU+vQ74xe8VRUOTY4CBg4cyYNAQDle6Kaz10ivNTLyxYWP4dGol+XHDkVzL4eBX0PeqxkV+GjVuP5Zdb6JShNGMPPnqaMLZp+u54/GsvxPvjg8gBgnyj9++zwCphroRN0e97bOKJEWGsuiskNijtaOJmqAxDb3LEym3qIvO5NNQWCbFsYMabRpxpxgOdtazpMOoO2HkXCjaDHs+AvvHSKv/TDowzpTKuKScSNWUrBz88dkUK9IoVaZR65dw+4N4AyF8wTAOT4CwDGZt2xifnpScTliWqKsqjlqCXOb0kclRfNY21tEgSUh9r0LTazxsfZu+a5/lmZpncfEWn+YPZ+muoSyQeyJJCnJSzQzsFs+onkkMyUogySTGLQttR0slyGuBCcCy+jHIOxrbgCRJZCYZyUwyNvrk2q4Dce3WYypYH9UE+d+bDzFd+oy6bhdjbkcJQnuXlpTAGtVA+hZ/HukFjWLvTSgsk3wgD6fCgvmcy6PWrtByZHM6lELYUYwiSgnywXIXfdmHM2kIcVFpsRVJUqRUXpdzYcxDUJUP+z+Doz9A5f5I4uyuRANkABkKNaT2hq7DION8yBzZ5u62xVsMVGIm5CiJWpuHi8sZIlVy6Cwff3xKah2cdzOqwTfCwS8x/fAWk+2fMFn7CV5DJ360juLj0FDe3daJdzZFhix1SzDQt4uVYVkJDOwWjy3NjFp5dtR/FoRfa6kEeSVwic1mWwdIwMwWOi8AvbsksGVnNsPz1xGt/gpZljm8fiXJUi2MjE2VAiF2ipMv4IKSjcjldqSUXlFr94e9h7ggtImiHlMxn4WVCoQzU1k7AeAsL8CaEp3loA/mH+C3UiUlGUOi0t5ZJSELhvzhl9vcVZE5CtX5ULY70uO85U3Y9GLk9aQc6HwuXP44tMAk1uZKNGqokK1YXOVRa7P6SKSChalzG683rVBA9m8iD58T9qxCt2slgw6+z6Dgu/zZ0onyLmPZRg5r3Z349FCQ/2yPVIlRSJBu1ZNi0RJv0GDRqbDq1cQbNYzvl052ytn/2RDarxZJkO12exhotdlK53Sysjacw6iKFZHKDqeocNAYW4/UMML5MW5DCoYev4lClEJL0maPhJKF1NjXEB/FBPnohvc4VwqQNmpG1NoUWpYhMVKlwFV+hOb/poioO7gJgMScNnY7vakMCdBtaORxTNAPxVshfw0UbYGaw5FtbeCue4JRw2E5jgRPWdTa9JVElq6O69rGE+Tjac3Qf1rk4XNFhuDsWknK3ne4JOTjEuBBtYFAl+5UqlMpJonD4WTsoXR213Rms89CrSeIwxvEGwhz92XR+90sCI3VIUbQ29LMPCXbkJDhyHfQ88wLeZzJF5u2MUexleCgOzruKmVtWJcefSn/xkJw/zcw6paotCnLMqlHVlGmSiMlsx32FHYQ5tTIctO+6ugtSa4o20EYCXWnflFrs81RaaDrkMijjTFpVVRJVrS+6K2mp6o5GPkzuWfU2jyraE3Q73eRR9APFXYo3oZUshNN5X7Sa4+QXruRQX7Xz8fo46HneYSSeqEcKIYtCq2rQ2R2Vr2ao8behAJKlEc2NDtBDobCqH5cjlKSUZ57fZSiFFpSTrqFb8O9GFnyXdTaPFBwhMHBbdh73EBKW5mVLpwgOT6eOllLwBm92+kJjj2Ua7qQGqUVFYWWJUkSLlUCRv+mqM1b0NUVUqVIIEEd2xU9zwoqDaT1jTyOJ8uRKjjleyKP4q1QuBnlwa8iQzcuebhVwhUE6CAJMkDXtBTyj2aSXbCh2W1tzK/ikuAaqpP6Ey8m57VJFp2afbo+XO7bFLXi/wVr3yVbCpN2/jVRiFBoLclmLRWYkV0VUWmv1hOge+ggjqTBtNH6FQLg1Sah9vgj42yjMHnT7CvBoU0jIQqxtVmSBKbkyCNr1M/bo7yktyA0RYf5BGanmNgU7IF8dGvkh68ZNm5cS2/FYYyDr45SdEJrcKTU16M9vD4q7cUfWkWxIp3EHo1aB0c4y+jUSmoxo/BVR6W9A4cL6CJVoEjvwMMr2oGALjHyF1fzxyGHwjIpoVI8hk7NbqtdEsmxcBboMJ/CnilmtgSzkPzOn5b3bIpQWMa6/9+EUKDpPyWKEQotzdStPx5ZQ7Dw+2a3VV1ZRh/fNgrTL4lq2TihddQpLWj8NVFpq3J/ZBhPnLhwatNCxvr+/7rmJ8jlDg9pVBK2dG12W4IgxEbHSZBTTWwN1w+HKGr6KlmbD1UxJvQtVSnDI6vJCW2WrVMCu+RMfIc3N7utA2vzUEshrIMmRyEyobV5VFb0gdoz79gAwaJtACSIBLlNUx77fe8qbXZbZcUFaKUgqoSMZrclCEJsdJwEOcXEQbkTfqUhUpOzibZ99zUZijLM506NYnRCa8hNt7AjnIW2YieEQ81qS733P5SSQPaAC6IUndCafJp4DKHoJMimGjuVikSkNrY4hvBLKmtkSfago/kJsqM4Ug3DmJLV7LYEQYiNDpMgxxk0JJr1FGhtcLRpPciyLKPf9wFBlOj6XBHlCIWW1i3BwI9SD1QhD1TsbXI7IV8dOa6N7Iu/EIVSGcUIhdYS1MRhlOsgFGx2W0neQ1ToM5sflNCq9HHJhGQJX03zV9PzVR4GIK6TmOQtCGerDpMgA2Qnm9ghd4eSHRD0Nfp4e4mDUf61lCcNixTCF9o0pUKiJq5P5MnRH5rczqFNH6HHjyJ3XJQiE1pbWB+PAhm8zRuHXOf10y1ciNeaHaXIhNaSYNJThRm/o/ljkMPVkaWXTaIHWRDOWh0rQU4x8Y07A0J+KNnZ6OO3bYoMrzAOEpPz2gttWg5udM1KkL07PqBWNpA77PIoRia0JkX9BXC4rrJZ7RQWHMAo+VBGcbVGoXUkGDXUyiZCdc2vbqJyFeGQzJHFNARBOCt1uAR5gy8z8qQJ45BVe94niBLLgEnRDUxoNT1SrOwIZxIubOK49HCILuVr2KobQrzFGN3ghFajMEXGC9fVNK+3sPpQ5ELc3PWcZscktK4Eo4ZajMieqma3ZfIUUa0WVbEF4WzW4RLkoyTi1yVDUeNKe5XVehhS9zWF8UPF8Ip2JDvFxI5wFpTuhFCg0ce79q3FKjtwZP42BtEJrUVjjiTI7mYmyL6S3QCkZIkayG1dglFDjWxC4W3+5M2EQCkuXXoUohIEIVY6XIIMEiXmPo3uQd668Uu6KsrRitrH7Up2iont4e4oQr7IUqeNVPb9Cvyyki7nivHH7YnekgyA19G81fTUVftwYEIfnxaNsIRWFG/Q4MCIyt+8BDkQCpMsV+I3ikVCBOFsFvUE2WazTbLZbP887vkwm8220WazrbXZbA9G+3yNkWLWYtaqsKtyoHI/eBo+lkzeuYIAKtKGiAS5PclKMrKL7pEnR7c27mBZxnL4v2yS+tC3uyj4354Y4iM1bwPO5iXIFtdBSjTdxOIx7YBSIeFRmtEEHM1qp6qmBovkAZMYYiEIZ7OoJsg2m20xsOBX7S4BrgFGAkNtNtvAaJ6zMSRJokeKiU3++pnDDVwwxOML0K/2cw5ahyEZ4mMYodDSdGolobgsPApjoyfqyRV7SfIXciTpIlTKDnUzpt2zWuLwySpCdU1PkGVZJj14BIepexQjE1qTT21BH3Y1q256TVkh8HNdZUEQzk7R/lZfB9x67InNZrMAWrvdfsBut8vAamBMlM/ZKNkpJj6r7QxI0MAlhnduWE26VAV9RO9xe9QjxYJd6tHoBLlqy/sA6PqI4RXtTZxRQw0mcDe9YoGjpppEagnHiwS5vQio4yJ/acY4ZFflUQD0CWKIhSCczVRNOchms90E/PFXm2fa7fZ3bTbbRcdtswDH349yAq36bZGdYmL5ZiWhbuegLFjXoGOC25bhkTVkjbgqxtEJrSE7xcR3BzLoX/opUtAPKk2Djgvu/g87w5mc269vjCMUWppFp2avbEbpbXrFgrLCfVgBdZKoddtehLQWcBMZntfEydre6kiCbErsEsXIBEGItiYlyHa7/VXg1Qbs6gDMxz03A82rvN9MttRIOBWJg0nd/16kcoFSfcr9QwEfuVVfsMsygnMNlpYKU2hBPVJMfB3KQgr5oGwXdGrAKKC6SpJrtvOJ9ipmJBhiH6TQohQKCafCQrKv6T3IzpL9AJjTxCIh7UVYV9+D7Gn611iwNrISnzVZJMiCcDaL6cBJu93uAPw2m62HzWaTgN8C38TynGfSKz2SIO/R9IWA+4wTs/LX5RGHk2Cf6S0RntAKslNMbA3XL/nawGE3wb2rURCmLvOSGEYmtCa30oI20PRb6f7yfACSuogEub2Q9PVzULxNv3CSXCUEZQX6uJQoRSUIQiy0xMyiWcBSYBPwg91u39gC5zylNIsOq17N2kBOZMPhtafdX/7hbUrlOHqPurIFohNaQ3aKiSKSqNMkwZFNDTrGue0jyuQ4MvuOiHF0QmvxquMwBJtR0qumALesxZooJmO1F4pjk7Sb0YOscpdRo7CCQhmlqARBiIUmDbE4Hbvd/hXw1XHPNwDDon2eppIkiV5pZr6vCENSDhxeByPnnHRf2VlCVs16PrH+jvEGfQtHKrQUi05NqkXHfu059D/SgOu3oB/jka/ICw3htz2SYx+g0CpCGgsGrwtkuUll2nSuI5QpU8lUiAon7YXKGBl3HKyravKXp85XgUOZSFL0whIEIQainiC3BbnpFt77/gjyeSOQdrwHAS+odSfsV7HmVZIJI/e/phWiFFpSdoqJzVXZ9Hd+Dc5SMJ+mRunhtWhCdditI7na2LAJfULbE9ZZUTuCEPSCuvEXyGZfMTVaUamgPdGaEwHwOyub/OVpDlRSpxfDK6Jl8+bNKSqV6hWgDx1s8TOh2cLAzmAwePPgwYNPWDa1gybIZur8Ico7X0LK5tfg4Jdgu+yXO4UC6Le9zrfhPgw976zpABdiJDvZxBdHMrlRAgo3Qe6EU+4b/PFD/LIWre3ilgtQaHk6a+RPb23jE2RZJiVUQrlpcPTjElqNyainTtYSrGv6GGRruBqn7pwoRtWxqVSqV9LS0nKTk5OrFQqF3NrxCG1HOByWysvLe5eUlLwCXPHr1zvk1VavtEg1ih9U/UAXBz++f+JOe/6DyV/GN/FTSLGc2LsstC/ZKSa+83VFVmqgYMOpdwyHCe3+D2vC/Tgvu3PLBSi0OKm+YkGoCbWQHbUVmPEQtnSLdlhCK7Lo1NRiJFTXtPJ/Xp+fRLmGkFH0IEdRn+TkZIdIjoXGUigUcnJyci2Ruw8nvt7C8ZwVclLNKCTYVeqBXuNgzyoI+n/eIRzG//UiCsLJJA86dU+i0H70TDXjQ0NN4kA48OWpdzz6A1p3Cf8ND+a8rKbVQRXaBpUxMiHL42h8MlRZsBcAjaiB3K5Y9GpqZRNhT9N6kCvLi1FKMkqzmLgZRQqRHAtNVf/ZOWku3CETZL1GSa80C1sOV0PvK8FXCz/+++cddq1AU7adp4JTGNtH9BJ2BLn1dxV2m4ZGaiHXFp18xz0fEkLB0ZSLsOpPXT9baPvU9QmyuwkJsqPkAACWNLGKXntyrAdZ8jatioWz/AgA6rj0aIYlCEIMdMgEGeDczHi2FFQTzLoY0vvDfx8AnxNc5fDZwxxUdWdPyuV0SxSLQHQEVoOaznF6vgoPiGzY/9mJO4XDyNvfY224L32yM1o2QKHFaUyRBNnnqmz0sf6qSCIU30kkyO2JRa+iRjahbGKC7K4qBkCfIBLk9mbDhg3Gq666ynbs+Q8//KC/4oorek2aNMl2++23Z4ZCIQBefPHF5PHjx+dOmDAh97333osHcLlcihkzZvSYMmWKbdq0aTmFhYUn9L7U1NQor7/++uwpU6bYrrzyyl7r1q0zAuzbt087bdq0nClTptimT5/es6KiQgnw6KOPpk+YMCF34sSJvTZu3GgAKC0tVR07z8SJE3vt379fe6z9srIy1ejRo/t4PB4JoLKyUnnttddmT5o0yTZjxowepaWlp5yz9tVXX5lGjBjR79fb8/PzNVdccUWv47e9/PLLyQsWLDjl7OU333wz8cMPP7QCLFmy5JRlop599tmUhx566KcezHfeeSfh8ssvzx0/fnzuSy+9lAzg9/ul2bNnZ02ePNk2YcKE3GPtNlQHTpATcPtD7C51w7i/g7MY3p4Cr11KuK6Mu+quZ1x/0XvckeSmW/iiMhHMnWD/f0/c4fBaJEchy4OjGNY9seUDFFqUzhwZQhNwNf52uuwoxierSUgSt9LbE4tOTa1sRBVwNOn4gCMyUd4oEuR25cknn0x94IEHMvx+/0/1IJ9++ulOs2bNKl65cqU9EAhIq1atspaXl6uWL1+esmLFij1Lly61P/XUU13D4TCvv/56Um5urjsvL88+bty4yueee+6EXxzPP/986pAhQxx5eXn2xx57LP+RRx7pBnDvvfdmzJkzpygvL88+derU8r179+o2b95s2LJli/n999/fvXjx4oPz58/PAHjkkUe6jB8/viovL89+xx13FNntdh3A6tWrLTNmzMiprq7+KTF/6qmn0gcMGOBauXKl/brrritbsGDBSROigoIC9WuvvZYaDAYbXwvzJK6//vrKCRMm1AK89tprJyTSbrdbuvXWW7OWL1/+i4H8ixcv7vLWW2/tzcvL2/PPf/4ztaqqSvnOO+8kxMXFBVesWGF//fXX9z766KONmhTSIatYAJyXGekd+v5wFX1HnAuXPgabXgKfkw/7PsuW9Qae6idKNHUkvdPNfLGnlODQMah+XAk+F2hNP++w7V/4lEY+kwczP1OMP27vjNbIRVBTKhao6kqokBLorOywfRDtkkGjxCkZm7zCYqiuAgBLgrhwioU31h1KXLGlMKolpicP6lIx4/zM095GysjI8D377LMH7rrrrp8mHdhsNndNTY0yHA7jdruVarVaTk5ODq5atWqXWq3m0KFDGrVaHVYoFNx2221lwWAQgKNHj2rMZnPo1+e49dZbS7VabRggGAxKGo1GdrvdUnV1tfqzzz6LW7RoUZfc3Ny6Bx98sPCll15KGTp0qEOhUJCRkeEPhUJSWVmZaseOHaacnBzPtGnTctLT032PPPLIEQCFQsFbb71lnzRpUu9j58vPz9fNnTu3COD88893/e1vfzshufR4PNKf//znjEcfffTwlClTev/69dPJz8/XzJkzp3tKSoq/qKhI27t377onnniiYMGCBZ2SkpICNTU1SpfLpZw3b163hQsXFhw7zuv1KiZNmlQ5fPhwx8GDB3+qoJCVleWpra1VqlQqWZZlJEli8uTJ1bIsVwPIsoxS2bjFeTrsb+90q57OcXq+P1T/5TdsFty+Be7ay8sFafTvYhXDKzqY3HQLYRnyu0wEvxO2/+vnF+sq4cd/s1ZzPj06pYjxxx2AxWTELWsJN2HVNJ23nFqVuMvQ3kiShE9lRh32QSjQ+AbclQRkJQZzfPSDE1rN5MmTa9Rq9S8mCmZlZfkWLVrUbcyYMedUVVWpLrzwQieAWq1myZIlyddcc03upZde+lPirVKpmDp1ak5eXl7KZZdddsJVeXx8fMhgMMjFxcWqefPmdZ8zZ05hVVWVqqCgQDdy5EjHsmXL7A6HQ7l06dJEl8ulPD7JNhgModraWmVZWZnGYrEE33333b1paWn+xYsXq1R0EAAAIABJREFUpwFccskljqSkpF8k5Tk5OZ5PP/00DuCjjz6K8/l8J+SL99xzT7ebbrqptEuXLo36YZAkSQYoKirSLVq06NAHH3ywe8OGDdbi4uKfOm3nzZtXYjKZQscnxwAJCQmhsWPHnnALp0ePHp7f/e53vS+//PI+559/fm18fHzIbDaHLRZL2OFwKG699dYes2fPPsXkopPrsD3IEOlFXrOvgkAojLq+p2d3iZOdRQ7uG5fbytEJLa13p8hEvc2hbHp2GgQblsDgG0GhgDULkQNuHneNZXR/sQZWR2DRqXBgiNRBbuyxgXKK9T1jEJXQ2oJqE/gBrwOMjbsIUnqqqJXMJInVFWNixvmZlWfq7W0pixYt6vrGG2/s6dOnj/fFF19MfuCBB7oeS/ZmzZpVPnPmzIrrrruu55dffukaPXq0E2DZsmV7d+/erZs1a1b2K6+8su+ee+7JBBg/fnzlDTfcULF9+3b9nXfe2X3u3LlHLrroIpfb7Zb0en342PGjR4+uXbt2rSUrK8tbV1f304fM7XYr4+LiQmazOTRu3LgagLFjx9b8/e9/P+U40jlz5hTfe++93aZMmWIbMWJEbXJycuCbb74xLV68uDPAlClTyrdv324uLCzUPffcc7hcLuUtt9zS/aWXXjp4rA29Xh8OBAK/+LC73W7FsZ7w9PR0r8ViCQMkJCQEvF5vk34wtm3bpl+3bp31888/32EymUL/+7//m7V8+fL4q666qrqgoEB96623Zk+dOrVs+vTpjZpx3aF/Sif070RVnZ/Pd/+8gMqr3+ajVyv53eCurRiZ0Bq6xhswaVXsLHbAsNlQuQ82vQiFm+G7Vzia9Tv2hDszKlskyB2BSauiVjai8DU+QY4PVxIwiFq37VFYE7mQpgmfC42vCqeiUfOEhDbKZDIFLRZLCCA1NTXgdDqVe/bs0d544409wuEwarVa1mg0YUmS5EWLFqUtXbo0of64kEKhoGfPnr7ly5fbly9fbr/hhhsqdu3apZszZ073hQsXHrzsssscAAaDQe7cubN3zZo1JoBNmzaZs7OzPUOGDHGtX7/eGgqFOHz4sCYcDpOcnBzs06ePc/Xq1VaA9evXm7t37+49VfzffPONefr06eV5eXn2zMxMb79+/VyjRo1yHYvp6quvrvriiy92HntuMplCxyfHACkpKUGPx6PYtWuXDiAYDLJhwwbLgAED3BC5I3M6styw6n1WqzWk1WplvV4fVqlUJCQkBGtra5UlJSWqmTNn5sydO7dwxowZjb5w6tA9yBfmJJNq0fKv7wq4tE8aZU4vH2w9yvQhXbEaxC30jkahkBiUEc/Gg1UwYSLsWAaf3A1IYErlX6bfo1W5GZQhbo92BJIk4VYYsfobNyHL66rGiBfZJCZitUey1gIuIj3IjaQL1OBWxUU/KOGs8/DDDx++/fbbeyiVSlmtVocXLFhwOCsry5+Tk+OeOHFiL0mSGD58eO1FF13k6tWrl3fu3LlZK1euTA6Hw8yfPz//1+09/vjjnQOBgOLY5Dyj0Rh84403Dvz1r3899PDDD3d74oknpPT0dN+DDz5YodVq5YEDB7omTpzYS5Zl6b777isAuP/++wvvvvvujPfeey/FaDSGnnnmmYO/Ps8xOTk53nnz5mUtXLiQpKQk/6JFiw419j1QKBTMnz//0D333JOpUCgIBoPSBRdcUDN69Ghnfn6+5kzHZ2RkeGbPnp31/PPPn/B+HC8zM9M/efLk8quuuqqXSqUKd+7c2XfttddWPvTQQ11cLpfqhRde6PTCCy8A8Oabb+41GAwNyrylhmboLWny5MnyihUrWuRciz618+yX+1l681BeXnOQr/eW8/mdF5GVZGyR87dXNptts91uPzfa7cb6s/HCVwd47JM9fHfvGJINSvjyEQj64ML/x9gl20i16HjrpqExO39HEKvPBkT/87HuL7+hq9pB13u+a/Axxfu3kf72BWwY+BjDrpwVtVg6irP9d8eTL7/KH4vmwowPIeuCRh17+C/nUGnowaC7Pmh2HB3RyT4b27ZtO9S/f/+K1opJaPu2bduW1L9//8xfb+/QQywAfj80g1Szjmte3siX9nLmT+wjkuMO7PwekTGFGw5WglIFYx6CSxdwqE7N3lIXF+acsiyj0A55VWZ0ocb1FDrKInNKdAldYhGS0MqU+vohEk3oQbaEawloxR0oQWgLojbEwmazWYG3AQugAeba7fb1NpttGLAYCAKf2u32h6N1zmhIs+r479wLeGnNQbKSjEweJL7UOrJzOlkwa1WsP1jJhP4/l/n7aPtRAC7vK26bdyQBtRmd29WoYzyVhQCYk8U8hvbopwTZ17gEORQMYpVdhPViDoMgtAXR7EGeC3xut9svBG4AnqvfvgS4BhgJDLXZbAOjeM6oMOvU3DnWJpJjAZVSwZCsBNYfqPzFBIEPtxVzXmY8neL0rRid0NKCGitGuQ7C4YYfUxu5mEpIbVRNeqGNUBsjY4hDnsZN0nNWl6GQZDCI8n+C0BZEM0F+Enix/u8qwGuz2SyA1m63H7Db7TKwGhgTxXMKQtT9JjeV/Io6NuZHKsLYS5zYS52/6FEWOgZZa0GBHKmL3VDOozhkA3FxYjJWe6Q2RHqQ/XWNq4/trCoFQGUWw7QEoS1o0hALm812E/DHX22eabfbv7PZbGlEhlrMITLc4vj7UE6ge1POKQgtZfKgzvz9v3aWfH2AoVkJLFy9B51aIYZXdET6+iTXWwu6hpXnUrvLqFQkYjlDCSOhbTIa9LhlLcG6GhpzP8ldUwKAxioSZEFoC5qUINvt9leBV3+93Waz9QX+Bdxlt9u/ru9BNh+3ixlo/LJUgtCCdGolN5yfyROf7uWu97bz2e4y/nx5L5JM2tYOTWhhivoEOeCqRh3XsCETBm85TrW4jd5eWXQqnOjRNHKIhbe2HAC9SJAFoU2I2hALm83WG3gPuMZut38MYLfbHYDfZrP1sNlsEvBb4JtonVMQYuW64ZkMzUpgxQ+F9Oti5cYRWa0dktAKlIZIgux2NLyKlClYhVcjEuT2yqRV45QNyI1cYTHgjHyGTPFpsQhLaGUbNmwwXnXVVbZjz3/44Qf9FVdc0WvSpEm222+/PTMUiqzk/OKLLyaPHz8+d8KECbnvvfdePIDL5VLMmDGjx5QpU2zTpk3LKSwsPGEhhpqaGuX111+fPWXKFNuVV17Za926dUaAffv2aadNm5YzZcoU2/Tp03tWVFQoAR599NH0CRMm5E6cOLHXxo0bDQClpaWqY+eZOHFir/379//U61NWVqYaPXp0H4/HIwFUVlYqr7322uxJkybZZsyY0aO0tPSUHarPPvtsykMPPXTCqnz5+fmaK664otfx215++eXkBQsWnHK84ptvvpn44YcfWgGWLFlyyqvJX5/zww8/tI4fPz73yiuv7PWPf/wj6XTvWUNFcwzyAkAHLLbZbF/ZbLb367fPApYCm4Af7Hb7xiieUxBiwqpX8+7/DGfbg2NZ9j/DUSk7fEXEDkljSgDA42z4CqVxcg1+Uamg3TLpVDgxNLrMW9gV6UG2JIoEub158sknUx944IEMv9//07iqp59+utOsWbOKV65caQ8EAtKqVaus5eXlquXLl6esWLFiz9KlS+1PPfVU13A4zOuvv56Um5vrzsvLs48bN67yueeeO+FD8vzzz6cOGTLEkZeXZ3/sscfyjy0Ycu+992bMmTOnKC8vzz516tTyvXv36jZv3mzYsmWL+f3339+9ePHig/Pnz88AeOSRR7qMHz++Ki8vz37HHXcU2e12HcDq1astM2bMyKmurv4pMX/qqafSBwwY4Fq5cqX9uuuuK1uwYMEJCbDb7ZZuvfXWrOXLl0dt2dDrr7++csKECbUAr7322gmJ9MnO6ff7pUWLFnV988039y5btsy+YsWK5JKSEtWp3rOGilqZN7vdfuUptm8AhkXrPILQkiw6saJiR6arT5B9DUyQgx4HenzIYpnpdsukVXFU1je6zJvkqcIl6zEaDDGKTGDTS4lsfSe6V6cDrq5gyC2nXaY4IyPD9+yzzx646667frrVaLPZ3DU1NcpwOIzb7Vaq1Wo5OTk5uGrVql1qtZpDhw5p1Gp1WKFQcNttt5UFg0EAjh49qjGbzaFfn+PWW28t1Wq1YYBgMChpNBrZ7XZL1dXV6s8++yxu0aJFXXJzc+sefPDBwpdeeill6NChDoVCQUZGhj8UCkllZWWqHTt2mHJycjzTpk3LSU9P9z3yyCNHILLi3VtvvWWfNGlS72Pny8/P182dO7cI4Pzzz3f97W9/OyG59Hq9ikmTJlUOHz7ccfDgQV1j3tb8/HzNnDlzuqekpPiLioq0vXv3rnviiScKFixY0CkpKSlQU1OjdLlcynnz5nVbuHBhwenOuXv3bl2nTp18CQkJIYB+/fq5vv32W/PJ3rPGxCi6xQRBEE5BZ40kyIG66gbtX1seKfGmsIgEub0y61Q4MKBsTGUTQOmppFYyI4nJm+3O5MmTa9Rq9S+Sr6ysLN+iRYu6jRkz5pyqqirVhRde6ARQq9UsWbIk+Zprrsm99NJLf0q8VSoVU6dOzcnLy0u57LLLTviFEx8fHzIYDHJxcbFq3rx53efMmVNYVVWlKigo0I0cOdKxbNkyu8PhUC5dujTR5XIpj0+yDQZDqLa2VllWVqaxWCzBd999d29aWpp/8eLFaQCXXHKJIykp6RdJeU5OjufTTz+NA/joo4/ifD7fCfliQkJCaOzYsY1eMUeSJBmgqKhIt2jRokMffPDB7g0bNliLi4t/6rSdN29eiclkCh2fHJ/qnA6HQ2kymX6K32g0hpxOp/Jk71lj4oxaD7IgCEJ7YzLHE5Ylwu6GzS12VBwlEdBYxG309sqsU+GUDagCjUuQNf4aXEpLjKISABhyS+WZentbyqJFi7q+8cYbe/r06eN98cUXkx944IGux5K9WbNmlc+cObPiuuuu6/nll1+6Ro8e7QRYtmzZ3t27d+tmzZqV/corr+y75557MgHGjx9fecMNN1Rs375df+edd3afO3fukYsuusjldrslvV4fPnb86NGja9euXWvJysry1tXV/ZTQut1uZVxcXMhsNofGjRtXAzB27Niav//97ycMmzhmzpw5xffee2+3KVOm2EaMGFGbnJwc+Oabb0yLFy/uDDBz5syScePGnXYgvl6vDwcCgV8k1m63W3GsVzc9Pd1rsVjCAAkJCQGv19ukTluLxRJyu90/HVtXV6e0WCwhgF+/Z41pV/QgC4IgnILVoMWJnrCnYQmyu7oYAEOCKAnYXunVSlwY0AQbt8KiNujAo2pYqUCh7TOZTMFjSVpqamrA6XQq9+zZo73xxht7hMNh1Gq1rNFowpIkyYsWLUpbunRpQv1xIYVCQc+ePX3Lly+3L1++3H7DDTdU7Nq1SzdnzpzuCxcuPHjZZZc5AAwGg9y5c2fvmjVrTACbNm0yZ2dne4YMGeJav369NRQKcfjwYU04HCY5OTnYp08f5+rVq60A69evN3fv3t17qvi/+eYb8/Tp08vz8vLsmZmZ3n79+rlGjRrlOhbTmZJjgJSUlKDH41Hs2rVLBxAMBtmwYYNlwIABbuCMd1OOX6zrdHJzc72FhYW6yspKpc/nk7Zu3WoaOnSo62TvWWOIHmRBEIRTsOjVlMlGJF/DKhb4ayO1bs2JYlGZ9kqSJHwqI+qwF0IBUDZsnoIx5KBKc8oOO6Gdefjhhw/ffvvtPZRKpaxWq8MLFiw4nJWV5c/JyXFPnDixlyRJDB8+vPaiiy5y9erVyzt37tyslStXJofDYebPn5//6/Yef/zxzoFAQHFsopnRaAy+8cYbB/76178eevjhh7s98cQTUnp6uu/BBx+s0Gq18sCBA10TJ07sJcuydN999xUA3H///YV33313xnvvvZdiNBpDzzzzzMFTxZ+Tk+OdN29e1sKFC0lKSvIvWrToUGPfA4VCwfz58w/dc889mQqFgmAwKF1wwQU1o0ePdubn52vOdHxGRoZn9uzZWc8///wJ78fxNBqNfOeddx6ZMWNGTjgc5sorr6zo0qVL4N577+12svesofFLDc3QW9LkyZPlFStWtHYYQjPYbLbNdrv93Gi3Kz4bbV+sPhsQm8/Hrgf7o4nvTM85q8647/dv/Ilz81/EMa8Yi1FMxmqKtvC748lH5vLH4Kvwp3wwJDTomNqHOrMjYSwjb38tKjF0RCf7bGzbtu1Q//79G16HURB+Zdu2bUn9+/fP/PV2McRCEAThNOoUZtT+ht2dU9SVUS2bMRsas8aa0NYE1fXrXzW0FnI4hFmuQ9aJ5ccFoa0QCbIgCMJpeJUmNMGGTchSeSqoUcSJSgXtXFhTnyA3sNSbz1WFQpKR9fExjEoQhGgSCbIgCMJp+FRmdKGGJcg6XyVOlUiC2jtZV1+NooGLhbhqIouEKIxihcUYCIfDYXFFKjRJ/WcnfLLXRIIsCIJwGkGNBUOoYRULTMFqPGKZ6fZPW58gN7AHua4+QVYZGzZeWWiUneXl5VaRJAuNFQ6HpfLyciuw82SviyoWgiAIpxHSWNHhg6AfVKefeG0NV3NAJxLk9k6pry/X1sAeZJ8jModMaxafjWgLBoM3l5SUvFJSUtIH0eknNE4Y2BkMBm8+2YsiQRYEQTgNWXssGaoFU/Ip9wv76jDiJWw49T5C+/BTgtzQMcjOyNoVOov4bETb4MGDy4ArWjsOof0RV1uCIAinIekjlQdkz+mXm3ZVRpaZlkypMY9JaF0aY2ScecjTsCoWQVcVAKa4pJjFJAhCdIkEWRAE4TSUhkiC7HFWnXa/2voEWWMVCXJ7Z9Dr8MgagnUNW2Ex7K4kLEuYRYIsCG1G1IZY2Gw2I/BPIB7wAzPsdnuRzWYbBiwGgsCndrv94WidUxAEIdZU9b2FHkclp1v6w10VWUVPH5fWAlEJrcmkU+HEgMFTg7YB+0veGhwYMBt0MY9NEIToiGYP8h+AzXa7/QLgbeBP9duXANcAI4GhNpttYBTPKQiCEFMaU6TygPcMPci+mlIAjInpMY9JaF1mrQqnrCfsbtgQC6W3GodkQqkQhRYEoa2IWoJst9ufAv5a/7QbUGOz2SyA1m63H7Db7TKwGhgTrXMKgiDEmt4SqTzgd50+QQ45IwmyNalTzGMSWtexHmS5gVUs1P4a6hSWGEclCEI0NWmIhc1muwn44682z7Tb7d/ZbLYvgL7AJYAFOP43iBPo3pRzCoIgtAaDOdKDfKbxpnJdOQ5ZT7zF3BJhCa3IrFPjkA0NrmKhDTioVooEWRDakiYlyHa7/VXg1VO8drHNZusF/AcYCBz/bWEGGjarQRAE4SxgMZvxymrCZ6hiofRUUCNZsSjF3Of2zqRVUYQehb+iQfvrQw5KtOLOgiC0JVH7TW6z2e6x2WzX1T91ASG73e4A/DabrYfNZpOA3wLfROucgiAIsWbRq3BgRPaefryp1luJQymWme4IzDoVTtmA0t/AFRZDDvyauBhHJQhCNEVzoZB/AG/UD79QAjPrt88CltZv+9Rut2+M4jkFQRBiyqxTc1A2ovSe/uaXIVhNibpzC0UltCZz/RhkddB55p3DIczUEdKKBFkQ2pKoJch2u70UuPQk2zcAw6J1HkEQhJakVEg4JDMJvtMnyJZgNYeN/VsoKqE16dVKXBhQhzwQCoLy1F+lsqcGCUAnEmRBaEvEYDlBEIQzcCmtaAOnSZBDQSw4CekTWy4oodVIkkRAZYo8OcNEPXdteeQYQ0KswxIEIYpEgiwIgnAGXrUVQ/DUY5D9znIUyGBMacGohNYUVDcsQa6rjUzkU5rExZMgtCUiQRYEQTgDvyYeY6gWZPmkrzsqIstMK80iQe4oQur6Ak1nqIXsqS0DQCMSZEFoU0SCLAiCcAYhXTxqgnCKqgXOqmIANGKZ6Q5D1tbXNT5DD7LfWQmA1pIU65AEQYgikSALgiCcgayvHz/qPvlqet7qEgCMCaktFZLQ2nT1CfIZepCDrkiCbLAmxzoiQRCiSCTIgiAIZ6Con2AVdJ18YYiAI7LMtCVRlHnrKBR6a+QvZ+hBDtVVEZYlzPGiB1kQ2hKRIAuCIJyB2hLp/XPXlJ309bCzDJ+sIj5BJEEdhUJXnyCfoQcZTzW1GLEatLEPShCEqBEJsiAIwhlozZHE11178gRZWVdKBXGYdOqWDEtoRWpjfV1j3+lXWFR6q6nFhFGjbIGoBEGIFpEgC4IgnIEhPlKdwuc4+RALjbeMakUCkiS1ZFhCKzIYDPhkNUHP6XuQVb5anJJZfDYEoY0RCbIgCMIZmK1JhGWJoPPkCbLBV4FLI4ZXdCRmnQoHegLu06+wqAnU4FZaWigqQRCiRSTIgiAIZxBv1lODkXBd5Ulft4Yq8WpFgtyRmHUqnLKBkPv0Qyz0QQcelUiQBaGtEQmyIAjCGSQYNFTLZiTPScq8BbxYZBdBg6iB3JGYtGqcGJDPMMTCGHbg11hbKCpBEKJFJMiCIAhnoNcoqZXMKH3VJ7zmq40sEoJZ1EDuSMw6FbWyEbynGWIRCmCU3YS0cS0XmCAIUSESZEEQhAaoU1rQ+k9MhmpLCwBQx6W3dEhCKzJpVTgwIvlOkyB7I8Mvwrr4FopKEIRoUUW7QZvN1gvYCKTa7XavzWYbBiwGgsCndrv94WifUxAEIdY8qjh0gcMnbHdVFpEC6BPEIiEdiUWnpkY2ojpNmbdwXSUKQNKLBFkQ2pqo9iDbbDYLsAjwHbd5CXANMBIYarPZBkbznIIgCC3Br4nDGDoxGfJVHwXAnNy1pUMSWtH/b+/uYiO97jqOf2fG4xm/jMde27vezS7b7G5y1BSxJH3bkrQpKCUotBQpEhdIFaXhIhIvUnpHL6CVkECoFJUL3qqlIBER0QskmgAJJShKSjdQNS0hlJNutpvs+3q9ttfv3rEfLp7ZeBx7kfHM+vGsv58rP2dGe/6S/579+fF5zqmUO5igl87rk5Ak675ndjLd9STXM7iVpUlqgZYF5BBCDvhz4HPAbH2sDyjFGN+IMSbAs8BDrZpTkrZKrbyLEouwML16fPI815MCg8MusdhJessdTCS95JMlWJha9z1zk6MAFHt3bWVpklpgU0ssQgiPAU+8Y/hN4KkY4/dCCDfG+oDGR3yngEObmVOSslTrGYErwNQFKN319nhu6hKjVNlT6cquOG25YiHPbKE3vZifgPLardzm6wfLlOtHlUtqH5sKyDHG48DxxrEQwkngsXp4HgGeAz4OVBreVgH+713VJWkbWqqka4yXxs9QGFoJyMW5y4zndrEv70lpO81CRxWWgblx6P+RNa9fn04DclfVgCy1m5Y9pBdjPHLj6xDCaeCn6w/pLYYQDgOngIcBH9KT1HY6B/YDMD16mupKPqZ7YZSzxd0ZVaUsLZX6YY40IK9jefoKi0mB3j6XWEjtZiu2eXsceBL4d+CVGOPLWzCnJLVUdc9BlpMcs5dPrx6vXWGu5B3CnahWqh8AcpOAzOwVxqnQ39O5dUVJaomWb/MGEGN8V8PXJ4Bjt2IeSdoqewerjFKlNn52ZXD2Kn3JFLO9a/+8rttfvmsgXTR4k4BcmBtjLKlyqKu4tYVJapoHhUjSBuzr7+JCMkju2kpAXrh8EoBk1+GsylKGCj31pRNz6z9aU5y/ykSuj3KxsIVVSWoFA7IkbUBfuYNLuWHKsxfeHrt65vsAdO+9O6uylKHunl7m6bzpHeTy4jjTBY+ZltqRAVmSNiCXyzFd2kNl8fLbB0PMXnid5STH0H4D8k7U352eppfcJCD31MaZLXqKntSODMiStEELPXspJfNv3zFMrp7iPIMc3OMuBTtRf1cnk0kPtZmra1+sLdCVzHK9bG9I7ciALEkblPSlW70xma5DLl07zZncXvq73aVgJ6p2F5mgl6WZde4gz6R7INfKHjMttSMDsiRtUOeuAwAsjL0FwMD8GcbLB7IsSRmqdhWZvNkSi5n0mGm6h7a2KEktYUCWpA3q2X0QgKkLr8PsVXqXp5ivHMy4KmWlvx6Q8/NrA/LSdBqQ8xX3yJbakQFZkjZocPcBTi2PkD/1PLXRH6SDbvG2Y/V3dzJBL4WFyTWvzU5cAqDTgCy1JQOyJG3QvoFu/mX5PqqXTjD37SdZSnIU99+bdVnKSLWryETSS8fSHNQWVr22UA/Ipf6RLEqT1CQDsiRt0L7+Lv6j9EEKy9epvPpX/OPyB9h9x51Zl6WM9HcXmaQnvXjHOuTrU6MsJgUqVXexkNqRAVmSNqiQzzF8z4NMJmko+tuOn+PoAQ+C2KnKxQKT+fr3f/ryqteWpkcZp8JATymDyiQ1y4AsSf8PP/Nj+3lq6aP889J93P3en/IY4R1utlRfYzx1YdV4buYKY0mVgR63AJTaUUfWBUhSOzl2aJBfK36aybnrfOMDbvG208137YEp1gTkwvwYY0mFO90jW2pLLQvIIYQccBaoP9rNt2KMvxlC+ATwW0AN+IsY41daNackbbViIc8v/cS7eGtshiO7K1mXo4wtd+9heSpH/trqgFyeH+Vq7ghdnf6FQWpHrbyDfBj4TozxEzcGQghF4A+B9wMzwDdDCH8fY7zUwnklaUt99mN3Z12Ctoneni4mclV2Nd5BXqpRWRzlavGB7AqT1JRWBuT3AneEEP4VmAOeAErAyRjjOEAI4SXgI8DXWjivJEmZ6O8qMsrA6oA8dZ4CS0yW9mZXmKSmbCoghxAeIw3AjX4V+N0Y49dCCA8Af11/T+MO6lNAdTNzSpK03VS7ipxfHiA0LrGYSI8in+3el1FVkpq1qYAcYzwOHG8cCyF0k64zJsb4UghhH2kgblykVwEmNleqJEnbS393kfNLAyRT3yN3Y7AekBd7fYhTaletXGLx28AY8PshhKPAGeC/gbtCCLuAadLlFV8d6scVAAAFkklEQVRs4ZySJGWm2t3JpWSA3OyV9DS9jhLJxFvkgPKgAVlqV63cB/n3gAdDCC8AXwI+HWO8DnwWeBb4FukuFudaOKckSZkZ7u3kIgPpxdRFABbHTnMxGWB4wBWFUrtq2R3k+oN4P7vO+NeBr7dqHkmStouRaheXkvpx0lMXYeAgtbE3OZsMM9JXzrY4SZvmSXqSJG3S3mqZS8mNO8jnAchfO8PZZIiRqgFZalcGZEmSNmmot8Rorn4H+doFWF6iNHOBc8kQew3IUtsyIEuStEmFfI5S7yCz+V64/BpMXSCf1DiXDDNcKWVdnqRNMiBLktSEkf4uXi3dCyefh/PfBWC8fIBiwf9ipXblT68kSU3YW+3iheTH0zXIz/8Ok/l+Lvbfm3VZkppgQJYkqQkj1TL/MHtPejH6fb7R8SDD1d5si5LUFAOyJElN2Fstc3qxytLwewD4m8X7fUBPanMGZEmSmnBjO7fRd3+K2j2P8u35/ewxIEttzYAsSVITbtwt/p87HuXNn/yjVWOS2lPLTtKTJGknGql2AXBxcp6p+RoAdw65BllqZwZkSZKasLtSopDP8cMrM0zOXadS7uBH9/VlXZakJhiQJUlqQrGQ5/4jQzz9nxcA+NChQTrcA1lqa/4ES5LUpEfvu4NzE3Ocm5jjw3cNZV2OpCYZkCVJatLD7xmhUkr/KHv/EQOy1O5atsQihFAAvgS8DygBn48xPh1COAZ8GagBz8UYv9CqOSVJ2g7KxQK/8P4DvPiDUe4c6sm6HElNauUd5E8BxRjj/cAngSP18T8FfhF4APhgCMHzNyVJt53PPfJunvmND5PL5bIuRVKTWvmQ3sPAf4UQngFywK+HEPqAUozxDYAQwrPAQ8ArLZxXkqTMFfI5ChiOpdvBpgJyCOEx4Il3DI8C88DHgY8AXyW9c3yt4T1TwKHNzClJkiRthU0F5BjjceB441gI4Sng6RhjArwQQribNBxXGt5WASY2WaskSZJ0y7VyDfJLwCMAIYSjwFsxxmvAYgjhcAghR7oM48UWzilJkiS1VCvXIH8F+JMQwgnSNciP18cfB54ECqS7WLzcwjklSZKklmpZQI4xLgCfWWf8BHCsVfNIkiRJt5IHhUiSJEkNWrnEomVee+21KyGEN7OuQ005eCv+UXvjtnBLegPsj9uEnx26mVv22SG9Uy5JkqxrkCRJkrYNl1hIkiRJDQzIkiRJUgMDsiRJktTAgCxJkiQ1MCBLkiRJDQzIkiRJUoNtuQ9yoxBCHvhj4CiwAPxKjPFktlVlI4TwHeBa/fKHwJ8BXwZqpMd4fyGr2rJgb6xmf6xmf6ywN1azN1azP6S1tn1ABn4eKMcYPxRCOAb8AfDJjGvaciGEMpCLMX60Yey7wKPAKeCZEMK9McZXMioxC/ZGnf2xLvsDe+Mm7I06+0NaXzsE5AeAfwKIMZ4IIbwv43qychToDiE8R/p9+zxQijG+ARBCeBZ4CNhJH2L2xgr7Yy37I2VvrGVvrLA/pHW0wxrkPmCy4XophNAOwb7VZoEvAg8DjwNfrY/dMAVUM6grS/bGCvtjLfsjZW+sZW+ssD+kdbTDB8I1oNJwnY8x1rIqJkOvAydjjAnweghhEtjV8HoFmMiksuzYGyvsj7Xsj5S9sZa9scL+kNbRDneQvwk8AlBfK/ZqtuVk5jOk6+QIIewDuoGZEMLhEEKO9Lf/FzOsLwv2xgr7Yy37I2VvrGVvrLA/pHW0wx3kvwM+FkL4NyAH/HLG9WTlOPCXIYSXgIT0Q20ZeBIokD5p/HKG9WXB3lhhf6xlf6TsjbXsjRX2h7SOXJIkWdcgSZIkbRvtsMRCkiRJ2jIGZEmSJKmBAVmSJElqYECWJEmSGhiQJUmSpAYGZEmSJKmBAVmSJElq8L/LJS7SiYP1jAAAAABJRU5ErkJggg==\n",
       "text/plain": [
        "
" ] @@ -789,7 +895,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -826,24 +932,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:3: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n", - "of pandas will change to not sort by default.\n", - "\n", - "To accept the future behavior, pass 'sort=False'.\n", - "\n", - "To retain the current behavior and silence the warning, pass 'sort=True'.\n", - "\n", - " This is separate from the ipykernel package so we can avoid doing imports until\n" - ] - } - ], + "outputs": [], "source": [ "unique_units = pd.concat([\n", " pd.read_csv(p) \n", @@ -853,7 +944,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -869,7 +960,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -879,64 +970,16 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-units.csv',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-units.csv',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/sessions.csv',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-units.csv',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-0.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-6.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-1.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-3.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-4.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/units.csv',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-0.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-1.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-2.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-5.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-4.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-2.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml',\n", - " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-units.csv']" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "copy_tree(output, str(identify_neurons.data_path()))" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml index 46bca4268..37f07a0b3 100644 --- a/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml +++ b/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml @@ -24,7 +24,7 @@ _adj: - *id001 - !!binary | b3j2JJRJwD8= - 1833-020719-3_143: &id043 + 1833-020719-3_143: &id042 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -101,35 +101,28 @@ _adj: - *id001 - !!binary | jLi0tbhovT8= - 1833-260619-3_141: &id327 + 1833-260619-3_141: &id326 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iTq3r8Kftz8= - 1833-260619-4_115: &id374 + 1833-260619-4_115: &id373 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6PPWhSofuj8= - 1833-290519-1_112: &id439 + 1833-290519-1_112: &id438 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FHh5ivsvyT8= - 1833-290519-3_137: &id536 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - JMG6zQWezT8= - 1833-290519-4_117: &id556 + 1833-290519-4_117: &id568 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -200,13 +193,20 @@ _adj: - *id001 - !!binary | XtchKCNinj8= - 1833-260619-4_202: &id390 + 1833-260619-4_202: &id389 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ex2oUyqKrz8= + 1833-290519-3_101: &id518 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iLhOl210xD8= 1833-010719-1_191: 1833-010719-2_254: &id003 depth_delta: 0.0 @@ -215,7 +215,7 @@ _adj: - *id001 - !!binary | 1HkQ3MaLwD8= - 1833-020719-3_116: &id035 + 1833-020719-3_116: &id034 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -236,14 +236,14 @@ _adj: - *id001 - !!binary | G8Hj2Cd+wz8= - 1833-260619-3_209: &id370 + 1833-260619-3_209: &id369 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CW6Bg4y5wz8= - 1833-260619-4_233: &id417 + 1833-260619-4_233: &id416 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -272,7 +272,7 @@ _adj: - *id001 - !!binary | YJ3uNTFQrz8= - 1833-020719-3_141: &id039 + 1833-020719-3_141: &id038 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -300,14 +300,14 @@ _adj: - *id001 - !!binary | r3sLIYXMxj8= - 1833-260619-3_194: &id354 + 1833-260619-3_194: &id353 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | m7TH32eNxT8= - 1833-260619-4_222: &id404 + 1833-260619-4_222: &id403 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -336,13 +336,13 @@ _adj: - *id001 - !!binary | vmTZAbIUwz8= - 1833-020719-3_112: &id033 + 1833-020719-3_150: &id046 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - BdspNNVXyj8= + WjxMBQv2yj8= 1833-020719-4_258: &id055 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] @@ -371,34 +371,41 @@ _adj: - *id001 - !!binary | RvjaZyoZvj8= - 1833-260619-3_182: &id346 + 1833-260619-3_182: &id345 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SfxqXDUHvT8= - 1833-260619-4_235: &id427 + 1833-260619-4_235: &id426 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4mVowtIAyj8= - 1833-290519-1_146: &id470 + 1833-290519-1_146: &id469 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +x0ObsNExz8= - 1833-290519-2_78: &id484 + 1833-290519-2_78: &id483 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1PQR7F58wz8= + 1833-290519-3_125: &id534 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uT4pNjVkyD8= 1833-010719-1_235: 1833-010719-2_4: &id007 depth_delta: 0.0 @@ -491,35 +498,35 @@ _adj: - *id001 - !!binary | MMRPoTOjvT8= - 1833-260619-4_208: &id398 + 1833-260619-4_208: &id397 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w+sllqg+wz8= - 1833-290519-1_120: &id455 + 1833-290519-1_120: &id454 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jsmxR3n4vj8= - 1833-290519-2_82: &id500 + 1833-290519-2_82: &id499 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9mWMKLBjwT8= - 1833-290519-3_107: &id519 + 1833-290519-3_97: &id552 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - JR+lz7TixT8= - 1833-290519-4_88: &id577 + rwYplmBUwD8= + 1833-290519-4_88: &id589 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -584,20 +591,27 @@ _adj: - *id001 - !!binary | V16BS59Zoz8= - 1833-260619-4_202: &id391 + 1833-260619-4_202: &id390 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sRPWGN8XqT8= - 1833-290519-2_78: &id485 + 1833-290519-2_78: &id484 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3QOvFT3LwD8= + 1833-290519-3_101: &id519 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9YG8WxOPwz8= 1833-010719-2_254: 1833-010719-1_191: *id003 1833-020719-2_95: &id031 @@ -607,13 +621,13 @@ _adj: - *id001 - !!binary | w34jwP3wvD8= - 1833-020719-3_116: &id036 + 1833-020719-3_105: &id033 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - A2codC5WwD8= + KOaUB2zfxT8= 1833-120619-2_175: &id100 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] @@ -649,21 +663,28 @@ _adj: - *id001 - !!binary | mi0qDxejwD8= - 1833-260619-3_182: &id347 + 1833-260619-3_182: &id346 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fkocrMrPuz8= - 1833-260619-4_233: &id418 + 1833-260619-4_233: &id417 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mRqY1eO4wD8= - 1833-290519-4_117: &id557 + 1833-290519-3_125: &id535 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 275H0xXoxz8= + 1833-290519-4_117: &id569 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -686,7 +707,7 @@ _adj: - *id001 - !!binary | GfElkxWGsT8= - 1833-020719-3_141: &id040 + 1833-020719-3_141: &id039 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -700,14 +721,14 @@ _adj: - *id001 - !!binary | B7/iWZ7Msj8= - 1833-260619-3_194: &id355 + 1833-260619-3_194: &id354 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q4lRQHPTwz8= - 1833-260619-4_222: &id405 + 1833-260619-4_222: &id404 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -730,7 +751,7 @@ _adj: - *id001 - !!binary | /enDyb/OvD8= - 1833-020719-3_143: &id044 + 1833-020719-3_143: &id043 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -807,34 +828,27 @@ _adj: - *id001 - !!binary | B7lzGNbDuz8= - 1833-260619-3_141: &id328 + 1833-260619-3_141: &id327 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N+fYwzrJtT8= - 1833-260619-4_115: &id375 + 1833-260619-4_115: &id374 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SPUF6QdZuD8= - 1833-290519-1_112: &id440 + 1833-290519-1_112: &id439 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Fw/RTQ7+wz8= - 1833-290519-3_137: &id537 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YH+JKP2gyj8= 1833-010719-2_267: 1833-010719-1_225: *id006 1833-020719-1_121: &id011 @@ -844,13 +858,13 @@ _adj: - *id001 - !!binary | TjnjyPGRwD8= - 1833-020719-3_112: &id034 + 1833-020719-3_116: &id035 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - yulBbonJxz8= + cu2hfSaHwj8= 1833-020719-4_258: &id056 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] @@ -879,21 +893,21 @@ _adj: - *id001 - !!binary | LQGJtwUywD8= - 1833-260619-3_196: &id364 + 1833-260619-3_196: &id363 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0mSCgEKfwT8= - 1833-260619-4_235: &id428 + 1833-260619-4_235: &id427 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | h6ACxDxxyD8= - 1833-290519-1_146: &id471 + 1833-290519-1_146: &id470 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -979,35 +993,35 @@ _adj: - *id001 - !!binary | QdzOo2i9vD8= - 1833-260619-4_208: &id399 + 1833-260619-4_208: &id398 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d2Sg3rw+wz8= - 1833-290519-1_120: &id456 + 1833-290519-1_120: &id455 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | G90pJOk8wD8= - 1833-290519-2_82: &id501 + 1833-290519-2_82: &id500 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zoYugVlJwj8= - 1833-290519-3_107: &id520 + 1833-290519-3_97: &id553 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - JsHv8C8Kxj8= - 1833-290519-4_88: &id578 + VT7473fWwD8= + 1833-290519-4_88: &id590 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1024,7 +1038,7 @@ _adj: - *id001 - !!binary | Q3YmEMXqrj8= - 1833-020719-3_141: &id041 + 1833-020719-3_141: &id040 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1052,14 +1066,14 @@ _adj: - *id001 - !!binary | 5uFNUwNTyj8= - 1833-260619-3_194: &id356 + 1833-260619-3_194: &id355 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | O1ww+Sppxz8= - 1833-260619-4_222: &id406 + 1833-260619-4_222: &id405 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1076,7 +1090,7 @@ _adj: - *id001 - !!binary | +xHAcsxmuj8= - 1833-020719-3_116: &id037 + 1833-020719-3_116: &id036 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1118,28 +1132,35 @@ _adj: - *id001 - !!binary | 2sex5pdpxT8= - 1833-260619-3_182: &id348 + 1833-260619-3_182: &id347 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Om7a5h/yuz8= - 1833-260619-4_233: &id419 + 1833-260619-4_233: &id418 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6yyahSg4xT8= - 1833-290519-1_146: &id472 + 1833-290519-1_146: &id471 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MQX3LGELxD8= - 1833-290519-4_117: &id558 + 1833-290519-3_125: &id536 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VZ1NnrQ/xT8= + 1833-290519-4_117: &id570 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1156,7 +1177,7 @@ _adj: - *id001 - !!binary | 4Xaq2dS/uj8= - 1833-020719-3_143: &id045 + 1833-020719-3_143: &id044 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1240,34 +1261,27 @@ _adj: - *id001 - !!binary | vbPvi/vPuz8= - 1833-260619-3_141: &id329 + 1833-260619-3_141: &id328 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q9tlgaCktT8= - 1833-260619-4_115: &id376 + 1833-260619-4_115: &id375 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Zz8/E6uHtz8= - 1833-290519-1_112: &id441 + 1833-290519-1_112: &id440 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nveT/K6txj8= - 1833-290519-3_137: &id538 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Gl24HqH7yz8= 1833-020719-1_145: 1833-010719-1_161: *id014 1833-010719-2_239: *id015 @@ -1313,27 +1327,34 @@ _adj: - *id001 - !!binary | UXmaUt55xz8= - 1833-260619-3_196: &id365 + 1833-260619-3_196: &id364 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8WbxEHrKrj8= - 1833-260619-4_202: &id392 + 1833-260619-4_202: &id391 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MzDvHngdsD8= - 1833-290519-2_78: &id486 + 1833-290519-2_78: &id485 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /npXvhFZwj8= + 1833-290519-3_101: &id520 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + II8YIlLTxT8= 1833-020719-1_158: 1833-010719-1_235: *id016 1833-010719-2_4: *id017 @@ -1414,35 +1435,35 @@ _adj: - *id001 - !!binary | YyLLVjXmvz8= - 1833-260619-4_235: &id429 + 1833-260619-4_235: &id428 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aMIeT70fwD8= - 1833-290519-1_120: &id457 + 1833-290519-1_120: &id456 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WTNqS0eWuz8= - 1833-290519-2_82: &id502 + 1833-290519-2_82: &id501 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8XyPLxKxwT8= - 1833-290519-3_107: &id521 + 1833-290519-3_97: &id554 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - oLWSsDVexT8= - 1833-290519-4_88: &id579 + 91Ts6eVtvT8= + 1833-290519-4_88: &id591 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1453,7 +1474,7 @@ _adj: 1833-010719-1_127: *id018 1833-010719-2_265: *id019 1833-020719-1_123: *id020 - 1833-020719-3_143: &id046 + 1833-020719-3_143: &id045 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1523,39 +1544,32 @@ _adj: - *id001 - !!binary | +xZwRDpJwT8= - 1833-260619-3_141: &id330 + 1833-260619-3_141: &id329 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +fJ0gtaxuT8= - 1833-260619-4_115: &id377 + 1833-260619-4_115: &id376 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eGXDvugGuj8= - 1833-290519-1_112: &id442 + 1833-290519-1_112: &id441 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lX7/2wVnyT8= - 1833-290519-3_137: &id539 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Myih5hOKzj8= 1833-020719-2_129: 1833-010719-1_223: *id021 1833-010719-2_261: *id022 1833-020719-1_119: *id023 - 1833-020719-3_141: &id042 + 1833-020719-3_141: &id041 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1583,14 +1597,14 @@ _adj: - *id001 - !!binary | wk1DokOhyD8= - 1833-260619-3_194: &id357 + 1833-260619-3_194: &id356 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | U4s5wX1VxD8= - 1833-260619-4_222: &id407 + 1833-260619-4_222: &id406 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1636,27 +1650,34 @@ _adj: - *id001 - !!binary | IKiKQA7Ixz8= - 1833-260619-3_196: &id366 + 1833-260619-3_196: &id365 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SWPZ/iDJsD8= - 1833-260619-4_202: &id393 + 1833-260619-4_202: &id392 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ElT2dFJJsD8= - 1833-290519-2_78: &id487 + 1833-290519-2_78: &id486 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DjFvt19Awz8= + 1833-290519-3_101: &id521 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a2I4629uxT8= 1833-020719-2_8: 1833-010719-1_235: *id027 1833-010719-2_4: *id028 @@ -1724,35 +1745,35 @@ _adj: - *id001 - !!binary | +VLR/op5vz8= - 1833-260619-4_235: &id430 + 1833-260619-4_235: &id429 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ciIOqZDMvz8= - 1833-290519-1_120: &id458 + 1833-290519-1_120: &id457 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YDX/hewjvT8= - 1833-290519-2_82: &id503 + 1833-290519-2_82: &id502 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R5wwsUAtwj8= - 1833-290519-3_107: &id522 + 1833-290519-3_97: &id555 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - oJW69y+7xT8= - 1833-290519-4_88: &id580 + dk5GVMJ0vj8= + 1833-290519-4_88: &id592 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1763,7 +1784,7 @@ _adj: 1833-010719-1_225: *id030 1833-010719-2_254: *id031 1833-020719-1_121: *id032 - 1833-020719-3_116: &id038 + 1833-020719-3_116: &id037 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1826,28 +1847,35 @@ _adj: - *id001 - !!binary | tfjZF/gqxT8= - 1833-260619-3_182: &id349 + 1833-260619-3_182: &id348 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TUIA+CN6uT8= - 1833-260619-4_233: &id420 + 1833-260619-4_233: &id419 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Yf2RtlYSxT8= - 1833-290519-1_146: &id473 + 1833-290519-1_146: &id472 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZlDriSetwj8= - 1833-290519-4_117: &id559 + 1833-290519-3_125: &id537 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ctyh+VYywz8= + 1833-290519-4_117: &id571 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1863,35 +1891,26 @@ _adj: - !!binary | h0bcOLgl0j8= 1833-020719-3_105: - 1833-260619-3_141: &id331 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - gbAXFmzqwT8= - 1833-020719-3_112: - 1833-010719-1_225: *id033 - 1833-010719-2_267: *id034 + 1833-010719-2_254: *id033 1833-260619-1_132: &id253 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - HHTFjdAcxz8= - 1833-260619-3_209: &id371 + TJJiHQV2yD8= + 1833-260619-3_209: &id370 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ntULnTJCxz8= + g2ItWIUfyT8= 1833-020719-3_116: - 1833-010719-1_191: *id035 - 1833-010719-2_254: *id036 - 1833-020719-1_121: *id037 - 1833-020719-2_95: *id038 + 1833-010719-1_191: *id034 + 1833-010719-2_267: *id035 + 1833-020719-1_121: *id036 + 1833-020719-2_95: *id037 1833-020719-4_258: &id059 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] @@ -1948,28 +1967,35 @@ _adj: - *id001 - !!binary | 7hwTaNtGxT8= - 1833-260619-3_182: &id350 + 1833-260619-3_182: &id349 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EWKjN+j3tz8= - 1833-260619-4_233: &id421 + 1833-260619-4_233: &id420 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q+Np/DEoxT8= - 1833-290519-1_146: &id474 + 1833-290519-1_146: &id473 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dL4y2zhawj8= - 1833-290519-4_117: &id560 + 1833-290519-3_125: &id538 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X8iccw8qwz8= + 1833-290519-4_117: &id572 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1977,10 +2003,10 @@ _adj: - !!binary | jppIGbp3xD8= 1833-020719-3_141: - 1833-010719-1_223: *id039 - 1833-010719-2_261: *id040 - 1833-020719-1_119: *id041 - 1833-020719-2_129: *id042 + 1833-010719-1_223: *id038 + 1833-010719-2_261: *id039 + 1833-020719-1_119: *id040 + 1833-020719-2_129: *id041 1833-020719-4_306: &id069 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] @@ -1995,14 +2021,14 @@ _adj: - *id001 - !!binary | Jnj3sijUyT8= - 1833-260619-3_194: &id358 + 1833-260619-3_194: &id357 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dSKVo76NxD8= - 1833-260619-4_222: &id408 + 1833-260619-4_222: &id407 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2010,10 +2036,10 @@ _adj: - !!binary | ZpVmP3dfxD8= 1833-020719-3_143: - 1833-010719-1_127: *id043 - 1833-010719-2_265: *id044 - 1833-020719-1_123: *id045 - 1833-020719-2_105: *id046 + 1833-010719-1_127: *id042 + 1833-010719-2_265: *id043 + 1833-020719-1_123: *id044 + 1833-020719-2_105: *id045 1833-020719-4_302: &id064 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] @@ -2077,35 +2103,29 @@ _adj: - *id001 - !!binary | aiHlJ++avD8= - 1833-260619-3_140: &id326 + 1833-260619-3_141: &id330 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IbMj3nVXxT8= - 1833-260619-4_115: &id378 + g+NPDaVDtT8= + 1833-260619-4_115: &id377 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2CW3Nb1Wtj8= - 1833-290519-1_112: &id443 + 1833-290519-1_112: &id442 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BKglywMwxD8= - 1833-290519-3_137: &id540 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Cj5hYk4Gyj8= 1833-020719-3_150: + 1833-010719-1_225: *id046 1833-260619-3_0: &id314 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] @@ -2113,7 +2133,7 @@ _adj: - *id001 - !!binary | rbLP5fWpxT8= - 1833-260619-4_235: &id431 + 1833-260619-4_235: &id430 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2153,27 +2173,34 @@ _adj: - *id001 - !!binary | iiMIMjCNxz8= - 1833-260619-3_196: &id367 + 1833-260619-3_196: &id366 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | B3jM3q72rj8= - 1833-260619-4_202: &id394 + 1833-260619-4_202: &id393 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z5mrvF8Hrz8= - 1833-290519-2_78: &id488 + 1833-290519-2_78: &id487 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FgU4dmbVwj8= + 1833-290519-3_101: &id522 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SdBNmsFrxT8= 1833-020719-3_162: 1833-010719-1_235: *id051 1833-010719-2_4: *id052 @@ -2228,42 +2255,42 @@ _adj: - *id001 - !!binary | YgPVzGT9xD8= - 1833-260619-3_180: &id342 + 1833-260619-3_180: &id341 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4Qsxw6+xwz8= - 1833-260619-4_208: &id400 + 1833-260619-4_208: &id399 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9KpYwNaexD8= - 1833-290519-1_120: &id459 + 1833-290519-1_120: &id458 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lB5zb0NMvT8= - 1833-290519-2_82: &id504 + 1833-290519-2_82: &id503 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hYu7I7Tdwj8= - 1833-290519-3_107: &id523 + 1833-290519-3_97: &id556 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - LOZ9EZENxj8= - 1833-290519-4_88: &id581 + CZRKxseCvj8= + 1833-290519-4_88: &id593 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2311,28 +2338,35 @@ _adj: - *id001 - !!binary | FnaZhcF+xj8= - 1833-260619-3_182: &id351 + 1833-260619-3_182: &id350 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q9+0vtm2vD8= - 1833-260619-4_233: &id422 + 1833-260619-4_233: &id421 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kgOiYDJUxj8= - 1833-290519-1_146: &id475 + 1833-290519-1_146: &id474 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n7N3isl9wT8= - 1833-290519-4_117: &id561 + 1833-290519-3_125: &id539 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Gr5y4gCwz8= + 1833-290519-4_117: &id573 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2408,34 +2442,27 @@ _adj: - *id001 - !!binary | GBDjUvJfvT8= - 1833-260619-3_141: &id332 + 1833-260619-3_141: &id331 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | i3AdUhwdtj8= - 1833-260619-4_115: &id379 + 1833-260619-4_115: &id378 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YwOgqJc0tz8= - 1833-290519-1_112: &id444 + 1833-290519-1_112: &id443 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lWbKtwsCxj8= - 1833-290519-3_137: &id541 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 932C/Pc5yz8= 1833-020719-4_306: 1833-010719-1_223: *id065 1833-010719-2_261: *id066 @@ -2456,14 +2483,14 @@ _adj: - *id001 - !!binary | RRQW6dNoyT8= - 1833-260619-3_194: &id359 + 1833-260619-3_194: &id358 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j76/uOejxD8= - 1833-260619-4_222: &id409 + 1833-260619-4_222: &id408 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2497,27 +2524,34 @@ _adj: - *id001 - !!binary | JySFeLBfxz8= - 1833-260619-3_196: &id368 + 1833-260619-3_196: &id367 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6fsv+lZ1sD8= - 1833-260619-4_202: &id395 + 1833-260619-4_202: &id394 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Tb7Co1HnrD8= - 1833-290519-2_78: &id489 + 1833-290519-2_78: &id488 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XayO/SH6wz8= + 1833-290519-3_101: &id523 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kczB7qCXxT8= 1833-020719-4_320: 1833-010719-1_235: *id075 1833-010719-2_4: *id076 @@ -2580,35 +2614,35 @@ _adj: - *id001 - !!binary | kyavD6Xyvz8= - 1833-260619-4_235: &id432 + 1833-260619-4_235: &id431 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lzhxZbgZwD8= - 1833-290519-1_120: &id460 + 1833-290519-1_120: &id459 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4dbIRK1mvj8= - 1833-290519-2_82: &id505 + 1833-290519-2_82: &id504 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | swOOWkacwz8= - 1833-290519-3_107: &id524 + 1833-290519-3_97: &id557 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /pUiFcJmxj8= - 1833-290519-4_88: &id582 + GBJP8BoDvz8= + 1833-290519-4_88: &id594 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2664,42 +2698,42 @@ _adj: - *id001 - !!binary | c5YKCx4exT8= - 1833-260619-3_141: &id333 + 1833-260619-3_141: &id332 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gGK1TpfFvz8= - 1833-260619-4_115: &id380 + 1833-260619-4_115: &id379 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sZoA5nmPuj8= - 1833-290519-1_120: &id461 + 1833-290519-1_120: &id460 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JjnuELksuz8= - 1833-290519-2_82: &id506 + 1833-290519-2_82: &id505 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ici5gjCuyz8= - 1833-290519-3_107: &id525 + 1833-290519-3_97: &id558 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 9yrluvwOxT8= - 1833-290519-4_88: &id583 + POyj57QhvD8= + 1833-290519-4_88: &id595 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2776,42 +2810,42 @@ _adj: - *id001 - !!binary | T662u2eKuz8= - 1833-260619-3_194: &id360 + 1833-260619-3_194: &id359 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PLKR+eV0vD8= - 1833-260619-4_222: &id410 + 1833-260619-4_222: &id409 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WbGJSwYvvD8= - 1833-290519-1_112: &id445 + 1833-290519-1_112: &id444 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rISauHYK0D8= - 1833-290519-2_78: &id490 + 1833-290519-2_78: &id489 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mEWQz8zAyz8= - 1833-290519-3_137: &id542 + 1833-290519-3_101: &id524 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - nYpxK6L/0z8= - 1833-290519-4_117: &id562 + nT60sgYg0T8= + 1833-290519-4_117: &id574 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2882,42 +2916,42 @@ _adj: - *id001 - !!binary | 2IJhffcuwj8= - 1833-260619-3_141: &id334 + 1833-260619-3_141: &id333 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2oAHG2DNvT8= - 1833-260619-4_115: &id381 + 1833-260619-4_115: &id380 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jhzgjDifwD8= - 1833-290519-1_112: &id446 + 1833-290519-1_112: &id445 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OEk/WLXexz8= - 1833-290519-2_82: &id507 + 1833-290519-2_82: &id506 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83400, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kyvhnuIBxz8= - 1833-290519-3_137: &id543 + 1833-290519-3_97: &id559 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - yuwLQ+84yz8= - 1833-290519-4_117: &id563 + t6humClDyT8= + 1833-290519-4_117: &id575 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2982,42 +3016,42 @@ _adj: - *id001 - !!binary | M6BY/aCvwj8= - 1833-260619-3_194: &id361 + 1833-260619-3_194: &id360 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cHfBF2xuwj8= - 1833-260619-4_222: &id411 + 1833-260619-4_222: &id410 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZvZMf4NEwj8= - 1833-290519-1_120: &id462 + 1833-290519-1_120: &id461 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mrMcuTc6yD8= - 1833-290519-2_78: &id491 + 1833-290519-2_78: &id490 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UWpcgrZuyD8= - 1833-290519-3_107: &id526 + 1833-290519-3_125: &id540 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - f1OibzpMyz8= - 1833-290519-4_88: &id584 + 3vqXi54iyT8= + 1833-290519-4_88: &id596 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3067,42 +3101,42 @@ _adj: - *id001 - !!binary | hXNEUIRSwj8= - 1833-260619-3_141: &id335 + 1833-260619-3_141: &id334 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XHKLZ3kdvD8= - 1833-260619-4_115: &id382 + 1833-260619-4_115: &id381 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mHaYxbXruT8= - 1833-290519-1_112: &id447 + 1833-290519-1_112: &id446 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Lcy5NgNiwj8= - 1833-290519-2_82: &id508 + 1833-290519-2_82: &id507 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | umr0hij+zD8= - 1833-290519-3_137: &id544 + 1833-290519-3_97: &id560 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 9lBzNMjXzD8= - 1833-290519-4_117: &id564 + Y+y/ufr2xz8= + 1833-290519-4_117: &id576 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3161,42 +3195,42 @@ _adj: - *id001 - !!binary | T4uLqIH9wT8= - 1833-260619-3_141: &id336 + 1833-260619-3_141: &id335 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q2Az9ahwvj8= - 1833-260619-4_115: &id383 + 1833-260619-4_115: &id382 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gyX5vIWawD8= - 1833-290519-1_112: &id448 + 1833-290519-1_112: &id447 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ADgG/mHExj8= - 1833-290519-2_82: &id509 + 1833-290519-2_82: &id508 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rOHu8hPXxT8= - 1833-290519-3_137: &id545 + 1833-290519-3_125: &id541 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - f+siKsvJyT8= - 1833-290519-4_117: &id565 + u4Ncw8P0xz8= + 1833-290519-4_117: &id577 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3249,42 +3283,42 @@ _adj: - *id001 - !!binary | Xt7tmpJIuj8= - 1833-260619-3_141: &id337 + 1833-260619-3_141: &id336 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g897u4iQvD8= - 1833-260619-4_115: &id384 + 1833-260619-4_115: &id383 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +UNu8D4lvj8= - 1833-290519-1_146: &id476 + 1833-290519-1_146: &id475 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2gj0jqWqxD8= - 1833-290519-2_82: &id510 + 1833-290519-2_82: &id509 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t+ZVl/jfxz8= - 1833-290519-3_137: &id546 + 1833-290519-3_125: &id542 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jilrUFY70j8= - 1833-290519-4_117: &id566 + I0vKBnRpxT8= + 1833-290519-4_117: &id578 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3331,42 +3365,42 @@ _adj: - *id001 - !!binary | jEoWmwKivz8= - 1833-260619-3_141: &id338 + 1833-260619-3_141: &id337 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ibmqlnu9vD8= - 1833-260619-4_115: &id385 + 1833-260619-4_115: &id384 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k4wzg9ztvT8= - 1833-290519-1_146: &id477 + 1833-290519-1_146: &id476 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wLBGXizryT8= - 1833-290519-2_82: &id511 + 1833-290519-2_82: &id510 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Myq9boZazj8= - 1833-290519-3_137: &id547 + 1833-290519-3_125: &id543 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 3E31nyu+zz8= - 1833-290519-4_117: &id567 + KVPXKtNXyj8= + 1833-290519-4_117: &id579 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3417,35 +3451,35 @@ _adj: - *id001 - !!binary | Hfie2U8guj8= - 1833-260619-4_235: &id433 + 1833-260619-4_235: &id432 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ln8WcB1Kuj8= - 1833-290519-1_120: &id463 + 1833-290519-1_120: &id462 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 91LDYsi5xj8= - 1833-290519-2_78: &id492 + 1833-290519-2_78: &id491 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2oBzg18Rxz8= - 1833-290519-3_107: &id527 + 1833-290519-3_101: &id525 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IjnH59GByj8= - 1833-290519-4_88: &id585 + kd+isSw3uD8= + 1833-290519-4_88: &id597 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3490,35 +3524,35 @@ _adj: - *id001 - !!binary | oyMbLW/iuT8= - 1833-260619-4_235: &id434 + 1833-260619-4_235: &id433 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zkUUjXL6uT8= - 1833-290519-1_120: &id464 + 1833-290519-1_120: &id463 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c7Lj2eOJxj8= - 1833-290519-2_82: &id512 + 1833-290519-2_82: &id511 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FUKepLOVwT8= - 1833-290519-3_107: &id528 + 1833-290519-3_101: &id526 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 2kNofxT3yT8= - 1833-290519-4_88: &id586 + fB6A29nluD8= + 1833-290519-4_88: &id598 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3559,27 +3593,34 @@ _adj: - *id001 - !!binary | WuMTRcd1vz8= - 1833-260619-3_141: &id339 + 1833-260619-3_141: &id338 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mIHLxNmxvT8= - 1833-260619-4_222: &id412 + 1833-260619-4_222: &id411 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BuYLn5eJwz8= - 1833-290519-1_112: &id449 + 1833-290519-1_112: &id448 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | W3IeK2/h0T8= + 1833-290519-3_97: &id561 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +xL5zhfR0j8= 1833-200619-3_93: 1833-010719-1_225: *id173 1833-010719-2_267: *id174 @@ -3608,42 +3649,42 @@ _adj: - *id001 - !!binary | /WJdgmjUwT8= - 1833-260619-3_180: &id343 + 1833-260619-3_180: &id342 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +UBIuNo6xT8= - 1833-260619-4_115: &id386 + 1833-260619-4_115: &id385 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Muv5hNn8wD8= - 1833-290519-1_146: &id478 + 1833-290519-1_146: &id477 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OdVQuZ7buj8= - 1833-290519-2_78: &id493 + 1833-290519-2_78: &id492 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N+rlUoGOxz8= - 1833-290519-3_137: &id548 + 1833-290519-3_125: &id544 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IE2qWk/9zD8= - 1833-290519-4_117: &id568 + 3OT7xyyXvD8= + 1833-290519-4_117: &id580 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3680,35 +3721,35 @@ _adj: - *id001 - !!binary | 3JqA3fF+uT8= - 1833-260619-4_235: &id435 + 1833-260619-4_235: &id434 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lERxHICMuT8= - 1833-290519-1_120: &id465 + 1833-290519-1_120: &id464 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 46uZAMivxT8= - 1833-290519-2_82: &id513 + 1833-290519-2_82: &id512 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2/DCACSgwT8= - 1833-290519-3_107: &id529 + 1833-290519-3_101: &id527 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - KLef8uhjyT8= - 1833-290519-4_88: &id587 + gSLIgUmeuT8= + 1833-290519-4_88: &id599 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3739,34 +3780,34 @@ _adj: - *id001 - !!binary | ajBRUmB0vz8= - 1833-260619-3_141: &id340 + 1833-260619-3_141: &id339 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vLyw3j9NvD8= - 1833-260619-4_115: &id387 + 1833-260619-4_115: &id386 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 90g1duhvuz8= - 1833-290519-1_112: &id450 + 1833-290519-1_112: &id449 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rcwD90SyxD8= - 1833-290519-3_137: &id549 + 1833-290519-3_97: &id562 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - PqCqFqtnyD8= + tcKuMd0gxj8= 1833-200619-4_90: 1833-010719-1_223: *id196 1833-010719-2_254: *id197 @@ -3785,14 +3826,14 @@ _adj: - *id001 - !!binary | LvyyVrtdxj8= - 1833-260619-3_194: &id362 + 1833-260619-3_194: &id361 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UQt7KUDYwz8= - 1833-260619-4_222: &id413 + 1833-260619-4_222: &id412 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3821,28 +3862,35 @@ _adj: - *id001 - !!binary | ritUj1M3uz8= - 1833-260619-3_180: &id344 + 1833-260619-3_180: &id343 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GHRWugvywD8= - 1833-260619-4_208: &id401 + 1833-260619-4_208: &id400 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RQn/mUOdwT8= - 1833-290519-1_146: &id479 + 1833-290519-1_146: &id478 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gdDc7oFXuj8= - 1833-290519-4_117: &id569 + 1833-290519-3_125: &id545 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y23430AUuz8= + 1833-290519-4_117: &id581 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3872,21 +3920,21 @@ _adj: - *id001 - !!binary | MEcPY8rIwz8= - 1833-260619-3_182: &id352 + 1833-260619-3_182: &id351 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gyVmr7H8tD8= - 1833-260619-4_233: &id423 + 1833-260619-4_233: &id422 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pw9JnkG2wz8= - 1833-290519-2_78: &id494 + 1833-290519-2_78: &id493 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3909,14 +3957,14 @@ _adj: - *id001 - !!binary | G+JajfFJwT8= - 1833-260619-3_182: &id353 + 1833-260619-3_182: &id352 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1paDe5SCpD8= - 1833-260619-4_222: &id414 + 1833-260619-4_222: &id413 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3931,21 +3979,21 @@ _adj: 1833-020719-3_156: *id233 1833-020719-4_308: *id234 1833-200619-4_92: *id235 - 1833-260619-3_196: &id369 + 1833-260619-3_196: &id368 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fSwmEmQqnz8= - 1833-260619-4_202: &id396 + 1833-260619-4_202: &id395 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jig5659/pj8= - 1833-290519-2_78: &id495 + 1833-290519-2_78: &id494 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3973,42 +4021,42 @@ _adj: - *id001 - !!binary | ec9fVlJrwj8= - 1833-260619-3_141: &id341 + 1833-260619-3_141: &id340 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | W3mn4FMQoz8= - 1833-260619-4_115: &id388 + 1833-260619-4_115: &id387 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uG3drCZMoj8= - 1833-290519-1_112: &id451 + 1833-290519-1_112: &id450 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6l/T1s6OvT8= - 1833-290519-2_82: &id514 + 1833-290519-2_82: &id513 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HUKgk8z8vj8= - 1833-290519-3_137: &id550 + 1833-290519-3_97: &id563 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 7TD8BRwIxD8= - 1833-290519-4_117: &id570 + p0g3KllIwD8= + 1833-290519-4_117: &id582 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4020,7 +4068,7 @@ _adj: 1833-010719-2_254: *id250 1833-020719-1_119: *id251 1833-020719-2_129: *id252 - 1833-020719-3_112: *id253 + 1833-020719-3_105: *id253 1833-020719-4_306: *id254 1833-060619-2_90: *id255 1833-120619-2_175: *id256 @@ -4033,27 +4081,34 @@ _adj: - *id001 - !!binary | MabK4Nw6kD8= - 1833-260619-3_209: &id372 + 1833-260619-3_209: &id371 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eW30A8gkkT8= - 1833-260619-4_233: &id424 + 1833-260619-4_233: &id423 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4pYBZDZXlT8= - 1833-290519-1_146: &id480 + 1833-290519-1_146: &id479 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | up0H2Jx9yD8= + 1833-290519-3_125: &id546 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GHKNmYpZyD8= 1833-260619-1_2: 1833-010719-1_235: *id259 1833-010719-2_4: *id260 @@ -4078,28 +4133,28 @@ _adj: - *id001 - !!binary | VXHvhMbGhz8= - 1833-260619-4_235: &id436 + 1833-260619-4_235: &id435 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XKXGfXS7jz8= - 1833-290519-1_120: &id466 + 1833-290519-1_120: &id465 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | is/F0ICowj8= - 1833-290519-3_107: &id530 + 1833-290519-3_101: &id528 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - YAmFEi4Qxj8= - 1833-290519-4_88: &id588 + vcCMXn82wD8= + 1833-290519-4_88: &id600 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4116,28 +4171,35 @@ _adj: 1833-200619-3_93: *id274 1833-200619-4_92: *id275 1833-260619-1_130: *id276 - 1833-260619-3_180: &id345 + 1833-260619-3_180: &id344 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zxcTRkZrpj8= - 1833-260619-4_208: &id402 + 1833-260619-4_208: &id401 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PqSBLLVRpT8= - 1833-290519-1_146: &id481 + 1833-290519-1_146: &id480 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w2YqCxtbvz8= - 1833-290519-4_117: &id571 + 1833-290519-3_125: &id547 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PSIOiGb6vD8= + 1833-290519-4_117: &id583 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4160,41 +4222,41 @@ _adj: 1833-200619-3_91: *id289 1833-200619-4_78: *id290 1833-260619-1_118: *id291 - 1833-260619-3_194: &id363 + 1833-260619-3_194: &id362 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bgQ/Ow67pj8= - 1833-260619-4_222: &id415 + 1833-260619-4_222: &id414 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4OMJGLForT8= - 1833-290519-1_112: &id452 + 1833-290519-1_112: &id451 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mSXBGVnpwT8= - 1833-290519-2_82: &id515 + 1833-290519-2_82: &id514 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rxBAAZlDwD8= - 1833-290519-3_137: &id551 + 1833-290519-3_97: &id564 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 8casWPzjxz8= + 5kiCFj+vwj8= 1833-260619-2_174: 1833-010719-1_191: *id292 1833-010719-2_254: *id293 @@ -4205,14 +4267,14 @@ _adj: 1833-120619-2_175: *id298 1833-200619-4_96: *id299 1833-260619-1_132: *id300 - 1833-260619-3_209: &id373 + 1833-260619-3_209: &id372 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | F6DOEDr6lT8= - 1833-260619-4_233: &id425 + 1833-260619-4_233: &id424 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4238,35 +4300,35 @@ _adj: - *id001 - !!binary | WEbDyEHqgj8= - 1833-260619-4_235: &id437 + 1833-260619-4_235: &id436 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5TkZELQliT8= - 1833-290519-1_120: &id467 + 1833-290519-1_120: &id466 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Yj0k6NHswj8= - 1833-290519-2_78: &id496 + 1833-290519-2_78: &id495 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sLRnDNIcxD8= - 1833-290519-3_107: &id531 + 1833-290519-3_101: &id529 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Sa8nwIw+xj8= - 1833-290519-4_88: &id589 + 2pCN99/6vz8= + 1833-290519-4_88: &id601 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4277,7 +4339,7 @@ _adj: 1833-010719-1_161: *id312 1833-010719-2_239: *id313 1833-020719-3_150: *id314 - 1833-260619-4_202: &id397 + 1833-260619-4_202: &id396 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4296,74 +4358,73 @@ _adj: 1833-200619-4_1: *id323 1833-260619-1_2: *id324 1833-260619-2_2: *id325 - 1833-260619-4_235: &id438 + 1833-260619-4_235: &id437 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ajLOWd9agj8= - 1833-290519-1_120: &id468 + 1833-290519-1_120: &id467 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LK7D3kQ9wz8= - 1833-290519-3_107: &id532 + 1833-290519-3_101: &id530 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6Ltesw6Oxj8= - 1833-260619-3_140: - 1833-020719-3_143: *id326 + 6FbmYWRLwD8= + 1833-260619-3_140: {} 1833-260619-3_141: - 1833-010719-1_127: *id327 - 1833-010719-2_265: *id328 - 1833-020719-1_123: *id329 - 1833-020719-2_105: *id330 - 1833-020719-3_105: *id331 - 1833-020719-4_302: *id332 - 1833-060619-2_76: *id333 - 1833-120619-1_139: *id334 - 1833-120619-2_89: *id335 - 1833-120619-3_153: *id336 - 1833-200619-1_147: *id337 - 1833-200619-2_268: *id338 - 1833-200619-3_91: *id339 - 1833-200619-4_78: *id340 - 1833-260619-1_130: *id341 - 1833-260619-4_115: &id389 + 1833-010719-1_127: *id326 + 1833-010719-2_265: *id327 + 1833-020719-1_123: *id328 + 1833-020719-2_105: *id329 + 1833-020719-3_143: *id330 + 1833-020719-4_302: *id331 + 1833-060619-2_76: *id332 + 1833-120619-1_139: *id333 + 1833-120619-2_89: *id334 + 1833-120619-3_153: *id335 + 1833-200619-1_147: *id336 + 1833-200619-2_268: *id337 + 1833-200619-3_91: *id338 + 1833-200619-4_78: *id339 + 1833-260619-1_130: *id340 + 1833-260619-4_115: &id388 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WWHIpGpsnj8= - 1833-290519-1_112: &id453 + 1833-290519-1_112: &id452 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dqSm6Q9kvT8= - 1833-290519-2_82: &id516 + 1833-290519-2_82: &id515 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XIht7U0Gvz8= - 1833-290519-3_137: &id552 + 1833-290519-3_97: &id565 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qGscbBY4xD8= - 1833-290519-4_88: &id590 + QRK/R7JSwD8= + 1833-290519-4_88: &id602 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4371,25 +4432,32 @@ _adj: - !!binary | FcaMYN8QwT8= 1833-260619-3_180: - 1833-020719-3_162: *id342 - 1833-200619-3_93: *id343 - 1833-200619-4_92: *id344 - 1833-260619-2_152: *id345 - 1833-260619-4_208: &id403 + 1833-020719-3_162: *id341 + 1833-200619-3_93: *id342 + 1833-200619-4_92: *id343 + 1833-260619-2_152: *id344 + 1833-260619-4_208: &id402 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8Kjj5oLTlz8= - 1833-290519-1_146: &id482 + 1833-290519-1_146: &id481 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1ByeFjqRwT8= - 1833-290519-4_117: &id572 + 1833-290519-3_125: &id548 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zcbVKQhlwD8= + 1833-290519-4_117: &id584 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4397,26 +4465,26 @@ _adj: - !!binary | cR7BqwMsvz8= 1833-260619-3_182: - 1833-010719-1_225: *id346 - 1833-010719-2_254: *id347 - 1833-020719-1_121: *id348 - 1833-020719-2_95: *id349 - 1833-020719-3_116: *id350 - 1833-020719-4_258: *id351 - 1833-200619-4_96: *id352 - 1833-260619-1_118: *id353 + 1833-010719-1_225: *id345 + 1833-010719-2_254: *id346 + 1833-020719-1_121: *id347 + 1833-020719-2_95: *id348 + 1833-020719-3_116: *id349 + 1833-020719-4_258: *id350 + 1833-200619-4_96: *id351 + 1833-260619-1_118: *id352 1833-260619-3_194: - 1833-010719-1_223: *id354 - 1833-010719-2_261: *id355 - 1833-020719-1_119: *id356 - 1833-020719-2_129: *id357 - 1833-020719-3_141: *id358 - 1833-020719-4_306: *id359 - 1833-060619-2_90: *id360 - 1833-120619-2_175: *id361 - 1833-200619-4_90: *id362 - 1833-260619-2_164: *id363 - 1833-260619-4_222: &id416 + 1833-010719-1_223: *id353 + 1833-010719-2_261: *id354 + 1833-020719-1_119: *id355 + 1833-020719-2_129: *id356 + 1833-020719-3_141: *id357 + 1833-020719-4_306: *id358 + 1833-060619-2_90: *id359 + 1833-120619-2_175: *id360 + 1833-200619-4_90: *id361 + 1833-260619-2_164: *id362 + 1833-260619-4_222: &id415 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4424,13 +4492,13 @@ _adj: - !!binary | Rsc8ZHujlz8= 1833-260619-3_196: - 1833-010719-2_267: *id364 - 1833-020719-1_145: *id365 - 1833-020719-2_142: *id366 - 1833-020719-3_156: *id367 - 1833-020719-4_308: *id368 - 1833-260619-1_120: *id369 - 1833-290519-2_78: &id497 + 1833-010719-2_267: *id363 + 1833-020719-1_145: *id364 + 1833-020719-2_142: *id365 + 1833-020719-3_156: *id366 + 1833-020719-4_308: *id367 + 1833-260619-1_120: *id368 + 1833-290519-2_78: &id496 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4438,11 +4506,11 @@ _adj: - !!binary | F1DFdFi3wD8= 1833-260619-3_209: - 1833-010719-1_191: *id370 - 1833-020719-3_112: *id371 - 1833-260619-1_132: *id372 - 1833-260619-2_174: *id373 - 1833-260619-4_233: &id426 + 1833-010719-1_191: *id369 + 1833-020719-3_105: *id370 + 1833-260619-1_132: *id371 + 1833-260619-2_174: *id372 + 1833-260619-4_233: &id425 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4450,44 +4518,44 @@ _adj: - !!binary | RNAlbEr2jz8= 1833-260619-4_115: - 1833-010719-1_127: *id374 - 1833-010719-2_265: *id375 - 1833-020719-1_123: *id376 - 1833-020719-2_105: *id377 - 1833-020719-3_143: *id378 - 1833-020719-4_302: *id379 - 1833-060619-2_76: *id380 - 1833-120619-1_139: *id381 - 1833-120619-2_89: *id382 - 1833-120619-3_153: *id383 - 1833-200619-1_147: *id384 - 1833-200619-2_268: *id385 - 1833-200619-3_93: *id386 - 1833-200619-4_78: *id387 - 1833-260619-1_130: *id388 - 1833-260619-3_141: *id389 - 1833-290519-1_112: &id454 + 1833-010719-1_127: *id373 + 1833-010719-2_265: *id374 + 1833-020719-1_123: *id375 + 1833-020719-2_105: *id376 + 1833-020719-3_143: *id377 + 1833-020719-4_302: *id378 + 1833-060619-2_76: *id379 + 1833-120619-1_139: *id380 + 1833-120619-2_89: *id381 + 1833-120619-3_153: *id382 + 1833-200619-1_147: *id383 + 1833-200619-2_268: *id384 + 1833-200619-3_93: *id385 + 1833-200619-4_78: *id386 + 1833-260619-1_130: *id387 + 1833-260619-3_141: *id388 + 1833-290519-1_112: &id453 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | m2Yy0sZGuT8= - 1833-290519-2_82: &id517 + 1833-290519-2_82: &id516 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | M+dqk23qvD8= - 1833-290519-3_137: &id553 + 1833-290519-3_97: &id566 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - lAdSmu9nwj8= - 1833-290519-4_88: &id591 + Lk0/SpaBvD8= + 1833-290519-4_88: &id603 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4495,15 +4563,15 @@ _adj: - !!binary | ZYfWCdYsvj8= 1833-260619-4_202: - 1833-010719-1_161: *id390 - 1833-010719-2_239: *id391 - 1833-020719-1_145: *id392 - 1833-020719-2_142: *id393 - 1833-020719-3_156: *id394 - 1833-020719-4_308: *id395 - 1833-260619-1_120: *id396 - 1833-260619-3_0: *id397 - 1833-290519-2_78: &id498 + 1833-010719-1_161: *id389 + 1833-010719-2_239: *id390 + 1833-020719-1_145: *id391 + 1833-020719-2_142: *id392 + 1833-020719-3_156: *id393 + 1833-020719-4_308: *id394 + 1833-260619-1_120: *id395 + 1833-260619-3_0: *id396 + 1833-290519-2_78: &id497 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4511,20 +4579,27 @@ _adj: - !!binary | xZoAGiniwT8= 1833-260619-4_208: - 1833-010719-1_235: *id398 - 1833-010719-2_4: *id399 - 1833-020719-3_162: *id400 - 1833-200619-4_92: *id401 - 1833-260619-2_152: *id402 - 1833-260619-3_180: *id403 - 1833-290519-1_146: &id483 + 1833-010719-1_235: *id397 + 1833-010719-2_4: *id398 + 1833-020719-3_162: *id399 + 1833-200619-4_92: *id400 + 1833-260619-2_152: *id401 + 1833-260619-3_180: *id402 + 1833-290519-1_146: &id482 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iXhNih+bwT8= - 1833-290519-4_117: &id573 + 1833-290519-3_125: &id549 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qbzCywlxwD8= + 1833-290519-4_117: &id585 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4532,105 +4607,112 @@ _adj: - !!binary | xBEwNvqQvz8= 1833-260619-4_222: - 1833-010719-1_223: *id404 - 1833-010719-2_261: *id405 - 1833-020719-1_119: *id406 - 1833-020719-2_129: *id407 - 1833-020719-3_141: *id408 - 1833-020719-4_306: *id409 - 1833-060619-2_90: *id410 - 1833-120619-2_175: *id411 - 1833-200619-3_91: *id412 - 1833-200619-4_90: *id413 - 1833-260619-1_118: *id414 - 1833-260619-2_164: *id415 - 1833-260619-3_194: *id416 + 1833-010719-1_223: *id403 + 1833-010719-2_261: *id404 + 1833-020719-1_119: *id405 + 1833-020719-2_129: *id406 + 1833-020719-3_141: *id407 + 1833-020719-4_306: *id408 + 1833-060619-2_90: *id409 + 1833-120619-2_175: *id410 + 1833-200619-3_91: *id411 + 1833-200619-4_90: *id412 + 1833-260619-1_118: *id413 + 1833-260619-2_164: *id414 + 1833-260619-3_194: *id415 1833-260619-4_233: - 1833-010719-1_191: *id417 - 1833-010719-2_254: *id418 - 1833-020719-1_121: *id419 - 1833-020719-2_95: *id420 - 1833-020719-3_116: *id421 - 1833-020719-4_258: *id422 - 1833-200619-4_96: *id423 - 1833-260619-1_132: *id424 - 1833-260619-2_174: *id425 - 1833-260619-3_209: *id426 + 1833-010719-1_191: *id416 + 1833-010719-2_254: *id417 + 1833-020719-1_121: *id418 + 1833-020719-2_95: *id419 + 1833-020719-3_116: *id420 + 1833-020719-4_258: *id421 + 1833-200619-4_96: *id422 + 1833-260619-1_132: *id423 + 1833-260619-2_174: *id424 + 1833-260619-3_209: *id425 1833-260619-4_235: - 1833-010719-1_225: *id427 - 1833-010719-2_267: *id428 - 1833-020719-1_158: *id429 - 1833-020719-2_8: *id430 - 1833-020719-3_150: *id431 - 1833-020719-4_320: *id432 - 1833-200619-2_283: *id433 - 1833-200619-3_0: *id434 - 1833-200619-4_1: *id435 - 1833-260619-1_2: *id436 - 1833-260619-2_2: *id437 - 1833-260619-3_1: *id438 - 1833-290519-1_120: &id469 + 1833-010719-1_225: *id426 + 1833-010719-2_267: *id427 + 1833-020719-1_158: *id428 + 1833-020719-2_8: *id429 + 1833-020719-3_150: *id430 + 1833-020719-4_320: *id431 + 1833-200619-2_283: *id432 + 1833-200619-3_0: *id433 + 1833-200619-4_1: *id434 + 1833-260619-1_2: *id435 + 1833-260619-2_2: *id436 + 1833-260619-3_1: *id437 + 1833-290519-1_120: &id468 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LoMWJ6Mgwz8= - 1833-290519-3_107: &id533 + 1833-290519-3_101: &id531 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zII438ZQxj8= + MWRB8xlKwD8= 1833-290519-1_112: - 1833-010719-1_127: *id439 - 1833-010719-2_265: *id440 - 1833-020719-1_123: *id441 - 1833-020719-2_105: *id442 - 1833-020719-3_143: *id443 - 1833-020719-4_302: *id444 - 1833-060619-2_90: *id445 - 1833-120619-1_139: *id446 - 1833-120619-2_89: *id447 - 1833-120619-3_153: *id448 - 1833-200619-3_91: *id449 - 1833-200619-4_78: *id450 - 1833-260619-1_130: *id451 - 1833-260619-2_164: *id452 - 1833-260619-3_141: *id453 - 1833-260619-4_115: *id454 - 1833-290519-2_82: &id518 + 1833-010719-1_127: *id438 + 1833-010719-2_265: *id439 + 1833-020719-1_123: *id440 + 1833-020719-2_105: *id441 + 1833-020719-3_143: *id442 + 1833-020719-4_302: *id443 + 1833-060619-2_90: *id444 + 1833-120619-1_139: *id445 + 1833-120619-2_89: *id446 + 1833-120619-3_153: *id447 + 1833-200619-3_91: *id448 + 1833-200619-4_78: *id449 + 1833-260619-1_130: *id450 + 1833-260619-2_164: *id451 + 1833-260619-3_141: *id452 + 1833-260619-4_115: *id453 + 1833-290519-2_82: &id517 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Thl0VTzQxz8= - 1833-290519-1_120: - 1833-010719-1_235: *id455 - 1833-010719-2_4: *id456 - 1833-020719-1_158: *id457 - 1833-020719-2_8: *id458 - 1833-020719-3_162: *id459 - 1833-020719-4_320: *id460 - 1833-060619-2_76: *id461 - 1833-120619-2_175: *id462 - 1833-200619-2_283: *id463 - 1833-200619-3_0: *id464 - 1833-200619-4_1: *id465 - 1833-260619-1_2: *id466 - 1833-260619-2_2: *id467 - 1833-260619-3_1: *id468 - 1833-260619-4_235: *id469 - 1833-290519-3_107: &id534 + 1833-290519-3_101: &id532 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - lp+Xopf/xz8= - 1833-290519-4_88: &id592 + IElypzs8zz8= + 1833-290519-1_120: + 1833-010719-1_235: *id454 + 1833-010719-2_4: *id455 + 1833-020719-1_158: *id456 + 1833-020719-2_8: *id457 + 1833-020719-3_162: *id458 + 1833-020719-4_320: *id459 + 1833-060619-2_76: *id460 + 1833-120619-2_175: *id461 + 1833-200619-2_283: *id462 + 1833-200619-3_0: *id463 + 1833-200619-4_1: *id464 + 1833-260619-1_2: *id465 + 1833-260619-2_2: *id466 + 1833-260619-3_1: *id467 + 1833-260619-4_235: *id468 + 1833-290519-3_97: &id567 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h7uW5BLMoj8= + 1833-290519-4_88: &id604 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4638,35 +4720,35 @@ _adj: - !!binary | Uj5rxeYzrT8= 1833-290519-1_146: - 1833-010719-1_225: *id470 - 1833-010719-2_267: *id471 - 1833-020719-1_121: *id472 - 1833-020719-2_95: *id473 - 1833-020719-3_116: *id474 - 1833-020719-4_258: *id475 - 1833-200619-1_147: *id476 - 1833-200619-2_268: *id477 - 1833-200619-3_93: *id478 - 1833-200619-4_92: *id479 - 1833-260619-1_132: *id480 - 1833-260619-2_152: *id481 - 1833-260619-3_180: *id482 - 1833-260619-4_208: *id483 - 1833-290519-2_78: &id499 + 1833-010719-1_225: *id469 + 1833-010719-2_267: *id470 + 1833-020719-1_121: *id471 + 1833-020719-2_95: *id472 + 1833-020719-3_116: *id473 + 1833-020719-4_258: *id474 + 1833-200619-1_147: *id475 + 1833-200619-2_268: *id476 + 1833-200619-3_93: *id477 + 1833-200619-4_92: *id478 + 1833-260619-1_132: *id479 + 1833-260619-2_152: *id480 + 1833-260619-3_180: *id481 + 1833-260619-4_208: *id482 + 1833-290519-2_78: &id498 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OL4OOMakxz8= - 1833-290519-3_137: &id554 + 1833-290519-3_125: &id550 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - QFEQFlZkxD8= - 1833-290519-4_117: &id574 + 2l1LaWd7nD8= + 1833-290519-4_117: &id586 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4674,30 +4756,30 @@ _adj: - !!binary | WsW4xAk9qj8= 1833-290519-2_78: - 1833-010719-1_225: *id484 - 1833-010719-2_239: *id485 - 1833-020719-1_145: *id486 - 1833-020719-2_142: *id487 - 1833-020719-3_156: *id488 - 1833-020719-4_308: *id489 - 1833-060619-2_90: *id490 - 1833-120619-2_175: *id491 - 1833-200619-2_283: *id492 - 1833-200619-3_93: *id493 - 1833-200619-4_96: *id494 - 1833-260619-1_120: *id495 - 1833-260619-2_2: *id496 - 1833-260619-3_196: *id497 - 1833-260619-4_202: *id498 - 1833-290519-1_146: *id499 - 1833-290519-3_137: &id555 + 1833-010719-1_225: *id483 + 1833-010719-2_239: *id484 + 1833-020719-1_145: *id485 + 1833-020719-2_142: *id486 + 1833-020719-3_156: *id487 + 1833-020719-4_308: *id488 + 1833-060619-2_90: *id489 + 1833-120619-2_175: *id490 + 1833-200619-2_283: *id491 + 1833-200619-3_93: *id492 + 1833-200619-4_96: *id493 + 1833-260619-1_120: *id494 + 1833-260619-2_2: *id495 + 1833-260619-3_196: *id496 + 1833-260619-4_202: *id497 + 1833-290519-1_146: *id498 + 1833-290519-3_101: &id533 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sbjufP/c1z8= - 1833-290519-4_117: &id575 + qeYjSdoayD8= + 1833-290519-4_117: &id587 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4705,138 +4787,152 @@ _adj: - !!binary | 3DRq0qrTyz8= 1833-290519-2_82: - 1833-010719-1_235: *id500 - 1833-010719-2_4: *id501 - 1833-020719-1_158: *id502 - 1833-020719-2_8: *id503 - 1833-020719-3_162: *id504 - 1833-020719-4_320: *id505 - 1833-060619-2_76: *id506 - 1833-120619-1_139: *id507 - 1833-120619-2_89: *id508 - 1833-120619-3_153: *id509 - 1833-200619-1_147: *id510 - 1833-200619-2_268: *id511 - 1833-200619-3_0: *id512 - 1833-200619-4_1: *id513 - 1833-260619-1_130: *id514 - 1833-260619-2_164: *id515 - 1833-260619-3_141: *id516 - 1833-260619-4_115: *id517 - 1833-290519-1_112: *id518 - 1833-290519-3_107: &id535 + 1833-010719-1_235: *id499 + 1833-010719-2_4: *id500 + 1833-020719-1_158: *id501 + 1833-020719-2_8: *id502 + 1833-020719-3_162: *id503 + 1833-020719-4_320: *id504 + 1833-060619-2_76: *id505 + 1833-120619-1_139: *id506 + 1833-120619-2_89: *id507 + 1833-120619-3_153: *id508 + 1833-200619-1_147: *id509 + 1833-200619-2_268: *id510 + 1833-200619-3_0: *id511 + 1833-200619-4_1: *id512 + 1833-260619-1_130: *id513 + 1833-260619-2_164: *id514 + 1833-260619-3_141: *id515 + 1833-260619-4_115: *id516 + 1833-290519-1_112: *id517 + 1833-290519-3_125: &id551 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - d+El2sFyzj8= - 1833-290519-4_88: &id593 + 8Wo4IAbnwT8= + 1833-290519-4_88: &id605 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JQ4v1cwryz8= - 1833-290519-3_107: - 1833-010719-1_235: *id519 - 1833-010719-2_4: *id520 - 1833-020719-1_158: *id521 - 1833-020719-2_8: *id522 - 1833-020719-3_162: *id523 - 1833-020719-4_320: *id524 - 1833-060619-2_76: *id525 - 1833-120619-2_175: *id526 - 1833-200619-2_283: *id527 - 1833-200619-3_0: *id528 - 1833-200619-4_1: *id529 - 1833-260619-1_2: *id530 - 1833-260619-2_2: *id531 - 1833-260619-3_1: *id532 - 1833-260619-4_235: *id533 - 1833-290519-1_120: *id534 - 1833-290519-2_82: *id535 - 1833-290519-4_88: &id594 + 1833-290519-3_101: + 1833-010719-1_161: *id518 + 1833-010719-2_239: *id519 + 1833-020719-1_145: *id520 + 1833-020719-2_142: *id521 + 1833-020719-3_156: *id522 + 1833-020719-4_308: *id523 + 1833-060619-2_90: *id524 + 1833-200619-2_283: *id525 + 1833-200619-3_0: *id526 + 1833-200619-4_1: *id527 + 1833-260619-1_2: *id528 + 1833-260619-2_2: *id529 + 1833-260619-3_1: *id530 + 1833-260619-4_235: *id531 + 1833-290519-1_112: *id532 + 1833-290519-2_78: *id533 + 1833-290519-3_125: + 1833-010719-1_225: *id534 + 1833-010719-2_254: *id535 + 1833-020719-1_121: *id536 + 1833-020719-2_95: *id537 + 1833-020719-3_116: *id538 + 1833-020719-4_258: *id539 + 1833-120619-2_175: *id540 + 1833-120619-3_153: *id541 + 1833-200619-1_147: *id542 + 1833-200619-2_268: *id543 + 1833-200619-3_93: *id544 + 1833-200619-4_92: *id545 + 1833-260619-1_132: *id546 + 1833-260619-2_152: *id547 + 1833-260619-3_180: *id548 + 1833-260619-4_208: *id549 + 1833-290519-1_146: *id550 + 1833-290519-2_82: *id551 + 1833-290519-4_117: &id588 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - AvcitzOTzT8= - 1833-290519-3_137: - 1833-010719-1_127: *id536 - 1833-010719-2_265: *id537 - 1833-020719-1_123: *id538 - 1833-020719-2_105: *id539 - 1833-020719-3_143: *id540 - 1833-020719-4_302: *id541 - 1833-060619-2_90: *id542 - 1833-120619-1_139: *id543 - 1833-120619-2_89: *id544 - 1833-120619-3_153: *id545 - 1833-200619-1_147: *id546 - 1833-200619-2_268: *id547 - 1833-200619-3_93: *id548 - 1833-200619-4_78: *id549 - 1833-260619-1_130: *id550 - 1833-260619-2_164: *id551 - 1833-260619-3_141: *id552 - 1833-260619-4_115: *id553 - 1833-290519-1_146: *id554 - 1833-290519-2_78: *id555 - 1833-290519-4_117: &id576 + 9pA34IShmz8= + 1833-290519-3_97: + 1833-010719-1_235: *id552 + 1833-010719-2_4: *id553 + 1833-020719-1_158: *id554 + 1833-020719-2_8: *id555 + 1833-020719-3_162: *id556 + 1833-020719-4_320: *id557 + 1833-060619-2_76: *id558 + 1833-120619-1_139: *id559 + 1833-120619-2_89: *id560 + 1833-200619-3_91: *id561 + 1833-200619-4_78: *id562 + 1833-260619-1_130: *id563 + 1833-260619-2_164: *id564 + 1833-260619-3_141: *id565 + 1833-260619-4_115: *id566 + 1833-290519-1_120: *id567 + 1833-290519-4_88: &id606 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Je39CT6Vxj8= + SVlrl2TSnD8= 1833-290519-4_117: - 1833-010719-1_127: *id556 - 1833-010719-2_254: *id557 - 1833-020719-1_121: *id558 - 1833-020719-2_95: *id559 - 1833-020719-3_116: *id560 - 1833-020719-4_258: *id561 - 1833-060619-2_90: *id562 - 1833-120619-1_139: *id563 - 1833-120619-2_89: *id564 - 1833-120619-3_153: *id565 - 1833-200619-1_147: *id566 - 1833-200619-2_268: *id567 - 1833-200619-3_93: *id568 - 1833-200619-4_92: *id569 - 1833-260619-1_130: *id570 - 1833-260619-2_152: *id571 - 1833-260619-3_180: *id572 - 1833-260619-4_208: *id573 - 1833-290519-1_146: *id574 - 1833-290519-2_78: *id575 - 1833-290519-3_137: *id576 + 1833-010719-1_127: *id568 + 1833-010719-2_254: *id569 + 1833-020719-1_121: *id570 + 1833-020719-2_95: *id571 + 1833-020719-3_116: *id572 + 1833-020719-4_258: *id573 + 1833-060619-2_90: *id574 + 1833-120619-1_139: *id575 + 1833-120619-2_89: *id576 + 1833-120619-3_153: *id577 + 1833-200619-1_147: *id578 + 1833-200619-2_268: *id579 + 1833-200619-3_93: *id580 + 1833-200619-4_92: *id581 + 1833-260619-1_130: *id582 + 1833-260619-2_152: *id583 + 1833-260619-3_180: *id584 + 1833-260619-4_208: *id585 + 1833-290519-1_146: *id586 + 1833-290519-2_78: *id587 + 1833-290519-3_125: *id588 1833-290519-4_88: - 1833-010719-1_235: *id577 - 1833-010719-2_4: *id578 - 1833-020719-1_158: *id579 - 1833-020719-2_8: *id580 - 1833-020719-3_162: *id581 - 1833-020719-4_320: *id582 - 1833-060619-2_76: *id583 - 1833-120619-2_175: *id584 - 1833-200619-2_283: *id585 - 1833-200619-3_0: *id586 - 1833-200619-4_1: *id587 - 1833-260619-1_2: *id588 - 1833-260619-2_2: *id589 - 1833-260619-3_141: *id590 - 1833-260619-4_115: *id591 - 1833-290519-1_120: *id592 - 1833-290519-2_82: *id593 - 1833-290519-3_107: *id594 -_node: &id597 + 1833-010719-1_235: *id589 + 1833-010719-2_4: *id590 + 1833-020719-1_158: *id591 + 1833-020719-2_8: *id592 + 1833-020719-3_162: *id593 + 1833-020719-4_320: *id594 + 1833-060619-2_76: *id595 + 1833-120619-2_175: *id596 + 1833-200619-2_283: *id597 + 1833-200619-3_0: *id598 + 1833-200619-4_1: *id599 + 1833-260619-1_2: *id600 + 1833-260619-2_2: *id601 + 1833-260619-3_141: *id602 + 1833-260619-4_115: *id603 + 1833-290519-1_120: *id604 + 1833-290519-2_82: *id605 + 1833-290519-3_97: *id606 +_node: &id609 1833-010719-1_127: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id595 !!python/object/apply:numpy.dtype + - &id607 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -4844,517 +4940,517 @@ _node: &id597 1833-010719-1_161: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | oQAAAAAAAAA= 1833-010719-1_191: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | vwAAAAAAAAA= 1833-010719-1_223: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 3wAAAAAAAAA= 1833-010719-1_225: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 4QAAAAAAAAA= 1833-010719-1_235: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 6wAAAAAAAAA= 1833-010719-2_239: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 7wAAAAAAAAA= 1833-010719-2_254: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | /gAAAAAAAAA= 1833-010719-2_261: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | BQEAAAAAAAA= 1833-010719-2_265: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | CQEAAAAAAAA= 1833-010719-2_267: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | CwEAAAAAAAA= 1833-010719-2_4: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | BAAAAAAAAAA= 1833-020719-1_119: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | dwAAAAAAAAA= 1833-020719-1_121: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | eQAAAAAAAAA= 1833-020719-1_123: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | ewAAAAAAAAA= 1833-020719-1_145: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | kQAAAAAAAAA= 1833-020719-1_158: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | ngAAAAAAAAA= 1833-020719-2_105: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | aQAAAAAAAAA= 1833-020719-2_129: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | gQAAAAAAAAA= 1833-020719-2_142: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | jgAAAAAAAAA= 1833-020719-2_8: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | CAAAAAAAAAA= 1833-020719-2_95: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | XwAAAAAAAAA= 1833-020719-3_104: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | aAAAAAAAAAA= 1833-020719-3_105: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | aQAAAAAAAAA= - 1833-020719-3_112: - action_id: 1833-020719-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 - - !!binary | - cAAAAAAAAAA= 1833-020719-3_116: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | dAAAAAAAAAA= 1833-020719-3_141: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | jQAAAAAAAAA= 1833-020719-3_143: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | jwAAAAAAAAA= 1833-020719-3_150: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | lgAAAAAAAAA= 1833-020719-3_156: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | nAAAAAAAAAA= 1833-020719-3_162: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | ogAAAAAAAAA= 1833-020719-4_258: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | AgEAAAAAAAA= 1833-020719-4_302: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | LgEAAAAAAAA= 1833-020719-4_306: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | MgEAAAAAAAA= 1833-020719-4_308: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | NAEAAAAAAAA= 1833-020719-4_320: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | QAEAAAAAAAA= 1833-060619-2_76: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | TAAAAAAAAAA= 1833-060619-2_90: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | WgAAAAAAAAA= 1833-120619-1_139: action_id: 1833-120619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | iwAAAAAAAAA= 1833-120619-2_175: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | rwAAAAAAAAA= 1833-120619-2_89: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | WQAAAAAAAAA= 1833-120619-3_153: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | mQAAAAAAAAA= 1833-200619-1_147: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | kwAAAAAAAAA= 1833-200619-2_268: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | DAEAAAAAAAA= 1833-200619-2_283: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | GwEAAAAAAAA= 1833-200619-3_0: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | AAAAAAAAAAA= 1833-200619-3_91: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | WwAAAAAAAAA= 1833-200619-3_93: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | XQAAAAAAAAA= 1833-200619-4_1: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | AQAAAAAAAAA= 1833-200619-4_78: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | TgAAAAAAAAA= 1833-200619-4_90: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | WgAAAAAAAAA= 1833-200619-4_92: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | XAAAAAAAAAA= 1833-200619-4_96: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | YAAAAAAAAAA= 1833-260619-1_118: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | dgAAAAAAAAA= 1833-260619-1_120: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | eAAAAAAAAAA= 1833-260619-1_130: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | ggAAAAAAAAA= 1833-260619-1_132: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | hAAAAAAAAAA= 1833-260619-1_2: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | AgAAAAAAAAA= 1833-260619-2_152: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | mAAAAAAAAAA= 1833-260619-2_164: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | pAAAAAAAAAA= 1833-260619-2_174: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | rgAAAAAAAAA= 1833-260619-2_2: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | AgAAAAAAAAA= 1833-260619-3_0: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | AAAAAAAAAAA= 1833-260619-3_1: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | AQAAAAAAAAA= 1833-260619-3_140: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | jAAAAAAAAAA= 1833-260619-3_141: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | jQAAAAAAAAA= 1833-260619-3_180: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | tAAAAAAAAAA= 1833-260619-3_182: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | tgAAAAAAAAA= 1833-260619-3_194: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | wgAAAAAAAAA= 1833-260619-3_196: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | xAAAAAAAAAA= 1833-260619-3_209: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 0QAAAAAAAAA= 1833-260619-4_115: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | cwAAAAAAAAA= 1833-260619-4_202: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | ygAAAAAAAAA= 1833-260619-4_208: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 0AAAAAAAAAA= 1833-260619-4_222: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 3gAAAAAAAAA= 1833-260619-4_233: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 6QAAAAAAAAA= 1833-260619-4_235: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | 6wAAAAAAAAA= 1833-290519-1_112: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | cAAAAAAAAAA= 1833-290519-1_120: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | eAAAAAAAAAA= 1833-290519-1_146: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | kgAAAAAAAAA= 1833-290519-2_78: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | TgAAAAAAAAA= 1833-290519-2_82: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | UgAAAAAAAAA= - 1833-290519-3_107: + 1833-290519-3_101: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | - awAAAAAAAAA= - 1833-290519-3_137: + ZQAAAAAAAAA= + 1833-290519-3_125: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | - iQAAAAAAAAA= + fQAAAAAAAAA= + 1833-290519-3_97: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id607 + - !!binary | + YQAAAAAAAAA= 1833-290519-4_117: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | dQAAAAAAAAA= 1833-290519-4_88: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id595 + - *id607 - !!binary | WAAAAAAAAAA= -adjlist_inner_dict_factory: &id596 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id596 -edge_attr_dict_factory: *id596 +adjlist_inner_dict_factory: &id608 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id608 +edge_attr_dict_factory: *id608 graph: {} -node_dict_factory: *id596 +node_dict_factory: *id608 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id597 + _nodes: *id609 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml index 6210b5462..9debe856a 100644 --- a/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml +++ b/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml @@ -66,13 +66,13 @@ _adj: - *id001 - !!binary | g1Dkk0CpxT8= - 1833-290519-3_119: &id505 + 1833-290519-3_70: &id529 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - LFv6tBa9yD8= + IBXIRk93yT8= 1833-290519-4_85: &id546 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] @@ -230,13 +230,6 @@ _adj: - *id001 - !!binary | dMRfRIz9xj8= - 1833-290519-3_72: &id524 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - lIRwpMgP0T8= 1833-010719-1_6: 1833-010719-2_233: &id005 depth_delta: 0.0 @@ -336,6 +329,13 @@ _adj: - *id001 - !!binary | uQeJ4knLuj8= + 1833-290519-3_111: &id505 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sE1Rv+Lguz8= 1833-290519-4_96: &id564 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] @@ -621,6 +621,13 @@ _adj: - *id001 - !!binary | DmN31hgEsz8= + 1833-290519-3_111: &id506 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J7dpXPZRvD8= 1833-290519-4_96: &id565 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] @@ -686,13 +693,13 @@ _adj: - *id001 - !!binary | Gg9fB6Ezxz8= - 1833-290519-3_119: &id506 + 1833-290519-3_70: &id530 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - PZJ+Kw11yz8= + Y5waOpbWyj8= 1833-290519-4_85: &id547 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] @@ -759,13 +766,6 @@ _adj: - *id001 - !!binary | Jff6P9c5wT8= - 1833-290519-3_72: &id525 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Qw08h67Hzz8= 1833-010719-2_269: 1833-010719-1_221: *id006 1833-020719-1_155: &id013 @@ -990,6 +990,13 @@ _adj: - *id001 - !!binary | r9AEzz2hyT8= + 1833-290519-3_70: &id531 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1N3Pf1PpzD8= 1833-290519-4_96: &id566 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] @@ -1063,13 +1070,6 @@ _adj: - *id001 - !!binary | Jh4Xq5Tyxj8= - 1833-290519-3_119: &id507 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - lkQscj8q0z8= 1833-020719-1_155: 1833-010719-1_221: *id012 1833-010719-2_269: *id013 @@ -1192,13 +1192,13 @@ _adj: - *id001 - !!binary | JouJbnKZyj8= - 1833-290519-3_72: &id526 + 1833-290519-3_111: &id507 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - X87xAPBj0D8= + wTHV7VAowj8= 1833-290519-4_85: &id548 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] @@ -1304,13 +1304,13 @@ _adj: - *id001 - !!binary | 7x3adeYRxz8= - 1833-290519-3_119: &id508 + 1833-290519-3_70: &id532 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - e/3DgeoJzT8= + cmO9rJG4yj8= 1833-290519-4_85: &id549 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] @@ -1420,6 +1420,13 @@ _adj: - *id001 - !!binary | AxBLfHDGtD8= + 1833-290519-3_111: &id508 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9KKMnMamvz8= 1833-290519-4_96: &id567 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] @@ -1451,13 +1458,6 @@ _adj: - *id001 - !!binary | 7Nf9+o/Jyj8= - 1833-290519-3_72: &id527 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - B9/fXIVqzj8= 1833-020719-2_87: 1833-010719-1_221: *id024 1833-010719-2_273: *id025 @@ -1634,13 +1634,13 @@ _adj: - *id001 - !!binary | cTcNs3SDxj8= - 1833-290519-3_119: &id509 + 1833-290519-3_70: &id533 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - kTqrxK2wyz8= + bTq1XI19yT8= 1833-290519-4_85: &id550 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] @@ -1751,6 +1751,13 @@ _adj: - *id001 - !!binary | 9NZsjj97zT8= + 1833-290519-3_111: &id509 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CSFqavjNuz8= 1833-290519-4_96: &id568 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] @@ -1894,13 +1901,6 @@ _adj: - *id001 - !!binary | I+2BNHy6xD8= - 1833-290519-3_72: &id528 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YNbGd7tJzz8= 1833-020719-4_256: 1833-010719-1_8: *id042 1833-010719-2_18: *id043 @@ -1984,13 +1984,13 @@ _adj: - *id001 - !!binary | AqWzKlM+zD8= - 1833-290519-3_119: &id510 + 1833-290519-3_70: &id534 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rVFPXX2M0T8= + BqvqbcChwz8= 1833-290519-4_85: &id551 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] @@ -2102,6 +2102,13 @@ _adj: - *id001 - !!binary | Ve+q5nQIxz8= + 1833-290519-3_111: &id510 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1AdEiVWauD8= 1833-290519-4_96: &id569 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] @@ -2185,13 +2192,6 @@ _adj: - *id001 - !!binary | zSNEAC8GzT8= - 1833-290519-3_72: &id529 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LmrkcFi+zz8= 1833-050619-1_75: 1833-010719-1_6: *id057 1833-010719-2_233: *id058 @@ -2318,13 +2318,13 @@ _adj: - *id001 - !!binary | 0Sy1Yp5hxD8= - 1833-290519-3_72: &id530 + 1833-290519-3_111: &id511 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - QBrUGSHMyD8= + bORCsYziuz8= 1833-290519-4_96: &id570 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] @@ -2452,13 +2452,13 @@ _adj: - *id001 - !!binary | brCk14gAxD8= - 1833-290519-3_119: &id511 + 1833-290519-3_111: &id512 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - mp5UHOXSyz8= + w3pHx9LFwD8= 1833-290519-4_96: &id571 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] @@ -2580,13 +2580,13 @@ _adj: - *id001 - !!binary | N+hcmQLdxj8= - 1833-290519-3_119: &id512 + 1833-290519-3_111: &id513 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - hzx07LeAyz8= + oLZIB6mqwj8= 1833-290519-4_96: &id572 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] @@ -2702,6 +2702,13 @@ _adj: - *id001 - !!binary | XM9/1kEz0D8= + 1833-290519-3_111: &id514 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + neBrHF1MxT8= 1833-290519-4_96: &id573 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] @@ -2786,13 +2793,13 @@ _adj: - *id001 - !!binary | w7y8D09Fxz8= - 1833-290519-3_119: &id513 + 1833-290519-3_70: &id535 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ai+gfvGP0D8= + j7AHhIVJ0T8= 1833-290519-4_85: &id552 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] @@ -2842,13 +2849,6 @@ _adj: - *id001 - !!binary | 8X9JWa2i1j8= - 1833-290519-3_72: &id531 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - g0W/sSHl0D8= 1833-060619-1_137: 1833-010719-1_8: *id099 1833-010719-2_227: *id100 @@ -2951,13 +2951,13 @@ _adj: - *id001 - !!binary | dM/BI06Kwj8= - 1833-290519-3_72: &id532 + 1833-290519-3_111: &id515 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - c5hoLRip0j8= + +NfarzuXwT8= 1833-290519-4_96: &id574 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] @@ -3038,13 +3038,13 @@ _adj: - *id001 - !!binary | vUilr+cZwj8= - 1833-290519-3_72: &id533 + 1833-290519-3_111: &id516 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /BGcL0mz0j8= + 5obUvA1BwD8= 1833-290519-4_96: &id575 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] @@ -3146,13 +3146,13 @@ _adj: - *id001 - !!binary | gKOISnoSzD8= - 1833-290519-3_119: &id514 + 1833-290519-3_70: &id536 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1wghe9vVyz8= + 7LfoJDbuxD8= 1833-290519-4_85: &id553 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] @@ -3250,13 +3250,13 @@ _adj: - *id001 - !!binary | D5D1ycSfyj8= - 1833-290519-3_72: &id534 + 1833-290519-3_111: &id517 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - yyej7aC90D8= + 1FxTf2mmwD8= 1833-290519-4_96: &id576 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] @@ -3348,13 +3348,13 @@ _adj: - *id001 - !!binary | 5nXkiLk6yD8= - 1833-290519-3_72: &id535 + 1833-290519-3_111: &id518 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - LruXbZxJzz8= + Iq2waLIKwT8= 1833-290519-4_96: &id577 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] @@ -3439,13 +3439,13 @@ _adj: - *id001 - !!binary | PBsmsXxVxj8= - 1833-290519-3_119: &id515 + 1833-290519-3_111: &id519 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - j8g7nGKO1D8= + Ui78A+R5vT8= 1833-290519-4_96: &id578 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] @@ -3519,13 +3519,13 @@ _adj: - *id001 - !!binary | uuzY2Vcuzj8= - 1833-290519-3_72: &id536 + 1833-290519-3_70: &id537 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - fzQH0C2t0T8= + 6FbgMMdgyD8= 1833-290519-4_85: &id554 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] @@ -3605,13 +3605,13 @@ _adj: - *id001 - !!binary | Te5/7UNxyT8= - 1833-290519-3_72: &id537 + 1833-290519-3_111: &id520 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IG3Z+mPU0j8= + XPwz33iLvT8= 1833-290519-4_96: &id579 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] @@ -3680,13 +3680,13 @@ _adj: - *id001 - !!binary | TW0yDYycxz8= - 1833-290519-3_119: &id516 + 1833-290519-3_111: &id521 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - CoWdRrxT1T8= + pXlaqS1+wT8= 1833-290519-4_96: &id580 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] @@ -3758,13 +3758,13 @@ _adj: - *id001 - !!binary | AxXvDDrNyj8= - 1833-290519-3_72: &id538 + 1833-290519-3_70: &id538 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sZaw6Inw0T8= + FXOGYXF3yT8= 1833-290519-4_85: &id555 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] @@ -3827,13 +3827,13 @@ _adj: - *id001 - !!binary | 6gE8P9+Jxj8= - 1833-290519-3_119: &id517 + 1833-290519-3_111: &id522 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ufV/1/be1D8= + h7g9FBTTwD8= 1833-290519-4_96: &id581 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] @@ -3899,13 +3899,13 @@ _adj: - *id001 - !!binary | 3x1fmla4yj8= - 1833-290519-3_72: &id539 + 1833-290519-3_70: &id539 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - lI4wjhxi0j8= + 62gxmT6ryT8= 1833-290519-4_85: &id556 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] @@ -3942,13 +3942,13 @@ _adj: - *id001 - !!binary | YkryVJCxyD8= - 1833-290519-3_72: &id540 + 1833-290519-3_70: &id540 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ty+MCRtlyj8= + A5pWmNnVuD8= 1833-290519-4_85: &id557 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] @@ -3990,13 +3990,6 @@ _adj: - *id001 - !!binary | wmOpZxg5yT8= - 1833-290519-3_119: &id518 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VBhxZE5yyz8= 1833-260619-1_116: 1833-010719-1_219: *id260 1833-010719-2_135: *id261 @@ -4043,6 +4036,13 @@ _adj: - *id001 - !!binary | lO5rABjeyT8= + 1833-290519-3_111: &id523 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lFgf/s3oxj8= 1833-290519-4_96: &id582 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] @@ -4128,13 +4128,13 @@ _adj: - *id001 - !!binary | ET+eJfiZxz8= - 1833-290519-3_119: &id519 + 1833-290519-3_70: &id541 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - haD1Ex4XzT8= + DEe2ta5EzT8= 1833-290519-4_85: &id558 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] @@ -4189,13 +4189,13 @@ _adj: - *id001 - !!binary | fUtk/WbyzD8= - 1833-290519-3_72: &id541 + 1833-290519-3_111: &id524 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - v3VuUN6J0D8= + OAwN9/X0wD8= 1833-290519-4_96: &id583 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] @@ -4270,13 +4270,13 @@ _adj: - *id001 - !!binary | gT7NjaxlyD8= - 1833-290519-3_119: &id520 + 1833-290519-3_70: &id542 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - n51ef5jqyD8= + zsAGNn0Gyz8= 1833-290519-4_85: &id559 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] @@ -4324,13 +4324,13 @@ _adj: - *id001 - !!binary | QbTMPFTnyz8= - 1833-290519-3_72: &id542 + 1833-290519-3_111: &id525 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 2O9aKHB+0T8= + j0MycMn2vT8= 1833-290519-4_96: &id584 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] @@ -4389,13 +4389,6 @@ _adj: - *id001 - !!binary | xWzHs0IAyj8= - 1833-290519-3_119: &id521 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - QXAOE52nzj8= 1833-290519-4_85: &id560 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] @@ -4437,13 +4430,13 @@ _adj: - *id001 - !!binary | E6ZYljrdyz8= - 1833-290519-3_72: &id543 + 1833-290519-3_70: &id543 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 77TUtZk/0T8= + tsWtdkCEyD8= 1833-290519-4_96: &id585 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] @@ -4481,6 +4474,13 @@ _adj: - *id001 - !!binary | 5vfvINPOyz8= + 1833-290519-3_111: &id526 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AYHOD5D+uj8= 1833-260619-4_226: 1833-010719-1_229: *id404 1833-010719-2_273: *id405 @@ -4520,13 +4520,13 @@ _adj: - *id001 - !!binary | xTAxR5CmxD8= - 1833-290519-3_119: &id522 + 1833-290519-3_70: &id544 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - oOKxNXlH0j8= + ZsHn+bMQ0j8= 1833-290519-4_85: &id561 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] @@ -4564,13 +4564,13 @@ _adj: - *id001 - !!binary | +ydmMV0cyD8= - 1833-290519-3_72: &id544 + 1833-290519-3_111: &id527 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Q/PJktcj0z8= + 7Hjuy63luT8= 1833-290519-4_96: &id586 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] @@ -4600,13 +4600,13 @@ _adj: 1833-260619-3_119: *id467 1833-260619-4_204: *id468 1833-290519-1_138: *id469 - 1833-290519-3_72: &id545 + 1833-290519-3_70: &id545 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ZEs3ArW1yj8= + yxigEtdjzD8= 1833-290519-4_85: &id562 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] @@ -4623,13 +4623,6 @@ _adj: 1833-050619-4_68: *id475 1833-260619-1_104: *id476 1833-260619-4_178: *id477 - 1833-290519-3_119: &id523 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - gvgEXMN/zz8= 1833-290519-2_116: 1833-010719-1_219: *id478 1833-010719-2_135: *id479 @@ -4659,6 +4652,13 @@ _adj: 1833-260619-3_207: *id502 1833-260619-4_226: *id503 1833-290519-1_92: *id504 + 1833-290519-3_111: &id528 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F5JzUtXyxz8= 1833-290519-4_96: &id587 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] @@ -4666,55 +4666,55 @@ _adj: - *id001 - !!binary | xoXCDvRkzT8= - 1833-290519-3_119: - 1833-010719-1_146: *id505 - 1833-010719-2_227: *id506 - 1833-020719-1_147: *id507 - 1833-020719-2_14: *id508 - 1833-020719-3_123: *id509 - 1833-020719-4_256: *id510 - 1833-050619-2_129: *id511 - 1833-050619-3_125: *id512 - 1833-050619-4_84: *id513 - 1833-060619-2_78: *id514 - 1833-200619-1_155: *id515 - 1833-200619-3_89: *id516 - 1833-200619-4_70: *id517 - 1833-260619-1_104: *id518 - 1833-260619-2_123: *id519 - 1833-260619-3_119: *id520 - 1833-260619-4_178: *id521 - 1833-290519-1_138: *id522 - 1833-290519-2_104: *id523 + 1833-290519-3_111: + 1833-010719-1_6: *id505 + 1833-010719-2_18: *id506 + 1833-020719-1_155: *id507 + 1833-020719-2_15: *id508 + 1833-020719-3_139: *id509 + 1833-020719-4_278: *id510 + 1833-050619-1_75: *id511 + 1833-050619-2_129: *id512 + 1833-050619-3_125: *id513 + 1833-050619-4_68: *id514 + 1833-060619-1_137: *id515 + 1833-060619-2_64: *id516 + 1833-120619-1_114: *id517 + 1833-120619-2_104: *id518 + 1833-200619-1_155: *id519 + 1833-200619-2_278: *id520 + 1833-200619-3_89: *id521 + 1833-200619-4_70: *id522 + 1833-260619-1_116: *id523 + 1833-260619-2_130: *id524 + 1833-260619-3_170: *id525 + 1833-260619-4_204: *id526 + 1833-290519-1_92: *id527 + 1833-290519-2_120: *id528 1833-290519-4_96: &id588 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +YPGs28Czz8= - 1833-290519-3_72: - 1833-010719-1_229: *id524 - 1833-010719-2_233: *id525 - 1833-020719-1_155: *id526 - 1833-020719-2_152: *id527 - 1833-020719-3_166: *id528 - 1833-020719-4_300: *id529 - 1833-050619-1_75: *id530 - 1833-050619-4_86: *id531 - 1833-060619-1_137: *id532 - 1833-060619-2_64: *id533 - 1833-120619-1_114: *id534 - 1833-120619-2_104: *id535 - 1833-200619-1_159: *id536 - 1833-200619-2_278: *id537 + ee1XGAK3sz8= + 1833-290519-3_70: + 1833-010719-1_146: *id529 + 1833-010719-2_227: *id530 + 1833-020719-1_115: *id531 + 1833-020719-2_14: *id532 + 1833-020719-3_123: *id533 + 1833-020719-4_256: *id534 + 1833-050619-4_84: *id535 + 1833-060619-2_78: *id536 + 1833-200619-1_159: *id537 1833-200619-3_97: *id538 1833-200619-4_76: *id539 1833-260619-1_10: *id540 - 1833-260619-2_130: *id541 - 1833-260619-3_170: *id542 + 1833-260619-2_123: *id541 + 1833-260619-3_119: *id542 1833-260619-4_198: *id543 - 1833-290519-1_92: *id544 + 1833-290519-1_138: *id544 1833-290519-2_102: *id545 1833-290519-4_85: &id563 depth_delta: 0.0 @@ -4722,7 +4722,7 @@ _adj: weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - lA7HPLffxT8= + Maa0VIYhpj8= 1833-290519-4_85: 1833-010719-1_146: *id546 1833-010719-2_227: *id547 @@ -4741,7 +4741,7 @@ _adj: 1833-260619-4_178: *id560 1833-290519-1_138: *id561 1833-290519-2_102: *id562 - 1833-290519-3_72: *id563 + 1833-290519-3_70: *id563 1833-290519-4_96: 1833-010719-1_6: *id564 1833-010719-2_18: *id565 @@ -4767,7 +4767,7 @@ _adj: 1833-260619-4_198: *id585 1833-290519-1_92: *id586 1833-290519-2_120: *id587 - 1833-290519-3_119: *id588 + 1833-290519-3_111: *id588 _node: &id591 1833-010719-1_146: action_id: 1833-010719-1 @@ -5167,18 +5167,18 @@ _node: &id591 - *id589 - !!binary | eAAAAAAAAAA= - 1833-290519-3_119: + 1833-290519-3_111: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - *id589 - !!binary | - dwAAAAAAAAA= - 1833-290519-3_72: + bwAAAAAAAAA= + 1833-290519-3_70: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - *id589 - !!binary | - SAAAAAAAAAA= + RgAAAAAAAAA= 1833-290519-4_85: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml index db8941e4d..a5b529e57 100644 --- a/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml +++ b/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml @@ -73,14 +73,14 @@ _adj: - *id001 - !!binary | ++gXoGFguD8= - 1833-290519-3_153: &id413 + 1833-290519-3_138: &id393 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - JflW9u4e0z8= - 1833-290519-4_130: &id454 + GHFvx10KvT8= + 1833-290519-4_130: &id438 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -193,13 +193,6 @@ _adj: - *id001 - !!binary | 01u6uEpDuD8= - 1833-290519-3_99: &id428 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YLkOyp3zyj8= 1833-010719-1_216: 1833-010719-2_243: &id005 depth_delta: 0.0 @@ -320,14 +313,14 @@ _adj: - *id001 - !!binary | z5MAAkoPwj8= - 1833-290519-3_102: &id393 + 1833-290519-3_96: &id408 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 67ZaXqaxyD8= - 1833-290519-4_92: &id470 + ZFFusHkruj8= + 1833-290519-4_92: &id454 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -377,14 +370,7 @@ _adj: - *id001 - !!binary | sc2fGq9ExD8= - 1833-290519-3_68: &id420 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - kS7WS7vtzz8= - 1833-290519-4_129: &id445 + 1833-290519-4_129: &id430 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -400,14 +386,7 @@ _adj: - *id001 - !!binary | 7Uaiwi8vzT8= - 1833-290519-3_153: &id414 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - OiqHuRjRzz8= - 1833-290519-4_129: &id446 + 1833-290519-4_129: &id431 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -495,13 +474,6 @@ _adj: - *id001 - !!binary | rAj7XpTGuT8= - 1833-290519-3_99: &id429 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - hv1OgD1RyT8= 1833-010719-2_187: {} 1833-010719-2_188: {} 1833-010719-2_241: @@ -562,7 +534,14 @@ _adj: - *id001 - !!binary | +e3RgUGBvz8= - 1833-290519-4_130: &id455 + 1833-290519-3_138: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AE6Jya4Suz8= + 1833-290519-4_130: &id439 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -676,14 +655,14 @@ _adj: - *id001 - !!binary | 97WYefOowD8= - 1833-290519-3_102: &id394 + 1833-290519-3_96: &id409 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - iWeZQg1DyT8= - 1833-290519-4_92: &id471 + WREzNLcRvj8= + 1833-290519-4_92: &id455 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -775,13 +754,6 @@ _adj: - *id001 - !!binary | k9v/UdJSvT8= - 1833-290519-3_68: &id421 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - TqzzaUBU0D8= 1833-020719-1_135: 1833-010719-1_240: *id006 1833-010719-2_259: *id007 @@ -893,14 +865,14 @@ _adj: - *id001 - !!binary | lq+OeZlxvj8= - 1833-290519-3_153: &id415 + 1833-290519-3_138: &id395 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - vaDG07Ke0D8= - 1833-290519-4_130: &id456 + krTk6rwRuz8= + 1833-290519-4_130: &id440 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1015,14 +987,14 @@ _adj: - *id001 - !!binary | JsjO7kl1wT8= - 1833-290519-3_102: &id395 + 1833-290519-3_96: &id410 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - FjDt9bDWxj8= - 1833-290519-4_92: &id472 + oUct8AWUuT8= + 1833-290519-4_92: &id456 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1081,13 +1053,6 @@ _adj: - *id001 - !!binary | pnsFNaIqvz8= - 1833-290519-3_99: &id430 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - gLYjcYAfzD8= 1833-020719-1_164: 1833-010719-2_173: *id014 1833-020719-2_139: &id023 @@ -1125,14 +1090,7 @@ _adj: - *id001 - !!binary | v8fIWrGdwz8= - 1833-290519-3_68: &id422 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - nwQfQ47QzT8= - 1833-290519-4_129: &id447 + 1833-290519-4_129: &id432 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1315,14 +1273,14 @@ _adj: - *id001 - !!binary | ybmDwAv7wj8= - 1833-290519-3_102: &id396 + 1833-290519-3_96: &id411 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6nNthG7uxz8= - 1833-290519-4_92: &id473 + uGghVnXEuz8= + 1833-290519-4_92: &id457 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1347,13 +1305,6 @@ _adj: - *id001 - !!binary | 7OmP9XRPyD8= - 1833-290519-3_68: &id423 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - hR9dAZjIzz8= 1833-020719-2_140: 1833-010719-1_171: *id024 1833-010719-2_241: *id025 @@ -1400,14 +1351,14 @@ _adj: - *id001 - !!binary | ExYCXtwtvj8= - 1833-290519-3_153: &id416 + 1833-290519-3_138: &id396 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - eES/XHaD0D8= - 1833-290519-4_130: &id457 + AVG+iB8Tuj8= + 1833-290519-4_130: &id441 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1452,14 +1403,7 @@ _adj: - *id001 - !!binary | tVJJ1/Lz0D8= - 1833-290519-3_99: &id431 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - xu/cNuT9yz8= - 1833-290519-4_129: &id448 + 1833-290519-4_129: &id433 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1546,13 +1490,6 @@ _adj: - *id001 - !!binary | q7Wuzn5QxD8= - 1833-290519-3_68: &id424 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LrPrtF4EzT8= 1833-020719-3_17: 1833-010719-1_216: *id037 1833-010719-2_243: *id038 @@ -1649,14 +1586,14 @@ _adj: - *id001 - !!binary | c45SvuJbwj8= - 1833-290519-3_102: &id397 + 1833-290519-3_96: &id412 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 8i0nZZQexz8= - 1833-290519-4_92: &id474 + 92mWMtyyuj8= + 1833-290519-4_92: &id458 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1681,14 +1618,7 @@ _adj: - *id001 - !!binary | +YHON4qWzj8= - 1833-290519-3_99: &id432 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - aPRGn7MYzj8= - 1833-290519-4_129: &id449 + 1833-290519-4_129: &id434 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1749,14 +1679,14 @@ _adj: - *id001 - !!binary | 5s08g/1Evz8= - 1833-290519-3_153: &id417 + 1833-290519-3_138: &id397 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - HJPx8qeV0D8= - 1833-290519-4_130: &id458 + zBbYoZARuz8= + 1833-290519-4_130: &id442 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1818,14 +1748,14 @@ _adj: - *id001 - !!binary | LzTQkJmrxT8= - 1833-290519-3_102: &id398 + 1833-290519-3_96: &id413 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - m2QjkbSDzD8= - 1833-290519-4_129: &id450 + lOnKLjPtwz8= + 1833-290519-4_129: &id435 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1887,14 +1817,14 @@ _adj: - *id001 - !!binary | gubGMFHXvD8= - 1833-290519-3_153: &id418 + 1833-290519-3_138: &id398 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - iLGGs2mP0T8= - 1833-290519-4_130: &id459 + grWfb8d8vj8= + 1833-290519-4_130: &id443 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1928,13 +1858,6 @@ _adj: - *id001 - !!binary | uIs9YB8kwD8= - 1833-290519-3_99: &id433 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - I//n8ogAyj8= 1833-020719-4_318: 1833-010719-1_198: *id063 1833-010719-2_259: *id064 @@ -2018,14 +1941,7 @@ _adj: - *id001 - !!binary | 1BGpnJaCuj8= - 1833-290519-3_68: &id425 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - fjcH4R3xzD8= - 1833-290519-4_92: &id475 + 1833-290519-4_92: &id459 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2144,14 +2060,14 @@ _adj: - *id001 - !!binary | nBMzp5hjyT8= - 1833-290519-3_102: &id399 + 1833-290519-3_96: &id414 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - j6mHSxQFzj8= - 1833-290519-4_92: &id476 + xRZ/ezKewj8= + 1833-290519-4_92: &id460 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2264,14 +2180,14 @@ _adj: - *id001 - !!binary | gOHMm8mKyj8= - 1833-290519-3_102: &id400 + 1833-290519-3_96: &id415 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - bEIFJEBuzz8= - 1833-290519-4_92: &id477 + sTRoYwROwz8= + 1833-290519-4_92: &id461 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2378,14 +2294,14 @@ _adj: - *id001 - !!binary | 7MPEJvRZyj8= - 1833-290519-3_102: &id401 + 1833-290519-3_96: &id416 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zzQZK34bzz8= - 1833-290519-4_92: &id478 + SaYaiLWywz8= + 1833-290519-4_92: &id462 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2486,14 +2402,14 @@ _adj: - *id001 - !!binary | BMqnFTZ1yj8= - 1833-290519-3_102: &id402 + 1833-290519-3_96: &id417 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - h6eqTJj+zj8= - 1833-290519-4_92: &id479 + divusSSnwz8= + 1833-290519-4_92: &id463 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2588,14 +2504,14 @@ _adj: - *id001 - !!binary | cat1FDGuyD8= - 1833-290519-3_102: &id403 + 1833-290519-3_96: &id418 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - KVYoVjZvzD8= - 1833-290519-4_92: &id480 + AlHsKm1iwz8= + 1833-290519-4_92: &id464 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2665,14 +2581,14 @@ _adj: - *id001 - !!binary | AOL7wEHfyz8= - 1833-290519-3_102: &id404 + 1833-290519-3_96: &id419 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - uUYxy/QYxj8= - 1833-290519-4_92: &id481 + Kz3yZBp+yz8= + 1833-290519-4_92: &id465 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2761,14 +2677,14 @@ _adj: - *id001 - !!binary | rthSHSsvvz8= - 1833-290519-3_99: &id434 + 1833-290519-3_138: &id399 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MZVzUdqM0z8= - 1833-290519-4_130: &id460 + glOnXUAswz8= + 1833-290519-4_130: &id444 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2846,14 +2762,14 @@ _adj: - *id001 - !!binary | CgQVpxLFvz8= - 1833-290519-3_99: &id435 + 1833-290519-3_138: &id400 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - DISF69kC0z8= - 1833-290519-4_130: &id461 + OcdzgB7+xj8= + 1833-290519-4_130: &id445 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2922,14 +2838,14 @@ _adj: - *id001 - !!binary | n8Rb8cFhwD8= - 1833-290519-3_102: &id405 + 1833-290519-3_96: &id420 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sI2DhqdQxj8= - 1833-290519-4_92: &id482 + ZlHvOePPvD8= + 1833-290519-4_92: &id466 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2987,14 +2903,14 @@ _adj: - *id001 - !!binary | X7qHbNnSxD8= - 1833-290519-3_99: &id436 + 1833-290519-3_138: &id401 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - aBgCy5nVyT8= - 1833-290519-4_130: &id462 + PbsJ/uf6yD8= + 1833-290519-4_130: &id446 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3071,14 +2987,14 @@ _adj: - *id001 - !!binary | I2zBNuWmwj8= - 1833-290519-3_102: &id406 + 1833-290519-3_96: &id421 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - t1q8gXjA0j8= - 1833-290519-4_92: &id483 + pLbyCyk3wz8= + 1833-290519-4_92: &id467 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3135,14 +3051,14 @@ _adj: - *id001 - !!binary | YGebpZxpwD8= - 1833-290519-3_102: &id407 + 1833-290519-3_96: &id422 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - n3SRW4uIxT8= - 1833-290519-4_92: &id484 + zSBsMDEavD8= + 1833-290519-4_92: &id468 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3208,14 +3124,14 @@ _adj: - *id001 - !!binary | aCteJN0lwT8= - 1833-290519-3_99: &id437 + 1833-290519-3_138: &id402 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - okK+ClC10T8= - 1833-290519-4_130: &id463 + 92m7AEu7yT8= + 1833-290519-4_130: &id447 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3266,14 +3182,14 @@ _adj: - *id001 - !!binary | TENYNXxuwD8= - 1833-290519-3_102: &id408 + 1833-290519-3_96: &id423 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - WBz7EiFwxT8= - 1833-290519-4_92: &id485 + rOY9F+bGvD8= + 1833-290519-4_92: &id469 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3333,14 +3249,14 @@ _adj: - *id001 - !!binary | eIzSHITXwT8= - 1833-290519-3_99: &id438 + 1833-290519-3_138: &id403 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - X7+gFgdW0T8= - 1833-290519-4_130: &id464 + 5fXdiF0gyT8= + 1833-290519-4_130: &id448 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3399,14 +3315,14 @@ _adj: - *id001 - !!binary | HVUrEPUnwz8= - 1833-290519-3_99: &id439 + 1833-290519-3_96: &id424 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - T4VohQps0T8= - 1833-290519-4_92: &id486 + z8qGOWoVzD8= + 1833-290519-4_92: &id470 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3459,14 +3375,14 @@ _adj: - *id001 - !!binary | g6aMBzFLwz8= - 1833-290519-3_99: &id440 + 1833-290519-3_96: &id425 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - K7X9F7NQ0D8= - 1833-290519-4_92: &id487 + w5BXauKiyz8= + 1833-290519-4_92: &id471 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3511,14 +3427,14 @@ _adj: - *id001 - !!binary | D5kDLLzzvT8= - 1833-290519-3_102: &id409 + 1833-290519-3_138: &id404 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - xgy1g/t3zT8= - 1833-290519-4_130: &id465 + S6OiMcoovj8= + 1833-290519-4_130: &id449 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3560,14 +3476,14 @@ _adj: - *id001 - !!binary | 8e2YCphxwT8= - 1833-290519-3_99: &id441 + 1833-290519-3_96: &id426 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5AUuLe8u0D8= - 1833-290519-4_92: &id488 + 17B/tM8myj8= + 1833-290519-4_92: &id472 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3606,14 +3522,14 @@ _adj: - *id001 - !!binary | +Su5a3zTvz8= - 1833-290519-3_102: &id410 + 1833-290519-3_138: &id405 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - b9qrn09/zD8= - 1833-290519-4_130: &id466 + 2ffkdQ0gwT8= + 1833-290519-4_130: &id450 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3649,14 +3565,14 @@ _adj: - *id001 - !!binary | M7ROS5mvwT8= - 1833-290519-3_99: &id442 + 1833-290519-3_96: &id427 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - t3NK2VrSzj8= - 1833-290519-4_92: &id489 + /M72Bod+yj8= + 1833-290519-4_92: &id473 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3677,13 +3593,6 @@ _adj: - *id001 - !!binary | Wrl+qnbLyz8= - 1833-290519-3_68: &id426 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YKXFfXZP1j8= 1833-290519-1_102: 1833-010719-1_216: *id312 1833-010719-2_243: *id313 @@ -3712,14 +3621,14 @@ _adj: - *id001 - !!binary | pIKjXCUlxT8= - 1833-290519-3_99: &id443 + 1833-290519-3_96: &id428 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - j/gP9sPO0j8= - 1833-290519-4_92: &id490 + II3zchXpoD8= + 1833-290519-4_92: &id474 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3733,14 +3642,7 @@ _adj: 1833-020719-2_146: *id335 1833-020719-3_170: *id336 1833-020719-4_298: *id337 - 1833-290519-3_153: &id419 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - vDhJecfs1T8= - 1833-290519-4_129: &id451 + 1833-290519-4_129: &id436 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3768,14 +3670,14 @@ _adj: - *id001 - !!binary | Tm8VuInXwD8= - 1833-290519-3_102: &id411 + 1833-290519-3_138: &id406 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - X+1v7cskyz8= - 1833-290519-4_130: &id467 + sJ/mIe+MpT8= + 1833-290519-4_130: &id451 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3797,14 +3699,14 @@ _adj: 1833-260619-3_176: *id362 1833-260619-4_206: *id363 1833-290519-1_101: *id364 - 1833-290519-3_68: &id427 + 1833-290519-3_96: &id429 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - mJdJf2ZJ0T8= - 1833-290519-4_129: &id452 + ZQIjRYTNwz8= + 1833-290519-4_129: &id437 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3826,14 +3728,14 @@ _adj: 1833-260619-3_160: *id376 1833-260619-4_196: *id377 1833-290519-1_176: *id378 - 1833-290519-3_102: &id412 + 1833-290519-3_138: &id407 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - G9BBRuZX1D8= - 1833-290519-4_130: &id468 + eJCbh0uQwT8= + 1833-290519-4_130: &id452 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3855,153 +3757,121 @@ _adj: 1833-120619-2_143: *id390 1833-200619-2_257: *id391 1833-290519-1_102: *id392 - 1833-290519-3_99: &id444 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 7IpjHwR80D8= - 1833-290519-4_92: &id491 + 1833-290519-4_92: &id475 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pdP7dt56xD8= - 1833-290519-3_102: - 1833-010719-1_216: *id393 - 1833-010719-2_243: *id394 - 1833-020719-1_151: *id395 - 1833-020719-2_136: *id396 - 1833-020719-3_17: *id397 - 1833-020719-4_289: *id398 - 1833-050619-1_107: *id399 - 1833-050619-2_143: *id400 - 1833-050619-3_147: *id401 - 1833-050619-4_148: *id402 - 1833-060619-1_174: *id403 - 1833-120619-2_143: *id404 - 1833-200619-1_184: *id405 - 1833-200619-2_264: *id406 - 1833-200619-3_128: *id407 - 1833-200619-4_102: *id408 - 1833-260619-3_160: *id409 - 1833-260619-4_196: *id410 - 1833-290519-1_176: *id411 - 1833-290519-2_72: *id412 - 1833-290519-4_130: &id469 + 1833-290519-3_138: + 1833-010719-1_171: *id393 + 1833-010719-2_241: *id394 + 1833-020719-1_140: *id395 + 1833-020719-2_140: *id396 + 1833-020719-3_23: *id397 + 1833-020719-4_290: *id398 + 1833-120619-2_69: *id399 + 1833-200619-1_151: *id400 + 1833-200619-2_257: *id401 + 1833-200619-3_82: *id402 + 1833-200619-4_74: *id403 + 1833-260619-3_160: *id404 + 1833-260619-4_196: *id405 + 1833-290519-1_176: *id406 + 1833-290519-2_72: *id407 + 1833-290519-4_130: &id453 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - QzSTQyOJyz8= - 1833-290519-3_153: - 1833-010719-1_171: *id413 - 1833-010719-2_133: *id414 - 1833-020719-1_140: *id415 - 1833-020719-2_140: *id416 - 1833-020719-3_23: *id417 - 1833-020719-4_290: *id418 - 1833-290519-1_162: *id419 - 1833-290519-4_129: &id453 + yS88ajfAlD8= + 1833-290519-3_96: + 1833-010719-1_216: *id408 + 1833-010719-2_243: *id409 + 1833-020719-1_151: *id410 + 1833-020719-2_136: *id411 + 1833-020719-3_17: *id412 + 1833-020719-4_289: *id413 + 1833-050619-1_107: *id414 + 1833-050619-2_143: *id415 + 1833-050619-3_147: *id416 + 1833-050619-4_148: *id417 + 1833-060619-1_174: *id418 + 1833-120619-2_143: *id419 + 1833-200619-1_184: *id420 + 1833-200619-2_264: *id421 + 1833-200619-3_128: *id422 + 1833-200619-4_102: *id423 + 1833-260619-1_114: *id424 + 1833-260619-2_146: *id425 + 1833-260619-3_176: *id426 + 1833-260619-4_206: *id427 + 1833-290519-1_102: *id428 + 1833-290519-2_108: *id429 + 1833-290519-4_92: &id476 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5fkPTye01D8= - 1833-290519-3_68: - 1833-010719-1_240: *id420 - 1833-010719-2_259: *id421 - 1833-020719-1_164: *id422 - 1833-020719-2_139: *id423 - 1833-020719-3_164: *id424 - 1833-020719-4_318: *id425 - 1833-290519-1_101: *id426 - 1833-290519-2_108: *id427 - 1833-290519-3_99: - 1833-010719-1_198: *id428 - 1833-010719-2_174: *id429 - 1833-020719-1_153: *id430 - 1833-020719-2_146: *id431 - 1833-020719-3_170: *id432 - 1833-020719-4_298: *id433 - 1833-120619-2_69: *id434 - 1833-200619-1_151: *id435 - 1833-200619-2_257: *id436 - 1833-200619-3_82: *id437 - 1833-200619-4_74: *id438 - 1833-260619-1_114: *id439 - 1833-260619-2_146: *id440 - 1833-260619-3_176: *id441 - 1833-260619-4_206: *id442 - 1833-290519-1_102: *id443 - 1833-290519-2_74: *id444 - 1833-290519-4_92: &id492 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - oTbHCkif0j8= + /8FFajEekj8= 1833-290519-4_129: - 1833-010719-1_240: *id445 - 1833-010719-2_133: *id446 - 1833-020719-1_164: *id447 - 1833-020719-2_146: *id448 - 1833-020719-3_170: *id449 - 1833-020719-4_289: *id450 - 1833-290519-1_162: *id451 - 1833-290519-2_108: *id452 - 1833-290519-3_153: *id453 + 1833-010719-1_240: *id430 + 1833-010719-2_133: *id431 + 1833-020719-1_164: *id432 + 1833-020719-2_146: *id433 + 1833-020719-3_170: *id434 + 1833-020719-4_289: *id435 + 1833-290519-1_162: *id436 + 1833-290519-2_108: *id437 1833-290519-4_130: - 1833-010719-1_171: *id454 - 1833-010719-2_241: *id455 - 1833-020719-1_140: *id456 - 1833-020719-2_140: *id457 - 1833-020719-3_23: *id458 - 1833-020719-4_290: *id459 - 1833-120619-2_69: *id460 - 1833-200619-1_151: *id461 - 1833-200619-2_257: *id462 - 1833-200619-3_82: *id463 - 1833-200619-4_74: *id464 - 1833-260619-3_160: *id465 - 1833-260619-4_196: *id466 - 1833-290519-1_176: *id467 - 1833-290519-2_72: *id468 - 1833-290519-3_102: *id469 + 1833-010719-1_171: *id438 + 1833-010719-2_241: *id439 + 1833-020719-1_140: *id440 + 1833-020719-2_140: *id441 + 1833-020719-3_23: *id442 + 1833-020719-4_290: *id443 + 1833-120619-2_69: *id444 + 1833-200619-1_151: *id445 + 1833-200619-2_257: *id446 + 1833-200619-3_82: *id447 + 1833-200619-4_74: *id448 + 1833-260619-3_160: *id449 + 1833-260619-4_196: *id450 + 1833-290519-1_176: *id451 + 1833-290519-2_72: *id452 + 1833-290519-3_138: *id453 1833-290519-4_92: - 1833-010719-1_216: *id470 - 1833-010719-2_243: *id471 - 1833-020719-1_151: *id472 - 1833-020719-2_136: *id473 - 1833-020719-3_17: *id474 - 1833-020719-4_318: *id475 - 1833-050619-1_107: *id476 - 1833-050619-2_143: *id477 - 1833-050619-3_147: *id478 - 1833-050619-4_148: *id479 - 1833-060619-1_174: *id480 - 1833-120619-2_143: *id481 - 1833-200619-1_184: *id482 - 1833-200619-2_264: *id483 - 1833-200619-3_128: *id484 - 1833-200619-4_102: *id485 - 1833-260619-1_114: *id486 - 1833-260619-2_146: *id487 - 1833-260619-3_176: *id488 - 1833-260619-4_206: *id489 - 1833-290519-1_102: *id490 - 1833-290519-2_74: *id491 - 1833-290519-3_99: *id492 -_node: &id495 + 1833-010719-1_216: *id454 + 1833-010719-2_243: *id455 + 1833-020719-1_151: *id456 + 1833-020719-2_136: *id457 + 1833-020719-3_17: *id458 + 1833-020719-4_318: *id459 + 1833-050619-1_107: *id460 + 1833-050619-2_143: *id461 + 1833-050619-3_147: *id462 + 1833-050619-4_148: *id463 + 1833-060619-1_174: *id464 + 1833-120619-2_143: *id465 + 1833-200619-1_184: *id466 + 1833-200619-2_264: *id467 + 1833-200619-3_128: *id468 + 1833-200619-4_102: *id469 + 1833-260619-1_114: *id470 + 1833-260619-2_146: *id471 + 1833-260619-3_176: *id472 + 1833-260619-4_206: *id473 + 1833-290519-1_102: *id474 + 1833-290519-2_74: *id475 + 1833-290519-3_96: *id476 +_node: &id479 1833-010719-1_171: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id493 !!python/object/apply:numpy.dtype + - &id477 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -4009,403 +3879,391 @@ _node: &id495 1833-010719-1_198: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | xgAAAAAAAAA= 1833-010719-1_216: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | 2AAAAAAAAAA= 1833-010719-1_240: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | 8AAAAAAAAAA= 1833-010719-2_133: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | hQAAAAAAAAA= 1833-010719-2_157: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | nQAAAAAAAAA= 1833-010719-2_173: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | rQAAAAAAAAA= 1833-010719-2_174: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | rgAAAAAAAAA= 1833-010719-2_187: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | uwAAAAAAAAA= 1833-010719-2_188: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | vAAAAAAAAAA= 1833-010719-2_241: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | 8QAAAAAAAAA= 1833-010719-2_243: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | 8wAAAAAAAAA= 1833-010719-2_259: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | AwEAAAAAAAA= 1833-020719-1_135: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | hwAAAAAAAAA= 1833-020719-1_140: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | jAAAAAAAAAA= 1833-020719-1_151: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | lwAAAAAAAAA= 1833-020719-1_153: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | mQAAAAAAAAA= 1833-020719-1_164: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | pAAAAAAAAAA= 1833-020719-2_107: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | awAAAAAAAAA= 1833-020719-2_136: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | iAAAAAAAAAA= 1833-020719-2_139: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | iwAAAAAAAAA= 1833-020719-2_140: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | jAAAAAAAAAA= 1833-020719-2_146: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | kgAAAAAAAAA= 1833-020719-3_152: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | mAAAAAAAAAA= 1833-020719-3_164: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | pAAAAAAAAAA= 1833-020719-3_17: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | EQAAAAAAAAA= 1833-020719-3_170: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | qgAAAAAAAAA= 1833-020719-3_23: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | FwAAAAAAAAA= 1833-020719-4_289: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | IQEAAAAAAAA= 1833-020719-4_290: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | IgEAAAAAAAA= 1833-020719-4_298: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | KgEAAAAAAAA= 1833-020719-4_318: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | PgEAAAAAAAA= 1833-050619-1_107: action_id: 1833-050619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | awAAAAAAAAA= 1833-050619-2_143: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | jwAAAAAAAAA= 1833-050619-3_147: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | kwAAAAAAAAA= 1833-050619-4_148: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | lAAAAAAAAAA= 1833-060619-1_174: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | rgAAAAAAAAA= 1833-120619-2_143: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | jwAAAAAAAAA= 1833-120619-2_69: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | RQAAAAAAAAA= 1833-200619-1_151: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | lwAAAAAAAAA= 1833-200619-1_184: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | uAAAAAAAAAA= 1833-200619-2_257: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | AQEAAAAAAAA= 1833-200619-2_264: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | CAEAAAAAAAA= 1833-200619-3_128: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | gAAAAAAAAAA= 1833-200619-3_82: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | UgAAAAAAAAA= 1833-200619-4_102: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | ZgAAAAAAAAA= 1833-200619-4_74: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | SgAAAAAAAAA= 1833-260619-1_114: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | cgAAAAAAAAA= 1833-260619-2_146: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | kgAAAAAAAAA= 1833-260619-3_160: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | oAAAAAAAAAA= 1833-260619-3_176: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | sAAAAAAAAAA= 1833-260619-4_196: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | xAAAAAAAAAA= 1833-260619-4_206: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | zgAAAAAAAAA= 1833-290519-1_101: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | ZQAAAAAAAAA= 1833-290519-1_102: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | ZgAAAAAAAAA= 1833-290519-1_162: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | ogAAAAAAAAA= 1833-290519-1_176: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | sAAAAAAAAAA= 1833-290519-2_108: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | bAAAAAAAAAA= 1833-290519-2_72: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | SAAAAAAAAAA= 1833-290519-2_74: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | SgAAAAAAAAA= - 1833-290519-3_102: + 1833-290519-3_138: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | - ZgAAAAAAAAA= - 1833-290519-3_153: + igAAAAAAAAA= + 1833-290519-3_96: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | - mQAAAAAAAAA= - 1833-290519-3_68: - action_id: 1833-290519-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 - - !!binary | - RAAAAAAAAAA= - 1833-290519-3_99: - action_id: 1833-290519-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 - - !!binary | - YwAAAAAAAAA= + YAAAAAAAAAA= 1833-290519-4_129: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | gQAAAAAAAAA= 1833-290519-4_130: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | ggAAAAAAAAA= 1833-290519-4_92: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id493 + - *id477 - !!binary | XAAAAAAAAAA= -adjlist_inner_dict_factory: &id494 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id494 -edge_attr_dict_factory: *id494 +adjlist_inner_dict_factory: &id478 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id478 +edge_attr_dict_factory: *id478 graph: {} -node_dict_factory: *id494 +node_dict_factory: *id478 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id495 + _nodes: *id479 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml index 282011e9c..f9fe7eff1 100644 --- a/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml +++ b/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml @@ -73,13 +73,6 @@ _adj: - *id001 - !!binary | N3qYcmam0T8= - 1833-290519-3_145: &id230 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - d10iAvjS3T8= 1833-010719-2_231: 1833-020719-3_45: &id002 depth_delta: 0.0 @@ -200,14 +193,14 @@ _adj: - *id001 - !!binary | bzk8dbvGtz8= - 1833-290519-3_76: &id235 + 1833-290519-3_80: &id221 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Sz78tdSCxz8= - 1833-290519-4_71: &id253 + t4Mo/3gtyD8= + 1833-290519-4_71: &id240 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -244,14 +237,14 @@ _adj: - *id001 - !!binary | mKR8W7hsyT8= - 1833-290519-3_76: &id236 + 1833-290519-3_80: &id222 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 12wgo3Ja0j8= - 1833-290519-4_71: &id254 + trNVavXuwj8= + 1833-290519-4_71: &id241 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -336,13 +329,6 @@ _adj: - *id001 - !!binary | t6Zj4WxDwT8= - 1833-290519-3_135: &id221 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VAuD6fD+2D8= 1833-020719-3_95: 1833-010719-2_223: *id003 1833-050619-1_25: &id007 @@ -429,13 +415,6 @@ _adj: - *id001 - !!binary | GPoKVZHB0T8= - 1833-290519-3_145: &id231 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 1N0MB8YB2j8= 1833-020719-4_250: 1833-010719-2_231: *id004 1833-020719-3_45: *id005 @@ -551,14 +530,14 @@ _adj: - *id001 - !!binary | MTZdcblQwD8= - 1833-290519-3_76: &id237 + 1833-290519-3_80: &id223 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ncC0n6zf0z8= - 1833-290519-4_71: &id255 + z1d30UjWwj8= + 1833-290519-4_71: &id242 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -674,14 +653,14 @@ _adj: - *id001 - !!binary | cuyQIQ6eyT8= - 1833-290519-3_76: &id238 + 1833-290519-3_80: &id224 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 3Qux2ibNyj8= - 1833-290519-4_71: &id256 + 1LDtkcFbxz8= + 1833-290519-4_71: &id243 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -770,14 +749,14 @@ _adj: - *id001 - !!binary | fGSETadzyD8= - 1833-290519-3_135: &id222 + 1833-290519-3_80: &id225 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - z1qpUAGSyz8= - 1833-290519-4_71: &id257 + uvgMbELqxT8= + 1833-290519-4_71: &id244 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -857,13 +836,6 @@ _adj: - *id001 - !!binary | RM6cEJLazj8= - 1833-290519-3_76: &id239 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - WSpM7CsJzT8= 1833-050619-3_123: 1833-010719-2_231: *id015 1833-020719-3_94: *id016 @@ -931,13 +903,6 @@ _adj: - *id001 - !!binary | h7kZGGNBzz8= - 1833-290519-3_76: &id240 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - D4BYdFJlzD8= 1833-050619-3_145: 1833-010719-2_223: *id018 1833-020719-3_95: *id019 @@ -1014,14 +979,14 @@ _adj: - *id001 - !!binary | 0wzPlcWvyD8= - 1833-290519-3_135: &id223 + 1833-290519-3_80: &id226 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Ed09Sb6/yz8= - 1833-290519-4_71: &id258 + 1QVaBIJ0xj8= + 1833-290519-4_71: &id245 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1098,14 +1063,14 @@ _adj: - *id001 - !!binary | 2eS3V+UjyD8= - 1833-290519-3_135: &id224 + 1833-290519-3_80: &id227 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4e7ItohXyz8= - 1833-290519-4_71: &id259 + QN14hSW6xT8= + 1833-290519-4_71: &id246 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1173,13 +1138,6 @@ _adj: - *id001 - !!binary | /vheAO5jzj8= - 1833-290519-3_76: &id241 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - z5U66cPmyz8= 1833-060619-1_144: 1833-010719-2_231: *id033 1833-020719-3_94: *id034 @@ -1214,13 +1172,6 @@ _adj: - *id001 - !!binary | kV/LArFqzz8= - 1833-290519-3_76: &id242 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 4wCApaLLzD8= 1833-060619-1_172: 1833-010719-2_223: *id038 1833-020719-3_95: *id039 @@ -1306,14 +1257,14 @@ _adj: - *id001 - !!binary | lamsDkHDyD8= - 1833-290519-3_135: &id225 + 1833-290519-3_80: &id228 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - JnpGcve3yT8= - 1833-290519-4_71: &id260 + yL+LDLa3xj8= + 1833-290519-4_71: &id247 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1399,14 +1350,14 @@ _adj: - *id001 - !!binary | SwnHAr0NyT8= - 1833-290519-3_76: &id243 + 1833-290519-3_80: &id229 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rTZA1TAryT8= - 1833-290519-4_71: &id261 + rA1MNSrAxj8= + 1833-290519-4_71: &id248 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1486,14 +1437,14 @@ _adj: - *id001 - !!binary | W0MtgfY6xj8= - 1833-290519-3_76: &id244 + 1833-290519-3_80: &id230 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rCplHILSxj8= - 1833-290519-4_71: &id262 + YMo+HM7IxD8= + 1833-290519-4_71: &id249 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1567,14 +1518,14 @@ _adj: - *id001 - !!binary | 1nYoDYahxT8= - 1833-290519-3_135: &id226 + 1833-290519-3_80: &id231 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - SY/7HaPvxj8= - 1833-290519-4_71: &id263 + UqR3ngIdxD8= + 1833-290519-4_71: &id250 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1609,13 +1560,6 @@ _adj: - *id001 - !!binary | BKAeJZUsyT8= - 1833-290519-3_76: &id245 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - RsUcZ8VQyD8= 1833-120619-3_100: 1833-010719-2_231: *id078 1833-020719-3_94: *id079 @@ -1638,13 +1582,6 @@ _adj: - *id001 - !!binary | wx3jEYGKzT8= - 1833-290519-3_76: &id246 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - FBvSl1f+yz8= 1833-120619-3_101: 1833-020719-3_95: *id085 1833-200619-4_124: &id162 @@ -1661,13 +1598,6 @@ _adj: - *id001 - !!binary | 6igmDqKH0z8= - 1833-290519-3_135: &id227 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - RXVk1n3w0T8= 1833-120619-3_147: 1833-010719-2_223: *id086 1833-020719-3_45: *id087 @@ -1722,14 +1652,14 @@ _adj: - *id001 - !!binary | jJlo2q8GyT8= - 1833-290519-3_145: &id232 + 1833-290519-3_80: &id232 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - uGI8oP+4yz8= - 1833-290519-4_71: &id264 + s+HsdZAdxT8= + 1833-290519-4_71: &id251 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1791,14 +1721,14 @@ _adj: - *id001 - !!binary | 2nv8jXqUxj8= - 1833-290519-3_76: &id247 + 1833-290519-3_80: &id233 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - hDzSiW/3xj8= - 1833-290519-4_71: &id265 + XCrl1TbmxD8= + 1833-290519-4_71: &id252 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1854,14 +1784,14 @@ _adj: - *id001 - !!binary | IK2rU+9Wzz8= - 1833-290519-3_76: &id248 + 1833-290519-3_80: &id234 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5Y6pALyr0T8= - 1833-290519-4_71: &id266 + Di7CM+8Pyj8= + 1833-290519-4_71: &id253 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1911,14 +1841,14 @@ _adj: - *id001 - !!binary | LSu+CUg+yz8= - 1833-290519-3_76: &id249 + 1833-290519-3_80: &id235 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zO1iFyeq0T8= - 1833-290519-4_71: &id267 + n6FQKnZkzz8= + 1833-290519-4_71: &id254 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1962,14 +1892,14 @@ _adj: - *id001 - !!binary | chdDPinhzT8= - 1833-290519-3_76: &id250 + 1833-290519-3_80: &id236 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 9+imQC5Jzj8= - 1833-290519-4_71: &id268 + 5fXQCYJ7yj8= + 1833-290519-4_71: &id255 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2007,14 +1937,14 @@ _adj: - *id001 - !!binary | Kpf0Rgpo4D8= - 1833-290519-3_145: &id233 + 1833-290519-3_80: &id237 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jh5VNXy24D8= - 1833-290519-4_71: &id269 + XvNY7VTm3z8= + 1833-290519-4_71: &id256 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2044,13 +1974,6 @@ _adj: - *id001 - !!binary | PBZPZ8W/zT8= - 1833-290519-3_135: &id228 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - KYn8+HK30T8= 1833-290519-1_80: 1833-010719-2_223: *id182 1833-020719-3_45: *id183 @@ -2069,14 +1992,14 @@ _adj: - *id001 - !!binary | xB8zLnfUxT8= - 1833-290519-3_76: &id251 + 1833-290519-3_80: &id238 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 0h9fxRck0z8= - 1833-290519-4_71: &id270 + RFobXcJruz8= + 1833-290519-4_71: &id257 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2099,13 +2022,6 @@ _adj: 1833-200619-1_165: *id204 1833-200619-3_113: *id205 1833-290519-1_118: *id206 - 1833-290519-3_76: &id252 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - /iGMzO8XzD8= 1833-290519-2_122: 1833-010719-2_223: *id207 1833-020719-3_94: *id208 @@ -2119,14 +2035,14 @@ _adj: 1833-200619-2_254: *id216 1833-200619-4_124: *id217 1833-290519-1_80: *id218 - 1833-290519-3_145: &id234 + 1833-290519-3_80: &id239 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ccU0a2jUzT8= - 1833-290519-4_71: &id271 + 2Y8U00wWxD8= + 1833-290519-4_71: &id258 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2136,81 +2052,59 @@ _adj: 1833-290519-2_124: 1833-020719-3_95: *id219 1833-120619-3_147: *id220 - 1833-290519-3_135: &id229 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - FQH+zsKt0z8= - 1833-290519-3_135: - 1833-020719-3_94: *id221 - 1833-050619-2_137: *id222 - 1833-050619-3_145: *id223 - 1833-050619-4_151: *id224 - 1833-060619-1_172: *id225 - 1833-120619-2_170: *id226 - 1833-120619-3_101: *id227 - 1833-290519-1_118: *id228 - 1833-290519-2_124: *id229 - 1833-290519-3_145: - 1833-010719-2_223: *id230 - 1833-020719-3_95: *id231 + 1833-290519-3_80: + 1833-010719-2_231: *id221 + 1833-020719-3_45: *id222 + 1833-020719-4_250: *id223 + 1833-050619-1_25: *id224 + 1833-050619-2_137: *id225 + 1833-050619-3_145: *id226 + 1833-050619-4_151: *id227 + 1833-060619-1_172: *id228 + 1833-060619-2_108: *id229 + 1833-120619-1_137: *id230 + 1833-120619-2_170: *id231 1833-120619-3_147: *id232 - 1833-200619-4_124: *id233 - 1833-290519-2_122: *id234 - 1833-290519-3_76: - 1833-010719-2_231: *id235 - 1833-020719-3_45: *id236 - 1833-020719-4_250: *id237 - 1833-050619-1_25: *id238 - 1833-050619-2_97: *id239 - 1833-050619-3_123: *id240 - 1833-050619-4_80: *id241 - 1833-060619-1_144: *id242 - 1833-060619-2_108: *id243 - 1833-120619-1_137: *id244 - 1833-120619-2_81: *id245 - 1833-120619-3_100: *id246 - 1833-120619-4_119: *id247 - 1833-200619-1_165: *id248 - 1833-200619-2_254: *id249 - 1833-200619-3_113: *id250 - 1833-290519-1_80: *id251 - 1833-290519-2_114: *id252 - 1833-290519-4_71: &id272 + 1833-120619-4_119: *id233 + 1833-200619-1_165: *id234 + 1833-200619-2_254: *id235 + 1833-200619-3_113: *id236 + 1833-200619-4_124: *id237 + 1833-290519-1_80: *id238 + 1833-290519-2_122: *id239 + 1833-290519-4_71: &id259 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - mbG/LOFW1z8= + u16MStawtz8= 1833-290519-4_71: - 1833-010719-2_231: *id253 - 1833-020719-3_45: *id254 - 1833-020719-4_250: *id255 - 1833-050619-1_25: *id256 - 1833-050619-2_137: *id257 - 1833-050619-3_145: *id258 - 1833-050619-4_151: *id259 - 1833-060619-1_172: *id260 - 1833-060619-2_108: *id261 - 1833-120619-1_137: *id262 - 1833-120619-2_170: *id263 - 1833-120619-3_147: *id264 - 1833-120619-4_119: *id265 - 1833-200619-1_165: *id266 - 1833-200619-2_254: *id267 - 1833-200619-3_113: *id268 - 1833-200619-4_124: *id269 - 1833-290519-1_80: *id270 - 1833-290519-2_122: *id271 - 1833-290519-3_76: *id272 -_node: &id275 + 1833-010719-2_231: *id240 + 1833-020719-3_45: *id241 + 1833-020719-4_250: *id242 + 1833-050619-1_25: *id243 + 1833-050619-2_137: *id244 + 1833-050619-3_145: *id245 + 1833-050619-4_151: *id246 + 1833-060619-1_172: *id247 + 1833-060619-2_108: *id248 + 1833-120619-1_137: *id249 + 1833-120619-2_170: *id250 + 1833-120619-3_147: *id251 + 1833-120619-4_119: *id252 + 1833-200619-1_165: *id253 + 1833-200619-2_254: *id254 + 1833-200619-3_113: *id255 + 1833-200619-4_124: *id256 + 1833-290519-1_80: *id257 + 1833-290519-2_122: *id258 + 1833-290519-3_80: *id259 +_node: &id262 1833-010719-2_223: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id273 !!python/object/apply:numpy.dtype + - &id260 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -2218,217 +2112,205 @@ _node: &id275 1833-010719-2_231: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | 5wAAAAAAAAA= 1833-020719-3_45: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | LQAAAAAAAAA= 1833-020719-3_94: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | XgAAAAAAAAA= 1833-020719-3_95: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | XwAAAAAAAAA= 1833-020719-4_250: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | +gAAAAAAAAA= 1833-050619-1_25: action_id: 1833-050619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | GQAAAAAAAAA= 1833-050619-2_137: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | iQAAAAAAAAA= 1833-050619-2_97: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | YQAAAAAAAAA= 1833-050619-3_123: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | ewAAAAAAAAA= 1833-050619-3_145: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | kQAAAAAAAAA= 1833-050619-4_151: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | lwAAAAAAAAA= 1833-050619-4_80: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | UAAAAAAAAAA= 1833-060619-1_144: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | kAAAAAAAAAA= 1833-060619-1_172: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | rAAAAAAAAAA= 1833-060619-2_108: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | bAAAAAAAAAA= 1833-120619-1_137: action_id: 1833-120619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | iQAAAAAAAAA= 1833-120619-2_170: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | qgAAAAAAAAA= 1833-120619-2_81: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | UQAAAAAAAAA= 1833-120619-3_100: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | ZAAAAAAAAAA= 1833-120619-3_101: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | ZQAAAAAAAAA= 1833-120619-3_147: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | kwAAAAAAAAA= 1833-120619-4_119: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | dwAAAAAAAAA= 1833-200619-1_165: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | pQAAAAAAAAA= 1833-200619-2_254: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | /gAAAAAAAAA= 1833-200619-3_113: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | cQAAAAAAAAA= 1833-200619-4_124: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | fAAAAAAAAAA= 1833-290519-1_118: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | dgAAAAAAAAA= 1833-290519-1_80: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | UAAAAAAAAAA= 1833-290519-2_114: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | cgAAAAAAAAA= 1833-290519-2_122: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | egAAAAAAAAA= 1833-290519-2_124: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | fAAAAAAAAAA= - 1833-290519-3_135: + 1833-290519-3_80: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | - hwAAAAAAAAA= - 1833-290519-3_145: - action_id: 1833-290519-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 - - !!binary | - kQAAAAAAAAA= - 1833-290519-3_76: - action_id: 1833-290519-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 - - !!binary | - TAAAAAAAAAA= + UAAAAAAAAAA= 1833-290519-4_71: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id273 + - *id260 - !!binary | RwAAAAAAAAA= -adjlist_inner_dict_factory: &id274 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id274 -edge_attr_dict_factory: *id274 +adjlist_inner_dict_factory: &id261 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id261 +edge_attr_dict_factory: *id261 graph: {} -node_dict_factory: *id274 +node_dict_factory: *id261 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id275 + _nodes: *id262 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml index 62a27bc0b..eb474ba5f 100644 --- a/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml +++ b/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml @@ -73,14 +73,14 @@ _adj: - *id001 - !!binary | G2P6VYZKzD8= - 1833-290519-3_143: &id457 + 1833-290519-3_130: &id466 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - LVbp5VMI1T8= - 1833-290519-4_121: &id504 + bzd3lhClzD8= + 1833-290519-4_121: &id500 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -130,13 +130,6 @@ _adj: - *id001 - !!binary | zRSonG52wD8= - 1833-290519-3_109: &id428 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - SVID0Hqw1j8= 1833-010719-1_150: 1833-020719-2_126: &id009 depth_delta: 0.0 @@ -180,14 +173,14 @@ _adj: - *id001 - !!binary | l1CGJGc4wD8= - 1833-290519-3_117: &id432 + 1833-290519-3_113: &id452 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +P5z5pF30z8= - 1833-290519-4_98: &id513 + oDrFlOadtT8= + 1833-290519-4_98: &id509 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -363,14 +356,14 @@ _adj: - *id001 - !!binary | Thg9yBBpwD8= - 1833-290519-3_139: &id451 + 1833-290519-3_109: &id428 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - tqODMxdl0T8= - 1833-290519-4_115: &id478 + XWO37HuYwD8= + 1833-290519-4_115: &id474 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -470,14 +463,14 @@ _adj: - *id001 - !!binary | n2C5qR7TxD8= - 1833-290519-3_117: &id433 + 1833-290519-3_113: &id453 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - BRxBbZfk0j8= - 1833-290519-4_98: &id514 + Pnm+jEENyD8= + 1833-290519-4_98: &id510 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -647,14 +640,14 @@ _adj: - *id001 - !!binary | gzS1mDpbwD8= - 1833-290519-3_143: &id458 + 1833-290519-3_109: &id429 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - VPBunUS5zz8= - 1833-290519-4_115: &id479 + ux84z2BQwT8= + 1833-290519-4_115: &id475 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -818,14 +811,14 @@ _adj: - *id001 - !!binary | les/HdC0wT8= - 1833-290519-3_117: &id434 + 1833-290519-3_113: &id454 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Y/jwB3AK0z8= - 1833-290519-4_115: &id480 + wRmkWGDXwD8= + 1833-290519-4_115: &id476 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -983,14 +976,14 @@ _adj: - *id001 - !!binary | Rg1XO5jrxD8= - 1833-290519-3_143: &id459 + 1833-290519-3_109: &id430 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +JY8kaZR0z8= - 1833-290519-4_115: &id481 + tO3E91guyD8= + 1833-290519-4_115: &id477 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1084,14 +1077,14 @@ _adj: - *id001 - !!binary | VLZrfoD1vz8= - 1833-290519-3_117: &id435 + 1833-290519-3_113: &id455 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - i9yN6+LE0D8= - 1833-290519-4_98: &id515 + TxmY8jHDtT8= + 1833-290519-4_98: &id511 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1171,14 +1164,14 @@ _adj: - *id001 - !!binary | 9rc+o0kdxT8= - 1833-290519-3_117: &id436 + 1833-290519-3_130: &id467 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - RRG0YG0R1j8= - 1833-290519-4_121: &id505 + Z5x+L6E0xz8= + 1833-290519-4_121: &id501 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1330,14 +1323,14 @@ _adj: - *id001 - !!binary | PevdT024wj8= - 1833-290519-3_143: &id460 + 1833-290519-3_109: &id431 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - DPHzc5rT0D8= - 1833-290519-4_115: &id482 + wuO5Pc6Lwj8= + 1833-290519-4_115: &id478 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1382,14 +1375,14 @@ _adj: - *id001 - !!binary | 96u5Y2s3vj8= - 1833-290519-3_139: &id452 + 1833-290519-3_113: &id456 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ZF1fiw8Z1D8= - 1833-290519-4_98: &id516 + ZBuSgP73sT8= + 1833-290519-4_98: &id512 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1535,14 +1528,14 @@ _adj: - *id001 - !!binary | XoZmKhmGwz8= - 1833-290519-3_143: &id461 + 1833-290519-3_109: &id432 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Puf2GCTI0j8= - 1833-290519-4_115: &id483 + pm8Ka5Cjwj8= + 1833-290519-4_115: &id479 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1624,14 +1617,14 @@ _adj: - *id001 - !!binary | 9yB4+gQxvj8= - 1833-290519-3_117: &id437 + 1833-290519-3_113: &id457 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - e9rE/Sg40j8= - 1833-290519-4_98: &id517 + 2cpSkE7zsD8= + 1833-290519-4_98: &id513 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1771,14 +1764,14 @@ _adj: - *id001 - !!binary | LA1+8oiywD8= - 1833-290519-3_143: &id462 + 1833-290519-3_109: &id433 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - NVqzaj/Byz8= - 1833-290519-4_115: &id484 + plsCvBk7sD8= + 1833-290519-4_115: &id480 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1912,14 +1905,14 @@ _adj: - *id001 - !!binary | 3xXFE3OgwD8= - 1833-290519-3_143: &id463 + 1833-290519-3_109: &id434 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 43SnARhlzD8= - 1833-290519-4_115: &id485 + 1BuCpAmtsz8= + 1833-290519-4_115: &id481 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2047,14 +2040,14 @@ _adj: - *id001 - !!binary | 8i1K6SKEwD8= - 1833-290519-3_143: &id464 + 1833-290519-3_109: &id435 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - M0iC0PQAzz8= - 1833-290519-4_115: &id486 + DHvCBua9tj8= + 1833-290519-4_115: &id482 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2146,14 +2139,14 @@ _adj: - *id001 - !!binary | da4y2OBwwz8= - 1833-290519-3_117: &id438 + 1833-290519-3_113: &id458 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - GYNt5UeQ0j8= - 1833-290519-4_98: &id518 + qY9SPb9xyT8= + 1833-290519-4_98: &id514 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2259,14 +2252,14 @@ _adj: - *id001 - !!binary | P1jpiSSfsT8= - 1833-290519-3_143: &id465 + 1833-290519-3_109: &id436 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - s4oLS4bryT8= - 1833-290519-4_115: &id487 + 5X1TqgqqqD8= + 1833-290519-4_115: &id483 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2382,14 +2375,14 @@ _adj: - *id001 - !!binary | OS+0Ed1Awj8= - 1833-290519-3_143: &id466 + 1833-290519-3_109: &id437 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Q4gcUZXu0D8= - 1833-290519-4_115: &id488 + vK0KSmxLvz8= + 1833-290519-4_115: &id484 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2459,14 +2452,14 @@ _adj: - *id001 - !!binary | MeHUu0lpwz8= - 1833-290519-3_117: &id439 + 1833-290519-3_130: &id468 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - oYevhVtO0z8= - 1833-290519-4_121: &id506 + EpFmvDnfyD8= + 1833-290519-4_121: &id502 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2576,14 +2569,14 @@ _adj: - *id001 - !!binary | HaUM6qsIxD8= - 1833-290519-3_143: &id467 + 1833-290519-3_109: &id438 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - VloKBphT0z8= - 1833-290519-4_115: &id489 + PU9UH0IkxD8= + 1833-290519-4_115: &id485 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2647,14 +2640,14 @@ _adj: - *id001 - !!binary | t+s8MDw9vT8= - 1833-290519-3_117: &id440 + 1833-290519-3_130: &id469 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ZtVM+rYu1D8= - 1833-290519-4_121: &id507 + GsEYKBcHxD8= + 1833-290519-4_121: &id503 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2758,14 +2751,14 @@ _adj: - *id001 - !!binary | uYA3C4qWwT8= - 1833-290519-3_143: &id468 + 1833-290519-3_109: &id439 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - dwf6v4Wmyj8= - 1833-290519-4_115: &id490 + 71xZFwS1tz8= + 1833-290519-4_115: &id486 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2788,13 +2781,6 @@ _adj: - *id001 - !!binary | vzKVbO0SyT8= - 1833-290519-3_117: &id441 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - X62KDTIAxz8= 1833-120619-2_123: 1833-010719-1_134: *id110 1833-010719-2_221: *id111 @@ -2845,14 +2831,14 @@ _adj: - *id001 - !!binary | rC5flr9Wxz8= - 1833-290519-3_109: &id429 + 1833-290519-3_130: &id470 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ow2b7FX01D8= - 1833-290519-4_121: &id508 + PIVSWR4OyT8= + 1833-290519-4_121: &id504 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2929,14 +2915,14 @@ _adj: - *id001 - !!binary | Y3shaEKJwD8= - 1833-290519-3_139: &id453 + 1833-290519-3_113: &id459 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 2kbma/zt0D8= - 1833-290519-4_98: &id519 + SUXt5C9Tyj8= + 1833-290519-4_98: &id515 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2989,14 +2975,14 @@ _adj: - *id001 - !!binary | zEXnxQUiuT8= - 1833-290519-3_143: &id469 + 1833-290519-3_109: &id440 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - aX3PP4O+xT8= - 1833-290519-4_115: &id491 + txtLj53nsD8= + 1833-290519-4_115: &id487 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3088,14 +3074,14 @@ _adj: - *id001 - !!binary | 4A3ZwHRawz8= - 1833-290519-3_143: &id470 + 1833-290519-3_109: &id441 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - UGPjcVwmyD8= - 1833-290519-4_115: &id492 + pN/qXjc8rj8= + 1833-290519-4_115: &id488 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3181,14 +3167,14 @@ _adj: - *id001 - !!binary | DTfkj3Ddwz8= - 1833-290519-3_143: &id471 + 1833-290519-3_109: &id442 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - JoUEk2s6yD8= - 1833-290519-4_115: &id493 + uN3wO9rcqz8= + 1833-290519-4_115: &id489 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3268,14 +3254,14 @@ _adj: - *id001 - !!binary | rg9xrKHIwj8= - 1833-290519-3_117: &id442 + 1833-290519-3_109: &id443 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - atXC5xVpyj8= - 1833-290519-4_115: &id494 + iUTGkEw2sD8= + 1833-290519-4_115: &id490 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3349,14 +3335,14 @@ _adj: - *id001 - !!binary | LWeRsnIawz8= - 1833-290519-3_143: &id472 + 1833-290519-3_109: &id444 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +pHMRxobyj8= - 1833-290519-4_115: &id495 + oMugoxCprT8= + 1833-290519-4_115: &id491 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3408,14 +3394,14 @@ _adj: - *id001 - !!binary | XMZzr9Jwwj8= - 1833-290519-3_117: &id443 + 1833-290519-3_113: &id460 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ZJUqDya31z8= - 1833-290519-4_98: &id520 + GD6QlhL4xD8= + 1833-290519-4_98: &id516 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3483,14 +3469,14 @@ _adj: - *id001 - !!binary | kKGDtalYwj8= - 1833-290519-3_117: &id444 + 1833-290519-3_109: &id445 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IATk65pcyz8= - 1833-290519-4_115: &id496 + kmlY342+sT8= + 1833-290519-4_115: &id492 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3536,14 +3522,14 @@ _adj: - *id001 - !!binary | ZnX0fq2bwz8= - 1833-290519-3_117: &id445 + 1833-290519-3_113: &id461 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /5S9HFgv1D8= - 1833-290519-4_98: &id521 + lL6Ayqp/wz8= + 1833-290519-4_98: &id517 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3605,14 +3591,14 @@ _adj: - *id001 - !!binary | ux+XeQR7wD8= - 1833-290519-3_143: &id473 + 1833-290519-3_109: &id446 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - fn10jaO8zT8= - 1833-290519-4_115: &id497 + g2PNnmSquj8= + 1833-290519-4_115: &id493 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3652,14 +3638,14 @@ _adj: - *id001 - !!binary | 4LgLOL4Dxj8= - 1833-290519-3_117: &id446 + 1833-290519-3_113: &id462 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zVMmtcOz0z8= - 1833-290519-4_98: &id522 + jPKc2tdvxj8= + 1833-290519-4_98: &id518 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3715,14 +3701,14 @@ _adj: - *id001 - !!binary | oC5C3hj7vD8= - 1833-290519-3_143: &id474 + 1833-290519-3_109: &id447 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /hZDhxSEzD8= - 1833-290519-4_115: &id498 + hZEPyNxBvT8= + 1833-290519-4_115: &id494 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3756,14 +3742,14 @@ _adj: - *id001 - !!binary | kKRhoU2utD8= - 1833-290519-3_143: &id475 + 1833-290519-3_109: &id448 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - PxuvHE6Czj8= - 1833-290519-4_115: &id499 + PiTNqdvzsT8= + 1833-290519-4_115: &id495 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3794,14 +3780,14 @@ _adj: - *id001 - !!binary | c15vBlnLxD8= - 1833-290519-3_117: &id447 + 1833-290519-3_113: &id463 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - fs1EqWEP1D8= - 1833-290519-4_98: &id523 + 188MnZEnxT8= + 1833-290519-4_98: &id519 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3821,14 +3807,14 @@ _adj: - *id001 - !!binary | X/IdogjCyT8= - 1833-290519-3_109: &id430 + 1833-290519-3_130: &id471 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 60P60HLy1j8= - 1833-290519-4_121: &id509 + VZcemaLSyT8= + 1833-290519-4_121: &id505 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3869,13 +3855,6 @@ _adj: - *id001 - !!binary | v2E6Fn0RvD8= - 1833-290519-3_139: &id454 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - CdZzfKJuzT8= 1833-260619-4_162: 1833-010719-1_134: *id320 1833-020719-2_126: *id321 @@ -3890,14 +3869,14 @@ _adj: - *id001 - !!binary | xtcKUVLBwT8= - 1833-290519-3_143: &id476 + 1833-290519-3_109: &id449 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qNBcJorE0j8= - 1833-290519-4_115: &id500 + InIfLVr9wD8= + 1833-290519-4_115: &id496 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3923,14 +3902,14 @@ _adj: - *id001 - !!binary | fBGjlWQiwT8= - 1833-290519-3_117: &id448 + 1833-290519-3_130: &id472 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +oCLkK4L0z8= - 1833-290519-4_121: &id510 + vCiXmLjWyz8= + 1833-290519-4_121: &id506 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3974,14 +3953,14 @@ _adj: - *id001 - !!binary | lmEyz1KsvD8= - 1833-290519-3_139: &id455 + 1833-290519-3_113: &id464 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - nWZgOuTYzT8= - 1833-290519-4_98: &id524 + /ADVGOrKxz8= + 1833-290519-4_98: &id520 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4019,14 +3998,14 @@ _adj: - *id001 - !!binary | 2KE5BKcixD8= - 1833-290519-3_143: &id477 + 1833-290519-3_109: &id450 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zT7i+hCLyz8= - 1833-290519-4_115: &id501 + mxHnpSWesT8= + 1833-290519-4_115: &id497 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4039,14 +4018,14 @@ _adj: 1833-060619-2_98: *id384 1833-120619-2_123: *id385 1833-260619-3_113: *id386 - 1833-290519-3_109: &id431 + 1833-290519-3_130: &id473 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - T+dhUa0e2D8= - 1833-290519-4_121: &id511 + LDLShl66uT8= + 1833-290519-4_121: &id507 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4062,13 +4041,6 @@ _adj: 1833-260619-2_115: *id392 1833-260619-3_184: *id393 1833-260619-4_188: *id394 - 1833-290519-3_139: &id456 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - eaTDoDUG0D8= 1833-290519-1_94: 1833-010719-1_150: *id395 1833-020719-2_126: *id396 @@ -4079,14 +4051,14 @@ _adj: 1833-260619-1_100: *id401 1833-260619-3_111: *id402 1833-260619-4_212: *id403 - 1833-290519-3_117: &id449 + 1833-290519-3_113: &id465 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - VbHiGGRy1j8= - 1833-290519-4_98: &id525 + xtWzsyYhuj8= + 1833-290519-4_98: &id521 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4118,14 +4090,14 @@ _adj: 1833-260619-3_184: *id425 1833-260619-4_212: *id426 1833-290519-1_134: *id427 - 1833-290519-3_117: &id450 + 1833-290519-3_109: &id451 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - yHiT0FJV0T8= - 1833-290519-4_115: &id502 + Wqy+PDpLxD8= + 1833-290519-4_115: &id498 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4133,137 +4105,132 @@ _adj: - !!binary | rK5BQD6Zwz8= 1833-290519-3_109: - 1833-010719-1_144: *id428 - 1833-120619-2_123: *id429 - 1833-260619-3_113: *id430 - 1833-290519-1_158: *id431 - 1833-290519-3_117: - 1833-010719-1_150: *id432 - 1833-010719-2_221: *id433 - 1833-020719-1_109: *id434 - 1833-020719-2_126: *id435 - 1833-020719-3_117: *id436 - 1833-020719-4_294: *id437 - 1833-050619-4_79: *id438 - 1833-060619-1_164: *id439 - 1833-060619-2_98: *id440 - 1833-120619-2_100: *id441 - 1833-200619-2_270: *id442 - 1833-200619-3_59: *id443 - 1833-200619-4_94: *id444 - 1833-260619-1_100: *id445 - 1833-260619-2_115: *id446 - 1833-260619-3_111: *id447 - 1833-260619-4_188: *id448 - 1833-290519-1_94: *id449 - 1833-290519-2_80: *id450 - 1833-290519-4_98: &id526 + 1833-010719-1_166: *id428 + 1833-010719-2_235: *id429 + 1833-020719-2_103: *id430 + 1833-020719-3_121: *id431 + 1833-020719-4_266: *id432 + 1833-050619-1_73: *id433 + 1833-050619-2_123: *id434 + 1833-050619-3_127: *id435 + 1833-050619-4_82: *id436 + 1833-060619-1_156: *id437 + 1833-060619-2_68: *id438 + 1833-120619-1_133: *id439 + 1833-120619-2_145: *id440 + 1833-120619-3_136: *id441 + 1833-120619-4_122: *id442 + 1833-200619-2_270: *id443 + 1833-200619-3_122: *id444 + 1833-200619-4_94: *id445 + 1833-260619-1_110: *id446 + 1833-260619-2_154: *id447 + 1833-260619-3_109: *id448 + 1833-260619-4_162: *id449 + 1833-290519-1_134: *id450 + 1833-290519-2_80: *id451 + 1833-290519-4_115: &id499 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - t948LAXgzz8= - 1833-290519-3_139: - 1833-010719-1_166: *id451 - 1833-020719-3_135: *id452 - 1833-120619-2_133: *id453 - 1833-260619-3_184: *id454 - 1833-260619-4_212: *id455 - 1833-290519-1_172: *id456 - 1833-290519-4_121: &id512 + jtER5KQUoT8= + 1833-290519-3_113: + 1833-010719-1_150: *id452 + 1833-010719-2_221: *id453 + 1833-020719-1_109: *id454 + 1833-020719-2_126: *id455 + 1833-020719-3_135: *id456 + 1833-020719-4_294: *id457 + 1833-050619-4_79: *id458 + 1833-120619-2_133: *id459 + 1833-200619-3_59: *id460 + 1833-260619-1_100: *id461 + 1833-260619-2_115: *id462 + 1833-260619-3_111: *id463 + 1833-260619-4_212: *id464 + 1833-290519-1_94: *id465 + 1833-290519-4_98: &id522 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - vQ00zUbG1T8= - 1833-290519-3_143: - 1833-010719-1_134: *id457 - 1833-010719-2_235: *id458 - 1833-020719-2_103: *id459 - 1833-020719-3_121: *id460 - 1833-020719-4_266: *id461 - 1833-050619-1_73: *id462 - 1833-050619-2_123: *id463 - 1833-050619-3_127: *id464 - 1833-050619-4_82: *id465 - 1833-060619-1_156: *id466 - 1833-060619-2_68: *id467 - 1833-120619-1_133: *id468 - 1833-120619-2_145: *id469 - 1833-120619-3_136: *id470 - 1833-120619-4_122: *id471 - 1833-200619-3_122: *id472 - 1833-260619-1_110: *id473 - 1833-260619-2_154: *id474 - 1833-260619-3_109: *id475 - 1833-260619-4_162: *id476 - 1833-290519-1_134: *id477 - 1833-290519-4_115: &id503 + 3uoANTiVoT8= + 1833-290519-3_130: + 1833-010719-1_134: *id466 + 1833-020719-3_117: *id467 + 1833-060619-1_164: *id468 + 1833-060619-2_98: *id469 + 1833-120619-2_123: *id470 + 1833-260619-3_113: *id471 + 1833-260619-4_188: *id472 + 1833-290519-1_158: *id473 + 1833-290519-4_121: &id508 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - AExh0BkSyT8= + mhxBeC4UsD8= 1833-290519-4_115: - 1833-010719-1_166: *id478 - 1833-010719-2_235: *id479 - 1833-020719-1_109: *id480 - 1833-020719-2_103: *id481 - 1833-020719-3_121: *id482 - 1833-020719-4_266: *id483 - 1833-050619-1_73: *id484 - 1833-050619-2_123: *id485 - 1833-050619-3_127: *id486 - 1833-050619-4_82: *id487 - 1833-060619-1_156: *id488 - 1833-060619-2_68: *id489 - 1833-120619-1_133: *id490 - 1833-120619-2_145: *id491 - 1833-120619-3_136: *id492 - 1833-120619-4_122: *id493 - 1833-200619-2_270: *id494 - 1833-200619-3_122: *id495 - 1833-200619-4_94: *id496 - 1833-260619-1_110: *id497 - 1833-260619-2_154: *id498 - 1833-260619-3_109: *id499 - 1833-260619-4_162: *id500 - 1833-290519-1_134: *id501 - 1833-290519-2_80: *id502 - 1833-290519-3_143: *id503 + 1833-010719-1_166: *id474 + 1833-010719-2_235: *id475 + 1833-020719-1_109: *id476 + 1833-020719-2_103: *id477 + 1833-020719-3_121: *id478 + 1833-020719-4_266: *id479 + 1833-050619-1_73: *id480 + 1833-050619-2_123: *id481 + 1833-050619-3_127: *id482 + 1833-050619-4_82: *id483 + 1833-060619-1_156: *id484 + 1833-060619-2_68: *id485 + 1833-120619-1_133: *id486 + 1833-120619-2_145: *id487 + 1833-120619-3_136: *id488 + 1833-120619-4_122: *id489 + 1833-200619-2_270: *id490 + 1833-200619-3_122: *id491 + 1833-200619-4_94: *id492 + 1833-260619-1_110: *id493 + 1833-260619-2_154: *id494 + 1833-260619-3_109: *id495 + 1833-260619-4_162: *id496 + 1833-290519-1_134: *id497 + 1833-290519-2_80: *id498 + 1833-290519-3_109: *id499 1833-290519-4_121: - 1833-010719-1_134: *id504 - 1833-020719-3_117: *id505 - 1833-060619-1_164: *id506 - 1833-060619-2_98: *id507 - 1833-120619-2_123: *id508 - 1833-260619-3_113: *id509 - 1833-260619-4_188: *id510 - 1833-290519-1_158: *id511 - 1833-290519-3_139: *id512 + 1833-010719-1_134: *id500 + 1833-020719-3_117: *id501 + 1833-060619-1_164: *id502 + 1833-060619-2_98: *id503 + 1833-120619-2_123: *id504 + 1833-260619-3_113: *id505 + 1833-260619-4_188: *id506 + 1833-290519-1_158: *id507 + 1833-290519-3_130: *id508 1833-290519-4_98: - 1833-010719-1_150: *id513 - 1833-010719-2_221: *id514 - 1833-020719-2_126: *id515 - 1833-020719-3_135: *id516 - 1833-020719-4_294: *id517 - 1833-050619-4_79: *id518 - 1833-120619-2_133: *id519 - 1833-200619-3_59: *id520 - 1833-260619-1_100: *id521 - 1833-260619-2_115: *id522 - 1833-260619-3_111: *id523 - 1833-260619-4_212: *id524 - 1833-290519-1_94: *id525 - 1833-290519-3_117: *id526 -_node: &id529 + 1833-010719-1_150: *id509 + 1833-010719-2_221: *id510 + 1833-020719-2_126: *id511 + 1833-020719-3_135: *id512 + 1833-020719-4_294: *id513 + 1833-050619-4_79: *id514 + 1833-120619-2_133: *id515 + 1833-200619-3_59: *id516 + 1833-260619-1_100: *id517 + 1833-260619-2_115: *id518 + 1833-260619-3_111: *id519 + 1833-260619-4_212: *id520 + 1833-290519-1_94: *id521 + 1833-290519-3_113: *id522 +_node: &id525 1833-010719-1_134: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id527 !!python/object/apply:numpy.dtype + - &id523 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -4271,343 +4238,337 @@ _node: &id529 1833-010719-1_144: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | kAAAAAAAAAA= 1833-010719-1_150: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | lgAAAAAAAAA= 1833-010719-1_166: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | pgAAAAAAAAA= 1833-010719-2_221: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | 3QAAAAAAAAA= 1833-010719-2_235: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | 6wAAAAAAAAA= 1833-020719-1_109: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | bQAAAAAAAAA= 1833-020719-2_103: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | ZwAAAAAAAAA= 1833-020719-2_126: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | fgAAAAAAAAA= 1833-020719-3_117: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | dQAAAAAAAAA= 1833-020719-3_121: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | eQAAAAAAAAA= 1833-020719-3_135: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | hwAAAAAAAAA= 1833-020719-4_266: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | CgEAAAAAAAA= 1833-020719-4_294: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | JgEAAAAAAAA= 1833-050619-1_73: action_id: 1833-050619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | SQAAAAAAAAA= 1833-050619-2_123: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | ewAAAAAAAAA= 1833-050619-3_127: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | fwAAAAAAAAA= 1833-050619-4_79: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | TwAAAAAAAAA= 1833-050619-4_82: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | UgAAAAAAAAA= 1833-060619-1_156: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | nAAAAAAAAAA= 1833-060619-1_164: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | pAAAAAAAAAA= 1833-060619-2_68: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | RAAAAAAAAAA= 1833-060619-2_98: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | YgAAAAAAAAA= 1833-120619-1_133: action_id: 1833-120619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | hQAAAAAAAAA= 1833-120619-2_100: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | ZAAAAAAAAAA= 1833-120619-2_123: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | ewAAAAAAAAA= 1833-120619-2_133: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | hQAAAAAAAAA= 1833-120619-2_145: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | kQAAAAAAAAA= 1833-120619-3_136: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | iAAAAAAAAAA= 1833-120619-4_122: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | egAAAAAAAAA= 1833-200619-2_270: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | DgEAAAAAAAA= 1833-200619-3_122: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | egAAAAAAAAA= 1833-200619-3_59: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | OwAAAAAAAAA= 1833-200619-4_94: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | XgAAAAAAAAA= 1833-260619-1_100: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | ZAAAAAAAAAA= 1833-260619-1_110: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | bgAAAAAAAAA= 1833-260619-2_115: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | cwAAAAAAAAA= 1833-260619-2_154: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | mgAAAAAAAAA= 1833-260619-3_109: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | bQAAAAAAAAA= 1833-260619-3_111: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | bwAAAAAAAAA= 1833-260619-3_113: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | cQAAAAAAAAA= 1833-260619-3_184: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | uAAAAAAAAAA= 1833-260619-4_162: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | ogAAAAAAAAA= 1833-260619-4_188: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | vAAAAAAAAAA= 1833-260619-4_212: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | 1AAAAAAAAAA= 1833-290519-1_134: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | hgAAAAAAAAA= 1833-290519-1_158: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | ngAAAAAAAAA= 1833-290519-1_172: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | rAAAAAAAAAA= 1833-290519-1_94: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | XgAAAAAAAAA= 1833-290519-2_80: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | UAAAAAAAAAA= 1833-290519-3_109: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | bQAAAAAAAAA= - 1833-290519-3_117: + 1833-290519-3_113: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | - dQAAAAAAAAA= - 1833-290519-3_139: + cQAAAAAAAAA= + 1833-290519-3_130: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | - iwAAAAAAAAA= - 1833-290519-3_143: - action_id: 1833-290519-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 - - !!binary | - jwAAAAAAAAA= + ggAAAAAAAAA= 1833-290519-4_115: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | cwAAAAAAAAA= 1833-290519-4_121: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | eQAAAAAAAAA= 1833-290519-4_98: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id527 + - *id523 - !!binary | YgAAAAAAAAA= -adjlist_inner_dict_factory: &id528 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id528 -edge_attr_dict_factory: *id528 +adjlist_inner_dict_factory: &id524 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id524 +edge_attr_dict_factory: *id524 graph: {} -node_dict_factory: *id528 +node_dict_factory: *id524 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id529 + _nodes: *id525 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml index 935b9c5af..de9483516 100644 --- a/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml +++ b/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml @@ -1,7 +1,7 @@ !!python/object:networkx.classes.graph.Graph _adj: 1833-010719-1_152: - 1833-020719-4_254: &id017 + 1833-020719-4_254: &id016 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -10,147 +10,147 @@ _adj: state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | QAEnAqXcxz8= - 1833-050619-1_91: &id032 + 1833-050619-1_91: &id030 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | e2IwSOCtuz8= - 1833-050619-2_146: &id046 + 1833-050619-2_146: &id042 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lmGXC+YzwT8= - 1833-050619-3_109: &id053 + 1833-050619-3_109: &id049 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6LM/S6M2vz8= - 1833-050619-4_135: &id083 + 1833-050619-4_135: &id078 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oKmDZfpAwT8= - 1833-060619-1_160: &id107 + 1833-060619-1_160: &id101 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | M1PIxY6itD8= - 1833-060619-2_74: &id153 + 1833-060619-2_74: &id145 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AxKOjYsovD8= - 1833-120619-1_129: &id181 + 1833-120619-1_129: &id173 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 6016, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R9SMuLWYuD8= - 1833-120619-2_151: &id192 + 1833-120619-2_151: &id184 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6N82xb9XuD8= - 1833-120619-3_143: &id236 + 1833-120619-3_143: &id228 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H215wdY8uD8= - 1833-120619-4_120: &id262 + 1833-120619-4_120: &id253 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cxgYFUrctz8= - 1833-200619-1_171: &id327 + 1833-200619-1_171: &id317 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9DwIfp+RvD8= - 1833-200619-2_327: &id413 + 1833-200619-2_327: &id402 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rDo/6gP5wj8= - 1833-200619-3_75: &id479 + 1833-200619-3_75: &id466 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uZgc4NdctD8= - 1833-200619-4_80: &id534 + 1833-200619-4_80: &id520 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4X6a39MLxD8= - 1833-260619-1_106: &id576 + 1833-260619-1_106: &id562 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oj66af87tz8= - 1833-260619-2_160: &id688 + 1833-260619-2_160: &id672 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rTh2n/IEuz8= - 1833-260619-3_192: &id756 + 1833-260619-3_192: &id740 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VrshNXi0uD8= - 1833-260619-4_218: &id831 + 1833-260619-4_218: &id814 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FAbDZUNwvT8= - 1833-290519-1_150: &id916 + 1833-290519-1_150: &id898 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | E4c5pG7Evj8= - 1833-290519-3_149: &id1041 + 1833-290519-3_123: &id987 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - G6gl8rfV0j8= - 1833-290519-4_90: &id1161 + /ftqVJWruj8= + 1833-290519-4_90: &id1140 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -172,154 +172,154 @@ _adj: - *id001 - !!binary | Y86M4YTXyD8= - 1833-020719-3_96: &id012 + 1833-020719-3_96: &id010 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZeypFnrfyD8= - 1833-020719-4_248: &id014 + 1833-020719-4_248: &id013 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cVffZ6Gwyj8= - 1833-050619-1_60: &id024 + 1833-050619-1_60: &id022 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1QJgGgpFwT8= - 1833-050619-2_119: &id036 + 1833-050619-2_119: &id033 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hM7btSA4wj8= - 1833-050619-3_117: &id058 + 1833-050619-3_117: &id054 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mjbgknRKwT8= - 1833-050619-4_133: &id077 + 1833-050619-4_133: &id072 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iy/RCOd0xD8= - 1833-060619-1_158: &id102 + 1833-060619-1_158: &id096 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z4BVooP5wD8= - 1833-060619-2_105: &id134 + 1833-060619-2_105: &id127 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 43uOnvyjwz8= - 1833-120619-2_169: &id204 + 1833-120619-2_169: &id196 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kqtaLbAhtT8= - 1833-120619-3_141: &id230 + 1833-120619-3_141: &id222 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zSZa55n1sj8= - 1833-120619-4_85: &id302 + 1833-120619-4_85: &id293 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BbJfCMxcwj8= - 1833-200619-1_206: &id340 + 1833-200619-1_206: &id329 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OrW58cSrrz8= - 1833-200619-2_287: &id382 + 1833-200619-2_287: &id371 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pjqUt2DtsD8= - 1833-200619-3_132: &id453 + 1833-200619-3_132: &id441 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JjLbB81Bsz8= - 1833-200619-4_89: &id546 + 1833-200619-4_89: &id532 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fWq1gg0osT8= - 1833-260619-1_102: &id562 + 1833-260619-1_102: &id548 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JMV6Eqjrtz8= - 1833-260619-2_144: &id651 + 1833-260619-2_144: &id636 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | muRnVYKDvT8= - 1833-260619-3_142: &id717 + 1833-260619-3_142: &id701 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DR1Q3qeBtT8= - 1833-260619-4_182: &id775 + 1833-260619-4_182: &id758 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YEJId4XQtz8= - 1833-290519-1_124: &id867 + 1833-290519-1_124: &id849 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LXO+WXFiuD8= - 1833-290519-3_125: &id990 + 1833-290519-3_134: &id1011 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - FtrEckzj0D8= - 1833-290519-4_65: &id1120 + hGjHLkKsuj8= + 1833-290519-4_65: &id1099 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -334,161 +334,161 @@ _adj: - *id001 - !!binary | jJUGXAmquD8= - 1833-020719-3_64: &id010 + 1833-020719-3_64: &id008 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +oviKSy/xj8= - 1833-020719-4_310: &id020 + 1833-020719-4_310: &id019 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S8JTeRezxj8= - 1833-050619-1_64: &id028 + 1833-050619-1_64: &id026 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sVTjltKJsD8= - 1833-050619-2_125: &id041 + 1833-050619-2_125: &id038 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4p1oI+4ysz8= - 1833-050619-3_129: &id063 + 1833-050619-3_129: &id059 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | blCoz6odsz8= - 1833-050619-4_92: &id095 + 1833-050619-4_92: &id089 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SIuS9ueUtz8= - 1833-060619-1_162: &id114 + 1833-060619-1_162: &id108 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RJwLuTqNrz8= - 1833-060619-2_82: &id162 + 1833-060619-2_82: &id154 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P1EA5/SNsT8= - 1833-120619-1_127: &id171 + 1833-120619-1_127: &id163 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 6016, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3rzkJYfRuD8= - 1833-120619-3_118: &id215 + 1833-120619-3_118: &id207 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +gVH+ECPsD8= - 1833-120619-4_80: &id289 + 1833-120619-4_80: &id280 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8BlIF+zrtj8= - 1833-200619-1_163: &id315 + 1833-200619-1_163: &id305 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Qbm6ovUEuz8= - 1833-200619-2_28: &id364 + 1833-200619-2_28: &id353 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dC5UyeY1rD8= - 1833-200619-3_120: &id427 + 1833-200619-3_120: &id415 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KotD6/hDuD8= - 1833-200619-4_121: &id518 + 1833-200619-4_121: &id504 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | h/dcfBX0xD8= - 1833-260619-1_108: &id594 + 1833-260619-1_108: &id580 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gBORp7dfrT8= - 1833-260619-2_156: &id671 + 1833-260619-2_156: &id656 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SVN+KJWWtD8= - 1833-260619-3_168: &id736 + 1833-260619-3_168: &id720 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 79sRRcXTsT8= - 1833-260619-4_184: &id793 + 1833-260619-4_184: &id776 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mI1No7uqsT8= - 1833-290519-1_142: &id897 + 1833-290519-1_142: &id879 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KbHvZd8jrD8= - 1833-290519-2_76: &id965 + 1833-290519-2_76: &id946 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bm9+4E3bxT8= - 1833-290519-3_155: &id1071 + 1833-290519-3_117: &id971 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - vFCLmzJUzj8= - 1833-290519-4_108: &id1095 + 5B2RNts7sz8= + 1833-290519-4_108: &id1075 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -496,133 +496,126 @@ _adj: - !!binary | zX9gJipUtj8= 1833-010719-1_227: - 1833-020719-3_63: &id008 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - UBYQE/1oyj8= - 1833-050619-1_111: &id023 + 1833-050619-1_111: &id021 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aicpXWj4uz8= - 1833-050619-2_152: &id048 + 1833-050619-2_152: &id044 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8ZabXUc0uT8= - 1833-050619-3_149: &id072 + 1833-050619-3_149: &id067 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ONAdPB7Ltz8= - 1833-050619-4_157: &id090 + 1833-050619-4_157: &id084 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bGQBFX+6uD8= - 1833-060619-1_176: &id129 + 1833-060619-1_176: &id122 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7Bkjh0rKvT8= - 1833-060619-2_116: &id148 + 1833-060619-2_116: &id140 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9/KaBbzEuD8= - 1833-120619-3_145: &id248 + 1833-120619-3_145: &id240 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T91YVaSKxD8= - 1833-120619-4_124: &id274 + 1833-120619-4_124: &id265 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | r+ay4LKTsz8= - 1833-200619-1_240: &id352 + 1833-200619-1_240: &id341 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z3Oi+tpuxz8= - 1833-200619-2_308: &id396 + 1833-200619-2_308: &id385 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GirfZ9xOwj8= - 1833-200619-3_150: &id466 + 1833-200619-3_150: &id453 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2idO3341xj8= - 1833-200619-4_101: &id492 + 1833-200619-4_101: &id479 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sSy5OKpnxT8= - 1833-260619-1_112: &id610 + 1833-260619-1_112: &id596 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +RYk8dngxT8= - 1833-260619-2_140: &id637 + 1833-260619-2_140: &id622 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FG3JgvIVxT8= - 1833-260619-4_214: &id817 + 1833-260619-4_214: &id800 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WrZ9CQECwT8= - 1833-290519-1_154: &id935 + 1833-290519-1_154: &id917 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gjJC2BvWyD8= - 1833-290519-3_141: &id1010 + 1833-290519-3_140: &id1042 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ch/B3jhF0z8= - 1833-290519-4_79: &id1141 + qhbK5hX9xD8= + 1833-290519-4_79: &id1120 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -645,168 +638,168 @@ _adj: - *id001 - !!binary | MXOvDm6Q1T8= - 1833-020719-3_64: &id011 + 1833-020719-3_64: &id009 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3JQQDGN9wz8= - 1833-020719-4_248: &id015 + 1833-020719-4_248: &id014 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fFB/GFODwz8= - 1833-050619-1_64: &id029 + 1833-050619-1_64: &id027 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 4801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cyHNCJKTuT8= - 1833-050619-2_125: &id042 + 1833-050619-2_125: &id039 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RR/A+KGKtz8= - 1833-050619-3_129: &id064 + 1833-050619-3_129: &id060 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | L/314Km6tT8= - 1833-050619-4_92: &id096 + 1833-050619-4_92: &id090 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d8VRx9p8sz8= - 1833-060619-1_162: &id115 + 1833-060619-1_162: &id109 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0gMuueGRvD8= - 1833-060619-2_82: &id163 + 1833-060619-2_82: &id155 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | psDGd8QDvT8= - 1833-120619-1_127: &id172 + 1833-120619-1_127: &id164 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 7804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3/N9ADgTwz8= - 1833-120619-2_151: &id193 + 1833-120619-2_151: &id185 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kzbmkdfsyj8= - 1833-120619-3_118: &id216 + 1833-120619-3_118: &id208 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 2807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | C1aBjB+FuD8= - 1833-120619-4_80: &id290 + 1833-120619-4_80: &id281 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 460, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Pc1kK0VowT8= - 1833-200619-1_240: &id353 + 1833-200619-1_240: &id342 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FJsg1bb8xj8= - 1833-200619-2_28: &id365 + 1833-200619-2_28: &id354 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +ewXZCO1vT8= - 1833-200619-3_120: &id428 + 1833-200619-3_120: &id416 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6eLRZIH5xT8= - 1833-200619-4_121: &id519 + 1833-200619-4_121: &id505 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7okXawd+yT8= - 1833-260619-1_108: &id595 + 1833-260619-1_108: &id581 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | v3We7OxDtj8= - 1833-260619-2_156: &id672 + 1833-260619-2_156: &id657 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0mSw8wVywj8= - 1833-260619-3_168: &id737 + 1833-260619-3_168: &id721 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D2jT3mTGwj8= - 1833-260619-4_184: &id794 + 1833-260619-4_184: &id777 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VptZw04Qtj8= - 1833-290519-1_142: &id898 + 1833-290519-1_142: &id880 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yhaXHFSCwD8= - 1833-290519-2_76: &id966 + 1833-290519-2_76: &id947 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9otFtTrpxj8= - 1833-290519-3_155: &id1072 + 1833-290519-3_123: &id988 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 45lv1qCIzD8= - 1833-290519-4_108: &id1096 + bUGWFn3QwD8= + 1833-290519-4_108: &id1076 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -823,168 +816,168 @@ _adj: - *id001 - !!binary | xDR6Edxrvz8= - 1833-020719-3_96: &id013 + 1833-020719-3_96: &id011 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HylvmffRxz8= - 1833-020719-4_254: &id018 + 1833-020719-4_254: &id017 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6XCioVVSwz8= - 1833-050619-1_60: &id025 + 1833-050619-1_60: &id023 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 2392, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EAEp8vj8xD8= - 1833-050619-2_119: &id037 + 1833-050619-2_119: &id034 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 545, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8fEv1l0HyD8= - 1833-050619-3_109: &id054 + 1833-050619-3_109: &id050 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 84242, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PkXr5JfMwj8= - 1833-050619-4_135: &id084 + 1833-050619-4_135: &id079 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 82424, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | V2oB5/m+yD8= - 1833-060619-1_160: &id108 + 1833-060619-1_160: &id102 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nhXDKjprxT8= - 1833-060619-2_74: &id154 + 1833-060619-2_74: &id146 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [25, 84389, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NmX+EZy5wT8= - 1833-120619-1_129: &id182 + 1833-120619-1_129: &id174 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 5395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TD8zWtmbxj8= - 1833-120619-2_151: &id194 + 1833-120619-2_151: &id186 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0lzuIeVJxj8= - 1833-120619-3_143: &id237 + 1833-120619-3_143: &id229 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 398, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oPYtZCUexz8= - 1833-120619-4_80: &id291 + 1833-120619-4_80: &id282 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 84451, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1Zm2SD0mxT8= - 1833-200619-1_163: &id316 + 1833-200619-1_163: &id306 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rWZkym2axj8= - 1833-200619-2_28: &id366 + 1833-200619-2_28: &id355 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w9ffkY9HyT8= - 1833-200619-3_75: &id480 + 1833-200619-3_75: &id467 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WccbUgqDxT8= - 1833-200619-4_89: &id547 + 1833-200619-4_89: &id533 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gQv97JSyxT8= - 1833-260619-1_106: &id577 + 1833-260619-1_106: &id563 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UcBNd3CAxz8= - 1833-260619-2_144: &id652 + 1833-260619-2_144: &id637 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | F+wNoyHMxj8= - 1833-260619-3_168: &id738 + 1833-260619-3_168: &id722 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1FP1q8Hvxj8= - 1833-260619-4_80: &id849 + 1833-260619-4_80: &id832 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LCkK88+GyT8= - 1833-290519-1_132: &id886 + 1833-290519-1_132: &id868 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +BOyFtgzwz8= - 1833-290519-2_76: &id967 + 1833-290519-2_76: &id948 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N5QmIvu/zD8= - 1833-290519-3_149: &id1042 + 1833-290519-3_123: &id989 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - cy1w1sLe1T8= - 1833-290519-4_90: &id1162 + 41EGBq70xD8= + 1833-290519-4_90: &id1141 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -995,475 +988,332 @@ _adj: 1833-010719-1_183: *id005 1833-010719-2_225: *id006 1833-020719-1_107: *id007 - 1833-020719-3_63: &id009 + 1833-020719-3_96: &id012 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - SFuDeKjA0D8= - 1833-020719-4_310: &id021 + i5Qc+7Do0D8= + 1833-020719-4_310: &id020 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kzrboqFEzj8= - 1833-050619-1_91: &id033 + 1833-050619-1_91: &id031 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 4497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mplhMWSLyj8= - 1833-050619-2_81: &id052 + 1833-050619-2_81: &id048 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 2650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aL52YQDByT8= - 1833-050619-3_109: &id055 + 1833-050619-3_109: &id051 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 86347, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DKXGuIJ3yz8= - 1833-050619-4_135: &id085 + 1833-050619-4_135: &id080 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 84529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hyqTV1veyj8= - 1833-060619-1_170: &id122 + 1833-060619-1_170: &id116 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 2928, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yXMSMfadyT8= - 1833-060619-2_74: &id155 + 1833-060619-2_74: &id147 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T5Hl9IPMxD8= - 1833-120619-1_129: &id183 + 1833-120619-1_129: &id175 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 7500, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | G4oF7gpRyj8= - 1833-120619-2_169: &id205 + 1833-120619-2_169: &id197 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vd18+PPfyD8= - 1833-120619-3_141: &id231 + 1833-120619-3_141: &id223 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 2503, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OlAYl173yT8= - 1833-120619-4_85: &id303 + 1833-120619-4_85: &id294 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1d7Z7TNpxD8= - 1833-200619-1_206: &id341 + 1833-200619-1_206: &id330 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D4SSecrgyj8= - 1833-200619-2_327: &id414 + 1833-200619-2_327: &id403 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WJxDalNzyj8= - 1833-200619-3_132: &id454 + 1833-200619-3_132: &id442 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DHbWkeQQyj8= - 1833-200619-4_80: &id535 + 1833-200619-4_80: &id521 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qHq5yhQ9xz8= - 1833-260619-1_124: &id622 + 1833-260619-1_124: &id608 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +3kyaOCYzD8= - 1833-260619-2_144: &id653 + 1833-260619-2_144: &id638 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OTZhkzDEyj8= - 1833-260619-3_168: &id739 + 1833-260619-3_168: &id723 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZdYBqrNjzD8= - 1833-260619-4_80: &id850 + 1833-260619-4_80: &id833 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mwB8r7Htyz8= - 1833-290519-1_124: &id868 + 1833-290519-1_124: &id850 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6eNZTkLHyT8= - 1833-290519-2_76: &id968 + 1833-290519-2_76: &id949 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TZ2wsU6h1D8= - 1833-290519-3_149: &id1043 + 1833-290519-3_144: &id1056 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jKYDzQkm2D8= - 1833-290519-4_108: &id1097 + nk3+cjg6xz8= + 1833-290519-4_108: &id1077 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uHwh5XPv0D8= - 1833-020719-3_63: - 1833-010719-1_227: *id008 - 1833-020719-2_99: *id009 - 1833-020719-4_310: &id022 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8ZoJ+Sm0xz8= - 1833-050619-1_64: &id030 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - sLLMsdgSxj8= - 1833-050619-2_125: &id043 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - lMk7J6FsxT8= - 1833-050619-3_143: &id069 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9hrNTQqXyD8= - 1833-050619-4_135: &id086 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - DRQuRgljyD8= - 1833-060619-1_162: &id116 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - R/MuMGOgxD8= - 1833-060619-2_82: &id164 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - QCutzbfGxD8= - 1833-120619-1_127: &id173 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - r3pY1wS+xj8= - 1833-120619-3_145: &id249 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 1gXhNPY+xj8= - 1833-120619-4_95: &id309 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [20, 2621, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Fy55kE2Mxz8= - 1833-200619-1_240: &id354 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - PxP0RnF6xT8= - 1833-200619-2_327: &id415 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - sYN71L9xxj8= - 1833-200619-3_150: &id467 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Rfbhm5rhxj8= - 1833-200619-4_101: &id493 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - w/K1R7mJyz8= - 1833-260619-1_124: &id623 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - WG1dNo73xT8= - 1833-260619-2_160: &id689 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - g4s5xQC2yD8= - 1833-260619-3_192: &id757 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 0iDcyIiJxz8= - 1833-260619-4_80: &id851 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 0jRZV0Voxz8= - 1833-290519-1_154: &id936 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Zz2xdsZfxD8= - 1833-290519-3_125: &id991 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - QjE6mcZE0z8= - 1833-290519-4_108: &id1098 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - vR7BdjZ+yT8= 1833-020719-3_64: - 1833-010719-1_200: *id010 - 1833-010719-2_225: *id011 - 1833-020719-4_248: &id016 + 1833-010719-1_200: *id008 + 1833-010719-2_225: *id009 + 1833-020719-4_248: &id015 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IVAepRcoqj8= - 1833-050619-1_91: &id034 + 1833-050619-1_64: &id028 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4aLJMAI0yz8= - 1833-050619-2_74: &id050 + SYvpwx0kyD8= + 1833-050619-2_74: &id046 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | x9jYZ8YxwD8= - 1833-050619-3_129: &id065 + 1833-050619-3_129: &id061 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ydD2R0eVxj8= - 1833-050619-4_92: &id097 + 1833-050619-4_92: &id091 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | znQ99LxWxj8= - 1833-060619-1_170: &id123 + 1833-060619-1_162: &id110 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Z2Nz8IiEyj8= - 1833-060619-2_112: &id142 + T2pDYXhkyD8= + 1833-060619-2_82: &id156 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - XtLRgKjLzT8= - 1833-120619-2_151: &id195 + jXCUE1j+yD8= + 1833-120619-1_127: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lj5u2WWUyz8= + 1833-120619-2_151: &id187 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d3JZR+qVyz8= - 1833-120619-3_118: &id217 + 1833-120619-3_118: &id209 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z7CNIYXIxj8= - 1833-120619-4_80: &id292 + 1833-120619-4_80: &id283 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 2621, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zziUCTWoyj8= - 1833-200619-1_206: &id342 + 1833-200619-1_240: &id343 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ty3flw1Ozj8= - 1833-200619-2_28: &id367 + CvLPQdFVyz8= + 1833-200619-2_28: &id356 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cAjcGTcdyD8= - 1833-200619-3_132: &id455 + 1833-200619-3_150: &id454 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ovVr55L2zD8= - 1833-200619-4_121: &id520 + SLB1EpyHzD8= + 1833-200619-4_121: &id506 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4DmRbZdrzT8= - 1833-260619-1_108: &id596 + 1833-260619-1_108: &id582 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | veA2AsPWxT8= - 1833-260619-2_156: &id673 + 1833-260619-2_160: &id673 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - BJT6E/rTyj8= - 1833-260619-3_168: &id740 + pW/y6Qk/yj8= + 1833-260619-3_168: &id724 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZPt9E+zRyj8= - 1833-260619-4_184: &id795 + 1833-260619-4_184: &id778 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ziycdqs4xT8= - 1833-290519-1_142: &id899 + 1833-290519-1_142: &id881 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | O32lr1ToyD8= - 1833-290519-2_76: &id969 + 1833-290519-2_76: &id950 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gwpWpJWWwD8= - 1833-290519-3_155: &id1073 + 1833-290519-3_144: &id1057 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - RMFvmtCqzz8= - 1833-290519-4_79: &id1142 + Yq1PYAJvyD8= + 1833-290519-4_79: &id1121 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1471,156 +1321,157 @@ _adj: - !!binary | N6zSOzGwvT8= 1833-020719-3_96: - 1833-010719-1_183: *id012 - 1833-020719-1_107: *id013 - 1833-020719-4_254: &id019 + 1833-010719-1_183: *id010 + 1833-020719-1_107: *id011 + 1833-020719-2_99: *id012 + 1833-020719-4_254: &id018 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lW5q8tRaqT8= - 1833-050619-1_60: &id026 + 1833-050619-1_60: &id024 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Pa3jL5XRxT8= - 1833-050619-2_119: &id038 + 1833-050619-2_119: &id035 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S6BA5oDkxT8= - 1833-050619-3_117: &id059 + 1833-050619-3_117: &id055 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z5jWrGt9xT8= - 1833-050619-4_133: &id078 + 1833-050619-4_133: &id073 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LdGh8uqrxT8= - 1833-060619-1_158: &id103 + 1833-060619-1_158: &id097 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | b3liKdhGyD8= - 1833-060619-2_105: &id135 + 1833-060619-2_105: &id128 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3Gr81bAxyT8= - 1833-120619-1_129: &id184 + 1833-120619-1_129: &id176 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UonnLskZyT8= - 1833-120619-2_169: &id206 + 1833-120619-2_169: &id198 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Z1HI5dwcyj8= - 1833-120619-3_143: &id238 + 1833-120619-3_143: &id230 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n2rfETI9yD8= - 1833-120619-4_120: &id263 + 1833-120619-4_120: &id254 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 2621, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qw0XvljRyj8= - 1833-200619-1_171: &id328 + 1833-200619-1_206: &id331 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4VQYwMaWzD8= - 1833-200619-2_287: &id383 + rE6ZsEAzzD8= + 1833-200619-2_287: &id372 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jzv0QvnWyj8= - 1833-200619-3_75: &id481 + 1833-200619-3_75: &id468 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N/z6m4Fbyj8= - 1833-200619-4_89: &id548 + 1833-200619-4_89: &id534 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gRyt17G2yD8= - 1833-260619-1_106: &id578 + 1833-260619-1_106: &id564 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | exNlqCcUyD8= - 1833-260619-2_144: &id654 + 1833-260619-2_144: &id639 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OQBl1aByyj8= - 1833-260619-3_142: &id718 + 1833-260619-3_142: &id702 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DTtGOxZiyT8= - 1833-260619-4_182: &id776 + 1833-260619-4_182: &id759 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /gpHmzuUyD8= - 1833-290519-1_132: &id887 + 1833-290519-1_132: &id869 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DjObe7xZwz8= - 1833-290519-3_149: &id1044 + 1833-290519-3_123: &id990 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qWVa9oi3zj8= - 1833-290519-4_90: &id1163 + cKoO1LKfxT8= + 1833-290519-4_90: &id1142 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1628,150 +1479,150 @@ _adj: - !!binary | fMhavdrMwT8= 1833-020719-4_248: - 1833-010719-1_183: *id014 - 1833-010719-2_225: *id015 - 1833-020719-3_64: *id016 - 1833-050619-1_91: &id035 + 1833-010719-1_183: *id013 + 1833-010719-2_225: *id014 + 1833-020719-3_64: *id015 + 1833-050619-1_91: &id032 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ra9920Yfyz8= - 1833-050619-2_74: &id051 + 1833-050619-2_74: &id047 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GdJCgZkZwD8= - 1833-050619-3_109: &id056 + 1833-050619-3_109: &id052 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CvoJ0eI5yj8= - 1833-050619-4_157: &id091 + 1833-050619-4_157: &id085 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aBODktk7zD8= - 1833-060619-1_170: &id124 + 1833-060619-1_170: &id117 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WBToYeZ0yj8= - 1833-060619-2_105: &id136 + 1833-060619-2_105: &id129 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fqHu/gJeyz8= - 1833-120619-2_169: &id207 + 1833-120619-2_169: &id199 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PUgaTtAfzD8= - 1833-120619-3_141: &id232 + 1833-120619-3_141: &id224 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VF+yTolPzD8= - 1833-120619-4_127: &id282 + 1833-120619-4_127: &id273 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 4950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /QrVqd3nzD8= - 1833-200619-1_240: &id355 + 1833-200619-1_240: &id344 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | V9lvj+gtyz8= - 1833-200619-2_28: &id368 + 1833-200619-2_28: &id357 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1kQh673wxz8= - 1833-200619-3_150: &id468 + 1833-200619-3_150: &id455 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hWXBeotazD8= - 1833-200619-4_121: &id521 + 1833-200619-4_121: &id507 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SHyZbGo7zT8= - 1833-260619-1_102: &id563 + 1833-260619-1_102: &id549 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 12PItkNTyz8= - 1833-260619-2_160: &id690 + 1833-260619-2_160: &id674 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J4CYsFUhyj8= - 1833-260619-3_192: &id758 + 1833-260619-3_192: &id741 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P/IbAYs7zD8= - 1833-260619-4_214: &id818 + 1833-260619-4_214: &id801 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t08div+Nyj8= - 1833-290519-1_142: &id900 + 1833-290519-1_142: &id882 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t6rpvKT2yD8= - 1833-290519-2_76: &id970 + 1833-290519-2_76: &id951 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PL3xlBPIwT8= - 1833-290519-3_155: &id1074 + 1833-290519-3_117: &id972 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - fcfLqvLr0D8= - 1833-290519-4_79: &id1143 + 1lSCyxTSyD8= + 1833-290519-4_79: &id1122 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1779,150 +1630,150 @@ _adj: - !!binary | y0O9rQChvD8= 1833-020719-4_254: - 1833-010719-1_152: *id017 - 1833-020719-1_107: *id018 - 1833-020719-3_96: *id019 - 1833-050619-1_60: &id027 + 1833-010719-1_152: *id016 + 1833-020719-1_107: *id017 + 1833-020719-3_96: *id018 + 1833-050619-1_60: &id025 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zra4aKCCwz8= - 1833-050619-2_119: &id039 + 1833-050619-2_119: &id036 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Gj48G2ytxD8= - 1833-050619-3_117: &id060 + 1833-050619-3_117: &id056 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6SZHpe86xD8= - 1833-050619-4_133: &id079 + 1833-050619-4_133: &id074 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ycpurQEexT8= - 1833-060619-1_160: &id109 + 1833-060619-1_160: &id103 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | v7C/x2ryxT8= - 1833-060619-2_74: &id156 + 1833-060619-2_74: &id148 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z5YjtJjdyD8= - 1833-120619-1_129: &id185 + 1833-120619-1_129: &id177 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kIkTTGVlxz8= - 1833-120619-2_151: &id196 + 1833-120619-2_151: &id188 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vmkC/3+Exz8= - 1833-120619-3_143: &id239 + 1833-120619-3_143: &id231 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 56W9NUKoxj8= - 1833-120619-4_120: &id264 + 1833-120619-4_120: &id255 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 4950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kQ/+aR2OyD8= - 1833-200619-1_171: &id329 + 1833-200619-1_171: &id318 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZgnA9Sl2yj8= - 1833-200619-2_287: &id384 + 1833-200619-2_287: &id373 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | egrFsymWyT8= - 1833-200619-3_75: &id482 + 1833-200619-3_75: &id469 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sZOw1IDcxj8= - 1833-200619-4_89: &id549 + 1833-200619-4_89: &id535 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6Rieq8ttxz8= - 1833-260619-1_106: &id579 + 1833-260619-1_106: &id565 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WEH8ctOExT8= - 1833-260619-2_144: &id655 + 1833-260619-2_144: &id640 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IhjdRnIRyD8= - 1833-260619-3_142: &id719 + 1833-260619-3_142: &id703 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ySKPvWhuxz8= - 1833-260619-4_182: &id777 + 1833-260619-4_182: &id760 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HQAKlr69yD8= - 1833-290519-1_132: &id888 + 1833-290519-1_132: &id870 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XdZ3I8a6wT8= - 1833-290519-3_149: &id1045 + 1833-290519-3_144: &id1058 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1Jryv78g0D8= - 1833-290519-4_90: &id1164 + YOhQE/2hxT8= + 1833-290519-4_90: &id1143 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1930,143 +1781,142 @@ _adj: - !!binary | nAPZv3jRwD8= 1833-020719-4_310: - 1833-010719-1_200: *id020 - 1833-020719-2_99: *id021 - 1833-020719-3_63: *id022 - 1833-050619-1_64: &id031 + 1833-010719-1_200: *id019 + 1833-020719-2_99: *id020 + 1833-050619-1_64: &id029 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | imKh5fajxT8= - 1833-050619-2_125: &id044 + 1833-050619-2_125: &id040 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J135VgiexD8= - 1833-050619-3_129: &id066 + 1833-050619-3_129: &id062 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fabqu6dFxD8= - 1833-050619-4_92: &id098 + 1833-050619-4_92: &id092 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ssh3P440xD8= - 1833-060619-1_162: &id117 + 1833-060619-1_162: &id111 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TV0yA5doxj8= - 1833-060619-2_82: &id165 + 1833-060619-2_82: &id157 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | b6Kir7ZSxj8= - 1833-120619-1_127: &id174 + 1833-120619-1_127: &id166 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 06Qau7utyT8= - 1833-120619-3_118: &id218 + 1833-120619-3_118: &id210 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NB5kTq0XxT8= - 1833-120619-4_80: &id293 + 1833-120619-4_80: &id284 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 4950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CPIwo1Uexz8= - 1833-200619-1_163: &id317 + 1833-200619-1_163: &id307 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gAv/ZDzbyj8= - 1833-200619-2_327: &id416 + 1833-200619-2_327: &id404 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UMsBPvt9yz8= - 1833-200619-3_120: &id429 + 1833-200619-3_120: &id417 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qZdhyEzTyj8= - 1833-200619-4_101: &id494 + 1833-200619-4_101: &id480 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fX+uCgpZ0D8= - 1833-260619-1_108: &id597 + 1833-260619-1_108: &id583 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P03sd2quxT8= - 1833-260619-2_156: &id674 + 1833-260619-2_156: &id658 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IoUKrQZryz8= - 1833-260619-3_168: &id741 + 1833-260619-3_168: &id725 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fYVU2kJ7yT8= - 1833-260619-4_184: &id796 + 1833-260619-4_184: &id779 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FpINBmewxj8= - 1833-290519-1_150: &id917 + 1833-290519-1_150: &id899 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j9rePd6tyT8= - 1833-290519-3_125: &id992 + 1833-290519-3_123: &id991 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - hZwe6/UPyj8= - 1833-290519-4_108: &id1099 + pGMKy/rExT8= + 1833-290519-4_108: &id1078 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2074,120 +1924,120 @@ _adj: - !!binary | LD6S5HsXxD8= 1833-050619-1_111: - 1833-010719-1_227: *id023 - 1833-050619-2_152: &id049 + 1833-010719-1_227: *id021 + 1833-050619-2_152: &id045 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R0rJ+9yhmj8= - 1833-050619-3_149: &id073 + 1833-050619-3_149: &id068 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | V8KEugZtoD8= - 1833-050619-4_157: &id092 + 1833-050619-4_157: &id086 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bykh7Z6JoD8= - 1833-060619-1_176: &id130 + 1833-060619-1_176: &id123 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6DvgSOsfnj8= - 1833-060619-2_112: &id143 + 1833-060619-2_112: &id135 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZmLq5UnLpz8= - 1833-120619-3_145: &id250 + 1833-120619-3_145: &id241 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 96kfdCKawT8= - 1833-120619-4_124: &id275 + 1833-120619-4_124: &id266 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CU1M4gpNtj8= - 1833-200619-1_240: &id356 + 1833-200619-1_240: &id345 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | URIi+aqPxj8= - 1833-200619-2_308: &id397 + 1833-200619-2_308: &id386 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T9mbfuxQwj8= - 1833-200619-3_150: &id469 + 1833-200619-3_150: &id456 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FN03KtiLxT8= - 1833-200619-4_101: &id495 + 1833-200619-4_101: &id481 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xJZcxDDaxD8= - 1833-260619-1_112: &id611 + 1833-260619-1_112: &id597 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | s2uy54YKxD8= - 1833-260619-2_156: &id675 + 1833-260619-2_156: &id659 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q2QW8fKawj8= - 1833-260619-4_214: &id819 + 1833-260619-4_214: &id802 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z9Sw3qCUwT8= - 1833-290519-1_142: &id901 + 1833-290519-1_142: &id883 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RP+TM9NQwz8= - 1833-290519-3_125: &id993 + 1833-290519-3_140: &id1043 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - d4D/6ES/zz8= - 1833-290519-4_79: &id1144 + rHwdmW7DwT8= + 1833-290519-4_79: &id1123 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2195,137 +2045,137 @@ _adj: - !!binary | BEBfiTtlyT8= 1833-050619-1_60: - 1833-010719-1_183: *id024 - 1833-020719-1_107: *id025 - 1833-020719-3_96: *id026 - 1833-020719-4_254: *id027 - 1833-050619-2_119: &id040 + 1833-010719-1_183: *id022 + 1833-020719-1_107: *id023 + 1833-020719-3_96: *id024 + 1833-020719-4_254: *id025 + 1833-050619-2_119: &id037 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Vs3O0a69pz8= - 1833-050619-3_117: &id061 + 1833-050619-3_117: &id057 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FCfo1XN1pT8= - 1833-050619-4_133: &id080 + 1833-050619-4_133: &id075 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /Y3Jjqs6sj8= - 1833-060619-1_160: &id110 + 1833-060619-1_160: &id104 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JrzEW2nuqj8= - 1833-060619-2_74: &id157 + 1833-060619-2_74: &id149 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6CEYmJ1qwT8= - 1833-120619-2_169: &id208 + 1833-120619-2_169: &id200 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0QAjzadCwT8= - 1833-120619-3_143: &id240 + 1833-120619-3_143: &id232 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5fGVu4vfsT8= - 1833-120619-4_120: &id265 + 1833-120619-4_120: &id256 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kROBJ2xKtj8= - 1833-200619-1_171: &id330 + 1833-200619-1_171: &id319 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gaT8TwGhuD8= - 1833-200619-2_287: &id385 + 1833-200619-2_287: &id374 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3el3KouWwD8= - 1833-200619-3_75: &id483 + 1833-200619-3_75: &id470 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JemKXbKatT8= - 1833-200619-4_89: &id550 + 1833-200619-4_89: &id536 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9t4wizmwxD8= - 1833-260619-1_106: &id580 + 1833-260619-1_106: &id566 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z5aH2Am3pD8= - 1833-260619-2_144: &id656 + 1833-260619-2_144: &id641 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lD/W78FTtj8= - 1833-260619-3_142: &id720 + 1833-260619-3_142: &id704 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3u/E0VCMsz8= - 1833-260619-4_182: &id778 + 1833-260619-4_182: &id761 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | L6h+qZBkwj8= - 1833-290519-1_124: &id869 + 1833-290519-1_124: &id851 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tUCwYvFLtz8= - 1833-290519-3_149: &id1046 + 1833-290519-3_144: &id1059 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jNkzoQqA0D8= - 1833-290519-4_65: &id1121 + hWEsrrrtvD8= + 1833-290519-4_65: &id1100 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2333,144 +2183,144 @@ _adj: - !!binary | 6qqeroBZwj8= 1833-050619-1_64: - 1833-010719-1_200: *id028 - 1833-010719-2_225: *id029 - 1833-020719-3_63: *id030 - 1833-020719-4_310: *id031 - 1833-050619-2_125: &id045 + 1833-010719-1_200: *id026 + 1833-010719-2_225: *id027 + 1833-020719-3_64: *id028 + 1833-020719-4_310: *id029 + 1833-050619-2_125: &id041 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2nhACnWnoT8= - 1833-050619-3_129: &id067 + 1833-050619-3_129: &id063 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | b7g4SQTHpj8= - 1833-050619-4_92: &id099 + 1833-050619-4_92: &id093 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zF5I9ITSsD8= - 1833-060619-1_162: &id118 + 1833-060619-1_162: &id112 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +edVELQgoD8= - 1833-060619-2_82: &id166 + 1833-060619-2_82: &id158 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bOP+MXhYnz8= - 1833-120619-1_127: &id175 + 1833-120619-1_127: &id167 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9VPDk4ZnsT8= - 1833-120619-3_118: &id219 + 1833-120619-3_118: &id211 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | o1qjp14boT8= - 1833-120619-4_80: &id294 + 1833-120619-4_80: &id285 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GqlmE8jprD8= - 1833-200619-1_163: &id318 + 1833-200619-1_163: &id308 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zxhB/ex/uz8= - 1833-200619-2_28: &id369 + 1833-200619-2_28: &id358 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ++w2BNIpsD8= - 1833-200619-3_120: &id430 + 1833-200619-3_120: &id418 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3YXVfxSwuT8= - 1833-200619-4_121: &id522 + 1833-200619-4_121: &id508 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yW2yfXZOxD8= - 1833-260619-1_108: &id598 + 1833-260619-1_108: &id584 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CWRM/wXksD8= - 1833-260619-2_160: &id691 + 1833-260619-2_160: &id675 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kh+MTEuQuD8= - 1833-260619-3_168: &id742 + 1833-260619-3_168: &id726 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c/dKOgKltz8= - 1833-260619-4_184: &id797 + 1833-260619-4_184: &id780 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7AkePm5RuT8= - 1833-290519-1_150: &id918 + 1833-290519-1_150: &id900 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 09CPsrDYsz8= - 1833-290519-2_76: &id971 + 1833-290519-2_76: &id952 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AQWWxD/jxz8= - 1833-290519-3_155: &id1075 + 1833-290519-3_123: &id992 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - kakWtsJRzj8= - 1833-290519-4_108: &id1100 + nSQTJ6amsT8= + 1833-290519-4_108: &id1079 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2478,144 +2328,143 @@ _adj: - !!binary | mkEHi0WHrD8= 1833-050619-1_91: - 1833-010719-1_152: *id032 - 1833-020719-2_99: *id033 - 1833-020719-3_64: *id034 - 1833-020719-4_248: *id035 - 1833-050619-2_146: &id047 + 1833-010719-1_152: *id030 + 1833-020719-2_99: *id031 + 1833-020719-4_248: *id032 + 1833-050619-2_146: &id043 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CwG+pdBHsD8= - 1833-050619-3_143: &id070 + 1833-050619-3_143: &id065 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D1xJMD14rT8= - 1833-050619-4_135: &id087 + 1833-050619-4_135: &id081 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | V8fwdRE9rD8= - 1833-060619-1_170: &id125 + 1833-060619-1_170: &id118 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JnGgBUe/oD8= - 1833-060619-2_105: &id137 + 1833-060619-2_105: &id130 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | x3SjZQnhoj8= - 1833-120619-1_129: &id186 + 1833-120619-1_129: &id178 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d4iUhvQnrT8= - 1833-120619-2_151: &id197 + 1833-120619-2_151: &id189 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t9epVawMqj8= - 1833-120619-3_94: &id256 + 1833-120619-3_94: &id247 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | s3gNXqDTrT8= - 1833-120619-4_127: &id283 + 1833-120619-4_127: &id274 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7f2ap3Iesj8= - 1833-200619-1_206: &id343 + 1833-200619-1_206: &id332 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oHOOWimZwj8= - 1833-200619-2_327: &id417 + 1833-200619-2_327: &id405 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WijVox7bvT8= - 1833-200619-3_126: &id441 + 1833-200619-3_126: &id429 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hVUwNZfrtD8= - 1833-200619-4_109: &id506 + 1833-200619-4_109: &id492 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sjHjDWERwD8= - 1833-260619-1_124: &id624 + 1833-260619-1_124: &id609 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VFNSwgFUvz8= - 1833-260619-2_140: &id638 + 1833-260619-2_140: &id623 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2DoBFMyVwj8= - 1833-260619-3_192: &id759 + 1833-260619-3_192: &id742 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MuaI4I/9uj8= - 1833-260619-4_218: &id832 + 1833-260619-4_218: &id815 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iVqU8yDVtD8= - 1833-290519-1_166: &id949 + 1833-290519-1_166: &id930 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TUGb9bafwD8= - 1833-290519-3_141: &id1011 + 1833-290519-3_136: &id1028 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Ighzzozuzz8= - 1833-290519-4_90: &id1165 + oaOeaCoJtj8= + 1833-290519-4_90: &id1144 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2623,124 +2472,124 @@ _adj: - !!binary | ovNDJyPxxT8= 1833-050619-2_119: - 1833-010719-1_183: *id036 - 1833-020719-1_107: *id037 - 1833-020719-3_96: *id038 - 1833-020719-4_254: *id039 - 1833-050619-1_60: *id040 - 1833-050619-3_117: &id062 + 1833-010719-1_183: *id033 + 1833-020719-1_107: *id034 + 1833-020719-3_96: *id035 + 1833-020719-4_254: *id036 + 1833-050619-1_60: *id037 + 1833-050619-3_117: &id058 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Haz1cESVlz8= - 1833-050619-4_133: &id081 + 1833-050619-4_133: &id076 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | evHAqh3koz8= - 1833-060619-1_158: &id104 + 1833-060619-1_158: &id098 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Yo+UHcswuz8= - 1833-120619-2_169: &id209 + 1833-120619-2_169: &id201 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UXAs2feMwT8= - 1833-120619-3_143: &id241 + 1833-120619-3_143: &id233 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0FVpq7R/sj8= - 1833-120619-4_120: &id266 + 1833-120619-4_120: &id257 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WvOu1iJQuD8= - 1833-200619-1_171: &id331 + 1833-200619-1_171: &id320 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2rkHxeQjvT8= - 1833-200619-2_287: &id386 + 1833-200619-2_287: &id375 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MhQWR97HwD8= - 1833-200619-3_126: &id442 + 1833-200619-3_126: &id430 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zuNbE182uz8= - 1833-200619-4_89: &id551 + 1833-200619-4_89: &id537 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YEfw5RgzxT8= - 1833-260619-1_106: &id581 + 1833-260619-1_106: &id567 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sAzzC4MyrT8= - 1833-260619-2_144: &id657 + 1833-260619-2_144: &id642 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ahuu60eNtz8= - 1833-260619-3_142: &id721 + 1833-260619-3_142: &id705 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8OTXYPEAtj8= - 1833-260619-4_182: &id779 + 1833-260619-4_182: &id762 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sZij+HoZwD8= - 1833-290519-1_124: &id870 + 1833-290519-1_124: &id852 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VTcqtqYnuz8= - 1833-290519-3_141: &id1012 + 1833-290519-3_134: &id1012 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6XFP7QNX0D8= - 1833-290519-4_65: &id1122 + z4F8fQIuwD8= + 1833-290519-4_65: &id1101 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2748,131 +2597,130 @@ _adj: - !!binary | JnwPY5wKwT8= 1833-050619-2_125: - 1833-010719-1_200: *id041 - 1833-010719-2_225: *id042 - 1833-020719-3_63: *id043 - 1833-020719-4_310: *id044 - 1833-050619-1_64: *id045 - 1833-050619-3_129: &id068 + 1833-010719-1_200: *id038 + 1833-010719-2_225: *id039 + 1833-020719-4_310: *id040 + 1833-050619-1_64: *id041 + 1833-050619-3_129: &id064 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2CxfYuTQkz8= - 1833-050619-4_92: &id100 + 1833-050619-4_92: &id094 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2/FNwn+7pD8= - 1833-060619-1_162: &id119 + 1833-060619-1_162: &id113 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LX5pg5TOpT8= - 1833-060619-2_82: &id167 + 1833-060619-2_82: &id159 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vHyrExLFpT8= - 1833-120619-1_127: &id176 + 1833-120619-1_127: &id168 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EaUq5r8rtj8= - 1833-120619-3_118: &id220 + 1833-120619-3_118: &id212 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k+v2/r3gqT8= - 1833-120619-4_80: &id295 + 1833-120619-4_80: &id286 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jxDyhOxrsz8= - 1833-200619-1_163: &id319 + 1833-200619-1_163: &id309 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SFU5SpA+wD8= - 1833-200619-2_28: &id370 + 1833-200619-2_28: &id359 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OWjwuAsusz8= - 1833-200619-3_75: &id484 + 1833-200619-3_75: &id471 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q0UJdIh8xD8= - 1833-200619-4_121: &id523 + 1833-200619-4_121: &id509 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w5A6cOXWxD8= - 1833-260619-1_124: &id625 + 1833-260619-1_124: &id610 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q52NScY2uz8= - 1833-260619-2_160: &id692 + 1833-260619-2_160: &id676 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IklF1YCQuT8= - 1833-260619-3_168: &id743 + 1833-260619-3_168: &id727 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ds279ln3vD8= - 1833-260619-4_80: &id852 + 1833-260619-4_80: &id834 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AztLVM1HwD8= - 1833-290519-1_150: &id919 + 1833-290519-1_150: &id901 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ot00eXeEtD8= - 1833-290519-3_155: &id1076 + 1833-290519-3_123: &id993 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 0CbizCBYzD8= - 1833-290519-4_108: &id1101 + FQGjDq2atj8= + 1833-290519-4_108: &id1080 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2880,135 +2728,135 @@ _adj: - !!binary | gOA7X1MgrT8= 1833-050619-2_146: - 1833-010719-1_152: *id046 - 1833-050619-1_91: *id047 - 1833-050619-3_143: &id071 + 1833-010719-1_152: *id042 + 1833-050619-1_91: *id043 + 1833-050619-3_143: &id066 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D2U1nM1AoD8= - 1833-050619-4_135: &id088 + 1833-050619-4_135: &id082 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UGiR5/5OpT8= - 1833-060619-1_170: &id126 + 1833-060619-1_170: &id119 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aRcZz0GRsD8= - 1833-060619-2_105: &id138 + 1833-060619-2_105: &id131 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wJahUVPssz8= - 1833-120619-1_129: &id187 + 1833-120619-1_129: &id179 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +FovgVThuT8= - 1833-120619-2_151: &id198 + 1833-120619-2_151: &id190 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A/XSSo+ntz8= - 1833-120619-3_94: &id257 + 1833-120619-3_94: &id248 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TVBdcMKxoj8= - 1833-120619-4_127: &id284 + 1833-120619-4_127: &id275 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kUpBw0bgoj8= - 1833-200619-1_240: &id357 + 1833-200619-1_240: &id346 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KyfACYVltj8= - 1833-200619-2_327: &id418 + 1833-200619-2_327: &id406 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5rnggFGctT8= - 1833-200619-3_150: &id470 + 1833-200619-3_150: &id457 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | U2Kzm5+ZtD8= - 1833-200619-4_109: &id507 + 1833-200619-4_109: &id493 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tEd7GJimwD8= - 1833-260619-1_102: &id564 + 1833-260619-1_102: &id550 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fRIcvm3qyT8= - 1833-260619-2_140: &id639 + 1833-260619-2_140: &id624 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NkwOzBgRxD8= - 1833-260619-3_192: &id760 + 1833-260619-3_192: &id743 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | G6GZL/0lvD8= - 1833-260619-4_218: &id833 + 1833-260619-4_218: &id816 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eoTuQoEetT8= - 1833-290519-1_166: &id950 + 1833-290519-1_166: &id931 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A2HKJjLjwT8= - 1833-290519-3_147: &id1027 + 1833-290519-3_136: &id1029 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5maIhPbg0D8= - 1833-290519-4_90: &id1166 + iXWoGXRdvT8= + 1833-290519-4_90: &id1145 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3016,187 +2864,187 @@ _adj: - !!binary | WekAy8Rtxz8= 1833-050619-2_152: - 1833-010719-1_227: *id048 - 1833-050619-1_111: *id049 - 1833-050619-3_149: &id074 + 1833-010719-1_227: *id044 + 1833-050619-1_111: *id045 + 1833-050619-3_149: &id069 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 508hHz55mj8= - 1833-050619-4_157: &id093 + 1833-050619-4_157: &id087 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 36XL5EQclz8= - 1833-060619-1_176: &id131 + 1833-060619-1_176: &id124 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7FIWCbSroz8= - 1833-060619-2_112: &id144 + 1833-060619-2_112: &id136 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5FxmhEa/qT8= - 1833-120619-3_145: &id251 + 1833-120619-3_145: &id242 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8FqdlrwQwj8= - 1833-120619-4_124: &id276 + 1833-120619-4_124: &id267 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | K9bnRBqDtD8= - 1833-200619-1_206: &id344 + 1833-200619-1_206: &id333 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FZWwVPDtyj8= - 1833-200619-2_321: &id406 + 1833-200619-2_321: &id395 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NYw3VHZWxD8= - 1833-200619-3_132: &id456 + 1833-200619-3_132: &id443 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oBNoU7TIyT8= - 1833-200619-4_101: &id496 + 1833-200619-4_101: &id482 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nyX/pkf4xD8= - 1833-260619-1_112: &id612 + 1833-260619-1_112: &id598 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DXqkyUTtwz8= - 1833-260619-2_170: &id706 + 1833-260619-2_170: &id690 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZFAVQZLxyD8= - 1833-260619-4_214: &id820 + 1833-260619-4_214: &id803 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1/tRrCN4wT8= - 1833-290519-1_154: &id937 + 1833-290519-1_154: &id918 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VgRnNIBCxz8= - 1833-290519-3_151: &id1065 + 1833-290519-3_140: &id1044 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 7KVYTMpX1D8= + bJOtD5NQwT8= 1833-050619-2_74: - 1833-020719-3_64: *id050 - 1833-020719-4_248: *id051 - 1833-060619-2_116: &id149 + 1833-020719-3_64: *id046 + 1833-020719-4_248: *id047 + 1833-060619-2_116: &id141 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gppfO6EQyj8= - 1833-120619-3_141: &id233 + 1833-120619-3_141: &id225 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MAcC7p4kyz8= - 1833-120619-4_95: &id310 + 1833-120619-4_95: &id300 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bE4YpkL3yT8= - 1833-200619-2_308: &id398 + 1833-200619-2_308: &id387 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VE1r0bW9wj8= - 1833-260619-1_108: &id599 + 1833-260619-1_108: &id585 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 93bxhCp7uj8= - 1833-260619-2_156: &id676 + 1833-260619-2_156: &id660 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9voXu1DWwT8= - 1833-260619-4_184: &id798 + 1833-260619-4_184: &id781 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DdRxFiwntz8= - 1833-290519-1_142: &id902 + 1833-290519-1_142: &id884 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | V3E0hZlOvz8= - 1833-290519-2_76: &id972 + 1833-290519-2_76: &id953 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KAvK/xJHwT8= - 1833-290519-3_125: &id994 + 1833-290519-3_117: &id973 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - B6SJO4xp0D8= - 1833-290519-4_79: &id1145 + v2bzv9KRuj8= + 1833-290519-4_79: &id1124 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3204,203 +3052,203 @@ _adj: - !!binary | g1wD5vZ1tz8= 1833-050619-2_81: - 1833-020719-2_99: *id052 - 1833-050619-3_109: &id057 + 1833-020719-2_99: *id048 + 1833-050619-3_109: &id053 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 942Wo9Bpwj8= - 1833-050619-4_117: &id075 + 1833-050619-4_117: &id070 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0V1G9W68xj8= - 1833-060619-1_160: &id111 + 1833-060619-1_160: &id105 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qFLFdE0yyj8= - 1833-060619-2_74: &id158 + 1833-060619-2_74: &id150 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RNeZWpG/uz8= - 1833-120619-3_122: &id226 + 1833-120619-3_122: &id218 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7k2sreiryD8= - 1833-120619-4_85: &id304 + 1833-120619-4_85: &id295 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3jzlcbMJxD8= - 1833-200619-2_281: &id379 + 1833-200619-2_281: &id368 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | laPyWnCgwj8= - 1833-200619-3_120: &id431 + 1833-200619-3_120: &id419 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hZYLNPDKwT8= - 1833-200619-4_80: &id536 + 1833-200619-4_80: &id522 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +cMTzTTXvT8= - 1833-260619-4_200: &id807 + 1833-260619-4_200: &id790 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | v+AKDFQ3vT8= - 1833-290519-1_132: &id889 + 1833-290519-1_132: &id871 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g8sBbFuxwj8= - 1833-290519-3_149: &id1047 + 1833-290519-3_144: &id1060 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - UaRjdsKH1j8= + flfw4umRxT8= 1833-050619-3_109: - 1833-010719-1_152: *id053 - 1833-020719-1_107: *id054 - 1833-020719-2_99: *id055 - 1833-020719-4_248: *id056 - 1833-050619-2_81: *id057 - 1833-050619-4_117: &id076 + 1833-010719-1_152: *id049 + 1833-020719-1_107: *id050 + 1833-020719-2_99: *id051 + 1833-020719-4_248: *id052 + 1833-050619-2_81: *id053 + 1833-050619-4_117: &id071 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Am/xMrUgxz8= - 1833-060619-1_160: &id112 + 1833-060619-1_160: &id106 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T58eiB4exT8= - 1833-060619-2_74: &id159 + 1833-060619-2_74: &id151 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YPYeJXuVvj8= - 1833-120619-3_145: &id252 + 1833-120619-3_145: &id243 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qQ4H0tL/vz8= - 1833-120619-4_95: &id311 + 1833-120619-4_95: &id301 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8bzXi9ySwj8= - 1833-200619-1_163: &id320 + 1833-200619-1_163: &id310 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d06ip0/ytD8= - 1833-200619-2_308: &id399 + 1833-200619-2_308: &id388 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YD4FB7D7vT8= - 1833-200619-3_120: &id432 + 1833-200619-3_120: &id420 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7L1Sh2+2sT8= - 1833-200619-4_101: &id497 + 1833-200619-4_101: &id483 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IYMcjUEBwT8= - 1833-260619-1_124: &id626 + 1833-260619-1_124: &id611 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rpgOcIsSvz8= - 1833-260619-2_156: &id677 + 1833-260619-2_156: &id661 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UGoQd4PwwD8= - 1833-260619-3_168: &id744 + 1833-260619-3_168: &id728 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZjggTwZNsj8= - 1833-260619-4_80: &id853 + 1833-260619-4_80: &id835 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qmKwsFM6wD8= - 1833-290519-1_132: &id890 + 1833-290519-1_132: &id872 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fRjZjS5QuD8= - 1833-290519-3_149: &id1048 + 1833-290519-3_117: &id974 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 3q/TH87a0j8= - 1833-290519-4_90: &id1167 + NRQNlX4Zuz8= + 1833-290519-4_90: &id1146 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3408,124 +3256,124 @@ _adj: - !!binary | Hij6SQHqwT8= 1833-050619-3_117: - 1833-010719-1_183: *id058 - 1833-020719-3_96: *id059 - 1833-020719-4_254: *id060 - 1833-050619-1_60: *id061 - 1833-050619-2_119: *id062 - 1833-050619-4_133: &id082 + 1833-010719-1_183: *id054 + 1833-020719-3_96: *id055 + 1833-020719-4_254: *id056 + 1833-050619-1_60: *id057 + 1833-050619-2_119: *id058 + 1833-050619-4_133: &id077 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vR9Oz4PEpT8= - 1833-060619-1_158: &id105 + 1833-060619-1_158: &id099 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UhU4V1mLuz8= - 1833-060619-2_116: &id150 + 1833-060619-2_116: &id142 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jo/cbjDbzz8= - 1833-120619-2_169: &id210 + 1833-120619-2_169: &id202 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YL2w1YgywT8= - 1833-120619-3_143: &id242 + 1833-120619-3_143: &id234 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XvKsLTjSsD8= - 1833-120619-4_120: &id267 + 1833-120619-4_120: &id258 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EJhMdmdbuD8= - 1833-200619-1_171: &id332 + 1833-200619-1_171: &id321 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tjJ5CGguuz8= - 1833-200619-2_287: &id387 + 1833-200619-2_287: &id376 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A+4bEGwlwD8= - 1833-200619-3_126: &id443 + 1833-200619-3_126: &id431 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fRq4sJrGuj8= - 1833-200619-4_89: &id552 + 1833-200619-4_89: &id538 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cSkekRHJxD8= - 1833-260619-1_106: &id582 + 1833-260619-1_106: &id568 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | weLom2CJqT8= - 1833-260619-2_144: &id658 + 1833-260619-2_144: &id643 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dehEvcFhtz8= - 1833-260619-3_142: &id722 + 1833-260619-3_142: &id706 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MmIk1sMusz8= - 1833-260619-4_182: &id780 + 1833-260619-4_182: &id763 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fvAqJ6unvz8= - 1833-290519-1_124: &id871 + 1833-290519-1_124: &id853 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ePnpubm0uT8= - 1833-290519-3_125: &id995 + 1833-290519-3_144: &id1061 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5WwaBqi8zz8= - 1833-290519-4_65: &id1123 + vas9O/ANvD8= + 1833-290519-4_65: &id1102 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3533,118 +3381,118 @@ _adj: - !!binary | PAjV9zmnwD8= 1833-050619-3_129: - 1833-010719-1_200: *id063 - 1833-010719-2_225: *id064 - 1833-020719-3_64: *id065 - 1833-020719-4_310: *id066 - 1833-050619-1_64: *id067 - 1833-050619-2_125: *id068 - 1833-050619-4_92: &id101 + 1833-010719-1_200: *id059 + 1833-010719-2_225: *id060 + 1833-020719-3_64: *id061 + 1833-020719-4_310: *id062 + 1833-050619-1_64: *id063 + 1833-050619-2_125: *id064 + 1833-050619-4_92: &id095 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Zj5fOHYwoD8= - 1833-060619-1_162: &id120 + 1833-060619-1_162: &id114 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | il+1YZaLqT8= - 1833-060619-2_82: &id168 + 1833-060619-2_82: &id160 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | b8+DVNZ8rD8= - 1833-120619-1_127: &id177 + 1833-120619-1_127: &id169 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 78847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 071Pp24nuD8= - 1833-120619-3_118: &id221 + 1833-120619-3_118: &id213 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aropRHturj8= - 1833-120619-4_80: &id296 + 1833-120619-4_80: &id287 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fafPn2k5tz8= - 1833-200619-2_28: &id371 + 1833-200619-2_28: &id360 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FxE/3CaVtD8= - 1833-200619-3_75: &id485 + 1833-200619-3_75: &id472 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k2UL3C7PxT8= - 1833-200619-4_121: &id524 + 1833-200619-4_121: &id510 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OaLpB8Y9xT8= - 1833-260619-1_108: &id600 + 1833-260619-1_108: &id586 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LDkIrILdtD8= - 1833-260619-2_160: &id693 + 1833-260619-2_160: &id677 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ao9MYQxGuj8= - 1833-260619-4_184: &id799 + 1833-260619-4_184: &id782 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +ewzciw0uT8= - 1833-290519-1_150: &id920 + 1833-290519-1_150: &id902 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FBjlBGJFtj8= - 1833-290519-2_76: &id973 + 1833-290519-2_76: &id954 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NcbETwhoxz8= - 1833-290519-3_155: &id1077 + 1833-290519-3_123: &id994 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - drF8aYe1yz8= - 1833-290519-4_108: &id1102 + ItQJn8BDuT8= + 1833-290519-4_108: &id1081 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3652,231 +3500,230 @@ _adj: - !!binary | 6kaSALzJqz8= 1833-050619-3_143: - 1833-020719-3_63: *id069 - 1833-050619-1_91: *id070 - 1833-050619-2_146: *id071 - 1833-050619-4_135: &id089 + 1833-050619-1_91: *id065 + 1833-050619-2_146: *id066 + 1833-050619-4_135: &id083 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gHU9J80poz8= - 1833-060619-1_170: &id127 + 1833-060619-1_170: &id120 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | juSZuctNrD8= - 1833-060619-2_105: &id139 + 1833-060619-2_105: &id132 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YRmBPTZgtT8= - 1833-120619-1_129: &id188 + 1833-120619-1_129: &id180 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 78847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cdfNQYXquT8= - 1833-120619-2_151: &id199 + 1833-120619-2_151: &id191 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nyIrLTK/uD8= - 1833-120619-3_94: &id258 + 1833-120619-3_94: &id249 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FcC/k4Fpoz8= - 1833-120619-4_127: &id285 + 1833-120619-4_127: &id276 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D1KGuyJupj8= - 1833-200619-1_240: &id358 + 1833-200619-1_240: &id347 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IzRW9Z/ctz8= - 1833-200619-2_327: &id419 + 1833-200619-2_327: &id407 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VZC7DgR+uD8= - 1833-200619-3_150: &id471 + 1833-200619-3_150: &id458 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EqWr7qtytj8= - 1833-200619-4_109: &id508 + 1833-200619-4_109: &id494 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8TAiBbItwj8= - 1833-260619-1_102: &id565 + 1833-260619-1_102: &id551 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | L7EWda6SyT8= - 1833-260619-2_140: &id640 + 1833-260619-2_140: &id625 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LAgJJldmxD8= - 1833-260619-3_192: &id761 + 1833-260619-3_192: &id744 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YEtVtCYhvT8= - 1833-260619-4_218: &id834 + 1833-260619-4_218: &id817 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k0f+EfA9tj8= - 1833-290519-1_154: &id938 + 1833-290519-1_154: &id919 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R+wehP8zwj8= - 1833-290519-3_141: &id1013 + 1833-290519-3_136: &id1030 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qHzm2B8p0D8= + FnkXKyJ3vT8= 1833-050619-3_149: - 1833-010719-1_227: *id072 - 1833-050619-1_111: *id073 - 1833-050619-2_152: *id074 - 1833-050619-4_157: &id094 + 1833-010719-1_227: *id067 + 1833-050619-1_111: *id068 + 1833-050619-2_152: *id069 + 1833-050619-4_157: &id088 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sxXzSs7Ajj8= - 1833-060619-1_176: &id132 + 1833-060619-1_176: &id125 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lptRcSgXpD8= - 1833-060619-2_112: &id145 + 1833-060619-2_112: &id137 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N8g3osrzqD8= - 1833-120619-3_122: &id227 + 1833-120619-3_122: &id219 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | f4eGGW0SyD8= - 1833-120619-4_124: &id277 + 1833-120619-4_124: &id268 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ch22m0/nsj8= - 1833-200619-1_206: &id345 + 1833-200619-1_206: &id334 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sEQ37kTgyz8= - 1833-200619-2_321: &id407 + 1833-200619-2_321: &id396 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fcmTACNExD8= - 1833-200619-3_132: &id457 + 1833-200619-3_132: &id444 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4GZKpi2Myj8= - 1833-200619-4_80: &id537 + 1833-200619-4_80: &id523 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PwIovyR8yz8= - 1833-260619-1_112: &id613 + 1833-260619-1_112: &id599 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Xf4jZxqGwz8= - 1833-260619-2_170: &id707 + 1833-260619-2_170: &id691 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g54osv9OyT8= - 1833-260619-4_214: &id821 + 1833-260619-4_214: &id804 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7CskfKwBwT8= - 1833-290519-1_142: &id903 + 1833-290519-1_142: &id885 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CkRjnCo/wz8= - 1833-290519-3_147: &id1028 + 1833-290519-3_140: &id1045 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - FOxROKMp0T8= - 1833-290519-4_79: &id1146 + ubb9ewWCwT8= + 1833-290519-4_79: &id1125 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3884,219 +3731,219 @@ _adj: - !!binary | t+456NveyT8= 1833-050619-4_117: - 1833-050619-2_81: *id075 - 1833-050619-3_109: *id076 - 1833-060619-1_160: &id113 + 1833-050619-2_81: *id070 + 1833-050619-3_109: *id071 + 1833-060619-1_160: &id107 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Sek2XALkxj8= - 1833-060619-2_116: &id151 + 1833-060619-2_116: &id143 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jCcmielUzj8= - 1833-120619-3_122: &id228 + 1833-120619-3_122: &id220 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Tw/LuXjbvT8= - 1833-120619-4_95: &id312 + 1833-120619-4_95: &id302 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t+xTEUpvwT8= - 1833-200619-1_240: &id359 + 1833-200619-1_240: &id348 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yX06TH+3rz8= - 1833-200619-2_327: &id420 + 1833-200619-2_327: &id408 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zZfySk3xsD8= - 1833-200619-3_150: &id472 + 1833-200619-3_150: &id459 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KwfmtriVsT8= - 1833-200619-4_121: &id525 + 1833-200619-4_121: &id511 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q1VkSVmJsT8= - 1833-260619-1_124: &id627 + 1833-260619-1_124: &id612 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5qdQuhiauj8= - 1833-260619-2_160: &id694 + 1833-260619-2_160: &id678 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | p8ifyyPKvD8= - 1833-260619-3_192: &id762 + 1833-260619-3_192: &id745 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DbvHtiBiuT8= - 1833-260619-4_80: &id854 + 1833-260619-4_80: &id836 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lm91jGxlwD8= - 1833-290519-1_154: &id939 + 1833-290519-1_154: &id920 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QglvGaiowD8= - 1833-290519-3_141: &id1014 + 1833-290519-3_144: &id1062 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - slCA64mp0z8= + 4M4dcLBjxT8= 1833-050619-4_133: - 1833-010719-1_183: *id077 - 1833-020719-3_96: *id078 - 1833-020719-4_254: *id079 - 1833-050619-1_60: *id080 - 1833-050619-2_119: *id081 - 1833-050619-3_117: *id082 - 1833-060619-1_158: &id106 + 1833-010719-1_183: *id072 + 1833-020719-3_96: *id073 + 1833-020719-4_254: *id074 + 1833-050619-1_60: *id075 + 1833-050619-2_119: *id076 + 1833-050619-3_117: *id077 + 1833-060619-1_158: &id100 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rMwH7jtytj8= - 1833-060619-2_74: &id160 + 1833-060619-2_74: &id152 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QCqJd9elxz8= - 1833-120619-2_169: &id211 + 1833-120619-2_169: &id203 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T8tSfR+Ewj8= - 1833-120619-3_143: &id243 + 1833-120619-3_143: &id235 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /kbauvQwtT8= - 1833-120619-4_120: &id268 + 1833-120619-4_120: &id259 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LP/Q125CvT8= - 1833-200619-1_171: &id333 + 1833-200619-1_171: &id322 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mf4z+4iAwD8= - 1833-200619-2_287: &id388 + 1833-200619-2_287: &id377 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | b5LOEUtQwj8= - 1833-200619-3_75: &id486 + 1833-200619-3_75: &id473 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gHEhyMORwD8= - 1833-200619-4_89: &id553 + 1833-200619-4_89: &id539 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | h4xNL58mxj8= - 1833-260619-1_102: &id566 + 1833-260619-1_102: &id552 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4CBv5aUfvj8= - 1833-260619-2_144: &id659 + 1833-260619-2_144: &id644 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sdcDq3AsvD8= - 1833-260619-3_142: &id723 + 1833-260619-3_142: &id707 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5Bf6LF/EuD8= - 1833-260619-4_182: &id781 + 1833-260619-4_182: &id764 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2acY2jX6vT8= - 1833-290519-1_89: &id963 + 1833-290519-1_89: &id944 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1UtlA5LwvT8= - 1833-290519-3_149: &id1049 + 1833-290519-3_134: &id1013 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - J0cbx51nzD8= - 1833-290519-4_65: &id1124 + uPLe07mPwT8= + 1833-290519-4_65: &id1103 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4104,119 +3951,118 @@ _adj: - !!binary | KJeu9/D0wD8= 1833-050619-4_135: - 1833-010719-1_152: *id083 - 1833-020719-1_107: *id084 - 1833-020719-2_99: *id085 - 1833-020719-3_63: *id086 - 1833-050619-1_91: *id087 - 1833-050619-2_146: *id088 - 1833-050619-3_143: *id089 - 1833-060619-1_170: &id128 + 1833-010719-1_152: *id078 + 1833-020719-1_107: *id079 + 1833-020719-2_99: *id080 + 1833-050619-1_91: *id081 + 1833-050619-2_146: *id082 + 1833-050619-3_143: *id083 + 1833-060619-1_170: &id121 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8aVpIyPOqT8= - 1833-060619-2_105: &id140 + 1833-060619-2_105: &id133 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rFCm/Utnsj8= - 1833-120619-1_129: &id189 + 1833-120619-1_129: &id181 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 77029, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iTXAdmFTuD8= - 1833-120619-2_151: &id200 + 1833-120619-2_151: &id192 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jRKFqqyntT8= - 1833-120619-3_94: &id259 + 1833-120619-3_94: &id250 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R3PpO4smoD8= - 1833-120619-4_127: &id286 + 1833-120619-4_127: &id277 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VmfWybCxoz8= - 1833-200619-1_206: &id346 + 1833-200619-1_206: &id335 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Do1iZ571xD8= - 1833-200619-2_308: &id400 + 1833-200619-2_308: &id389 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9sJrUjqWxj8= - 1833-200619-3_126: &id444 + 1833-200619-3_126: &id432 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | E8NA8UHGvD8= - 1833-200619-4_109: &id509 + 1833-200619-4_109: &id495 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PBhAs8xowD8= - 1833-260619-1_106: &id583 + 1833-260619-1_106: &id569 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WmTFYCoZwz8= - 1833-260619-2_140: &id641 + 1833-260619-2_140: &id626 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MgxvqcK9xD8= - 1833-260619-4_218: &id835 + 1833-260619-4_218: &id818 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kMTpjUKbtj8= - 1833-290519-1_166: &id951 + 1833-290519-1_166: &id932 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CXRZ3SX7wT8= - 1833-290519-3_125: &id996 + 1833-290519-3_136: &id1031 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - A8RXajk00D8= - 1833-290519-4_90: &id1168 + p6n/ZoobvD8= + 1833-290519-4_90: &id1147 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4224,96 +4070,96 @@ _adj: - !!binary | AZ51Qiavxz8= 1833-050619-4_157: - 1833-010719-1_227: *id090 - 1833-020719-4_248: *id091 - 1833-050619-1_111: *id092 - 1833-050619-2_152: *id093 - 1833-050619-3_149: *id094 - 1833-060619-1_176: &id133 + 1833-010719-1_227: *id084 + 1833-020719-4_248: *id085 + 1833-050619-1_111: *id086 + 1833-050619-2_152: *id087 + 1833-050619-3_149: *id088 + 1833-060619-1_176: &id126 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S3uMftz1oz8= - 1833-060619-2_112: &id146 + 1833-060619-2_112: &id138 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gz7tQBQTpz8= - 1833-120619-3_145: &id253 + 1833-120619-3_145: &id244 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /cMEKah+wT8= - 1833-120619-4_124: &id278 + 1833-120619-4_124: &id269 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aVxzklf/sj8= - 1833-200619-2_321: &id408 + 1833-200619-2_321: &id397 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | L+f2riI4xD8= - 1833-200619-3_132: &id458 + 1833-200619-3_132: &id445 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0JOAaAatyj8= - 1833-200619-4_80: &id538 + 1833-200619-4_80: &id524 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gBkHULjMyz8= - 1833-260619-1_112: &id614 + 1833-260619-1_112: &id600 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5thT4lrJwz8= - 1833-260619-2_170: &id708 + 1833-260619-2_170: &id692 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Y7k4iOBOyT8= - 1833-260619-4_214: &id822 + 1833-260619-4_214: &id805 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pk/oS90wwT8= - 1833-290519-1_142: &id904 + 1833-290519-1_142: &id886 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3hdzNQlMwz8= - 1833-290519-3_147: &id1029 + 1833-290519-3_140: &id1046 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - wy+viIcq0T8= - 1833-290519-4_79: &id1147 + QAYnT4qfwT8= + 1833-290519-4_79: &id1126 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4321,126 +4167,126 @@ _adj: - !!binary | Owv+Zsv+yT8= 1833-050619-4_92: - 1833-010719-1_200: *id095 - 1833-010719-2_225: *id096 - 1833-020719-3_64: *id097 - 1833-020719-4_310: *id098 - 1833-050619-1_64: *id099 - 1833-050619-2_125: *id100 - 1833-050619-3_129: *id101 - 1833-060619-1_162: &id121 + 1833-010719-1_200: *id089 + 1833-010719-2_225: *id090 + 1833-020719-3_64: *id091 + 1833-020719-4_310: *id092 + 1833-050619-1_64: *id093 + 1833-050619-2_125: *id094 + 1833-050619-3_129: *id095 + 1833-060619-1_162: &id115 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iln7Y+W5sj8= - 1833-060619-2_82: &id169 + 1833-060619-2_82: &id161 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LvqA86+Esz8= - 1833-120619-1_127: &id178 + 1833-120619-1_127: &id170 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 77029, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D/TQMI4FvT8= - 1833-120619-3_118: &id222 + 1833-120619-3_118: &id214 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t90PvbBrsz8= - 1833-120619-4_80: &id297 + 1833-120619-4_80: &id288 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HevGjBBzvT8= - 1833-200619-1_163: &id321 + 1833-200619-1_163: &id311 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eXLA9AFexT8= - 1833-200619-2_28: &id372 + 1833-200619-2_28: &id361 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TkPljsscuj8= - 1833-200619-3_120: &id433 + 1833-200619-3_120: &id421 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T87yqR1ExD8= - 1833-200619-4_101: &id498 + 1833-200619-4_101: &id484 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R4wP2JI2yz8= - 1833-260619-1_108: &id601 + 1833-260619-1_108: &id587 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | l+AyjifDuD8= - 1833-260619-2_156: &id678 + 1833-260619-2_156: &id662 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RLuglD8+wj8= - 1833-260619-3_168: &id745 + 1833-260619-3_168: &id729 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pmFIhaE6wj8= - 1833-260619-4_184: &id800 + 1833-260619-4_184: &id783 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jywW6cSYuT8= - 1833-290519-1_150: &id921 + 1833-290519-1_150: &id903 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Nau+CiIFuj8= - 1833-290519-2_76: &id974 + 1833-290519-2_76: &id955 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S6MPpTC7xj8= - 1833-290519-3_155: &id1078 + 1833-290519-3_123: &id995 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - GhTesnkyyz8= - 1833-290519-4_108: &id1103 + dwbQPoN4uj8= + 1833-290519-4_108: &id1082 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4448,202 +4294,202 @@ _adj: - !!binary | iX7WiJt/qT8= 1833-060619-1_158: - 1833-010719-1_183: *id102 - 1833-020719-3_96: *id103 - 1833-050619-2_119: *id104 - 1833-050619-3_117: *id105 - 1833-050619-4_133: *id106 - 1833-060619-2_116: &id152 + 1833-010719-1_183: *id096 + 1833-020719-3_96: *id097 + 1833-050619-2_119: *id098 + 1833-050619-3_117: *id099 + 1833-050619-4_133: *id100 + 1833-060619-2_116: &id144 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8ElZ5H7g0D8= - 1833-120619-2_169: &id212 + 1833-120619-2_169: &id204 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vL0NBsDUvT8= - 1833-120619-3_141: &id234 + 1833-120619-3_141: &id226 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZN0j86dVuj8= - 1833-120619-4_85: &id305 + 1833-120619-4_85: &id296 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FC0LgGKeyD8= - 1833-200619-1_206: &id347 + 1833-200619-1_206: &id336 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wwBycDN8wz8= - 1833-200619-2_287: &id389 + 1833-200619-2_287: &id378 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0JKD7Ar8vD8= - 1833-200619-3_132: &id459 + 1833-200619-3_132: &id446 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dZfa6soXwD8= - 1833-200619-4_89: &id554 + 1833-200619-4_89: &id540 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pxdAwd5sxj8= - 1833-260619-1_102: &id567 + 1833-260619-1_102: &id553 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TfbYqg8Uvj8= - 1833-260619-2_144: &id660 + 1833-260619-2_144: &id645 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T0bmM1pkuj8= - 1833-260619-4_182: &id782 + 1833-260619-4_182: &id765 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dsZYH+rTvD8= - 1833-290519-1_89: &id964 + 1833-290519-1_89: &id945 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | x6icJq41xz8= - 1833-290519-3_155: &id1079 + 1833-290519-3_144: &id1063 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Nf6f0SSE0D8= + v6kaknz8vT8= 1833-060619-1_160: - 1833-010719-1_152: *id107 - 1833-020719-1_107: *id108 - 1833-020719-4_254: *id109 - 1833-050619-1_60: *id110 - 1833-050619-2_81: *id111 - 1833-050619-3_109: *id112 - 1833-050619-4_117: *id113 - 1833-060619-2_74: &id161 + 1833-010719-1_152: *id101 + 1833-020719-1_107: *id102 + 1833-020719-4_254: *id103 + 1833-050619-1_60: *id104 + 1833-050619-2_81: *id105 + 1833-050619-3_109: *id106 + 1833-050619-4_117: *id107 + 1833-060619-2_74: &id153 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HrAfdEYMwD8= - 1833-120619-3_143: &id244 + 1833-120619-3_143: &id236 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PU0bSWkSqD8= - 1833-120619-4_120: &id269 + 1833-120619-4_120: &id260 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bw+cI2gcqz8= - 1833-200619-1_171: &id334 + 1833-200619-1_171: &id323 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zpLMgQZ6tT8= - 1833-200619-2_308: &id401 + 1833-200619-2_308: &id390 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2v21q3w4yz8= - 1833-200619-3_75: &id487 + 1833-200619-3_75: &id474 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ymbwv4kUsD8= - 1833-200619-4_80: &id539 + 1833-200619-4_80: &id525 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q6cjQSl2wj8= - 1833-260619-1_106: &id584 + 1833-260619-1_106: &id570 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lClq3PgNqj8= - 1833-260619-2_160: &id695 + 1833-260619-2_160: &id679 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | b/lydMmIwj8= - 1833-260619-3_142: &id724 + 1833-260619-3_142: &id708 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kFhz+b8Rtz8= - 1833-260619-4_80: &id855 + 1833-260619-4_80: &id837 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2R3gQ/1dxj8= - 1833-290519-1_124: &id872 + 1833-290519-1_124: &id854 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Xgb1EON5tT8= - 1833-290519-3_125: &id997 + 1833-290519-3_134: &id1014 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - K/LPY9qc0T8= - 1833-290519-4_65: &id1125 + ut2MBVG+uz8= + 1833-290519-4_65: &id1104 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4651,120 +4497,120 @@ _adj: - !!binary | fSnb9S7sxD8= 1833-060619-1_162: - 1833-010719-1_200: *id114 - 1833-010719-2_225: *id115 - 1833-020719-3_63: *id116 - 1833-020719-4_310: *id117 - 1833-050619-1_64: *id118 - 1833-050619-2_125: *id119 - 1833-050619-3_129: *id120 - 1833-050619-4_92: *id121 - 1833-060619-2_82: &id170 + 1833-010719-1_200: *id108 + 1833-010719-2_225: *id109 + 1833-020719-3_64: *id110 + 1833-020719-4_310: *id111 + 1833-050619-1_64: *id112 + 1833-050619-2_125: *id113 + 1833-050619-3_129: *id114 + 1833-050619-4_92: *id115 + 1833-060619-2_82: &id162 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yURWdFGekT8= - 1833-120619-1_127: &id179 + 1833-120619-1_127: &id171 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81828, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /C5b3pqPqj8= - 1833-120619-3_118: &id223 + 1833-120619-3_118: &id215 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HVMkBMQUqD8= - 1833-120619-4_80: &id298 + 1833-120619-4_80: &id289 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CtOGOoZirD8= - 1833-200619-1_163: &id322 + 1833-200619-1_163: &id312 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PQTwVk9Htz8= - 1833-200619-2_28: &id373 + 1833-200619-2_28: &id362 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P4Jx3hIlrz8= - 1833-200619-3_120: &id434 + 1833-200619-3_120: &id422 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tfGBUh1Dtj8= - 1833-200619-4_121: &id526 + 1833-200619-4_121: &id512 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hka9VEWywj8= - 1833-260619-1_108: &id602 + 1833-260619-1_108: &id588 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JsGNxhWXsz8= - 1833-260619-2_156: &id679 + 1833-260619-2_156: &id663 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KUU8lvVevz8= - 1833-260619-3_168: &id746 + 1833-260619-3_168: &id730 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SaOHs0wbtD8= - 1833-260619-4_184: &id801 + 1833-260619-4_184: &id784 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1BdAKfW1uj8= - 1833-290519-1_150: &id922 + 1833-290519-1_150: &id904 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GsIkTi1urj8= - 1833-290519-2_76: &id975 + 1833-290519-2_76: &id956 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FdNhCSLqxz8= - 1833-290519-3_149: &id1050 + 1833-290519-3_123: &id996 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - s3SFEAcjzz8= - 1833-290519-4_108: &id1104 + zcURPDQXsz8= + 1833-290519-4_108: &id1083 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4772,119 +4618,118 @@ _adj: - !!binary | QThPv+nVsT8= 1833-060619-1_170: - 1833-020719-2_99: *id122 - 1833-020719-3_64: *id123 - 1833-020719-4_248: *id124 - 1833-050619-1_91: *id125 - 1833-050619-2_146: *id126 - 1833-050619-3_143: *id127 - 1833-050619-4_135: *id128 - 1833-060619-2_105: &id141 + 1833-020719-2_99: *id116 + 1833-020719-4_248: *id117 + 1833-050619-1_91: *id118 + 1833-050619-2_146: *id119 + 1833-050619-3_143: *id120 + 1833-050619-4_135: *id121 + 1833-060619-2_105: &id134 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VS56gK5nqz8= - 1833-120619-1_129: &id190 + 1833-120619-1_129: &id182 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81828, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HVH0LH7isD8= - 1833-120619-2_151: &id201 + 1833-120619-2_151: &id193 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 181GbsgMsT8= - 1833-120619-3_94: &id260 + 1833-120619-3_94: &id251 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GST8HjOqqj8= - 1833-120619-4_127: &id287 + 1833-120619-4_127: &id278 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UpwnR/eArj8= - 1833-200619-1_240: &id360 + 1833-200619-1_240: &id349 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /npgKty7vz8= - 1833-200619-2_327: &id421 + 1833-200619-2_327: &id409 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WFi6skwZwD8= - 1833-200619-3_126: &id445 + 1833-200619-3_126: &id433 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lDxKoUqZtz8= - 1833-200619-4_109: &id510 + 1833-200619-4_109: &id496 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k9Mv4JGqvz8= - 1833-260619-1_124: &id628 + 1833-260619-1_124: &id613 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fdrUwDHlwD8= - 1833-260619-2_140: &id642 + 1833-260619-2_140: &id627 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | istCsiWZwj8= - 1833-260619-3_192: &id763 + 1833-260619-3_192: &id746 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4YF54CNlvj8= - 1833-260619-4_218: &id836 + 1833-260619-4_218: &id819 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | msY7cGFwuD8= - 1833-290519-1_166: &id952 + 1833-290519-1_166: &id933 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IIrxolZZuz8= - 1833-290519-3_141: &id1015 + 1833-290519-3_136: &id1032 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - CU6nGnOSzj8= - 1833-290519-4_90: &id1169 + fOCPrK2qsz8= + 1833-290519-4_90: &id1148 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4892,89 +4737,89 @@ _adj: - !!binary | sWeab/iCxj8= 1833-060619-1_176: - 1833-010719-1_227: *id129 - 1833-050619-1_111: *id130 - 1833-050619-2_152: *id131 - 1833-050619-3_149: *id132 - 1833-050619-4_157: *id133 - 1833-060619-2_112: &id147 + 1833-010719-1_227: *id122 + 1833-050619-1_111: *id123 + 1833-050619-2_152: *id124 + 1833-050619-3_149: *id125 + 1833-050619-4_157: *id126 + 1833-060619-2_112: &id139 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VXxzzqvRpj8= - 1833-120619-3_145: &id254 + 1833-120619-3_145: &id245 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WQIaWsJEwj8= - 1833-120619-4_124: &id279 + 1833-120619-4_124: &id270 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DQU4Rq9ktj8= - 1833-200619-2_321: &id409 + 1833-200619-2_321: &id398 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 876vzS5CxD8= - 1833-200619-3_150: &id473 + 1833-200619-3_150: &id460 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 97TcSJdjxj8= - 1833-200619-4_101: &id499 + 1833-200619-4_101: &id485 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GofGYdwaxj8= - 1833-260619-1_112: &id615 + 1833-260619-1_112: &id601 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZCT1iTh0xT8= - 1833-260619-2_170: &id709 + 1833-260619-2_170: &id693 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qM9zekulyD8= - 1833-260619-4_214: &id823 + 1833-260619-4_214: &id806 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ehz6MXTewj8= - 1833-290519-1_142: &id905 + 1833-290519-1_142: &id887 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 54lB9dm8xD8= - 1833-290519-3_147: &id1030 + 1833-290519-3_140: &id1047 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jToWYr7O0T8= - 1833-290519-4_79: &id1148 + lUMr7z2gwz8= + 1833-290519-4_79: &id1127 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4982,113 +4827,113 @@ _adj: - !!binary | 7VnqY2zuyz8= 1833-060619-2_105: - 1833-010719-1_183: *id134 - 1833-020719-3_96: *id135 - 1833-020719-4_248: *id136 - 1833-050619-1_91: *id137 - 1833-050619-2_146: *id138 - 1833-050619-3_143: *id139 - 1833-050619-4_135: *id140 - 1833-060619-1_170: *id141 - 1833-120619-1_129: &id191 + 1833-010719-1_183: *id127 + 1833-020719-3_96: *id128 + 1833-020719-4_248: *id129 + 1833-050619-1_91: *id130 + 1833-050619-2_146: *id131 + 1833-050619-3_143: *id132 + 1833-050619-4_135: *id133 + 1833-060619-1_170: *id134 + 1833-120619-1_129: &id183 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Lnt9FN+8pz8= - 1833-120619-2_151: &id202 + 1833-120619-2_151: &id194 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WX6k91Bfmj8= - 1833-120619-3_94: &id261 + 1833-120619-3_94: &id252 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hzLkqi3/sj8= - 1833-120619-4_120: &id270 + 1833-120619-4_120: &id261 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9W6/l8y4sT8= - 1833-200619-1_171: &id335 + 1833-200619-1_171: &id324 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4bkXlOY4tT8= - 1833-200619-2_287: &id390 + 1833-200619-2_287: &id379 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IdW/wflUwT8= - 1833-200619-3_126: &id446 + 1833-200619-3_126: &id434 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | h21KYXlrsD8= - 1833-200619-4_109: &id511 + 1833-200619-4_109: &id497 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RPwt/ldgvD8= - 1833-260619-1_106: &id585 + 1833-260619-1_106: &id571 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lEPK9L9LvD8= - 1833-260619-2_144: &id661 + 1833-260619-2_144: &id646 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6jDkjm/guj8= - 1833-260619-3_142: &id725 + 1833-260619-3_142: &id709 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QzjpAgr4vj8= - 1833-260619-4_218: &id837 + 1833-260619-4_218: &id820 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A70HEkCVtj8= - 1833-290519-1_124: &id873 + 1833-290519-1_124: &id855 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d+9PzZcMuz8= - 1833-290519-3_141: &id1016 + 1833-290519-3_136: &id1033 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Lkyzy79Q0D8= - 1833-290519-4_65: &id1126 + s3NS5O2ptT8= + 1833-290519-4_65: &id1105 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5096,90 +4941,89 @@ _adj: - !!binary | KeR4TiTGxj8= 1833-060619-2_112: - 1833-020719-3_64: *id142 - 1833-050619-1_111: *id143 - 1833-050619-2_152: *id144 - 1833-050619-3_149: *id145 - 1833-050619-4_157: *id146 - 1833-060619-1_176: *id147 - 1833-120619-3_145: &id255 + 1833-050619-1_111: *id135 + 1833-050619-2_152: *id136 + 1833-050619-3_149: *id137 + 1833-050619-4_157: *id138 + 1833-060619-1_176: *id139 + 1833-120619-3_145: &id246 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CfjPp6NIwD8= - 1833-120619-4_95: &id313 + 1833-120619-4_95: &id303 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TaC5YwiWwz8= - 1833-200619-1_240: &id361 + 1833-200619-1_240: &id350 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | L5Bbhc2Cxz8= - 1833-200619-2_321: &id410 + 1833-200619-2_321: &id399 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | F/u5/u0lxT8= - 1833-200619-3_150: &id474 + 1833-200619-3_150: &id461 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H3d+QHhHxj8= - 1833-200619-4_101: &id500 + 1833-200619-4_101: &id486 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | a8rY3JThxD8= - 1833-260619-1_112: &id616 + 1833-260619-1_112: &id602 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WMGLecO2wz8= - 1833-260619-2_170: &id710 + 1833-260619-2_170: &id694 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6JbNKXllyj8= - 1833-260619-4_214: &id824 + 1833-260619-4_214: &id807 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JAL9x3ffwD8= - 1833-290519-1_142: &id906 + 1833-290519-1_142: &id888 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IP272PG/wj8= - 1833-290519-3_147: &id1031 + 1833-290519-3_140: &id1048 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - RdREtbH60T8= - 1833-290519-4_79: &id1149 + U2Zdb61ZwT8= + 1833-290519-4_79: &id1128 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5187,183 +5031,183 @@ _adj: - !!binary | G+8EmVRNyz8= 1833-060619-2_116: - 1833-010719-1_227: *id148 - 1833-050619-2_74: *id149 - 1833-050619-3_117: *id150 - 1833-050619-4_117: *id151 - 1833-060619-1_158: *id152 - 1833-120619-3_122: &id229 + 1833-010719-1_227: *id140 + 1833-050619-2_74: *id141 + 1833-050619-3_117: *id142 + 1833-050619-4_117: *id143 + 1833-060619-1_158: *id144 + 1833-120619-3_122: &id221 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tyEKo8uazD8= - 1833-120619-4_124: &id280 + 1833-120619-4_124: &id271 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +3ZfHlF3vj8= - 1833-200619-2_308: &id402 + 1833-200619-2_308: &id391 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BK5Jz5Sexz8= - 1833-200619-3_132: &id460 + 1833-200619-3_132: &id447 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8j4luvqNzD8= - 1833-200619-4_89: &id555 + 1833-200619-4_89: &id541 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fvbQBbuAzT8= - 1833-260619-1_102: &id568 + 1833-260619-1_102: &id554 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YO4LZSiOzz8= - 1833-260619-2_156: &id680 + 1833-260619-2_156: &id664 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AlycxDTSxz8= - 1833-260619-4_80: &id856 + 1833-260619-4_80: &id838 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WMkkX79oyD8= - 1833-290519-1_154: &id940 + 1833-290519-1_154: &id921 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tzTG2vtGyz8= - 1833-290519-3_125: &id998 + 1833-290519-3_117: &id975 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - bJwxj6Fs0T8= + mOQlu/D7yD8= 1833-060619-2_74: - 1833-010719-1_152: *id153 - 1833-020719-1_107: *id154 - 1833-020719-2_99: *id155 - 1833-020719-4_254: *id156 - 1833-050619-1_60: *id157 - 1833-050619-2_81: *id158 - 1833-050619-3_109: *id159 - 1833-050619-4_133: *id160 - 1833-060619-1_160: *id161 - 1833-120619-2_169: &id213 + 1833-010719-1_152: *id145 + 1833-020719-1_107: *id146 + 1833-020719-2_99: *id147 + 1833-020719-4_254: *id148 + 1833-050619-1_60: *id149 + 1833-050619-2_81: *id150 + 1833-050619-3_109: *id151 + 1833-050619-4_133: *id152 + 1833-060619-1_160: *id153 + 1833-120619-2_169: &id205 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bfDnR7WBxD8= - 1833-120619-3_143: &id245 + 1833-120619-3_143: &id237 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | K0PlywVRwj8= - 1833-120619-4_85: &id306 + 1833-120619-4_85: &id297 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BRbdxh0ktz8= - 1833-200619-1_206: &id348 + 1833-200619-1_206: &id337 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zGaIEv8Mxz8= - 1833-200619-2_327: &id422 + 1833-200619-2_327: &id410 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YaS8RTP9wz8= - 1833-200619-3_75: &id488 + 1833-200619-3_75: &id475 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6oDK1jMzwD8= - 1833-200619-4_80: &id540 + 1833-200619-4_80: &id526 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DnNbgcSPuD8= - 1833-260619-1_124: &id629 + 1833-260619-1_124: &id614 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3iMUeroswz8= - 1833-260619-2_140: &id643 + 1833-260619-2_140: &id628 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ztTLZwKnxD8= - 1833-260619-3_192: &id764 + 1833-260619-3_192: &id747 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2weIxpdhwj8= - 1833-260619-4_200: &id808 + 1833-260619-4_200: &id791 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BYWzE/xwxD8= - 1833-290519-1_132: &id891 + 1833-290519-1_132: &id873 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tFfzOAbmwT8= - 1833-290519-3_149: &id1051 + 1833-290519-3_144: &id1064 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ikDNrdwX1D8= - 1833-290519-4_90: &id1170 + /a0Z51yIwT8= + 1833-290519-4_90: &id1149 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5371,114 +5215,114 @@ _adj: - !!binary | ILejJhITyD8= 1833-060619-2_82: - 1833-010719-1_200: *id162 - 1833-010719-2_225: *id163 - 1833-020719-3_63: *id164 - 1833-020719-4_310: *id165 - 1833-050619-1_64: *id166 - 1833-050619-2_125: *id167 - 1833-050619-3_129: *id168 - 1833-050619-4_92: *id169 - 1833-060619-1_162: *id170 - 1833-120619-1_127: &id180 + 1833-010719-1_200: *id154 + 1833-010719-2_225: *id155 + 1833-020719-3_64: *id156 + 1833-020719-4_310: *id157 + 1833-050619-1_64: *id158 + 1833-050619-2_125: *id159 + 1833-050619-3_129: *id160 + 1833-050619-4_92: *id161 + 1833-060619-1_162: *id162 + 1833-120619-1_127: &id172 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Io3FEt0+rD8= - 1833-120619-3_118: &id224 + 1833-120619-3_118: &id216 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RW4o4rz1qD8= - 1833-120619-4_80: &id299 + 1833-120619-4_80: &id290 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | egy84JKuqD8= - 1833-200619-1_163: &id323 + 1833-200619-1_163: &id313 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XUmmp0Yetj8= - 1833-200619-2_28: &id374 + 1833-200619-2_28: &id363 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tfJao7s4sT8= - 1833-200619-3_120: &id435 + 1833-200619-3_120: &id423 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Eh3puAR0tT8= - 1833-200619-4_121: &id527 + 1833-200619-4_121: &id513 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BIgw6cwfwz8= - 1833-260619-1_108: &id603 + 1833-260619-1_108: &id589 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZweKNetctD8= - 1833-260619-2_160: &id696 + 1833-260619-2_160: &id680 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JArMd7Yutz8= - 1833-260619-3_168: &id747 + 1833-260619-3_168: &id731 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cFEUCCU3tT8= - 1833-260619-4_184: &id802 + 1833-260619-4_184: &id785 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0EqmJCPkuz8= - 1833-290519-1_150: &id923 + 1833-290519-1_150: &id905 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A4HXeTg7sD8= - 1833-290519-2_76: &id976 + 1833-290519-2_76: &id957 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FPpuAnjGyD8= - 1833-290519-3_155: &id1080 + 1833-290519-3_123: &id997 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - xvX5niOJzj8= - 1833-290519-4_108: &id1105 + pWZIserqsT8= + 1833-290519-4_108: &id1084 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5486,115 +5330,115 @@ _adj: - !!binary | +qKuOtZvsj8= 1833-120619-1_127: - 1833-010719-1_200: *id171 - 1833-010719-2_225: *id172 - 1833-020719-3_63: *id173 - 1833-020719-4_310: *id174 - 1833-050619-1_64: *id175 - 1833-050619-2_125: *id176 - 1833-050619-3_129: *id177 - 1833-050619-4_92: *id178 - 1833-060619-1_162: *id179 - 1833-060619-2_82: *id180 - 1833-120619-2_151: &id203 + 1833-010719-1_200: *id163 + 1833-010719-2_225: *id164 + 1833-020719-3_64: *id165 + 1833-020719-4_310: *id166 + 1833-050619-1_64: *id167 + 1833-050619-2_125: *id168 + 1833-050619-3_129: *id169 + 1833-050619-4_92: *id170 + 1833-060619-1_162: *id171 + 1833-060619-2_82: *id172 + 1833-120619-2_151: &id195 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fisf6uE8wT8= - 1833-120619-3_118: &id225 + 1833-120619-3_118: &id217 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4997, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ByBD0y50tD8= - 1833-120619-4_80: &id300 + 1833-120619-4_80: &id291 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7344, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | skmZpK9EsT8= - 1833-200619-1_163: &id324 + 1833-200619-1_163: &id314 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gJB5cMGXsz8= - 1833-200619-2_28: &id375 + 1833-200619-2_28: &id364 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uuzzrvibtT8= - 1833-200619-3_120: &id436 + 1833-200619-3_120: &id424 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q5s7TjNasj8= - 1833-200619-4_121: &id528 + 1833-200619-4_121: &id514 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pEch/7gCwD8= - 1833-260619-1_124: &id630 + 1833-260619-1_124: &id615 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1398, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +8sk7QwDqj8= - 1833-260619-2_160: &id697 + 1833-260619-2_160: &id681 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3691, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DCPHLascrz8= - 1833-260619-3_192: &id765 + 1833-260619-3_192: &id748 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Wb76CmnbqD8= - 1833-260619-4_80: &id857 + 1833-260619-4_80: &id839 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TJbo5BfvtD8= - 1833-290519-1_150: &id924 + 1833-290519-1_150: &id906 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DLFdhHslqj8= - 1833-290519-2_76: &id977 + 1833-290519-2_76: &id958 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83400, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dH+IlSbXyT8= - 1833-290519-3_149: &id1052 + 1833-290519-3_123: &id998 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Qocwmjfp0D8= - 1833-290519-4_108: &id1106 + 1ibgbClmsD8= + 1833-290519-4_108: &id1085 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5602,109 +5446,109 @@ _adj: - !!binary | WT/2NDR1uz8= 1833-120619-1_129: - 1833-010719-1_152: *id181 - 1833-020719-1_107: *id182 - 1833-020719-2_99: *id183 - 1833-020719-3_96: *id184 - 1833-020719-4_254: *id185 - 1833-050619-1_91: *id186 - 1833-050619-2_146: *id187 - 1833-050619-3_143: *id188 - 1833-050619-4_135: *id189 - 1833-060619-1_170: *id190 - 1833-060619-2_105: *id191 - 1833-120619-2_169: &id214 + 1833-010719-1_152: *id173 + 1833-020719-1_107: *id174 + 1833-020719-2_99: *id175 + 1833-020719-3_96: *id176 + 1833-020719-4_254: *id177 + 1833-050619-1_91: *id178 + 1833-050619-2_146: *id179 + 1833-050619-3_143: *id180 + 1833-050619-4_135: *id181 + 1833-060619-1_170: *id182 + 1833-060619-2_105: *id183 + 1833-120619-2_169: &id206 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Jowx6Vgsvj8= - 1833-120619-3_143: &id246 + 1833-120619-3_143: &id238 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4997, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | B2VsgSbisT8= - 1833-120619-4_120: &id271 + 1833-120619-4_120: &id262 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7344, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 18C0Xnyisj8= - 1833-200619-1_171: &id336 + 1833-200619-1_171: &id325 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IFRk7+7yrT8= - 1833-200619-2_287: &id391 + 1833-200619-2_287: &id380 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | inHtiXEGvD8= - 1833-200619-3_126: &id447 + 1833-200619-3_126: &id435 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | scssNxhrsT8= - 1833-200619-4_109: &id512 + 1833-200619-4_109: &id498 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g21KbXDJwD8= - 1833-260619-1_106: &id586 + 1833-260619-1_106: &id572 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1398, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KmgjtBU2uT8= - 1833-260619-2_144: &id662 + 1833-260619-2_144: &id647 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3691, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jbtXDRXstj8= - 1833-260619-3_142: &id726 + 1833-260619-3_142: &id710 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KzglOpNVuT8= - 1833-260619-4_218: &id838 + 1833-260619-4_218: &id821 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CvbW6oMfvj8= - 1833-290519-1_124: &id874 + 1833-290519-1_124: &id856 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nrYXJq98tj8= - 1833-290519-3_155: &id1081 + 1833-290519-3_134: &id1015 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - bBDThSagzz8= - 1833-290519-4_65: &id1127 + oY54Y0Husj8= + 1833-290519-4_65: &id1106 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5712,110 +5556,110 @@ _adj: - !!binary | zdJdDL66xj8= 1833-120619-2_151: - 1833-010719-1_152: *id192 - 1833-010719-2_225: *id193 - 1833-020719-1_107: *id194 - 1833-020719-3_64: *id195 - 1833-020719-4_254: *id196 - 1833-050619-1_91: *id197 - 1833-050619-2_146: *id198 - 1833-050619-3_143: *id199 - 1833-050619-4_135: *id200 - 1833-060619-1_170: *id201 - 1833-060619-2_105: *id202 - 1833-120619-1_127: *id203 - 1833-120619-3_143: &id247 + 1833-010719-1_152: *id184 + 1833-010719-2_225: *id185 + 1833-020719-1_107: *id186 + 1833-020719-3_64: *id187 + 1833-020719-4_254: *id188 + 1833-050619-1_91: *id189 + 1833-050619-2_146: *id190 + 1833-050619-3_143: *id191 + 1833-050619-4_135: *id192 + 1833-060619-1_170: *id193 + 1833-060619-2_105: *id194 + 1833-120619-1_127: *id195 + 1833-120619-3_143: &id239 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7nhjHSv4sT8= - 1833-120619-4_120: &id272 + 1833-120619-4_120: &id263 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4959, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1OxFVGLKqz8= - 1833-200619-1_171: &id337 + 1833-200619-1_171: &id326 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z/+FTSBKtD8= - 1833-200619-2_327: &id423 + 1833-200619-2_327: &id411 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z0S6kQRKwD8= - 1833-200619-3_126: &id448 + 1833-200619-3_126: &id436 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Vx5GIPn4qz8= - 1833-200619-4_109: &id513 + 1833-200619-4_109: &id499 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9wXMA8lsvj8= - 1833-260619-1_106: &id587 + 1833-260619-1_106: &id573 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4bWP/Z57uj8= - 1833-260619-2_160: &id698 + 1833-260619-2_160: &id682 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2gcmARp0wD8= - 1833-260619-3_192: &id766 + 1833-260619-3_192: &id749 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1e3ElkjpvT8= - 1833-260619-4_218: &id839 + 1833-260619-4_218: &id822 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KDrNc8R/uD8= - 1833-290519-1_124: &id875 + 1833-290519-1_124: &id857 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | f21EXkypuT8= - 1833-290519-2_76: &id978 + 1833-290519-2_76: &id959 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Jp6zvfg1yj8= - 1833-290519-3_155: &id1082 + 1833-290519-3_144: &id1065 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - mwfKDLTFzj8= - 1833-290519-4_90: &id1171 + +so//qU7tz8= + 1833-290519-4_90: &id1150 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5823,102 +5667,102 @@ _adj: - !!binary | LJ17HpFpxj8= 1833-120619-2_169: - 1833-010719-1_183: *id204 - 1833-020719-2_99: *id205 - 1833-020719-3_96: *id206 - 1833-020719-4_248: *id207 - 1833-050619-1_60: *id208 - 1833-050619-2_119: *id209 - 1833-050619-3_117: *id210 - 1833-050619-4_133: *id211 - 1833-060619-1_158: *id212 - 1833-060619-2_74: *id213 - 1833-120619-1_129: *id214 - 1833-120619-3_141: &id235 + 1833-010719-1_183: *id196 + 1833-020719-2_99: *id197 + 1833-020719-3_96: *id198 + 1833-020719-4_248: *id199 + 1833-050619-1_60: *id200 + 1833-050619-2_119: *id201 + 1833-050619-3_117: *id202 + 1833-050619-4_133: *id203 + 1833-060619-1_158: *id204 + 1833-060619-2_74: *id205 + 1833-120619-1_129: *id206 + 1833-120619-3_141: &id227 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ltPprGegoT8= - 1833-120619-4_85: &id307 + 1833-120619-4_85: &id298 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4959, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rJoyuKQPvj8= - 1833-200619-1_206: &id349 + 1833-200619-1_206: &id338 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LM114saYsD8= - 1833-200619-2_287: &id392 + 1833-200619-2_287: &id381 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VYh4wZTNrj8= - 1833-200619-3_132: &id461 + 1833-200619-3_132: &id448 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7PrumQZzqD8= - 1833-200619-4_89: &id556 + 1833-200619-4_89: &id542 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | U2GpuI8Suz8= - 1833-260619-1_102: &id569 + 1833-260619-1_102: &id555 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kBf6HtJZwD8= - 1833-260619-2_144: &id663 + 1833-260619-2_144: &id648 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d6gcg2BWtj8= - 1833-260619-3_142: &id727 + 1833-260619-3_142: &id711 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | p4m826rZuD8= - 1833-260619-4_182: &id783 + 1833-260619-4_182: &id766 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Lo1kj0Ndvz8= - 1833-290519-1_166: &id953 + 1833-290519-1_166: &id934 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HwjwhRJKtj8= - 1833-290519-3_149: &id1053 + 1833-290519-3_134: &id1016 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - im1JcavD0D8= - 1833-290519-4_65: &id1128 + af9FMR6ptD8= + 1833-290519-4_65: &id1107 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5926,88 +5770,88 @@ _adj: - !!binary | Z+jI464VyT8= 1833-120619-3_118: - 1833-010719-1_200: *id215 - 1833-010719-2_225: *id216 - 1833-020719-3_64: *id217 - 1833-020719-4_310: *id218 - 1833-050619-1_64: *id219 - 1833-050619-2_125: *id220 - 1833-050619-3_129: *id221 - 1833-050619-4_92: *id222 - 1833-060619-1_162: *id223 - 1833-060619-2_82: *id224 - 1833-120619-1_127: *id225 - 1833-120619-4_80: &id301 + 1833-010719-1_200: *id207 + 1833-010719-2_225: *id208 + 1833-020719-3_64: *id209 + 1833-020719-4_310: *id210 + 1833-050619-1_64: *id211 + 1833-050619-2_125: *id212 + 1833-050619-3_129: *id213 + 1833-050619-4_92: *id214 + 1833-060619-1_162: *id215 + 1833-060619-2_82: *id216 + 1833-120619-1_127: *id217 + 1833-120619-4_80: &id292 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OHEQcQJjqj8= - 1833-200619-2_28: &id376 + 1833-200619-2_28: &id365 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DLLBu0YRrT8= - 1833-200619-3_75: &id489 + 1833-200619-3_75: &id476 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +Fa24CzJwj8= - 1833-260619-1_108: &id604 + 1833-260619-1_108: &id590 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | M5DK4SIArD8= - 1833-260619-2_160: &id699 + 1833-260619-2_160: &id683 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eUDp+Qxduj8= - 1833-260619-3_168: &id748 + 1833-260619-3_168: &id732 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AVH2BBnktT8= - 1833-260619-4_184: &id803 + 1833-260619-4_184: &id786 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j81KwSoytz8= - 1833-290519-1_132: &id892 + 1833-290519-1_132: &id874 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FLWWz+1quD8= - 1833-290519-2_76: &id979 + 1833-290519-2_76: &id960 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TRyTpO5yxj8= - 1833-290519-3_149: &id1054 + 1833-290519-3_123: &id999 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - lPIIGWnGzj8= - 1833-290519-4_108: &id1107 + iWZqJzCWsT8= + 1833-290519-4_108: &id1086 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6015,144 +5859,144 @@ _adj: - !!binary | 0YetCwYKqz8= 1833-120619-3_122: - 1833-050619-2_81: *id226 - 1833-050619-3_149: *id227 - 1833-050619-4_117: *id228 - 1833-060619-2_116: *id229 - 1833-120619-4_95: &id314 + 1833-050619-2_81: *id218 + 1833-050619-3_149: *id219 + 1833-050619-4_117: *id220 + 1833-060619-2_116: *id221 + 1833-120619-4_95: &id304 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oTp7adtywz8= - 1833-200619-2_321: &id411 + 1833-200619-2_321: &id400 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T9SaXitfwz8= - 1833-200619-4_121: &id529 + 1833-200619-4_121: &id515 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iaertlcqtz8= - 1833-260619-2_170: &id711 + 1833-260619-2_170: &id695 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | C266E+x8wj8= - 1833-260619-4_200: &id809 + 1833-260619-4_200: &id792 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1LE8hGaKxT8= - 1833-290519-1_150: &id925 + 1833-290519-1_150: &id907 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pqXGMd0syT8= - 1833-290519-3_151: &id1066 + 1833-290519-3_140: &id1049 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4srIQL6B2T8= + vCKRpMNizj8= 1833-120619-3_141: - 1833-010719-1_183: *id230 - 1833-020719-2_99: *id231 - 1833-020719-4_248: *id232 - 1833-050619-2_74: *id233 - 1833-060619-1_158: *id234 - 1833-120619-2_169: *id235 - 1833-120619-4_85: &id308 + 1833-010719-1_183: *id222 + 1833-020719-2_99: *id223 + 1833-020719-4_248: *id224 + 1833-050619-2_74: *id225 + 1833-060619-1_158: *id226 + 1833-120619-2_169: *id227 + 1833-120619-4_85: &id299 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nxTG2AV7vT8= - 1833-200619-1_206: &id350 + 1833-200619-1_206: &id339 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3KjcAxFSsD8= - 1833-200619-2_287: &id393 + 1833-200619-2_287: &id382 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MffwvSvvpz8= - 1833-200619-3_132: &id462 + 1833-200619-3_132: &id449 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fSnChppcoz8= - 1833-200619-4_89: &id557 + 1833-200619-4_89: &id543 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | a5OW5bh5uj8= - 1833-260619-1_102: &id570 + 1833-260619-1_102: &id556 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7xpQQig2vz8= - 1833-260619-2_140: &id644 + 1833-260619-2_140: &id629 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QMDs9RtLwj8= - 1833-260619-3_142: &id728 + 1833-260619-3_142: &id712 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lAs0ND4YtD8= - 1833-260619-4_182: &id784 + 1833-260619-4_182: &id767 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CXLt4WQqvj8= - 1833-290519-1_166: &id954 + 1833-290519-1_166: &id935 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +j1nmHQGuD8= - 1833-290519-3_125: &id999 + 1833-290519-3_134: &id1017 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 72Leetid0T8= - 1833-290519-4_79: &id1150 + q6z9J9Izsj8= + 1833-290519-4_79: &id1129 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6160,89 +6004,89 @@ _adj: - !!binary | q+BAlEb6yj8= 1833-120619-3_143: - 1833-010719-1_152: *id236 - 1833-020719-1_107: *id237 - 1833-020719-3_96: *id238 - 1833-020719-4_254: *id239 - 1833-050619-1_60: *id240 - 1833-050619-2_119: *id241 - 1833-050619-3_117: *id242 - 1833-050619-4_133: *id243 - 1833-060619-1_160: *id244 - 1833-060619-2_74: *id245 - 1833-120619-1_129: *id246 - 1833-120619-2_151: *id247 - 1833-120619-4_120: &id273 + 1833-010719-1_152: *id228 + 1833-020719-1_107: *id229 + 1833-020719-3_96: *id230 + 1833-020719-4_254: *id231 + 1833-050619-1_60: *id232 + 1833-050619-2_119: *id233 + 1833-050619-3_117: *id234 + 1833-050619-4_133: *id235 + 1833-060619-1_160: *id236 + 1833-060619-2_74: *id237 + 1833-120619-1_129: *id238 + 1833-120619-2_151: *id239 + 1833-120619-4_120: &id264 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2gs0dXWKpz8= - 1833-200619-1_171: &id338 + 1833-200619-1_171: &id327 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vXui4rhqsj8= - 1833-200619-2_327: &id424 + 1833-200619-2_327: &id412 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T0D4rWoExT8= - 1833-200619-3_126: &id449 + 1833-200619-3_126: &id437 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wRsLK3t1rT8= - 1833-200619-4_80: &id541 + 1833-200619-4_80: &id527 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IBVgxdm7wz8= - 1833-260619-1_106: &id588 + 1833-260619-1_106: &id574 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hBih9grcsD8= - 1833-260619-2_144: &id664 + 1833-260619-2_144: &id649 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6pycEWkKtT8= - 1833-260619-4_80: &id858 + 1833-260619-4_80: &id840 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PiQnijwqyD8= - 1833-290519-1_124: &id876 + 1833-290519-1_124: &id858 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jt2Icf4ytD8= - 1833-290519-3_155: &id1083 + 1833-290519-3_144: &id1066 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zZKaSb/zzj8= - 1833-290519-4_65: &id1129 + C2QWY/Dltz8= + 1833-290519-4_65: &id1108 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6250,92 +6094,91 @@ _adj: - !!binary | daiwBkOKxD8= 1833-120619-3_145: - 1833-010719-1_227: *id248 - 1833-020719-3_63: *id249 - 1833-050619-1_111: *id250 - 1833-050619-2_152: *id251 - 1833-050619-3_109: *id252 - 1833-050619-4_157: *id253 - 1833-060619-1_176: *id254 - 1833-060619-2_112: *id255 - 1833-120619-4_124: &id281 + 1833-010719-1_227: *id240 + 1833-050619-1_111: *id241 + 1833-050619-2_152: *id242 + 1833-050619-3_109: *id243 + 1833-050619-4_157: *id244 + 1833-060619-1_176: *id245 + 1833-060619-2_112: *id246 + 1833-120619-4_124: &id272 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sZ2d/L6Qvz8= - 1833-200619-1_163: &id325 + 1833-200619-1_163: &id315 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gwe2f/GItz8= - 1833-200619-2_308: &id403 + 1833-200619-2_308: &id392 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | u5GFqaS5tD8= - 1833-200619-3_120: &id437 + 1833-200619-3_120: &id425 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uLrQ6OONtj8= - 1833-200619-4_101: &id501 + 1833-200619-4_101: &id487 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0yUdaFnetT8= - 1833-260619-1_124: &id631 + 1833-260619-1_124: &id616 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rEH8EhTqsj8= - 1833-260619-2_156: &id681 + 1833-260619-2_156: &id665 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GyvRUjfsuT8= - 1833-260619-3_192: &id767 + 1833-260619-3_192: &id750 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FON0E/bCuD8= - 1833-260619-4_214: &id825 + 1833-260619-4_214: &id808 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8fvCnig8uj8= - 1833-290519-1_142: &id907 + 1833-290519-1_142: &id889 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hLkcQNlrtz8= - 1833-290519-3_147: &id1032 + 1833-290519-3_117: &id976 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - YPrFVxly0j8= - 1833-290519-4_90: &id1172 + xlXQXkXJvj8= + 1833-290519-4_90: &id1151 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6343,159 +6186,159 @@ _adj: - !!binary | stbtRGvExj8= 1833-120619-3_94: - 1833-050619-1_91: *id256 - 1833-050619-2_146: *id257 - 1833-050619-3_143: *id258 - 1833-050619-4_135: *id259 - 1833-060619-1_170: *id260 - 1833-060619-2_105: *id261 - 1833-120619-4_127: &id288 + 1833-050619-1_91: *id247 + 1833-050619-2_146: *id248 + 1833-050619-3_143: *id249 + 1833-050619-4_135: *id250 + 1833-060619-1_170: *id251 + 1833-060619-2_105: *id252 + 1833-120619-4_127: &id279 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P/0XWdv+lz8= - 1833-200619-1_240: &id362 + 1833-200619-1_240: &id351 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Yf+yxNSTtz8= - 1833-200619-2_281: &id380 + 1833-200619-2_281: &id369 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ikRltqvtyD8= - 1833-200619-3_150: &id475 + 1833-200619-3_150: &id462 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pS74ZLertj8= - 1833-200619-4_109: &id514 + 1833-200619-4_109: &id500 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xMC5LxvUvz8= - 1833-260619-1_112: &id617 + 1833-260619-1_112: &id603 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MHTwdVEuwj8= - 1833-260619-4_218: &id840 + 1833-260619-4_218: &id823 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tz965uvjtD8= - 1833-290519-1_154: &id941 + 1833-290519-1_154: &id922 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RcbgOueOwj8= - 1833-290519-3_141: &id1017 + 1833-290519-3_136: &id1034 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ZjXwXE7E0D8= + w3YyD284vD8= 1833-120619-4_120: - 1833-010719-1_152: *id262 - 1833-020719-3_96: *id263 - 1833-020719-4_254: *id264 - 1833-050619-1_60: *id265 - 1833-050619-2_119: *id266 - 1833-050619-3_117: *id267 - 1833-050619-4_133: *id268 - 1833-060619-1_160: *id269 - 1833-060619-2_105: *id270 - 1833-120619-1_129: *id271 - 1833-120619-2_151: *id272 - 1833-120619-3_143: *id273 - 1833-200619-1_171: &id339 + 1833-010719-1_152: *id253 + 1833-020719-3_96: *id254 + 1833-020719-4_254: *id255 + 1833-050619-1_60: *id256 + 1833-050619-2_119: *id257 + 1833-050619-3_117: *id258 + 1833-050619-4_133: *id259 + 1833-060619-1_160: *id260 + 1833-060619-2_105: *id261 + 1833-120619-1_129: *id262 + 1833-120619-2_151: *id263 + 1833-120619-3_143: *id264 + 1833-200619-1_171: &id328 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cbZbdCTvsz8= - 1833-200619-2_287: &id394 + 1833-200619-2_287: &id383 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7AKPKxuHwj8= - 1833-200619-3_126: &id450 + 1833-200619-3_126: &id438 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VtIDQ1qxpz8= - 1833-200619-4_89: &id558 + 1833-200619-4_89: &id544 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /emtC+5NxT8= - 1833-260619-1_106: &id589 + 1833-260619-1_106: &id575 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Kai4KcBQtT8= - 1833-260619-2_144: &id665 + 1833-260619-2_144: &id650 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fCwC8Qkytz8= - 1833-260619-3_142: &id729 + 1833-260619-3_142: &id713 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t9A3GslfvD8= - 1833-260619-4_182: &id785 + 1833-260619-4_182: &id768 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | C8Gg90uWxj8= - 1833-290519-1_124: &id877 + 1833-290519-1_124: &id859 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ew1gm7p+tj8= - 1833-290519-3_141: &id1018 + 1833-290519-3_144: &id1067 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - AJSBnjrJ0T8= - 1833-290519-4_65: &id1130 + lkQcSX0kuj8= + 1833-290519-4_65: &id1109 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6503,50 +6346,50 @@ _adj: - !!binary | bQcA60rtxj8= 1833-120619-4_124: - 1833-010719-1_227: *id274 - 1833-050619-1_111: *id275 - 1833-050619-2_152: *id276 - 1833-050619-3_149: *id277 - 1833-050619-4_157: *id278 - 1833-060619-1_176: *id279 - 1833-060619-2_116: *id280 - 1833-120619-3_145: *id281 - 1833-200619-2_308: &id404 + 1833-010719-1_227: *id265 + 1833-050619-1_111: *id266 + 1833-050619-2_152: *id267 + 1833-050619-3_149: *id268 + 1833-050619-4_157: *id269 + 1833-060619-1_176: *id270 + 1833-060619-2_116: *id271 + 1833-120619-3_145: *id272 + 1833-200619-2_308: &id393 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aoM3BO7yvj8= - 1833-260619-2_156: &id682 + 1833-260619-2_156: &id666 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ch7dsjZrvz8= - 1833-260619-4_214: &id826 + 1833-260619-4_214: &id809 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cpV1bMxKvD8= - 1833-290519-1_142: &id908 + 1833-290519-1_142: &id890 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CuHngBp6wD8= - 1833-290519-3_147: &id1033 + 1833-290519-3_140: &id1050 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4OvdCnSe0j8= - 1833-290519-4_79: &id1151 + bjZz5oARwz8= + 1833-290519-4_79: &id1130 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6554,77 +6397,77 @@ _adj: - !!binary | AgH8vDDHyT8= 1833-120619-4_127: - 1833-020719-4_248: *id282 - 1833-050619-1_91: *id283 - 1833-050619-2_146: *id284 - 1833-050619-3_143: *id285 - 1833-050619-4_135: *id286 - 1833-060619-1_170: *id287 - 1833-120619-3_94: *id288 - 1833-200619-1_240: &id363 + 1833-020719-4_248: *id273 + 1833-050619-1_91: *id274 + 1833-050619-2_146: *id275 + 1833-050619-3_143: *id276 + 1833-050619-4_135: *id277 + 1833-060619-1_170: *id278 + 1833-120619-3_94: *id279 + 1833-200619-1_240: &id352 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yYQsNmMWuT8= - 1833-200619-2_327: &id425 + 1833-200619-2_327: &id413 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KTvZ+SzqtT8= - 1833-200619-3_150: &id476 + 1833-200619-3_150: &id463 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CRGp3xMHtz8= - 1833-200619-4_109: &id515 + 1833-200619-4_109: &id501 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | B4dhfK0evz8= - 1833-260619-1_112: &id618 + 1833-260619-1_112: &id604 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HFc0HLY7wj8= - 1833-260619-2_140: &id645 + 1833-260619-2_140: &id630 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MZIYm/aAxD8= - 1833-260619-4_218: &id841 + 1833-260619-4_218: &id824 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0Q7+P8ujtj8= - 1833-290519-1_154: &id942 + 1833-290519-1_154: &id923 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UWKMOQoIwz8= - 1833-290519-3_151: &id1067 + 1833-290519-3_136: &id1035 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - A5eeRKKk1D8= - 1833-290519-4_90: &id1173 + vHY0VEeuuz8= + 1833-290519-4_90: &id1152 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6632,97 +6475,97 @@ _adj: - !!binary | P83jgguEyD8= 1833-120619-4_80: - 1833-010719-1_200: *id289 - 1833-010719-2_225: *id290 - 1833-020719-1_107: *id291 - 1833-020719-3_64: *id292 - 1833-020719-4_310: *id293 - 1833-050619-1_64: *id294 - 1833-050619-2_125: *id295 - 1833-050619-3_129: *id296 - 1833-050619-4_92: *id297 - 1833-060619-1_162: *id298 - 1833-060619-2_82: *id299 - 1833-120619-1_127: *id300 - 1833-120619-3_118: *id301 - 1833-200619-1_163: &id326 + 1833-010719-1_200: *id280 + 1833-010719-2_225: *id281 + 1833-020719-1_107: *id282 + 1833-020719-3_64: *id283 + 1833-020719-4_310: *id284 + 1833-050619-1_64: *id285 + 1833-050619-2_125: *id286 + 1833-050619-3_129: *id287 + 1833-050619-4_92: *id288 + 1833-060619-1_162: *id289 + 1833-060619-2_82: *id290 + 1833-120619-1_127: *id291 + 1833-120619-3_118: *id292 + 1833-200619-1_163: &id316 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mgfP/tkesj8= - 1833-200619-2_28: &id377 + 1833-200619-2_28: &id366 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /x82ANnktD8= - 1833-200619-3_75: &id490 + 1833-200619-3_75: &id477 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Sb7i/veEwD8= - 1833-200619-4_121: &id530 + 1833-200619-4_121: &id516 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8c4OQwlGwz8= - 1833-260619-1_108: &id605 + 1833-260619-1_108: &id591 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xvkayhVItj8= - 1833-260619-2_160: &id700 + 1833-260619-2_160: &id684 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DyjjKun6uj8= - 1833-260619-3_168: &id749 + 1833-260619-3_168: &id733 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jzekgDdJtj8= - 1833-260619-4_184: &id804 + 1833-260619-4_184: &id787 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mNpHTZYnwD8= - 1833-290519-1_132: &id893 + 1833-290519-1_132: &id875 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GZnI17t4tT8= - 1833-290519-2_76: &id980 + 1833-290519-2_76: &id961 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4344, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6HhIlH5zyj8= - 1833-290519-3_155: &id1084 + 1833-290519-3_123: &id1000 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - N8u2V/mM0D8= - 1833-290519-4_108: &id1108 + 45apTTGCsD8= + 1833-290519-4_108: &id1087 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6730,216 +6573,215 @@ _adj: - !!binary | bOWEFIhstz8= 1833-120619-4_85: - 1833-010719-1_183: *id302 - 1833-020719-2_99: *id303 - 1833-050619-2_81: *id304 - 1833-060619-1_158: *id305 - 1833-060619-2_74: *id306 - 1833-120619-2_169: *id307 - 1833-120619-3_141: *id308 - 1833-200619-1_206: &id351 + 1833-010719-1_183: *id293 + 1833-020719-2_99: *id294 + 1833-050619-2_81: *id295 + 1833-060619-1_158: *id296 + 1833-060619-2_74: *id297 + 1833-120619-2_169: *id298 + 1833-120619-3_141: *id299 + 1833-200619-1_206: &id340 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hHyNvsftwD8= - 1833-200619-2_281: &id381 + 1833-200619-2_281: &id370 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KfPXZUurzT8= - 1833-200619-3_132: &id463 + 1833-200619-3_132: &id450 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | p47Gay1rvT8= - 1833-200619-4_80: &id542 + 1833-200619-4_80: &id528 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6aZyhUgCtz8= - 1833-260619-1_102: &id571 + 1833-260619-1_102: &id557 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4N06XY1oyT8= - 1833-260619-4_200: &id810 + 1833-260619-4_200: &id793 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MfUZEUv5xD8= - 1833-290519-1_166: &id955 + 1833-290519-1_166: &id936 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | irGvDJkmwT8= - 1833-290519-3_149: &id1055 + 1833-290519-3_134: &id1018 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MdPDJ4n71D8= + yxRYYbMJvj8= 1833-120619-4_95: - 1833-020719-3_63: *id309 - 1833-050619-2_74: *id310 - 1833-050619-3_109: *id311 - 1833-050619-4_117: *id312 - 1833-060619-2_112: *id313 - 1833-120619-3_122: *id314 - 1833-200619-2_321: &id412 + 1833-050619-2_74: *id300 + 1833-050619-3_109: *id301 + 1833-050619-4_117: *id302 + 1833-060619-2_112: *id303 + 1833-120619-3_122: *id304 + 1833-200619-2_321: &id401 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KaZfEwr9xD8= - 1833-200619-3_120: &id438 + 1833-200619-3_120: &id426 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +anz62E5uz8= - 1833-200619-4_101: &id502 + 1833-200619-4_101: &id488 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dt4CB4V6rz8= - 1833-260619-1_124: &id632 + 1833-260619-1_124: &id617 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AOjI1Y6wuD8= - 1833-260619-2_170: &id712 + 1833-260619-2_170: &id696 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 064UT2TIxz8= - 1833-260619-3_192: &id768 + 1833-260619-3_192: &id751 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QRR9J2mZvT8= - 1833-260619-4_80: &id859 + 1833-260619-4_80: &id841 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zGyWqHbYsT8= - 1833-290519-1_150: &id926 + 1833-290519-1_150: &id908 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | G4DrcYO0vj8= - 1833-290519-3_125: &id1000 + 1833-290519-3_117: &id977 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ARQp5tDx0j8= + AEu8/whYwz8= 1833-200619-1_163: - 1833-010719-1_200: *id315 - 1833-020719-1_107: *id316 - 1833-020719-4_310: *id317 - 1833-050619-1_64: *id318 - 1833-050619-2_125: *id319 - 1833-050619-3_109: *id320 - 1833-050619-4_92: *id321 - 1833-060619-1_162: *id322 - 1833-060619-2_82: *id323 - 1833-120619-1_127: *id324 - 1833-120619-3_145: *id325 - 1833-120619-4_80: *id326 - 1833-200619-2_308: &id405 + 1833-010719-1_200: *id305 + 1833-020719-1_107: *id306 + 1833-020719-4_310: *id307 + 1833-050619-1_64: *id308 + 1833-050619-2_125: *id309 + 1833-050619-3_109: *id310 + 1833-050619-4_92: *id311 + 1833-060619-1_162: *id312 + 1833-060619-2_82: *id313 + 1833-120619-1_127: *id314 + 1833-120619-3_145: *id315 + 1833-120619-4_80: *id316 + 1833-200619-2_308: &id394 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GnHYKrqluz8= - 1833-200619-3_120: &id439 + 1833-200619-3_120: &id427 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4PiqQ75coT8= - 1833-200619-4_101: &id503 + 1833-200619-4_101: &id489 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tX1RKswGtD8= - 1833-260619-1_108: &id606 + 1833-260619-1_108: &id592 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JylPQZp9vj8= - 1833-260619-2_156: &id683 + 1833-260619-2_156: &id667 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zfokFOjIwD8= - 1833-260619-3_168: &id750 + 1833-260619-3_168: &id734 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t1Rm0RpprD8= - 1833-260619-4_80: &id860 + 1833-260619-4_80: &id842 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KY90dMjEtj8= - 1833-290519-1_150: &id927 + 1833-290519-1_150: &id909 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cTapgTeIuz8= - 1833-290519-3_149: &id1056 + 1833-290519-3_123: &id1001 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 3nFipi2c0z8= - 1833-290519-4_108: &id1109 + ph/nDDPHuD8= + 1833-290519-4_108: &id1088 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6947,83 +6789,82 @@ _adj: - !!binary | bsKoRaNvwj8= 1833-200619-1_171: - 1833-010719-1_152: *id327 - 1833-020719-3_96: *id328 - 1833-020719-4_254: *id329 - 1833-050619-1_60: *id330 - 1833-050619-2_119: *id331 - 1833-050619-3_117: *id332 - 1833-050619-4_133: *id333 - 1833-060619-1_160: *id334 - 1833-060619-2_105: *id335 - 1833-120619-1_129: *id336 - 1833-120619-2_151: *id337 - 1833-120619-3_143: *id338 - 1833-120619-4_120: *id339 - 1833-200619-2_28: &id378 + 1833-010719-1_152: *id317 + 1833-020719-4_254: *id318 + 1833-050619-1_60: *id319 + 1833-050619-2_119: *id320 + 1833-050619-3_117: *id321 + 1833-050619-4_133: *id322 + 1833-060619-1_160: *id323 + 1833-060619-2_105: *id324 + 1833-120619-1_129: *id325 + 1833-120619-2_151: *id326 + 1833-120619-3_143: *id327 + 1833-120619-4_120: *id328 + 1833-200619-2_28: &id367 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j3lwDmaVyT8= - 1833-200619-3_126: &id451 + 1833-200619-3_126: &id439 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IBbJH91JtD8= - 1833-200619-4_80: &id543 + 1833-200619-4_80: &id529 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bt2CZZf+wT8= - 1833-260619-1_106: &id590 + 1833-260619-1_106: &id576 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Dw/CHMQtuT8= - 1833-260619-2_144: &id666 + 1833-260619-2_144: &id651 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rtnHsntnsD8= - 1833-260619-3_142: &id730 + 1833-260619-3_142: &id714 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g11iyJz9tD8= - 1833-260619-4_200: &id811 + 1833-260619-4_200: &id794 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZWLU4LvTzD8= - 1833-290519-1_124: &id878 + 1833-290519-1_124: &id860 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qcGhTD1pqz8= - 1833-290519-3_155: &id1085 + 1833-290519-3_134: &id1019 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - po2oXtzF0j8= - 1833-290519-4_65: &id1131 + RDDLy+ILrj8= + 1833-290519-4_65: &id1110 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7031,75 +6872,75 @@ _adj: - !!binary | AxxLUcT0yT8= 1833-200619-1_206: - 1833-010719-1_183: *id340 - 1833-020719-2_99: *id341 - 1833-020719-3_64: *id342 - 1833-050619-1_91: *id343 - 1833-050619-2_152: *id344 - 1833-050619-3_149: *id345 - 1833-050619-4_135: *id346 - 1833-060619-1_158: *id347 - 1833-060619-2_74: *id348 - 1833-120619-2_169: *id349 - 1833-120619-3_141: *id350 - 1833-120619-4_85: *id351 - 1833-200619-2_287: &id395 + 1833-010719-1_183: *id329 + 1833-020719-2_99: *id330 + 1833-020719-3_96: *id331 + 1833-050619-1_91: *id332 + 1833-050619-2_152: *id333 + 1833-050619-3_149: *id334 + 1833-050619-4_135: *id335 + 1833-060619-1_158: *id336 + 1833-060619-2_74: *id337 + 1833-120619-2_169: *id338 + 1833-120619-3_141: *id339 + 1833-120619-4_85: *id340 + 1833-200619-2_287: &id384 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d6sXcnk3rz8= - 1833-200619-3_132: &id464 + 1833-200619-3_132: &id451 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P5xm9V3uqz8= - 1833-200619-4_89: &id559 + 1833-200619-4_89: &id545 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fyKRRooFtz8= - 1833-260619-1_102: &id572 + 1833-260619-1_102: &id558 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7d/DP/yQvz8= - 1833-260619-2_140: &id646 + 1833-260619-2_140: &id631 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0oE4CfJixT8= - 1833-260619-4_182: &id786 + 1833-260619-4_182: &id769 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZvxEEjh9vz8= - 1833-290519-1_166: &id956 + 1833-290519-1_166: &id937 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hfcO9M3pvD8= - 1833-290519-3_125: &id1001 + 1833-290519-3_144: &id1068 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - gbHnSdSc0j8= - 1833-290519-4_79: &id1152 + nRNDpZZ2vT8= + 1833-290519-4_79: &id1131 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7107,89 +6948,89 @@ _adj: - !!binary | ikerbwB0zD8= 1833-200619-1_240: - 1833-010719-1_227: *id352 - 1833-010719-2_225: *id353 - 1833-020719-3_63: *id354 - 1833-020719-4_248: *id355 - 1833-050619-1_111: *id356 - 1833-050619-2_146: *id357 - 1833-050619-3_143: *id358 - 1833-050619-4_117: *id359 - 1833-060619-1_170: *id360 - 1833-060619-2_112: *id361 - 1833-120619-3_94: *id362 - 1833-120619-4_127: *id363 - 1833-200619-2_327: &id426 + 1833-010719-1_227: *id341 + 1833-010719-2_225: *id342 + 1833-020719-3_64: *id343 + 1833-020719-4_248: *id344 + 1833-050619-1_111: *id345 + 1833-050619-2_146: *id346 + 1833-050619-3_143: *id347 + 1833-050619-4_117: *id348 + 1833-060619-1_170: *id349 + 1833-060619-2_112: *id350 + 1833-120619-3_94: *id351 + 1833-120619-4_127: *id352 + 1833-200619-2_327: &id414 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TX7DXaFJoT8= - 1833-200619-3_150: &id477 + 1833-200619-3_150: &id464 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TqylgnbioT8= - 1833-200619-4_121: &id531 + 1833-200619-4_121: &id517 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YcmX1kI3oz8= - 1833-260619-1_124: &id633 + 1833-260619-1_124: &id618 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3syLaB37tD8= - 1833-260619-2_160: &id701 + 1833-260619-2_160: &id685 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 488CPkpMtz8= - 1833-260619-3_192: &id769 + 1833-260619-3_192: &id752 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | scgbKF/etT8= - 1833-260619-4_218: &id842 + 1833-260619-4_218: &id825 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dgDhMsSusj8= - 1833-290519-1_154: &id943 + 1833-290519-1_154: &id924 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9i6bG8uhuj8= - 1833-290519-2_76: &id981 + 1833-290519-2_76: &id962 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kXKnOMf+yT8= - 1833-290519-3_141: &id1019 + 1833-290519-3_117: &id978 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - EUmhXbQQzz8= - 1833-290519-4_90: &id1174 + ySFtlbInxD8= + 1833-290519-4_90: &id1153 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7197,78 +7038,78 @@ _adj: - !!binary | ICPN64ipxT8= 1833-200619-2_28: - 1833-010719-1_200: *id364 - 1833-010719-2_225: *id365 - 1833-020719-1_107: *id366 - 1833-020719-3_64: *id367 - 1833-020719-4_248: *id368 - 1833-050619-1_64: *id369 - 1833-050619-2_125: *id370 - 1833-050619-3_129: *id371 - 1833-050619-4_92: *id372 - 1833-060619-1_162: *id373 - 1833-060619-2_82: *id374 - 1833-120619-1_127: *id375 - 1833-120619-3_118: *id376 - 1833-120619-4_80: *id377 - 1833-200619-1_171: *id378 - 1833-200619-3_75: &id491 + 1833-010719-1_200: *id353 + 1833-010719-2_225: *id354 + 1833-020719-1_107: *id355 + 1833-020719-3_64: *id356 + 1833-020719-4_248: *id357 + 1833-050619-1_64: *id358 + 1833-050619-2_125: *id359 + 1833-050619-3_129: *id360 + 1833-050619-4_92: *id361 + 1833-060619-1_162: *id362 + 1833-060619-2_82: *id363 + 1833-120619-1_127: *id364 + 1833-120619-3_118: *id365 + 1833-120619-4_80: *id366 + 1833-200619-1_171: *id367 + 1833-200619-3_75: &id478 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pgVAKNZqxT8= - 1833-260619-1_108: &id607 + 1833-260619-1_108: &id593 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SciwisGWrj8= - 1833-260619-2_140: &id647 + 1833-260619-2_140: &id632 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | whUpAIxbwz8= - 1833-260619-3_168: &id751 + 1833-260619-3_168: &id735 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ffhWrMXYrz8= - 1833-260619-4_184: &id805 + 1833-260619-4_184: &id788 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cVspU3w5tD8= - 1833-290519-1_132: &id894 + 1833-290519-1_132: &id876 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yd53CB16wD8= - 1833-290519-2_76: &id982 + 1833-290519-2_76: &id963 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J28LZSOYxj8= - 1833-290519-3_155: &id1086 + 1833-290519-3_123: &id1002 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - v9E7doLO0D8= - 1833-290519-4_108: &id1110 + SRZCWXMnuT8= + 1833-290519-4_108: &id1089 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7276,116 +7117,116 @@ _adj: - !!binary | VyoyNoxAtj8= 1833-200619-2_281: - 1833-050619-2_81: *id379 - 1833-120619-3_94: *id380 - 1833-120619-4_85: *id381 - 1833-200619-3_126: &id452 + 1833-050619-2_81: *id368 + 1833-120619-3_94: *id369 + 1833-120619-4_85: *id370 + 1833-200619-3_126: &id440 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XWjsWcmU0D8= - 1833-200619-4_80: &id544 + 1833-200619-4_80: &id530 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | x5fMDkNSxz8= - 1833-260619-4_200: &id812 + 1833-260619-4_200: &id795 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /qtBsTl8vT8= - 1833-290519-1_166: &id957 + 1833-290519-1_166: &id938 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t07btKlV0D8= - 1833-290519-3_141: &id1020 + 1833-290519-3_136: &id1036 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - N//dr5jg3j8= + zAHVTS6EyT8= 1833-200619-2_287: - 1833-010719-1_183: *id382 - 1833-020719-3_96: *id383 - 1833-020719-4_254: *id384 - 1833-050619-1_60: *id385 - 1833-050619-2_119: *id386 - 1833-050619-3_117: *id387 - 1833-050619-4_133: *id388 - 1833-060619-1_158: *id389 - 1833-060619-2_105: *id390 - 1833-120619-1_129: *id391 - 1833-120619-2_169: *id392 - 1833-120619-3_141: *id393 - 1833-120619-4_120: *id394 - 1833-200619-1_206: *id395 - 1833-200619-3_132: &id465 + 1833-010719-1_183: *id371 + 1833-020719-3_96: *id372 + 1833-020719-4_254: *id373 + 1833-050619-1_60: *id374 + 1833-050619-2_119: *id375 + 1833-050619-3_117: *id376 + 1833-050619-4_133: *id377 + 1833-060619-1_158: *id378 + 1833-060619-2_105: *id379 + 1833-120619-1_129: *id380 + 1833-120619-2_169: *id381 + 1833-120619-3_141: *id382 + 1833-120619-4_120: *id383 + 1833-200619-1_206: *id384 + 1833-200619-3_132: &id452 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Rpk/wtRqqT8= - 1833-200619-4_89: &id560 + 1833-200619-4_89: &id546 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GILOBxq7tz8= - 1833-260619-1_102: &id573 + 1833-260619-1_102: &id559 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WlT058jDuz8= - 1833-260619-2_144: &id667 + 1833-260619-2_144: &id652 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P+rfJEJAtj8= - 1833-260619-3_142: &id731 + 1833-260619-3_142: &id715 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IK9s2G18sj8= - 1833-260619-4_182: &id787 + 1833-260619-4_182: &id770 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EE97ssJZuj8= - 1833-290519-1_124: &id879 + 1833-290519-1_124: &id861 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k7Fa48X4uD8= - 1833-290519-3_125: &id1002 + 1833-290519-3_134: &id1020 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ofhq07uZ0j8= - 1833-290519-4_65: &id1132 + NLlsflFPtD8= + 1833-290519-4_65: &id1111 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7393,66 +7234,66 @@ _adj: - !!binary | xSyqouKbyT8= 1833-200619-2_308: - 1833-010719-1_227: *id396 - 1833-050619-1_111: *id397 - 1833-050619-2_74: *id398 - 1833-050619-3_109: *id399 - 1833-050619-4_135: *id400 - 1833-060619-1_160: *id401 - 1833-060619-2_116: *id402 - 1833-120619-3_145: *id403 - 1833-120619-4_124: *id404 - 1833-200619-1_163: *id405 - 1833-200619-3_120: &id440 + 1833-010719-1_227: *id385 + 1833-050619-1_111: *id386 + 1833-050619-2_74: *id387 + 1833-050619-3_109: *id388 + 1833-050619-4_135: *id389 + 1833-060619-1_160: *id390 + 1833-060619-2_116: *id391 + 1833-120619-3_145: *id392 + 1833-120619-4_124: *id393 + 1833-200619-1_163: *id394 + 1833-200619-3_120: &id428 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gxhou8Oftj8= - 1833-200619-4_101: &id504 + 1833-200619-4_101: &id490 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wx9oztA5vz8= - 1833-260619-1_124: &id634 + 1833-260619-1_124: &id619 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9FOhlyHguT8= - 1833-260619-2_156: &id684 + 1833-260619-2_156: &id668 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | v7tcgR8qrj8= - 1833-260619-4_214: &id827 + 1833-260619-4_214: &id810 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QsnND/Kxqj8= - 1833-290519-1_142: &id909 + 1833-290519-1_142: &id891 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9YKTzyRzqj8= - 1833-290519-3_149: &id1057 + 1833-290519-3_117: &id979 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - aQwoS0OS0j8= - 1833-290519-4_79: &id1153 + vDRoGxresz8= + 1833-290519-4_79: &id1132 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7460,127 +7301,126 @@ _adj: - !!binary | 3dcc4HceyD8= 1833-200619-2_321: - 1833-050619-2_152: *id406 - 1833-050619-3_149: *id407 - 1833-050619-4_157: *id408 - 1833-060619-1_176: *id409 - 1833-060619-2_112: *id410 - 1833-120619-3_122: *id411 - 1833-120619-4_95: *id412 - 1833-200619-4_109: &id516 + 1833-050619-2_152: *id395 + 1833-050619-3_149: *id396 + 1833-050619-4_157: *id397 + 1833-060619-1_176: *id398 + 1833-060619-2_112: *id399 + 1833-120619-3_122: *id400 + 1833-120619-4_95: *id401 + 1833-200619-4_109: &id502 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DFMDNeAVyz8= - 1833-260619-1_112: &id619 + 1833-260619-1_112: &id605 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EHquXLhhyj8= - 1833-260619-2_170: &id713 + 1833-260619-2_170: &id697 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9lLICPvPrz8= - 1833-260619-4_80: &id861 + 1833-260619-4_80: &id843 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VHSdIqWzyT8= - 1833-290519-1_150: &id928 + 1833-290519-1_150: &id910 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Grpn9nFZzz8= - 1833-290519-3_151: &id1068 + 1833-290519-3_140: &id1051 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IBZal0Iv2z8= + vXTdoS0b0D8= 1833-200619-2_327: - 1833-010719-1_152: *id413 - 1833-020719-2_99: *id414 - 1833-020719-3_63: *id415 - 1833-020719-4_310: *id416 - 1833-050619-1_91: *id417 - 1833-050619-2_146: *id418 - 1833-050619-3_143: *id419 - 1833-050619-4_117: *id420 - 1833-060619-1_170: *id421 - 1833-060619-2_74: *id422 - 1833-120619-2_151: *id423 - 1833-120619-3_143: *id424 - 1833-120619-4_127: *id425 - 1833-200619-1_240: *id426 - 1833-200619-3_150: &id478 + 1833-010719-1_152: *id402 + 1833-020719-2_99: *id403 + 1833-020719-4_310: *id404 + 1833-050619-1_91: *id405 + 1833-050619-2_146: *id406 + 1833-050619-3_143: *id407 + 1833-050619-4_117: *id408 + 1833-060619-1_170: *id409 + 1833-060619-2_74: *id410 + 1833-120619-2_151: *id411 + 1833-120619-3_143: *id412 + 1833-120619-4_127: *id413 + 1833-200619-1_240: *id414 + 1833-200619-3_150: &id465 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | my0ac2FGnj8= - 1833-200619-4_121: &id532 + 1833-200619-4_121: &id518 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5gaenCDgjT8= - 1833-260619-1_106: &id591 + 1833-260619-1_106: &id577 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VEWpVyZDxj8= - 1833-260619-2_160: &id702 + 1833-260619-2_160: &id686 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | POf4FW9guz8= - 1833-260619-3_192: &id770 + 1833-260619-3_192: &id753 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oKlasmbruT8= - 1833-260619-4_218: &id843 + 1833-260619-4_218: &id826 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VH+hMeMltT8= - 1833-290519-1_154: &id944 + 1833-290519-1_154: &id925 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3lj2jtCvvj8= - 1833-290519-3_147: &id1034 + 1833-290519-3_144: &id1069 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jF4EO1+t0D8= - 1833-290519-4_90: &id1175 + DY18hvLUxj8= + 1833-290519-4_90: &id1154 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7588,70 +7428,70 @@ _adj: - !!binary | 0WOGzwiJxz8= 1833-200619-3_120: - 1833-010719-1_200: *id427 - 1833-010719-2_225: *id428 - 1833-020719-4_310: *id429 - 1833-050619-1_64: *id430 - 1833-050619-2_81: *id431 - 1833-050619-3_109: *id432 - 1833-050619-4_92: *id433 - 1833-060619-1_162: *id434 - 1833-060619-2_82: *id435 - 1833-120619-1_127: *id436 - 1833-120619-3_145: *id437 - 1833-120619-4_95: *id438 - 1833-200619-1_163: *id439 - 1833-200619-2_308: *id440 - 1833-200619-4_101: &id505 + 1833-010719-1_200: *id415 + 1833-010719-2_225: *id416 + 1833-020719-4_310: *id417 + 1833-050619-1_64: *id418 + 1833-050619-2_81: *id419 + 1833-050619-3_109: *id420 + 1833-050619-4_92: *id421 + 1833-060619-1_162: *id422 + 1833-060619-2_82: *id423 + 1833-120619-1_127: *id424 + 1833-120619-3_145: *id425 + 1833-120619-4_95: *id426 + 1833-200619-1_163: *id427 + 1833-200619-2_308: *id428 + 1833-200619-4_101: &id491 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mGkF5q44tj8= - 1833-260619-1_108: &id608 + 1833-260619-1_108: &id594 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IFmSsB7puz8= - 1833-260619-2_156: &id685 + 1833-260619-2_156: &id669 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4arIxmkCvT8= - 1833-260619-3_168: &id752 + 1833-260619-3_168: &id736 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RRM7FPgApj8= - 1833-260619-4_214: &id828 + 1833-260619-4_214: &id811 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +Tk0ZhvSvT8= - 1833-290519-1_142: &id910 + 1833-290519-1_142: &id892 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ycPsdgpKtz8= - 1833-290519-3_149: &id1058 + 1833-290519-3_117: &id980 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 0Ls9qx9i0z8= - 1833-290519-4_108: &id1111 + d/04gLQOuj8= + 1833-290519-4_108: &id1090 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7659,61 +7499,61 @@ _adj: - !!binary | Q3MLJ0WKwT8= 1833-200619-3_126: - 1833-050619-1_91: *id441 - 1833-050619-2_119: *id442 - 1833-050619-3_117: *id443 - 1833-050619-4_135: *id444 - 1833-060619-1_170: *id445 - 1833-060619-2_105: *id446 - 1833-120619-1_129: *id447 - 1833-120619-2_151: *id448 - 1833-120619-3_143: *id449 - 1833-120619-4_120: *id450 - 1833-200619-1_171: *id451 - 1833-200619-2_281: *id452 - 1833-200619-4_109: &id517 + 1833-050619-1_91: *id429 + 1833-050619-2_119: *id430 + 1833-050619-3_117: *id431 + 1833-050619-4_135: *id432 + 1833-060619-1_170: *id433 + 1833-060619-2_105: *id434 + 1833-120619-1_129: *id435 + 1833-120619-2_151: *id436 + 1833-120619-3_143: *id437 + 1833-120619-4_120: *id438 + 1833-200619-1_171: *id439 + 1833-200619-2_281: *id440 + 1833-200619-4_109: &id503 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2grsPG32wT8= - 1833-260619-1_124: &id635 + 1833-260619-1_124: &id620 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gRvyXFtHwj8= - 1833-260619-2_144: &id668 + 1833-260619-2_144: &id653 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kI45G87cuT8= - 1833-260619-4_218: &id844 + 1833-260619-4_218: &id827 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GkS5O54bvj8= - 1833-290519-1_124: &id880 + 1833-290519-1_124: &id862 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JNYyYSEZuj8= - 1833-290519-3_141: &id1021 + 1833-290519-3_136: &id1037 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zWGG3ecq0j8= - 1833-290519-4_65: &id1133 + 7472gkv8uz8= + 1833-290519-4_65: &id1112 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7721,69 +7561,68 @@ _adj: - !!binary | 4DXoUYqTxz8= 1833-200619-3_132: - 1833-010719-1_183: *id453 - 1833-020719-2_99: *id454 - 1833-020719-3_64: *id455 - 1833-050619-2_152: *id456 - 1833-050619-3_149: *id457 - 1833-050619-4_157: *id458 - 1833-060619-1_158: *id459 - 1833-060619-2_116: *id460 - 1833-120619-2_169: *id461 - 1833-120619-3_141: *id462 - 1833-120619-4_85: *id463 - 1833-200619-1_206: *id464 - 1833-200619-2_287: *id465 - 1833-200619-4_89: &id561 + 1833-010719-1_183: *id441 + 1833-020719-2_99: *id442 + 1833-050619-2_152: *id443 + 1833-050619-3_149: *id444 + 1833-050619-4_157: *id445 + 1833-060619-1_158: *id446 + 1833-060619-2_116: *id447 + 1833-120619-2_169: *id448 + 1833-120619-3_141: *id449 + 1833-120619-4_85: *id450 + 1833-200619-1_206: *id451 + 1833-200619-2_287: *id452 + 1833-200619-4_89: &id547 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hOW7rCEGuj8= - 1833-260619-1_102: &id574 + 1833-260619-1_102: &id560 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UCUHqN2UwD8= - 1833-260619-2_140: &id648 + 1833-260619-2_140: &id633 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LTeSlQqtwD8= - 1833-260619-3_142: &id732 + 1833-260619-3_142: &id716 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DdgJjO6Htj8= - 1833-260619-4_182: &id788 + 1833-260619-4_182: &id771 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dhvVxdU4wD8= - 1833-290519-1_166: &id958 + 1833-290519-1_166: &id939 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | f+fSljP1tz8= - 1833-290519-3_125: &id1003 + 1833-290519-3_134: &id1021 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - huLm0woV0j8= - 1833-290519-4_79: &id1154 + 4elizH86sj8= + 1833-290519-4_79: &id1133 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7791,132 +7630,132 @@ _adj: - !!binary | CYkCbDKzyj8= 1833-200619-3_150: - 1833-010719-1_227: *id466 - 1833-020719-3_63: *id467 - 1833-020719-4_248: *id468 - 1833-050619-1_111: *id469 - 1833-050619-2_146: *id470 - 1833-050619-3_143: *id471 - 1833-050619-4_117: *id472 - 1833-060619-1_176: *id473 - 1833-060619-2_112: *id474 - 1833-120619-3_94: *id475 - 1833-120619-4_127: *id476 - 1833-200619-1_240: *id477 - 1833-200619-2_327: *id478 - 1833-200619-4_121: &id533 + 1833-010719-1_227: *id453 + 1833-020719-3_64: *id454 + 1833-020719-4_248: *id455 + 1833-050619-1_111: *id456 + 1833-050619-2_146: *id457 + 1833-050619-3_143: *id458 + 1833-050619-4_117: *id459 + 1833-060619-1_176: *id460 + 1833-060619-2_112: *id461 + 1833-120619-3_94: *id462 + 1833-120619-4_127: *id463 + 1833-200619-1_240: *id464 + 1833-200619-2_327: *id465 + 1833-200619-4_121: &id519 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EZ6tHeXfmj8= - 1833-260619-1_112: &id620 + 1833-260619-1_112: &id606 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uazFvtfJwT8= - 1833-260619-2_170: &id714 + 1833-260619-2_170: &id698 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OKOcT+X0xj8= - 1833-260619-3_192: &id771 + 1833-260619-3_192: &id754 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D9qkMaCouj8= - 1833-260619-4_200: &id813 + 1833-260619-4_200: &id796 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Wmnt7VZ5xD8= - 1833-290519-1_150: &id929 + 1833-290519-1_150: &id911 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7TnRQxCLvz8= - 1833-290519-2_76: &id983 + 1833-290519-2_76: &id964 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aA9b6P/lyj8= - 1833-290519-3_147: &id1035 + 1833-290519-3_123: &id1003 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Sh0pNqS30D8= + R4+Y2Hr6wj8= 1833-200619-3_75: - 1833-010719-1_152: *id479 - 1833-020719-1_107: *id480 - 1833-020719-3_96: *id481 - 1833-020719-4_254: *id482 - 1833-050619-1_60: *id483 - 1833-050619-2_125: *id484 - 1833-050619-3_129: *id485 - 1833-050619-4_133: *id486 - 1833-060619-1_160: *id487 - 1833-060619-2_74: *id488 - 1833-120619-3_118: *id489 - 1833-120619-4_80: *id490 - 1833-200619-2_28: *id491 - 1833-200619-4_80: &id545 + 1833-010719-1_152: *id466 + 1833-020719-1_107: *id467 + 1833-020719-3_96: *id468 + 1833-020719-4_254: *id469 + 1833-050619-1_60: *id470 + 1833-050619-2_125: *id471 + 1833-050619-3_129: *id472 + 1833-050619-4_133: *id473 + 1833-060619-1_160: *id474 + 1833-060619-2_74: *id475 + 1833-120619-3_118: *id476 + 1833-120619-4_80: *id477 + 1833-200619-2_28: *id478 + 1833-200619-4_80: &id531 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ocRKpSjvxD8= - 1833-260619-1_106: &id592 + 1833-260619-1_106: &id578 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pjE4Z9UNsz8= - 1833-260619-2_160: &id703 + 1833-260619-2_160: &id687 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9xdkK7JFwj8= - 1833-260619-4_80: &id862 + 1833-260619-4_80: &id844 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PYpYNn9IxT8= - 1833-290519-1_132: &id895 + 1833-290519-1_132: &id877 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /XlAcc+KwT8= - 1833-290519-3_155: &id1087 + 1833-290519-3_144: &id1070 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jAoTk+IM0z8= - 1833-290519-4_90: &id1176 + KzMkvfxAwT8= + 1833-290519-4_90: &id1155 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7924,63 +7763,62 @@ _adj: - !!binary | 6Xd/ftLXxD8= 1833-200619-4_101: - 1833-010719-1_227: *id492 - 1833-020719-3_63: *id493 - 1833-020719-4_310: *id494 - 1833-050619-1_111: *id495 - 1833-050619-2_152: *id496 - 1833-050619-3_109: *id497 - 1833-050619-4_92: *id498 - 1833-060619-1_176: *id499 - 1833-060619-2_112: *id500 - 1833-120619-3_145: *id501 - 1833-120619-4_95: *id502 - 1833-200619-1_163: *id503 - 1833-200619-2_308: *id504 - 1833-200619-3_120: *id505 - 1833-260619-1_108: &id609 + 1833-010719-1_227: *id479 + 1833-020719-4_310: *id480 + 1833-050619-1_111: *id481 + 1833-050619-2_152: *id482 + 1833-050619-3_109: *id483 + 1833-050619-4_92: *id484 + 1833-060619-1_176: *id485 + 1833-060619-2_112: *id486 + 1833-120619-3_145: *id487 + 1833-120619-4_95: *id488 + 1833-200619-1_163: *id489 + 1833-200619-2_308: *id490 + 1833-200619-3_120: *id491 + 1833-260619-1_108: &id595 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HA7CroxVxT8= - 1833-260619-2_156: &id686 + 1833-260619-2_156: &id670 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 57CGG60BxD8= - 1833-260619-3_168: &id753 + 1833-260619-3_168: &id737 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q7p2TLs1uj8= - 1833-260619-4_214: &id829 + 1833-260619-4_214: &id812 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7GQ+PR0bwz8= - 1833-290519-1_142: &id911 + 1833-290519-1_142: &id893 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oYsAdPaFwT8= - 1833-290519-3_155: &id1088 + 1833-290519-3_117: &id981 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - bkfGPN101T8= - 1833-290519-4_108: &id1112 + iZ5IhTDAwj8= + 1833-290519-4_108: &id1091 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7988,54 +7826,54 @@ _adj: - !!binary | RXphWnBhyT8= 1833-200619-4_109: - 1833-050619-1_91: *id506 - 1833-050619-2_146: *id507 - 1833-050619-3_143: *id508 - 1833-050619-4_135: *id509 - 1833-060619-1_170: *id510 - 1833-060619-2_105: *id511 - 1833-120619-1_129: *id512 - 1833-120619-2_151: *id513 - 1833-120619-3_94: *id514 - 1833-120619-4_127: *id515 - 1833-200619-2_321: *id516 - 1833-200619-3_126: *id517 - 1833-260619-1_112: &id621 + 1833-050619-1_91: *id492 + 1833-050619-2_146: *id493 + 1833-050619-3_143: *id494 + 1833-050619-4_135: *id495 + 1833-060619-1_170: *id496 + 1833-060619-2_105: *id497 + 1833-120619-1_129: *id498 + 1833-120619-2_151: *id499 + 1833-120619-3_94: *id500 + 1833-120619-4_127: *id501 + 1833-200619-2_321: *id502 + 1833-200619-3_126: *id503 + 1833-260619-1_112: &id607 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j3AX8YhuxD8= - 1833-260619-2_170: &id715 + 1833-260619-2_170: &id699 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D06Hzq1iyz8= - 1833-260619-4_200: &id814 + 1833-260619-4_200: &id797 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 42RNHISXvj8= - 1833-290519-1_166: &id959 + 1833-290519-1_166: &id940 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rAfz6ZctxD8= - 1833-290519-3_141: &id1022 + 1833-290519-3_136: &id1038 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Q+/SPX2J1z8= - 1833-290519-4_65: &id1134 + SdmcsRpSvj8= + 1833-290519-4_65: &id1113 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8043,72 +7881,72 @@ _adj: - !!binary | LJEWwhfo0T8= 1833-200619-4_121: - 1833-010719-1_200: *id518 - 1833-010719-2_225: *id519 - 1833-020719-3_64: *id520 - 1833-020719-4_248: *id521 - 1833-050619-1_64: *id522 - 1833-050619-2_125: *id523 - 1833-050619-3_129: *id524 - 1833-050619-4_117: *id525 - 1833-060619-1_162: *id526 - 1833-060619-2_82: *id527 - 1833-120619-1_127: *id528 - 1833-120619-3_122: *id529 - 1833-120619-4_80: *id530 - 1833-200619-1_240: *id531 - 1833-200619-2_327: *id532 - 1833-200619-3_150: *id533 - 1833-260619-1_124: &id636 + 1833-010719-1_200: *id504 + 1833-010719-2_225: *id505 + 1833-020719-3_64: *id506 + 1833-020719-4_248: *id507 + 1833-050619-1_64: *id508 + 1833-050619-2_125: *id509 + 1833-050619-3_129: *id510 + 1833-050619-4_117: *id511 + 1833-060619-1_162: *id512 + 1833-060619-2_82: *id513 + 1833-120619-1_127: *id514 + 1833-120619-3_122: *id515 + 1833-120619-4_80: *id516 + 1833-200619-1_240: *id517 + 1833-200619-2_327: *id518 + 1833-200619-3_150: *id519 + 1833-260619-1_124: &id621 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NGJCy2ubuT8= - 1833-260619-2_160: &id704 + 1833-260619-2_160: &id688 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aASjitXtuz8= - 1833-260619-3_192: &id772 + 1833-260619-3_192: &id755 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6XNDolJ+uj8= - 1833-260619-4_218: &id845 + 1833-260619-4_218: &id828 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | McHKFZyHtT8= - 1833-290519-1_154: &id945 + 1833-290519-1_154: &id926 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7CxwT2O8vz8= - 1833-290519-2_76: &id984 + 1833-290519-2_76: &id965 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IPyktBv1yz8= - 1833-290519-3_147: &id1036 + 1833-290519-3_123: &id1004 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qTAbuLdH0T8= - 1833-290519-4_90: &id1177 + 8T8iFfaxwz8= + 1833-290519-4_90: &id1156 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8116,113 +7954,113 @@ _adj: - !!binary | IrznpgxEyD8= 1833-200619-4_80: - 1833-010719-1_152: *id534 - 1833-020719-2_99: *id535 - 1833-050619-2_81: *id536 - 1833-050619-3_149: *id537 - 1833-050619-4_157: *id538 - 1833-060619-1_160: *id539 - 1833-060619-2_74: *id540 - 1833-120619-3_143: *id541 - 1833-120619-4_85: *id542 - 1833-200619-1_171: *id543 - 1833-200619-2_281: *id544 - 1833-200619-3_75: *id545 - 1833-260619-1_106: &id593 + 1833-010719-1_152: *id520 + 1833-020719-2_99: *id521 + 1833-050619-2_81: *id522 + 1833-050619-3_149: *id523 + 1833-050619-4_157: *id524 + 1833-060619-1_160: *id525 + 1833-060619-2_74: *id526 + 1833-120619-3_143: *id527 + 1833-120619-4_85: *id528 + 1833-200619-1_171: *id529 + 1833-200619-2_281: *id530 + 1833-200619-3_75: *id531 + 1833-260619-1_106: &id579 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zU8tMz5Fxz8= - 1833-260619-2_140: &id649 + 1833-260619-2_140: &id634 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w/2B7eFsyj8= - 1833-260619-4_80: &id863 + 1833-260619-4_80: &id845 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KXQ26Q30xT8= - 1833-290519-1_150: &id930 + 1833-290519-1_150: &id912 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 65wAzj78yD8= - 1833-290519-3_149: &id1059 + 1833-290519-3_144: &id1071 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - VIesbjOK2D8= + Q5MyIlK/wj8= 1833-200619-4_89: - 1833-010719-1_183: *id546 - 1833-020719-1_107: *id547 - 1833-020719-3_96: *id548 - 1833-020719-4_254: *id549 - 1833-050619-1_60: *id550 - 1833-050619-2_119: *id551 - 1833-050619-3_117: *id552 - 1833-050619-4_133: *id553 - 1833-060619-1_158: *id554 - 1833-060619-2_116: *id555 - 1833-120619-2_169: *id556 - 1833-120619-3_141: *id557 - 1833-120619-4_120: *id558 - 1833-200619-1_206: *id559 - 1833-200619-2_287: *id560 - 1833-200619-3_132: *id561 - 1833-260619-1_102: &id575 + 1833-010719-1_183: *id532 + 1833-020719-1_107: *id533 + 1833-020719-3_96: *id534 + 1833-020719-4_254: *id535 + 1833-050619-1_60: *id536 + 1833-050619-2_119: *id537 + 1833-050619-3_117: *id538 + 1833-050619-4_133: *id539 + 1833-060619-1_158: *id540 + 1833-060619-2_116: *id541 + 1833-120619-2_169: *id542 + 1833-120619-3_141: *id543 + 1833-120619-4_120: *id544 + 1833-200619-1_206: *id545 + 1833-200619-2_287: *id546 + 1833-200619-3_132: *id547 + 1833-260619-1_102: &id561 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0qjFTSO6tz8= - 1833-260619-2_144: &id669 + 1833-260619-2_144: &id654 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8tobqYbCvz8= - 1833-260619-3_142: &id733 + 1833-260619-3_142: &id717 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NbTZyXFhvD8= - 1833-260619-4_182: &id789 + 1833-260619-4_182: &id772 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /pGqlm5gtz8= - 1833-290519-1_124: &id881 + 1833-290519-1_124: &id863 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QRgI3XWSwD8= - 1833-290519-3_125: &id1004 + 1833-290519-3_134: &id1022 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 43CwC7P10D8= - 1833-290519-4_79: &id1155 + cQDIhxhIwT8= + 1833-290519-4_79: &id1134 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8230,49 +8068,49 @@ _adj: - !!binary | W+21wm5/yD8= 1833-260619-1_102: - 1833-010719-1_183: *id562 - 1833-020719-4_248: *id563 - 1833-050619-2_146: *id564 - 1833-050619-3_143: *id565 - 1833-050619-4_133: *id566 - 1833-060619-1_158: *id567 - 1833-060619-2_116: *id568 - 1833-120619-2_169: *id569 - 1833-120619-3_141: *id570 - 1833-120619-4_85: *id571 - 1833-200619-1_206: *id572 - 1833-200619-2_287: *id573 - 1833-200619-3_132: *id574 - 1833-200619-4_89: *id575 - 1833-260619-2_140: &id650 + 1833-010719-1_183: *id548 + 1833-020719-4_248: *id549 + 1833-050619-2_146: *id550 + 1833-050619-3_143: *id551 + 1833-050619-4_133: *id552 + 1833-060619-1_158: *id553 + 1833-060619-2_116: *id554 + 1833-120619-2_169: *id555 + 1833-120619-3_141: *id556 + 1833-120619-4_85: *id557 + 1833-200619-1_206: *id558 + 1833-200619-2_287: *id559 + 1833-200619-3_132: *id560 + 1833-200619-4_89: *id561 + 1833-260619-2_140: &id635 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vB8Od4tcyz8= - 1833-260619-4_182: &id790 + 1833-260619-4_182: &id773 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7FnsfNw7oD8= - 1833-290519-1_166: &id960 + 1833-290519-1_166: &id941 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mZQ4WEOjxj8= - 1833-290519-3_125: &id1005 + 1833-290519-3_144: &id1072 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 69jD4bI50T8= - 1833-290519-4_79: &id1156 + 27WzcgTjwT8= + 1833-290519-4_79: &id1135 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8280,60 +8118,60 @@ _adj: - !!binary | 8W176thHyz8= 1833-260619-1_106: - 1833-010719-1_152: *id576 - 1833-020719-1_107: *id577 - 1833-020719-3_96: *id578 - 1833-020719-4_254: *id579 - 1833-050619-1_60: *id580 - 1833-050619-2_119: *id581 - 1833-050619-3_117: *id582 - 1833-050619-4_135: *id583 - 1833-060619-1_160: *id584 - 1833-060619-2_105: *id585 - 1833-120619-1_129: *id586 - 1833-120619-2_151: *id587 - 1833-120619-3_143: *id588 - 1833-120619-4_120: *id589 - 1833-200619-1_171: *id590 - 1833-200619-2_327: *id591 - 1833-200619-3_75: *id592 - 1833-200619-4_80: *id593 - 1833-260619-2_144: &id670 + 1833-010719-1_152: *id562 + 1833-020719-1_107: *id563 + 1833-020719-3_96: *id564 + 1833-020719-4_254: *id565 + 1833-050619-1_60: *id566 + 1833-050619-2_119: *id567 + 1833-050619-3_117: *id568 + 1833-050619-4_135: *id569 + 1833-060619-1_160: *id570 + 1833-060619-2_105: *id571 + 1833-120619-1_129: *id572 + 1833-120619-2_151: *id573 + 1833-120619-3_143: *id574 + 1833-120619-4_120: *id575 + 1833-200619-1_171: *id576 + 1833-200619-2_327: *id577 + 1833-200619-3_75: *id578 + 1833-200619-4_80: *id579 + 1833-260619-2_144: &id655 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | emltXSsotj8= - 1833-260619-3_142: &id734 + 1833-260619-3_142: &id718 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Two/QhVEtD8= - 1833-260619-4_218: &id846 + 1833-260619-4_218: &id829 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PitG59V0wz8= - 1833-290519-1_124: &id882 + 1833-290519-1_124: &id864 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OaCafP98uD8= - 1833-290519-3_141: &id1023 + 1833-290519-3_134: &id1023 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - U6rrp0qx0j8= - 1833-290519-4_65: &id1135 + FK5/Uz2YvT8= + 1833-290519-4_65: &id1114 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8341,65 +8179,65 @@ _adj: - !!binary | id+QTwLFwz8= 1833-260619-1_108: - 1833-010719-1_200: *id594 - 1833-010719-2_225: *id595 - 1833-020719-3_64: *id596 - 1833-020719-4_310: *id597 - 1833-050619-1_64: *id598 - 1833-050619-2_74: *id599 - 1833-050619-3_129: *id600 - 1833-050619-4_92: *id601 - 1833-060619-1_162: *id602 - 1833-060619-2_82: *id603 - 1833-120619-3_118: *id604 - 1833-120619-4_80: *id605 - 1833-200619-1_163: *id606 - 1833-200619-2_28: *id607 - 1833-200619-3_120: *id608 - 1833-200619-4_101: *id609 - 1833-260619-2_156: &id687 + 1833-010719-1_200: *id580 + 1833-010719-2_225: *id581 + 1833-020719-3_64: *id582 + 1833-020719-4_310: *id583 + 1833-050619-1_64: *id584 + 1833-050619-2_74: *id585 + 1833-050619-3_129: *id586 + 1833-050619-4_92: *id587 + 1833-060619-1_162: *id588 + 1833-060619-2_82: *id589 + 1833-120619-3_118: *id590 + 1833-120619-4_80: *id591 + 1833-200619-1_163: *id592 + 1833-200619-2_28: *id593 + 1833-200619-3_120: *id594 + 1833-200619-4_101: *id595 + 1833-260619-2_156: &id671 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1ZINPAwivT8= - 1833-260619-3_168: &id754 + 1833-260619-3_168: &id738 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SmBtP7VEtT8= - 1833-260619-4_184: &id806 + 1833-260619-4_184: &id789 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | y7GBStlErT8= - 1833-290519-1_142: &id912 + 1833-290519-1_142: &id894 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XiSizQXFtz8= - 1833-290519-2_76: &id985 + 1833-290519-2_76: &id966 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1G+iecVDxj8= - 1833-290519-3_155: &id1089 + 1833-290519-3_117: &id982 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - U0dYIsYp0D8= - 1833-290519-4_108: &id1113 + PTngxNj6uD8= + 1833-290519-4_108: &id1092 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8407,98 +8245,97 @@ _adj: - !!binary | Vqwm6F04tT8= 1833-260619-1_112: - 1833-010719-1_227: *id610 - 1833-050619-1_111: *id611 - 1833-050619-2_152: *id612 - 1833-050619-3_149: *id613 - 1833-050619-4_157: *id614 - 1833-060619-1_176: *id615 - 1833-060619-2_112: *id616 - 1833-120619-3_94: *id617 - 1833-120619-4_127: *id618 - 1833-200619-2_321: *id619 - 1833-200619-3_150: *id620 - 1833-200619-4_109: *id621 - 1833-260619-2_170: &id716 + 1833-010719-1_227: *id596 + 1833-050619-1_111: *id597 + 1833-050619-2_152: *id598 + 1833-050619-3_149: *id599 + 1833-050619-4_157: *id600 + 1833-060619-1_176: *id601 + 1833-060619-2_112: *id602 + 1833-120619-3_94: *id603 + 1833-120619-4_127: *id604 + 1833-200619-2_321: *id605 + 1833-200619-3_150: *id606 + 1833-200619-4_109: *id607 + 1833-260619-2_170: &id700 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HUhp/zQ2zD8= - 1833-260619-4_200: &id815 + 1833-260619-4_200: &id798 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AypTX+LevT8= - 1833-290519-1_154: &id946 + 1833-290519-1_154: &id927 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eCh1m9Cixj8= - 1833-290519-3_149: &id1060 + 1833-290519-3_140: &id1052 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - G/R+CuPo1z8= + CvdJFV6vvD8= 1833-260619-1_124: - 1833-020719-2_99: *id622 - 1833-020719-3_63: *id623 - 1833-050619-1_91: *id624 - 1833-050619-2_125: *id625 - 1833-050619-3_109: *id626 - 1833-050619-4_117: *id627 - 1833-060619-1_170: *id628 - 1833-060619-2_74: *id629 - 1833-120619-1_127: *id630 - 1833-120619-3_145: *id631 - 1833-120619-4_95: *id632 - 1833-200619-1_240: *id633 - 1833-200619-2_308: *id634 - 1833-200619-3_126: *id635 - 1833-200619-4_121: *id636 - 1833-260619-2_160: &id705 + 1833-020719-2_99: *id608 + 1833-050619-1_91: *id609 + 1833-050619-2_125: *id610 + 1833-050619-3_109: *id611 + 1833-050619-4_117: *id612 + 1833-060619-1_170: *id613 + 1833-060619-2_74: *id614 + 1833-120619-1_127: *id615 + 1833-120619-3_145: *id616 + 1833-120619-4_95: *id617 + 1833-200619-1_240: *id618 + 1833-200619-2_308: *id619 + 1833-200619-3_126: *id620 + 1833-200619-4_121: *id621 + 1833-260619-2_160: &id689 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rKpKIb1qpT8= - 1833-260619-3_192: &id773 + 1833-260619-3_192: &id756 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VlN7u5sboT8= - 1833-260619-4_80: &id864 + 1833-260619-4_80: &id846 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1FQOjvhRrz8= - 1833-290519-1_150: &id931 + 1833-290519-1_150: &id913 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZiSarW9qqj8= - 1833-290519-3_147: &id1037 + 1833-290519-3_123: &id1005 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rAb5oETJ0T8= - 1833-290519-4_90: &id1178 + 4Frjn5JJuD8= + 1833-290519-4_90: &id1157 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8506,42 +8343,42 @@ _adj: - !!binary | CjmTuiGVwz8= 1833-260619-2_140: - 1833-010719-1_227: *id637 - 1833-050619-1_91: *id638 - 1833-050619-2_146: *id639 - 1833-050619-3_143: *id640 - 1833-050619-4_135: *id641 - 1833-060619-1_170: *id642 - 1833-060619-2_74: *id643 - 1833-120619-3_141: *id644 - 1833-120619-4_127: *id645 - 1833-200619-1_206: *id646 - 1833-200619-2_28: *id647 - 1833-200619-3_132: *id648 - 1833-200619-4_80: *id649 - 1833-260619-1_102: *id650 - 1833-260619-4_80: &id865 + 1833-010719-1_227: *id622 + 1833-050619-1_91: *id623 + 1833-050619-2_146: *id624 + 1833-050619-3_143: *id625 + 1833-050619-4_135: *id626 + 1833-060619-1_170: *id627 + 1833-060619-2_74: *id628 + 1833-120619-3_141: *id629 + 1833-120619-4_127: *id630 + 1833-200619-1_206: *id631 + 1833-200619-2_28: *id632 + 1833-200619-3_132: *id633 + 1833-200619-4_80: *id634 + 1833-260619-1_102: *id635 + 1833-260619-4_80: &id847 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vR4S+/ajwT8= - 1833-290519-1_166: &id961 + 1833-290519-1_166: &id942 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yVv5nSGAwz8= - 1833-290519-3_155: &id1090 + 1833-290519-3_140: &id1053 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - kKi8E+j/1D8= - 1833-290519-4_79: &id1157 + 5+3MatmEtj8= + 1833-290519-4_79: &id1136 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8549,55 +8386,55 @@ _adj: - !!binary | vDxifF2hyj8= 1833-260619-2_144: - 1833-010719-1_183: *id651 - 1833-020719-1_107: *id652 - 1833-020719-2_99: *id653 - 1833-020719-3_96: *id654 - 1833-020719-4_254: *id655 - 1833-050619-1_60: *id656 - 1833-050619-2_119: *id657 - 1833-050619-3_117: *id658 - 1833-050619-4_133: *id659 - 1833-060619-1_158: *id660 - 1833-060619-2_105: *id661 - 1833-120619-1_129: *id662 - 1833-120619-2_169: *id663 - 1833-120619-3_143: *id664 - 1833-120619-4_120: *id665 - 1833-200619-1_171: *id666 - 1833-200619-2_287: *id667 - 1833-200619-3_126: *id668 - 1833-200619-4_89: *id669 - 1833-260619-1_106: *id670 - 1833-260619-3_142: &id735 + 1833-010719-1_183: *id636 + 1833-020719-1_107: *id637 + 1833-020719-2_99: *id638 + 1833-020719-3_96: *id639 + 1833-020719-4_254: *id640 + 1833-050619-1_60: *id641 + 1833-050619-2_119: *id642 + 1833-050619-3_117: *id643 + 1833-050619-4_133: *id644 + 1833-060619-1_158: *id645 + 1833-060619-2_105: *id646 + 1833-120619-1_129: *id647 + 1833-120619-2_169: *id648 + 1833-120619-3_143: *id649 + 1833-120619-4_120: *id650 + 1833-200619-1_171: *id651 + 1833-200619-2_287: *id652 + 1833-200619-3_126: *id653 + 1833-200619-4_89: *id654 + 1833-260619-1_106: *id655 + 1833-260619-3_142: &id719 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | li7bP7vzqz8= - 1833-260619-4_182: &id791 + 1833-260619-4_182: &id774 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6MsZ1yfPwD8= - 1833-290519-1_124: &id883 + 1833-290519-1_124: &id865 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D7xkuBANrj8= - 1833-290519-3_125: &id1006 + 1833-290519-3_134: &id1024 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - moIP9Zew0j8= - 1833-290519-4_65: &id1136 + +phwLxbwsz8= + 1833-290519-4_65: &id1115 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8605,59 +8442,58 @@ _adj: - !!binary | R3FTkYOBxz8= 1833-260619-2_156: - 1833-010719-1_200: *id671 - 1833-010719-2_225: *id672 - 1833-020719-3_64: *id673 - 1833-020719-4_310: *id674 - 1833-050619-1_111: *id675 - 1833-050619-2_74: *id676 - 1833-050619-3_109: *id677 - 1833-050619-4_92: *id678 - 1833-060619-1_162: *id679 - 1833-060619-2_116: *id680 - 1833-120619-3_145: *id681 - 1833-120619-4_124: *id682 - 1833-200619-1_163: *id683 - 1833-200619-2_308: *id684 - 1833-200619-3_120: *id685 - 1833-200619-4_101: *id686 - 1833-260619-1_108: *id687 - 1833-260619-3_168: &id755 + 1833-010719-1_200: *id656 + 1833-010719-2_225: *id657 + 1833-020719-4_310: *id658 + 1833-050619-1_111: *id659 + 1833-050619-2_74: *id660 + 1833-050619-3_109: *id661 + 1833-050619-4_92: *id662 + 1833-060619-1_162: *id663 + 1833-060619-2_116: *id664 + 1833-120619-3_145: *id665 + 1833-120619-4_124: *id666 + 1833-200619-1_163: *id667 + 1833-200619-2_308: *id668 + 1833-200619-3_120: *id669 + 1833-200619-4_101: *id670 + 1833-260619-1_108: *id671 + 1833-260619-3_168: &id739 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YI1/Peyttj8= - 1833-260619-4_214: &id830 + 1833-260619-4_214: &id813 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3FqlGSq6qT8= - 1833-290519-1_142: &id913 + 1833-290519-1_142: &id895 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jCkT7VxSqz8= - 1833-290519-2_76: &id986 + 1833-290519-2_76: &id967 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ezIpVrGXxz8= - 1833-290519-3_149: &id1061 + 1833-290519-3_117: &id983 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - aV2dTtH90T8= - 1833-290519-4_108: &id1114 + GJbpIwQWtT8= + 1833-290519-4_108: &id1093 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8665,53 +8501,53 @@ _adj: - !!binary | Z3Mjf9jswT8= 1833-260619-2_160: - 1833-010719-1_152: *id688 - 1833-020719-3_63: *id689 - 1833-020719-4_248: *id690 - 1833-050619-1_64: *id691 - 1833-050619-2_125: *id692 - 1833-050619-3_129: *id693 - 1833-050619-4_117: *id694 - 1833-060619-1_160: *id695 - 1833-060619-2_82: *id696 - 1833-120619-1_127: *id697 - 1833-120619-2_151: *id698 - 1833-120619-3_118: *id699 - 1833-120619-4_80: *id700 - 1833-200619-1_240: *id701 - 1833-200619-2_327: *id702 - 1833-200619-3_75: *id703 - 1833-200619-4_121: *id704 - 1833-260619-1_124: *id705 - 1833-260619-3_192: &id774 + 1833-010719-1_152: *id672 + 1833-020719-3_64: *id673 + 1833-020719-4_248: *id674 + 1833-050619-1_64: *id675 + 1833-050619-2_125: *id676 + 1833-050619-3_129: *id677 + 1833-050619-4_117: *id678 + 1833-060619-1_160: *id679 + 1833-060619-2_82: *id680 + 1833-120619-1_127: *id681 + 1833-120619-2_151: *id682 + 1833-120619-3_118: *id683 + 1833-120619-4_80: *id684 + 1833-200619-1_240: *id685 + 1833-200619-2_327: *id686 + 1833-200619-3_75: *id687 + 1833-200619-4_121: *id688 + 1833-260619-1_124: *id689 + 1833-260619-3_192: &id757 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4y0D+iVooD8= - 1833-260619-4_218: &id847 + 1833-260619-4_218: &id830 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uWqTG2NIsj8= - 1833-290519-1_150: &id932 + 1833-290519-1_150: &id914 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xjcCMpzwrj8= - 1833-290519-3_141: &id1024 + 1833-290519-3_123: &id1006 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - N+7pVVlA0D8= - 1833-290519-4_90: &id1179 + zOOgD8ISuD8= + 1833-290519-4_90: &id1158 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8719,80 +8555,80 @@ _adj: - !!binary | AileZKBSwj8= 1833-260619-2_170: - 1833-050619-2_152: *id706 - 1833-050619-3_149: *id707 - 1833-050619-4_157: *id708 - 1833-060619-1_176: *id709 - 1833-060619-2_112: *id710 - 1833-120619-3_122: *id711 - 1833-120619-4_95: *id712 - 1833-200619-2_321: *id713 - 1833-200619-3_150: *id714 - 1833-200619-4_109: *id715 - 1833-260619-1_112: *id716 - 1833-260619-4_200: &id816 + 1833-050619-2_152: *id690 + 1833-050619-3_149: *id691 + 1833-050619-4_157: *id692 + 1833-060619-1_176: *id693 + 1833-060619-2_112: *id694 + 1833-120619-3_122: *id695 + 1833-120619-4_95: *id696 + 1833-200619-2_321: *id697 + 1833-200619-3_150: *id698 + 1833-200619-4_109: *id699 + 1833-260619-1_112: *id700 + 1833-260619-4_200: &id799 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VifMBVGryT8= - 1833-290519-1_154: &id947 + 1833-290519-1_154: &id928 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0pfUDNhZ0D8= - 1833-290519-3_147: &id1038 + 1833-290519-3_136: &id1039 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 9hn2Ewg22T8= + NUoqXbRs0T8= 1833-260619-3_142: - 1833-010719-1_183: *id717 - 1833-020719-3_96: *id718 - 1833-020719-4_254: *id719 - 1833-050619-1_60: *id720 - 1833-050619-2_119: *id721 - 1833-050619-3_117: *id722 - 1833-050619-4_133: *id723 - 1833-060619-1_160: *id724 - 1833-060619-2_105: *id725 - 1833-120619-1_129: *id726 - 1833-120619-2_169: *id727 - 1833-120619-3_141: *id728 - 1833-120619-4_120: *id729 - 1833-200619-1_171: *id730 - 1833-200619-2_287: *id731 - 1833-200619-3_132: *id732 - 1833-200619-4_89: *id733 - 1833-260619-1_106: *id734 - 1833-260619-2_144: *id735 - 1833-260619-4_182: &id792 + 1833-010719-1_183: *id701 + 1833-020719-3_96: *id702 + 1833-020719-4_254: *id703 + 1833-050619-1_60: *id704 + 1833-050619-2_119: *id705 + 1833-050619-3_117: *id706 + 1833-050619-4_133: *id707 + 1833-060619-1_160: *id708 + 1833-060619-2_105: *id709 + 1833-120619-1_129: *id710 + 1833-120619-2_169: *id711 + 1833-120619-3_141: *id712 + 1833-120619-4_120: *id713 + 1833-200619-1_171: *id714 + 1833-200619-2_287: *id715 + 1833-200619-3_132: *id716 + 1833-200619-4_89: *id717 + 1833-260619-1_106: *id718 + 1833-260619-2_144: *id719 + 1833-260619-4_182: &id775 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rDw6fyjzuz8= - 1833-290519-1_124: &id884 + 1833-290519-1_124: &id866 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dzly6jBvsT8= - 1833-290519-3_125: &id1007 + 1833-290519-3_134: &id1025 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Q0ITgSNn0z8= - 1833-290519-4_65: &id1137 + 2G7kE6LntT8= + 1833-290519-4_65: &id1116 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8800,55 +8636,55 @@ _adj: - !!binary | 3Db8G3N8xz8= 1833-260619-3_168: - 1833-010719-1_200: *id736 - 1833-010719-2_225: *id737 - 1833-020719-1_107: *id738 - 1833-020719-2_99: *id739 - 1833-020719-3_64: *id740 - 1833-020719-4_310: *id741 - 1833-050619-1_64: *id742 - 1833-050619-2_125: *id743 - 1833-050619-3_109: *id744 - 1833-050619-4_92: *id745 - 1833-060619-1_162: *id746 - 1833-060619-2_82: *id747 - 1833-120619-3_118: *id748 - 1833-120619-4_80: *id749 - 1833-200619-1_163: *id750 - 1833-200619-2_28: *id751 - 1833-200619-3_120: *id752 - 1833-200619-4_101: *id753 - 1833-260619-1_108: *id754 - 1833-260619-2_156: *id755 - 1833-260619-4_80: &id866 + 1833-010719-1_200: *id720 + 1833-010719-2_225: *id721 + 1833-020719-1_107: *id722 + 1833-020719-2_99: *id723 + 1833-020719-3_64: *id724 + 1833-020719-4_310: *id725 + 1833-050619-1_64: *id726 + 1833-050619-2_125: *id727 + 1833-050619-3_109: *id728 + 1833-050619-4_92: *id729 + 1833-060619-1_162: *id730 + 1833-060619-2_82: *id731 + 1833-120619-3_118: *id732 + 1833-120619-4_80: *id733 + 1833-200619-1_163: *id734 + 1833-200619-2_28: *id735 + 1833-200619-3_120: *id736 + 1833-200619-4_101: *id737 + 1833-260619-1_108: *id738 + 1833-260619-2_156: *id739 + 1833-260619-4_80: &id848 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LFNGfLTTtz8= - 1833-290519-1_142: &id914 + 1833-290519-1_142: &id896 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7IsvZdkdsT8= - 1833-290519-2_76: &id987 + 1833-290519-2_76: &id968 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wXJvq9JlyD8= - 1833-290519-3_149: &id1062 + 1833-290519-3_117: &id984 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /R0mq7f40T8= - 1833-290519-4_108: &id1115 + LPMujyTosj8= + 1833-290519-4_108: &id1094 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8856,47 +8692,46 @@ _adj: - !!binary | pJwPal/wvz8= 1833-260619-3_192: - 1833-010719-1_152: *id756 - 1833-020719-3_63: *id757 - 1833-020719-4_248: *id758 - 1833-050619-1_91: *id759 - 1833-050619-2_146: *id760 - 1833-050619-3_143: *id761 - 1833-050619-4_117: *id762 - 1833-060619-1_170: *id763 - 1833-060619-2_74: *id764 - 1833-120619-1_127: *id765 - 1833-120619-2_151: *id766 - 1833-120619-3_145: *id767 - 1833-120619-4_95: *id768 - 1833-200619-1_240: *id769 - 1833-200619-2_327: *id770 - 1833-200619-3_150: *id771 - 1833-200619-4_121: *id772 - 1833-260619-1_124: *id773 - 1833-260619-2_160: *id774 - 1833-260619-4_218: &id848 + 1833-010719-1_152: *id740 + 1833-020719-4_248: *id741 + 1833-050619-1_91: *id742 + 1833-050619-2_146: *id743 + 1833-050619-3_143: *id744 + 1833-050619-4_117: *id745 + 1833-060619-1_170: *id746 + 1833-060619-2_74: *id747 + 1833-120619-1_127: *id748 + 1833-120619-2_151: *id749 + 1833-120619-3_145: *id750 + 1833-120619-4_95: *id751 + 1833-200619-1_240: *id752 + 1833-200619-2_327: *id753 + 1833-200619-3_150: *id754 + 1833-200619-4_121: *id755 + 1833-260619-1_124: *id756 + 1833-260619-2_160: *id757 + 1833-260619-4_218: &id831 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sKSKs14wrD8= - 1833-290519-1_150: &id933 + 1833-290519-1_150: &id915 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | orktaT7rrj8= - 1833-290519-3_155: &id1091 + 1833-290519-3_123: &id1007 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 7LLkEl1y0D8= - 1833-290519-4_90: &id1180 + QgP2HCOztz8= + 1833-290519-4_90: &id1159 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8904,39 +8739,39 @@ _adj: - !!binary | VcW9/MdKwz8= 1833-260619-4_182: - 1833-010719-1_183: *id775 - 1833-020719-3_96: *id776 - 1833-020719-4_254: *id777 - 1833-050619-1_60: *id778 - 1833-050619-2_119: *id779 - 1833-050619-3_117: *id780 - 1833-050619-4_133: *id781 - 1833-060619-1_158: *id782 - 1833-120619-2_169: *id783 - 1833-120619-3_141: *id784 - 1833-120619-4_120: *id785 - 1833-200619-1_206: *id786 - 1833-200619-2_287: *id787 - 1833-200619-3_132: *id788 - 1833-200619-4_89: *id789 - 1833-260619-1_102: *id790 - 1833-260619-2_144: *id791 - 1833-260619-3_142: *id792 - 1833-290519-1_124: &id885 + 1833-010719-1_183: *id758 + 1833-020719-3_96: *id759 + 1833-020719-4_254: *id760 + 1833-050619-1_60: *id761 + 1833-050619-2_119: *id762 + 1833-050619-3_117: *id763 + 1833-050619-4_133: *id764 + 1833-060619-1_158: *id765 + 1833-120619-2_169: *id766 + 1833-120619-3_141: *id767 + 1833-120619-4_120: *id768 + 1833-200619-1_206: *id769 + 1833-200619-2_287: *id770 + 1833-200619-3_132: *id771 + 1833-200619-4_89: *id772 + 1833-260619-1_102: *id773 + 1833-260619-2_144: *id774 + 1833-260619-3_142: *id775 + 1833-290519-1_124: &id867 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NDyxrFohwj8= - 1833-290519-3_125: &id1008 + 1833-290519-3_134: &id1026 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - LNv5mZ3p0D8= - 1833-290519-4_65: &id1138 + WhFTcdulwj8= + 1833-290519-4_65: &id1117 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8944,42 +8779,42 @@ _adj: - !!binary | 6ZvHulu5xz8= 1833-260619-4_184: - 1833-010719-1_200: *id793 - 1833-010719-2_225: *id794 - 1833-020719-3_64: *id795 - 1833-020719-4_310: *id796 - 1833-050619-1_64: *id797 - 1833-050619-2_74: *id798 - 1833-050619-3_129: *id799 - 1833-050619-4_92: *id800 - 1833-060619-1_162: *id801 - 1833-060619-2_82: *id802 - 1833-120619-3_118: *id803 - 1833-120619-4_80: *id804 - 1833-200619-2_28: *id805 - 1833-260619-1_108: *id806 - 1833-290519-1_132: &id896 + 1833-010719-1_200: *id776 + 1833-010719-2_225: *id777 + 1833-020719-3_64: *id778 + 1833-020719-4_310: *id779 + 1833-050619-1_64: *id780 + 1833-050619-2_74: *id781 + 1833-050619-3_129: *id782 + 1833-050619-4_92: *id783 + 1833-060619-1_162: *id784 + 1833-060619-2_82: *id785 + 1833-120619-3_118: *id786 + 1833-120619-4_80: *id787 + 1833-200619-2_28: *id788 + 1833-260619-1_108: *id789 + 1833-290519-1_132: &id878 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | W/3ZFpacwj8= - 1833-290519-2_76: &id988 + 1833-290519-2_76: &id969 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dx01FQS4wz8= - 1833-290519-3_155: &id1092 + 1833-290519-3_117: &id985 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1HB8tslX0D8= - 1833-290519-4_108: &id1116 + c+c7BER9tz8= + 1833-290519-4_108: &id1095 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -8987,60 +8822,60 @@ _adj: - !!binary | u8/kISYRtz8= 1833-260619-4_200: - 1833-050619-2_81: *id807 - 1833-060619-2_74: *id808 - 1833-120619-3_122: *id809 - 1833-120619-4_85: *id810 - 1833-200619-1_171: *id811 - 1833-200619-2_281: *id812 - 1833-200619-3_150: *id813 - 1833-200619-4_109: *id814 - 1833-260619-1_112: *id815 - 1833-260619-2_170: *id816 - 1833-290519-1_166: &id962 + 1833-050619-2_81: *id790 + 1833-060619-2_74: *id791 + 1833-120619-3_122: *id792 + 1833-120619-4_85: *id793 + 1833-200619-1_171: *id794 + 1833-200619-2_281: *id795 + 1833-200619-3_150: *id796 + 1833-200619-4_109: *id797 + 1833-260619-1_112: *id798 + 1833-260619-2_170: *id799 + 1833-290519-1_166: &id943 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | e8NTE/2syj8= - 1833-290519-3_149: &id1063 + 1833-290519-3_136: &id1040 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Sxga14kG2j8= + M8u4QRGDxT8= 1833-260619-4_214: - 1833-010719-1_227: *id817 - 1833-020719-4_248: *id818 - 1833-050619-1_111: *id819 - 1833-050619-2_152: *id820 - 1833-050619-3_149: *id821 - 1833-050619-4_157: *id822 - 1833-060619-1_176: *id823 - 1833-060619-2_112: *id824 - 1833-120619-3_145: *id825 - 1833-120619-4_124: *id826 - 1833-200619-2_308: *id827 - 1833-200619-3_120: *id828 - 1833-200619-4_101: *id829 - 1833-260619-2_156: *id830 - 1833-290519-1_142: &id915 + 1833-010719-1_227: *id800 + 1833-020719-4_248: *id801 + 1833-050619-1_111: *id802 + 1833-050619-2_152: *id803 + 1833-050619-3_149: *id804 + 1833-050619-4_157: *id805 + 1833-060619-1_176: *id806 + 1833-060619-2_112: *id807 + 1833-120619-3_145: *id808 + 1833-120619-4_124: *id809 + 1833-200619-2_308: *id810 + 1833-200619-3_120: *id811 + 1833-200619-4_101: *id812 + 1833-260619-2_156: *id813 + 1833-290519-1_142: &id897 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BJmi5rSgsT8= - 1833-290519-3_147: &id1039 + 1833-290519-3_140: &id1054 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - E1elfHm60z8= - 1833-290519-4_79: &id1158 + BDXEPrFewD8= + 1833-290519-4_79: &id1137 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -9048,39 +8883,39 @@ _adj: - !!binary | 6k/Hf+C3xj8= 1833-260619-4_218: - 1833-010719-1_152: *id831 - 1833-050619-1_91: *id832 - 1833-050619-2_146: *id833 - 1833-050619-3_143: *id834 - 1833-050619-4_135: *id835 - 1833-060619-1_170: *id836 - 1833-060619-2_105: *id837 - 1833-120619-1_129: *id838 - 1833-120619-2_151: *id839 - 1833-120619-3_94: *id840 - 1833-120619-4_127: *id841 - 1833-200619-1_240: *id842 - 1833-200619-2_327: *id843 - 1833-200619-3_126: *id844 - 1833-200619-4_121: *id845 - 1833-260619-1_106: *id846 - 1833-260619-2_160: *id847 - 1833-260619-3_192: *id848 - 1833-290519-1_154: &id948 + 1833-010719-1_152: *id814 + 1833-050619-1_91: *id815 + 1833-050619-2_146: *id816 + 1833-050619-3_143: *id817 + 1833-050619-4_135: *id818 + 1833-060619-1_170: *id819 + 1833-060619-2_105: *id820 + 1833-120619-1_129: *id821 + 1833-120619-2_151: *id822 + 1833-120619-3_94: *id823 + 1833-120619-4_127: *id824 + 1833-200619-1_240: *id825 + 1833-200619-2_327: *id826 + 1833-200619-3_126: *id827 + 1833-200619-4_121: *id828 + 1833-260619-1_106: *id829 + 1833-260619-2_160: *id830 + 1833-260619-3_192: *id831 + 1833-290519-1_154: &id929 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CTGcjUG3uT8= - 1833-290519-3_141: &id1025 + 1833-290519-3_144: &id1073 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - d2UOR2Y90j8= - 1833-290519-4_90: &id1181 + VIhb7XoGwj8= + 1833-290519-4_90: &id1160 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -9088,78 +8923,84 @@ _adj: - !!binary | S+UXaAqHxj8= 1833-260619-4_80: - 1833-020719-1_107: *id849 - 1833-020719-2_99: *id850 - 1833-020719-3_63: *id851 - 1833-050619-2_125: *id852 - 1833-050619-3_109: *id853 - 1833-050619-4_117: *id854 - 1833-060619-1_160: *id855 - 1833-060619-2_116: *id856 - 1833-120619-1_127: *id857 - 1833-120619-3_143: *id858 - 1833-120619-4_95: *id859 - 1833-200619-1_163: *id860 - 1833-200619-2_321: *id861 - 1833-200619-3_75: *id862 - 1833-200619-4_80: *id863 - 1833-260619-1_124: *id864 - 1833-260619-2_140: *id865 - 1833-260619-3_168: *id866 - 1833-290519-1_150: &id934 + 1833-020719-1_107: *id832 + 1833-020719-2_99: *id833 + 1833-050619-2_125: *id834 + 1833-050619-3_109: *id835 + 1833-050619-4_117: *id836 + 1833-060619-1_160: *id837 + 1833-060619-2_116: *id838 + 1833-120619-1_127: *id839 + 1833-120619-3_143: *id840 + 1833-120619-4_95: *id841 + 1833-200619-1_163: *id842 + 1833-200619-2_321: *id843 + 1833-200619-3_75: *id844 + 1833-200619-4_80: *id845 + 1833-260619-1_124: *id846 + 1833-260619-2_140: *id847 + 1833-260619-3_168: *id848 + 1833-290519-1_150: &id916 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | urOed3iktj8= - 1833-290519-3_151: &id1069 + 1833-290519-3_123: &id1008 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Do5WHPlT2j8= + BRZCxk4KwD8= 1833-290519-1_124: - 1833-010719-1_183: *id867 - 1833-020719-2_99: *id868 - 1833-050619-1_60: *id869 - 1833-050619-2_119: *id870 - 1833-050619-3_117: *id871 - 1833-060619-1_160: *id872 - 1833-060619-2_105: *id873 - 1833-120619-1_129: *id874 - 1833-120619-2_151: *id875 - 1833-120619-3_143: *id876 - 1833-120619-4_120: *id877 - 1833-200619-1_171: *id878 - 1833-200619-2_287: *id879 - 1833-200619-3_126: *id880 - 1833-200619-4_89: *id881 - 1833-260619-1_106: *id882 - 1833-260619-2_144: *id883 - 1833-260619-3_142: *id884 - 1833-260619-4_182: *id885 - 1833-290519-1_132: - 1833-020719-1_107: *id886 - 1833-020719-3_96: *id887 - 1833-020719-4_254: *id888 - 1833-050619-2_81: *id889 - 1833-050619-3_109: *id890 - 1833-060619-2_74: *id891 - 1833-120619-3_118: *id892 - 1833-120619-4_80: *id893 - 1833-200619-2_28: *id894 - 1833-200619-3_75: *id895 - 1833-260619-4_184: *id896 - 1833-290519-3_149: &id1064 + 1833-010719-1_183: *id849 + 1833-020719-2_99: *id850 + 1833-050619-1_60: *id851 + 1833-050619-2_119: *id852 + 1833-050619-3_117: *id853 + 1833-060619-1_160: *id854 + 1833-060619-2_105: *id855 + 1833-120619-1_129: *id856 + 1833-120619-2_151: *id857 + 1833-120619-3_143: *id858 + 1833-120619-4_120: *id859 + 1833-200619-1_171: *id860 + 1833-200619-2_287: *id861 + 1833-200619-3_126: *id862 + 1833-200619-4_89: *id863 + 1833-260619-1_106: *id864 + 1833-260619-2_144: *id865 + 1833-260619-3_142: *id866 + 1833-260619-4_182: *id867 + 1833-290519-3_134: &id1027 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - gDPMzGeJyz8= - 1833-290519-4_90: &id1182 + amb3f7icsD8= + 1833-290519-1_132: + 1833-020719-1_107: *id868 + 1833-020719-3_96: *id869 + 1833-020719-4_254: *id870 + 1833-050619-2_81: *id871 + 1833-050619-3_109: *id872 + 1833-060619-2_74: *id873 + 1833-120619-3_118: *id874 + 1833-120619-4_80: *id875 + 1833-200619-2_28: *id876 + 1833-200619-3_75: *id877 + 1833-260619-4_184: *id878 + 1833-290519-3_123: &id1009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NYTmrWPdqj8= + 1833-290519-4_90: &id1161 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -9167,40 +9008,40 @@ _adj: - !!binary | 5rlwP7hPrT8= 1833-290519-1_142: - 1833-010719-1_200: *id897 - 1833-010719-2_225: *id898 - 1833-020719-3_64: *id899 - 1833-020719-4_248: *id900 - 1833-050619-1_111: *id901 - 1833-050619-2_74: *id902 - 1833-050619-3_149: *id903 - 1833-050619-4_157: *id904 - 1833-060619-1_176: *id905 - 1833-060619-2_112: *id906 - 1833-120619-3_145: *id907 - 1833-120619-4_124: *id908 - 1833-200619-2_308: *id909 - 1833-200619-3_120: *id910 - 1833-200619-4_101: *id911 - 1833-260619-1_108: *id912 - 1833-260619-2_156: *id913 - 1833-260619-3_168: *id914 - 1833-260619-4_214: *id915 - 1833-290519-2_76: &id989 + 1833-010719-1_200: *id879 + 1833-010719-2_225: *id880 + 1833-020719-3_64: *id881 + 1833-020719-4_248: *id882 + 1833-050619-1_111: *id883 + 1833-050619-2_74: *id884 + 1833-050619-3_149: *id885 + 1833-050619-4_157: *id886 + 1833-060619-1_176: *id887 + 1833-060619-2_112: *id888 + 1833-120619-3_145: *id889 + 1833-120619-4_124: *id890 + 1833-200619-2_308: *id891 + 1833-200619-3_120: *id892 + 1833-200619-4_101: *id893 + 1833-260619-1_108: *id894 + 1833-260619-2_156: *id895 + 1833-260619-3_168: *id896 + 1833-260619-4_214: *id897 + 1833-290519-2_76: &id970 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n/cDDTMIxj8= - 1833-290519-3_155: &id1093 + 1833-290519-3_117: &id986 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - JWxZbRpp0D8= - 1833-290519-4_79: &id1159 + lDVlwg/eqz8= + 1833-290519-4_79: &id1138 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -9208,33 +9049,33 @@ _adj: - !!binary | 7whBS0vgxT8= 1833-290519-1_150: - 1833-010719-1_152: *id916 - 1833-020719-4_310: *id917 - 1833-050619-1_64: *id918 - 1833-050619-2_125: *id919 - 1833-050619-3_129: *id920 - 1833-050619-4_92: *id921 - 1833-060619-1_162: *id922 - 1833-060619-2_82: *id923 - 1833-120619-1_127: *id924 - 1833-120619-3_122: *id925 - 1833-120619-4_95: *id926 - 1833-200619-1_163: *id927 - 1833-200619-2_321: *id928 - 1833-200619-3_150: *id929 - 1833-200619-4_80: *id930 - 1833-260619-1_124: *id931 - 1833-260619-2_160: *id932 - 1833-260619-3_192: *id933 - 1833-260619-4_80: *id934 - 1833-290519-3_147: &id1040 + 1833-010719-1_152: *id898 + 1833-020719-4_310: *id899 + 1833-050619-1_64: *id900 + 1833-050619-2_125: *id901 + 1833-050619-3_129: *id902 + 1833-050619-4_92: *id903 + 1833-060619-1_162: *id904 + 1833-060619-2_82: *id905 + 1833-120619-1_127: *id906 + 1833-120619-3_122: *id907 + 1833-120619-4_95: *id908 + 1833-200619-1_163: *id909 + 1833-200619-2_321: *id910 + 1833-200619-3_150: *id911 + 1833-200619-4_80: *id912 + 1833-260619-1_124: *id913 + 1833-260619-2_160: *id914 + 1833-260619-3_192: *id915 + 1833-260619-4_80: *id916 + 1833-290519-3_140: &id1055 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jo/FhUSt0T8= - 1833-290519-4_108: &id1117 + dpoH4P1Byz8= + 1833-290519-4_108: &id1096 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -9242,60 +9083,52 @@ _adj: - !!binary | uPKftPwZuz8= 1833-290519-1_154: - 1833-010719-1_227: *id935 - 1833-020719-3_63: *id936 - 1833-050619-2_152: *id937 - 1833-050619-3_143: *id938 - 1833-050619-4_117: *id939 - 1833-060619-2_116: *id940 - 1833-120619-3_94: *id941 - 1833-120619-4_127: *id942 - 1833-200619-1_240: *id943 - 1833-200619-2_327: *id944 - 1833-200619-4_121: *id945 - 1833-260619-1_112: *id946 - 1833-260619-2_170: *id947 - 1833-260619-4_218: *id948 - 1833-290519-3_141: &id1026 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - tVVfL+W+0D8= + 1833-010719-1_227: *id917 + 1833-050619-2_152: *id918 + 1833-050619-3_143: *id919 + 1833-050619-4_117: *id920 + 1833-060619-2_116: *id921 + 1833-120619-3_94: *id922 + 1833-120619-4_127: *id923 + 1833-200619-1_240: *id924 + 1833-200619-2_327: *id925 + 1833-200619-4_121: *id926 + 1833-260619-1_112: *id927 + 1833-260619-2_170: *id928 + 1833-260619-4_218: *id929 1833-290519-1_166: - 1833-050619-1_91: *id949 - 1833-050619-2_146: *id950 - 1833-050619-4_135: *id951 - 1833-060619-1_170: *id952 - 1833-120619-2_169: *id953 - 1833-120619-3_141: *id954 - 1833-120619-4_85: *id955 - 1833-200619-1_206: *id956 - 1833-200619-2_281: *id957 - 1833-200619-3_132: *id958 - 1833-200619-4_109: *id959 - 1833-260619-1_102: *id960 - 1833-260619-2_140: *id961 - 1833-260619-4_200: *id962 - 1833-290519-3_151: &id1070 + 1833-050619-1_91: *id930 + 1833-050619-2_146: *id931 + 1833-050619-4_135: *id932 + 1833-060619-1_170: *id933 + 1833-120619-2_169: *id934 + 1833-120619-3_141: *id935 + 1833-120619-4_85: *id936 + 1833-200619-1_206: *id937 + 1833-200619-2_281: *id938 + 1833-200619-3_132: *id939 + 1833-200619-4_109: *id940 + 1833-260619-1_102: *id941 + 1833-260619-2_140: *id942 + 1833-260619-4_200: *id943 + 1833-290519-3_136: &id1041 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - PSoxCFdq2j8= + MfA3wtkXrj8= 1833-290519-1_89: - 1833-050619-4_133: *id963 - 1833-060619-1_158: *id964 - 1833-290519-3_125: &id1009 + 1833-050619-4_133: *id944 + 1833-060619-1_158: *id945 + 1833-290519-3_144: &id1074 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ji8M+8ZSzz8= - 1833-290519-4_65: &id1139 + /leALMQhwz8= + 1833-290519-4_65: &id1118 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -9303,282 +9136,280 @@ _adj: - !!binary | nWdpxETqwz8= 1833-290519-2_76: - 1833-010719-1_200: *id965 - 1833-010719-2_225: *id966 - 1833-020719-1_107: *id967 - 1833-020719-2_99: *id968 - 1833-020719-3_64: *id969 - 1833-020719-4_248: *id970 - 1833-050619-1_64: *id971 - 1833-050619-2_74: *id972 - 1833-050619-3_129: *id973 - 1833-050619-4_92: *id974 - 1833-060619-1_162: *id975 - 1833-060619-2_82: *id976 - 1833-120619-1_127: *id977 - 1833-120619-2_151: *id978 - 1833-120619-3_118: *id979 - 1833-120619-4_80: *id980 - 1833-200619-1_240: *id981 - 1833-200619-2_28: *id982 - 1833-200619-3_150: *id983 - 1833-200619-4_121: *id984 - 1833-260619-1_108: *id985 - 1833-260619-2_156: *id986 - 1833-260619-3_168: *id987 - 1833-260619-4_184: *id988 - 1833-290519-1_142: *id989 - 1833-290519-3_155: &id1094 + 1833-010719-1_200: *id946 + 1833-010719-2_225: *id947 + 1833-020719-1_107: *id948 + 1833-020719-2_99: *id949 + 1833-020719-3_64: *id950 + 1833-020719-4_248: *id951 + 1833-050619-1_64: *id952 + 1833-050619-2_74: *id953 + 1833-050619-3_129: *id954 + 1833-050619-4_92: *id955 + 1833-060619-1_162: *id956 + 1833-060619-2_82: *id957 + 1833-120619-1_127: *id958 + 1833-120619-2_151: *id959 + 1833-120619-3_118: *id960 + 1833-120619-4_80: *id961 + 1833-200619-1_240: *id962 + 1833-200619-2_28: *id963 + 1833-200619-3_150: *id964 + 1833-200619-4_121: *id965 + 1833-260619-1_108: *id966 + 1833-260619-2_156: *id967 + 1833-260619-3_168: *id968 + 1833-260619-4_184: *id969 + 1833-290519-1_142: *id970 + 1833-290519-3_123: &id1010 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rJURQ6pzzD8= - 1833-290519-4_108: &id1118 + s6nEBtJwxT8= + 1833-290519-4_108: &id1097 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GVrZp8Iywz8= - 1833-290519-3_125: - 1833-010719-1_183: *id990 - 1833-020719-3_63: *id991 - 1833-020719-4_310: *id992 - 1833-050619-1_111: *id993 - 1833-050619-2_74: *id994 - 1833-050619-3_117: *id995 - 1833-050619-4_135: *id996 - 1833-060619-1_160: *id997 - 1833-060619-2_116: *id998 - 1833-120619-3_141: *id999 - 1833-120619-4_95: *id1000 - 1833-200619-1_206: *id1001 - 1833-200619-2_287: *id1002 - 1833-200619-3_132: *id1003 - 1833-200619-4_89: *id1004 - 1833-260619-1_102: *id1005 - 1833-260619-2_144: *id1006 - 1833-260619-3_142: *id1007 - 1833-260619-4_182: *id1008 - 1833-290519-1_89: *id1009 - 1833-290519-4_79: &id1160 + 1833-290519-3_117: + 1833-010719-1_200: *id971 + 1833-020719-4_248: *id972 + 1833-050619-2_74: *id973 + 1833-050619-3_109: *id974 + 1833-060619-2_116: *id975 + 1833-120619-3_145: *id976 + 1833-120619-4_95: *id977 + 1833-200619-1_240: *id978 + 1833-200619-2_308: *id979 + 1833-200619-3_120: *id980 + 1833-200619-4_101: *id981 + 1833-260619-1_108: *id982 + 1833-260619-2_156: *id983 + 1833-260619-3_168: *id984 + 1833-260619-4_184: *id985 + 1833-290519-1_142: *id986 + 1833-290519-4_108: &id1098 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - z2LAd6fU0T8= - 1833-290519-3_141: - 1833-010719-1_227: *id1010 - 1833-050619-1_91: *id1011 + 9+EKbwl4wD8= + 1833-290519-3_123: + 1833-010719-1_152: *id987 + 1833-010719-2_225: *id988 + 1833-020719-1_107: *id989 + 1833-020719-3_96: *id990 + 1833-020719-4_310: *id991 + 1833-050619-1_64: *id992 + 1833-050619-2_125: *id993 + 1833-050619-3_129: *id994 + 1833-050619-4_92: *id995 + 1833-060619-1_162: *id996 + 1833-060619-2_82: *id997 + 1833-120619-1_127: *id998 + 1833-120619-3_118: *id999 + 1833-120619-4_80: *id1000 + 1833-200619-1_163: *id1001 + 1833-200619-2_28: *id1002 + 1833-200619-3_150: *id1003 + 1833-200619-4_121: *id1004 + 1833-260619-1_124: *id1005 + 1833-260619-2_160: *id1006 + 1833-260619-3_192: *id1007 + 1833-260619-4_80: *id1008 + 1833-290519-1_132: *id1009 + 1833-290519-2_76: *id1010 + 1833-290519-4_90: &id1162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9SgkfLwQtT8= + 1833-290519-3_134: + 1833-010719-1_183: *id1011 1833-050619-2_119: *id1012 - 1833-050619-3_143: *id1013 - 1833-050619-4_117: *id1014 - 1833-060619-1_170: *id1015 - 1833-060619-2_105: *id1016 - 1833-120619-3_94: *id1017 - 1833-120619-4_120: *id1018 - 1833-200619-1_240: *id1019 - 1833-200619-2_281: *id1020 - 1833-200619-3_126: *id1021 - 1833-200619-4_109: *id1022 + 1833-050619-4_133: *id1013 + 1833-060619-1_160: *id1014 + 1833-120619-1_129: *id1015 + 1833-120619-2_169: *id1016 + 1833-120619-3_141: *id1017 + 1833-120619-4_85: *id1018 + 1833-200619-1_171: *id1019 + 1833-200619-2_287: *id1020 + 1833-200619-3_132: *id1021 + 1833-200619-4_89: *id1022 1833-260619-1_106: *id1023 - 1833-260619-2_160: *id1024 - 1833-260619-4_218: *id1025 - 1833-290519-1_154: *id1026 - 1833-290519-4_90: &id1183 + 1833-260619-2_144: *id1024 + 1833-260619-3_142: *id1025 + 1833-260619-4_182: *id1026 + 1833-290519-1_124: *id1027 + 1833-290519-3_136: + 1833-050619-1_91: *id1028 + 1833-050619-2_146: *id1029 + 1833-050619-3_143: *id1030 + 1833-050619-4_135: *id1031 + 1833-060619-1_170: *id1032 + 1833-060619-2_105: *id1033 + 1833-120619-3_94: *id1034 + 1833-120619-4_127: *id1035 + 1833-200619-2_281: *id1036 + 1833-200619-3_126: *id1037 + 1833-200619-4_109: *id1038 + 1833-260619-2_170: *id1039 + 1833-260619-4_200: *id1040 + 1833-290519-1_166: *id1041 + 1833-290519-3_140: + 1833-010719-1_227: *id1042 + 1833-050619-1_111: *id1043 + 1833-050619-2_152: *id1044 + 1833-050619-3_149: *id1045 + 1833-050619-4_157: *id1046 + 1833-060619-1_176: *id1047 + 1833-060619-2_112: *id1048 + 1833-120619-3_122: *id1049 + 1833-120619-4_124: *id1050 + 1833-200619-2_321: *id1051 + 1833-260619-1_112: *id1052 + 1833-260619-2_140: *id1053 + 1833-260619-4_214: *id1054 + 1833-290519-1_150: *id1055 + 1833-290519-4_79: &id1139 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - J7pHyGxLzj8= - 1833-290519-3_147: - 1833-050619-2_146: *id1027 - 1833-050619-3_149: *id1028 - 1833-050619-4_157: *id1029 - 1833-060619-1_176: *id1030 - 1833-060619-2_112: *id1031 - 1833-120619-3_145: *id1032 - 1833-120619-4_124: *id1033 - 1833-200619-2_327: *id1034 - 1833-200619-3_150: *id1035 - 1833-200619-4_121: *id1036 - 1833-260619-1_124: *id1037 - 1833-260619-2_170: *id1038 - 1833-260619-4_214: *id1039 - 1833-290519-1_150: *id1040 - 1833-290519-3_149: - 1833-010719-1_152: *id1041 - 1833-020719-1_107: *id1042 - 1833-020719-2_99: *id1043 - 1833-020719-3_96: *id1044 - 1833-020719-4_254: *id1045 - 1833-050619-1_60: *id1046 - 1833-050619-2_81: *id1047 - 1833-050619-3_109: *id1048 - 1833-050619-4_133: *id1049 - 1833-060619-1_162: *id1050 - 1833-060619-2_74: *id1051 - 1833-120619-1_127: *id1052 - 1833-120619-2_169: *id1053 - 1833-120619-3_118: *id1054 - 1833-120619-4_85: *id1055 - 1833-200619-1_163: *id1056 - 1833-200619-2_308: *id1057 - 1833-200619-3_120: *id1058 - 1833-200619-4_80: *id1059 - 1833-260619-1_112: *id1060 - 1833-260619-2_156: *id1061 - 1833-260619-3_168: *id1062 - 1833-260619-4_200: *id1063 - 1833-290519-1_132: *id1064 - 1833-290519-4_65: &id1140 + vKT8X9lIxz8= + 1833-290519-3_144: + 1833-020719-2_99: *id1056 + 1833-020719-3_64: *id1057 + 1833-020719-4_254: *id1058 + 1833-050619-1_60: *id1059 + 1833-050619-2_81: *id1060 + 1833-050619-3_117: *id1061 + 1833-050619-4_117: *id1062 + 1833-060619-1_158: *id1063 + 1833-060619-2_74: *id1064 + 1833-120619-2_151: *id1065 + 1833-120619-3_143: *id1066 + 1833-120619-4_120: *id1067 + 1833-200619-1_206: *id1068 + 1833-200619-2_327: *id1069 + 1833-200619-3_75: *id1070 + 1833-200619-4_80: *id1071 + 1833-260619-1_102: *id1072 + 1833-260619-4_218: *id1073 + 1833-290519-1_89: *id1074 + 1833-290519-4_65: &id1119 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IQ+8qmIk0T8= - 1833-290519-3_151: - 1833-050619-2_152: *id1065 - 1833-120619-3_122: *id1066 - 1833-120619-4_127: *id1067 - 1833-200619-2_321: *id1068 - 1833-260619-4_80: *id1069 - 1833-290519-1_166: *id1070 - 1833-290519-3_155: - 1833-010719-1_200: *id1071 - 1833-010719-2_225: *id1072 - 1833-020719-3_64: *id1073 - 1833-020719-4_248: *id1074 - 1833-050619-1_64: *id1075 - 1833-050619-2_125: *id1076 - 1833-050619-3_129: *id1077 - 1833-050619-4_92: *id1078 - 1833-060619-1_158: *id1079 - 1833-060619-2_82: *id1080 - 1833-120619-1_129: *id1081 - 1833-120619-2_151: *id1082 - 1833-120619-3_143: *id1083 - 1833-120619-4_80: *id1084 - 1833-200619-1_171: *id1085 - 1833-200619-2_28: *id1086 - 1833-200619-3_75: *id1087 - 1833-200619-4_101: *id1088 - 1833-260619-1_108: *id1089 - 1833-260619-2_140: *id1090 - 1833-260619-3_192: *id1091 - 1833-260619-4_184: *id1092 - 1833-290519-1_142: *id1093 - 1833-290519-2_76: *id1094 - 1833-290519-4_108: &id1119 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - EomqvkatyT8= + NP5yfTrHxD8= 1833-290519-4_108: - 1833-010719-1_200: *id1095 - 1833-010719-2_225: *id1096 - 1833-020719-2_99: *id1097 - 1833-020719-3_63: *id1098 - 1833-020719-4_310: *id1099 - 1833-050619-1_64: *id1100 - 1833-050619-2_125: *id1101 - 1833-050619-3_129: *id1102 - 1833-050619-4_92: *id1103 - 1833-060619-1_162: *id1104 - 1833-060619-2_82: *id1105 - 1833-120619-1_127: *id1106 - 1833-120619-3_118: *id1107 - 1833-120619-4_80: *id1108 - 1833-200619-1_163: *id1109 - 1833-200619-2_28: *id1110 - 1833-200619-3_120: *id1111 - 1833-200619-4_101: *id1112 - 1833-260619-1_108: *id1113 - 1833-260619-2_156: *id1114 - 1833-260619-3_168: *id1115 - 1833-260619-4_184: *id1116 - 1833-290519-1_150: *id1117 - 1833-290519-2_76: *id1118 - 1833-290519-3_155: *id1119 + 1833-010719-1_200: *id1075 + 1833-010719-2_225: *id1076 + 1833-020719-2_99: *id1077 + 1833-020719-4_310: *id1078 + 1833-050619-1_64: *id1079 + 1833-050619-2_125: *id1080 + 1833-050619-3_129: *id1081 + 1833-050619-4_92: *id1082 + 1833-060619-1_162: *id1083 + 1833-060619-2_82: *id1084 + 1833-120619-1_127: *id1085 + 1833-120619-3_118: *id1086 + 1833-120619-4_80: *id1087 + 1833-200619-1_163: *id1088 + 1833-200619-2_28: *id1089 + 1833-200619-3_120: *id1090 + 1833-200619-4_101: *id1091 + 1833-260619-1_108: *id1092 + 1833-260619-2_156: *id1093 + 1833-260619-3_168: *id1094 + 1833-260619-4_184: *id1095 + 1833-290519-1_150: *id1096 + 1833-290519-2_76: *id1097 + 1833-290519-3_117: *id1098 1833-290519-4_65: - 1833-010719-1_183: *id1120 - 1833-050619-1_60: *id1121 - 1833-050619-2_119: *id1122 - 1833-050619-3_117: *id1123 - 1833-050619-4_133: *id1124 - 1833-060619-1_160: *id1125 - 1833-060619-2_105: *id1126 - 1833-120619-1_129: *id1127 - 1833-120619-2_169: *id1128 - 1833-120619-3_143: *id1129 - 1833-120619-4_120: *id1130 - 1833-200619-1_171: *id1131 - 1833-200619-2_287: *id1132 - 1833-200619-3_126: *id1133 - 1833-200619-4_109: *id1134 - 1833-260619-1_106: *id1135 - 1833-260619-2_144: *id1136 - 1833-260619-3_142: *id1137 - 1833-260619-4_182: *id1138 - 1833-290519-1_89: *id1139 - 1833-290519-3_149: *id1140 + 1833-010719-1_183: *id1099 + 1833-050619-1_60: *id1100 + 1833-050619-2_119: *id1101 + 1833-050619-3_117: *id1102 + 1833-050619-4_133: *id1103 + 1833-060619-1_160: *id1104 + 1833-060619-2_105: *id1105 + 1833-120619-1_129: *id1106 + 1833-120619-2_169: *id1107 + 1833-120619-3_143: *id1108 + 1833-120619-4_120: *id1109 + 1833-200619-1_171: *id1110 + 1833-200619-2_287: *id1111 + 1833-200619-3_126: *id1112 + 1833-200619-4_109: *id1113 + 1833-260619-1_106: *id1114 + 1833-260619-2_144: *id1115 + 1833-260619-3_142: *id1116 + 1833-260619-4_182: *id1117 + 1833-290519-1_89: *id1118 + 1833-290519-3_144: *id1119 1833-290519-4_79: - 1833-010719-1_227: *id1141 - 1833-020719-3_64: *id1142 - 1833-020719-4_248: *id1143 - 1833-050619-1_111: *id1144 - 1833-050619-2_74: *id1145 - 1833-050619-3_149: *id1146 - 1833-050619-4_157: *id1147 - 1833-060619-1_176: *id1148 - 1833-060619-2_112: *id1149 - 1833-120619-3_141: *id1150 - 1833-120619-4_124: *id1151 - 1833-200619-1_206: *id1152 - 1833-200619-2_308: *id1153 - 1833-200619-3_132: *id1154 - 1833-200619-4_89: *id1155 - 1833-260619-1_102: *id1156 - 1833-260619-2_140: *id1157 - 1833-260619-4_214: *id1158 - 1833-290519-1_142: *id1159 - 1833-290519-3_125: *id1160 + 1833-010719-1_227: *id1120 + 1833-020719-3_64: *id1121 + 1833-020719-4_248: *id1122 + 1833-050619-1_111: *id1123 + 1833-050619-2_74: *id1124 + 1833-050619-3_149: *id1125 + 1833-050619-4_157: *id1126 + 1833-060619-1_176: *id1127 + 1833-060619-2_112: *id1128 + 1833-120619-3_141: *id1129 + 1833-120619-4_124: *id1130 + 1833-200619-1_206: *id1131 + 1833-200619-2_308: *id1132 + 1833-200619-3_132: *id1133 + 1833-200619-4_89: *id1134 + 1833-260619-1_102: *id1135 + 1833-260619-2_140: *id1136 + 1833-260619-4_214: *id1137 + 1833-290519-1_142: *id1138 + 1833-290519-3_140: *id1139 1833-290519-4_90: - 1833-010719-1_152: *id1161 - 1833-020719-1_107: *id1162 - 1833-020719-3_96: *id1163 - 1833-020719-4_254: *id1164 - 1833-050619-1_91: *id1165 - 1833-050619-2_146: *id1166 - 1833-050619-3_109: *id1167 - 1833-050619-4_135: *id1168 - 1833-060619-1_170: *id1169 - 1833-060619-2_74: *id1170 - 1833-120619-2_151: *id1171 - 1833-120619-3_145: *id1172 - 1833-120619-4_127: *id1173 - 1833-200619-1_240: *id1174 - 1833-200619-2_327: *id1175 - 1833-200619-3_75: *id1176 - 1833-200619-4_121: *id1177 - 1833-260619-1_124: *id1178 - 1833-260619-2_160: *id1179 - 1833-260619-3_192: *id1180 - 1833-260619-4_218: *id1181 - 1833-290519-1_132: *id1182 - 1833-290519-3_141: *id1183 -_node: &id1186 + 1833-010719-1_152: *id1140 + 1833-020719-1_107: *id1141 + 1833-020719-3_96: *id1142 + 1833-020719-4_254: *id1143 + 1833-050619-1_91: *id1144 + 1833-050619-2_146: *id1145 + 1833-050619-3_109: *id1146 + 1833-050619-4_135: *id1147 + 1833-060619-1_170: *id1148 + 1833-060619-2_74: *id1149 + 1833-120619-2_151: *id1150 + 1833-120619-3_145: *id1151 + 1833-120619-4_127: *id1152 + 1833-200619-1_240: *id1153 + 1833-200619-2_327: *id1154 + 1833-200619-3_75: *id1155 + 1833-200619-4_121: *id1156 + 1833-260619-1_124: *id1157 + 1833-260619-2_160: *id1158 + 1833-260619-3_192: *id1159 + 1833-260619-4_218: *id1160 + 1833-290519-1_132: *id1161 + 1833-290519-3_123: *id1162 +_node: &id1165 1833-010719-1_152: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id1184 !!python/object/apply:numpy.dtype + - &id1163 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -9586,697 +9417,691 @@ _node: &id1186 1833-010719-1_183: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | twAAAAAAAAA= 1833-010719-1_200: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | yAAAAAAAAAA= 1833-010719-1_227: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | 4wAAAAAAAAA= 1833-010719-2_225: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | 4QAAAAAAAAA= 1833-020719-1_107: action_id: 1833-020719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | awAAAAAAAAA= 1833-020719-2_99: action_id: 1833-020719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | YwAAAAAAAAA= - 1833-020719-3_63: - action_id: 1833-020719-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 - - !!binary | - PwAAAAAAAAA= 1833-020719-3_64: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | QAAAAAAAAAA= 1833-020719-3_96: action_id: 1833-020719-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | YAAAAAAAAAA= 1833-020719-4_248: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | +AAAAAAAAAA= 1833-020719-4_254: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | /gAAAAAAAAA= 1833-020719-4_310: action_id: 1833-020719-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | NgEAAAAAAAA= 1833-050619-1_111: action_id: 1833-050619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | bwAAAAAAAAA= 1833-050619-1_60: action_id: 1833-050619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | PAAAAAAAAAA= 1833-050619-1_64: action_id: 1833-050619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | QAAAAAAAAAA= 1833-050619-1_91: action_id: 1833-050619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | WwAAAAAAAAA= 1833-050619-2_119: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | dwAAAAAAAAA= 1833-050619-2_125: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | fQAAAAAAAAA= 1833-050619-2_146: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | kgAAAAAAAAA= 1833-050619-2_152: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | mAAAAAAAAAA= 1833-050619-2_74: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | SgAAAAAAAAA= 1833-050619-2_81: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | UQAAAAAAAAA= 1833-050619-3_109: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | bQAAAAAAAAA= 1833-050619-3_117: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | dQAAAAAAAAA= 1833-050619-3_129: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | gQAAAAAAAAA= 1833-050619-3_143: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | jwAAAAAAAAA= 1833-050619-3_149: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | lQAAAAAAAAA= 1833-050619-4_117: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | dQAAAAAAAAA= 1833-050619-4_133: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | hQAAAAAAAAA= 1833-050619-4_135: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | hwAAAAAAAAA= 1833-050619-4_157: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | nQAAAAAAAAA= 1833-050619-4_92: action_id: 1833-050619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | XAAAAAAAAAA= 1833-060619-1_158: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | ngAAAAAAAAA= 1833-060619-1_160: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | oAAAAAAAAAA= 1833-060619-1_162: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | ogAAAAAAAAA= 1833-060619-1_170: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | qgAAAAAAAAA= 1833-060619-1_176: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | sAAAAAAAAAA= 1833-060619-2_105: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | aQAAAAAAAAA= 1833-060619-2_112: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | cAAAAAAAAAA= 1833-060619-2_116: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | dAAAAAAAAAA= 1833-060619-2_74: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | SgAAAAAAAAA= 1833-060619-2_82: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | UgAAAAAAAAA= 1833-120619-1_127: action_id: 1833-120619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | fwAAAAAAAAA= 1833-120619-1_129: action_id: 1833-120619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | gQAAAAAAAAA= 1833-120619-2_151: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | lwAAAAAAAAA= 1833-120619-2_169: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | qQAAAAAAAAA= 1833-120619-3_118: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | dgAAAAAAAAA= 1833-120619-3_122: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | egAAAAAAAAA= 1833-120619-3_141: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | jQAAAAAAAAA= 1833-120619-3_143: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | jwAAAAAAAAA= 1833-120619-3_145: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | kQAAAAAAAAA= 1833-120619-3_94: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | XgAAAAAAAAA= 1833-120619-4_120: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | eAAAAAAAAAA= 1833-120619-4_124: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | fAAAAAAAAAA= 1833-120619-4_127: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | fwAAAAAAAAA= 1833-120619-4_80: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | UAAAAAAAAAA= 1833-120619-4_85: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | VQAAAAAAAAA= 1833-120619-4_95: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | XwAAAAAAAAA= 1833-200619-1_163: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | owAAAAAAAAA= 1833-200619-1_171: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | qwAAAAAAAAA= 1833-200619-1_206: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | zgAAAAAAAAA= 1833-200619-1_240: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | 8AAAAAAAAAA= 1833-200619-2_28: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | HAAAAAAAAAA= 1833-200619-2_281: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | GQEAAAAAAAA= 1833-200619-2_287: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | HwEAAAAAAAA= 1833-200619-2_308: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | NAEAAAAAAAA= 1833-200619-2_321: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | QQEAAAAAAAA= 1833-200619-2_327: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | RwEAAAAAAAA= 1833-200619-3_120: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | eAAAAAAAAAA= 1833-200619-3_126: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | fgAAAAAAAAA= 1833-200619-3_132: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | hAAAAAAAAAA= 1833-200619-3_150: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | lgAAAAAAAAA= 1833-200619-3_75: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | SwAAAAAAAAA= 1833-200619-4_101: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | ZQAAAAAAAAA= 1833-200619-4_109: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | bQAAAAAAAAA= 1833-200619-4_121: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | eQAAAAAAAAA= 1833-200619-4_80: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | UAAAAAAAAAA= 1833-200619-4_89: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | WQAAAAAAAAA= 1833-260619-1_102: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | ZgAAAAAAAAA= 1833-260619-1_106: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | agAAAAAAAAA= 1833-260619-1_108: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | bAAAAAAAAAA= 1833-260619-1_112: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | cAAAAAAAAAA= 1833-260619-1_124: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | fAAAAAAAAAA= 1833-260619-2_140: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | jAAAAAAAAAA= 1833-260619-2_144: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | kAAAAAAAAAA= 1833-260619-2_156: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | nAAAAAAAAAA= 1833-260619-2_160: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | oAAAAAAAAAA= 1833-260619-2_170: action_id: 1833-260619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | qgAAAAAAAAA= 1833-260619-3_142: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | jgAAAAAAAAA= 1833-260619-3_168: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | qAAAAAAAAAA= 1833-260619-3_192: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | wAAAAAAAAAA= 1833-260619-4_182: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | tgAAAAAAAAA= 1833-260619-4_184: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | uAAAAAAAAAA= 1833-260619-4_200: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | yAAAAAAAAAA= 1833-260619-4_214: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | 1gAAAAAAAAA= 1833-260619-4_218: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | 2gAAAAAAAAA= 1833-260619-4_80: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | UAAAAAAAAAA= 1833-290519-1_124: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | fAAAAAAAAAA= 1833-290519-1_132: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | hAAAAAAAAAA= 1833-290519-1_142: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | jgAAAAAAAAA= 1833-290519-1_150: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | lgAAAAAAAAA= 1833-290519-1_154: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | mgAAAAAAAAA= 1833-290519-1_166: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | pgAAAAAAAAA= 1833-290519-1_89: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | WQAAAAAAAAA= 1833-290519-2_76: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | TAAAAAAAAAA= - 1833-290519-3_125: + 1833-290519-3_117: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | - fQAAAAAAAAA= - 1833-290519-3_141: + dQAAAAAAAAA= + 1833-290519-3_123: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | - jQAAAAAAAAA= - 1833-290519-3_147: + ewAAAAAAAAA= + 1833-290519-3_134: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | - kwAAAAAAAAA= - 1833-290519-3_149: + hgAAAAAAAAA= + 1833-290519-3_136: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | - lQAAAAAAAAA= - 1833-290519-3_151: + iAAAAAAAAAA= + 1833-290519-3_140: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | - lwAAAAAAAAA= - 1833-290519-3_155: + jAAAAAAAAAA= + 1833-290519-3_144: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | - mwAAAAAAAAA= + kAAAAAAAAAA= 1833-290519-4_108: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | bAAAAAAAAAA= 1833-290519-4_65: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | QQAAAAAAAAA= 1833-290519-4_79: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | TwAAAAAAAAA= 1833-290519-4_90: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id1184 + - *id1163 - !!binary | WgAAAAAAAAA= -adjlist_inner_dict_factory: &id1185 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id1185 -edge_attr_dict_factory: *id1185 +adjlist_inner_dict_factory: &id1164 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id1164 +edge_attr_dict_factory: *id1164 graph: {} -node_dict_factory: *id1185 +node_dict_factory: *id1164 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id1186 + _nodes: *id1165 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml index 9fd3308b7..59d262923 100644 --- a/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml +++ b/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml @@ -52,14 +52,7 @@ _adj: - *id001 - !!binary | RZGYfJ/m0D8= - 1833-290519-3_103: &id187 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uL0kT3/j2z8= - 1833-290519-4_94: &id241 + 1833-290519-4_94: &id232 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -137,14 +130,14 @@ _adj: - *id001 - !!binary | vhnDV/46wj8= - 1833-290519-3_129: &id207 + 1833-290519-3_74: &id187 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - J7R9IkYV3j8= - 1833-290519-4_77: &id233 + mAgDTvm+vj8= + 1833-290519-4_77: &id224 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -222,14 +215,14 @@ _adj: - *id001 - !!binary | F6Te/cb9xT8= - 1833-290519-3_82: &id211 + 1833-290519-3_99: &id198 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - oq85mDtp3j8= - 1833-290519-4_67: &id219 + 5UxokGpmuT8= + 1833-290519-4_67: &id212 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -301,14 +294,14 @@ _adj: - *id001 - !!binary | ec0/LMlvxz8= - 1833-290519-3_82: &id212 + 1833-290519-3_99: &id199 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - OLNyRjt52z8= - 1833-290519-4_67: &id220 + zSybRYFDuT8= + 1833-290519-4_67: &id213 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -373,14 +366,7 @@ _adj: - *id001 - !!binary | oF7jOTAtyj8= - 1833-290519-3_103: &id188 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LiF4pP6r1j8= - 1833-290519-4_94: &id242 + 1833-290519-4_94: &id233 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -438,14 +424,14 @@ _adj: - *id001 - !!binary | 1Ef9ZCBywj8= - 1833-290519-3_129: &id208 + 1833-290519-3_74: &id188 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - AIK4dQKO3T8= - 1833-290519-4_77: &id234 + 4JnOj3pdvz8= + 1833-290519-4_77: &id225 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -560,14 +546,14 @@ _adj: - *id001 - !!binary | /XoWHo3qwj8= - 1833-290519-3_103: &id189 + 1833-290519-3_74: &id189 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6JgwDw192T8= - 1833-290519-4_77: &id235 + AYYQQ53atD8= + 1833-290519-4_77: &id226 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -676,14 +662,14 @@ _adj: - *id001 - !!binary | 7uF2Gt77wj8= - 1833-290519-3_103: &id190 + 1833-290519-3_74: &id190 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - FLsDF7TD2T8= - 1833-290519-4_77: &id236 + Q/+4SdobtT8= + 1833-290519-4_77: &id227 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -786,14 +772,14 @@ _adj: - *id001 - !!binary | T12+ZPlExD8= - 1833-290519-3_103: &id191 + 1833-290519-3_74: &id191 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - YHdYDCwC2z8= - 1833-290519-4_77: &id237 + Lj7gUEqgvj8= + 1833-290519-4_77: &id228 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -890,14 +876,14 @@ _adj: - *id001 - !!binary | uxiJFAmfxD8= - 1833-290519-3_103: &id192 + 1833-290519-3_99: &id200 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - QaDO2hFH3D8= - 1833-290519-4_94: &id243 + 1NHbaaVkuz8= + 1833-290519-4_94: &id234 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -988,14 +974,14 @@ _adj: - *id001 - !!binary | vTdjuXIGxj8= - 1833-290519-3_103: &id193 + 1833-290519-3_99: &id201 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - aSPxyzmB0z8= - 1833-290519-4_94: &id244 + 9Nx1Aaowvz8= + 1833-290519-4_94: &id235 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1080,14 +1066,14 @@ _adj: - *id001 - !!binary | 6PDtnFRjyD8= - 1833-290519-3_103: &id194 + 1833-290519-3_99: &id202 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - DMOLO3NG1D8= - 1833-290519-4_94: &id245 + bDxDtyQuvD8= + 1833-290519-4_94: &id236 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1166,14 +1152,14 @@ _adj: - *id001 - !!binary | QyQzFJ4gxj8= - 1833-290519-3_82: &id213 + 1833-290519-3_74: &id192 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - x4SmItsD2z8= - 1833-290519-4_94: &id246 + xDLyifPwxj8= + 1833-290519-4_94: &id237 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1246,14 +1232,14 @@ _adj: - *id001 - !!binary | Q7rouX9Vyz8= - 1833-290519-3_103: &id195 + 1833-290519-3_99: &id203 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - NXI/RKsG0z8= - 1833-290519-4_94: &id247 + itrYcrMLxD8= + 1833-290519-4_94: &id238 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1284,14 +1270,14 @@ _adj: - *id001 - !!binary | IE6Ovgms0D8= - 1833-290519-3_113: &id204 + 1833-290519-3_74: &id193 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - STac+VIA4D8= - 1833-290519-4_75: &id229 + PpQWwvtP1D8= + 1833-290519-4_75: &id221 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1322,14 +1308,7 @@ _adj: - *id001 - !!binary | tMvvlgHo2D8= - 1833-290519-3_82: &id214 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - DCeAGe5Z4D8= - 1833-290519-4_67: &id221 + 1833-290519-4_67: &id214 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1396,14 +1375,14 @@ _adj: - *id001 - !!binary | C+bfr9/myj8= - 1833-290519-3_103: &id196 + 1833-290519-3_99: &id204 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - VvsMIjdF0T8= - 1833-290519-4_94: &id248 + 1jBJj9O9xD8= + 1833-290519-4_94: &id239 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1450,14 +1429,14 @@ _adj: - *id001 - !!binary | AswI1hU3xz8= - 1833-290519-3_103: &id197 + 1833-290519-3_74: &id194 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - tXolc7NL3T8= - 1833-290519-4_67: &id222 + d4uIBcHOxD8= + 1833-290519-4_67: &id215 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1503,14 +1482,14 @@ _adj: - *id001 - !!binary | sb50snlnyT8= - 1833-290519-3_82: &id215 + 1833-290519-3_99: &id205 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - A0f7qsOd0z8= - 1833-290519-4_94: &id249 + oFHAST6Wvz8= + 1833-290519-4_94: &id240 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1565,14 +1544,14 @@ _adj: - *id001 - !!binary | VLEdDZjhyD8= - 1833-290519-3_103: &id198 + 1833-290519-3_99: &id206 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 2ubQ9QIO1D8= - 1833-290519-4_94: &id250 + 3l9jXK22vT8= + 1833-290519-4_94: &id241 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1621,14 +1600,14 @@ _adj: - *id001 - !!binary | bDnoI3gayD8= - 1833-290519-3_103: &id199 + 1833-290519-3_99: &id207 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - j6Bd+0jZ2j8= - 1833-290519-4_67: &id223 + pKn3K5RJyT8= + 1833-290519-4_67: &id216 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1668,14 +1647,14 @@ _adj: - *id001 - !!binary | rM3ojGDuyD8= - 1833-290519-3_103: &id200 + 1833-290519-3_74: &id195 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Hb+6ZZnP2z8= - 1833-290519-4_94: &id251 + 9D+Le+h+zj8= + 1833-290519-4_94: &id242 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1704,14 +1683,14 @@ _adj: - *id001 - !!binary | XFr6bvdeyz8= - 1833-290519-3_82: &id216 + 1833-290519-3_99: &id208 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - XKR0qThz2z8= - 1833-290519-4_67: &id224 + 8YsyC3we0D8= + 1833-290519-4_67: &id217 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1748,14 +1727,14 @@ _adj: - *id001 - !!binary | mKx1eiewxz8= - 1833-290519-3_103: &id201 + 1833-290519-3_99: &id209 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - E4oUDu8L3T8= - 1833-290519-4_67: &id225 + QEx8GN0KxT8= + 1833-290519-4_67: &id218 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1775,14 +1754,14 @@ _adj: - *id001 - !!binary | D29v4/Uqxz8= - 1833-290519-3_103: &id202 + 1833-290519-3_99: &id210 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Fk1yYJjj0j8= - 1833-290519-4_94: &id252 + hYZu8FFmrT8= + 1833-290519-4_94: &id243 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1807,25 +1786,11 @@ _adj: 1833-120619-3_120: *id146 1833-120619-4_65: *id147 1833-200619-2_204: *id148 - 1833-290519-3_113: &id205 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - To4lvwB61z8= 1833-290519-1_136: 1833-010719-1_114: *id149 1833-200619-1_143: *id150 1833-200619-2_203: *id151 - 1833-290519-3_129: &id209 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - jl22Ai1P2D8= - 1833-290519-4_75: &id230 + 1833-290519-4_75: &id222 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1846,7 +1811,7 @@ _adj: - *id001 - !!binary | 3o921T2gwz8= - 1833-290519-4_67: &id226 + 1833-290519-4_67: &id219 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1862,14 +1827,14 @@ _adj: - *id001 - !!binary | wU+vwjs5wD8= - 1833-290519-3_82: &id217 + 1833-290519-3_74: &id196 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Bns5W89e1j8= - 1833-290519-4_77: &id238 + F+ErJcv7pj8= + 1833-290519-4_77: &id229 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1893,14 +1858,14 @@ _adj: 1833-260619-1_98: *id172 1833-260619-3_103: *id173 1833-290519-1_82: *id174 - 1833-290519-3_129: &id210 + 1833-290519-3_74: &id197 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - CXdPcfCd0j8= - 1833-290519-4_77: &id239 + hY9eNvETwD8= + 1833-290519-4_77: &id230 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1911,14 +1876,7 @@ _adj: 1833-010719-1_114: *id175 1833-200619-2_204: *id176 1833-290519-1_116: *id177 - 1833-290519-3_113: &id206 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - MjwCpDm42D8= - 1833-290519-4_75: &id231 + 1833-290519-4_75: &id223 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1932,14 +1890,14 @@ _adj: 1833-260619-3_105: *id181 1833-260619-4_177: *id182 1833-290519-1_74: *id183 - 1833-290519-3_82: &id218 + 1833-290519-3_99: &id211 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rdERFSlz1D8= - 1833-290519-4_67: &id227 + mpeoE51hxD8= + 1833-290519-4_67: &id220 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1950,129 +1908,97 @@ _adj: 1833-010719-2_211: *id184 1833-200619-2_203: *id185 1833-290519-1_106: *id186 - 1833-290519-3_103: &id203 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - u51c9GrF0z8= - 1833-290519-4_94: &id253 + 1833-290519-4_94: &id244 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TOgaNhF9xD8= - 1833-290519-3_103: - 1833-010719-1_114: *id187 - 1833-010719-2_213: *id188 + 1833-290519-3_74: + 1833-010719-1_132: *id187 + 1833-010719-2_217: *id188 1833-050619-2_66: *id189 1833-050619-3_105: *id190 1833-060619-1_139: *id191 - 1833-060619-2_58: *id192 - 1833-120619-2_85: *id193 - 1833-120619-3_120: *id194 - 1833-200619-1_143: *id195 - 1833-200619-2_261: *id196 - 1833-200619-3_53: *id197 - 1833-200619-4_68: *id198 - 1833-260619-1_98: *id199 - 1833-260619-3_103: *id200 - 1833-260619-4_177: *id201 - 1833-290519-1_106: *id202 - 1833-290519-2_98: *id203 - 1833-290519-4_75: &id232 + 1833-120619-4_65: *id192 + 1833-200619-2_203: *id193 + 1833-200619-3_53: *id194 + 1833-260619-3_103: *id195 + 1833-290519-1_82: *id196 + 1833-290519-2_126: *id197 + 1833-290519-4_77: &id231 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - HEsXUla80D8= - 1833-290519-3_113: - 1833-200619-2_203: *id204 - 1833-290519-1_129: *id205 - 1833-290519-2_130: *id206 - 1833-290519-4_94: &id254 + fmAuX/82rj8= + 1833-290519-3_99: + 1833-010719-1_54: *id198 + 1833-010719-2_211: *id199 + 1833-060619-2_58: *id200 + 1833-120619-2_85: *id201 + 1833-120619-3_120: *id202 + 1833-200619-1_143: *id203 + 1833-200619-2_261: *id204 + 1833-200619-3_65: *id205 + 1833-200619-4_68: *id206 + 1833-260619-1_98: *id207 + 1833-260619-3_105: *id208 + 1833-260619-4_177: *id209 + 1833-290519-1_106: *id210 + 1833-290519-2_97: *id211 + 1833-290519-4_94: &id245 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6Nmq8BS/2j8= - 1833-290519-3_129: - 1833-010719-1_132: *id207 - 1833-010719-2_217: *id208 - 1833-290519-1_136: *id209 - 1833-290519-2_126: *id210 - 1833-290519-4_67: &id228 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - tJbAIOF94D8= - 1833-290519-3_82: - 1833-010719-1_54: *id211 - 1833-010719-2_211: *id212 - 1833-120619-4_65: *id213 - 1833-200619-2_204: *id214 - 1833-200619-3_65: *id215 - 1833-260619-3_105: *id216 - 1833-290519-1_82: *id217 - 1833-290519-2_97: *id218 - 1833-290519-4_77: &id240 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8vYtLQx/1z8= + 1BxEAUIstT8= 1833-290519-4_67: - 1833-010719-1_54: *id219 - 1833-010719-2_211: *id220 - 1833-200619-2_204: *id221 - 1833-200619-3_53: *id222 - 1833-260619-1_98: *id223 - 1833-260619-3_105: *id224 - 1833-260619-4_177: *id225 - 1833-290519-1_74: *id226 - 1833-290519-2_97: *id227 - 1833-290519-3_129: *id228 + 1833-010719-1_54: *id212 + 1833-010719-2_211: *id213 + 1833-200619-2_204: *id214 + 1833-200619-3_53: *id215 + 1833-260619-1_98: *id216 + 1833-260619-3_105: *id217 + 1833-260619-4_177: *id218 + 1833-290519-1_74: *id219 + 1833-290519-2_97: *id220 1833-290519-4_75: - 1833-200619-2_203: *id229 - 1833-290519-1_136: *id230 - 1833-290519-2_130: *id231 - 1833-290519-3_103: *id232 + 1833-200619-2_203: *id221 + 1833-290519-1_136: *id222 + 1833-290519-2_130: *id223 1833-290519-4_77: - 1833-010719-1_132: *id233 - 1833-010719-2_217: *id234 - 1833-050619-2_66: *id235 - 1833-050619-3_105: *id236 - 1833-060619-1_139: *id237 - 1833-290519-1_82: *id238 - 1833-290519-2_126: *id239 - 1833-290519-3_82: *id240 + 1833-010719-1_132: *id224 + 1833-010719-2_217: *id225 + 1833-050619-2_66: *id226 + 1833-050619-3_105: *id227 + 1833-060619-1_139: *id228 + 1833-290519-1_82: *id229 + 1833-290519-2_126: *id230 + 1833-290519-3_74: *id231 1833-290519-4_94: - 1833-010719-1_114: *id241 - 1833-010719-2_213: *id242 - 1833-060619-2_58: *id243 - 1833-120619-2_85: *id244 - 1833-120619-3_120: *id245 - 1833-120619-4_65: *id246 - 1833-200619-1_143: *id247 - 1833-200619-2_261: *id248 - 1833-200619-3_65: *id249 - 1833-200619-4_68: *id250 - 1833-260619-3_103: *id251 - 1833-290519-1_106: *id252 - 1833-290519-2_98: *id253 - 1833-290519-3_113: *id254 -_node: &id257 + 1833-010719-1_114: *id232 + 1833-010719-2_213: *id233 + 1833-060619-2_58: *id234 + 1833-120619-2_85: *id235 + 1833-120619-3_120: *id236 + 1833-120619-4_65: *id237 + 1833-200619-1_143: *id238 + 1833-200619-2_261: *id239 + 1833-200619-3_65: *id240 + 1833-200619-4_68: *id241 + 1833-260619-3_103: *id242 + 1833-290519-1_106: *id243 + 1833-290519-2_98: *id244 + 1833-290519-3_99: *id245 +_node: &id248 1833-010719-1_114: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id255 !!python/object/apply:numpy.dtype + - &id246 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -2080,253 +2006,241 @@ _node: &id257 1833-010719-1_132: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | hAAAAAAAAAA= 1833-010719-1_54: action_id: 1833-010719-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | NgAAAAAAAAA= 1833-010719-2_211: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | 0wAAAAAAAAA= 1833-010719-2_213: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | 1QAAAAAAAAA= 1833-010719-2_217: action_id: 1833-010719-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | 2QAAAAAAAAA= 1833-050619-2_66: action_id: 1833-050619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | QgAAAAAAAAA= 1833-050619-3_105: action_id: 1833-050619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | aQAAAAAAAAA= 1833-060619-1_139: action_id: 1833-060619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | iwAAAAAAAAA= 1833-060619-2_58: action_id: 1833-060619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | OgAAAAAAAAA= 1833-120619-2_85: action_id: 1833-120619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | VQAAAAAAAAA= 1833-120619-3_120: action_id: 1833-120619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | eAAAAAAAAAA= 1833-120619-4_65: action_id: 1833-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | QQAAAAAAAAA= 1833-200619-1_143: action_id: 1833-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | jwAAAAAAAAA= 1833-200619-2_203: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | ywAAAAAAAAA= 1833-200619-2_204: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | zAAAAAAAAAA= 1833-200619-2_261: action_id: 1833-200619-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | BQEAAAAAAAA= 1833-200619-3_53: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | NQAAAAAAAAA= 1833-200619-3_65: action_id: 1833-200619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | QQAAAAAAAAA= 1833-200619-4_68: action_id: 1833-200619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | RAAAAAAAAAA= 1833-260619-1_98: action_id: 1833-260619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | YgAAAAAAAAA= 1833-260619-3_103: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | ZwAAAAAAAAA= 1833-260619-3_105: action_id: 1833-260619-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | aQAAAAAAAAA= 1833-260619-4_177: action_id: 1833-260619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | sQAAAAAAAAA= 1833-290519-1_106: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | agAAAAAAAAA= 1833-290519-1_116: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | dAAAAAAAAAA= 1833-290519-1_129: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | gQAAAAAAAAA= 1833-290519-1_136: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | iAAAAAAAAAA= 1833-290519-1_74: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | SgAAAAAAAAA= 1833-290519-1_82: action_id: 1833-290519-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | UgAAAAAAAAA= 1833-290519-2_126: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | fgAAAAAAAAA= 1833-290519-2_130: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | ggAAAAAAAAA= 1833-290519-2_97: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | YQAAAAAAAAA= 1833-290519-2_98: action_id: 1833-290519-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | YgAAAAAAAAA= - 1833-290519-3_103: + 1833-290519-3_74: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | - ZwAAAAAAAAA= - 1833-290519-3_113: + SgAAAAAAAAA= + 1833-290519-3_99: action_id: 1833-290519-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | - cQAAAAAAAAA= - 1833-290519-3_129: - action_id: 1833-290519-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 - - !!binary | - gQAAAAAAAAA= - 1833-290519-3_82: - action_id: 1833-290519-3 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 - - !!binary | - UgAAAAAAAAA= + YwAAAAAAAAA= 1833-290519-4_67: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | QwAAAAAAAAA= 1833-290519-4_75: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | SwAAAAAAAAA= 1833-290519-4_77: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | TQAAAAAAAAA= 1833-290519-4_94: action_id: 1833-290519-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id255 + - *id246 - !!binary | XgAAAAAAAAA= -adjlist_inner_dict_factory: &id256 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id256 -edge_attr_dict_factory: *id256 +adjlist_inner_dict_factory: &id247 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id247 +edge_attr_dict_factory: *id247 graph: {} -node_dict_factory: *id256 +node_dict_factory: *id247 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id257 + _nodes: *id248 diff --git a/actions/identify-neurons/data/1833-units.csv b/actions/identify-neurons/data/1833-units.csv index cc9d35b68..4f5741288 100644 --- a/actions/identify-neurons/data/1833-units.csv +++ b/actions/identify-neurons/data/1833-units.csv @@ -1,514 +1,506 @@ action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name -1833-020719-4,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,302 -1833-020719-1,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,123 -1833-010719-1,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,127 -1833-020719-3,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,143 -1833-260619-1,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,120 -1833-010719-1,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,161 -1833-010719-2,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,239 -1833-260619-3,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,196 -1833-260619-4,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,202 -1833-010719-1,0,100,0.05,7e1588d9-1a79-4ed2-8b53-067d2720aaaa,191 -1833-010719-2,0,100,0.05,fec1202b-1434-48c9-b3a1-adb167ea6410,261 -1833-010719-1,0,100,0.05,fec1202b-1434-48c9-b3a1-adb167ea6410,223 -1833-010719-1,0,100,0.05,8c326156-1f80-4195-82a1-b401c2db5ad6,225 -1833-010719-2,0,100,0.05,8c326156-1f80-4195-82a1-b401c2db5ad6,267 -1833-010719-2,0,100,0.05,02d0ee49-9dc0-439e-9a1e-0fc77ff0dfc0,4 -1833-010719-1,0,100,0.05,02d0ee49-9dc0-439e-9a1e-0fc77ff0dfc0,235 -1833-010719-2,0,100,0.05,4ae30aee-ff04-4884-b1d4-4e48cc0880ce,254 -1833-010719-2,0,100,0.05,689fed74-131b-4886-a5f3-37dd15752d14,265 -1833-020719-1,0,100,0.05,202551c8-3fcc-452f-983d-b70565a7b775,119 -1833-020719-1,0,100,0.05,4d299216-6ff1-4aad-9a6f-3fff3445a726,121 -1833-020719-3,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,156 -1833-020719-2,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,142 -1833-020719-4,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,308 -1833-020719-1,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,145 -1833-020719-2,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,8 -1833-020719-3,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,162 -1833-020719-1,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,158 -1833-020719-4,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,320 -1833-020719-2,0,100,0.05,07b04948-20e9-4795-aec3-0337458fc7e6,105 -1833-020719-2,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,129 -1833-020719-4,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,306 -1833-020719-3,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,141 -1833-020719-3,0,100,0.05,369a3fff-a276-46d3-b03e-8da0e884418c,116 -1833-020719-2,0,100,0.05,369a3fff-a276-46d3-b03e-8da0e884418c,95 -1833-020719-3,0,100,0.05,eb8328bd-6c97-4c68-9e68-9aadd76a4ce0,104 -1833-020719-3,0,100,0.05,bcc59a37-9843-4014-8565-9b6e5f9ec8f9,105 -1833-020719-3,0,100,0.05,4c126cc1-e670-448d-a9ab-4959a01eb941,112 -1833-020719-3,0,100,0.05,ce50f334-97f7-456d-a99c-fad237eeb945,150 -1833-020719-4,0,100,0.05,674a447f-91e7-4283-b54a-6d0ed998cb76,258 -1833-060619-2,0,100,0.05,59986384-12a6-4559-b70f-e62c97ca6ff2,76 -1833-060619-2,0,100,0.05,97701855-c0cb-41ab-98c4-ccade07950ad,90 -1833-120619-1,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,139 -1833-120619-3,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,153 -1833-120619-2,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,175 -1833-120619-2,0,100,0.05,0c9928cc-c3e9-4e22-9654-6624fe221b4c,89 -1833-200619-1,0,100,0.05,82886983-4c61-4e36-80d2-f856dc5eb4e7,147 -1833-200619-2,0,100,0.05,018b9d2d-f76f-4804-ab2c-825f67d098a8,268 -1833-200619-3,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,0 -1833-200619-2,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,283 -1833-200619-4,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,1 -1833-200619-4,0,100,0.05,53953323-230e-470b-b76c-127344489492,90 -1833-200619-3,0,100,0.05,53953323-230e-470b-b76c-127344489492,91 -1833-200619-4,0,100,0.05,460e1206-848b-43b2-b7c5-850a13e43a89,92 -1833-200619-3,0,100,0.05,460e1206-848b-43b2-b7c5-850a13e43a89,93 -1833-200619-4,0,100,0.05,dd2e5d79-ee67-44e4-b3ec-a5d35e308c41,78 -1833-200619-4,0,100,0.05,6c5ba75a-5e66-4992-83f5-6ca382044292,96 -1833-260619-3,0,100,0.05,75abbf10-2eca-425c-93b4-bf01951b3fab,182 -1833-260619-1,0,100,0.05,75abbf10-2eca-425c-93b4-bf01951b3fab,118 -1833-260619-4,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,115 -1833-260619-3,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,141 -1833-260619-1,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,130 -1833-260619-2,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,174 -1833-260619-1,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,132 -1833-260619-4,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,233 -1833-260619-3,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,209 -1833-260619-2,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,2 -1833-260619-1,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,2 -1833-260619-4,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,235 -1833-260619-3,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,1 -1833-260619-4,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,208 -1833-260619-2,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,152 -1833-260619-3,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,180 -1833-260619-3,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,194 -1833-260619-2,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,164 -1833-260619-4,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,222 -1833-260619-3,0,100,0.05,4309c130-a353-4e38-beba-4d9350678e07,0 -1833-260619-3,0,100,0.05,61101fef-2583-4c30-8157-dbfc83a9611b,140 -1833-290519-1,0,100,0.05,e04fcb6f-004a-4e3a-8793-18e48a595cba,112 -1833-290519-1,0,100,0.05,d6360ea3-c460-4cfd-95ed-03489c5bbdda,120 -1833-290519-1,0,100,0.05,846d339e-b666-4fbc-af86-6727f45e500b,146 -1833-290519-2,0,100,0.05,b3216c92-197d-4642-be0e-bb28fdab0907,78 -1833-290519-2,0,100,0.05,82d976f8-1ffa-461b-b69a-b32a5b9ba894,82 -1833-290519-3,0,100,0.05,55ab237c-d434-4d10-98f5-9ebefa56639e,107 -1833-290519-3,0,100,0.05,c1d06f73-d01e-4088-b710-16c61711194f,137 -1833-290519-4,0,100,0.05,16689d25-454f-4bb8-ba02-a784b11996db,117 -1833-290519-4,0,100,0.05,1094cdee-8aa1-4043-8535-0514b66b9617,88 -1833-260619-2,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,123 -1833-260619-1,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,104 -1833-010719-1,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,146 -1833-010719-1,1,100,0.05,f17b2419-e7b8-484a-9a3f-0235b0f56e84,219 -1833-010719-1,1,100,0.05,23d99789-c3bd-4061-b3e9-400fa934c297,221 -1833-010719-1,1,100,0.05,020f3eb7-9cd9-476a-b402-dccdd5c85313,229 -1833-010719-2,1,100,0.05,020f3eb7-9cd9-476a-b402-dccdd5c85313,273 -1833-010719-1,1,100,0.05,288a1eb2-b910-4741-973f-b7eb943d578c,6 -1833-010719-1,1,100,0.05,e3b0028a-00aa-4651-b9be-d39f7220e756,8 -1833-020719-2,1,100,0.05,d210e396-aebb-495f-8060-d0a3b586541c,131 -1833-010719-2,1,100,0.05,d210e396-aebb-495f-8060-d0a3b586541c,135 -1833-200619-3,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,97 -1833-200619-4,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,76 -1833-200619-1,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,159 -1833-010719-2,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,18 -1833-020719-2,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,15 -1833-020719-2,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,14 -1833-010719-2,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,227 -1833-020719-3,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,123 -1833-010719-2,1,100,0.05,fe8aafe3-b466-40a0-9c83-a710844a4812,229 -1833-010719-2,1,100,0.05,0098c6a1-ff90-40cb-9548-df7201ebb0c6,233 -1833-010719-2,1,100,0.05,10b2d316-2498-4dfe-9bfe-5a31ad425dde,269 -1833-020719-1,1,100,0.05,4cd53be4-0731-4da7-87aa-838c831a166b,115 -1833-020719-3,1,100,0.05,97507bc1-b15b-4d54-a874-f63dc47ba240,154 -1833-020719-1,1,100,0.05,97507bc1-b15b-4d54-a874-f63dc47ba240,147 -1833-020719-3,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,166 -1833-020719-1,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,155 -1833-020719-2,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,87 -1833-020719-2,1,100,0.05,549df16a-fe87-41de-9a70-4b08fe799efd,152 -1833-020719-3,1,100,0.05,b222d608-82c0-4b57-ae73-9d5ed6dd21b4,139 -1833-020719-4,1,100,0.05,bbaea364-eb5b-40b4-b202-a0d4f264c205,256 -1833-020719-4,1,100,0.05,0e48da29-eac7-4941-9268-44e096a63d1c,278 -1833-020719-4,1,100,0.05,b4ee613f-7453-4f2d-ada8-81ae84a206b0,300 -1833-050619-1,1,100,0.05,fa14536b-2b32-4007-93e7-64f5f4fc32de,75 -1833-050619-2,1,100,0.05,b2252178-0f9e-47ab-b401-4b28ef78ee60,129 -1833-050619-3,1,100,0.05,b2252178-0f9e-47ab-b401-4b28ef78ee60,125 -1833-050619-4,1,100,0.05,4bc21424-b8fd-4e08-82f6-effa388cda03,68 -1833-050619-4,1,100,0.05,d150807a-e271-4ec7-9115-b43526bbe93b,84 -1833-050619-4,1,100,0.05,ed0fdcbe-7aa9-4a79-840d-67eca618c1aa,86 -1833-060619-1,1,100,0.05,c48dd287-ffc9-4ab6-8f6f-f081837cf784,137 -1833-060619-2,1,100,0.05,90c2de30-5695-4a91-b403-af76f2cdf61b,64 -1833-060619-2,1,100,0.05,1038a388-166d-422a-8c65-1ac1e6d9ad54,78 -1833-120619-1,1,100,0.05,6de199c5-36fb-411c-825a-8d1871a5c737,114 -1833-120619-2,1,100,0.05,5d01e49b-9ae7-45f5-9287-18ab13cd6136,104 -1833-200619-1,1,100,0.05,19a1525b-c2bf-49a8-8fb8-dbc76f93e02d,155 -1833-200619-2,1,100,0.05,498eef1b-8a69-490c-8685-b9d84bec1e05,278 -1833-200619-4,1,100,0.05,3cba268e-7bee-4ffc-831c-7f060b8abd3d,70 -1833-200619-3,1,100,0.05,3cba268e-7bee-4ffc-831c-7f060b8abd3d,89 -1833-260619-1,1,100,0.05,d5c0812a-92a3-4ef0-a9fa-66b40acb5dc5,10 -1833-260619-1,1,100,0.05,1f18345d-c22a-4e69-8412-895f8dc184e1,116 -1833-260619-1,1,100,0.05,1d244994-074c-49ad-a789-2c86feb6ed74,126 -1833-260619-2,1,100,0.05,1d244994-074c-49ad-a789-2c86feb6ed74,166 -1833-260619-2,1,100,0.05,eb701b37-e917-4d0f-9469-ee01b46d623e,130 -1833-260619-3,1,100,0.05,f29743b1-4d3e-4a17-8e11-3a2b9087662b,119 -1833-260619-4,1,100,0.05,ca960139-81eb-4c8c-b93a-55103ba52728,198 -1833-260619-3,1,100,0.05,ca960139-81eb-4c8c-b93a-55103ba52728,170 -1833-260619-3,1,100,0.05,e9e7a50d-3eb3-4e78-a5c1-5c04995f69a9,207 -1833-260619-4,1,100,0.05,234fcaba-1510-4c14-b5bb-114318ac6e83,178 -1833-260619-4,1,100,0.05,f1a20652-80aa-4984-a052-7102dd162994,204 -1833-260619-4,1,100,0.05,eea49e8a-8c74-49f1-9c90-5d0e353ac3da,226 -1833-290519-1,1,100,0.05,191b3d9d-611a-4a90-bd37-246adbd13fb5,138 -1833-290519-1,1,100,0.05,a84af5e8-cec8-4d8a-acef-27ee8a03c53f,92 -1833-290519-2,1,100,0.05,3009f1b5-041b-4676-95c2-4ffabb182ab1,102 -1833-290519-2,1,100,0.05,7d79acf2-1dc2-4390-a035-3c0bcdc8d7a9,104 -1833-290519-2,1,100,0.05,6dc5b1be-f79b-495c-90ed-7b6e89681ae5,116 -1833-290519-2,1,100,0.05,1d8987a6-7610-4c00-9bb0-81a3cc8fd9b7,120 -1833-290519-3,1,100,0.05,89f364f3-f5c5-4051-856b-1022b6ccc407,119 -1833-290519-3,1,100,0.05,5aa5469d-f80b-43df-a63e-632e39c9164f,72 -1833-290519-4,1,100,0.05,9d2e0623-35c2-419e-af51-93cf20a52ead,85 -1833-290519-4,1,100,0.05,0bb3d6b8-64f2-49bd-bf6c-b107666d92ef,96 -1833-010719-1,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,202 -1833-020719-1,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,143 -1833-010719-2,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,249 -1833-010719-2,2,100,0.05,fe8950da-16eb-4810-97dc-3e103708d8bd,29 -1833-010719-1,2,100,0.05,fe8950da-16eb-4810-97dc-3e103708d8bd,231 -1833-010719-2,2,100,0.05,277503b6-e87a-4dd2-80cd-536a65cbc59a,271 -1833-020719-1,2,100,0.05,40e5d65a-3b34-4a85-80b1-8ab409bf659f,149 -1833-020719-2,2,100,0.05,d28a01dd-3d09-4482-90c0-0a46c727a30b,119 -1833-020719-2,2,100,0.05,cb36a2aa-c8a3-4d74-9248-7af22fe9e2af,120 -1833-020719-2,2,100,0.05,60146bd8-44fe-4704-8a3a-b4314b2d11e4,93 -1833-020719-3,2,100,0.05,5f8eeed0-7967-4b9d-882c-76807a0eecd2,147 -1833-020719-3,2,100,0.05,bee1eff1-59a4-49f9-b4b3-5c0d04c838d5,168 -1833-020719-4,2,100,0.05,a4861b4d-8f8d-408a-a626-c2388be50d62,260 -1833-060619-1,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,168 -1833-050619-1,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,99 -1833-050619-2,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,135 -1833-060619-2,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,106 -1833-050619-3,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,133 -1833-050619-2,2,100,0.05,0ad3c1a0-cb9c-4dcd-9715-598e6e4ac3f9,111 -1833-050619-3,2,100,0.05,633e1f45-88f2-48a8-a79d-44d25712ac41,111 -1833-050619-2,2,100,0.05,633e1f45-88f2-48a8-a79d-44d25712ac41,89 -1833-120619-3,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,104 -1833-120619-1,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,120 -1833-120619-2,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,142 -1833-120619-2,2,100,0.05,1f0800f6-0353-445b-a594-1a071ea0c8d5,118 -1833-200619-4,2,100,0.05,a954bf7f-0d42-47c2-907f-7faa6e4bfde5,115 -1833-200619-1,2,100,0.05,a954bf7f-0d42-47c2-907f-7faa6e4bfde5,228 -1833-200619-3,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,142 -1833-200619-1,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,239 -1833-200619-4,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,117 -1833-200619-2,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,325 -1833-260619-1,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,128 -1833-260619-4,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,216 -1833-260619-2,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,168 -1833-260619-3,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,198 -1833-260619-2,2,100,0.05,c06363fb-12f8-47d6-8a89-ef4821bd7f8c,148 -1833-290519-2,2,100,0.05,8cd50dd4-efb3-4f2c-910d-94594a1dfd17,100 -1833-290519-2,2,100,0.05,4d525d3d-ed38-4c46-90ec-d0833b6f46a7,112 -1833-290519-2,2,100,0.05,8477d63c-5861-4087-8724-02fd49219829,132 -1833-010719-1,3,100,0.05,453c4f77-cce3-477c-8537-78e4b361d1a1,171 -1833-010719-1,3,100,0.05,58bf4f43-955d-4084-98e4-49d2cf63bcb1,198 -1833-020719-1,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,151 -1833-010719-1,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,216 -1833-020719-2,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,136 -1833-010719-2,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,243 -1833-020719-3,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,17 -1833-010719-2,3,100,0.05,072e4f5b-2df4-4414-a409-f592f25a7a43,133 -1833-010719-1,3,100,0.05,072e4f5b-2df4-4414-a409-f592f25a7a43,240 -1833-010719-2,3,100,0.05,9aaf9893-5849-421c-9014-187b6f4ade94,157 -1833-010719-2,3,100,0.05,66f45b2c-5020-4d83-8fcb-0afed316c574,173 -1833-010719-2,3,100,0.05,e80f3819-5049-4986-bbed-a9e0ed42e5de,174 -1833-010719-2,3,100,0.05,268c7a27-f7f9-40c2-a2da-e7d4ce28ded0,187 -1833-010719-2,3,100,0.05,86410a4b-5196-4cc0-8672-17e2e8f100b5,188 -1833-010719-2,3,100,0.05,c08ccbbe-e52f-4166-9cfa-df5e587735ed,241 -1833-010719-2,3,100,0.05,19a93460-8f00-4af8-b993-a47e6fa9b97d,259 -1833-020719-1,3,100,0.05,91673fec-cd7a-492d-9124-6cf9a8ca9128,135 -1833-020719-2,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,140 -1833-020719-1,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,140 -1833-020719-3,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,23 -1833-020719-1,3,100,0.05,29aa8dbf-2bd8-4691-97f3-df202c52a96d,153 -1833-020719-3,3,100,0.05,29aa8dbf-2bd8-4691-97f3-df202c52a96d,164 -1833-020719-1,3,100,0.05,56e178b7-f788-4c06-b625-af7a1ceec5c3,164 -1833-020719-3,3,100,0.05,56e178b7-f788-4c06-b625-af7a1ceec5c3,170 -1833-020719-2,3,100,0.05,1d2c7ebd-3d48-489f-aba7-f4dfd44edb4e,107 -1833-020719-2,3,100,0.05,c296df8e-e7cd-4e56-9484-34abbbb957b2,139 -1833-020719-2,3,100,0.05,9d06cb6f-baf1-4420-87c5-949e06f4f822,146 -1833-020719-3,3,100,0.05,d75eeafe-b067-4bc9-a4c9-74a11bb1466f,152 -1833-020719-4,3,100,0.05,4a75a257-1f81-421c-a4a9-c4121b559c34,289 -1833-020719-4,3,100,0.05,d0bb4f6b-bc6b-485d-88cf-afa1fb7f28fb,290 -1833-020719-4,3,100,0.05,3e90e233-d807-4a2b-8338-dd8a9b1a5376,298 -1833-020719-4,3,100,0.05,9fcb03a0-c55f-4319-8f97-a51c1bfd4c2d,318 -1833-050619-1,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,107 -1833-050619-2,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,143 -1833-050619-3,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,147 -1833-050619-4,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,148 -1833-060619-1,3,100,0.05,cf77fc85-610c-407b-8773-58e63c7fbf23,174 -1833-120619-2,3,100,0.05,2385a66c-be2e-443a-aad7-8c7b0f41f6be,143 -1833-120619-2,3,100,0.05,e0226db9-04e3-4b45-b5f8-8fac79b1cafa,69 -1833-200619-1,3,100,0.05,939b507b-6464-4fd7-a8d1-41297a26c4e7,151 -1833-200619-3,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,128 -1833-200619-1,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,184 -1833-200619-4,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,102 -1833-200619-2,3,100,0.05,24dc1793-ffdc-4198-ba73-ab1665ceefd9,257 -1833-200619-2,3,100,0.05,8de86bad-f183-44f6-9d04-44e93472df4c,264 -1833-200619-4,3,100,0.05,0e24b310-e0f7-431a-b4b1-ece804b0228f,74 -1833-200619-3,3,100,0.05,0e24b310-e0f7-431a-b4b1-ece804b0228f,82 -1833-260619-1,3,100,0.05,db78137d-99cf-48a6-baf9-9252426a3db8,114 -1833-260619-2,3,100,0.05,db78137d-99cf-48a6-baf9-9252426a3db8,146 -1833-260619-3,3,100,0.05,80d08bcc-be1f-484d-86d7-3af87cef5d0f,160 -1833-260619-4,3,100,0.05,7723d3af-a375-42b0-9d19-3c22107785e0,206 -1833-260619-3,3,100,0.05,7723d3af-a375-42b0-9d19-3c22107785e0,176 -1833-260619-4,3,100,0.05,e1aa87ab-1e5c-43b7-83c2-1d4fc57bd082,196 -1833-290519-1,3,100,0.05,5f647e04-cb09-4ff5-9328-ec5602b2303c,101 -1833-290519-1,3,100,0.05,81aa445a-3d2f-46ce-9e7b-6be0b260a1d0,102 -1833-290519-4,3,100,0.05,81aa445a-3d2f-46ce-9e7b-6be0b260a1d0,92 -1833-290519-1,3,100,0.05,67e49adb-e93d-42f9-a5f1-bcf9e27aced5,162 -1833-290519-4,3,100,0.05,36fb06f7-aca0-45c1-b674-14ddddc7069f,130 -1833-290519-1,3,100,0.05,36fb06f7-aca0-45c1-b674-14ddddc7069f,176 -1833-290519-2,3,100,0.05,7d3e0f3f-bd1f-4d65-9f8e-482d5ed961c9,108 -1833-290519-2,3,100,0.05,b2466e1a-e64d-40e7-a170-218093a0397e,72 -1833-290519-2,3,100,0.05,e1c6111b-1869-4ff5-8ef2-aea5f6f67d01,74 -1833-290519-3,3,100,0.05,26a21d49-d7b4-443e-9c32-ced22bc64042,102 -1833-290519-3,3,100,0.05,d4612cb4-0882-4dbd-bc19-b86322c59082,153 -1833-290519-3,3,100,0.05,43c4c6e8-153c-4276-8a63-5f7d29cf9ee8,68 -1833-290519-3,3,100,0.05,cbec3a74-927e-48a8-adaa-e51f89b4fd08,99 -1833-290519-4,3,100,0.05,b61b8b0d-e8d7-4923-925d-71f9d7abf9ce,129 -1833-010719-2,4,100,0.05,7425d62e-bab4-4d04-a3a0-cead89764b12,223 -1833-010719-2,4,100,0.05,98732e86-3445-43d9-a50e-78340d22dec1,231 -1833-020719-3,4,100,0.05,df8a86ea-ac4f-49d4-b421-9f536b722f07,45 -1833-020719-3,4,100,0.05,0987b826-6d91-4a05-98f9-484f5e51826b,94 -1833-020719-3,4,100,0.05,7c214d30-6511-4943-8ea0-b97c649d1e2e,95 -1833-020719-4,4,100,0.05,37857f27-7998-4cfe-8e25-fa5d534e3dc8,250 -1833-050619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,25 -1833-050619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,137 -1833-050619-3,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,145 -1833-050619-4,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,151 -1833-060619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,172 -1833-120619-4,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,119 -1833-060619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,108 -1833-120619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,137 -1833-120619-3,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,147 -1833-120619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,170 -1833-050619-2,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,97 -1833-050619-3,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,123 -1833-050619-4,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,80 -1833-060619-1,4,100,0.05,109d6ed6-4405-4323-926f-62effd49df67,144 -1833-120619-2,4,100,0.05,1acaab2a-d0d0-45e0-a89c-da4634b4d09f,81 -1833-120619-3,4,100,0.05,84a5cec3-cd43-4600-a2eb-f55b2b4992b1,100 -1833-120619-3,4,100,0.05,67655ae0-e1a2-4e1d-ad33-3d223ab1d129,101 -1833-200619-1,4,100,0.05,881bb6ab-97fd-4d7f-928c-19b650988ec1,165 -1833-200619-2,4,100,0.05,8bb6b506-f0a7-4397-a9a9-91a667a55b6c,254 -1833-200619-3,4,100,0.05,0191e631-4293-4bec-9756-2a9b24052717,113 -1833-200619-4,4,100,0.05,47a87161-3ebc-4f4b-b73f-241b9cfdb9d4,124 -1833-290519-1,4,100,0.05,bbfad854-6959-4860-858d-f6bd256a069e,118 -1833-290519-1,4,100,0.05,68c780fd-1dc3-4b22-a0bb-66b882fb8933,80 -1833-290519-2,4,100,0.05,3a635e40-482a-475f-936f-99ba9f5fa787,114 -1833-290519-2,4,100,0.05,61095d50-52a2-46a3-9819-8f6596af71c5,122 -1833-290519-2,4,100,0.05,c35b9ee0-78ce-4b24-9fb2-1085fda8e422,124 -1833-290519-3,4,100,0.05,68283812-8cd3-4b52-9d62-63878e27cf3d,135 -1833-290519-3,4,100,0.05,a7140f1e-6d13-4757-bc0e-e7e1df634a88,145 -1833-290519-3,4,100,0.05,fa10acbf-1cb3-4590-bd8f-7abb782ad5df,76 -1833-290519-4,4,100,0.05,bd7de171-9f6d-4267-8d01-7691fefa2d36,71 -1833-010719-1,5,100,0.05,41b1434f-a3e3-45f5-a2c3-9044479e6a80,134 -1833-010719-1,5,100,0.05,755fb028-82f6-4264-847c-5508653873d8,144 -1833-010719-1,5,100,0.05,be674bb8-6374-4d5c-a10d-4ce6fa2fc031,150 -1833-260619-4,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,212 -1833-260619-2,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,154 -1833-010719-2,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,235 -1833-010719-1,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,166 -1833-260619-1,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,110 -1833-260619-3,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,184 -1833-010719-2,5,100,0.05,e4f2b711-e694-46c8-8a85-73f871046d2d,221 -1833-020719-1,5,100,0.05,7ad05a2f-fd4f-4cfd-bce4-69a50db190a0,109 -1833-020719-2,5,100,0.05,a5ef9291-41c2-449f-aab4-3af00c573726,103 -1833-020719-2,5,100,0.05,18b062a6-70a3-4d83-b208-470247ff0a0a,126 -1833-020719-3,5,100,0.05,3ede0ba0-45c2-43b5-b729-a8fd59966686,117 -1833-020719-3,5,100,0.05,7b237f5a-cea9-47b0-bc5d-b25d829cf355,121 -1833-020719-4,5,100,0.05,7b237f5a-cea9-47b0-bc5d-b25d829cf355,266 -1833-020719-3,5,100,0.05,5c74c150-9611-41f9-a960-c4e93038faa3,135 -1833-020719-4,5,100,0.05,5c74c150-9611-41f9-a960-c4e93038faa3,294 -1833-200619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,270 -1833-290519-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,115 -1833-050619-1,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,73 -1833-120619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,136 -1833-050619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,123 -1833-050619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,127 -1833-050619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,82 -1833-200619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,122 -1833-060619-1,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,156 -1833-120619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,122 -1833-120619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,145 -1833-200619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,94 -1833-050619-4,5,100,0.05,8e750e81-5a90-409e-a646-dd1c815bffbb,79 -1833-060619-2,5,100,0.05,8e750e81-5a90-409e-a646-dd1c815bffbb,68 -1833-060619-1,5,100,0.05,d2f1b62a-2251-4ac2-80d4-95221c63e793,164 -1833-060619-2,5,100,0.05,54a030ed-cfed-41a4-9e5e-fe6d7ebfe5c2,98 -1833-120619-1,5,100,0.05,417e44ce-183a-4a4a-a081-6cc8b73bbd55,133 -1833-120619-2,5,100,0.05,d87389d5-f8d7-472c-8121-527e195930df,100 -1833-120619-2,5,100,0.05,6d4aa130-9258-4a71-a718-a9d77cfbfe49,123 -1833-120619-2,5,100,0.05,c57ce315-12e2-4e26-94e6-a6fc015ddb0f,133 -1833-200619-3,5,100,0.05,791b5b20-41c7-471e-881b-2293fab54e40,59 -1833-260619-1,5,100,0.05,0319b8ce-8b28-44ec-b90a-d5de9736d50b,100 -1833-260619-2,5,100,0.05,2948d4ad-337d-4b20-99b4-71c690bd483d,115 -1833-260619-3,5,100,0.05,2948d4ad-337d-4b20-99b4-71c690bd483d,111 -1833-260619-3,5,100,0.05,16289c5d-e679-43bb-8f20-b15bf6185391,109 -1833-260619-3,5,100,0.05,626a18ce-5a2a-4a8d-b129-904004595b7d,113 -1833-260619-4,5,100,0.05,b2a58b32-3717-4741-a24f-bc5e921f29a8,162 -1833-260619-4,5,100,0.05,fb2ae576-39bf-4fd6-9512-87ed0b0949da,188 -1833-290519-1,5,100,0.05,cf56171b-496c-4aae-8340-26adfcc8e0fe,134 -1833-290519-1,5,100,0.05,9c770226-006d-414c-b04d-e743df77c5e8,158 -1833-290519-1,5,100,0.05,3a3bd569-b249-446b-91c2-07993a1fc4de,172 -1833-290519-1,5,100,0.05,f0b2aa01-32d6-4830-872d-4e2578b0171e,94 -1833-290519-2,5,100,0.05,db0a4b07-759b-4e0f-bf2d-03353582f748,80 -1833-290519-3,5,100,0.05,5502f0db-4eea-4ef2-a934-808123e162e5,109 -1833-290519-3,5,100,0.05,ba65c205-b59d-42ad-826f-04aba95abc0f,117 -1833-290519-3,5,100,0.05,346f7d40-a879-44c5-b786-c67d7bed4694,139 -1833-290519-3,5,100,0.05,2de58598-a677-407f-aa09-5179fde482b7,143 -1833-290519-4,5,100,0.05,c0dff757-d66c-4c96-8b61-ab79eb569d6a,121 -1833-290519-4,5,100,0.05,8d762aa9-1ade-4255-a288-84225eacaab2,98 -1833-010719-1,6,100,0.05,f76a581e-8c2b-4314-9456-67579f4f7fd1,152 -1833-010719-1,6,100,0.05,a55723a7-2775-4001-941e-430855dece20,183 -1833-010719-1,6,100,0.05,730e466e-e879-4db3-9fda-5b227248c873,200 -1833-010719-1,6,100,0.05,5f56e3f9-f08e-4065-87ce-f6ff82b66eea,227 -1833-010719-2,6,100,0.05,c0e5171c-e874-482a-8b7b-34451d1093e4,225 -1833-020719-1,6,100,0.05,4161c5eb-2cb2-40e3-8c61-29a33f708789,107 -1833-020719-2,6,100,0.05,82b5bfef-1991-40d2-89dc-ca9ae378ce84,99 -1833-020719-3,6,100,0.05,69809b0c-ff29-4b0d-a861-3fa6cdbf2b02,63 -1833-020719-3,6,100,0.05,78595052-c80e-4686-a83a-4e8a4d0a696b,64 -1833-020719-4,6,100,0.05,1cfaaf89-1845-4f7b-ba77-6591a2711ca9,254 -1833-020719-3,6,100,0.05,1cfaaf89-1845-4f7b-ba77-6591a2711ca9,96 -1833-020719-4,6,100,0.05,6a5978cf-669c-4b46-a875-da7c23dc19db,248 -1833-020719-4,6,100,0.05,a52a0cac-1560-4fb0-bc9e-8a88f315954b,310 -1833-050619-4,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,157 -1833-050619-1,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,111 -1833-050619-3,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,149 -1833-060619-1,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,176 -1833-050619-2,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,152 -1833-060619-2,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,112 -1833-050619-4,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,133 -1833-050619-1,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,60 -1833-260619-1,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,106 -1833-050619-3,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,117 -1833-050619-2,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,119 -1833-120619-3,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,118 -1833-060619-1,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,162 -1833-290519-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,108 -1833-050619-2,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,125 -1833-050619-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,92 -1833-060619-2,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,82 -1833-050619-1,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,64 -1833-120619-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,80 -1833-050619-3,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,129 -1833-060619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,170 -1833-060619-2,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,105 -1833-050619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,91 -1833-120619-2,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,151 -1833-120619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,129 -1833-050619-4,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,135 -1833-120619-4,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,127 -1833-050619-2,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,146 -1833-120619-3,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,94 -1833-050619-3,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,143 -1833-050619-2,6,100,0.05,42631620-f795-462c-addb-a6475a5b111c,74 -1833-050619-2,6,100,0.05,711a946f-69b3-47c5-82f4-f11cfd2d22ef,81 -1833-050619-3,6,100,0.05,00780e53-a0bf-4923-8fcc-7393dde0a2a8,109 -1833-050619-4,6,100,0.05,b0c2059e-dadd-4726-8fe1-d60b15456f97,117 -1833-060619-1,6,100,0.05,98445d76-55d4-4334-a354-d127b190cc23,158 -1833-120619-4,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,120 -1833-060619-1,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,160 -1833-120619-3,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,143 -1833-200619-3,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,126 -1833-060619-2,6,100,0.05,05fd1acb-78bb-4398-9611-ec4753de6719,116 -1833-060619-2,6,100,0.05,aaff5be0-15cd-4fad-bbde-627ed1803de2,74 -1833-260619-2,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,160 -1833-120619-1,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,127 -1833-260619-1,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,124 -1833-260619-3,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,192 -1833-120619-3,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,141 -1833-200619-3,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,132 -1833-120619-2,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,169 -1833-200619-2,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,287 -1833-120619-3,6,100,0.05,9a5865f3-b57a-4af5-a3b2-5f695378542d,122 -1833-120619-3,6,100,0.05,fe5bda32-a4df-4a42-b7e9-eee85f9ee727,145 -1833-120619-4,6,100,0.05,18140d38-b9a5-4841-9f5a-ffe3f374fd5b,124 -1833-120619-4,6,100,0.05,7b76ab64-6441-436e-9b31-a266818e8cf9,85 -1833-120619-4,6,100,0.05,b248e3eb-23e2-4e21-8bd9-ddcbce4ca1b2,95 -1833-200619-3,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,120 -1833-260619-3,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,168 -1833-200619-1,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,163 -1833-200619-1,6,100,0.05,ba1187ef-dedb-4791-8716-a8f7befb6fd3,171 -1833-200619-1,6,100,0.05,67a4c883-8ed0-4207-8bf1-9846151486db,206 -1833-200619-1,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,240 -1833-200619-4,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,121 -1833-200619-2,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,327 -1833-200619-3,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,150 -1833-200619-2,6,100,0.05,010880bf-8f2f-4440-819d-f69a7aec1e8e,28 -1833-200619-2,6,100,0.05,7435f4c7-2f39-461c-bf55-881400546594,281 -1833-200619-2,6,100,0.05,1fbb1aab-3b27-49b7-b40c-5fc6f86e553d,308 -1833-200619-2,6,100,0.05,50c6122d-e7e1-4637-999b-2fb0654304d9,321 -1833-200619-3,6,100,0.05,e831cf28-05f9-4176-a427-f8803f497ad4,75 -1833-200619-4,6,100,0.05,403c2d3c-3dae-4af2-b36d-83cf8b91c0fb,101 -1833-200619-4,6,100,0.05,d5e9dda8-c5eb-448d-933c-b9ce23dd5902,109 -1833-200619-4,6,100,0.05,de4e5e22-d1d6-4a4d-8fec-ef3219c5d5fc,80 -1833-200619-4,6,100,0.05,c46da61e-5eb8-46dd-b399-cb27e195ec35,89 -1833-260619-4,6,100,0.05,b4ce78b7-d09c-4b35-86ba-c258a7fd6cf4,182 -1833-260619-1,6,100,0.05,b4ce78b7-d09c-4b35-86ba-c258a7fd6cf4,102 -1833-260619-1,6,100,0.05,43f4ddd2-5ccc-4afb-b43f-22b0cbab6279,108 -1833-260619-1,6,100,0.05,9c177eab-36b8-4288-b89d-9368b7b96e2a,112 -1833-260619-2,6,100,0.05,8aac20f0-160f-4cc0-921e-c3db97a7e8f1,140 -1833-260619-2,6,100,0.05,7b36f452-222f-4d0f-b3f3-3c984e0f6ec2,144 -1833-260619-2,6,100,0.05,21026732-ebf7-49b7-b3ce-b01ffddf603f,156 -1833-260619-2,6,100,0.05,97ecf9a9-8823-49e3-8d83-e7db1b2e915d,170 -1833-260619-3,6,100,0.05,5fb73ac3-40d4-4152-a506-de8c0d502ebe,142 -1833-260619-4,6,100,0.05,3739c7f8-39e6-45f6-aa9e-d46952816e2a,184 -1833-260619-4,6,100,0.05,70219b23-7421-40ef-acb0-99d612e35537,200 -1833-260619-4,6,100,0.05,48731479-d41f-4898-8c2f-aee6dbb8c983,214 -1833-260619-4,6,100,0.05,11253d04-3f93-41e8-9aa2-4502d631f34e,218 -1833-260619-4,6,100,0.05,98d95bae-0e6f-449c-9923-8753820c2b64,80 -1833-290519-1,6,100,0.05,3874d7bd-5e71-42fe-a32d-d5ec94774c26,124 -1833-290519-1,6,100,0.05,72b517bc-403c-44b7-a22b-ccce17a9f531,132 -1833-290519-1,6,100,0.05,1ba61dd3-4f40-4f65-8560-1b4988a179e8,142 -1833-290519-1,6,100,0.05,8706f2d2-2c53-40d7-8b24-b0e65e72bb1c,150 -1833-290519-1,6,100,0.05,36a75459-7464-4619-aaf7-31d752ee8e83,154 -1833-290519-1,6,100,0.05,174d10bc-8f12-42f9-a79e-1284d5055f97,166 -1833-290519-1,6,100,0.05,228a3e7e-5e13-4c9a-a9de-cbf8b12cf95a,89 -1833-290519-2,6,100,0.05,976ae92f-87d8-403e-abb6-97d9514db949,76 -1833-290519-3,6,100,0.05,7af41fe8-eb72-4629-8a79-481d1ff5e373,125 -1833-290519-3,6,100,0.05,d984d89c-250d-40af-a86f-8cfc6a6513b9,141 -1833-290519-3,6,100,0.05,de287c1f-fd48-4b18-b1d6-5dc4eb18c93c,147 -1833-290519-3,6,100,0.05,c003fb49-3b59-4dec-957f-b83249a6cbb6,149 -1833-290519-3,6,100,0.05,0f291093-c33b-4614-ad43-74f353c7662e,151 -1833-290519-3,6,100,0.05,9cabed8b-26ac-4dba-bf9f-620dee3a24f7,155 -1833-290519-4,6,100,0.05,2f7c00b2-2b59-49bb-ac3e-5776ef1fd628,65 -1833-290519-4,6,100,0.05,185f9a41-d718-479e-a9c1-1a336ce55980,79 -1833-290519-4,6,100,0.05,59b005fe-d706-40ec-b9ea-ba82dc553205,90 -1833-010719-1,7,100,0.05,1762e942-7c2d-4d03-9ef0-fe603c828788,114 -1833-010719-1,7,100,0.05,64f39f10-ee1a-434b-87e4-74c0f74394b9,132 -1833-010719-2,7,100,0.05,64f39f10-ee1a-434b-87e4-74c0f74394b9,217 -1833-010719-1,7,100,0.05,0ec4ca85-7869-437b-bf87-cbc8bf104682,54 -1833-010719-2,7,100,0.05,9b0c0a7d-a892-46e1-a8fb-3971e2a1612e,211 -1833-010719-2,7,100,0.05,71fe68ed-e519-48b0-847a-f2f8c1d629bf,213 -1833-050619-2,7,100,0.05,aa0b7db7-13b2-4b69-971c-b3aec0eea645,66 -1833-050619-3,7,100,0.05,aa0b7db7-13b2-4b69-971c-b3aec0eea645,105 -1833-060619-1,7,100,0.05,19d857bc-8636-4474-b1bc-3d0c41c4407c,139 -1833-060619-2,7,100,0.05,5088f6c5-7539-4aad-80b3-d40a35ae61f1,58 -1833-120619-2,7,100,0.05,b1d528f9-e0f6-41e1-b98b-d7a3ccfa0dbc,85 -1833-120619-3,7,100,0.05,d4263fed-5f10-4af5-bd35-b4e2847592e8,120 -1833-120619-4,7,100,0.05,e48f6f36-983f-4216-a1c7-a598a8ce561b,65 -1833-200619-3,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,65 -1833-200619-4,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,68 -1833-200619-1,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,143 -1833-200619-2,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,261 -1833-200619-2,7,100,0.05,74db72d7-a48b-4d98-b68d-890ea7ee3ffb,203 -1833-200619-2,7,100,0.05,e0dac4a4-1530-42c7-8da1-c176b6c55bfa,204 -1833-200619-3,7,100,0.05,bed1c8ae-1f7d-46db-a3dc-af3ce9fad396,53 -1833-260619-1,7,100,0.05,597a49e0-d445-4452-9af7-b9db0488f573,98 -1833-260619-3,7,100,0.05,f96a458c-0715-4732-b502-f08bbfe0f449,103 -1833-260619-3,7,100,0.05,9a1550ae-203e-4e74-8e82-f98ad50ccac3,105 -1833-260619-4,7,100,0.05,fed1a5c4-acd2-4dbc-9325-7c5ce42e0f29,177 -1833-290519-1,7,100,0.05,4f257d47-b65f-466b-a493-69e4902b3ec5,106 -1833-290519-1,7,100,0.05,e1a3376d-1280-4a83-8235-f5ab8f3cac22,116 -1833-290519-1,7,100,0.05,733aa07b-e73f-4a4a-a954-cd6493b21f9d,129 -1833-290519-1,7,100,0.05,f04a80d4-083a-4f7f-bf63-e3e078bcf730,136 -1833-290519-1,7,100,0.05,a2180cfb-24e6-4b67-97a0-c9585fecda97,74 -1833-290519-1,7,100,0.05,8187534a-aa00-4ff9-aabb-356434ada9bd,82 -1833-290519-2,7,100,0.05,d762e3e5-5c37-4036-89bb-b2ad773fdf68,126 -1833-290519-2,7,100,0.05,65e44135-6c47-42a3-a199-1d0e666bba23,130 -1833-290519-2,7,100,0.05,e100fec4-122b-4de5-b1c0-78e60117aa73,97 -1833-290519-2,7,100,0.05,cafa506a-136c-46db-a949-72f54a250200,98 -1833-290519-3,7,100,0.05,a606539a-0bae-443d-9e23-8f04f12f0766,103 -1833-290519-3,7,100,0.05,11166f49-8b3e-4120-b18a-e6db4cdc278d,113 -1833-290519-3,7,100,0.05,43cc73f9-d76b-4ba7-a3ee-88d70f26e366,129 -1833-290519-3,7,100,0.05,051e75ab-ce84-450e-8489-3faf7f4bcb32,82 -1833-290519-4,7,100,0.05,837b559d-1284-4f07-9dc0-20bee50697ef,67 -1833-290519-4,7,100,0.05,546e963b-d509-4790-8811-6c0c8a1d580c,75 -1833-290519-4,7,100,0.05,edcbf7bc-de11-4821-bd20-e6d614cce147,77 -1833-290519-4,7,100,0.05,082497ec-eb32-43f5-b32c-c76f57ec54b7,94 +1833-020719-4,0,100,0.05,a5b7cc81-fd4f-4c6d-9aa6-e106a9132eab,302 +1833-020719-3,0,100,0.05,a5b7cc81-fd4f-4c6d-9aa6-e106a9132eab,143 +1833-010719-1,0,100,0.05,a5b7cc81-fd4f-4c6d-9aa6-e106a9132eab,127 +1833-020719-1,0,100,0.05,a5b7cc81-fd4f-4c6d-9aa6-e106a9132eab,123 +1833-260619-3,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,196 +1833-260619-1,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,120 +1833-010719-2,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,239 +1833-260619-4,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,202 +1833-010719-1,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,161 +1833-010719-1,0,100,0.05,3f18fd01-69e4-472f-bd69-f996396171fe,191 +1833-010719-2,0,100,0.05,aaeeb9ea-1221-48c2-927d-3645b72591ed,261 +1833-010719-1,0,100,0.05,aaeeb9ea-1221-48c2-927d-3645b72591ed,223 +1833-010719-2,0,100,0.05,6e163be6-bcde-4225-adde-e53110e81493,267 +1833-010719-1,0,100,0.05,6e163be6-bcde-4225-adde-e53110e81493,225 +1833-010719-1,0,100,0.05,c084a07f-e324-48fc-8513-e3750b5b8e17,235 +1833-010719-2,0,100,0.05,c084a07f-e324-48fc-8513-e3750b5b8e17,4 +1833-010719-2,0,100,0.05,36c8d8f9-aec3-40fe-85be-fedffe22fd58,254 +1833-010719-2,0,100,0.05,5d1d3fc4-c3a9-41b8-8598-4bc666fbafc9,265 +1833-020719-1,0,100,0.05,90b37b07-a85e-4e62-bada-174d552cd574,119 +1833-020719-1,0,100,0.05,16120ea5-2fb1-4700-b181-2ea5fd20c137,121 +1833-020719-3,0,100,0.05,c8511fac-ec38-4eff-b3ee-bf61d0341bec,156 +1833-020719-1,0,100,0.05,c8511fac-ec38-4eff-b3ee-bf61d0341bec,145 +1833-020719-2,0,100,0.05,c8511fac-ec38-4eff-b3ee-bf61d0341bec,142 +1833-020719-4,0,100,0.05,c8511fac-ec38-4eff-b3ee-bf61d0341bec,308 +1833-020719-3,0,100,0.05,6bbc5ac4-f3c4-4734-8e48-8c2e6f107b6b,162 +1833-020719-2,0,100,0.05,6bbc5ac4-f3c4-4734-8e48-8c2e6f107b6b,8 +1833-020719-1,0,100,0.05,6bbc5ac4-f3c4-4734-8e48-8c2e6f107b6b,158 +1833-020719-4,0,100,0.05,6bbc5ac4-f3c4-4734-8e48-8c2e6f107b6b,320 +1833-020719-2,0,100,0.05,1fde12b5-9418-4013-8a49-7591ee9e8611,105 +1833-020719-4,0,100,0.05,40981aa5-6f1d-4adb-ba9d-9604ce97e9e9,306 +1833-020719-3,0,100,0.05,40981aa5-6f1d-4adb-ba9d-9604ce97e9e9,141 +1833-020719-2,0,100,0.05,40981aa5-6f1d-4adb-ba9d-9604ce97e9e9,129 +1833-020719-3,0,100,0.05,49de8dbd-3f9b-4cbe-bf1a-0c80e26ea4e7,116 +1833-020719-2,0,100,0.05,49de8dbd-3f9b-4cbe-bf1a-0c80e26ea4e7,95 +1833-020719-3,0,100,0.05,15b94104-eb1e-469e-848a-9bcc37d4421b,104 +1833-020719-3,0,100,0.05,fe55cb66-81c1-4ff3-87cd-9b8467ce4260,105 +1833-020719-3,0,100,0.05,e48acfab-b01f-4efa-8c2f-3d22172a899b,150 +1833-020719-4,0,100,0.05,7dfb3154-cbf5-42bb-9727-c943bec482f5,258 +1833-060619-2,0,100,0.05,a625fc09-a53e-4f7f-89f9-6cc2749dd3ca,76 +1833-060619-2,0,100,0.05,98b84ab4-bc04-4f87-9159-4c3caeb847bf,90 +1833-120619-2,0,100,0.05,8a276f5e-3854-4b69-b4ee-54df31778af7,175 +1833-120619-3,0,100,0.05,8a276f5e-3854-4b69-b4ee-54df31778af7,153 +1833-120619-1,0,100,0.05,8a276f5e-3854-4b69-b4ee-54df31778af7,139 +1833-120619-2,0,100,0.05,ea5dd90d-2500-4384-b382-f61468c25bd8,89 +1833-200619-1,0,100,0.05,adc0e384-5eef-48b4-a8fb-0028a7ff0fbc,147 +1833-200619-2,0,100,0.05,130faa63-e023-4f15-bdde-2f89a3bc8af8,268 +1833-200619-4,0,100,0.05,a05eefed-9cc7-4c57-92eb-940dd627fd1a,1 +1833-200619-2,0,100,0.05,a05eefed-9cc7-4c57-92eb-940dd627fd1a,283 +1833-200619-3,0,100,0.05,a05eefed-9cc7-4c57-92eb-940dd627fd1a,0 +1833-200619-3,0,100,0.05,8fe1435e-507b-4a44-9af7-e9a0f14fa871,91 +1833-200619-4,0,100,0.05,8fe1435e-507b-4a44-9af7-e9a0f14fa871,90 +1833-200619-4,0,100,0.05,76de6df5-d05b-40f8-8950-75041a5c22fa,92 +1833-200619-3,0,100,0.05,76de6df5-d05b-40f8-8950-75041a5c22fa,93 +1833-200619-4,0,100,0.05,0ddffa3d-8bac-4c42-9f41-4b3b65d91204,78 +1833-200619-4,0,100,0.05,ae1b75b4-f32f-4686-a13b-6b642121ad91,96 +1833-260619-1,0,100,0.05,556edb6c-9137-44de-84bb-27f9a74b0a58,118 +1833-260619-3,0,100,0.05,556edb6c-9137-44de-84bb-27f9a74b0a58,182 +1833-260619-4,0,100,0.05,8dc00967-740d-40b2-a425-77641d55f04d,115 +1833-260619-1,0,100,0.05,8dc00967-740d-40b2-a425-77641d55f04d,130 +1833-260619-3,0,100,0.05,8dc00967-740d-40b2-a425-77641d55f04d,141 +1833-260619-1,0,100,0.05,fe3dd17c-c6d7-4b5f-ac50-68db35953edf,132 +1833-260619-2,0,100,0.05,fe3dd17c-c6d7-4b5f-ac50-68db35953edf,174 +1833-260619-4,0,100,0.05,fe3dd17c-c6d7-4b5f-ac50-68db35953edf,233 +1833-260619-3,0,100,0.05,fe3dd17c-c6d7-4b5f-ac50-68db35953edf,209 +1833-260619-2,0,100,0.05,531ea300-819c-4ee0-abee-4afb85e07305,2 +1833-260619-1,0,100,0.05,531ea300-819c-4ee0-abee-4afb85e07305,2 +1833-260619-4,0,100,0.05,531ea300-819c-4ee0-abee-4afb85e07305,235 +1833-260619-3,0,100,0.05,531ea300-819c-4ee0-abee-4afb85e07305,1 +1833-260619-2,0,100,0.05,b6a0a407-f3de-482e-9ffe-13682e729515,152 +1833-260619-4,0,100,0.05,b6a0a407-f3de-482e-9ffe-13682e729515,208 +1833-260619-3,0,100,0.05,b6a0a407-f3de-482e-9ffe-13682e729515,180 +1833-260619-4,0,100,0.05,c81e361f-1f8a-4342-af24-8aa0fab03ec3,222 +1833-260619-3,0,100,0.05,c81e361f-1f8a-4342-af24-8aa0fab03ec3,194 +1833-260619-2,0,100,0.05,c81e361f-1f8a-4342-af24-8aa0fab03ec3,164 +1833-260619-3,0,100,0.05,0da21faa-dd7e-443a-9122-84b1993a3001,0 +1833-260619-3,0,100,0.05,7abe1f71-ad54-4431-a61f-79debb8a9858,140 +1833-290519-1,0,100,0.05,e626ef20-00ad-487f-b024-602e42cb4605,112 +1833-290519-3,0,100,0.05,68cdc520-0db0-4c3a-896d-2c4993843c36,97 +1833-290519-4,0,100,0.05,68cdc520-0db0-4c3a-896d-2c4993843c36,88 +1833-290519-1,0,100,0.05,68cdc520-0db0-4c3a-896d-2c4993843c36,120 +1833-290519-1,0,100,0.05,f6623ab7-0d92-4d3f-986b-de6f437263bc,146 +1833-290519-4,0,100,0.05,f6623ab7-0d92-4d3f-986b-de6f437263bc,117 +1833-290519-3,0,100,0.05,f6623ab7-0d92-4d3f-986b-de6f437263bc,125 +1833-290519-2,0,100,0.05,630df003-e99f-42fb-a11a-88f366ee07b8,78 +1833-290519-2,0,100,0.05,a9b50c7c-1b55-4d9e-8893-477456036b43,82 +1833-290519-3,0,100,0.05,aa47991f-ff1b-4f0b-9b62-17a1b4bae636,101 +1833-260619-2,1,100,0.05,930fee36-abb1-4af4-b0c4-b281a12f75ef,123 +1833-260619-1,1,100,0.05,930fee36-abb1-4af4-b0c4-b281a12f75ef,104 +1833-010719-1,1,100,0.05,930fee36-abb1-4af4-b0c4-b281a12f75ef,146 +1833-010719-1,1,100,0.05,4f693a3e-e47d-4759-b1ef-bdb59686d815,219 +1833-010719-1,1,100,0.05,5fa9ec78-5ab3-4aa5-ae52-6a2817550240,221 +1833-010719-1,1,100,0.05,10f44aa3-d89b-4db3-ba15-5d1a69d204df,229 +1833-010719-2,1,100,0.05,10f44aa3-d89b-4db3-ba15-5d1a69d204df,273 +1833-010719-1,1,100,0.05,672fccd0-4ea4-4f8e-8af2-7d6959836548,6 +1833-010719-1,1,100,0.05,f8c22124-8aa4-4434-9b5b-5771ecb7d864,8 +1833-020719-2,1,100,0.05,8c0e3d96-aa67-47bc-b052-a1eef0d86c15,131 +1833-010719-2,1,100,0.05,8c0e3d96-aa67-47bc-b052-a1eef0d86c15,135 +1833-200619-3,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,97 +1833-200619-1,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,159 +1833-200619-4,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,76 +1833-010719-2,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,18 +1833-020719-2,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,15 +1833-020719-2,1,100,0.05,3dfa34ef-c5b2-49e3-8303-65d94f055648,14 +1833-010719-2,1,100,0.05,3dfa34ef-c5b2-49e3-8303-65d94f055648,227 +1833-020719-3,1,100,0.05,3dfa34ef-c5b2-49e3-8303-65d94f055648,123 +1833-010719-2,1,100,0.05,e201cf1a-03bf-41d3-967a-567d3928e980,229 +1833-010719-2,1,100,0.05,550088b9-77c9-4048-a75b-1a7b8a165a76,233 +1833-010719-2,1,100,0.05,93cdc42a-949c-4965-9eda-018467d92b7b,269 +1833-020719-1,1,100,0.05,ebcb863f-31ed-4230-aea3-5f1a5d0a8ab3,115 +1833-020719-1,1,100,0.05,1fe2cb03-120f-455e-bdae-5db9515f4901,147 +1833-020719-3,1,100,0.05,1fe2cb03-120f-455e-bdae-5db9515f4901,154 +1833-020719-2,1,100,0.05,cbd115ff-3fa5-4f52-b3fa-16632e387705,87 +1833-020719-3,1,100,0.05,cbd115ff-3fa5-4f52-b3fa-16632e387705,166 +1833-020719-1,1,100,0.05,cbd115ff-3fa5-4f52-b3fa-16632e387705,155 +1833-020719-2,1,100,0.05,fb713534-028e-4428-bf44-e934ea9c3fed,152 +1833-020719-3,1,100,0.05,58c58e5b-a6c5-4ac3-9a93-2d093dae510a,139 +1833-020719-4,1,100,0.05,7be14d4d-45d0-446c-9530-b472003f2c66,256 +1833-020719-4,1,100,0.05,24c4f1f2-7988-4cfa-9c79-0c4ed4af8905,278 +1833-020719-4,1,100,0.05,90534e51-10a0-47a3-8c0e-6db2e7851a22,300 +1833-050619-1,1,100,0.05,4a13a5c0-981f-48cb-9511-35bb733c4e04,75 +1833-050619-3,1,100,0.05,2c40ff00-9bc7-4332-97b5-7dff53d8ddb6,125 +1833-050619-2,1,100,0.05,2c40ff00-9bc7-4332-97b5-7dff53d8ddb6,129 +1833-050619-4,1,100,0.05,3dbc6cbb-7fdd-4c28-9418-31de28999e80,68 +1833-050619-4,1,100,0.05,10ef8756-7fb4-4179-9eac-9333e6b9aad5,84 +1833-050619-4,1,100,0.05,084428ff-09a8-4805-8a6b-6d82b5ded5bb,86 +1833-060619-1,1,100,0.05,6ded4010-fdf5-491e-bbe4-dc2dd646fdcb,137 +1833-060619-2,1,100,0.05,11a75435-039d-4ea3-8586-7c22c03fdfa5,64 +1833-060619-2,1,100,0.05,e46cc4b4-bf85-4279-8a53-d041406377e5,78 +1833-120619-1,1,100,0.05,1b5eab6a-226b-4635-81ed-8109c4f89322,114 +1833-120619-2,1,100,0.05,0cb1a116-8047-4be3-920a-fdf976e95878,104 +1833-200619-1,1,100,0.05,0e360480-bfd4-4b8e-911b-9f1cb09f6944,155 +1833-200619-2,1,100,0.05,9f1a6bce-bb32-4843-b7ef-4cccb1036c23,278 +1833-200619-4,1,100,0.05,2e8e5ad2-2f38-4024-8b7c-45184727c15a,70 +1833-200619-3,1,100,0.05,2e8e5ad2-2f38-4024-8b7c-45184727c15a,89 +1833-260619-1,1,100,0.05,08244769-6123-412f-91ae-761144cddb9d,10 +1833-260619-1,1,100,0.05,d64f31cd-f47b-411d-bd49-5be69e263fd2,116 +1833-260619-2,1,100,0.05,4487d5ad-ac07-4d6d-9649-92b0a5db2b45,166 +1833-260619-1,1,100,0.05,4487d5ad-ac07-4d6d-9649-92b0a5db2b45,126 +1833-260619-2,1,100,0.05,ffcfe108-97f6-49ef-939c-5130764e7b29,130 +1833-260619-3,1,100,0.05,48d0e744-56f8-482d-92ce-ccfcd6c386c7,119 +1833-260619-4,1,100,0.05,28f86aad-df9a-4071-bead-609a1d307066,198 +1833-260619-3,1,100,0.05,28f86aad-df9a-4071-bead-609a1d307066,170 +1833-260619-3,1,100,0.05,daeeaaac-b3c1-48e0-89f3-1da8517aa6a1,207 +1833-260619-4,1,100,0.05,62b1e22d-ad43-4663-a128-b0f506012a10,178 +1833-260619-4,1,100,0.05,c86a8521-9ab1-4918-88f5-2fa9ed9106dc,204 +1833-260619-4,1,100,0.05,a0281718-ba73-4ee5-8f1a-e811e65df269,226 +1833-290519-1,1,100,0.05,4cd83da2-e650-4885-b559-ff42b799fc0e,138 +1833-290519-1,1,100,0.05,7e93cf9e-e0b6-4046-bf3c-038069947b7d,92 +1833-290519-2,1,100,0.05,95d5b3c8-40b2-4507-a38f-eff30e412c75,102 +1833-290519-2,1,100,0.05,046926b9-9247-43b5-9e1e-857ad3e80773,104 +1833-290519-2,1,100,0.05,6e6cc524-a9c1-4337-acda-07bce235888d,116 +1833-290519-2,1,100,0.05,8ef3bf2a-65db-4a73-af32-74dbfa509015,120 +1833-290519-3,1,100,0.05,93b8d9e8-9af1-464d-9404-63d5dd5d4244,111 +1833-290519-3,1,100,0.05,f0a0f5fc-36ea-4892-aeed-1c62daab1354,70 +1833-290519-4,1,100,0.05,f0a0f5fc-36ea-4892-aeed-1c62daab1354,85 +1833-290519-4,1,100,0.05,efd7f5c1-1e31-467e-88f8-7c0ff119df21,96 +1833-010719-2,2,100,0.05,8452b748-b39c-4dc1-be7d-602eb3ef0ec3,249 +1833-020719-1,2,100,0.05,8452b748-b39c-4dc1-be7d-602eb3ef0ec3,143 +1833-010719-1,2,100,0.05,8452b748-b39c-4dc1-be7d-602eb3ef0ec3,202 +1833-010719-2,2,100,0.05,b1401e0c-5be8-4b1c-9670-8777da1e6c23,29 +1833-010719-1,2,100,0.05,b1401e0c-5be8-4b1c-9670-8777da1e6c23,231 +1833-010719-2,2,100,0.05,445c4b19-bef2-4fec-ad3c-86250c5823ee,271 +1833-020719-1,2,100,0.05,b2efc6a8-14ce-438b-b062-14e256c30838,149 +1833-020719-2,2,100,0.05,03c2cdd2-124b-4869-9e4e-2fca5df9b7d1,119 +1833-020719-2,2,100,0.05,cacb172e-3ff8-4fc7-8b25-fb3277d2c518,120 +1833-020719-2,2,100,0.05,45c6d3f5-f167-44d0-86ff-6f6bcaf7202a,93 +1833-020719-3,2,100,0.05,919d7480-c07f-4bc8-a1d1-578439151ea5,147 +1833-020719-3,2,100,0.05,8bf33018-a46d-4aad-9e26-f34f812e3fd6,168 +1833-020719-4,2,100,0.05,c2cc38f6-5eb3-44e4-93a5-49586b035342,260 +1833-050619-3,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,133 +1833-050619-2,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,135 +1833-060619-2,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,106 +1833-060619-1,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,168 +1833-050619-1,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,99 +1833-050619-2,2,100,0.05,b49831f6-873b-4b54-80e0-5f5fe06977c3,111 +1833-050619-3,2,100,0.05,1bf2af33-3c32-4e03-a72b-65a39758dafb,111 +1833-050619-2,2,100,0.05,1bf2af33-3c32-4e03-a72b-65a39758dafb,89 +1833-120619-1,2,100,0.05,cafe20c1-c557-45f4-87eb-cfca239b1645,120 +1833-120619-3,2,100,0.05,cafe20c1-c557-45f4-87eb-cfca239b1645,104 +1833-120619-2,2,100,0.05,cafe20c1-c557-45f4-87eb-cfca239b1645,142 +1833-120619-2,2,100,0.05,496d7c88-e0a7-4597-8304-f0b748c00d0f,118 +1833-200619-1,2,100,0.05,8f1b14ec-eee4-4d42-8402-a9ca055f2d51,228 +1833-200619-4,2,100,0.05,8f1b14ec-eee4-4d42-8402-a9ca055f2d51,115 +1833-200619-1,2,100,0.05,6885bb12-deba-47d0-b4a0-72fa655d3689,239 +1833-200619-3,2,100,0.05,6885bb12-deba-47d0-b4a0-72fa655d3689,142 +1833-200619-2,2,100,0.05,6885bb12-deba-47d0-b4a0-72fa655d3689,325 +1833-200619-4,2,100,0.05,6885bb12-deba-47d0-b4a0-72fa655d3689,117 +1833-260619-2,2,100,0.05,7d88b80a-d19b-411e-8f3a-cc6f46a0092b,168 +1833-260619-1,2,100,0.05,7d88b80a-d19b-411e-8f3a-cc6f46a0092b,128 +1833-260619-4,2,100,0.05,7d88b80a-d19b-411e-8f3a-cc6f46a0092b,216 +1833-260619-3,2,100,0.05,7d88b80a-d19b-411e-8f3a-cc6f46a0092b,198 +1833-260619-2,2,100,0.05,e6153a28-94c5-4e0c-b01e-ea21cf1031e3,148 +1833-290519-2,2,100,0.05,3386c99f-25ba-418a-ba69-88a9beab843e,100 +1833-290519-2,2,100,0.05,b8e938a1-118c-478c-b483-c55f53aef559,112 +1833-290519-2,2,100,0.05,79ad7ed4-b3d9-4cf0-9071-6a9bee05975f,132 +1833-010719-1,3,100,0.05,15007634-7719-4690-a921-5f72aa5addfc,171 +1833-010719-1,3,100,0.05,268b3407-9455-41c5-a0a0-b2203e13b2db,198 +1833-010719-1,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,216 +1833-020719-2,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,136 +1833-020719-1,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,151 +1833-020719-3,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,17 +1833-010719-2,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,243 +1833-010719-1,3,100,0.05,64de457d-d23b-4a2d-af8a-549a759c58d9,240 +1833-010719-2,3,100,0.05,64de457d-d23b-4a2d-af8a-549a759c58d9,133 +1833-010719-2,3,100,0.05,4c7306e9-3b4e-4ec5-82f6-909f38f6cf09,157 +1833-010719-2,3,100,0.05,770c4350-92de-4d64-b44e-c49ffdcaf7a2,173 +1833-010719-2,3,100,0.05,4a7a1ccb-1305-4174-afb1-613de95ee266,174 +1833-010719-2,3,100,0.05,f5be9fa1-5247-48e3-999f-510472269ae2,187 +1833-010719-2,3,100,0.05,7db2bd18-4061-4393-8c2a-d602a6067026,188 +1833-010719-2,3,100,0.05,7a84f067-e93e-4cb8-9f51-8d07c9200ace,241 +1833-010719-2,3,100,0.05,cd957f7d-47c1-443f-9f8b-8de7bc6f8b33,259 +1833-020719-1,3,100,0.05,a294ee97-fc67-4a93-af52-0e8bbd685f88,135 +1833-020719-2,3,100,0.05,f831974d-c88c-42a9-8b87-b1485f528ef3,140 +1833-020719-1,3,100,0.05,f831974d-c88c-42a9-8b87-b1485f528ef3,140 +1833-020719-3,3,100,0.05,f831974d-c88c-42a9-8b87-b1485f528ef3,23 +1833-020719-1,3,100,0.05,7be2e44a-c00d-4dab-86ab-542feb742c4c,153 +1833-020719-3,3,100,0.05,7be2e44a-c00d-4dab-86ab-542feb742c4c,164 +1833-020719-1,3,100,0.05,98fbaadd-68d3-4f10-b073-5856806684d2,164 +1833-020719-3,3,100,0.05,98fbaadd-68d3-4f10-b073-5856806684d2,170 +1833-020719-2,3,100,0.05,e687bb5a-a361-40e6-a7d7-a48e5bc572a5,107 +1833-020719-2,3,100,0.05,bd94fa33-d1f1-493a-85fb-b0f3aa7cd451,139 +1833-020719-2,3,100,0.05,b6d94d51-c4b1-414c-a473-7772545214c3,146 +1833-020719-3,3,100,0.05,225c6728-3ee9-418d-8d10-22097aeee740,152 +1833-020719-4,3,100,0.05,4f9030f8-546b-416c-95d6-66bb67d3578a,289 +1833-020719-4,3,100,0.05,73b23d01-75a8-45f7-8c36-ce7de9d135e8,290 +1833-020719-4,3,100,0.05,cf5e6f1c-ce3f-44a7-9e1c-7795d97c447e,298 +1833-020719-4,3,100,0.05,f217ea67-00a5-4a26-b6ae-e229bebe13f9,318 +1833-050619-3,3,100,0.05,5dcaada9-b918-433f-800f-3f539551ec93,147 +1833-050619-1,3,100,0.05,5dcaada9-b918-433f-800f-3f539551ec93,107 +1833-050619-4,3,100,0.05,5dcaada9-b918-433f-800f-3f539551ec93,148 +1833-050619-2,3,100,0.05,5dcaada9-b918-433f-800f-3f539551ec93,143 +1833-060619-1,3,100,0.05,107ee989-09cf-4d29-b87f-015ce3e3c900,174 +1833-120619-2,3,100,0.05,d923b961-973d-4605-8889-f0db9811a4bf,143 +1833-120619-2,3,100,0.05,830eb10d-0820-4019-b189-230946fef839,69 +1833-200619-1,3,100,0.05,efffbc16-7bcc-44e8-a954-85a5dd34abf6,151 +1833-200619-4,3,100,0.05,7d0bb84c-59e4-45ec-bd8c-a33ca668a339,102 +1833-200619-1,3,100,0.05,7d0bb84c-59e4-45ec-bd8c-a33ca668a339,184 +1833-200619-3,3,100,0.05,7d0bb84c-59e4-45ec-bd8c-a33ca668a339,128 +1833-200619-2,3,100,0.05,16f54929-694a-41c3-a566-9be0f65d3c50,257 +1833-200619-2,3,100,0.05,9fec8a2f-537d-4b4c-a52f-3de0a3751690,264 +1833-200619-3,3,100,0.05,11fb17ec-1548-4729-9dd8-74e5e3d736a9,82 +1833-200619-4,3,100,0.05,11fb17ec-1548-4729-9dd8-74e5e3d736a9,74 +1833-260619-2,3,100,0.05,49685d94-f1f6-4991-9098-8b92c902f4f7,146 +1833-260619-1,3,100,0.05,49685d94-f1f6-4991-9098-8b92c902f4f7,114 +1833-260619-3,3,100,0.05,49040d3e-4999-427d-974c-b0bc0f432e89,160 +1833-260619-4,3,100,0.05,bca5d2ac-fef8-46ae-9616-e87b90d72be2,206 +1833-260619-3,3,100,0.05,bca5d2ac-fef8-46ae-9616-e87b90d72be2,176 +1833-260619-4,3,100,0.05,f684b875-cda6-4e41-9014-33a029b01104,196 +1833-290519-1,3,100,0.05,c06d51ed-6452-4e23-9878-0632df2cda4d,101 +1833-290519-1,3,100,0.05,34773e3c-a51e-49ec-9d46-eee33cf2ebdf,102 +1833-290519-4,3,100,0.05,34773e3c-a51e-49ec-9d46-eee33cf2ebdf,92 +1833-290519-3,3,100,0.05,34773e3c-a51e-49ec-9d46-eee33cf2ebdf,96 +1833-290519-1,3,100,0.05,b2e55b29-7888-4da2-ac9b-10f477c68212,162 +1833-290519-3,3,100,0.05,cd58c729-51a8-4453-92bf-67684931a001,138 +1833-290519-4,3,100,0.05,cd58c729-51a8-4453-92bf-67684931a001,130 +1833-290519-1,3,100,0.05,cd58c729-51a8-4453-92bf-67684931a001,176 +1833-290519-2,3,100,0.05,581e4a84-911d-4987-b5c0-aac5345d26eb,108 +1833-290519-2,3,100,0.05,4c4d6958-e580-4a99-965b-eb692487b8a9,72 +1833-290519-2,3,100,0.05,45f3862d-f9f8-4adb-b32d-88c999afea6d,74 +1833-290519-4,3,100,0.05,acd052c7-a424-4df5-9477-316b25ef96b4,129 +1833-010719-2,4,100,0.05,9fc6302a-0560-4d05-8bdc-0b54b05d1f2f,223 +1833-010719-2,4,100,0.05,a004ce12-2a6c-451b-b2f3-6a9d9f6d6908,231 +1833-020719-3,4,100,0.05,79edbe70-2821-4e4f-94d3-5b9ddb672f20,45 +1833-020719-3,4,100,0.05,2774de87-e4f9-4ae5-9e73-ea760fd49028,94 +1833-020719-3,4,100,0.05,fd7f3517-3c95-4209-adc3-45948ecd246b,95 +1833-020719-4,4,100,0.05,30e8b7d2-66e2-4b19-895e-997effc40efd,250 +1833-050619-2,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,137 +1833-120619-1,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,137 +1833-120619-4,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,119 +1833-120619-2,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,170 +1833-060619-1,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,172 +1833-120619-3,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,147 +1833-050619-3,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,145 +1833-050619-1,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,25 +1833-060619-2,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,108 +1833-050619-4,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,151 +1833-050619-4,4,100,0.05,76464823-3eae-43c4-9d94-fb058480e9d2,80 +1833-050619-3,4,100,0.05,76464823-3eae-43c4-9d94-fb058480e9d2,123 +1833-050619-2,4,100,0.05,76464823-3eae-43c4-9d94-fb058480e9d2,97 +1833-060619-1,4,100,0.05,6dda9016-18c6-4c05-8632-e116ea10b201,144 +1833-120619-2,4,100,0.05,85afcb73-32f9-4fb6-b7b2-058953e9b4d2,81 +1833-120619-3,4,100,0.05,c2dda493-d42f-4ef8-ab25-f336f510ad50,100 +1833-120619-3,4,100,0.05,6001f04e-fc86-4cbe-86d8-7b0384b2d074,101 +1833-200619-1,4,100,0.05,9288047a-1bce-460c-bcdd-7a41b1aa7be1,165 +1833-200619-2,4,100,0.05,dbf3d469-c696-4dfe-b8b3-e6164be3ab10,254 +1833-200619-3,4,100,0.05,4724f71b-004c-418c-aada-9c078e5bb119,113 +1833-200619-4,4,100,0.05,576ce457-b883-488c-99d6-59e30b5b82b9,124 +1833-290519-1,4,100,0.05,eb509735-4c15-4ce9-b22c-55839122a6bc,118 +1833-290519-1,4,100,0.05,bc89eb86-fb53-4ec0-93ad-13139a93fc06,80 +1833-290519-2,4,100,0.05,024eb764-1493-4b23-963e-b2807bdd2196,114 +1833-290519-2,4,100,0.05,faf67f93-bb7e-41fb-b38c-a3c60a94ed29,122 +1833-290519-2,4,100,0.05,485fdcbc-cc6b-4cb3-83e5-26bdda866eba,124 +1833-290519-3,4,100,0.05,73d73fbb-f7c4-4b14-8db9-6f9e28e244ba,80 +1833-290519-4,4,100,0.05,7bb998da-7a9d-414e-bcf7-ed49c3cc578a,71 +1833-010719-1,5,100,0.05,454c6a9f-1c6f-4730-ab6b-4633c3ed7f59,134 +1833-010719-1,5,100,0.05,bb940f86-aa89-4e13-a8e5-734dff500580,144 +1833-010719-1,5,100,0.05,2cce7922-a8f8-4b19-b416-4bd132a0a9d9,150 +1833-010719-2,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,235 +1833-260619-3,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,184 +1833-260619-1,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,110 +1833-260619-2,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,154 +1833-260619-4,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,212 +1833-010719-1,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,166 +1833-010719-2,5,100,0.05,d7a8d655-59f0-4ee9-b745-436ddeca1fd8,221 +1833-020719-1,5,100,0.05,6d15084b-8fe5-43d9-8577-b7dea935a71f,109 +1833-020719-2,5,100,0.05,8c3b41b5-fbce-4d21-b11d-ead8312d3dd6,103 +1833-020719-2,5,100,0.05,a4e35d2d-931a-41d3-9094-e4c7d9986da7,126 +1833-020719-3,5,100,0.05,b6941c23-dd45-492f-911b-fdb3430a605b,117 +1833-020719-4,5,100,0.05,0d424a24-1f13-4121-afcd-1386b5f46b70,266 +1833-020719-3,5,100,0.05,0d424a24-1f13-4121-afcd-1386b5f46b70,121 +1833-020719-3,5,100,0.05,5937cd8c-a9a3-4c51-bc5b-19c65cdb844a,135 +1833-020719-4,5,100,0.05,5937cd8c-a9a3-4c51-bc5b-19c65cdb844a,294 +1833-060619-1,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,156 +1833-050619-3,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,127 +1833-120619-4,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,122 +1833-290519-4,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,115 +1833-200619-4,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,94 +1833-050619-2,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,123 +1833-050619-4,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,82 +1833-200619-2,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,270 +1833-200619-3,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,122 +1833-290519-3,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,109 +1833-120619-3,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,136 +1833-120619-2,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,145 +1833-050619-1,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,73 +1833-050619-4,5,100,0.05,cf90afbe-4f26-4fdd-b738-26ce2eda8b62,79 +1833-060619-2,5,100,0.05,cf90afbe-4f26-4fdd-b738-26ce2eda8b62,68 +1833-060619-1,5,100,0.05,ae1d8018-4dab-4176-b736-71c600b26893,164 +1833-060619-2,5,100,0.05,a7e7fa66-c087-4de3-8ddd-d472a60cbc3a,98 +1833-120619-1,5,100,0.05,62349103-a14e-43fa-be7b-a4b02cf527fd,133 +1833-120619-2,5,100,0.05,b5861814-fda4-41f2-850a-4482cbe709d1,100 +1833-120619-2,5,100,0.05,779eb86e-256b-4ad0-9b25-1200ee968b4c,123 +1833-120619-2,5,100,0.05,1d995810-bd21-4ca9-86b3-6f67cad232cb,133 +1833-200619-3,5,100,0.05,47aaf7e5-0bbf-42a1-895c-f388a025aef8,59 +1833-260619-1,5,100,0.05,ec6472d8-95b9-4925-8117-d5354b73f5b3,100 +1833-260619-3,5,100,0.05,a32b790b-a2c9-4ca6-aa6f-eec7fecd2eb8,111 +1833-260619-2,5,100,0.05,a32b790b-a2c9-4ca6-aa6f-eec7fecd2eb8,115 +1833-260619-3,5,100,0.05,e6243c3f-b9ec-4247-89e8-e0482b62d180,109 +1833-260619-3,5,100,0.05,489d43e8-dbef-4b43-9672-91bca68c1715,113 +1833-260619-4,5,100,0.05,29ef8b68-279a-46b8-b184-b701b1f7949f,162 +1833-260619-4,5,100,0.05,de39085d-3202-4213-94e2-8324e09a4afc,188 +1833-290519-1,5,100,0.05,99d86a7a-6412-454a-8a35-e1012710e502,134 +1833-290519-1,5,100,0.05,47fce860-09ba-47d0-ac6c-1214dda6d690,158 +1833-290519-1,5,100,0.05,e856d06c-11d7-40e7-8119-d17f143562d8,172 +1833-290519-1,5,100,0.05,8e2fa98c-875a-407c-8e9c-7fc1f1dcc65d,94 +1833-290519-2,5,100,0.05,8cd49f3f-9d8a-411a-862e-f0b23fc204b0,80 +1833-290519-3,5,100,0.05,ad234a38-ce45-4f2d-b5a2-41ec0c920d08,113 +1833-290519-4,5,100,0.05,ad234a38-ce45-4f2d-b5a2-41ec0c920d08,98 +1833-290519-3,5,100,0.05,3e244f8e-ab62-4383-9393-73b79b9f71fb,130 +1833-290519-4,5,100,0.05,550acce7-c60f-48db-80fe-bb12bccaee0b,121 +1833-010719-1,6,100,0.05,ba30b6e6-9195-4905-8d2a-d9b254973dce,152 +1833-010719-1,6,100,0.05,42540c68-0553-4000-8b5a-e5d30d126f52,183 +1833-010719-1,6,100,0.05,a8d670be-525d-4474-9a9c-bd0b685a90df,200 +1833-010719-1,6,100,0.05,c133eebf-bf8f-4f6f-90e8-0c2c1233a460,227 +1833-010719-2,6,100,0.05,abcf6680-c133-4c6c-b757-36442ae276d6,225 +1833-020719-1,6,100,0.05,ed78195a-0810-453d-8ce1-0fb0d4a13f5b,107 +1833-020719-2,6,100,0.05,326b025d-7174-4a9f-8712-7ac5a1739ffb,99 +1833-020719-3,6,100,0.05,d4649cf6-b5fd-4794-a5cb-617e08892136,64 +1833-020719-4,6,100,0.05,b5139f7d-6357-4b1b-83f2-c7e8d93659f0,254 +1833-020719-3,6,100,0.05,b5139f7d-6357-4b1b-83f2-c7e8d93659f0,96 +1833-020719-4,6,100,0.05,48e79b9d-2a8b-49d4-8ed0-429c921f86a6,248 +1833-020719-4,6,100,0.05,9ece482f-28d1-4913-b5ca-c61c137e7b40,310 +1833-060619-1,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,176 +1833-050619-4,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,157 +1833-050619-2,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,152 +1833-050619-3,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,149 +1833-050619-1,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,111 +1833-060619-2,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,112 +1833-260619-1,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,106 +1833-050619-4,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,133 +1833-050619-2,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,119 +1833-050619-1,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,60 +1833-050619-3,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,117 +1833-050619-2,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,125 +1833-060619-1,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,162 +1833-290519-4,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,108 +1833-120619-3,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,118 +1833-120619-4,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,80 +1833-050619-1,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,64 +1833-060619-2,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,82 +1833-050619-4,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,92 +1833-050619-3,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,129 +1833-120619-1,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,129 +1833-050619-1,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,91 +1833-060619-1,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,170 +1833-120619-2,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,151 +1833-060619-2,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,105 +1833-120619-4,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,127 +1833-050619-3,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,143 +1833-050619-2,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,146 +1833-120619-3,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,94 +1833-050619-4,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,135 +1833-050619-2,6,100,0.05,a7381d74-0100-4e68-9560-900f3a48cd22,74 +1833-050619-2,6,100,0.05,47bef660-a0a3-40a8-bf75-b0ba95cd748b,81 +1833-050619-3,6,100,0.05,d19b8c1b-8912-4516-97f8-53d76709dd7d,109 +1833-050619-4,6,100,0.05,c11d2488-5be6-4848-b7c9-fc6d0970c7ec,117 +1833-060619-1,6,100,0.05,b3b265ee-a58a-4ff3-bf06-9639ac7e3a44,158 +1833-060619-1,6,100,0.05,0dec64de-be08-432a-83a6-aa58c862d4ec,160 +1833-200619-3,6,100,0.05,0dec64de-be08-432a-83a6-aa58c862d4ec,126 +1833-120619-3,6,100,0.05,0dec64de-be08-432a-83a6-aa58c862d4ec,143 +1833-120619-4,6,100,0.05,0dec64de-be08-432a-83a6-aa58c862d4ec,120 +1833-060619-2,6,100,0.05,471e06bd-4859-4073-9c16-75789aad484d,116 +1833-060619-2,6,100,0.05,d2464334-07ae-4148-9055-b045239d99b8,74 +1833-260619-1,6,100,0.05,fee6bdb7-389b-4f56-b4c4-35e6e9812b95,124 +1833-260619-2,6,100,0.05,fee6bdb7-389b-4f56-b4c4-35e6e9812b95,160 +1833-120619-1,6,100,0.05,fee6bdb7-389b-4f56-b4c4-35e6e9812b95,127 +1833-260619-3,6,100,0.05,fee6bdb7-389b-4f56-b4c4-35e6e9812b95,192 +1833-120619-3,6,100,0.05,a1dd98c7-c599-47a6-a3d0-a7a6979c5107,141 +1833-200619-2,6,100,0.05,a1dd98c7-c599-47a6-a3d0-a7a6979c5107,287 +1833-200619-3,6,100,0.05,a1dd98c7-c599-47a6-a3d0-a7a6979c5107,132 +1833-120619-2,6,100,0.05,a1dd98c7-c599-47a6-a3d0-a7a6979c5107,169 +1833-120619-3,6,100,0.05,51e701cf-f68b-4f6f-af66-39c0684a95be,122 +1833-120619-3,6,100,0.05,14d7e477-1bd9-46d5-a949-986f07acf3c1,145 +1833-120619-4,6,100,0.05,5cbb6860-4eae-4fec-a843-47a8e8382971,124 +1833-120619-4,6,100,0.05,4c1e2463-f9f6-4dab-b9e0-b9378df5ace0,85 +1833-120619-4,6,100,0.05,af9363c1-5d00-4763-8c1f-09a172bf0b94,95 +1833-200619-1,6,100,0.05,8fb1a1c7-1a11-44ae-81b2-06bf61a76256,163 +1833-260619-3,6,100,0.05,8fb1a1c7-1a11-44ae-81b2-06bf61a76256,168 +1833-200619-3,6,100,0.05,8fb1a1c7-1a11-44ae-81b2-06bf61a76256,120 +1833-200619-1,6,100,0.05,fadc1045-8c82-47ec-bfbb-7d70c7a50ebf,171 +1833-200619-1,6,100,0.05,c8ca3337-4ca1-4ca5-a75c-8ee1d1b9baa2,206 +1833-200619-3,6,100,0.05,e0b40572-01ac-4903-b1e9-ce520b9c7fc2,150 +1833-200619-2,6,100,0.05,e0b40572-01ac-4903-b1e9-ce520b9c7fc2,327 +1833-200619-4,6,100,0.05,e0b40572-01ac-4903-b1e9-ce520b9c7fc2,121 +1833-200619-1,6,100,0.05,e0b40572-01ac-4903-b1e9-ce520b9c7fc2,240 +1833-200619-2,6,100,0.05,701a1fd0-2f3a-46a1-883b-39b5555bee85,28 +1833-200619-2,6,100,0.05,a6671db9-b5f9-4691-b5a6-965e03d65b60,281 +1833-200619-2,6,100,0.05,768f7e2a-2020-42e9-9459-f8f2467e25d8,308 +1833-200619-2,6,100,0.05,08db4688-80b4-47a2-b72c-b6bf662f3339,321 +1833-200619-3,6,100,0.05,e73efb48-f537-4126-82aa-41e0f60f0163,75 +1833-200619-4,6,100,0.05,1ceaa126-bfe7-475a-9be0-241972372387,101 +1833-200619-4,6,100,0.05,273119b7-f646-4c81-8253-b017ffe6dd0f,109 +1833-200619-4,6,100,0.05,5988405c-8553-47ea-8891-7aced9399023,80 +1833-200619-4,6,100,0.05,90f14ad8-d619-49b6-9d28-b036cf83b2d7,89 +1833-260619-4,6,100,0.05,8b6af255-04e8-4a7d-b5b0-81c29cafee65,182 +1833-260619-1,6,100,0.05,8b6af255-04e8-4a7d-b5b0-81c29cafee65,102 +1833-260619-1,6,100,0.05,1dcb0956-d715-4444-ad3a-04c83897aff7,108 +1833-260619-1,6,100,0.05,57683688-354c-4720-808a-f0c3d29e0509,112 +1833-260619-2,6,100,0.05,62e326d7-e0d4-4f39-944c-efc1b729386a,140 +1833-260619-2,6,100,0.05,9b323d4c-4865-4dc1-adfe-6d2fc240d83f,144 +1833-260619-2,6,100,0.05,5dd9a9b5-ff86-43b7-89c5-227cb14be55d,156 +1833-260619-2,6,100,0.05,ed2d1491-6a33-4c00-817e-a05f23bbe734,170 +1833-260619-3,6,100,0.05,c7382e7d-ff95-42ee-ac53-54e0df6d8737,142 +1833-260619-4,6,100,0.05,e290f24a-e465-44ff-a607-5f7717cf113b,184 +1833-260619-4,6,100,0.05,beb9e917-6f26-42b1-8939-62b2990f717d,200 +1833-260619-4,6,100,0.05,e1d3d737-d8dd-431d-99d2-da8ce1144845,214 +1833-260619-4,6,100,0.05,2c72422f-acab-4068-ab2a-84b8d581a32e,218 +1833-260619-4,6,100,0.05,5defd353-aaea-49f0-be5a-291a41487d85,80 +1833-290519-1,6,100,0.05,856d02a5-0ec3-4d00-9710-f400e26ee04e,124 +1833-290519-1,6,100,0.05,6912c2be-4a49-45e5-9bd2-c1f689e1ae5e,132 +1833-290519-1,6,100,0.05,1ae94207-ffdd-4234-b394-4a4046b73a1f,142 +1833-290519-1,6,100,0.05,f34356c9-f8b6-4723-b219-8ebcc3a390a6,150 +1833-290519-1,6,100,0.05,6352234c-4b88-42aa-94d2-fe8b1aa2cdcc,154 +1833-290519-1,6,100,0.05,fa41374b-4a1e-4d63-a074-0b1c2c2abe07,166 +1833-290519-1,6,100,0.05,37221be7-5431-4faa-8859-d6db5db7c8aa,89 +1833-290519-2,6,100,0.05,8caf567c-da89-427d-9eae-3fdaf851ad03,76 +1833-290519-3,6,100,0.05,fd3e7dc6-10c9-4fe1-a438-5df7f6fa23fb,117 +1833-290519-3,6,100,0.05,883343b0-50f9-4b62-96c0-4faac0cf307f,123 +1833-290519-3,6,100,0.05,33a55fd7-62c6-4e00-8010-366c7c0a012c,134 +1833-290519-3,6,100,0.05,99650afb-b2b8-471a-b1b4-05aeacf571d5,136 +1833-290519-3,6,100,0.05,8b7e4058-a6ad-4da3-9df6-ccfbb4e06ce6,140 +1833-290519-3,6,100,0.05,2b0a3410-e52a-43a0-ab1d-a015620ea384,144 +1833-290519-4,6,100,0.05,476272bd-e42a-4855-a4e9-b40605ff7b25,65 +1833-290519-4,6,100,0.05,bcf432ca-b3d7-429d-b7c6-e6894543ef25,79 +1833-290519-4,6,100,0.05,1b0bc8ba-8a28-4278-98bc-efc0c62e4bc4,90 +1833-010719-1,7,100,0.05,81a042b6-eb75-46e2-845d-728029180a02,114 +1833-010719-2,7,100,0.05,c24d04bb-41cd-46ff-ad5e-30ba5b54628d,217 +1833-010719-1,7,100,0.05,c24d04bb-41cd-46ff-ad5e-30ba5b54628d,132 +1833-010719-1,7,100,0.05,64117f01-9739-4935-9c5e-27008d218010,54 +1833-010719-2,7,100,0.05,38a8761f-af3d-46e1-bd3d-6768a357a7cf,211 +1833-010719-2,7,100,0.05,e9c5b7ef-eb33-4259-8af0-078dff660617,213 +1833-050619-2,7,100,0.05,c8eed481-6f86-49eb-8873-19438532a60b,66 +1833-050619-3,7,100,0.05,c8eed481-6f86-49eb-8873-19438532a60b,105 +1833-060619-1,7,100,0.05,f674b24d-c6aa-41f6-97d9-7c18c604b189,139 +1833-060619-2,7,100,0.05,2fdcd7a4-b2bd-40f4-bdb5-0b507b517576,58 +1833-120619-2,7,100,0.05,5e2b1eb8-19a4-498f-b04a-b7ad75fd26d9,85 +1833-120619-3,7,100,0.05,0fe01680-7805-4336-8ab4-8227534bc769,120 +1833-120619-4,7,100,0.05,72a9a2e5-aaa1-48af-95ba-99ff4001abf9,65 +1833-200619-2,7,100,0.05,ad1c84b9-c993-45d5-9ddd-adbe0ba3835a,261 +1833-200619-1,7,100,0.05,ad1c84b9-c993-45d5-9ddd-adbe0ba3835a,143 +1833-200619-4,7,100,0.05,ad1c84b9-c993-45d5-9ddd-adbe0ba3835a,68 +1833-200619-3,7,100,0.05,ad1c84b9-c993-45d5-9ddd-adbe0ba3835a,65 +1833-200619-2,7,100,0.05,57ab6144-722c-4cda-9ff7-9abc28614960,203 +1833-200619-2,7,100,0.05,ffa972af-d5fb-4933-bf31-51cb2ed303b0,204 +1833-200619-3,7,100,0.05,68a4f6cc-dc27-4968-b504-c3f769c3592d,53 +1833-260619-1,7,100,0.05,79c7ee61-958b-4d2c-9d28-3dc6b36033fd,98 +1833-260619-3,7,100,0.05,cedce2cf-4d8b-4bcf-a464-f3d156edb8ea,103 +1833-260619-3,7,100,0.05,fa34e311-73f7-41f6-8045-52cdf2e3947f,105 +1833-260619-4,7,100,0.05,dea074a5-0fad-48f6-b3d3-70effdcea4d2,177 +1833-290519-1,7,100,0.05,bce741f6-677f-450d-acf2-2dc039f4e989,106 +1833-290519-1,7,100,0.05,5909725d-7d36-4512-962b-a4bcba635a62,116 +1833-290519-1,7,100,0.05,b6d5646e-aa0b-4660-981e-8e73dfd8db3f,129 +1833-290519-1,7,100,0.05,6a4b7644-cb36-4b87-9ddc-625ecf513399,136 +1833-290519-1,7,100,0.05,7cb62460-3317-4050-b2fb-81fff42ba1fa,74 +1833-290519-3,7,100,0.05,3f4d6207-4485-4c1a-80fa-cab877be4f08,74 +1833-290519-1,7,100,0.05,3f4d6207-4485-4c1a-80fa-cab877be4f08,82 +1833-290519-2,7,100,0.05,b86470fd-018b-46ed-ae50-ddd223e98e52,126 +1833-290519-2,7,100,0.05,2c57511e-7080-4c99-8213-134f033b06d7,130 +1833-290519-2,7,100,0.05,23c52697-d8ea-4f9c-beea-e59b675bc216,97 +1833-290519-2,7,100,0.05,e06eb161-5528-4f97-9478-07b990e629e5,98 +1833-290519-3,7,100,0.05,672e89a0-22b1-4e86-9e0f-e5f993576cb2,99 +1833-290519-4,7,100,0.05,633fb248-48ea-47dc-9729-e34f508f8a24,67 +1833-290519-4,7,100,0.05,352cb718-3543-4ca5-97cd-704d44410e3a,75 +1833-290519-4,7,100,0.05,edf97beb-f31a-494e-b5f2-cd7e673ce826,77 +1833-290519-4,7,100,0.05,88baa61a-ce5e-4c27-91f1-eb71bcb43b8e,94 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml index 5ea36469d..acb2bbfce 100644 --- a/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml +++ b/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml @@ -66,84 +66,84 @@ _adj: - *id001 - !!binary | QIy0K8yKyD8= - 1834-110319-6_10: &id060 + 1834-110319-6_98: &id058 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5ZLxA1plzz8= - 1834-120319-1_1: &id079 + CcJvTuLIzj8= + 1834-120319-1_1: &id068 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z63pX+pCwD8= - 1834-120319-2_39: &id090 + 1834-120319-2_39: &id079 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cTlfkmOhwD8= - 1834-120319-3_36: &id102 + 1834-120319-3_36: &id091 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cLy4psVPxD8= - 1834-120319-4_85: &id115 + 1834-120319-4_85: &id104 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ddu6T4qPwT8= - 1834-150319-2_2: &id144 + 1834-150319-2_2: &id118 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w3roqjl+xz8= - 1834-150319-3_71: &id160 + 1834-150319-3_71: &id133 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | s3fhIIrDwz8= - 1834-150319-4_0: &id183 + 1834-150319-4_0: &id154 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0+Ob+fNnxT8= - 1834-220319-1_81: &id201 + 1834-220319-1_81: &id171 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | My4aEXsovz8= - 1834-220319-2_1: &id227 + 1834-220319-2_1: &id195 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TJMNejcdwz8= - 1834-220319-3_1: &id247 + 1834-220319-3_1: &id214 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /vJ4pJHgxD8= - 1834-220319-4_0: &id268 + 1834-220319-4_0: &id234 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -179,28 +179,14 @@ _adj: - *id001 - !!binary | 8aWHmcU/3z8= - 1834-110319-6_38: &id072 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VT3goIWwzj8= - 1834-150319-1_3: &id129 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - yc72JWT+0T8= - 1834-150319-3_75: &id175 + 1834-150319-3_75: &id147 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2o75Jt2Hzz8= - 1834-220319-1_87: &id219 + 1834-220319-1_87: &id189 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -265,91 +251,84 @@ _adj: - *id001 - !!binary | CQFhxbA+tT8= - 1834-110319-6_10: &id061 + 1834-110319-6_98: &id059 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ctHsskZgwz8= - 1834-120319-1_1: &id080 + YJvwO0hhwz8= + 1834-120319-1_1: &id069 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZUQ1H4u/zz8= - 1834-120319-2_39: &id091 + 1834-120319-2_39: &id080 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k83g2KWyzz8= - 1834-120319-3_36: &id103 + 1834-120319-3_36: &id092 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /3KYvalX0D8= - 1834-120319-4_85: &id116 + 1834-120319-4_85: &id105 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dibqEyxkzz8= - 1834-150319-1_3: &id130 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Kclpzgtr1D8= - 1834-150319-2_2: &id145 + 1834-150319-2_2: &id119 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1LMssm7R0D8= - 1834-150319-3_75: &id176 + 1834-150319-3_75: &id148 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pbN33WKi0T8= - 1834-150319-4_0: &id184 + 1834-150319-4_0: &id155 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BmI4PUqA0D8= - 1834-220319-1_87: &id220 + 1834-220319-1_87: &id190 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cheaDaH10z8= - 1834-220319-2_1: &id228 + 1834-220319-2_1: &id196 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TNDwZ8Zl0D8= - 1834-220319-3_1: &id248 + 1834-220319-3_1: &id215 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IMQbtVqq0D8= - 1834-220319-4_0: &id269 + 1834-220319-4_0: &id235 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -379,21 +358,14 @@ _adj: - *id001 - !!binary | LTEk+4Zz1j8= - 1834-110319-6_38: &id073 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - WgBlNlP30T8= - 1834-150319-3_71: &id161 + 1834-150319-3_71: &id134 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | I/Vi1xH90z8= - 1834-220319-1_81: &id202 + 1834-220319-1_81: &id172 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -408,13 +380,6 @@ _adj: - *id001 - !!binary | 4CuVbeDR0T8= - 1834-110319-6_1: &id058 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - w9y+tCqU0j8= 1834-010319-4_7: 1834-010319-1_2: *id004 1834-010319-3_1: *id005 @@ -467,91 +432,84 @@ _adj: - *id001 - !!binary | 1+da4X+DsT8= - 1834-110319-6_10: &id062 + 1834-110319-6_98: &id060 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ni+uS5ONuj8= - 1834-120319-1_1: &id081 + DykWsfkXvD8= + 1834-120319-1_1: &id070 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Et2D/EhJyz8= - 1834-120319-2_39: &id092 + 1834-120319-2_39: &id081 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VAPpC3pcyz8= - 1834-120319-3_36: &id104 + 1834-120319-3_36: &id093 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /ve2pMCyyz8= - 1834-120319-4_85: &id117 + 1834-120319-4_85: &id106 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KJmXfFHmyj8= - 1834-150319-1_3: &id131 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LMomspEb0T8= - 1834-150319-2_2: &id146 + 1834-150319-2_2: &id120 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | asp7CIfRzD8= - 1834-150319-3_71: &id162 + 1834-150319-3_71: &id135 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q4abIFRqzT8= - 1834-150319-4_0: &id185 + 1834-150319-4_0: &id156 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3JORnjQ+zD8= - 1834-220319-1_81: &id203 + 1834-220319-1_81: &id173 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4aAiA3ubyz8= - 1834-220319-2_1: &id229 + 1834-220319-2_1: &id197 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4CXxvWsVzD8= - 1834-220319-3_1: &id249 + 1834-220319-3_1: &id216 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jnhDIUaSzD8= - 1834-220319-4_0: &id270 + 1834-220319-4_0: &id236 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -604,91 +562,84 @@ _adj: - *id001 - !!binary | CbBJIeLXrT8= - 1834-110319-6_10: &id063 + 1834-110319-6_98: &id061 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - mKE3KSzNuj8= - 1834-120319-1_1: &id082 + XhinORmquz8= + 1834-120319-1_1: &id071 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tadxyDl+yD8= - 1834-120319-2_39: &id093 + 1834-120319-2_39: &id082 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q3dylxSKyD8= - 1834-120319-3_36: &id105 + 1834-120319-3_36: &id094 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PWWPhec2yT8= - 1834-120319-4_85: &id118 + 1834-120319-4_85: &id107 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iDCpRER6yD8= - 1834-150319-1_3: &id132 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 5tKnoonVzz8= - 1834-150319-2_2: &id147 + 1834-150319-2_2: &id121 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zzL7nXzFyj8= - 1834-150319-3_71: &id163 + 1834-150319-3_71: &id136 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IGGjxJBJyj8= - 1834-150319-4_0: &id186 + 1834-150319-4_0: &id157 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | F1J3S2LOyT8= - 1834-220319-1_81: &id204 + 1834-220319-1_81: &id174 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | x2xxdtstyD8= - 1834-220319-2_1: &id230 + 1834-220319-2_1: &id198 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NPN5KDmwyD8= - 1834-220319-3_1: &id250 + 1834-220319-3_1: &id217 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | G7YUubxmyT8= - 1834-220319-4_0: &id271 + 1834-220319-4_0: &id237 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -704,59 +655,24 @@ _adj: - *id001 - !!binary | MZyAdhD4zz8= - 1834-110319-6_32: &id071 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - MU1QoUn6zT8= - 1834-150319-3_75: &id177 + 1834-150319-3_75: &id149 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lgov4Sst0D8= - 1834-220319-1_87: &id221 + 1834-220319-1_87: &id191 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bNxui+Af0D8= - 1834-060319-1_71: - 1834-110319-6_4: &id076 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - MkDB0g+q1j8= - 1834-060319-1_72: - 1834-110319-6_7: &id077 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - lP/AtqnxxT8= - 1834-060319-1_73: - 1834-110319-6_2: &id070 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - yzo6541yoz8= - 1834-060319-1_74: - 1834-110319-6_8: &id078 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - FbGt7Sf71D8= + 1834-060319-1_71: {} + 1834-060319-1_72: {} + 1834-060319-1_73: {} + 1834-060319-1_74: {} 1834-060319-1_79: 1834-010319-1_39: *id010 1834-010319-3_1: *id011 @@ -767,13 +683,6 @@ _adj: - *id001 - !!binary | DJVoFBoKyD8= - 1834-110319-6_38: &id074 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - q1nwqSwe0T8= 1834-060319-3_4: 1834-010319-1_2: *id012 1834-010319-3_1: *id013 @@ -814,91 +723,84 @@ _adj: - *id001 - !!binary | QTeSKO5qvz8= - 1834-110319-6_10: &id064 + 1834-110319-6_98: &id062 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - VnrY0+OCxD8= - 1834-120319-1_1: &id083 + inEsIAMaxj8= + 1834-120319-1_1: &id072 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NO5Kvf2T0T8= - 1834-120319-2_39: &id094 + 1834-120319-2_39: &id083 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | h4tm7nF/0T8= - 1834-120319-3_36: &id106 + 1834-120319-3_36: &id095 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CiICfWer0T8= - 1834-120319-4_85: &id119 + 1834-120319-4_85: &id108 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DsY75wCU0T8= - 1834-150319-1_3: &id133 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - QGYassd50z8= - 1834-150319-2_2: &id148 + 1834-150319-2_2: &id122 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | INq+TG8h0j8= - 1834-150319-3_71: &id164 + 1834-150319-3_71: &id137 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YHRFNt860j8= - 1834-150319-4_0: &id187 + 1834-150319-4_0: &id158 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mfTpN86k0T8= - 1834-220319-1_81: &id205 + 1834-220319-1_81: &id175 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uhPUgx8c0T8= - 1834-220319-2_1: &id231 + 1834-220319-2_1: &id199 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ClalXYfm0D8= - 1834-220319-3_1: &id251 + 1834-220319-3_1: &id218 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mGKEEmYX0T8= - 1834-220319-4_0: &id272 + 1834-220319-4_0: &id238 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -939,91 +841,84 @@ _adj: - *id001 - !!binary | 0oUJE23CsD8= - 1834-110319-6_10: &id065 + 1834-110319-6_98: &id063 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 2M34cm7uuT8= - 1834-120319-1_1: &id084 + 4oKfMYVDuz8= + 1834-120319-1_1: &id073 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IEXdZVusyD8= - 1834-120319-2_39: &id095 + 1834-120319-2_39: &id084 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d2ubOgCnyD8= - 1834-120319-3_36: &id107 + 1834-120319-3_36: &id096 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9xz5fNJXyT8= - 1834-120319-4_85: &id120 + 1834-120319-4_85: &id109 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3JFWxHmgyD8= - 1834-150319-1_3: &id134 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - cUowc58m0D8= - 1834-150319-2_2: &id149 + 1834-150319-2_2: &id123 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | s+KddH/gyj8= - 1834-150319-3_71: &id165 + 1834-150319-3_71: &id138 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hcQmG7enyj8= - 1834-150319-4_0: &id188 + 1834-150319-4_0: &id159 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pFPaTYfxyT8= - 1834-220319-1_81: &id206 + 1834-220319-1_81: &id176 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cdye0nuUyD8= - 1834-220319-2_1: &id232 + 1834-220319-2_1: &id200 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gsu22qYXyT8= - 1834-220319-3_1: &id252 + 1834-220319-3_1: &id219 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uQ5MprrUyT8= - 1834-220319-4_0: &id273 + 1834-220319-4_0: &id239 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1041,21 +936,14 @@ _adj: - *id001 - !!binary | 5VIKKCp/0T8= - 1834-110319-6_38: &id075 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - CNp0I1Rk0j8= - 1834-150319-3_75: &id178 + 1834-150319-3_75: &id150 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UsjYr81q1z8= - 1834-220319-1_87: &id222 + 1834-220319-1_87: &id192 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1090,91 +978,84 @@ _adj: - *id001 - !!binary | TPbxYEMRoD8= - 1834-110319-6_10: &id066 + 1834-110319-6_98: &id064 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - UqiqdwLZvj8= - 1834-120319-1_1: &id085 + J80W7sdOvz8= + 1834-120319-1_1: &id074 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9/+xvFMbyT8= - 1834-120319-2_39: &id096 + 1834-120319-2_39: &id085 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Vrff0UNWyT8= - 1834-120319-3_36: &id108 + 1834-120319-3_36: &id097 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bQk9k0MZyj8= - 1834-120319-4_85: &id121 + 1834-120319-4_85: &id110 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SUSHrnomyT8= - 1834-150319-1_3: &id135 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - +TBLik1i0D8= - 1834-150319-2_2: &id150 + 1834-150319-2_2: &id124 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Y9R1f4eNyz8= - 1834-150319-3_71: &id166 + 1834-150319-3_71: &id139 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oRJ/daUJyz8= - 1834-150319-4_0: &id189 + 1834-150319-4_0: &id160 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fem4UFSqyj8= - 1834-220319-1_81: &id207 + 1834-220319-1_81: &id177 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R3wk6eSuyD8= - 1834-220319-2_1: &id233 + 1834-220319-2_1: &id201 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lHByfoCEyT8= - 1834-220319-3_1: &id253 + 1834-220319-3_1: &id220 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +AA4Vl4byj8= - 1834-220319-4_0: &id274 + 1834-220319-4_0: &id240 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1203,91 +1084,84 @@ _adj: - *id001 - !!binary | yhoRl89ypz8= - 1834-110319-6_10: &id067 + 1834-110319-6_98: &id065 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ipWAOLO4wT8= - 1834-120319-1_1: &id086 + PZpuQ6OFwT8= + 1834-120319-1_1: &id075 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uG9nxCoEyT8= - 1834-120319-2_39: &id097 + 1834-120319-2_39: &id086 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NsZl/f47yT8= - 1834-120319-3_36: &id109 + 1834-120319-3_36: &id098 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A0fxjhcvyj8= - 1834-120319-4_85: &id122 + 1834-120319-4_85: &id111 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ua5yfyr2yD8= - 1834-150319-1_3: &id136 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 641MUxOY0D8= - 1834-150319-2_2: &id151 + 1834-150319-2_2: &id125 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bA8Kr5SNyz8= - 1834-150319-3_71: &id167 + 1834-150319-3_71: &id140 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5nqI+fzvyj8= - 1834-150319-4_0: &id190 + 1834-150319-4_0: &id161 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k9OQifHGyj8= - 1834-220319-1_81: &id208 + 1834-220319-1_81: &id178 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ef/GvdO2yD8= - 1834-220319-2_1: &id234 + 1834-220319-2_1: &id202 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ux3X/tzUyT8= - 1834-220319-3_1: &id254 + 1834-220319-3_1: &id221 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Gj15vsSJyj8= - 1834-220319-4_0: &id275 + 1834-220319-4_0: &id241 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1299,21 +1173,14 @@ _adj: 1834-010319-3_12: *id038 1834-060319-1_70: *id039 1834-110319-1_0: *id040 - 1834-110319-6_1: &id059 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - v3sU3bMa0j8= - 1834-150319-3_75: &id179 + 1834-150319-3_75: &id151 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ycBkiEal2j8= - 1834-220319-1_87: &id223 + 1834-220319-1_87: &id193 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1336,91 +1203,84 @@ _adj: - *id001 - !!binary | Y2M3sxZ6mD8= - 1834-110319-6_10: &id068 + 1834-110319-6_98: &id066 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - tXnmyNXlvT8= - 1834-120319-1_1: &id087 + D4C/J93wvT8= + 1834-120319-1_1: &id076 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jn+XEyWHyD8= - 1834-120319-2_39: &id098 + 1834-120319-2_39: &id087 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LYwTS263yD8= - 1834-120319-3_36: &id110 + 1834-120319-3_36: &id099 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8jjFDI6RyT8= - 1834-120319-4_85: &id123 + 1834-120319-4_85: &id112 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | B2c8fBx8yD8= - 1834-150319-1_3: &id137 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - w2p/Jex40D8= - 1834-150319-2_2: &id152 + 1834-150319-2_2: &id126 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | x+8BzsYLyz8= - 1834-150319-3_71: &id168 + 1834-150319-3_71: &id141 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eZbNS36Zyj8= - 1834-150319-4_0: &id191 + 1834-150319-4_0: &id162 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | M/050tI0yj8= - 1834-220319-1_81: &id209 + 1834-220319-1_81: &id179 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uhK8zSFHyD8= - 1834-220319-2_1: &id235 + 1834-220319-2_1: &id203 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sSKstlUryT8= - 1834-220319-3_1: &id255 + 1834-220319-3_1: &id222 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Cx5M7d3kyT8= - 1834-220319-4_0: &id276 + 1834-220319-4_0: &id242 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1437,234 +1297,261 @@ _adj: 1834-110319-1_65: *id055 1834-110319-2_108: *id056 1834-110319-3_101: *id057 - 1834-110319-6_10: &id069 + 1834-110319-6_98: &id067 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - oiLqgTWavT8= - 1834-120319-1_1: &id088 + gOatnK+kvT8= + 1834-120319-1_1: &id077 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TkvpCEdEyD8= - 1834-120319-2_39: &id099 + 1834-120319-2_39: &id088 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sUyhXstmyD8= - 1834-120319-3_36: &id111 + 1834-120319-3_36: &id100 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 87ymZshIyT8= - 1834-120319-4_85: &id124 + 1834-120319-4_85: &id113 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | V1p4M0wxyD8= - 1834-150319-1_3: &id138 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - w74fC09B0D8= - 1834-150319-2_2: &id153 + 1834-150319-2_2: &id127 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Yxkjs1Kfyj8= - 1834-150319-3_71: &id169 + 1834-150319-3_71: &id142 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7vNgD8M6yj8= - 1834-150319-4_0: &id192 + 1834-150319-4_0: &id163 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | USU0eOvdyT8= - 1834-220319-1_81: &id210 + 1834-220319-1_81: &id180 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PUjsNA0UyD8= - 1834-220319-2_1: &id236 + 1834-220319-2_1: &id204 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dd755KriyD8= - 1834-220319-3_1: &id256 + 1834-220319-3_1: &id223 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mk3naO2cyT8= - 1834-220319-4_0: &id277 + 1834-220319-4_0: &id243 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tdxLKsPLyT8= - 1834-110319-6_0: {} - 1834-110319-6_1: - 1834-010319-3_72: *id058 - 1834-110319-2_11: *id059 - 1834-110319-6_10: - 1834-010319-1_2: *id060 - 1834-010319-3_1: *id061 - 1834-010319-4_7: *id062 - 1834-060319-1_7: *id063 - 1834-060319-3_4: *id064 - 1834-060319-4_3: *id065 - 1834-110319-1_65: *id066 - 1834-110319-2_108: *id067 - 1834-110319-3_101: *id068 - 1834-110319-5_98: *id069 - 1834-120319-1_1: &id089 + 1834-110319-6_98: + 1834-010319-1_2: *id058 + 1834-010319-3_1: *id059 + 1834-010319-4_7: *id060 + 1834-060319-1_7: *id061 + 1834-060319-3_4: *id062 + 1834-060319-4_3: *id063 + 1834-110319-1_65: *id064 + 1834-110319-2_108: *id065 + 1834-110319-3_101: *id066 + 1834-110319-5_98: *id067 + 1834-120319-1_1: &id078 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - op2vx/ESyz8= - 1834-120319-2_39: &id100 + af3XBly+yj8= + 1834-120319-2_39: &id089 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - FCeISSbwyj8= - 1834-120319-3_36: &id112 + bRvr1K/Byj8= + 1834-120319-3_36: &id101 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - nJn9KknByT8= - 1834-120319-4_85: &id125 + 6CMDBSViyT8= + 1834-120319-4_85: &id114 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - yE2mOsjGyT8= - 1834-150319-1_3: &id139 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ZXYA8DKbzz8= - 1834-150319-2_2: &id154 + gmiJ5B9TyT8= + 1834-150319-2_2: &id128 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +N5j0+YLyj8= - 1834-150319-3_75: &id180 + EA+XyJOhyT8= + 1834-150319-3_75: &id152 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IJDcTi02yz8= - 1834-150319-4_0: &id193 + nKgOl0ocyz8= + 1834-150319-4_0: &id164 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sdUw+ikoyj8= - 1834-220319-1_81: &id211 + t89zMG7UyT8= + 1834-220319-1_81: &id181 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - a+dB4pYiyj8= - 1834-220319-2_1: &id237 + OJpJ6XyTyT8= + 1834-220319-2_1: &id205 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rJxc1mrhyj8= - 1834-220319-3_1: &id257 + BmFCcJ9Xyj8= + 1834-220319-3_1: &id224 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qxx9sKcOzD8= - 1834-220319-4_0: &id278 + YHnGw8f+yz8= + 1834-220319-4_0: &id244 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 3GCpCOyAzD8= - 1834-110319-6_13: {} - 1834-110319-6_15: {} - 1834-110319-6_2: - 1834-060319-1_73: *id070 - 1834-110319-6_3: {} - 1834-110319-6_32: - 1834-060319-1_70: *id071 - 1834-110319-6_33: {} - 1834-110319-6_34: {} - 1834-110319-6_38: - 1834-010319-1_39: *id072 - 1834-010319-3_12: *id073 - 1834-060319-1_79: *id074 - 1834-110319-1_0: *id075 - 1834-150319-3_71: &id170 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ew3HZIF/zz8= - 1834-220319-1_87: &id224 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - D2TjboQ+0D8= - 1834-110319-6_4: - 1834-060319-1_71: *id076 - 1834-110319-6_5: {} - 1834-110319-6_6: {} - 1834-110319-6_7: - 1834-060319-1_72: *id077 - 1834-110319-6_8: - 1834-060319-1_74: *id078 - 1834-110319-6_9: {} + lDmfgiqbzD8= 1834-120319-1_1: + 1834-010319-1_2: *id068 + 1834-010319-3_1: *id069 + 1834-010319-4_7: *id070 + 1834-060319-1_7: *id071 + 1834-060319-3_4: *id072 + 1834-060319-4_3: *id073 + 1834-110319-1_65: *id074 + 1834-110319-2_108: *id075 + 1834-110319-3_101: *id076 + 1834-110319-5_98: *id077 + 1834-110319-6_98: *id078 + 1834-120319-2_39: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9h18cx0EkT8= + 1834-120319-3_36: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aIX5iPpAqD8= + 1834-120319-4_85: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xMIXGCxAnD8= + 1834-150319-2_2: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CbhNgu1wtj8= + 1834-150319-3_71: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1oEdGKfCqT8= + 1834-150319-4_0: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ihm/9ZOZrT8= + 1834-220319-1_81: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PrxVS9Ujqz8= + 1834-220319-2_1: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rn+bXiLUrT8= + 1834-220319-3_1: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OgcleZfErj8= + 1834-220319-4_0: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZnFt+LA2sj8= + 1834-120319-2_39: 1834-010319-1_2: *id079 1834-010319-3_1: *id080 1834-010319-4_7: *id081 @@ -1675,161 +1562,65 @@ _adj: 1834-110319-2_108: *id086 1834-110319-3_101: *id087 1834-110319-5_98: *id088 - 1834-110319-6_10: *id089 - 1834-120319-2_39: &id101 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9h18cx0EkT8= - 1834-120319-3_36: &id113 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - aIX5iPpAqD8= - 1834-120319-4_85: &id126 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - xMIXGCxAnD8= - 1834-150319-1_3: &id140 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 4e/Dvd5Dyz8= - 1834-150319-2_2: &id155 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - CbhNgu1wtj8= - 1834-150319-3_71: &id171 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 1oEdGKfCqT8= - 1834-150319-4_0: &id194 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Ihm/9ZOZrT8= - 1834-220319-1_81: &id212 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - PrxVS9Ujqz8= - 1834-220319-2_1: &id238 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - rn+bXiLUrT8= - 1834-220319-3_1: &id258 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - OgcleZfErj8= - 1834-220319-4_0: &id279 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ZnFt+LA2sj8= - 1834-120319-2_39: - 1834-010319-1_2: *id090 - 1834-010319-3_1: *id091 - 1834-010319-4_7: *id092 - 1834-060319-1_7: *id093 - 1834-060319-3_4: *id094 - 1834-060319-4_3: *id095 - 1834-110319-1_65: *id096 - 1834-110319-2_108: *id097 - 1834-110319-3_101: *id098 - 1834-110319-5_98: *id099 - 1834-110319-6_10: *id100 - 1834-120319-1_1: *id101 - 1834-120319-3_36: &id114 + 1834-110319-6_98: *id089 + 1834-120319-1_1: *id090 + 1834-120319-3_36: &id103 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JPC9LTwJpz8= - 1834-120319-4_85: &id127 + 1834-120319-4_85: &id116 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bK0e1uSqmz8= - 1834-150319-1_3: &id141 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9qnnjt9Zyj8= - 1834-150319-2_2: &id156 + 1834-150319-2_2: &id130 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NuOXzh+AtT8= - 1834-150319-3_71: &id172 + 1834-150319-3_71: &id144 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2vPatr2uqD8= - 1834-150319-4_0: &id195 + 1834-150319-4_0: &id166 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LL/jwPL5qz8= - 1834-220319-1_81: &id213 + 1834-220319-1_81: &id183 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2mE96JgYqz8= - 1834-220319-2_1: &id239 + 1834-220319-2_1: &id207 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HTko5KXHqz8= - 1834-220319-3_1: &id259 + 1834-220319-3_1: &id226 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EQw+QYfErD8= - 1834-220319-4_0: &id280 + 1834-220319-4_0: &id246 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1837,76 +1628,69 @@ _adj: - !!binary | B363Uw8HsT8= 1834-120319-3_36: - 1834-010319-1_2: *id102 - 1834-010319-3_1: *id103 - 1834-010319-4_7: *id104 - 1834-060319-1_7: *id105 - 1834-060319-3_4: *id106 - 1834-060319-4_3: *id107 - 1834-110319-1_65: *id108 - 1834-110319-2_108: *id109 - 1834-110319-3_101: *id110 - 1834-110319-5_98: *id111 - 1834-110319-6_10: *id112 - 1834-120319-1_1: *id113 - 1834-120319-2_39: *id114 - 1834-120319-4_85: &id128 + 1834-010319-1_2: *id091 + 1834-010319-3_1: *id092 + 1834-010319-4_7: *id093 + 1834-060319-1_7: *id094 + 1834-060319-3_4: *id095 + 1834-060319-4_3: *id096 + 1834-110319-1_65: *id097 + 1834-110319-2_108: *id098 + 1834-110319-3_101: *id099 + 1834-110319-5_98: *id100 + 1834-110319-6_98: *id101 + 1834-120319-1_1: *id102 + 1834-120319-2_39: *id103 + 1834-120319-4_85: &id117 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g5VqyShdoj8= - 1834-150319-1_3: &id142 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - eA/2TTeRyD8= - 1834-150319-2_2: &id157 + 1834-150319-2_2: &id131 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d8Wt/0k+qj8= - 1834-150319-3_71: &id173 + 1834-150319-3_71: &id145 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kIWMbn4Hpz8= - 1834-150319-4_0: &id196 + 1834-150319-4_0: &id167 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sWSaQfm6lD8= - 1834-220319-1_81: &id214 + 1834-220319-1_81: &id184 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GNr6ne2NtT8= - 1834-220319-2_1: &id240 + 1834-220319-2_1: &id208 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fuV/ENsKsz8= - 1834-220319-3_1: &id260 + 1834-220319-3_1: &id227 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J4OU7+zQrz8= - 1834-220319-4_0: &id281 + 1834-220319-4_0: &id247 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1914,194 +1698,121 @@ _adj: - !!binary | Hyo/5UtEtD8= 1834-120319-4_85: - 1834-010319-1_2: *id115 - 1834-010319-3_1: *id116 - 1834-010319-4_7: *id117 - 1834-060319-1_7: *id118 - 1834-060319-3_4: *id119 - 1834-060319-4_3: *id120 - 1834-110319-1_65: *id121 - 1834-110319-2_108: *id122 - 1834-110319-3_101: *id123 - 1834-110319-5_98: *id124 - 1834-110319-6_10: *id125 - 1834-120319-1_1: *id126 - 1834-120319-2_39: *id127 - 1834-120319-3_36: *id128 - 1834-150319-1_3: &id143 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 7r7GrJCCyj8= - 1834-150319-2_2: &id158 + 1834-010319-1_2: *id104 + 1834-010319-3_1: *id105 + 1834-010319-4_7: *id106 + 1834-060319-1_7: *id107 + 1834-060319-3_4: *id108 + 1834-060319-4_3: *id109 + 1834-110319-1_65: *id110 + 1834-110319-2_108: *id111 + 1834-110319-3_101: *id112 + 1834-110319-5_98: *id113 + 1834-110319-6_98: *id114 + 1834-120319-1_1: *id115 + 1834-120319-2_39: *id116 + 1834-120319-3_36: *id117 + 1834-150319-2_2: &id132 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | depix0FSsj8= - 1834-150319-3_71: &id174 + 1834-150319-3_71: &id146 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5bS7FfKMqz8= - 1834-150319-4_0: &id197 + 1834-150319-4_0: &id168 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kQplI+cJqT8= - 1834-220319-1_81: &id215 + 1834-220319-1_81: &id185 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2YdOeH1Ysj8= - 1834-220319-2_1: &id241 + 1834-220319-2_1: &id209 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | W5PU5mCrsj8= - 1834-220319-3_1: &id261 + 1834-220319-3_1: &id228 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xR8ad5GvsT8= - 1834-220319-4_0: &id282 + 1834-220319-4_0: &id248 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Xmm8qQLQtD8= - 1834-150319-1_3: - 1834-010319-1_39: *id129 - 1834-010319-3_1: *id130 - 1834-010319-4_7: *id131 - 1834-060319-1_7: *id132 - 1834-060319-3_4: *id133 - 1834-060319-4_3: *id134 - 1834-110319-1_65: *id135 - 1834-110319-2_108: *id136 - 1834-110319-3_101: *id137 - 1834-110319-5_98: *id138 - 1834-110319-6_10: *id139 - 1834-120319-1_1: *id140 - 1834-120319-2_39: *id141 - 1834-120319-3_36: *id142 - 1834-120319-4_85: *id143 - 1834-150319-2_2: &id159 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - bE888sYByD8= - 1834-150319-3_75: &id181 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - gTrnIx17xz8= - 1834-150319-4_0: &id198 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - EVH8anw1yD8= - 1834-220319-1_87: &id225 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - /UCGspJTxD8= - 1834-220319-2_1: &id242 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - prr45l7KyD8= - 1834-220319-3_1: &id262 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - XJWDnrH6xz8= - 1834-220319-4_0: &id283 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - x22W/YinyD8= 1834-150319-2_2: - 1834-010319-1_2: *id144 - 1834-010319-3_1: *id145 - 1834-010319-4_7: *id146 - 1834-060319-1_7: *id147 - 1834-060319-3_4: *id148 - 1834-060319-4_3: *id149 - 1834-110319-1_65: *id150 - 1834-110319-2_108: *id151 - 1834-110319-3_101: *id152 - 1834-110319-5_98: *id153 - 1834-110319-6_10: *id154 - 1834-120319-1_1: *id155 - 1834-120319-2_39: *id156 - 1834-120319-3_36: *id157 - 1834-120319-4_85: *id158 - 1834-150319-1_3: *id159 - 1834-150319-3_75: &id182 + 1834-010319-1_2: *id118 + 1834-010319-3_1: *id119 + 1834-010319-4_7: *id120 + 1834-060319-1_7: *id121 + 1834-060319-3_4: *id122 + 1834-060319-4_3: *id123 + 1834-110319-1_65: *id124 + 1834-110319-2_108: *id125 + 1834-110319-3_101: *id126 + 1834-110319-5_98: *id127 + 1834-110319-6_98: *id128 + 1834-120319-1_1: *id129 + 1834-120319-2_39: *id130 + 1834-120319-3_36: *id131 + 1834-120319-4_85: *id132 + 1834-150319-3_75: &id153 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4wU+1aNGtD8= - 1834-150319-4_0: &id199 + 1834-150319-4_0: &id169 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VARSSQ9vpj8= - 1834-220319-1_81: &id216 + 1834-220319-1_81: &id186 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8oci6wk+vj8= - 1834-220319-2_1: &id243 + 1834-220319-2_1: &id210 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hM3SBbI1uz8= - 1834-220319-3_1: &id263 + 1834-220319-3_1: &id229 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FZ4HTkNbtz8= - 1834-220319-4_0: &id284 + 1834-220319-4_0: &id249 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2109,50 +1820,49 @@ _adj: - !!binary | fL49oPwAuz8= 1834-150319-3_71: - 1834-010319-1_2: *id160 - 1834-010319-3_12: *id161 - 1834-010319-4_7: *id162 - 1834-060319-1_7: *id163 - 1834-060319-3_4: *id164 - 1834-060319-4_3: *id165 - 1834-110319-1_65: *id166 - 1834-110319-2_108: *id167 - 1834-110319-3_101: *id168 - 1834-110319-5_98: *id169 - 1834-110319-6_38: *id170 - 1834-120319-1_1: *id171 - 1834-120319-2_39: *id172 - 1834-120319-3_36: *id173 - 1834-120319-4_85: *id174 - 1834-150319-4_0: &id200 + 1834-010319-1_2: *id133 + 1834-010319-3_12: *id134 + 1834-010319-4_7: *id135 + 1834-060319-1_7: *id136 + 1834-060319-3_4: *id137 + 1834-060319-4_3: *id138 + 1834-110319-1_65: *id139 + 1834-110319-2_108: *id140 + 1834-110319-3_101: *id141 + 1834-110319-5_98: *id142 + 1834-120319-1_1: *id143 + 1834-120319-2_39: *id144 + 1834-120319-3_36: *id145 + 1834-120319-4_85: *id146 + 1834-150319-4_0: &id170 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /Vxq2MtOqj8= - 1834-220319-1_81: &id217 + 1834-220319-1_81: &id187 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7rEHC3hXsj8= - 1834-220319-2_1: &id244 + 1834-220319-2_1: &id211 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yAkO9FL+sD8= - 1834-220319-3_1: &id264 + 1834-220319-3_1: &id230 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0JCcOU/ZrT8= - 1834-220319-4_0: &id285 + 1834-220319-4_0: &id250 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2160,15 +1870,14 @@ _adj: - !!binary | u0rCgShjsz8= 1834-150319-3_75: - 1834-010319-1_39: *id175 - 1834-010319-3_1: *id176 - 1834-060319-1_70: *id177 - 1834-110319-1_0: *id178 - 1834-110319-2_11: *id179 - 1834-110319-6_10: *id180 - 1834-150319-1_3: *id181 - 1834-150319-2_2: *id182 - 1834-220319-1_87: &id226 + 1834-010319-1_39: *id147 + 1834-010319-3_1: *id148 + 1834-060319-1_70: *id149 + 1834-110319-1_0: *id150 + 1834-110319-2_11: *id151 + 1834-110319-6_98: *id152 + 1834-150319-2_2: *id153 + 1834-220319-1_87: &id194 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2176,46 +1885,45 @@ _adj: - !!binary | rKxaRcNAxT8= 1834-150319-4_0: - 1834-010319-1_2: *id183 - 1834-010319-3_1: *id184 - 1834-010319-4_7: *id185 - 1834-060319-1_7: *id186 - 1834-060319-3_4: *id187 - 1834-060319-4_3: *id188 - 1834-110319-1_65: *id189 - 1834-110319-2_108: *id190 - 1834-110319-3_101: *id191 - 1834-110319-5_98: *id192 - 1834-110319-6_10: *id193 - 1834-120319-1_1: *id194 - 1834-120319-2_39: *id195 - 1834-120319-3_36: *id196 - 1834-120319-4_85: *id197 - 1834-150319-1_3: *id198 - 1834-150319-2_2: *id199 - 1834-150319-3_71: *id200 - 1834-220319-1_81: &id218 + 1834-010319-1_2: *id154 + 1834-010319-3_1: *id155 + 1834-010319-4_7: *id156 + 1834-060319-1_7: *id157 + 1834-060319-3_4: *id158 + 1834-060319-4_3: *id159 + 1834-110319-1_65: *id160 + 1834-110319-2_108: *id161 + 1834-110319-3_101: *id162 + 1834-110319-5_98: *id163 + 1834-110319-6_98: *id164 + 1834-120319-1_1: *id165 + 1834-120319-2_39: *id166 + 1834-120319-3_36: *id167 + 1834-120319-4_85: *id168 + 1834-150319-2_2: *id169 + 1834-150319-3_71: *id170 + 1834-220319-1_81: &id188 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j1DetI+Rtj8= - 1834-220319-2_1: &id245 + 1834-220319-2_1: &id212 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JxCJjmpBsz8= - 1834-220319-3_1: &id265 + 1834-220319-3_1: &id231 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VFUgitqCrj8= - 1834-220319-4_0: &id286 + 1834-220319-4_0: &id251 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2223,39 +1931,39 @@ _adj: - !!binary | xY4sVk6Zsz8= 1834-220319-1_81: - 1834-010319-1_2: *id201 - 1834-010319-3_12: *id202 - 1834-010319-4_7: *id203 - 1834-060319-1_7: *id204 - 1834-060319-3_4: *id205 - 1834-060319-4_3: *id206 - 1834-110319-1_65: *id207 - 1834-110319-2_108: *id208 - 1834-110319-3_101: *id209 - 1834-110319-5_98: *id210 - 1834-110319-6_10: *id211 - 1834-120319-1_1: *id212 - 1834-120319-2_39: *id213 - 1834-120319-3_36: *id214 - 1834-120319-4_85: *id215 - 1834-150319-2_2: *id216 - 1834-150319-3_71: *id217 - 1834-150319-4_0: *id218 - 1834-220319-2_1: &id246 + 1834-010319-1_2: *id171 + 1834-010319-3_12: *id172 + 1834-010319-4_7: *id173 + 1834-060319-1_7: *id174 + 1834-060319-3_4: *id175 + 1834-060319-4_3: *id176 + 1834-110319-1_65: *id177 + 1834-110319-2_108: *id178 + 1834-110319-3_101: *id179 + 1834-110319-5_98: *id180 + 1834-110319-6_98: *id181 + 1834-120319-1_1: *id182 + 1834-120319-2_39: *id183 + 1834-120319-3_36: *id184 + 1834-120319-4_85: *id185 + 1834-150319-2_2: *id186 + 1834-150319-3_71: *id187 + 1834-150319-4_0: *id188 + 1834-220319-2_1: &id213 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hQRPgSnpoz8= - 1834-220319-3_1: &id266 + 1834-220319-3_1: &id232 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1xioqK7Arj8= - 1834-220319-4_0: &id287 + 1834-220319-4_0: &id252 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2263,43 +1971,40 @@ _adj: - !!binary | YlCIbggfsD8= 1834-220319-1_87: - 1834-010319-1_39: *id219 - 1834-010319-3_1: *id220 - 1834-060319-1_70: *id221 - 1834-110319-1_0: *id222 - 1834-110319-2_11: *id223 - 1834-110319-6_38: *id224 - 1834-150319-1_3: *id225 - 1834-150319-3_75: *id226 + 1834-010319-1_39: *id189 + 1834-010319-3_1: *id190 + 1834-060319-1_70: *id191 + 1834-110319-1_0: *id192 + 1834-110319-2_11: *id193 + 1834-150319-3_75: *id194 1834-220319-2_1: - 1834-010319-1_2: *id227 - 1834-010319-3_1: *id228 - 1834-010319-4_7: *id229 - 1834-060319-1_7: *id230 - 1834-060319-3_4: *id231 - 1834-060319-4_3: *id232 - 1834-110319-1_65: *id233 - 1834-110319-2_108: *id234 - 1834-110319-3_101: *id235 - 1834-110319-5_98: *id236 - 1834-110319-6_10: *id237 - 1834-120319-1_1: *id238 - 1834-120319-2_39: *id239 - 1834-120319-3_36: *id240 - 1834-120319-4_85: *id241 - 1834-150319-1_3: *id242 - 1834-150319-2_2: *id243 - 1834-150319-3_71: *id244 - 1834-150319-4_0: *id245 - 1834-220319-1_81: *id246 - 1834-220319-3_1: &id267 + 1834-010319-1_2: *id195 + 1834-010319-3_1: *id196 + 1834-010319-4_7: *id197 + 1834-060319-1_7: *id198 + 1834-060319-3_4: *id199 + 1834-060319-4_3: *id200 + 1834-110319-1_65: *id201 + 1834-110319-2_108: *id202 + 1834-110319-3_101: *id203 + 1834-110319-5_98: *id204 + 1834-110319-6_98: *id205 + 1834-120319-1_1: *id206 + 1834-120319-2_39: *id207 + 1834-120319-3_36: *id208 + 1834-120319-4_85: *id209 + 1834-150319-2_2: *id210 + 1834-150319-3_71: *id211 + 1834-150319-4_0: *id212 + 1834-220319-1_81: *id213 + 1834-220319-3_1: &id233 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VKZHecb+nz8= - 1834-220319-4_0: &id288 + 1834-220319-4_0: &id253 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2307,28 +2012,27 @@ _adj: - !!binary | D41XmZbrnz8= 1834-220319-3_1: - 1834-010319-1_2: *id247 - 1834-010319-3_1: *id248 - 1834-010319-4_7: *id249 - 1834-060319-1_7: *id250 - 1834-060319-3_4: *id251 - 1834-060319-4_3: *id252 - 1834-110319-1_65: *id253 - 1834-110319-2_108: *id254 - 1834-110319-3_101: *id255 - 1834-110319-5_98: *id256 - 1834-110319-6_10: *id257 - 1834-120319-1_1: *id258 - 1834-120319-2_39: *id259 - 1834-120319-3_36: *id260 - 1834-120319-4_85: *id261 - 1834-150319-1_3: *id262 - 1834-150319-2_2: *id263 - 1834-150319-3_71: *id264 - 1834-150319-4_0: *id265 - 1834-220319-1_81: *id266 - 1834-220319-2_1: *id267 - 1834-220319-4_0: &id289 + 1834-010319-1_2: *id214 + 1834-010319-3_1: *id215 + 1834-010319-4_7: *id216 + 1834-060319-1_7: *id217 + 1834-060319-3_4: *id218 + 1834-060319-4_3: *id219 + 1834-110319-1_65: *id220 + 1834-110319-2_108: *id221 + 1834-110319-3_101: *id222 + 1834-110319-5_98: *id223 + 1834-110319-6_98: *id224 + 1834-120319-1_1: *id225 + 1834-120319-2_39: *id226 + 1834-120319-3_36: *id227 + 1834-120319-4_85: *id228 + 1834-150319-2_2: *id229 + 1834-150319-3_71: *id230 + 1834-150319-4_0: *id231 + 1834-220319-1_81: *id232 + 1834-220319-2_1: *id233 + 1834-220319-4_0: &id254 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2336,33 +2040,32 @@ _adj: - !!binary | h/qZtJXznj8= 1834-220319-4_0: - 1834-010319-1_2: *id268 - 1834-010319-3_1: *id269 - 1834-010319-4_7: *id270 - 1834-060319-1_7: *id271 - 1834-060319-3_4: *id272 - 1834-060319-4_3: *id273 - 1834-110319-1_65: *id274 - 1834-110319-2_108: *id275 - 1834-110319-3_101: *id276 - 1834-110319-5_98: *id277 - 1834-110319-6_10: *id278 - 1834-120319-1_1: *id279 - 1834-120319-2_39: *id280 - 1834-120319-3_36: *id281 - 1834-120319-4_85: *id282 - 1834-150319-1_3: *id283 - 1834-150319-2_2: *id284 - 1834-150319-3_71: *id285 - 1834-150319-4_0: *id286 - 1834-220319-1_81: *id287 - 1834-220319-2_1: *id288 - 1834-220319-3_1: *id289 -_node: &id292 + 1834-010319-1_2: *id234 + 1834-010319-3_1: *id235 + 1834-010319-4_7: *id236 + 1834-060319-1_7: *id237 + 1834-060319-3_4: *id238 + 1834-060319-4_3: *id239 + 1834-110319-1_65: *id240 + 1834-110319-2_108: *id241 + 1834-110319-3_101: *id242 + 1834-110319-5_98: *id243 + 1834-110319-6_98: *id244 + 1834-120319-1_1: *id245 + 1834-120319-2_39: *id246 + 1834-120319-3_36: *id247 + 1834-120319-4_85: *id248 + 1834-150319-2_2: *id249 + 1834-150319-3_71: *id250 + 1834-150319-4_0: *id251 + 1834-220319-1_81: *id252 + 1834-220319-2_1: *id253 + 1834-220319-3_1: *id254 +_node: &id257 1834-010319-1_2: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id290 !!python/object/apply:numpy.dtype + - &id255 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -2370,313 +2073,211 @@ _node: &id292 1834-010319-1_39: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | JwAAAAAAAAA= 1834-010319-3_1: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AQAAAAAAAAA= 1834-010319-3_12: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | DAAAAAAAAAA= 1834-010319-3_72: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | SAAAAAAAAAA= 1834-010319-4_7: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | BwAAAAAAAAA= 1834-060319-1_7: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | BwAAAAAAAAA= 1834-060319-1_70: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | RgAAAAAAAAA= 1834-060319-1_71: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | RwAAAAAAAAA= 1834-060319-1_72: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | SAAAAAAAAAA= 1834-060319-1_73: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | SQAAAAAAAAA= 1834-060319-1_74: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | SgAAAAAAAAA= 1834-060319-1_79: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | TwAAAAAAAAA= 1834-060319-3_4: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | BAAAAAAAAAA= 1834-060319-4_3: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AwAAAAAAAAA= 1834-110319-1_0: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AAAAAAAAAAA= 1834-110319-1_65: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | QQAAAAAAAAA= 1834-110319-2_108: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | bAAAAAAAAAA= 1834-110319-2_11: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | CwAAAAAAAAA= 1834-110319-3_101: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | ZQAAAAAAAAA= 1834-110319-5_98: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | YgAAAAAAAAA= - 1834-110319-6_0: + 1834-110319-6_98: action_id: 1834-110319-6 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | - AAAAAAAAAAA= - 1834-110319-6_1: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - AQAAAAAAAAA= - 1834-110319-6_10: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - CgAAAAAAAAA= - 1834-110319-6_13: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - DQAAAAAAAAA= - 1834-110319-6_15: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - DwAAAAAAAAA= - 1834-110319-6_2: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - AgAAAAAAAAA= - 1834-110319-6_3: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - AwAAAAAAAAA= - 1834-110319-6_32: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - IAAAAAAAAAA= - 1834-110319-6_33: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - IQAAAAAAAAA= - 1834-110319-6_34: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - IgAAAAAAAAA= - 1834-110319-6_38: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - JgAAAAAAAAA= - 1834-110319-6_4: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - BAAAAAAAAAA= - 1834-110319-6_5: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - BQAAAAAAAAA= - 1834-110319-6_6: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - BgAAAAAAAAA= - 1834-110319-6_7: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - BwAAAAAAAAA= - 1834-110319-6_8: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - CAAAAAAAAAA= - 1834-110319-6_9: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - CQAAAAAAAAA= + YgAAAAAAAAA= 1834-120319-1_1: action_id: 1834-120319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AQAAAAAAAAA= 1834-120319-2_39: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | JwAAAAAAAAA= 1834-120319-3_36: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | JAAAAAAAAAA= 1834-120319-4_85: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | VQAAAAAAAAA= - 1834-150319-1_3: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 - - !!binary | - AwAAAAAAAAA= 1834-150319-2_2: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AgAAAAAAAAA= 1834-150319-3_71: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | RwAAAAAAAAA= 1834-150319-3_75: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | SwAAAAAAAAA= 1834-150319-4_0: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AAAAAAAAAAA= 1834-220319-1_81: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | UQAAAAAAAAA= 1834-220319-1_87: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | VwAAAAAAAAA= 1834-220319-2_1: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AQAAAAAAAAA= 1834-220319-3_1: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AQAAAAAAAAA= 1834-220319-4_0: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id290 + - *id255 - !!binary | AAAAAAAAAAA= -adjlist_inner_dict_factory: &id291 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id291 -edge_attr_dict_factory: *id291 +adjlist_inner_dict_factory: &id256 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id256 +edge_attr_dict_factory: *id256 graph: {} -node_dict_factory: *id291 +node_dict_factory: *id256 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id292 + _nodes: *id257 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml index 09995d119..5db1c5a12 100644 --- a/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml +++ b/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml @@ -24,41 +24,27 @@ _adj: - *id001 - !!binary | g0quPTzuxj8= - 1834-110319-6_35: &id008 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - kULFiWaO2T8= - 1834-120319-1_3: &id012 + 1834-120319-1_3: &id008 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZTGZgdcnzj8= - 1834-120319-2_41: &id017 + 1834-120319-2_41: &id012 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R9TWDKF/wT8= - 1834-120319-3_38: &id023 + 1834-120319-3_38: &id017 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j6kPfcoRwT8= - 1834-150319-1_50: &id038 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - vYkXHPzR3D8= 1834-010319-3_18: 1834-010319-1_48: *id002 1834-010319-4_10: &id004 @@ -75,41 +61,27 @@ _adj: - *id001 - !!binary | TeKmQg82xj8= - 1834-110319-6_35: &id009 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - cY+A1pvc2T8= - 1834-120319-1_3: &id013 + 1834-120319-1_3: &id009 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sDHAP4+xzD8= - 1834-120319-2_41: &id018 + 1834-120319-2_41: &id013 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Fpes9Bo6vT8= - 1834-120319-3_38: &id024 + 1834-120319-3_38: &id018 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SWM1CwuYvT8= - 1834-150319-1_4: &id030 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - f/JPPieN1z8= 1834-010319-4_10: 1834-010319-1_48: *id003 1834-010319-3_18: *id004 @@ -120,221 +92,96 @@ _adj: - *id001 - !!binary | ju6vM+Pyzz8= - 1834-110319-6_35: &id010 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VzMlz1HI2j8= - 1834-120319-1_3: &id014 + 1834-120319-1_3: &id010 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | l6cOcL0l0j8= - 1834-120319-2_41: &id019 + 1834-120319-2_41: &id014 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Wu4xTvAwzD8= - 1834-120319-3_38: &id025 + 1834-120319-3_38: &id019 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4+Iz1EFnyz8= - 1834-150319-1_4: &id031 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - d7HYqY0c1j8= 1834-060319-2_104: 1834-010319-1_48: *id005 1834-010319-3_18: *id006 1834-010319-4_10: *id007 - 1834-110319-6_35: &id011 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - WhscScVJ2z8= - 1834-120319-1_3: &id015 + 1834-120319-1_3: &id011 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qUltU3/quz8= - 1834-120319-2_41: &id020 + 1834-120319-2_41: &id015 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YNBkQAyfwD8= - 1834-120319-3_38: &id026 + 1834-120319-3_38: &id020 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QFDu/0eLwD8= - 1834-150319-1_4: &id032 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - oAESLzKLzz8= - 1834-110319-6_11: - 1834-150319-1_4: &id033 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - AIgl+xBE3z8= - 1834-110319-6_12: - 1834-150319-1_7: &id040 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - vhAigXC31j8= - 1834-110319-6_19: - 1834-150319-1_50: &id039 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - kyZ/aJMq3T8= - 1834-110319-6_35: + 1834-120319-1_3: 1834-010319-1_48: *id008 1834-010319-3_18: *id009 1834-010319-4_10: *id010 1834-060319-2_104: *id011 - 1834-120319-1_3: &id016 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Wfqxv5Dw2z8= - 1834-120319-2_41: &id021 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - CXNhvQfs2j8= - 1834-120319-3_38: &id027 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - bMTUiCv52j8= - 1834-150319-1_46: &id037 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - PUSGwnBO2D8= - 1834-110319-6_36: {} - 1834-120319-1_3: - 1834-010319-1_48: *id012 - 1834-010319-3_18: *id013 - 1834-010319-4_10: *id014 - 1834-060319-2_104: *id015 - 1834-110319-6_35: *id016 - 1834-120319-2_41: &id022 + 1834-120319-2_41: &id016 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xjX6OmUSxT8= - 1834-120319-3_38: &id028 + 1834-120319-3_38: &id021 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LsRAt+qFxT8= - 1834-150319-1_4: &id034 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - +n83h/TEyj8= 1834-120319-2_41: - 1834-010319-1_48: *id017 - 1834-010319-3_18: *id018 - 1834-010319-4_10: *id019 - 1834-060319-2_104: *id020 - 1834-110319-6_35: *id021 - 1834-120319-1_3: *id022 - 1834-120319-3_38: &id029 + 1834-010319-1_48: *id012 + 1834-010319-3_18: *id013 + 1834-010319-4_10: *id014 + 1834-060319-2_104: *id015 + 1834-120319-1_3: *id016 + 1834-120319-3_38: &id022 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vA9MMd6DlT8= - 1834-150319-1_4: &id035 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VB9w3K5I0j8= 1834-120319-3_38: - 1834-010319-1_48: *id023 - 1834-010319-3_18: *id024 - 1834-010319-4_10: *id025 - 1834-060319-2_104: *id026 - 1834-110319-6_35: *id027 - 1834-120319-1_3: *id028 - 1834-120319-2_41: *id029 - 1834-150319-1_4: &id036 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - bO4/LGbJ0T8= - 1834-150319-1_4: - 1834-010319-3_18: *id030 - 1834-010319-4_10: *id031 - 1834-060319-2_104: *id032 - 1834-110319-6_11: *id033 - 1834-120319-1_3: *id034 - 1834-120319-2_41: *id035 - 1834-120319-3_38: *id036 - 1834-150319-1_46: - 1834-110319-6_35: *id037 - 1834-150319-1_50: - 1834-010319-1_48: *id038 - 1834-110319-6_19: *id039 - 1834-150319-1_7: - 1834-110319-6_12: *id040 -_node: &id043 + 1834-010319-1_48: *id017 + 1834-010319-3_18: *id018 + 1834-010319-4_10: *id019 + 1834-060319-2_104: *id020 + 1834-120319-1_3: *id021 + 1834-120319-2_41: *id022 +_node: &id025 1834-010319-1_48: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id041 !!python/object/apply:numpy.dtype + - &id023 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -342,97 +189,43 @@ _node: &id043 1834-010319-3_18: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 + - *id023 - !!binary | EgAAAAAAAAA= 1834-010319-4_10: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 + - *id023 - !!binary | CgAAAAAAAAA= 1834-060319-2_104: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 + - *id023 - !!binary | aAAAAAAAAAA= - 1834-110319-6_11: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - CwAAAAAAAAA= - 1834-110319-6_12: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - DAAAAAAAAAA= - 1834-110319-6_19: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - EwAAAAAAAAA= - 1834-110319-6_35: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - IwAAAAAAAAA= - 1834-110319-6_36: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - JAAAAAAAAAA= 1834-120319-1_3: action_id: 1834-120319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 + - *id023 - !!binary | AwAAAAAAAAA= 1834-120319-2_41: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 + - *id023 - !!binary | KQAAAAAAAAA= 1834-120319-3_38: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 + - *id023 - !!binary | JgAAAAAAAAA= - 1834-150319-1_4: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - BAAAAAAAAAA= - 1834-150319-1_46: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - LgAAAAAAAAA= - 1834-150319-1_50: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - MgAAAAAAAAA= - 1834-150319-1_7: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id041 - - !!binary | - BwAAAAAAAAA= -adjlist_inner_dict_factory: &id042 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id042 -edge_attr_dict_factory: *id042 +adjlist_inner_dict_factory: &id024 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id024 +edge_attr_dict_factory: *id024 graph: {} -node_dict_factory: *id042 +node_dict_factory: *id024 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id043 + _nodes: *id025 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml index 2721d9ac8..64be8a1d8 100644 --- a/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml +++ b/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml @@ -17,56 +17,56 @@ _adj: - *id001 - !!binary | GQ4AF88+pT8= - 1834-110319-6_16: &id005 + 1834-110319-6_104: &id005 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MhEHzbzNqj8= - 1834-120319-2_51: &id009 + Gg0RS9gWqD8= + 1834-120319-2_51: &id008 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hGMlXsaBtT8= - 1834-120319-3_70: &id013 + 1834-120319-3_70: &id012 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JK66Wkvpwj8= - 1834-120319-4_75: &id018 + 1834-120319-4_75: &id017 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 494yzld6sT8= - 1834-220319-1_83: &id026 + 1834-220319-1_83: &id024 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mqSDwWQNuj8= - 1834-220319-2_49: &id033 + 1834-220319-2_49: &id031 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5+2IbaVEuj8= - 1834-220319-3_46: &id048 + 1834-220319-3_46: &id044 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AGQVNgmGtz8= - 1834-220319-4_60: &id057 + 1834-220319-4_60: &id053 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -82,56 +82,56 @@ _adj: - *id001 - !!binary | G5YPA2j8nD8= - 1834-110319-6_16: &id006 + 1834-110319-6_104: &id006 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - UZsKCHlJoj8= - 1834-120319-2_51: &id010 + WaylTqMFoD8= + 1834-120319-2_51: &id009 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xeJAvnEOtD8= - 1834-120319-3_70: &id014 + 1834-120319-3_70: &id013 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dAisiaeJwz8= - 1834-120319-4_75: &id019 + 1834-120319-4_75: &id018 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | owPrI3l5sT8= - 1834-220319-1_83: &id027 + 1834-220319-1_83: &id025 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GVPXZmX/uD8= - 1834-220319-2_49: &id034 + 1834-220319-2_49: &id032 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uilDpyZvuT8= - 1834-220319-3_46: &id049 + 1834-220319-3_46: &id045 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pmDiTb37tj8= - 1834-220319-4_60: &id058 + 1834-220319-4_60: &id054 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -141,168 +141,138 @@ _adj: 1834-110319-5_18: 1834-060319-2_113: *id003 1834-110319-3_47: *id004 - 1834-110319-6_16: &id007 + 1834-110319-6_104: &id007 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - C5NlREfIpj8= - 1834-120319-2_51: &id011 + Kvu8zXFbpj8= + 1834-120319-2_51: &id010 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | a4CEHbRtsT8= - 1834-120319-3_70: &id015 + 1834-120319-3_70: &id014 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IYscv1gHwj8= - 1834-120319-4_75: &id020 + 1834-120319-4_75: &id019 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZgxGJe0hrT8= - 1834-220319-1_83: &id028 + 1834-220319-1_83: &id026 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CZEhOPvlsz8= - 1834-220319-2_49: &id035 + 1834-220319-2_49: &id033 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bCx29KVGtj8= - 1834-220319-3_46: &id050 + 1834-220319-3_46: &id046 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J+Jxrd3Dsz8= - 1834-220319-4_60: &id059 + 1834-220319-4_60: &id055 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EwBK0UdYxT8= - 1834-110319-6_16: + 1834-110319-6_104: 1834-060319-2_113: *id005 1834-110319-3_47: *id006 1834-110319-5_18: *id007 - 1834-120319-2_43: &id008 + 1834-120319-2_51: &id011 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6kpfFIyCwT8= - 1834-120319-3_70: &id016 + lWf8Rbj6tT8= + 1834-120319-3_70: &id015 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - KRJUWXx8xD8= - 1834-120319-4_75: &id021 + hexfsrndwz8= + 1834-120319-4_75: &id020 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sw+9oRBprT8= - 1834-220319-1_83: &id029 + uheTbGezrT8= + 1834-220319-1_83: &id027 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Vdxf0bKLtj8= - 1834-220319-2_7: &id041 + IAu78SYfuD8= + 1834-220319-2_49: &id034 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MFhaYu0tyz8= - 1834-220319-3_29: &id044 + VGWRSxkitz8= + 1834-220319-3_46: &id047 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - eWQa/otSyj8= - 1834-220319-4_60: &id060 + wfpHDfmRtD8= + 1834-220319-4_60: &id056 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - HWmQ+bOLxT8= - 1834-110319-6_17: - 1834-120319-2_51: &id012 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 5b23W8lY5j8= - 1834-220319-1_79: &id024 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - jzCDuBt66D8= - 1834-220319-2_49: &id036 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - WMTJKUIc5z8= - 1834-220319-3_46: &id051 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - O6OWdEb25j8= + z7lVfsLzxT8= 1834-120319-2_43: - 1834-110319-6_16: *id008 - 1834-220319-1_79: &id025 + 1834-220319-1_79: &id023 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dQ94zXzxsD8= - 1834-220319-2_7: &id042 + 1834-220319-2_7: &id039 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HWTTnN39wT8= - 1834-220319-3_29: &id045 + 1834-220319-3_29: &id041 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | U8IMuFT/wD8= - 1834-220319-4_60: &id061 + 1834-220319-4_60: &id057 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -310,39 +280,39 @@ _adj: - !!binary | tG1ZaqVWuD8= 1834-120319-2_51: - 1834-060319-2_113: *id009 - 1834-110319-3_47: *id010 - 1834-110319-5_18: *id011 - 1834-110319-6_17: *id012 - 1834-120319-3_70: &id017 + 1834-060319-2_113: *id008 + 1834-110319-3_47: *id009 + 1834-110319-5_18: *id010 + 1834-110319-6_104: *id011 + 1834-120319-3_70: &id016 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RMcdeeS3uz8= - 1834-120319-4_75: &id022 + 1834-120319-4_75: &id021 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aWZ0ib+Ksz8= - 1834-220319-1_83: &id030 + 1834-220319-1_83: &id028 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | paPWtnf4tj8= - 1834-220319-2_49: &id037 + 1834-220319-2_49: &id035 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qqbivTJvuT8= - 1834-220319-3_46: &id052 + 1834-220319-3_46: &id048 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -350,40 +320,40 @@ _adj: - !!binary | M6TAVt0ptz8= 1834-120319-3_70: - 1834-060319-2_113: *id013 - 1834-110319-3_47: *id014 - 1834-110319-5_18: *id015 - 1834-110319-6_16: *id016 - 1834-120319-2_51: *id017 - 1834-120319-4_75: &id023 + 1834-060319-2_113: *id012 + 1834-110319-3_47: *id013 + 1834-110319-5_18: *id014 + 1834-110319-6_104: *id015 + 1834-120319-2_51: *id016 + 1834-120319-4_75: &id022 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sAfBiiS2wD8= - 1834-220319-1_83: &id031 + 1834-220319-1_83: &id029 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LPGYAFSxwj8= - 1834-220319-2_49: &id038 + 1834-220319-2_49: &id036 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MSQWfDAhwz8= - 1834-220319-3_46: &id053 + 1834-220319-3_46: &id049 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mEO5oHmgwj8= - 1834-220319-4_60: &id062 + 1834-220319-4_60: &id058 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -391,34 +361,34 @@ _adj: - !!binary | cIRSNsmHxT8= 1834-120319-4_75: - 1834-060319-2_113: *id018 - 1834-110319-3_47: *id019 - 1834-110319-5_18: *id020 - 1834-110319-6_16: *id021 - 1834-120319-2_51: *id022 - 1834-120319-3_70: *id023 - 1834-220319-1_83: &id032 + 1834-060319-2_113: *id017 + 1834-110319-3_47: *id018 + 1834-110319-5_18: *id019 + 1834-110319-6_104: *id020 + 1834-120319-2_51: *id021 + 1834-120319-3_70: *id022 + 1834-220319-1_83: &id030 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | M0V8dD8gqz8= - 1834-220319-2_49: &id039 + 1834-220319-2_49: &id037 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9hJdtaQHqz8= - 1834-220319-3_46: &id054 + 1834-220319-3_46: &id050 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1ao69BHMpj8= - 1834-220319-4_60: &id063 + 1834-220319-4_60: &id059 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -426,14 +396,14 @@ _adj: - !!binary | +F+9r73/wT8= 1834-220319-1_73: - 1834-220319-2_7: &id043 + 1834-220319-2_7: &id040 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mIBKiFSbmz8= - 1834-220319-3_29: &id046 + 1834-220319-3_29: &id042 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -441,9 +411,8 @@ _adj: - !!binary | rofTVsrknD8= 1834-220319-1_79: - 1834-110319-6_17: *id024 - 1834-120319-2_43: *id025 - 1834-220319-4_60: &id064 + 1834-120319-2_43: *id023 + 1834-220319-4_60: &id060 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -451,21 +420,21 @@ _adj: - !!binary | M8TOm13Luz8= 1834-220319-1_83: - 1834-060319-2_113: *id026 - 1834-110319-3_47: *id027 - 1834-110319-5_18: *id028 - 1834-110319-6_16: *id029 - 1834-120319-2_51: *id030 - 1834-120319-3_70: *id031 - 1834-120319-4_75: *id032 - 1834-220319-2_49: &id040 + 1834-060319-2_113: *id024 + 1834-110319-3_47: *id025 + 1834-110319-5_18: *id026 + 1834-110319-6_104: *id027 + 1834-120319-2_51: *id028 + 1834-120319-3_70: *id029 + 1834-120319-4_75: *id030 + 1834-220319-2_49: &id038 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1YiLfisqoD8= - 1834-220319-3_46: &id055 + 1834-220319-3_46: &id051 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -473,22 +442,22 @@ _adj: - !!binary | Bics9PSFoD8= 1834-220319-2_49: - 1834-060319-2_113: *id033 - 1834-110319-3_47: *id034 - 1834-110319-5_18: *id035 - 1834-110319-6_17: *id036 - 1834-120319-2_51: *id037 - 1834-120319-3_70: *id038 - 1834-120319-4_75: *id039 - 1834-220319-1_83: *id040 - 1834-220319-3_46: &id056 + 1834-060319-2_113: *id031 + 1834-110319-3_47: *id032 + 1834-110319-5_18: *id033 + 1834-110319-6_104: *id034 + 1834-120319-2_51: *id035 + 1834-120319-3_70: *id036 + 1834-120319-4_75: *id037 + 1834-220319-1_83: *id038 + 1834-220319-3_46: &id052 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Jf82wZHzkz8= - 1834-220319-4_60: &id065 + 1834-220319-4_60: &id061 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -496,10 +465,9 @@ _adj: - !!binary | WQfPLTL1vD8= 1834-220319-2_7: - 1834-110319-6_16: *id041 - 1834-120319-2_43: *id042 - 1834-220319-1_73: *id043 - 1834-220319-3_29: &id047 + 1834-120319-2_43: *id039 + 1834-220319-1_73: *id040 + 1834-220319-3_29: &id043 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -507,11 +475,10 @@ _adj: - !!binary | rSu9BJ7ZmT8= 1834-220319-3_29: - 1834-110319-6_16: *id044 - 1834-120319-2_43: *id045 - 1834-220319-1_73: *id046 - 1834-220319-2_7: *id047 - 1834-220319-4_60: &id066 + 1834-120319-2_43: *id041 + 1834-220319-1_73: *id042 + 1834-220319-2_7: *id043 + 1834-220319-4_60: &id062 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -519,31 +486,31 @@ _adj: - !!binary | /cwkwHc2uz8= 1834-220319-3_46: - 1834-060319-2_113: *id048 - 1834-110319-3_47: *id049 - 1834-110319-5_18: *id050 - 1834-110319-6_17: *id051 - 1834-120319-2_51: *id052 - 1834-120319-3_70: *id053 - 1834-120319-4_75: *id054 - 1834-220319-1_83: *id055 - 1834-220319-2_49: *id056 + 1834-060319-2_113: *id044 + 1834-110319-3_47: *id045 + 1834-110319-5_18: *id046 + 1834-110319-6_104: *id047 + 1834-120319-2_51: *id048 + 1834-120319-3_70: *id049 + 1834-120319-4_75: *id050 + 1834-220319-1_83: *id051 + 1834-220319-2_49: *id052 1834-220319-4_60: - 1834-060319-2_113: *id057 - 1834-110319-3_47: *id058 - 1834-110319-5_18: *id059 - 1834-110319-6_16: *id060 - 1834-120319-2_43: *id061 - 1834-120319-3_70: *id062 - 1834-120319-4_75: *id063 - 1834-220319-1_79: *id064 - 1834-220319-2_49: *id065 - 1834-220319-3_29: *id066 -_node: &id069 + 1834-060319-2_113: *id053 + 1834-110319-3_47: *id054 + 1834-110319-5_18: *id055 + 1834-110319-6_104: *id056 + 1834-120319-2_43: *id057 + 1834-120319-3_70: *id058 + 1834-120319-4_75: *id059 + 1834-220319-1_79: *id060 + 1834-220319-2_49: *id061 + 1834-220319-3_29: *id062 +_node: &id065 1834-060319-2_113: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id067 !!python/object/apply:numpy.dtype + - &id063 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -551,103 +518,97 @@ _node: &id069 1834-110319-3_47: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | LwAAAAAAAAA= 1834-110319-5_18: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | EgAAAAAAAAA= - 1834-110319-6_16: + 1834-110319-6_104: action_id: 1834-110319-6 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | - EAAAAAAAAAA= - 1834-110319-6_17: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 - - !!binary | - EQAAAAAAAAA= + aAAAAAAAAAA= 1834-120319-2_43: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | KwAAAAAAAAA= 1834-120319-2_51: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | MwAAAAAAAAA= 1834-120319-3_70: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | RgAAAAAAAAA= 1834-120319-4_75: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | SwAAAAAAAAA= 1834-220319-1_73: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | SQAAAAAAAAA= 1834-220319-1_79: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | TwAAAAAAAAA= 1834-220319-1_83: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | UwAAAAAAAAA= 1834-220319-2_49: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | MQAAAAAAAAA= 1834-220319-2_7: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | BwAAAAAAAAA= 1834-220319-3_29: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | HQAAAAAAAAA= 1834-220319-3_46: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | LgAAAAAAAAA= 1834-220319-4_60: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id067 + - *id063 - !!binary | PAAAAAAAAAA= -adjlist_inner_dict_factory: &id068 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id068 -edge_attr_dict_factory: *id068 +adjlist_inner_dict_factory: &id064 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id064 +edge_attr_dict_factory: *id064 graph: {} -node_dict_factory: *id068 +node_dict_factory: *id064 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id069 + _nodes: *id065 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml index 737d09bae..346bcc92f 100644 --- a/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml +++ b/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml @@ -45,91 +45,77 @@ _adj: - *id001 - !!binary | GjqiBj+4wj8= - 1834-110319-6_20: &id090 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - USBVLHua0T8= - 1834-120319-1_8: &id097 + 1834-120319-1_8: &id079 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9vLoFDVVwT8= - 1834-120319-2_15: &id109 + 1834-120319-2_15: &id090 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d96HhBwwwD8= - 1834-120319-3_62: &id130 + 1834-120319-3_62: &id109 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hcz8XcRSwT8= - 1834-120319-4_59: &id144 + 1834-120319-4_59: &id122 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | u6/4An3MwD8= - 1834-150319-1_2: &id183 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - yxCQDUya0D8= - 1834-150319-2_46: &id198 + 1834-150319-2_46: &id162 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3JvvRDWywj8= - 1834-150319-3_8: &id230 + 1834-150319-3_8: &id191 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wGc7TFhuxj8= - 1834-150319-4_5: &id242 + 1834-150319-4_5: &id201 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Tr5fidXswD8= - 1834-220319-1_11: &id273 + 1834-220319-1_11: &id229 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | K4kwjJFUwD8= - 1834-220319-2_8: &id293 + 1834-220319-2_8: &id248 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7YOzndo5wD8= - 1834-220319-3_10: &id314 + 1834-220319-3_10: &id268 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FEvN8JjtwD8= - 1834-220319-4_10: &id336 + 1834-220319-4_10: &id289 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -151,35 +137,35 @@ _adj: - *id001 - !!binary | fY+RSAV9xT8= - 1834-120319-2_6: &id122 + 1834-120319-2_6: &id102 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PFqeH99gzj8= - 1834-150319-1_13: &id159 + 1834-150319-1_95: &id136 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - D3E6jf5awj8= - 1834-150319-2_13: &id186 + 1JvLqXuIwj8= + 1834-150319-2_13: &id151 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R8MIaf1nxj8= - 1834-150319-3_61: &id213 + 1834-150319-3_61: &id175 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OROPZll9xD8= - 1834-150319-4_6: &id260 + 1834-150319-4_6: &id218 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -250,20 +236,6 @@ _adj: - *id001 - !!binary | Flx6OjFywD8= - 1834-110319-6_18: &id079 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Y8wkyqGXxD8= - 1834-150319-1_14: &id175 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - vDy94Q0I0j8= 1834-010319-3_76: 1834-010319-1_52: *id002 1834-010319-4_21: &id005 @@ -301,84 +273,70 @@ _adj: - *id001 - !!binary | MEO9jiKjzz8= - 1834-110319-6_20: &id091 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - SoK5mcZ20T8= - 1834-120319-2_15: &id110 + 1834-120319-2_15: &id091 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Y8FST53SwD8= - 1834-120319-3_62: &id131 + 1834-120319-3_62: &id110 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5H+E7JXewT8= - 1834-120319-4_59: &id145 + 1834-120319-4_59: &id123 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2O+xDKtEwT8= - 1834-150319-1_14: &id176 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - g02Z01SVyz8= - 1834-150319-2_46: &id199 + 1834-150319-2_46: &id163 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kZa+6gtpwz8= - 1834-150319-3_61: &id214 + 1834-150319-3_61: &id176 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | r/BCAXA2wz8= - 1834-150319-4_5: &id243 + 1834-150319-4_5: &id202 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q6MQAgq2wT8= - 1834-220319-1_11: &id274 + 1834-220319-1_11: &id230 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LlWIfMblwD8= - 1834-220319-2_8: &id294 + 1834-220319-2_8: &id249 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dy21zB7HwD8= - 1834-220319-3_10: &id315 + 1834-220319-3_10: &id269 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wIB+Vx2LwT8= - 1834-220319-4_10: &id337 + 1834-220319-4_10: &id290 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -450,49 +408,42 @@ _adj: - *id001 - !!binary | Cq6o0KPAuD8= - 1834-110319-6_18: &id080 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 4ZF7ajXXxj8= - 1834-120319-1_8: &id098 + 1834-120319-1_8: &id080 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6qkSms22wT8= - 1834-120319-2_6: &id123 + 1834-120319-2_6: &id103 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Cn1XgphBzz8= - 1834-150319-1_13: &id160 + 1834-150319-1_95: &id137 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 13xnuYVTwj8= - 1834-150319-2_13: &id187 + RScuNiViwj8= + 1834-150319-2_13: &id152 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hA3J0SRowD8= - 1834-150319-3_8: &id231 + 1834-150319-3_8: &id192 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 71E4Q3Mgvj8= - 1834-150319-4_6: &id261 + 1834-150319-4_6: &id219 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -537,91 +488,84 @@ _adj: - *id001 - !!binary | iaV9wt2mxD8= - 1834-110319-6_20: &id092 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - A22pJaq90T8= - 1834-120319-1_8: &id099 + 1834-120319-1_8: &id081 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9gO9KQQKxD8= - 1834-120319-2_15: &id111 + 1834-120319-2_15: &id092 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A9mAAQ0+wz8= - 1834-120319-3_62: &id132 + 1834-120319-3_62: &id111 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8rfiMccQxD8= - 1834-120319-4_59: &id146 + 1834-120319-4_59: &id124 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ogtsRydwwz8= - 1834-150319-1_14: &id177 + 1834-150319-1_95: &id138 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4THQDdAAzD8= - 1834-150319-2_13: &id188 + 4Cefifbkxj8= + 1834-150319-2_13: &id153 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ybnJlvpFxz8= - 1834-150319-3_8: &id232 + 1834-150319-3_8: &id193 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | i0H4h1cHyD8= - 1834-150319-4_5: &id244 + 1834-150319-4_5: &id203 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ds717EHwwj8= - 1834-220319-1_11: &id275 + 1834-220319-1_11: &id231 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0vT90zjjwj8= - 1834-220319-2_8: &id295 + 1834-220319-2_8: &id250 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LDnW0vnOwj8= - 1834-220319-3_10: &id316 + 1834-220319-3_10: &id270 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g3fO8ec2wz8= - 1834-220319-4_10: &id338 + 1834-220319-4_10: &id291 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -680,42 +624,28 @@ _adj: - *id001 - !!binary | lRsccInzwj8= - 1834-110319-6_18: &id081 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 3HdbhTWCxD8= - 1834-120319-2_6: &id124 + 1834-120319-2_6: &id104 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RJHZzpzRzT8= - 1834-150319-1_13: &id161 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - xCXNCI0Uyz8= - 1834-150319-2_46: &id200 + 1834-150319-2_46: &id164 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Wapg+Zwjyz8= - 1834-150319-3_61: &id215 + 1834-150319-3_61: &id177 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZVsOosGIzD8= - 1834-150319-4_6: &id262 + 1834-150319-4_6: &id220 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -754,91 +684,84 @@ _adj: - *id001 - !!binary | sZruk3awwT8= - 1834-110319-6_20: &id093 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - SSxCeduB3T8= - 1834-120319-1_8: &id100 + 1834-120319-1_8: &id082 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tU7W/Y99xD8= - 1834-120319-2_6: &id125 + 1834-120319-2_6: &id105 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fUQYnM9izj8= - 1834-120319-3_62: &id133 + 1834-120319-3_62: &id112 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OwxG5xClxD8= - 1834-120319-4_59: &id147 + 1834-120319-4_59: &id125 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gQsdCRguwj8= - 1834-150319-1_13: &id162 + 1834-150319-1_95: &id139 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - cifcfBzHuz8= - 1834-150319-2_46: &id201 + HY6M5WBHvD8= + 1834-150319-2_46: &id165 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ycBFUsBfvj8= - 1834-150319-3_61: &id216 + 1834-150319-3_61: &id178 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OCBLUYyRvz8= - 1834-150319-4_5: &id245 + 1834-150319-4_5: &id204 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sTy7+Ddhwj8= - 1834-220319-1_11: &id276 + 1834-220319-1_11: &id232 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GjiZall7zT8= - 1834-220319-2_8: &id296 + 1834-220319-2_8: &id251 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GOb6sn+GzT8= - 1834-220319-3_10: &id317 + 1834-220319-3_10: &id271 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MqN1r0YKyz8= - 1834-220319-4_10: &id339 + 1834-220319-4_10: &id292 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -891,42 +814,28 @@ _adj: - *id001 - !!binary | JBKy87r/vD8= - 1834-110319-6_18: &id082 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9pvTKSATxj8= - 1834-120319-2_15: &id112 + 1834-120319-2_15: &id093 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | h8sWIgepyT8= - 1834-150319-1_14: &id178 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - TZ/sz7qL0j8= - 1834-150319-2_13: &id189 + 1834-150319-2_13: &id154 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HXWrC1nYwz8= - 1834-150319-3_8: &id233 + 1834-150319-3_8: &id194 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ju4Iwq+mwD8= - 1834-150319-4_6: &id263 + 1834-150319-4_6: &id221 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -945,42 +854,28 @@ _adj: - *id001 - !!binary | LBb6F+N8yz8= - 1834-110319-6_18: &id083 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VjXLoLlgwD8= - 1834-120319-2_6: &id126 + 1834-120319-2_6: &id106 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8H/etaa20T8= - 1834-150319-1_14: &id179 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - jBEnJdQ4zT8= - 1834-150319-2_46: &id202 + 1834-150319-2_46: &id166 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jZZ6mRCxxD8= - 1834-150319-3_61: &id217 + 1834-150319-3_61: &id179 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hMXwiE01xj8= - 1834-150319-4_5: &id246 + 1834-150319-4_5: &id205 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -996,13 +891,6 @@ _adj: - *id001 - !!binary | ypTEL94LsT8= - 1834-150319-1_2: &id184 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - FtsGpMr91j8= 1834-060319-1_95: 1834-010319-1_7: *id019 1834-010319-3_87: *id020 @@ -1050,91 +938,84 @@ _adj: - *id001 - !!binary | AFto98HNsT8= - 1834-110319-6_20: &id094 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8XIh/zIj2z8= - 1834-120319-1_8: &id101 + 1834-120319-1_8: &id083 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JfjwxgONwD8= - 1834-120319-2_15: &id113 + 1834-120319-2_15: &id094 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oW5Y6/Pnwz8= - 1834-120319-3_62: &id134 + 1834-120319-3_62: &id113 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | u/11Zb5YwT8= - 1834-120319-4_59: &id148 + 1834-120319-4_59: &id126 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rjuppMGkvj8= - 1834-150319-1_13: &id163 + 1834-150319-1_95: &id140 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - bbLS+jIHvz8= - 1834-150319-2_13: &id190 + YEMqtS29vj8= + 1834-150319-2_13: &id155 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | duT+iom2vz8= - 1834-150319-3_8: &id234 + 1834-150319-3_8: &id195 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | va5OAhyjwj8= - 1834-150319-4_6: &id264 + 1834-150319-4_6: &id222 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DwLYREKmwD8= - 1834-220319-1_11: &id277 + 1834-220319-1_11: &id233 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WsMO8xs3yj8= - 1834-220319-2_8: &id297 + 1834-220319-2_8: &id252 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QAJYLTr+yj8= - 1834-220319-3_10: &id318 + 1834-220319-3_10: &id272 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 77qTzCROyD8= - 1834-220319-4_10: &id340 + 1834-220319-4_10: &id293 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1182,91 +1063,84 @@ _adj: - *id001 - !!binary | OGhMULr1sD8= - 1834-110319-6_20: &id095 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ig2R9lzB3D8= - 1834-120319-1_8: &id102 + 1834-120319-1_8: &id084 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OYTfESt6wT8= - 1834-120319-2_15: &id114 + 1834-120319-2_15: &id095 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Y7mrmCiWxD8= - 1834-120319-3_62: &id135 + 1834-120319-3_62: &id114 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Tos0x9ifwT8= - 1834-120319-4_59: &id149 + 1834-120319-4_59: &id127 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N32QCyXSvz8= - 1834-150319-1_13: &id164 + 1834-150319-1_95: &id141 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - GCsl6+EAvj8= - 1834-150319-2_13: &id191 + xuxp9CPRvT8= + 1834-150319-2_13: &id156 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8nr91PDavj8= - 1834-150319-3_8: &id235 + 1834-150319-3_8: &id196 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oGQhpZBrwj8= - 1834-150319-4_6: &id265 + 1834-150319-4_6: &id223 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jin9yIZ9wT8= - 1834-220319-1_11: &id278 + 1834-220319-1_11: &id234 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7XLZBK9tyj8= - 1834-220319-2_8: &id298 + 1834-220319-2_8: &id253 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | njNo39BIyz8= - 1834-220319-3_10: &id319 + 1834-220319-3_10: &id273 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ryPZECl5yD8= - 1834-220319-4_10: &id341 + 1834-220319-4_10: &id294 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1286,42 +1160,28 @@ _adj: - *id001 - !!binary | CaBcY1gb0z8= - 1834-110319-6_18: &id084 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - dRL0r2Mo1T8= - 1834-120319-2_6: &id127 + 1834-120319-2_6: &id107 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D+teOuwF2T8= - 1834-150319-1_14: &id180 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - guZclJeQ1T8= - 1834-150319-2_46: &id203 + 1834-150319-2_46: &id167 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aTHxqqd00T8= - 1834-150319-3_61: &id218 + 1834-150319-3_61: &id180 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AkqZQSJL0j8= - 1834-150319-4_5: &id247 + 1834-150319-4_5: &id206 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1363,91 +1223,84 @@ _adj: - *id001 - !!binary | 5hcDq0R0sj8= - 1834-110319-6_18: &id085 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 5qi+318Nwz8= - 1834-120319-1_8: &id103 + 1834-120319-1_8: &id085 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j5WG4KdCwj8= - 1834-120319-2_15: &id115 + 1834-120319-2_15: &id096 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KfESxieVxT8= - 1834-120319-3_62: &id136 + 1834-120319-3_62: &id115 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qGRGSanJwj8= - 1834-120319-4_59: &id150 + 1834-120319-4_59: &id128 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | a9/nHW59wD8= - 1834-150319-1_13: &id165 + 1834-150319-1_95: &id142 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 75wxNMzfvD8= - 1834-150319-2_46: &id204 + MLd3ocqTvD8= + 1834-150319-2_46: &id168 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1OIsHxPgvT8= - 1834-150319-3_61: &id219 + 1834-150319-3_61: &id181 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +3Cyz++Evz8= - 1834-150319-4_5: &id248 + 1834-150319-4_5: &id207 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Fu6JgcolwT8= - 1834-220319-1_11: &id279 + 1834-220319-1_11: &id235 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Gp1UvlcwzD8= - 1834-220319-2_8: &id299 + 1834-220319-2_8: &id254 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1WeFY7ixzD8= - 1834-220319-3_10: &id320 + 1834-220319-3_10: &id274 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /wzSw+vHyT8= - 1834-220319-4_10: &id342 + 1834-220319-4_10: &id295 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1461,42 +1314,28 @@ _adj: 1834-010319-5_28: *id042 1834-060319-1_85: *id043 1834-060319-2_25: *id044 - 1834-110319-6_20: &id096 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 4I79d8eZ1z8= - 1834-120319-2_6: &id128 + 1834-120319-2_6: &id108 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MW6/nLb+0T8= - 1834-150319-1_14: &id181 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Uq5bQx1Hzz8= - 1834-150319-2_13: &id192 + 1834-150319-2_13: &id157 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GrRXWaEH0D8= - 1834-150319-3_8: &id236 + 1834-150319-3_8: &id197 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PDuOYyN50D8= - 1834-150319-4_6: &id266 + 1834-150319-4_6: &id224 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1532,91 +1371,84 @@ _adj: - *id001 - !!binary | iXHdrGTdtD8= - 1834-110319-6_18: &id086 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LFCEXeezwz8= - 1834-120319-1_8: &id104 + 1834-120319-1_8: &id086 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +Z4EhjEdwT8= - 1834-120319-2_15: &id116 + 1834-120319-2_15: &id097 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J7Rk1690xD8= - 1834-120319-3_62: &id137 + 1834-120319-3_62: &id116 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JU1LMn9owT8= - 1834-120319-4_59: &id151 + 1834-120319-4_59: &id129 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DDMR3GGgvD8= - 1834-150319-1_13: &id166 + 1834-150319-1_95: &id143 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +ZweDsncuz8= - 1834-150319-2_46: &id205 + E3CC+Vmcuz8= + 1834-150319-2_46: &id169 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IEPQoUsYuT8= - 1834-150319-3_61: &id220 + 1834-150319-3_61: &id182 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | At/I6dOCuz8= - 1834-150319-4_5: &id249 + 1834-150319-4_5: &id208 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CWwcJ/FEvz8= - 1834-220319-1_11: &id280 + 1834-220319-1_11: &id236 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7I5cJm1uyz8= - 1834-220319-2_8: &id300 + 1834-220319-2_8: &id255 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JHjrO8h4yz8= - 1834-220319-3_10: &id321 + 1834-220319-3_10: &id275 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +rB3WwmuyD8= - 1834-220319-4_10: &id343 + 1834-220319-4_10: &id296 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1646,91 +1478,84 @@ _adj: - *id001 - !!binary | MgJLWVFSwT8= - 1834-110319-6_18: &id087 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - WRbCDZ71yz8= - 1834-120319-1_8: &id105 + 1834-120319-1_8: &id087 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IoSu6Ozdvz8= - 1834-120319-2_15: &id117 + 1834-120319-2_15: &id098 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1ZA0ulrlwT8= - 1834-120319-3_62: &id138 + 1834-120319-3_62: &id117 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7+LsHflpwT8= - 1834-120319-4_59: &id152 + 1834-120319-4_59: &id130 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vf5jWf1mwD8= - 1834-150319-1_13: &id167 + 1834-150319-1_95: &id144 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - DK0HXrAjwz8= - 1834-150319-2_46: &id206 + DAU5j9FGwz8= + 1834-150319-2_46: &id170 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WT0BgJAPwj8= - 1834-150319-3_61: &id221 + 1834-150319-3_61: &id183 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ouaUZpHUwT8= - 1834-150319-4_5: &id250 + 1834-150319-4_5: &id209 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MOV++3ZDwT8= - 1834-220319-1_11: &id281 + 1834-220319-1_11: &id237 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | u1NgFzNvyT8= - 1834-220319-2_8: &id301 + 1834-220319-2_8: &id256 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RuDFp9OlyT8= - 1834-220319-3_10: &id322 + 1834-220319-3_10: &id276 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1zb8RFIFyD8= - 1834-220319-4_10: &id344 + 1834-220319-4_10: &id297 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1754,91 +1579,84 @@ _adj: - *id001 - !!binary | KdGAMHQSrz8= - 1834-110319-6_18: &id088 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - I7l23PYvxD8= - 1834-120319-1_8: &id106 + 1834-120319-1_8: &id088 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bC9K8G1Swj8= - 1834-120319-2_15: &id118 + 1834-120319-2_15: &id099 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rZ/BCn5cxT8= - 1834-120319-3_62: &id139 + 1834-120319-3_62: &id118 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /YlXt2vgwj8= - 1834-120319-4_59: &id153 + 1834-120319-4_59: &id131 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8J9Bl8icwT8= - 1834-150319-1_13: &id168 + 1834-150319-1_95: &id145 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Utya9xVrwD8= - 1834-150319-2_13: &id193 + eKUdQNthwD8= + 1834-150319-2_13: &id158 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9yv6hcj4vz8= - 1834-150319-3_8: &id237 + 1834-150319-3_8: &id198 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ROw7Wg4kwj8= - 1834-150319-4_6: &id267 + 1834-150319-4_6: &id225 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +jaBQNqrwT8= - 1834-220319-1_11: &id282 + 1834-220319-1_11: &id238 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RG+JB5Pqyz8= - 1834-220319-2_8: &id302 + 1834-220319-2_8: &id257 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4BwVDavvzD8= - 1834-220319-3_10: &id323 + 1834-220319-3_10: &id277 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TLjVjIY3yj8= - 1834-220319-4_10: &id345 + 1834-220319-4_10: &id298 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1856,320 +1674,173 @@ _adj: 1834-060319-4_8: *id076 1834-110319-2_16: *id077 1834-110319-3_41: *id078 - 1834-110319-6_18: &id089 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 6/qiNZGJxD8= - 1834-120319-1_8: &id107 + 1834-120319-1_8: &id089 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c5FdxeyXwD8= - 1834-120319-2_15: &id119 + 1834-120319-2_15: &id100 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Elpl4X/awz8= - 1834-120319-3_62: &id140 + 1834-120319-3_62: &id119 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j9scsfe8wD8= - 1834-120319-4_59: &id154 + 1834-120319-4_59: &id132 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pAu9lAIewD8= - 1834-150319-1_13: &id169 + 1834-150319-1_95: &id146 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - xVy52vHOwT8= - 1834-150319-2_13: &id194 + B5Sg4JXewT8= + 1834-150319-2_13: &id159 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Imdd1a2cwT8= - 1834-150319-3_61: &id222 + 1834-150319-3_61: &id184 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4Unj4qvQwj8= - 1834-150319-4_5: &id251 + 1834-150319-4_5: &id210 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OEczfrDYwz8= - 1834-220319-1_11: &id283 + 1834-220319-1_11: &id239 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | e2Wp/anRzD8= - 1834-220319-2_8: &id303 + 1834-220319-2_8: &id258 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ds+w3KKizT8= - 1834-220319-3_10: &id324 + 1834-220319-3_10: &id278 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PGrXyW8Fyz8= - 1834-220319-4_10: &id346 + 1834-220319-4_10: &id299 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0qibmvZUzD8= - 1834-110319-6_18: - 1834-010319-1_8: *id079 + 1834-120319-1_8: + 1834-010319-1_52: *id079 1834-010319-3_87: *id080 - 1834-010319-4_22: *id081 - 1834-010319-5_28: *id082 - 1834-060319-1_33: *id083 - 1834-060319-2_25: *id084 + 1834-010319-4_21: *id081 + 1834-010319-5_11: *id082 + 1834-060319-1_95: *id083 + 1834-060319-2_24: *id084 1834-060319-3_13: *id085 1834-060319-4_8: *id086 1834-110319-2_16: *id087 1834-110319-3_41: *id088 1834-110319-5_24: *id089 - 1834-120319-1_8: &id108 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - M0w20fTqzj8= - 1834-120319-2_6: &id129 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uhSMGq420T8= - 1834-120319-3_62: &id141 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - N81S3nPszT8= - 1834-120319-4_59: &id155 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - RuEwCJm7yz8= - 1834-150319-1_13: &id170 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - g80lQXfWwj8= - 1834-150319-2_13: &id195 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - d7tkNzGMxz8= - 1834-150319-3_8: &id238 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - wXfBF4iGyz8= - 1834-150319-4_6: &id268 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - dv1Edfdsyz8= - 1834-220319-1_11: &id284 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8wkPE7lD0j8= - 1834-220319-2_8: &id304 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uKGgtnqD0j8= - 1834-220319-3_10: &id325 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - M0PYdvwV0T8= - 1834-220319-4_10: &id347 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 4t122ukA0j8= - 1834-110319-6_20: - 1834-010319-1_52: *id090 - 1834-010319-3_76: *id091 - 1834-010319-4_21: *id092 - 1834-010319-5_11: *id093 - 1834-060319-1_95: *id094 - 1834-060319-2_24: *id095 - 1834-060319-4_10: *id096 - 1834-120319-2_15: &id120 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - I7z0t40w4D8= - 1834-150319-1_2: &id185 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - PXinQ5952j8= - 1834-150319-2_46: &id207 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - OIO07M1W3D8= - 1834-150319-3_61: &id223 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 0F4Drnjh3T8= - 1834-150319-4_5: &id252 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - bZgDbrFJ3T8= - 1834-120319-1_8: - 1834-010319-1_52: *id097 - 1834-010319-3_87: *id098 - 1834-010319-4_21: *id099 - 1834-010319-5_11: *id100 - 1834-060319-1_95: *id101 - 1834-060319-2_24: *id102 - 1834-060319-3_13: *id103 - 1834-060319-4_8: *id104 - 1834-110319-2_16: *id105 - 1834-110319-3_41: *id106 - 1834-110319-5_24: *id107 - 1834-110319-6_18: *id108 - 1834-120319-2_15: &id121 + 1834-120319-2_15: &id101 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 855rP6ezpT8= - 1834-120319-3_62: &id142 + 1834-120319-3_62: &id120 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HfONOGFonT8= - 1834-120319-4_59: &id156 + 1834-120319-4_59: &id133 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PwgZ868ArD8= - 1834-150319-1_13: &id171 + 1834-150319-1_95: &id147 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jxfRf8QRxT8= - 1834-150319-2_46: &id208 + /4oPjtIQxT8= + 1834-150319-2_46: &id171 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4LKqX3W1vz8= - 1834-150319-3_61: &id224 + 1834-150319-3_61: &id185 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UkvXAX/9vT8= - 1834-150319-4_5: &id253 + 1834-150319-4_5: &id211 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8AFA9nBiuT8= - 1834-220319-1_11: &id285 + 1834-220319-1_11: &id240 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6tJDe5RQwj8= - 1834-220319-2_8: &id305 + 1834-220319-2_8: &id259 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yYDsTpSUwj8= - 1834-220319-3_10: &id326 + 1834-220319-3_10: &id279 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fVQY1KFfwD8= - 1834-220319-4_10: &id348 + 1834-220319-4_10: &id300 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2177,83 +1848,82 @@ _adj: - !!binary | miwQ3qQawT8= 1834-120319-2_15: - 1834-010319-1_52: *id109 - 1834-010319-3_76: *id110 - 1834-010319-4_21: *id111 - 1834-010319-5_28: *id112 - 1834-060319-1_95: *id113 - 1834-060319-2_24: *id114 - 1834-060319-3_13: *id115 - 1834-060319-4_8: *id116 - 1834-110319-2_16: *id117 - 1834-110319-3_41: *id118 - 1834-110319-5_24: *id119 - 1834-110319-6_20: *id120 - 1834-120319-1_8: *id121 - 1834-120319-3_62: &id143 + 1834-010319-1_52: *id090 + 1834-010319-3_76: *id091 + 1834-010319-4_21: *id092 + 1834-010319-5_28: *id093 + 1834-060319-1_95: *id094 + 1834-060319-2_24: *id095 + 1834-060319-3_13: *id096 + 1834-060319-4_8: *id097 + 1834-110319-2_16: *id098 + 1834-110319-3_41: *id099 + 1834-110319-5_24: *id100 + 1834-120319-1_8: *id101 + 1834-120319-3_62: &id121 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tYUY4XGMpD8= - 1834-120319-4_59: &id157 + 1834-120319-4_59: &id134 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dGLhi8DKsT8= - 1834-150319-1_13: &id172 + 1834-150319-1_95: &id148 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5Qdz8m9vxz8= - 1834-150319-2_13: &id196 + MdYAhu9yxz8= + 1834-150319-2_13: &id160 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Pm5y4od8xj8= - 1834-150319-3_61: &id225 + 1834-150319-3_61: &id186 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Vk94dFOewT8= - 1834-150319-4_5: &id254 + 1834-150319-4_5: &id212 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3OtHklqavT8= - 1834-220319-1_11: &id286 + 1834-220319-1_11: &id241 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g1TN64ZSwD8= - 1834-220319-2_8: &id306 + 1834-220319-2_8: &id260 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SAmCKmChwD8= - 1834-220319-3_10: &id327 + 1834-220319-3_10: &id280 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TeCwu2mOvT8= - 1834-220319-4_10: &id349 + 1834-220319-4_10: &id301 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2261,36 +1931,28 @@ _adj: - !!binary | WsOkr/48vj8= 1834-120319-2_6: - 1834-010319-1_7: *id122 - 1834-010319-3_87: *id123 - 1834-010319-4_22: *id124 - 1834-010319-5_11: *id125 - 1834-060319-1_33: *id126 - 1834-060319-2_25: *id127 - 1834-060319-4_10: *id128 - 1834-110319-6_18: *id129 - 1834-150319-1_14: &id182 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 7tcuP6zl0D8= - 1834-150319-2_46: &id209 + 1834-010319-1_7: *id102 + 1834-010319-3_87: *id103 + 1834-010319-4_22: *id104 + 1834-010319-5_11: *id105 + 1834-060319-1_33: *id106 + 1834-060319-2_25: *id107 + 1834-060319-4_10: *id108 + 1834-150319-2_46: &id172 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A+KStLvN0D8= - 1834-150319-3_8: &id239 + 1834-150319-3_8: &id199 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | r+qTDtmD0z8= - 1834-150319-4_6: &id269 + 1834-150319-4_6: &id226 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2298,77 +1960,76 @@ _adj: - !!binary | H73uLy7g0T8= 1834-120319-3_62: - 1834-010319-1_52: *id130 - 1834-010319-3_76: *id131 - 1834-010319-4_21: *id132 - 1834-010319-5_11: *id133 - 1834-060319-1_95: *id134 - 1834-060319-2_24: *id135 - 1834-060319-3_13: *id136 - 1834-060319-4_8: *id137 - 1834-110319-2_16: *id138 - 1834-110319-3_41: *id139 - 1834-110319-5_24: *id140 - 1834-110319-6_18: *id141 - 1834-120319-1_8: *id142 - 1834-120319-2_15: *id143 - 1834-120319-4_59: &id158 + 1834-010319-1_52: *id109 + 1834-010319-3_76: *id110 + 1834-010319-4_21: *id111 + 1834-010319-5_11: *id112 + 1834-060319-1_95: *id113 + 1834-060319-2_24: *id114 + 1834-060319-3_13: *id115 + 1834-060319-4_8: *id116 + 1834-110319-2_16: *id117 + 1834-110319-3_41: *id118 + 1834-110319-5_24: *id119 + 1834-120319-1_8: *id120 + 1834-120319-2_15: *id121 + 1834-120319-4_59: &id135 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | f/omBb4Wqj8= - 1834-150319-1_13: &id173 + 1834-150319-1_95: &id149 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - SLMZxL2fxD8= - 1834-150319-2_46: &id210 + qHcP0puhxD8= + 1834-150319-2_46: &id173 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wpEeNf98wD8= - 1834-150319-3_61: &id226 + 1834-150319-3_61: &id187 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jHdwD2Arvz8= - 1834-150319-4_5: &id255 + 1834-150319-4_5: &id213 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9RZMO/k5uj8= - 1834-220319-1_11: &id287 + 1834-220319-1_11: &id242 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q1GGH1TFwD8= - 1834-220319-2_8: &id307 + 1834-220319-2_8: &id261 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VHWjZ5s9wT8= - 1834-220319-3_10: &id328 + 1834-220319-3_10: &id281 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jClfJL5yvj8= - 1834-220319-4_10: &id350 + 1834-220319-4_10: &id302 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2376,199 +2037,161 @@ _adj: - !!binary | baCUROievz8= 1834-120319-4_59: - 1834-010319-1_52: *id144 - 1834-010319-3_76: *id145 - 1834-010319-4_21: *id146 - 1834-010319-5_11: *id147 - 1834-060319-1_95: *id148 - 1834-060319-2_24: *id149 - 1834-060319-3_13: *id150 - 1834-060319-4_8: *id151 - 1834-110319-2_16: *id152 - 1834-110319-3_41: *id153 - 1834-110319-5_24: *id154 - 1834-110319-6_18: *id155 - 1834-120319-1_8: *id156 - 1834-120319-2_15: *id157 - 1834-120319-3_62: *id158 - 1834-150319-1_13: &id174 + 1834-010319-1_52: *id122 + 1834-010319-3_76: *id123 + 1834-010319-4_21: *id124 + 1834-010319-5_11: *id125 + 1834-060319-1_95: *id126 + 1834-060319-2_24: *id127 + 1834-060319-3_13: *id128 + 1834-060319-4_8: *id129 + 1834-110319-2_16: *id130 + 1834-110319-3_41: *id131 + 1834-110319-5_24: *id132 + 1834-120319-1_8: *id133 + 1834-120319-2_15: *id134 + 1834-120319-3_62: *id135 + 1834-150319-1_95: &id150 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MyOspk/Zwj8= - 1834-150319-2_46: &id211 + vfBwc8bZwj8= + 1834-150319-2_46: &id174 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yybQ6Vyruz8= - 1834-150319-3_61: &id227 + 1834-150319-3_61: &id188 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1F01pGnHuj8= - 1834-150319-4_5: &id256 + 1834-150319-4_5: &id214 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +FS26h37uD8= - 1834-220319-1_11: &id288 + 1834-220319-1_11: &id243 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UddkBr7Zwj8= - 1834-220319-2_8: &id308 + 1834-220319-2_8: &id262 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xzG0xz4Bwz8= - 1834-220319-3_10: &id329 + 1834-220319-3_10: &id282 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VBndyctxwD8= - 1834-220319-4_10: &id351 + 1834-220319-4_10: &id303 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nDxYeMsGwj8= - 1834-150319-1_13: - 1834-010319-1_7: *id159 - 1834-010319-3_87: *id160 - 1834-010319-4_22: *id161 - 1834-010319-5_11: *id162 - 1834-060319-1_95: *id163 - 1834-060319-2_24: *id164 - 1834-060319-3_13: *id165 - 1834-060319-4_8: *id166 - 1834-110319-2_16: *id167 - 1834-110319-3_41: *id168 - 1834-110319-5_24: *id169 - 1834-110319-6_18: *id170 - 1834-120319-1_8: *id171 - 1834-120319-2_15: *id172 - 1834-120319-3_62: *id173 - 1834-120319-4_59: *id174 - 1834-150319-2_13: &id197 + 1834-150319-1_95: + 1834-010319-1_7: *id136 + 1834-010319-3_87: *id137 + 1834-010319-4_21: *id138 + 1834-010319-5_11: *id139 + 1834-060319-1_95: *id140 + 1834-060319-2_24: *id141 + 1834-060319-3_13: *id142 + 1834-060319-4_8: *id143 + 1834-110319-2_16: *id144 + 1834-110319-3_41: *id145 + 1834-110319-5_24: *id146 + 1834-120319-1_8: *id147 + 1834-120319-2_15: *id148 + 1834-120319-3_62: *id149 + 1834-120319-4_59: *id150 + 1834-150319-2_13: &id161 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - tkk5j5Zwsj8= - 1834-150319-3_8: &id240 + LSVSw6cvsj8= + 1834-150319-3_61: &id189 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - bHYuToKkwT8= - 1834-150319-4_6: &id270 + A8X4yOV9tD8= + 1834-150319-4_5: &id215 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - P2uHuO2Cvz8= - 1834-220319-1_11: &id289 + VWvWZiWruz8= + 1834-220319-1_11: &id244 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Ap7N6wHJyD8= - 1834-220319-2_8: &id309 + 7NMhWGG6yD8= + 1834-220319-2_8: &id263 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /gjgvWn1yD8= - 1834-220319-3_10: &id330 + cazgg+7pyD8= + 1834-220319-3_10: &id283 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qdKCq6iGxT8= - 1834-220319-4_10: &id352 + k21HyJh2xT8= + 1834-220319-4_10: &id304 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6ABZZKP2xz8= - 1834-150319-1_14: - 1834-010319-1_8: *id175 - 1834-010319-3_76: *id176 - 1834-010319-4_21: *id177 - 1834-010319-5_28: *id178 - 1834-060319-1_33: *id179 - 1834-060319-2_25: *id180 - 1834-060319-4_10: *id181 - 1834-120319-2_6: *id182 - 1834-150319-2_46: &id212 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - b7Vt/5bWzT8= - 1834-150319-3_61: &id228 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - wx8YbKFRzz8= - 1834-150319-4_5: &id257 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 0DoWpOAr0D8= - 1834-150319-1_2: - 1834-010319-1_52: *id183 - 1834-060319-1_85: *id184 - 1834-110319-6_20: *id185 - 1834-150319-1_6: {} + dOBqn0zuxz8= 1834-150319-2_13: - 1834-010319-1_7: *id186 - 1834-010319-3_87: *id187 - 1834-010319-4_21: *id188 - 1834-010319-5_28: *id189 - 1834-060319-1_95: *id190 - 1834-060319-2_24: *id191 - 1834-060319-4_10: *id192 - 1834-110319-3_41: *id193 - 1834-110319-5_24: *id194 - 1834-110319-6_18: *id195 - 1834-120319-2_15: *id196 - 1834-150319-1_13: *id197 - 1834-150319-3_8: &id241 + 1834-010319-1_7: *id151 + 1834-010319-3_87: *id152 + 1834-010319-4_21: *id153 + 1834-010319-5_28: *id154 + 1834-060319-1_95: *id155 + 1834-060319-2_24: *id156 + 1834-060319-4_10: *id157 + 1834-110319-3_41: *id158 + 1834-110319-5_24: *id159 + 1834-120319-2_15: *id160 + 1834-150319-1_95: *id161 + 1834-150319-3_8: &id200 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rtcZ1cyatj8= - 1834-150319-4_6: &id271 + 1834-150319-4_6: &id227 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2576,57 +2199,55 @@ _adj: - !!binary | vXmDvUKdsT8= 1834-150319-2_46: - 1834-010319-1_52: *id198 - 1834-010319-3_76: *id199 - 1834-010319-4_22: *id200 - 1834-010319-5_11: *id201 - 1834-060319-1_33: *id202 - 1834-060319-2_25: *id203 - 1834-060319-3_13: *id204 - 1834-060319-4_8: *id205 - 1834-110319-2_16: *id206 - 1834-110319-6_20: *id207 - 1834-120319-1_8: *id208 - 1834-120319-2_6: *id209 - 1834-120319-3_62: *id210 - 1834-120319-4_59: *id211 - 1834-150319-1_14: *id212 - 1834-150319-3_61: &id229 + 1834-010319-1_52: *id162 + 1834-010319-3_76: *id163 + 1834-010319-4_22: *id164 + 1834-010319-5_11: *id165 + 1834-060319-1_33: *id166 + 1834-060319-2_25: *id167 + 1834-060319-3_13: *id168 + 1834-060319-4_8: *id169 + 1834-110319-2_16: *id170 + 1834-120319-1_8: *id171 + 1834-120319-2_6: *id172 + 1834-120319-3_62: *id173 + 1834-120319-4_59: *id174 + 1834-150319-3_61: &id190 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w9WZa45ylj8= - 1834-150319-4_5: &id258 + 1834-150319-4_5: &id216 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4Au1UlUcqz8= - 1834-220319-1_11: &id290 + 1834-220319-1_11: &id245 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bFPv/CTBwz8= - 1834-220319-2_8: &id310 + 1834-220319-2_8: &id264 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yIJyEZZawz8= - 1834-220319-3_10: &id331 + 1834-220319-3_10: &id284 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PZHcNe/Avz8= - 1834-220319-4_10: &id353 + 1834-220319-4_10: &id305 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2634,52 +2255,51 @@ _adj: - !!binary | dYJjJ/6ewj8= 1834-150319-3_61: - 1834-010319-1_7: *id213 - 1834-010319-3_76: *id214 - 1834-010319-4_22: *id215 - 1834-010319-5_11: *id216 - 1834-060319-1_33: *id217 - 1834-060319-2_25: *id218 - 1834-060319-3_13: *id219 - 1834-060319-4_8: *id220 - 1834-110319-2_16: *id221 - 1834-110319-5_24: *id222 - 1834-110319-6_20: *id223 - 1834-120319-1_8: *id224 - 1834-120319-2_15: *id225 - 1834-120319-3_62: *id226 - 1834-120319-4_59: *id227 - 1834-150319-1_14: *id228 - 1834-150319-2_46: *id229 - 1834-150319-4_5: &id259 + 1834-010319-1_7: *id175 + 1834-010319-3_76: *id176 + 1834-010319-4_22: *id177 + 1834-010319-5_11: *id178 + 1834-060319-1_33: *id179 + 1834-060319-2_25: *id180 + 1834-060319-3_13: *id181 + 1834-060319-4_8: *id182 + 1834-110319-2_16: *id183 + 1834-110319-5_24: *id184 + 1834-120319-1_8: *id185 + 1834-120319-2_15: *id186 + 1834-120319-3_62: *id187 + 1834-120319-4_59: *id188 + 1834-150319-1_95: *id189 + 1834-150319-2_46: *id190 + 1834-150319-4_5: &id217 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rd6abyDHpD8= - 1834-220319-1_11: &id291 + 1834-220319-1_11: &id246 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EIffALokwj8= - 1834-220319-2_8: &id311 + 1834-220319-2_8: &id265 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bdvnW1OfwT8= - 1834-220319-3_10: &id332 + 1834-220319-3_10: &id285 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Dt0RwfB/vD8= - 1834-220319-4_10: &id354 + 1834-220319-4_10: &id306 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2687,19 +2307,17 @@ _adj: - !!binary | rfxdLSbswD8= 1834-150319-3_8: - 1834-010319-1_52: *id230 - 1834-010319-3_87: *id231 - 1834-010319-4_21: *id232 - 1834-010319-5_28: *id233 - 1834-060319-1_95: *id234 - 1834-060319-2_24: *id235 - 1834-060319-4_10: *id236 - 1834-110319-3_41: *id237 - 1834-110319-6_18: *id238 - 1834-120319-2_6: *id239 - 1834-150319-1_13: *id240 - 1834-150319-2_13: *id241 - 1834-150319-4_6: &id272 + 1834-010319-1_52: *id191 + 1834-010319-3_87: *id192 + 1834-010319-4_21: *id193 + 1834-010319-5_28: *id194 + 1834-060319-1_95: *id195 + 1834-060319-2_24: *id196 + 1834-060319-4_10: *id197 + 1834-110319-3_41: *id198 + 1834-120319-2_6: *id199 + 1834-150319-2_13: *id200 + 1834-150319-4_6: &id228 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2707,46 +2325,45 @@ _adj: - !!binary | U+yOLPXLtz8= 1834-150319-4_5: - 1834-010319-1_52: *id242 - 1834-010319-3_76: *id243 - 1834-010319-4_21: *id244 - 1834-010319-5_11: *id245 - 1834-060319-1_33: *id246 - 1834-060319-2_25: *id247 - 1834-060319-3_13: *id248 - 1834-060319-4_8: *id249 - 1834-110319-2_16: *id250 - 1834-110319-5_24: *id251 - 1834-110319-6_20: *id252 - 1834-120319-1_8: *id253 - 1834-120319-2_15: *id254 - 1834-120319-3_62: *id255 - 1834-120319-4_59: *id256 - 1834-150319-1_14: *id257 - 1834-150319-2_46: *id258 - 1834-150319-3_61: *id259 - 1834-220319-1_11: &id292 + 1834-010319-1_52: *id201 + 1834-010319-3_76: *id202 + 1834-010319-4_21: *id203 + 1834-010319-5_11: *id204 + 1834-060319-1_33: *id205 + 1834-060319-2_25: *id206 + 1834-060319-3_13: *id207 + 1834-060319-4_8: *id208 + 1834-110319-2_16: *id209 + 1834-110319-5_24: *id210 + 1834-120319-1_8: *id211 + 1834-120319-2_15: *id212 + 1834-120319-3_62: *id213 + 1834-120319-4_59: *id214 + 1834-150319-1_95: *id215 + 1834-150319-2_46: *id216 + 1834-150319-3_61: *id217 + 1834-220319-1_11: &id247 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Gx8LGAqruz8= - 1834-220319-2_8: &id312 + 1834-220319-2_8: &id266 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vYhRiXPVuj8= - 1834-220319-3_10: &id333 + 1834-220319-3_10: &id286 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1eLEBZyksz8= - 1834-220319-4_10: &id355 + 1834-220319-4_10: &id307 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2754,55 +2371,52 @@ _adj: - !!binary | OE/8ffhcuT8= 1834-150319-4_6: - 1834-010319-1_7: *id260 - 1834-010319-3_87: *id261 - 1834-010319-4_22: *id262 - 1834-010319-5_28: *id263 - 1834-060319-1_95: *id264 - 1834-060319-2_24: *id265 - 1834-060319-4_10: *id266 - 1834-110319-3_41: *id267 - 1834-110319-6_18: *id268 - 1834-120319-2_6: *id269 - 1834-150319-1_13: *id270 - 1834-150319-2_13: *id271 - 1834-150319-3_8: *id272 + 1834-010319-1_7: *id218 + 1834-010319-3_87: *id219 + 1834-010319-4_22: *id220 + 1834-010319-5_28: *id221 + 1834-060319-1_95: *id222 + 1834-060319-2_24: *id223 + 1834-060319-4_10: *id224 + 1834-110319-3_41: *id225 + 1834-120319-2_6: *id226 + 1834-150319-2_13: *id227 + 1834-150319-3_8: *id228 1834-220319-1_11: - 1834-010319-1_52: *id273 - 1834-010319-3_76: *id274 - 1834-010319-4_21: *id275 - 1834-010319-5_11: *id276 - 1834-060319-1_95: *id277 - 1834-060319-2_24: *id278 - 1834-060319-3_13: *id279 - 1834-060319-4_8: *id280 - 1834-110319-2_16: *id281 - 1834-110319-3_41: *id282 - 1834-110319-5_24: *id283 - 1834-110319-6_18: *id284 - 1834-120319-1_8: *id285 - 1834-120319-2_15: *id286 - 1834-120319-3_62: *id287 - 1834-120319-4_59: *id288 - 1834-150319-1_13: *id289 - 1834-150319-2_46: *id290 - 1834-150319-3_61: *id291 - 1834-150319-4_5: *id292 - 1834-220319-2_8: &id313 + 1834-010319-1_52: *id229 + 1834-010319-3_76: *id230 + 1834-010319-4_21: *id231 + 1834-010319-5_11: *id232 + 1834-060319-1_95: *id233 + 1834-060319-2_24: *id234 + 1834-060319-3_13: *id235 + 1834-060319-4_8: *id236 + 1834-110319-2_16: *id237 + 1834-110319-3_41: *id238 + 1834-110319-5_24: *id239 + 1834-120319-1_8: *id240 + 1834-120319-2_15: *id241 + 1834-120319-3_62: *id242 + 1834-120319-4_59: *id243 + 1834-150319-1_95: *id244 + 1834-150319-2_46: *id245 + 1834-150319-3_61: *id246 + 1834-150319-4_5: *id247 + 1834-220319-2_8: &id267 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bMSpERd2oz8= - 1834-220319-3_10: &id334 + 1834-220319-3_10: &id287 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2GO/harqpz8= - 1834-220319-4_10: &id356 + 1834-220319-4_10: &id308 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2810,35 +2424,34 @@ _adj: - !!binary | 7Ne0+tPDnT8= 1834-220319-2_8: - 1834-010319-1_52: *id293 - 1834-010319-3_76: *id294 - 1834-010319-4_21: *id295 - 1834-010319-5_11: *id296 - 1834-060319-1_95: *id297 - 1834-060319-2_24: *id298 - 1834-060319-3_13: *id299 - 1834-060319-4_8: *id300 - 1834-110319-2_16: *id301 - 1834-110319-3_41: *id302 - 1834-110319-5_24: *id303 - 1834-110319-6_18: *id304 - 1834-120319-1_8: *id305 - 1834-120319-2_15: *id306 - 1834-120319-3_62: *id307 - 1834-120319-4_59: *id308 - 1834-150319-1_13: *id309 - 1834-150319-2_46: *id310 - 1834-150319-3_61: *id311 - 1834-150319-4_5: *id312 - 1834-220319-1_11: *id313 - 1834-220319-3_10: &id335 + 1834-010319-1_52: *id248 + 1834-010319-3_76: *id249 + 1834-010319-4_21: *id250 + 1834-010319-5_11: *id251 + 1834-060319-1_95: *id252 + 1834-060319-2_24: *id253 + 1834-060319-3_13: *id254 + 1834-060319-4_8: *id255 + 1834-110319-2_16: *id256 + 1834-110319-3_41: *id257 + 1834-110319-5_24: *id258 + 1834-120319-1_8: *id259 + 1834-120319-2_15: *id260 + 1834-120319-3_62: *id261 + 1834-120319-4_59: *id262 + 1834-150319-1_95: *id263 + 1834-150319-2_46: *id264 + 1834-150319-3_61: *id265 + 1834-150319-4_5: *id266 + 1834-220319-1_11: *id267 + 1834-220319-3_10: &id288 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aEPYPulToj8= - 1834-220319-4_10: &id357 + 1834-220319-4_10: &id309 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2846,29 +2459,28 @@ _adj: - !!binary | ROCvcSPxnD8= 1834-220319-3_10: - 1834-010319-1_52: *id314 - 1834-010319-3_76: *id315 - 1834-010319-4_21: *id316 - 1834-010319-5_11: *id317 - 1834-060319-1_95: *id318 - 1834-060319-2_24: *id319 - 1834-060319-3_13: *id320 - 1834-060319-4_8: *id321 - 1834-110319-2_16: *id322 - 1834-110319-3_41: *id323 - 1834-110319-5_24: *id324 - 1834-110319-6_18: *id325 - 1834-120319-1_8: *id326 - 1834-120319-2_15: *id327 - 1834-120319-3_62: *id328 - 1834-120319-4_59: *id329 - 1834-150319-1_13: *id330 - 1834-150319-2_46: *id331 - 1834-150319-3_61: *id332 - 1834-150319-4_5: *id333 - 1834-220319-1_11: *id334 - 1834-220319-2_8: *id335 - 1834-220319-4_10: &id358 + 1834-010319-1_52: *id268 + 1834-010319-3_76: *id269 + 1834-010319-4_21: *id270 + 1834-010319-5_11: *id271 + 1834-060319-1_95: *id272 + 1834-060319-2_24: *id273 + 1834-060319-3_13: *id274 + 1834-060319-4_8: *id275 + 1834-110319-2_16: *id276 + 1834-110319-3_41: *id277 + 1834-110319-5_24: *id278 + 1834-120319-1_8: *id279 + 1834-120319-2_15: *id280 + 1834-120319-3_62: *id281 + 1834-120319-4_59: *id282 + 1834-150319-1_95: *id283 + 1834-150319-2_46: *id284 + 1834-150319-3_61: *id285 + 1834-150319-4_5: *id286 + 1834-220319-1_11: *id287 + 1834-220319-2_8: *id288 + 1834-220319-4_10: &id310 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2876,34 +2488,33 @@ _adj: - !!binary | 7K/p8M0joz8= 1834-220319-4_10: - 1834-010319-1_52: *id336 - 1834-010319-3_76: *id337 - 1834-010319-4_21: *id338 - 1834-010319-5_11: *id339 - 1834-060319-1_95: *id340 - 1834-060319-2_24: *id341 - 1834-060319-3_13: *id342 - 1834-060319-4_8: *id343 - 1834-110319-2_16: *id344 - 1834-110319-3_41: *id345 - 1834-110319-5_24: *id346 - 1834-110319-6_18: *id347 - 1834-120319-1_8: *id348 - 1834-120319-2_15: *id349 - 1834-120319-3_62: *id350 - 1834-120319-4_59: *id351 - 1834-150319-1_13: *id352 - 1834-150319-2_46: *id353 - 1834-150319-3_61: *id354 - 1834-150319-4_5: *id355 - 1834-220319-1_11: *id356 - 1834-220319-2_8: *id357 - 1834-220319-3_10: *id358 -_node: &id361 + 1834-010319-1_52: *id289 + 1834-010319-3_76: *id290 + 1834-010319-4_21: *id291 + 1834-010319-5_11: *id292 + 1834-060319-1_95: *id293 + 1834-060319-2_24: *id294 + 1834-060319-3_13: *id295 + 1834-060319-4_8: *id296 + 1834-110319-2_16: *id297 + 1834-110319-3_41: *id298 + 1834-110319-5_24: *id299 + 1834-120319-1_8: *id300 + 1834-120319-2_15: *id301 + 1834-120319-3_62: *id302 + 1834-120319-4_59: *id303 + 1834-150319-1_95: *id304 + 1834-150319-2_46: *id305 + 1834-150319-3_61: *id306 + 1834-150319-4_5: *id307 + 1834-220319-1_11: *id308 + 1834-220319-2_8: *id309 + 1834-220319-3_10: *id310 +_node: &id313 1834-010319-1_52: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id359 !!python/object/apply:numpy.dtype + - &id311 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -2911,247 +2522,217 @@ _node: &id361 1834-010319-1_7: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | BwAAAAAAAAA= 1834-010319-1_8: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CAAAAAAAAAA= 1834-010319-3_76: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | TAAAAAAAAAA= 1834-010319-3_87: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | VwAAAAAAAAA= 1834-010319-4_21: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | FQAAAAAAAAA= 1834-010319-4_22: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | FgAAAAAAAAA= 1834-010319-5_11: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CwAAAAAAAAA= 1834-010319-5_28: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | HAAAAAAAAAA= 1834-060319-1_33: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | IQAAAAAAAAA= 1834-060319-1_85: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | VQAAAAAAAAA= 1834-060319-1_95: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | XwAAAAAAAAA= 1834-060319-2_24: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | GAAAAAAAAAA= 1834-060319-2_25: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | GQAAAAAAAAA= 1834-060319-3_13: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | DQAAAAAAAAA= 1834-060319-4_10: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CgAAAAAAAAA= 1834-060319-4_8: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CAAAAAAAAAA= 1834-110319-2_16: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | EAAAAAAAAAA= 1834-110319-3_41: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | KQAAAAAAAAA= 1834-110319-5_24: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | GAAAAAAAAAA= - 1834-110319-6_18: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 - - !!binary | - EgAAAAAAAAA= - 1834-110319-6_20: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 - - !!binary | - FAAAAAAAAAA= 1834-120319-1_8: action_id: 1834-120319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CAAAAAAAAAA= 1834-120319-2_15: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | DwAAAAAAAAA= 1834-120319-2_6: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | BgAAAAAAAAA= 1834-120319-3_62: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | PgAAAAAAAAA= 1834-120319-4_59: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | OwAAAAAAAAA= - 1834-150319-1_13: + 1834-150319-1_95: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | - DQAAAAAAAAA= - 1834-150319-1_14: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 - - !!binary | - DgAAAAAAAAA= - 1834-150319-1_2: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 - - !!binary | - AgAAAAAAAAA= - 1834-150319-1_6: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 - - !!binary | - BgAAAAAAAAA= + XwAAAAAAAAA= 1834-150319-2_13: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | DQAAAAAAAAA= 1834-150319-2_46: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | LgAAAAAAAAA= 1834-150319-3_61: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | PQAAAAAAAAA= 1834-150319-3_8: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CAAAAAAAAAA= 1834-150319-4_5: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | BQAAAAAAAAA= 1834-150319-4_6: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | BgAAAAAAAAA= 1834-220319-1_11: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CwAAAAAAAAA= 1834-220319-2_8: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CAAAAAAAAAA= 1834-220319-3_10: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CgAAAAAAAAA= 1834-220319-4_10: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id359 + - *id311 - !!binary | CgAAAAAAAAA= -adjlist_inner_dict_factory: &id360 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id360 -edge_attr_dict_factory: *id360 +adjlist_inner_dict_factory: &id312 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id312 +edge_attr_dict_factory: *id312 graph: {} -node_dict_factory: *id360 +node_dict_factory: *id312 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id361 + _nodes: *id313 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml index bfe348b35..32155b2f2 100644 --- a/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml +++ b/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml @@ -17,35 +17,21 @@ _adj: - *id001 - !!binary | JH/dtCsQzD8= - 1834-110319-6_25: &id053 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - E0RZmdhHzz8= - 1834-120319-3_95: &id064 + 1834-120319-3_95: &id048 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cJXIt3nRwz8= - 1834-150319-1_52: &id088 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - /U8G/NYM1j8= - 1834-220319-2_34: &id118 + 1834-220319-2_34: &id075 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6sCn0jWfyz8= - 1834-220319-4_36: &id153 + 1834-220319-4_36: &id104 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -109,56 +95,42 @@ _adj: - *id001 - !!binary | ZCnkwVC3yj8= - 1834-110319-6_22: &id043 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 6Ffv7LVw0T8= - 1834-120319-3_40: &id057 + 1834-120319-3_40: &id042 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /OwPDEbZ0j8= - 1834-150319-1_5: &id081 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - oZkGy6D00j8= - 1834-150319-2_54: &id093 + 1834-150319-2_54: &id054 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | REe4veTNxj8= - 1834-220319-1_65: &id105 + 1834-220319-1_65: &id064 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tCJ1NPl1uT8= - 1834-220319-2_47: &id127 + 1834-220319-2_47: &id082 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yZREvXe+vz8= - 1834-220319-3_15: &id138 + 1834-220319-3_15: &id091 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OOigTj8muz8= - 1834-220319-4_51: &id158 + 1834-220319-4_51: &id107 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -180,35 +152,21 @@ _adj: - *id001 - !!binary | tv/Jw4+ywz8= - 1834-110319-6_22: &id044 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - EjjKhB6D2j8= - 1834-120319-3_40: &id058 + 1834-120319-3_40: &id043 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SVifCBLB0j8= - 1834-150319-1_40: &id075 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - OD4F2V+P2z8= - 1834-220319-2_47: &id128 + 1834-220319-2_47: &id083 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HsMQRL2+xj8= - 1834-220319-4_51: &id159 + 1834-220319-4_51: &id108 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -216,21 +174,7 @@ _adj: - !!binary | 4KHM/Cqkwz8= 1834-010319-3_36: - 1834-110319-6_23: &id051 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - E4D0mJ1S2j8= - 1834-150319-1_23: &id072 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 2vTH93S01z8= - 1834-220319-4_36: &id154 + 1834-220319-4_36: &id105 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -281,42 +225,28 @@ _adj: - *id001 - !!binary | e6WxmFlyzj8= - 1834-110319-6_21: &id042 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - UFHCeyii1z8= - 1834-150319-1_5: &id082 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - /qymV/ld1D8= - 1834-220319-1_65: &id106 + 1834-220319-1_65: &id065 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EyhUWdGpvT8= - 1834-220319-2_34: &id119 + 1834-220319-2_34: &id076 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mtwogh+Tvz8= - 1834-220319-3_15: &id139 + 1834-220319-3_15: &id092 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WgdKF+AUxD8= - 1834-220319-4_65: &id176 + 1834-220319-4_65: &id121 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -332,35 +262,21 @@ _adj: - *id001 - !!binary | a0xKcoW8xz8= - 1834-110319-6_25: &id054 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ecP4R7n50j8= - 1834-120319-3_95: &id065 + 1834-120319-3_95: &id049 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jCSuS1RGyj8= - 1834-150319-1_52: &id089 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YJ5B73Iu2D8= - 1834-150319-2_54: &id094 + 1834-150319-2_54: &id055 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 75XQCxC8yD8= - 1834-220319-4_63: &id172 + 1834-220319-4_63: &id119 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -405,42 +321,28 @@ _adj: - *id001 - !!binary | vFycZ7IIzD8= - 1834-110319-6_22: &id045 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YJgb+SGF1T8= - 1834-150319-1_23: &id073 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - irNr1gRd1T8= - 1834-220319-1_65: &id107 + 1834-220319-1_65: &id066 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | y04F6W32vj8= - 1834-220319-2_34: &id120 + 1834-220319-2_34: &id077 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cAZT6YEbwD8= - 1834-220319-3_15: &id140 + 1834-220319-3_15: &id093 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N997jeuCxj8= - 1834-220319-4_65: &id177 + 1834-220319-4_65: &id122 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -450,35 +352,21 @@ _adj: 1834-010319-4_35: 1834-010319-1_13: *id006 1834-010319-3_90: *id007 - 1834-110319-6_25: &id055 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - A54C/zrOzz8= - 1834-120319-3_95: &id066 + 1834-120319-3_95: &id050 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ovvg0DSPyj8= - 1834-150319-1_52: &id090 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - J0FH+RWm1D8= - 1834-150319-2_54: &id095 + 1834-150319-2_54: &id056 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BtQLJLldyT8= - 1834-220319-4_63: &id173 + 1834-220319-4_63: &id120 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -494,35 +382,21 @@ _adj: - *id001 - !!binary | ZlPne35nxD8= - 1834-110319-6_23: &id052 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 2glbSbMp2D8= - 1834-120319-3_40: &id059 + 1834-120319-3_40: &id044 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | txIqdzOE0j8= - 1834-150319-1_5: &id083 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 2WYYKwwA2z8= - 1834-220319-2_47: &id129 + 1834-220319-2_47: &id084 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LoxyQOpgyD8= - 1834-220319-4_51: &id160 + 1834-220319-4_51: &id109 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -568,56 +442,42 @@ _adj: - *id001 - !!binary | m6xo8d4d1D8= - 1834-110319-6_22: &id046 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 3pkIDuon1z8= - 1834-120319-3_40: &id060 + 1834-120319-3_40: &id045 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A/PvqhPb0j8= - 1834-150319-1_40: &id076 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 2CXAYfie2D8= - 1834-150319-2_54: &id096 + 1834-150319-2_54: &id057 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tQ2JDT4H0D8= - 1834-220319-1_65: &id108 + 1834-220319-1_65: &id067 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UAjCVtF6wj8= - 1834-220319-2_47: &id130 + 1834-220319-2_47: &id085 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZkY/N8qCuT8= - 1834-220319-3_15: &id141 + 1834-220319-3_15: &id094 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D7UHhABTwT8= - 1834-220319-4_51: &id161 + 1834-220319-4_51: &id110 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -657,56 +517,42 @@ _adj: - *id001 - !!binary | EeMZpHcP0z8= - 1834-110319-6_22: &id047 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ZrzO9gDG1z8= - 1834-120319-3_40: &id061 + 1834-120319-3_40: &id046 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cPJ9MeXl0j8= - 1834-150319-1_5: &id084 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Ea5OQZCq1z8= - 1834-150319-2_54: &id097 + 1834-150319-2_54: &id058 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JkRFGwI8zj8= - 1834-220319-1_65: &id109 + 1834-220319-1_65: &id068 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kJkquvYawj8= - 1834-220319-2_47: &id131 + 1834-220319-2_47: &id086 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WrC6/jL2vj8= - 1834-220319-3_15: &id142 + 1834-220319-3_15: &id095 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | piGTU3W6vT8= - 1834-220319-4_51: &id162 + 1834-220319-4_51: &id111 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -740,56 +586,42 @@ _adj: - *id001 - !!binary | wIHpa+n70D8= - 1834-110319-6_22: &id048 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - yfNpbqkl1T8= - 1834-120319-3_40: &id062 + 1834-120319-3_40: &id047 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FMEh7kWR0j8= - 1834-150319-1_40: &id077 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Er1UWu7A2D8= - 1834-150319-2_54: &id098 + 1834-150319-2_54: &id059 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bpsuu/5iyj8= - 1834-220319-1_65: &id110 + 1834-220319-1_65: &id069 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ypxncc32wT8= - 1834-220319-2_47: &id132 + 1834-220319-2_47: &id087 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kUyN8FRbuD8= - 1834-220319-3_15: &id143 + 1834-220319-3_15: &id096 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FJzxvUmnwT8= - 1834-220319-4_51: &id163 + 1834-220319-4_51: &id112 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -817,56 +649,42 @@ _adj: - *id001 - !!binary | uOlhvbBhyD8= - 1834-110319-6_22: &id049 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - iczhR0EXzT8= - 1834-120319-3_95: &id067 + 1834-120319-3_95: &id051 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LBnwif7vzT8= - 1834-150319-1_5: &id085 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - dbr4TwxV0D8= - 1834-150319-2_54: &id099 + 1834-150319-2_54: &id060 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XZvQW/YEwj8= - 1834-220319-1_65: &id111 + 1834-220319-1_65: &id070 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pjCaw6p7vD8= - 1834-220319-2_47: &id133 + 1834-220319-2_47: &id088 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IB08xIfDtT8= - 1834-220319-3_15: &id144 + 1834-220319-3_15: &id097 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TQuC/EbHuD8= - 1834-220319-4_51: &id164 + 1834-220319-4_51: &id113 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -888,56 +706,42 @@ _adj: - *id001 - !!binary | 2LdmYKbAxT8= - 1834-110319-6_22: &id050 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 95Gxzdq8yj8= - 1834-120319-3_95: &id068 + 1834-120319-3_95: &id052 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9yIWFlUsyj8= - 1834-150319-1_5: &id086 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - JKujSVJ+zD8= - 1834-150319-2_54: &id100 + 1834-150319-2_54: &id061 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uC2zJ1o1wT8= - 1834-220319-1_65: &id112 + 1834-220319-1_65: &id071 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Uzk5a5nGtj8= - 1834-220319-2_47: &id134 + 1834-220319-2_47: &id089 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yAPqrgfltj8= - 1834-220319-3_15: &id145 + 1834-220319-3_15: &id098 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | znVa+e5Htj8= - 1834-220319-4_51: &id165 + 1834-220319-4_51: &id114 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -953,225 +757,70 @@ _adj: 1834-060319-4_13: *id039 1834-110319-1_11: *id040 1834-110319-2_19: *id041 - 1834-110319-6_25: &id056 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - qM2F5wJZ1D8= - 1834-120319-3_95: &id069 + 1834-120319-3_95: &id053 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8VKUc1Kcyz8= - 1834-150319-1_40: &id078 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - sUMH27ek2z8= - 1834-150319-2_54: &id101 + 1834-150319-2_54: &id062 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1HlmQMSH0j8= - 1834-220319-1_65: &id113 + 1834-220319-1_65: &id072 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bn4Siu4uxz8= - 1834-220319-2_34: &id121 + 1834-220319-2_34: &id078 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vdbHcroGxj8= - 1834-220319-3_15: &id146 + 1834-220319-3_15: &id099 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VRm0GzlRzD8= - 1834-220319-4_51: &id166 + 1834-220319-4_51: &id115 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H7aq8VEbyT8= - 1834-110319-6_14: {} - 1834-110319-6_21: - 1834-010319-3_66: *id042 - 1834-150319-1_0: &id071 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - onFLdBr63j8= - 1834-220319-4_51: &id167 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - DDTX4YyX0z8= - 1834-110319-6_22: - 1834-010319-1_62: *id043 - 1834-010319-3_34: *id044 - 1834-010319-4_29: *id045 - 1834-060319-2_115: *id046 - 1834-060319-3_19: *id047 - 1834-060319-4_13: *id048 - 1834-110319-1_11: *id049 - 1834-110319-2_19: *id050 - 1834-150319-1_40: &id079 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - DQvBRmka2j8= - 1834-220319-1_65: &id114 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8gPm3Dj6zD8= - 1834-220319-2_47: &id135 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - /hbsOO1b0j8= - 1834-220319-3_15: &id147 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YWfuIg420j8= - 1834-220319-4_63: &id174 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - e3rVGYHW1T8= - 1834-110319-6_23: - 1834-010319-3_36: *id051 - 1834-010319-4_53: *id052 - 1834-120319-3_40: &id063 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 7saVKu7b0T8= - 1834-150319-1_23: &id074 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ZBpjki7F0z8= - 1834-150319-2_54: &id102 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8WaeFiCY1z8= - 1834-220319-4_65: &id178 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ETytO7Oi2j8= - 1834-110319-6_25: - 1834-010319-1_13: *id053 - 1834-010319-3_90: *id054 - 1834-010319-4_35: *id055 - 1834-110319-5_76: *id056 - 1834-120319-3_95: &id070 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YaD88rmw1D8= - 1834-150319-1_52: &id091 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 3eJvtlWj0j8= - 1834-220319-2_34: &id122 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - AwbXbG4qzT8= - 1834-220319-4_36: &id155 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ekD1fzgt0z8= - 1834-110319-6_37: - 1834-150319-1_5: &id087 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 0MMVZp7r4z8= 1834-120319-3_40: - 1834-010319-1_62: *id057 - 1834-010319-3_34: *id058 - 1834-010319-4_53: *id059 - 1834-060319-2_115: *id060 - 1834-060319-3_19: *id061 - 1834-060319-4_13: *id062 - 1834-110319-6_23: *id063 - 1834-150319-1_52: &id092 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LXHbdQI90j8= - 1834-150319-2_54: &id103 + 1834-010319-1_62: *id042 + 1834-010319-3_34: *id043 + 1834-010319-4_53: *id044 + 1834-060319-2_115: *id045 + 1834-060319-3_19: *id046 + 1834-060319-4_13: *id047 + 1834-150319-2_54: &id063 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4DBeSAEd0j8= - 1834-220319-2_47: &id136 + 1834-220319-2_47: &id090 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CIHHvyKe0j8= - 1834-220319-4_65: &id179 + 1834-220319-4_65: &id123 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1179,173 +828,73 @@ _adj: - !!binary | iQP8DR2M0j8= 1834-120319-3_95: - 1834-010319-1_13: *id064 - 1834-010319-3_90: *id065 - 1834-010319-4_35: *id066 - 1834-110319-1_11: *id067 - 1834-110319-2_19: *id068 - 1834-110319-5_76: *id069 - 1834-110319-6_25: *id070 - 1834-150319-1_40: &id080 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - hbzjWktL3D8= - 1834-220319-1_65: &id115 + 1834-010319-1_13: *id048 + 1834-010319-3_90: *id049 + 1834-010319-4_35: *id050 + 1834-110319-1_11: *id051 + 1834-110319-2_19: *id052 + 1834-110319-5_76: *id053 + 1834-220319-1_65: &id073 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q97FutAiyz8= - 1834-220319-2_34: &id123 + 1834-220319-2_34: &id079 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7142Be8jyT8= - 1834-220319-3_15: &id148 + 1834-220319-3_15: &id100 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q0U2lKNI0T8= - 1834-220319-4_36: &id156 + 1834-220319-4_36: &id106 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iyGp/maZyT8= - 1834-150319-1_0: - 1834-110319-6_21: *id071 - 1834-150319-1_23: - 1834-010319-3_36: *id072 - 1834-010319-4_29: *id073 - 1834-110319-6_23: *id074 - 1834-220319-2_34: &id124 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - vWhxCHxwzj8= - 1834-220319-4_63: &id175 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9LEmTp073T8= - 1834-150319-1_40: - 1834-010319-3_34: *id075 - 1834-060319-2_115: *id076 - 1834-060319-4_13: *id077 - 1834-110319-5_76: *id078 - 1834-110319-6_22: *id079 - 1834-120319-3_95: *id080 - 1834-150319-2_54: &id104 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8IjQBRr81z8= - 1834-220319-4_65: &id180 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - neNVIBSU1z8= - 1834-150319-1_5: - 1834-010319-1_62: *id081 - 1834-010319-3_66: *id082 - 1834-010319-4_53: *id083 - 1834-060319-3_19: *id084 - 1834-110319-1_11: *id085 - 1834-110319-2_19: *id086 - 1834-110319-6_37: *id087 - 1834-220319-1_65: &id116 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - qR53lzuYzT8= - 1834-220319-2_47: &id137 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Sm59VNb01D8= - 1834-220319-3_15: &id149 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 6atmbwpN0j8= - 1834-220319-4_51: &id168 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - de0HATJs0T8= - 1834-150319-1_52: - 1834-010319-1_13: *id088 - 1834-010319-3_90: *id089 - 1834-010319-4_35: *id090 - 1834-110319-6_25: *id091 - 1834-120319-3_40: *id092 - 1834-220319-4_36: &id157 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - cqtOccCp1z8= 1834-150319-2_54: - 1834-010319-1_62: *id093 - 1834-010319-3_90: *id094 - 1834-010319-4_35: *id095 - 1834-060319-2_115: *id096 - 1834-060319-3_19: *id097 - 1834-060319-4_13: *id098 - 1834-110319-1_11: *id099 - 1834-110319-2_19: *id100 - 1834-110319-5_76: *id101 - 1834-110319-6_23: *id102 - 1834-120319-3_40: *id103 - 1834-150319-1_40: *id104 - 1834-220319-1_65: &id117 + 1834-010319-1_62: *id054 + 1834-010319-3_90: *id055 + 1834-010319-4_35: *id056 + 1834-060319-2_115: *id057 + 1834-060319-3_19: *id058 + 1834-060319-4_13: *id059 + 1834-110319-1_11: *id060 + 1834-110319-2_19: *id061 + 1834-110319-5_76: *id062 + 1834-120319-3_40: *id063 + 1834-220319-1_65: &id074 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qpF+8gl9xD8= - 1834-220319-2_34: &id125 + 1834-220319-2_34: &id080 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6pBlxEEPxD8= - 1834-220319-3_15: &id150 + 1834-220319-3_15: &id101 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WFuQdXNCxT8= - 1834-220319-4_65: &id181 + 1834-220319-4_65: &id124 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1353,34 +902,32 @@ _adj: - !!binary | 6XSlT0FTwz8= 1834-220319-1_65: - 1834-010319-1_62: *id105 - 1834-010319-3_66: *id106 - 1834-010319-4_29: *id107 - 1834-060319-2_115: *id108 - 1834-060319-3_19: *id109 - 1834-060319-4_13: *id110 - 1834-110319-1_11: *id111 - 1834-110319-2_19: *id112 - 1834-110319-5_76: *id113 - 1834-110319-6_22: *id114 - 1834-120319-3_95: *id115 - 1834-150319-1_5: *id116 - 1834-150319-2_54: *id117 - 1834-220319-2_34: &id126 + 1834-010319-1_62: *id064 + 1834-010319-3_66: *id065 + 1834-010319-4_29: *id066 + 1834-060319-2_115: *id067 + 1834-060319-3_19: *id068 + 1834-060319-4_13: *id069 + 1834-110319-1_11: *id070 + 1834-110319-2_19: *id071 + 1834-110319-5_76: *id072 + 1834-120319-3_95: *id073 + 1834-150319-2_54: *id074 + 1834-220319-2_34: &id081 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hUIMFMF8qT8= - 1834-220319-3_15: &id151 + 1834-220319-3_15: &id102 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | poMmlZzatj8= - 1834-220319-4_51: &id169 + 1834-220319-4_51: &id116 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1388,16 +935,14 @@ _adj: - !!binary | 5lrqSrHmsT8= 1834-220319-2_34: - 1834-010319-1_13: *id118 - 1834-010319-3_66: *id119 - 1834-010319-4_29: *id120 - 1834-110319-5_76: *id121 - 1834-110319-6_25: *id122 - 1834-120319-3_95: *id123 - 1834-150319-1_23: *id124 - 1834-150319-2_54: *id125 - 1834-220319-1_65: *id126 - 1834-220319-4_51: &id170 + 1834-010319-1_13: *id075 + 1834-010319-3_66: *id076 + 1834-010319-4_29: *id077 + 1834-110319-5_76: *id078 + 1834-120319-3_95: *id079 + 1834-150319-2_54: *id080 + 1834-220319-1_65: *id081 + 1834-220319-4_51: &id117 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1405,25 +950,23 @@ _adj: - !!binary | +AVpDzyFtz8= 1834-220319-2_47: - 1834-010319-1_62: *id127 - 1834-010319-3_34: *id128 - 1834-010319-4_53: *id129 - 1834-060319-2_115: *id130 - 1834-060319-3_19: *id131 - 1834-060319-4_13: *id132 - 1834-110319-1_11: *id133 - 1834-110319-2_19: *id134 - 1834-110319-6_22: *id135 - 1834-120319-3_40: *id136 - 1834-150319-1_5: *id137 - 1834-220319-3_15: &id152 + 1834-010319-1_62: *id082 + 1834-010319-3_34: *id083 + 1834-010319-4_53: *id084 + 1834-060319-2_115: *id085 + 1834-060319-3_19: *id086 + 1834-060319-4_13: *id087 + 1834-110319-1_11: *id088 + 1834-110319-2_19: *id089 + 1834-120319-3_40: *id090 + 1834-220319-3_15: &id103 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GNfkkLJuuj8= - 1834-220319-4_65: &id182 + 1834-220319-4_65: &id125 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1431,22 +974,20 @@ _adj: - !!binary | 6PBknwKyvj8= 1834-220319-3_15: - 1834-010319-1_62: *id138 - 1834-010319-3_66: *id139 - 1834-010319-4_29: *id140 - 1834-060319-2_115: *id141 - 1834-060319-3_19: *id142 - 1834-060319-4_13: *id143 - 1834-110319-1_11: *id144 - 1834-110319-2_19: *id145 - 1834-110319-5_76: *id146 - 1834-110319-6_22: *id147 - 1834-120319-3_95: *id148 - 1834-150319-1_5: *id149 - 1834-150319-2_54: *id150 - 1834-220319-1_65: *id151 - 1834-220319-2_47: *id152 - 1834-220319-4_51: &id171 + 1834-010319-1_62: *id091 + 1834-010319-3_66: *id092 + 1834-010319-4_29: *id093 + 1834-060319-2_115: *id094 + 1834-060319-3_19: *id095 + 1834-060319-4_13: *id096 + 1834-110319-1_11: *id097 + 1834-110319-2_19: *id098 + 1834-110319-5_76: *id099 + 1834-120319-3_95: *id100 + 1834-150319-2_54: *id101 + 1834-220319-1_65: *id102 + 1834-220319-2_47: *id103 + 1834-220319-4_51: &id118 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1454,44 +995,36 @@ _adj: - !!binary | JaEairTFoz8= 1834-220319-4_36: - 1834-010319-1_13: *id153 - 1834-010319-3_36: *id154 - 1834-110319-6_25: *id155 - 1834-120319-3_95: *id156 - 1834-150319-1_52: *id157 + 1834-010319-1_13: *id104 + 1834-010319-3_36: *id105 + 1834-120319-3_95: *id106 1834-220319-4_51: - 1834-010319-1_62: *id158 - 1834-010319-3_34: *id159 - 1834-010319-4_53: *id160 - 1834-060319-2_115: *id161 - 1834-060319-3_19: *id162 - 1834-060319-4_13: *id163 - 1834-110319-1_11: *id164 - 1834-110319-2_19: *id165 - 1834-110319-5_76: *id166 - 1834-110319-6_21: *id167 - 1834-150319-1_5: *id168 - 1834-220319-1_65: *id169 - 1834-220319-2_34: *id170 - 1834-220319-3_15: *id171 + 1834-010319-1_62: *id107 + 1834-010319-3_34: *id108 + 1834-010319-4_53: *id109 + 1834-060319-2_115: *id110 + 1834-060319-3_19: *id111 + 1834-060319-4_13: *id112 + 1834-110319-1_11: *id113 + 1834-110319-2_19: *id114 + 1834-110319-5_76: *id115 + 1834-220319-1_65: *id116 + 1834-220319-2_34: *id117 + 1834-220319-3_15: *id118 1834-220319-4_63: - 1834-010319-3_90: *id172 - 1834-010319-4_35: *id173 - 1834-110319-6_22: *id174 - 1834-150319-1_23: *id175 + 1834-010319-3_90: *id119 + 1834-010319-4_35: *id120 1834-220319-4_65: - 1834-010319-3_66: *id176 - 1834-010319-4_29: *id177 - 1834-110319-6_23: *id178 - 1834-120319-3_40: *id179 - 1834-150319-1_40: *id180 - 1834-150319-2_54: *id181 - 1834-220319-2_47: *id182 -_node: &id185 + 1834-010319-3_66: *id121 + 1834-010319-4_29: *id122 + 1834-120319-3_40: *id123 + 1834-150319-2_54: *id124 + 1834-220319-2_47: *id125 +_node: &id128 1834-010319-1_13: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id183 !!python/object/apply:numpy.dtype + - &id126 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -1499,223 +1032,157 @@ _node: &id185 1834-010319-1_62: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | PgAAAAAAAAA= 1834-010319-3_34: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | IgAAAAAAAAA= 1834-010319-3_36: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | JAAAAAAAAAA= 1834-010319-3_66: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | QgAAAAAAAAA= 1834-010319-3_90: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | WgAAAAAAAAA= 1834-010319-4_29: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | HQAAAAAAAAA= 1834-010319-4_35: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | IwAAAAAAAAA= 1834-010319-4_53: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | NQAAAAAAAAA= 1834-060319-2_115: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | cwAAAAAAAAA= 1834-060319-3_19: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | EwAAAAAAAAA= 1834-060319-4_13: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | DQAAAAAAAAA= 1834-110319-1_11: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | CwAAAAAAAAA= 1834-110319-2_19: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | EwAAAAAAAAA= 1834-110319-5_76: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | TAAAAAAAAAA= - 1834-110319-6_14: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - DgAAAAAAAAA= - 1834-110319-6_21: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - FQAAAAAAAAA= - 1834-110319-6_22: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - FgAAAAAAAAA= - 1834-110319-6_23: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - FwAAAAAAAAA= - 1834-110319-6_25: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - GQAAAAAAAAA= - 1834-110319-6_37: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - JQAAAAAAAAA= 1834-120319-3_40: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | KAAAAAAAAAA= 1834-120319-3_95: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | XwAAAAAAAAA= - 1834-150319-1_0: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - AAAAAAAAAAA= - 1834-150319-1_23: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - FwAAAAAAAAA= - 1834-150319-1_40: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - KAAAAAAAAAA= - 1834-150319-1_5: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - BQAAAAAAAAA= - 1834-150319-1_52: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 - - !!binary | - NAAAAAAAAAA= 1834-150319-2_54: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | NgAAAAAAAAA= 1834-220319-1_65: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | QQAAAAAAAAA= 1834-220319-2_34: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | IgAAAAAAAAA= 1834-220319-2_47: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | LwAAAAAAAAA= 1834-220319-3_15: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | DwAAAAAAAAA= 1834-220319-4_36: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | JAAAAAAAAAA= 1834-220319-4_51: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | MwAAAAAAAAA= 1834-220319-4_63: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | PwAAAAAAAAA= 1834-220319-4_65: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id183 + - *id126 - !!binary | QQAAAAAAAAA= -adjlist_inner_dict_factory: &id184 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id184 -edge_attr_dict_factory: *id184 +adjlist_inner_dict_factory: &id127 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id127 +edge_attr_dict_factory: *id127 graph: {} -node_dict_factory: *id184 +node_dict_factory: *id127 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id185 + _nodes: *id128 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml index 26ca91a96..c5e19cd3c 100644 --- a/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml +++ b/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml @@ -73,70 +73,70 @@ _adj: - *id001 - !!binary | CbXSg5W7yD8= - 1834-110319-6_26: &id110 + 1834-110319-6_90: &id099 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - TNVgG0ri1D8= - 1834-120319-1_11: &id119 + ovg4ylQ7yz8= + 1834-120319-1_11: &id110 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0jmVcyBhwT8= - 1834-120319-2_21: &id131 + 1834-120319-2_21: &id122 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oMrdaq/rwD8= - 1834-120319-3_23: &id144 + 1834-120319-3_23: &id135 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GP8cjk7lwT8= - 1834-120319-4_69: &id168 + 1834-120319-4_69: &id158 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zAqQdlRkwT8= - 1834-150319-1_51: &id219 + 1834-150319-1_51: &id209 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JYaOxSzhwz8= - 1834-150319-2_48: &id231 + 1834-150319-2_48: &id219 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WLS4b3FawD8= - 1834-150319-3_67: &id262 + 1834-150319-3_67: &id249 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D7+gppvjwT8= - 1834-150319-4_36: &id304 + 1834-150319-4_36: &id288 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5mKa1nkZuj8= - 1834-220319-1_77: &id321 + 1834-220319-1_77: &id305 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -200,42 +200,35 @@ _adj: - *id001 - !!binary | HUh2+BDGxD8= - 1834-110319-6_24: &id099 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - lFajO6zb0D8= - 1834-120319-3_68: &id158 + 1834-120319-3_68: &id149 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8wFeLxatxz8= - 1834-120319-4_83: &id188 + 1834-120319-4_83: &id177 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hrpDEhSRxT8= - 1834-150319-1_24: &id198 + 1834-150319-1_104: &id187 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Nf70i5XYxD8= - 1834-150319-3_47: &id248 + Zr+SbzHpxD8= + 1834-150319-3_47: &id236 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TbzIf9uWyD8= - 1834-150319-4_11: &id279 + 1834-150319-4_11: &id266 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -293,42 +286,35 @@ _adj: - *id001 - !!binary | qVqvloNPxz8= - 1834-110319-6_26: &id111 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - dT6FLMAR2D8= - 1834-120319-3_68: &id159 + 1834-120319-3_68: &id150 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k/VNrp5Dzz8= - 1834-120319-4_83: &id189 + 1834-120319-4_83: &id178 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bxCNtwAWzj8= - 1834-150319-1_24: &id199 + 1834-150319-1_104: &id188 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - XRXSoIpLyT8= - 1834-150319-3_47: &id249 + jF+EWYlfyT8= + 1834-150319-3_47: &id237 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nqLryDg/yT8= - 1834-150319-4_13: &id290 + 1834-150319-4_13: &id276 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -400,70 +386,70 @@ _adj: - *id001 - !!binary | UNjTIaIDzj8= - 1834-110319-6_24: &id100 + 1834-110319-6_90: &id100 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4fnMNu++zz8= - 1834-120319-1_11: &id120 + IgV+L4Hszz8= + 1834-120319-1_11: &id111 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mwMKm0HJxz8= - 1834-120319-2_21: &id132 + 1834-120319-2_21: &id123 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P7gj+BPjxz8= - 1834-120319-3_23: &id145 + 1834-120319-3_23: &id136 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FDIfDfpFyD8= - 1834-120319-4_69: &id169 + 1834-120319-4_69: &id159 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q5EJuLklyD8= - 1834-150319-1_51: &id220 + 1834-150319-1_51: &id210 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GySy+3+1xj8= - 1834-150319-2_48: &id232 + 1834-150319-2_48: &id220 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bdaV9UPiyD8= - 1834-150319-3_67: &id263 + 1834-150319-3_67: &id250 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n0mPWQHByj8= - 1834-150319-4_36: &id305 + 1834-150319-4_36: &id289 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vxHoCZA2xD8= - 1834-220319-1_77: &id322 + 1834-220319-1_77: &id306 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -515,42 +501,35 @@ _adj: - *id001 - !!binary | pG8Bcyvtxz8= - 1834-110319-6_24: &id101 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VDD0S34+1j8= - 1834-120319-3_68: &id160 + 1834-120319-3_68: &id151 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0zh1f9pZ0z8= - 1834-120319-4_83: &id190 + 1834-120319-4_83: &id179 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jMd9wNch0j8= - 1834-150319-1_24: &id200 + 1834-150319-1_104: &id189 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - CWT1zuL/yT8= - 1834-150319-3_47: &id250 + VS+AiGQVyj8= + 1834-150319-3_47: &id238 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gu5dI5PAyT8= - 1834-150319-4_13: &id291 + 1834-150319-4_13: &id277 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -616,70 +595,70 @@ _adj: - *id001 - !!binary | 7InEIWUBzD8= - 1834-110319-6_26: &id112 + 1834-110319-6_90: &id101 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - GPtMFwNv1j8= - 1834-120319-1_11: &id121 + 2shJu4Uwzj8= + 1834-120319-1_11: &id112 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sLQ46MiQxD8= - 1834-120319-2_21: &id133 + 1834-120319-2_21: &id124 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FUdHIC2oxD8= - 1834-120319-3_23: &id146 + 1834-120319-3_23: &id137 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cp7aayAdxT8= - 1834-120319-4_69: &id170 + 1834-120319-4_69: &id160 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6jLSV63bxD8= - 1834-150319-1_51: &id221 + 1834-150319-1_51: &id211 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZKdZRFAAxD8= - 1834-150319-2_48: &id233 + 1834-150319-2_48: &id221 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hX6q9taOxj8= - 1834-150319-3_67: &id264 + 1834-150319-3_67: &id251 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CyxhLSnRxz8= - 1834-150319-4_36: &id306 + 1834-150319-4_36: &id290 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | v6k/az5hvz8= - 1834-220319-1_77: &id323 + 1834-220319-1_77: &id307 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -725,42 +704,35 @@ _adj: - *id001 - !!binary | CRQE2VYwzT8= - 1834-110319-6_24: &id102 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - v8QOtGQt2z8= - 1834-120319-3_23: &id147 + 1834-120319-3_23: &id138 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2pbocXZt1T8= - 1834-120319-4_69: &id171 + 1834-120319-4_69: &id161 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GW43ZT391T8= - 1834-150319-1_24: &id201 + 1834-150319-1_104: &id190 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - lNPvzTM/zz8= - 1834-150319-3_47: &id251 + 77opNvFTzz8= + 1834-150319-3_47: &id239 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PVMCwMx6zD8= - 1834-150319-4_13: &id292 + 1834-150319-4_13: &id278 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -820,70 +792,70 @@ _adj: - *id001 - !!binary | Nl6iUGMX0j8= - 1834-110319-6_26: &id113 + 1834-110319-6_90: &id102 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - AjG2YSMj2j8= - 1834-120319-1_11: &id122 + 4tFI/u4F0z8= + 1834-120319-1_11: &id113 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XCuDk4c8zT8= - 1834-120319-2_21: &id134 + 1834-120319-2_21: &id125 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q/jYQzU2zT8= - 1834-120319-3_68: &id161 + 1834-120319-3_68: &id152 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /lokT5F+0D8= - 1834-120319-4_83: &id191 + 1834-120319-4_83: &id180 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZNrdPlE90D8= - 1834-150319-1_51: &id222 + 1834-150319-1_51: &id212 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YJh+OtlZyD8= - 1834-150319-2_48: &id234 + 1834-150319-2_48: &id222 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QSyzHAtEzz8= - 1834-150319-3_67: &id265 + 1834-150319-3_67: &id252 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | REJ7zaon0D8= - 1834-150319-4_36: &id307 + 1834-150319-4_36: &id291 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tsHlDpQixz8= - 1834-220319-1_77: &id324 + 1834-220319-1_77: &id308 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -937,70 +909,70 @@ _adj: - *id001 - !!binary | N2l5ZZJXzj8= - 1834-110319-6_24: &id103 + 1834-110319-6_90: &id103 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zug2Df5Z0D8= - 1834-120319-1_11: &id123 + 0lVeBUB40D8= + 1834-120319-1_11: &id114 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | e0rbrJ03yD8= - 1834-120319-2_21: &id135 + 1834-120319-2_21: &id126 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oNRevXVkxz8= - 1834-120319-3_23: &id148 + 1834-120319-3_23: &id139 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vwE/jQfyxz8= - 1834-120319-4_69: &id172 + 1834-120319-4_69: &id162 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KS9LoV97xz8= - 1834-150319-1_51: &id223 + 1834-150319-1_51: &id213 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2eXwTbf6xz8= - 1834-150319-2_48: &id235 + 1834-150319-2_48: &id223 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ws1Qnwe2wz8= - 1834-150319-3_47: &id252 + 1834-150319-3_47: &id240 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dwGD7wOdxj8= - 1834-150319-4_36: &id308 + 1834-150319-4_36: &id292 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DlNZKCDrwj8= - 1834-220319-1_77: &id325 + 1834-220319-1_77: &id309 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1040,42 +1012,35 @@ _adj: - *id001 - !!binary | Jua2lYQaxD8= - 1834-110319-6_24: &id104 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - BrrGbuqP0D8= - 1834-120319-3_68: &id162 + 1834-120319-3_68: &id153 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OBLj7jwHxT8= - 1834-120319-4_83: &id192 + 1834-120319-4_83: &id181 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rd6GzKc+xz8= - 1834-150319-1_24: &id202 + 1834-150319-1_104: &id191 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - egrVU4YXxj8= - 1834-150319-3_47: &id253 + LdtXXF8oxj8= + 1834-150319-3_47: &id241 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | O7597YppyD8= - 1834-150319-4_12: &id283 + 1834-150319-4_12: &id270 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1123,70 +1088,70 @@ _adj: - *id001 - !!binary | HPWzEZhQxT8= - 1834-110319-6_26: &id114 + 1834-110319-6_90: &id104 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - gXQMX15R0z8= - 1834-120319-1_11: &id124 + 4hbSS2X3xz8= + 1834-120319-1_11: &id115 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IB1rX3gsvD8= - 1834-120319-2_21: &id136 + 1834-120319-2_21: &id127 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S8DxaEh5vD8= - 1834-120319-3_23: &id149 + 1834-120319-3_23: &id140 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dNCg+HQqvT8= - 1834-120319-4_69: &id173 + 1834-120319-4_69: &id163 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sfxpggovvD8= - 1834-150319-1_25: &id208 + 1834-150319-1_25: &id199 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sjZMoj0hwj8= - 1834-150319-2_48: &id236 + 1834-150319-2_48: &id224 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xoh2yljxvT8= - 1834-150319-3_67: &id266 + 1834-150319-3_67: &id253 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rgH0S3m7vj8= - 1834-150319-4_36: &id309 + 1834-150319-4_36: &id293 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /XEV9tsFsz8= - 1834-220319-1_77: &id326 + 1834-220319-1_77: &id310 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1219,42 +1184,35 @@ _adj: - *id001 - !!binary | kJaF4ZGexT8= - 1834-110319-6_24: &id105 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - V7RmwxWCzj8= - 1834-120319-3_68: &id163 + 1834-120319-3_68: &id154 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N85kkG56wT8= - 1834-120319-4_73: &id183 + 1834-120319-4_73: &id173 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | L9A1uxnexj8= - 1834-150319-1_24: &id203 + 1834-150319-1_104: &id192 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - oo5dIgVEwT8= - 1834-150319-3_47: &id254 + KbZUELVUwT8= + 1834-150319-3_47: &id242 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4Zlh4xM2xz8= - 1834-150319-4_11: &id280 + 1834-150319-4_11: &id267 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1296,70 +1254,70 @@ _adj: - *id001 - !!binary | IFqcLEPexD8= - 1834-110319-6_26: &id115 + 1834-110319-6_90: &id105 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sReU9UhE0T8= - 1834-120319-1_11: &id125 + 0PVfl08Exz8= + 1834-120319-1_11: &id116 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H3N1Bl3NvT8= - 1834-120319-2_21: &id137 + 1834-120319-2_21: &id128 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tc+o+tFdvj8= - 1834-120319-3_23: &id150 + 1834-120319-3_23: &id141 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | An/kIwZ5vj8= - 1834-120319-4_69: &id174 + 1834-120319-4_69: &id164 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TfQ4tKfUvT8= - 1834-150319-1_51: &id224 + 1834-150319-1_51: &id214 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VHMw993swD8= - 1834-150319-2_48: &id237 + 1834-150319-2_48: &id225 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Dr8vY4GQuz8= - 1834-150319-3_67: &id267 + 1834-150319-3_67: &id254 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VBoDadexvT8= - 1834-150319-4_36: &id310 + 1834-150319-4_36: &id294 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z8SCl5Whsz8= - 1834-220319-1_77: &id327 + 1834-220319-1_77: &id311 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1389,21 +1347,21 @@ _adj: - *id001 - !!binary | u7xM0gAZxT8= - 1834-120319-4_83: &id193 + 1834-120319-4_83: &id182 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UZFZHonRxD8= - 1834-150319-1_25: &id209 + 1834-150319-1_25: &id200 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZmeotwzIxj8= - 1834-150319-4_12: &id284 + 1834-150319-4_12: &id271 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1436,56 +1394,56 @@ _adj: - *id001 - !!binary | +ftc0fVqxT8= - 1834-110319-6_26: &id116 + 1834-110319-6_90: &id106 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - xdE75Tgy0D8= - 1834-120319-3_23: &id151 + WiV7DhIvxz8= + 1834-120319-3_23: &id142 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wCcl4IdzwD8= - 1834-120319-4_73: &id184 + 1834-120319-4_73: &id174 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bLf24kfjxj8= - 1834-150319-1_51: &id225 + 1834-150319-1_51: &id215 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1JhzqvHRvD8= - 1834-150319-2_48: &id238 + 1834-150319-2_48: &id226 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cQbSAQj7vD8= - 1834-150319-3_47: &id255 + 1834-150319-3_47: &id243 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2jvWPhQ4wD8= - 1834-150319-4_16: &id300 + 1834-150319-4_16: &id284 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dMYYIL/CvD8= - 1834-220319-1_77: &id328 + 1834-220319-1_77: &id312 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1513,56 +1471,49 @@ _adj: - *id001 - !!binary | Unk7gUaVtz8= - 1834-110319-6_24: &id106 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ou2sfOSpyT8= - 1834-120319-1_11: &id126 + 1834-120319-1_11: &id117 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n/5NIDqHvz8= - 1834-120319-2_21: &id138 + 1834-120319-2_21: &id129 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A2hxfKI8vz8= - 1834-120319-3_68: &id164 + 1834-120319-3_68: &id155 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gKIQ3fazwz8= - 1834-120319-4_69: &id175 + 1834-120319-4_69: &id165 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4cbI3ATcvz8= - 1834-150319-1_25: &id210 + 1834-150319-1_25: &id201 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fjWuQmjovT8= - 1834-150319-3_67: &id268 + 1834-150319-3_67: &id255 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GlUczkPfvj8= - 1834-150319-4_36: &id311 + 1834-150319-4_36: &id295 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1588,21 +1539,21 @@ _adj: - *id001 - !!binary | iU72G5FAwz8= - 1834-120319-4_83: &id194 + 1834-120319-4_83: &id183 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D6lESPXGxT8= - 1834-150319-1_24: &id204 + 1834-150319-1_104: &id193 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1BIis1r7wT8= - 1834-150319-4_12: &id285 + KeeFdtoMwj8= + 1834-150319-4_12: &id272 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1632,63 +1583,63 @@ _adj: - *id001 - !!binary | 9UeNVJJyyD8= - 1834-110319-6_24: &id107 + 1834-110319-6_90: &id107 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - iQ+7judbyj8= - 1834-120319-1_11: &id127 + FbcGHrB9yj8= + 1834-120319-1_11: &id118 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7Twbr3kRwj8= - 1834-120319-2_21: &id139 + 1834-120319-2_21: &id130 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 69WCf2TiwT8= - 1834-120319-3_23: &id152 + 1834-120319-3_23: &id143 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DwKuQ1K4wj8= - 1834-120319-4_69: &id176 + 1834-120319-4_69: &id166 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OBlCMl9Lwj8= - 1834-150319-1_25: &id211 + 1834-150319-1_25: &id202 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UOom0gXdvz8= - 1834-150319-2_48: &id239 + 1834-150319-2_48: &id227 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XVfEdjKCwj8= - 1834-150319-3_67: &id269 + 1834-150319-3_67: &id256 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | U4RhcocdwT8= - 1834-150319-4_36: &id312 + 1834-150319-4_36: &id296 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1706,21 +1657,21 @@ _adj: - *id001 - !!binary | pmTf+x6srz8= - 1834-120319-4_83: &id195 + 1834-120319-4_83: &id184 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5/EOLFseyz8= - 1834-150319-1_51: &id226 + 1834-150319-1_104: &id194 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qW85rxQRxz8= - 1834-150319-4_12: &id286 + IrFhYXxkyT8= + 1834-150319-4_12: &id273 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1741,49 +1692,42 @@ _adj: - *id001 - !!binary | 17fse3JaoT8= - 1834-110319-6_26: &id117 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 1Ef1ly8O0T8= - 1834-120319-3_68: &id165 + 1834-120319-3_68: &id156 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VPqXwEg9yD8= - 1834-120319-4_73: &id185 + 1834-120319-4_73: &id175 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sCG9LZbRyj8= - 1834-150319-1_58: &id229 + 1834-150319-1_51: &id216 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Vz3B1wl6wD8= - 1834-150319-3_47: &id256 + cc1xJhmKvD8= + 1834-150319-3_47: &id244 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Xtb8s8/ftz8= - 1834-150319-4_13: &id293 + 1834-150319-4_13: &id279 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | caJZIeCltz8= - 1834-220319-1_77: &id329 + 1834-220319-1_77: &id313 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1798,42 +1742,35 @@ _adj: 1834-060319-3_25: *id073 1834-060319-4_15: *id074 1834-110319-1_28: *id075 - 1834-110319-6_26: &id118 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9q/wUgHK0D8= - 1834-120319-3_23: &id153 + 1834-120319-3_23: &id144 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Cy/WGQm+xj8= - 1834-120319-4_73: &id186 + 1834-120319-4_73: &id176 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mpUvS2gOyz8= - 1834-150319-1_58: &id230 + 1834-150319-1_121: &id198 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - g7kZ/WlZwD8= - 1834-150319-3_47: &id257 + U6OCslQcwT8= + 1834-150319-3_47: &id245 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sobrqoUGtz8= - 1834-150319-4_13: &id294 + 1834-150319-4_13: &id280 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1857,70 +1794,70 @@ _adj: - *id001 - !!binary | j3I6HZCyyT8= - 1834-110319-6_24: &id108 + 1834-110319-6_90: &id108 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - x+rKLqE0yz8= - 1834-120319-1_11: &id128 + AwttlTdTyz8= + 1834-120319-1_11: &id119 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2yyWFnUpxD8= - 1834-120319-2_21: &id140 + 1834-120319-2_21: &id131 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MlN9GtmRwz8= - 1834-120319-3_68: &id166 + 1834-120319-3_68: &id157 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MDgnGFAmxj8= - 1834-120319-4_69: &id177 + 1834-120319-4_69: &id167 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lkAeLyxoxD8= - 1834-150319-1_51: &id227 + 1834-150319-1_51: &id217 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MVNRUInwvj8= - 1834-150319-2_48: &id240 + 1834-150319-2_48: &id228 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DLBpbKO/xT8= - 1834-150319-3_67: &id270 + 1834-150319-3_67: &id257 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DqYSL039wj8= - 1834-150319-4_36: &id313 + 1834-150319-4_36: &id297 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nzCmKNojwT8= - 1834-220319-1_77: &id330 + 1834-220319-1_77: &id314 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1932,21 +1869,21 @@ _adj: 1834-060319-3_24: *id086 1834-060319-4_17: *id087 1834-110319-1_16: *id088 - 1834-120319-4_83: &id196 + 1834-120319-4_83: &id185 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | muTAR809yT8= - 1834-150319-1_25: &id212 + 1834-150319-1_25: &id203 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kknxENnlyD8= - 1834-150319-4_16: &id301 + 1834-150319-4_16: &id285 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1964,259 +1901,214 @@ _adj: 1834-060319-4_15: *id096 1834-110319-1_14: *id097 1834-110319-2_29: *id098 - 1834-110319-6_24: &id109 + 1834-110319-6_90: &id109 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 0Ahy2tuLrD8= - 1834-120319-1_11: &id129 + CgnVCU2orT8= + 1834-120319-1_11: &id120 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fatTYT26vz8= - 1834-120319-2_21: &id141 + 1834-120319-2_21: &id132 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NoaUCVFNxD8= - 1834-120319-3_23: &id154 + 1834-120319-3_23: &id145 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zZkPaD8tvz8= - 1834-120319-4_69: &id178 + 1834-120319-4_69: &id168 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oiGImk/nwD8= - 1834-150319-1_25: &id213 + 1834-150319-1_25: &id204 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rPt24HKeyD8= - 1834-150319-2_48: &id241 + 1834-150319-2_48: &id229 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Zn3V9oSXvz8= - 1834-150319-3_67: &id271 + 1834-150319-3_67: &id258 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6pG9jlPHxj8= - 1834-150319-4_15: &id298 + 1834-150319-4_15: &id283 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GQxY0JsbwT8= - 1834-220319-1_77: &id331 + 1834-220319-1_77: &id315 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FNGiDxEO2D8= - 1834-110319-6_24: - 1834-010319-1_18: *id099 + 1834-110319-6_90: + 1834-010319-1_16: *id099 1834-010319-3_42: *id100 - 1834-010319-4_36: *id101 - 1834-010319-5_14: *id102 + 1834-010319-4_37: *id101 + 1834-010319-5_15: *id102 1834-060319-1_87: *id103 - 1834-060319-2_34: *id104 - 1834-060319-3_24: *id105 - 1834-060319-4_16: *id106 + 1834-060319-2_35: *id104 + 1834-060319-3_25: *id105 + 1834-060319-4_15: *id106 1834-110319-1_14: *id107 1834-110319-2_29: *id108 1834-110319-5_27: *id109 - 1834-120319-1_11: &id130 + 1834-120319-1_11: &id121 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 0DsNzs3Iwj8= - 1834-120319-2_21: &id142 + Wl+RemgVwz8= + 1834-120319-2_21: &id133 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - JirprzsNxz8= - 1834-120319-3_68: &id167 + TiJWKztfxz8= + 1834-120319-3_23: &id146 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qDjlxG+gyT8= - 1834-120319-4_73: &id187 + qorbH5Sqwj8= + 1834-120319-4_69: &id169 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - w1uXthJhxj8= - 1834-150319-1_25: &id214 + WmbIjEkJxD8= + 1834-150319-1_104: &id195 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - SU0TFGieyj8= - 1834-150319-2_48: &id242 + NOFnQapQyj8= + 1834-150319-2_48: &id230 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - lSj/w8ghwj8= - 1834-150319-3_67: &id272 + V7NyP4o5wj8= + 1834-150319-3_67: &id259 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /lBawkt3yT8= - 1834-150319-4_36: &id314 + tHERHPWyyT8= + 1834-150319-4_36: &id298 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rR3ToPZwwz8= - 1834-220319-1_77: &id332 + g8zf5+mUwz8= + 1834-220319-1_77: &id316 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - h++K3hfO2D8= - 1834-110319-6_26: + 5Gf1Yt702D8= + 1834-120319-1_11: 1834-010319-1_16: *id110 - 1834-010319-3_41: *id111 + 1834-010319-3_42: *id111 1834-010319-4_37: *id112 1834-010319-5_15: *id113 - 1834-060319-2_35: *id114 - 1834-060319-3_25: *id115 - 1834-060319-4_15: *id116 - 1834-110319-1_28: *id117 - 1834-110319-2_28: *id118 - 1834-120319-3_23: &id155 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9fv6Tw2Z1D8= - 1834-120319-4_69: &id179 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - tQOUyhhO1T8= - 1834-150319-1_24: &id205 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - g55/oxx30T8= - 1834-150319-3_47: &id258 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - bCWWDwLZzj8= - 1834-150319-4_13: &id295 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - M0sdtieLzj8= - 1834-120319-1_11: - 1834-010319-1_16: *id119 - 1834-010319-3_42: *id120 - 1834-010319-4_37: *id121 - 1834-010319-5_15: *id122 - 1834-060319-1_87: *id123 - 1834-060319-2_35: *id124 - 1834-060319-3_25: *id125 - 1834-060319-4_16: *id126 - 1834-110319-1_14: *id127 - 1834-110319-2_29: *id128 - 1834-110319-5_27: *id129 - 1834-110319-6_24: *id130 - 1834-120319-2_21: &id143 + 1834-060319-1_87: *id114 + 1834-060319-2_35: *id115 + 1834-060319-3_25: *id116 + 1834-060319-4_16: *id117 + 1834-110319-1_14: *id118 + 1834-110319-2_29: *id119 + 1834-110319-5_27: *id120 + 1834-110319-6_90: *id121 + 1834-120319-2_21: &id134 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t9HdDtWRpz8= - 1834-120319-3_23: &id156 + 1834-120319-3_23: &id147 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 05wcxsBUkz8= - 1834-120319-4_69: &id180 + 1834-120319-4_69: &id170 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A2VfsrUqlD8= - 1834-150319-1_25: &id215 + 1834-150319-1_25: &id205 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fo0cVW4HvT8= - 1834-150319-2_48: &id243 + 1834-150319-2_48: &id231 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Mo+rAw4CwD8= - 1834-150319-3_67: &id273 + 1834-150319-3_67: &id260 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aLQDvXaguj8= - 1834-150319-4_36: &id315 + 1834-150319-4_36: &id299 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ifm02EBosz8= - 1834-220319-1_77: &id333 + 1834-220319-1_77: &id317 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2224,62 +2116,62 @@ _adj: - !!binary | 3bZSgBdH0z8= 1834-120319-2_21: - 1834-010319-1_16: *id131 - 1834-010319-3_42: *id132 - 1834-010319-4_37: *id133 - 1834-010319-5_15: *id134 - 1834-060319-1_87: *id135 - 1834-060319-2_35: *id136 - 1834-060319-3_25: *id137 - 1834-060319-4_16: *id138 - 1834-110319-1_14: *id139 - 1834-110319-2_29: *id140 - 1834-110319-5_27: *id141 - 1834-110319-6_24: *id142 - 1834-120319-1_11: *id143 - 1834-120319-3_23: &id157 + 1834-010319-1_16: *id122 + 1834-010319-3_42: *id123 + 1834-010319-4_37: *id124 + 1834-010319-5_15: *id125 + 1834-060319-1_87: *id126 + 1834-060319-2_35: *id127 + 1834-060319-3_25: *id128 + 1834-060319-4_16: *id129 + 1834-110319-1_14: *id130 + 1834-110319-2_29: *id131 + 1834-110319-5_27: *id132 + 1834-110319-6_90: *id133 + 1834-120319-1_11: *id134 + 1834-120319-3_23: &id148 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GABF1XEXrD8= - 1834-120319-4_69: &id181 + 1834-120319-4_69: &id171 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lj+/4OJspT8= - 1834-150319-1_25: &id216 + 1834-150319-1_25: &id206 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uAH8usabuj8= - 1834-150319-2_48: &id244 + 1834-150319-2_48: &id232 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mvTUIY+Xwz8= - 1834-150319-3_67: &id274 + 1834-150319-3_67: &id261 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +kzIqHE1uj8= - 1834-150319-4_36: &id316 + 1834-150319-4_36: &id300 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IFgIyVnXtj8= - 1834-220319-1_77: &id334 + 1834-220319-1_77: &id318 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2287,49 +2179,49 @@ _adj: - !!binary | QNIwAk6Q0T8= 1834-120319-3_23: - 1834-010319-1_16: *id144 - 1834-010319-3_42: *id145 - 1834-010319-4_37: *id146 - 1834-010319-5_14: *id147 - 1834-060319-1_87: *id148 - 1834-060319-2_35: *id149 - 1834-060319-3_25: *id150 - 1834-060319-4_15: *id151 - 1834-110319-1_14: *id152 - 1834-110319-2_28: *id153 - 1834-110319-5_27: *id154 - 1834-110319-6_26: *id155 - 1834-120319-1_11: *id156 - 1834-120319-2_21: *id157 - 1834-120319-4_69: &id182 + 1834-010319-1_16: *id135 + 1834-010319-3_42: *id136 + 1834-010319-4_37: *id137 + 1834-010319-5_14: *id138 + 1834-060319-1_87: *id139 + 1834-060319-2_35: *id140 + 1834-060319-3_25: *id141 + 1834-060319-4_15: *id142 + 1834-110319-1_14: *id143 + 1834-110319-2_28: *id144 + 1834-110319-5_27: *id145 + 1834-110319-6_90: *id146 + 1834-120319-1_11: *id147 + 1834-120319-2_21: *id148 + 1834-120319-4_69: &id172 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4+8Br0jMkT8= - 1834-150319-1_25: &id217 + 1834-150319-1_25: &id207 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nbUWMVIEvT8= - 1834-150319-2_48: &id245 + 1834-150319-2_48: &id233 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dBNCPiCVvz8= - 1834-150319-3_47: &id259 + 1834-150319-3_47: &id246 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xNluBkxNxj8= - 1834-150319-4_36: &id317 + 1834-150319-4_36: &id301 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2337,45 +2229,44 @@ _adj: - !!binary | 8cTl9XeNsz8= 1834-120319-3_68: - 1834-010319-1_18: *id158 - 1834-010319-3_41: *id159 - 1834-010319-4_36: *id160 - 1834-010319-5_15: *id161 - 1834-060319-2_34: *id162 - 1834-060319-3_24: *id163 - 1834-060319-4_16: *id164 - 1834-110319-1_28: *id165 - 1834-110319-2_29: *id166 - 1834-110319-6_24: *id167 - 1834-120319-4_83: &id197 + 1834-010319-1_18: *id149 + 1834-010319-3_41: *id150 + 1834-010319-4_36: *id151 + 1834-010319-5_15: *id152 + 1834-060319-2_34: *id153 + 1834-060319-3_24: *id154 + 1834-060319-4_16: *id155 + 1834-110319-1_28: *id156 + 1834-110319-2_29: *id157 + 1834-120319-4_83: &id186 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8USTocl+sD8= - 1834-150319-1_24: &id206 + 1834-150319-1_104: &id196 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /+D7PPPzwj8= - 1834-150319-3_67: &id275 + WY+1wPH/wj8= + 1834-150319-3_67: &id262 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sH3FRhYJuz8= - 1834-150319-4_12: &id287 + 1834-150319-4_12: &id274 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VXoC+jeEvj8= - 1834-220319-1_77: &id335 + 1834-220319-1_77: &id319 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2383,50 +2274,50 @@ _adj: - !!binary | HCgWB22Z0z8= 1834-120319-4_69: - 1834-010319-1_16: *id168 - 1834-010319-3_42: *id169 - 1834-010319-4_37: *id170 - 1834-010319-5_14: *id171 - 1834-060319-1_87: *id172 - 1834-060319-2_35: *id173 - 1834-060319-3_25: *id174 - 1834-060319-4_16: *id175 - 1834-110319-1_14: *id176 - 1834-110319-2_29: *id177 - 1834-110319-5_27: *id178 - 1834-110319-6_26: *id179 - 1834-120319-1_11: *id180 - 1834-120319-2_21: *id181 - 1834-120319-3_23: *id182 - 1834-150319-1_25: &id218 + 1834-010319-1_16: *id158 + 1834-010319-3_42: *id159 + 1834-010319-4_37: *id160 + 1834-010319-5_14: *id161 + 1834-060319-1_87: *id162 + 1834-060319-2_35: *id163 + 1834-060319-3_25: *id164 + 1834-060319-4_16: *id165 + 1834-110319-1_14: *id166 + 1834-110319-2_29: *id167 + 1834-110319-5_27: *id168 + 1834-110319-6_90: *id169 + 1834-120319-1_11: *id170 + 1834-120319-2_21: *id171 + 1834-120319-3_23: *id172 + 1834-150319-1_25: &id208 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oryVi7W+uz8= - 1834-150319-2_48: &id246 + 1834-150319-2_48: &id234 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 37QdNHLLwD8= - 1834-150319-3_47: &id260 + 1834-150319-3_47: &id247 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0dujbowTxj8= - 1834-150319-4_36: &id318 + 1834-150319-4_36: &id302 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FBplbW6tsz8= - 1834-220319-1_77: &id336 + 1834-220319-1_77: &id320 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2434,19 +2325,18 @@ _adj: - !!binary | KJtaC+lb0z8= 1834-120319-4_73: - 1834-060319-3_24: *id183 - 1834-060319-4_15: *id184 - 1834-110319-1_28: *id185 - 1834-110319-2_28: *id186 - 1834-110319-6_24: *id187 - 1834-150319-1_24: &id207 + 1834-060319-3_24: *id173 + 1834-060319-4_15: *id174 + 1834-110319-1_28: *id175 + 1834-110319-2_28: *id176 + 1834-150319-1_104: &id197 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - HgjWjl5Mwz8= - 1834-150319-4_11: &id281 + aySvyF1Nwz8= + 1834-150319-4_11: &id268 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2454,179 +2344,162 @@ _adj: - !!binary | tYxaIsGPwT8= 1834-120319-4_83: - 1834-010319-1_18: *id188 - 1834-010319-3_41: *id189 - 1834-010319-4_36: *id190 - 1834-010319-5_15: *id191 - 1834-060319-2_34: *id192 - 1834-060319-3_26: *id193 - 1834-060319-4_17: *id194 - 1834-110319-1_16: *id195 - 1834-110319-2_31: *id196 - 1834-120319-3_68: *id197 - 1834-150319-1_51: &id228 + 1834-010319-1_18: *id177 + 1834-010319-3_41: *id178 + 1834-010319-4_36: *id179 + 1834-010319-5_15: *id180 + 1834-060319-2_34: *id181 + 1834-060319-3_26: *id182 + 1834-060319-4_17: *id183 + 1834-110319-1_16: *id184 + 1834-110319-2_31: *id185 + 1834-120319-3_68: *id186 + 1834-150319-1_51: &id218 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CCsF6V9/xj8= - 1834-150319-3_67: &id276 + 1834-150319-3_67: &id263 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ulGK+2IYvT8= - 1834-150319-4_12: &id288 + 1834-150319-4_12: &id275 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | waopS/fHvD8= - 1834-150319-1_24: - 1834-010319-1_18: *id198 - 1834-010319-3_41: *id199 - 1834-010319-4_36: *id200 - 1834-010319-5_14: *id201 - 1834-060319-2_34: *id202 - 1834-060319-3_24: *id203 - 1834-060319-4_17: *id204 - 1834-110319-6_26: *id205 - 1834-120319-3_68: *id206 - 1834-120319-4_73: *id207 - 1834-150319-4_11: &id282 + 1834-150319-1_104: + 1834-010319-1_18: *id187 + 1834-010319-3_41: *id188 + 1834-010319-4_36: *id189 + 1834-010319-5_14: *id190 + 1834-060319-2_34: *id191 + 1834-060319-3_24: *id192 + 1834-060319-4_17: *id193 + 1834-110319-1_16: *id194 + 1834-110319-6_90: *id195 + 1834-120319-3_68: *id196 + 1834-120319-4_73: *id197 + 1834-150319-4_11: &id269 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - M60MYYabwj8= + PLpCgkyowj8= + 1834-150319-1_121: + 1834-110319-2_28: *id198 + 1834-150319-3_47: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hao99ju0tT8= + 1834-150319-4_13: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2satttnMsz8= 1834-150319-1_25: - 1834-060319-2_35: *id208 - 1834-060319-3_26: *id209 - 1834-060319-4_16: *id210 - 1834-110319-1_14: *id211 - 1834-110319-2_31: *id212 - 1834-110319-5_27: *id213 - 1834-110319-6_24: *id214 - 1834-120319-1_11: *id215 - 1834-120319-2_21: *id216 - 1834-120319-3_23: *id217 - 1834-120319-4_69: *id218 - 1834-150319-2_48: &id247 + 1834-060319-2_35: *id199 + 1834-060319-3_26: *id200 + 1834-060319-4_16: *id201 + 1834-110319-1_14: *id202 + 1834-110319-2_31: *id203 + 1834-110319-5_27: *id204 + 1834-120319-1_11: *id205 + 1834-120319-2_21: *id206 + 1834-120319-3_23: *id207 + 1834-120319-4_69: *id208 + 1834-150319-2_48: &id235 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6o9pGMwmxj8= - 1834-150319-3_67: &id277 + 1834-150319-3_67: &id264 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ay3UDyBdtz8= - 1834-150319-4_12: &id289 + 1834-150319-4_36: &id303 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 3ExnPgXHuz8= - 1834-150319-1_28: - 1834-150319-4_36: &id319 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - b5/91Krz1T8= + CS/lF/Xjtz8= 1834-150319-1_51: - 1834-010319-1_16: *id219 - 1834-010319-3_42: *id220 - 1834-010319-4_37: *id221 - 1834-010319-5_15: *id222 - 1834-060319-1_87: *id223 - 1834-060319-3_25: *id224 - 1834-060319-4_15: *id225 - 1834-110319-1_16: *id226 - 1834-110319-2_29: *id227 - 1834-120319-4_83: *id228 - 1834-150319-4_16: &id302 + 1834-010319-1_16: *id209 + 1834-010319-3_42: *id210 + 1834-010319-4_37: *id211 + 1834-010319-5_15: *id212 + 1834-060319-1_87: *id213 + 1834-060319-3_25: *id214 + 1834-060319-4_15: *id215 + 1834-110319-1_28: *id216 + 1834-110319-2_29: *id217 + 1834-120319-4_83: *id218 + 1834-150319-4_16: &id286 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ur3taC6ZvT8= - 1834-220319-1_77: &id337 + 1834-220319-1_77: &id321 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Y3ulVHpWyD8= - 1834-150319-1_58: - 1834-110319-1_28: *id229 - 1834-110319-2_28: *id230 - 1834-150319-3_47: &id261 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - SGG0Y4OqsT8= - 1834-150319-4_13: &id296 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - y7K0MuCprz8= - 1834-150319-1_60: - 1834-150319-4_15: &id299 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uHk2337Pzj8= 1834-150319-2_48: - 1834-010319-1_16: *id231 - 1834-010319-3_42: *id232 - 1834-010319-4_37: *id233 - 1834-010319-5_15: *id234 - 1834-060319-1_87: *id235 - 1834-060319-2_35: *id236 - 1834-060319-3_25: *id237 - 1834-060319-4_15: *id238 - 1834-110319-1_14: *id239 - 1834-110319-2_29: *id240 - 1834-110319-5_27: *id241 - 1834-110319-6_24: *id242 - 1834-120319-1_11: *id243 - 1834-120319-2_21: *id244 - 1834-120319-3_23: *id245 - 1834-120319-4_69: *id246 - 1834-150319-1_25: *id247 - 1834-150319-3_67: &id278 + 1834-010319-1_16: *id219 + 1834-010319-3_42: *id220 + 1834-010319-4_37: *id221 + 1834-010319-5_15: *id222 + 1834-060319-1_87: *id223 + 1834-060319-2_35: *id224 + 1834-060319-3_25: *id225 + 1834-060319-4_15: *id226 + 1834-110319-1_14: *id227 + 1834-110319-2_29: *id228 + 1834-110319-5_27: *id229 + 1834-110319-6_90: *id230 + 1834-120319-1_11: *id231 + 1834-120319-2_21: *id232 + 1834-120319-3_23: *id233 + 1834-120319-4_69: *id234 + 1834-150319-1_25: *id235 + 1834-150319-3_67: &id265 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GcJOijxMwD8= - 1834-150319-4_36: &id320 + 1834-150319-4_36: &id304 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yuxbrZzVuD8= - 1834-220319-1_77: &id338 + 1834-220319-1_77: &id322 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2634,28 +2507,27 @@ _adj: - !!binary | KYU1Og0p1T8= 1834-150319-3_47: - 1834-010319-1_18: *id248 - 1834-010319-3_41: *id249 - 1834-010319-4_36: *id250 - 1834-010319-5_14: *id251 - 1834-060319-1_87: *id252 - 1834-060319-2_34: *id253 - 1834-060319-3_24: *id254 - 1834-060319-4_15: *id255 - 1834-110319-1_28: *id256 - 1834-110319-2_28: *id257 - 1834-110319-6_26: *id258 - 1834-120319-3_23: *id259 - 1834-120319-4_69: *id260 - 1834-150319-1_58: *id261 - 1834-150319-4_13: &id297 + 1834-010319-1_18: *id236 + 1834-010319-3_41: *id237 + 1834-010319-4_36: *id238 + 1834-010319-5_14: *id239 + 1834-060319-1_87: *id240 + 1834-060319-2_34: *id241 + 1834-060319-3_24: *id242 + 1834-060319-4_15: *id243 + 1834-110319-1_28: *id244 + 1834-110319-2_28: *id245 + 1834-120319-3_23: *id246 + 1834-120319-4_69: *id247 + 1834-150319-1_121: *id248 + 1834-150319-4_13: &id282 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZmmcbXcDiz8= - 1834-220319-1_77: &id339 + 1834-220319-1_77: &id323 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2663,24 +2535,24 @@ _adj: - !!binary | LFjmNOqExj8= 1834-150319-3_67: - 1834-010319-1_16: *id262 - 1834-010319-3_42: *id263 - 1834-010319-4_37: *id264 - 1834-010319-5_15: *id265 - 1834-060319-2_35: *id266 - 1834-060319-3_25: *id267 - 1834-060319-4_16: *id268 - 1834-110319-1_14: *id269 - 1834-110319-2_29: *id270 - 1834-110319-5_27: *id271 - 1834-110319-6_24: *id272 - 1834-120319-1_11: *id273 - 1834-120319-2_21: *id274 - 1834-120319-3_68: *id275 - 1834-120319-4_83: *id276 - 1834-150319-1_25: *id277 - 1834-150319-2_48: *id278 - 1834-150319-4_16: &id303 + 1834-010319-1_16: *id249 + 1834-010319-3_42: *id250 + 1834-010319-4_37: *id251 + 1834-010319-5_15: *id252 + 1834-060319-2_35: *id253 + 1834-060319-3_25: *id254 + 1834-060319-4_16: *id255 + 1834-110319-1_14: *id256 + 1834-110319-2_29: *id257 + 1834-110319-5_27: *id258 + 1834-110319-6_90: *id259 + 1834-120319-1_11: *id260 + 1834-120319-2_21: *id261 + 1834-120319-3_68: *id262 + 1834-120319-4_83: *id263 + 1834-150319-1_25: *id264 + 1834-150319-2_48: *id265 + 1834-150319-4_16: &id287 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2688,28 +2560,26 @@ _adj: - !!binary | SHUzJW3wrD8= 1834-150319-4_11: - 1834-010319-1_18: *id279 - 1834-060319-3_24: *id280 - 1834-120319-4_73: *id281 - 1834-150319-1_24: *id282 + 1834-010319-1_18: *id266 + 1834-060319-3_24: *id267 + 1834-120319-4_73: *id268 + 1834-150319-1_104: *id269 1834-150319-4_12: - 1834-060319-2_34: *id283 - 1834-060319-3_26: *id284 - 1834-060319-4_17: *id285 - 1834-110319-1_16: *id286 - 1834-120319-3_68: *id287 - 1834-120319-4_83: *id288 - 1834-150319-1_25: *id289 + 1834-060319-2_34: *id270 + 1834-060319-3_26: *id271 + 1834-060319-4_17: *id272 + 1834-110319-1_16: *id273 + 1834-120319-3_68: *id274 + 1834-120319-4_83: *id275 1834-150319-4_13: - 1834-010319-3_41: *id290 - 1834-010319-4_36: *id291 - 1834-010319-5_14: *id292 - 1834-110319-1_28: *id293 - 1834-110319-2_28: *id294 - 1834-110319-6_26: *id295 - 1834-150319-1_58: *id296 - 1834-150319-3_47: *id297 - 1834-220319-1_77: &id340 + 1834-010319-3_41: *id276 + 1834-010319-4_36: *id277 + 1834-010319-5_14: *id278 + 1834-110319-1_28: *id279 + 1834-110319-2_28: *id280 + 1834-150319-1_121: *id281 + 1834-150319-3_47: *id282 + 1834-220319-1_77: &id324 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2717,57 +2587,56 @@ _adj: - !!binary | +70o4Yv8xT8= 1834-150319-4_15: - 1834-110319-5_27: *id298 - 1834-150319-1_60: *id299 + 1834-110319-5_27: *id283 1834-150319-4_16: - 1834-060319-4_15: *id300 - 1834-110319-2_31: *id301 - 1834-150319-1_51: *id302 - 1834-150319-3_67: *id303 + 1834-060319-4_15: *id284 + 1834-110319-2_31: *id285 + 1834-150319-1_51: *id286 + 1834-150319-3_67: *id287 1834-150319-4_36: - 1834-010319-1_16: *id304 - 1834-010319-3_42: *id305 - 1834-010319-4_37: *id306 - 1834-010319-5_15: *id307 - 1834-060319-1_87: *id308 - 1834-060319-2_35: *id309 - 1834-060319-3_25: *id310 - 1834-060319-4_16: *id311 - 1834-110319-1_14: *id312 - 1834-110319-2_29: *id313 - 1834-110319-6_24: *id314 - 1834-120319-1_11: *id315 - 1834-120319-2_21: *id316 - 1834-120319-3_23: *id317 - 1834-120319-4_69: *id318 - 1834-150319-1_28: *id319 - 1834-150319-2_48: *id320 + 1834-010319-1_16: *id288 + 1834-010319-3_42: *id289 + 1834-010319-4_37: *id290 + 1834-010319-5_15: *id291 + 1834-060319-1_87: *id292 + 1834-060319-2_35: *id293 + 1834-060319-3_25: *id294 + 1834-060319-4_16: *id295 + 1834-110319-1_14: *id296 + 1834-110319-2_29: *id297 + 1834-110319-6_90: *id298 + 1834-120319-1_11: *id299 + 1834-120319-2_21: *id300 + 1834-120319-3_23: *id301 + 1834-120319-4_69: *id302 + 1834-150319-1_25: *id303 + 1834-150319-2_48: *id304 1834-220319-1_77: - 1834-010319-1_16: *id321 - 1834-010319-3_42: *id322 - 1834-010319-4_37: *id323 - 1834-010319-5_15: *id324 - 1834-060319-1_87: *id325 - 1834-060319-2_35: *id326 - 1834-060319-3_25: *id327 - 1834-060319-4_15: *id328 - 1834-110319-1_28: *id329 - 1834-110319-2_29: *id330 - 1834-110319-5_27: *id331 - 1834-110319-6_24: *id332 - 1834-120319-1_11: *id333 - 1834-120319-2_21: *id334 - 1834-120319-3_68: *id335 - 1834-120319-4_69: *id336 - 1834-150319-1_51: *id337 - 1834-150319-2_48: *id338 - 1834-150319-3_47: *id339 - 1834-150319-4_13: *id340 -_node: &id343 + 1834-010319-1_16: *id305 + 1834-010319-3_42: *id306 + 1834-010319-4_37: *id307 + 1834-010319-5_15: *id308 + 1834-060319-1_87: *id309 + 1834-060319-2_35: *id310 + 1834-060319-3_25: *id311 + 1834-060319-4_15: *id312 + 1834-110319-1_28: *id313 + 1834-110319-2_29: *id314 + 1834-110319-5_27: *id315 + 1834-110319-6_90: *id316 + 1834-120319-1_11: *id317 + 1834-120319-2_21: *id318 + 1834-120319-3_68: *id319 + 1834-120319-4_69: *id320 + 1834-150319-1_51: *id321 + 1834-150319-2_48: *id322 + 1834-150319-3_47: *id323 + 1834-150319-4_13: *id324 +_node: &id327 1834-010319-1_16: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id341 !!python/object/apply:numpy.dtype + - &id325 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -2775,295 +2644,277 @@ _node: &id343 1834-010319-1_18: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | EgAAAAAAAAA= 1834-010319-3_41: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | KQAAAAAAAAA= 1834-010319-3_42: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | KgAAAAAAAAA= 1834-010319-4_36: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | JAAAAAAAAAA= 1834-010319-4_37: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | JQAAAAAAAAA= 1834-010319-5_14: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | DgAAAAAAAAA= 1834-010319-5_15: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | DwAAAAAAAAA= 1834-060319-1_87: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | VwAAAAAAAAA= 1834-060319-2_34: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | IgAAAAAAAAA= 1834-060319-2_35: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | IwAAAAAAAAA= 1834-060319-3_24: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | GAAAAAAAAAA= 1834-060319-3_25: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | GQAAAAAAAAA= 1834-060319-3_26: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | GgAAAAAAAAA= 1834-060319-4_15: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | DwAAAAAAAAA= 1834-060319-4_16: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | EAAAAAAAAAA= 1834-060319-4_17: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | EQAAAAAAAAA= 1834-110319-1_14: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | DgAAAAAAAAA= 1834-110319-1_16: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | EAAAAAAAAAA= 1834-110319-1_28: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | HAAAAAAAAAA= 1834-110319-2_28: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | HAAAAAAAAAA= 1834-110319-2_29: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | HQAAAAAAAAA= 1834-110319-2_31: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | HwAAAAAAAAA= 1834-110319-5_27: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | GwAAAAAAAAA= - 1834-110319-6_24: + 1834-110319-6_90: action_id: 1834-110319-6 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | - GAAAAAAAAAA= - 1834-110319-6_26: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 - - !!binary | - GgAAAAAAAAA= + WgAAAAAAAAA= 1834-120319-1_11: action_id: 1834-120319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | CwAAAAAAAAA= 1834-120319-2_21: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | FQAAAAAAAAA= 1834-120319-3_23: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | FwAAAAAAAAA= 1834-120319-3_68: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | RAAAAAAAAAA= 1834-120319-4_69: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | RQAAAAAAAAA= 1834-120319-4_73: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | SQAAAAAAAAA= 1834-120319-4_83: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | UwAAAAAAAAA= - 1834-150319-1_24: + 1834-150319-1_104: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | - GAAAAAAAAAA= + aAAAAAAAAAA= + 1834-150319-1_121: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id325 + - !!binary | + eQAAAAAAAAA= 1834-150319-1_25: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | GQAAAAAAAAA= - 1834-150319-1_28: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 - - !!binary | - HAAAAAAAAAA= 1834-150319-1_51: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | MwAAAAAAAAA= - 1834-150319-1_58: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 - - !!binary | - OgAAAAAAAAA= - 1834-150319-1_60: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 - - !!binary | - PAAAAAAAAAA= 1834-150319-2_48: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | MAAAAAAAAAA= 1834-150319-3_47: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | LwAAAAAAAAA= 1834-150319-3_67: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | QwAAAAAAAAA= 1834-150319-4_11: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | CwAAAAAAAAA= 1834-150319-4_12: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | DAAAAAAAAAA= 1834-150319-4_13: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | DQAAAAAAAAA= 1834-150319-4_15: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | DwAAAAAAAAA= 1834-150319-4_16: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | EAAAAAAAAAA= 1834-150319-4_36: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | JAAAAAAAAAA= 1834-220319-1_77: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id341 + - *id325 - !!binary | TQAAAAAAAAA= -adjlist_inner_dict_factory: &id342 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id342 -edge_attr_dict_factory: *id342 +adjlist_inner_dict_factory: &id326 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id326 +edge_attr_dict_factory: *id326 graph: {} -node_dict_factory: *id342 +node_dict_factory: *id326 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id343 + _nodes: *id327 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml index f8ac20ae7..a6c09beb3 100644 --- a/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml +++ b/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml @@ -80,91 +80,84 @@ _adj: - *id001 - !!binary | aJXELDCF0T8= - 1834-110319-6_27: &id152 + 1834-110319-6_116: &id164 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ps7vWxNQ1D8= - 1834-120319-1_31: &id182 + /L0JXlQ31D8= + 1834-120319-1_31: &id176 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bi3uKRwdyD8= - 1834-120319-2_23: &id208 + 1834-120319-2_23: &id202 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YTaUwPjixz8= - 1834-120319-3_66: &id251 + 1834-120319-3_66: &id245 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n8yw/MhwyT8= - 1834-120319-4_71: &id282 + 1834-120319-4_71: &id276 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rPFysxubyD8= - 1834-150319-1_31: &id307 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - p2Le03wSzT8= - 1834-150319-2_27: &id358 + 1834-150319-2_27: &id324 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SVftjqdHxz8= - 1834-150319-3_59: &id401 + 1834-150319-3_59: &id364 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OQnTZnNhuj8= - 1834-150319-4_20: &id438 + 1834-150319-4_20: &id397 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3hE9o952xz8= - 1834-220319-1_41: &id517 + 1834-220319-1_41: &id472 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GlvKaT/nwT8= - 1834-220319-2_18: &id554 + 1834-220319-2_18: &id504 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HZB9rBTmxz8= - 1834-220319-3_22: &id613 + 1834-220319-3_22: &id559 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rgEA+rrMyT8= - 1834-220319-4_39: &id715 + 1834-220319-4_39: &id656 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -249,91 +242,91 @@ _adj: - *id001 - !!binary | SEw+ihVTyz8= - 1834-110319-6_29: &id170 + 1834-110319-6_114: &id152 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - OkcB3id6zj8= - 1834-120319-1_33: &id195 + AG+zlBcmzz8= + 1834-120319-1_33: &id189 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xvQuylP4zz8= - 1834-120319-2_55: &id222 + 1834-120319-2_55: &id216 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WpKvV0Hgzz8= - 1834-120319-3_56: &id236 + 1834-120319-3_56: &id230 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YztezvzCzz8= - 1834-120319-4_55: &id266 + 1834-120319-4_55: &id260 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | m1DAymtnzz8= - 1834-150319-1_33: &id330 + 1834-150319-1_29: &id292 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ruxuJ+6YtD8= - 1834-150319-2_28: &id375 + 0veGjh+T0T8= + 1834-150319-2_28: &id340 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ycf4mXgjwj8= - 1834-150319-3_63: &id410 + 1834-150319-3_63: &id372 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8mSTW8O5wD8= - 1834-150319-4_22: &id474 + 1834-150319-4_22: &id432 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dxFumYr6uj8= - 1834-220319-1_75: &id537 + 1834-220319-1_75: &id489 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VKcIfBiyqT8= - 1834-220319-2_45: &id601 + 1834-220319-2_45: &id548 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nOEHgy3/uT8= - 1834-220319-3_37: &id649 + 1834-220319-3_37: &id592 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DPKas6k2vT8= - 1834-220319-4_30: &id691 + 1834-220319-4_30: &id632 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -412,91 +405,84 @@ _adj: - *id001 - !!binary | /LlMA91C0z8= - 1834-110319-6_27: &id153 + 1834-110319-6_116: &id165 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Q/SUD6440z8= - 1834-120319-1_31: &id183 + OZgTe/wu0z8= + 1834-120319-1_31: &id177 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0ZSFL4ZKyz8= - 1834-120319-2_23: &id209 + 1834-120319-2_23: &id203 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AsXVo70ayz8= - 1834-120319-3_66: &id252 + 1834-120319-3_66: &id246 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6AFTz66lzD8= - 1834-120319-4_71: &id283 + 1834-120319-4_71: &id277 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hQXkIi8izD8= - 1834-150319-1_31: &id308 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Jg9y7TcCzz8= - 1834-150319-2_27: &id359 + 1834-150319-2_27: &id325 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6InDkcZwzD8= - 1834-150319-3_59: &id402 + 1834-150319-3_59: &id365 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UG83T7DpwT8= - 1834-150319-4_21: &id458 + 1834-150319-4_21: &id416 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FOj4V/IH1D8= - 1834-220319-1_41: &id518 + 1834-220319-1_41: &id473 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Y+Cknon9yD8= - 1834-220319-2_18: &id555 + 1834-220319-2_18: &id505 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MHterXLNyj8= - 1834-220319-3_22: &id614 + 1834-220319-3_22: &id560 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZUyhyNmXzj8= - 1834-220319-4_39: &id716 + 1834-220319-4_39: &id657 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -575,91 +561,91 @@ _adj: - *id001 - !!binary | S3ckQxLmzT8= - 1834-110319-6_28: &id164 + 1834-110319-6_114: &id153 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sN270Stp5j8= - 1834-120319-1_33: &id196 + SmhHl/tO0T8= + 1834-120319-1_33: &id190 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kZkr7OEd0D8= - 1834-120319-2_55: &id223 + 1834-120319-2_55: &id217 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pd9p/ZcF0D8= - 1834-120319-3_56: &id237 + 1834-120319-3_56: &id231 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sMSZeVsA0D8= - 1834-120319-4_55: &id267 + 1834-120319-4_55: &id261 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9vS84Hmqzz8= - 1834-150319-1_33: &id331 + 1834-150319-1_29: &id293 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - detNtTs3tT8= - 1834-150319-2_26: &id343 + lYB7R0+r0T8= + 1834-150319-2_26: &id309 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qBFftMUh0j8= - 1834-150319-3_63: &id411 + 1834-150319-3_63: &id373 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DxQ4T+qbwj8= - 1834-150319-4_22: &id475 + 1834-150319-4_22: &id433 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IcPXAtXruT8= - 1834-220319-1_75: &id538 + 1834-220319-1_75: &id490 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yQLDcazOqj8= - 1834-220319-2_45: &id602 + 1834-220319-2_45: &id549 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yxrHrL5guz8= - 1834-220319-3_37: &id650 + 1834-220319-3_37: &id593 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /YyJ4BJsvj8= - 1834-220319-4_30: &id692 + 1834-220319-4_30: &id633 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -702,63 +688,49 @@ _adj: - *id001 - !!binary | E7yukK6Cyj8= - 1834-110319-6_29: &id171 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - PL+EwxgM1z8= - 1834-150319-1_34: &id339 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - sIe49qyH0D8= - 1834-150319-2_28: &id376 + 1834-150319-2_28: &id341 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zkzUJc7fxz8= - 1834-150319-3_65: &id422 + 1834-150319-3_65: &id383 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S0Tw6zYuzj8= - 1834-150319-4_20: &id439 + 1834-150319-4_20: &id398 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H+Q2fmT3zj8= - 1834-220319-1_69: &id531 + 1834-220319-1_69: &id484 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | agaAvsVgyz8= - 1834-220319-2_43: &id584 + 1834-220319-2_43: &id532 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | W4HDM6TC0D8= - 1834-220319-3_30: &id634 + 1834-220319-3_30: &id579 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BIp8y4Ml0j8= - 1834-220319-4_29: &id672 + 1834-220319-4_29: &id615 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -831,91 +803,91 @@ _adj: - *id001 - !!binary | h9Ah4pqFxD8= - 1834-110319-6_27: &id154 + 1834-110319-6_116: &id166 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - GIzjojfk1D8= - 1834-120319-1_31: &id184 + G+9xmVTf1D8= + 1834-120319-1_31: &id178 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /bT3tC0DtT8= - 1834-120319-2_23: &id210 + 1834-120319-2_23: &id204 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6Zk2X6YVtT8= - 1834-120319-3_66: &id253 + 1834-120319-3_66: &id247 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zVAlQyYgtz8= - 1834-120319-4_71: &id284 + 1834-120319-4_71: &id278 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S0sHJGcsuD8= - 1834-150319-1_31: &id309 + 1834-150319-1_29: &id294 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - T7Y0QA2Mvj8= - 1834-150319-2_27: &id360 + PW404lSXyT8= + 1834-150319-2_27: &id326 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VrbP7sTFwD8= - 1834-150319-3_65: &id423 + 1834-150319-3_65: &id384 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wC1ubb9gwT8= - 1834-150319-4_20: &id440 + 1834-150319-4_20: &id399 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OTRmBb5JwT8= - 1834-220319-1_41: &id519 + 1834-220319-1_41: &id474 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vytPXDqCwj8= - 1834-220319-2_18: &id556 + 1834-220319-2_18: &id506 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | INTRBC09rj8= - 1834-220319-3_22: &id615 + 1834-220319-3_22: &id561 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | l8B8uiy+wT8= - 1834-220319-4_29: &id673 + 1834-220319-4_29: &id616 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -988,91 +960,84 @@ _adj: - *id001 - !!binary | DOC8Df6lzT8= - 1834-110319-6_29: &id172 + 1834-110319-6_114: &id154 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - UCHqpVGbzT8= - 1834-120319-1_33: &id197 + 9sTNacFZzj8= + 1834-120319-1_33: &id191 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H5rUbAIkyz8= - 1834-120319-2_55: &id224 + 1834-120319-2_55: &id218 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BY4paoOAyj8= - 1834-120319-3_56: &id238 + 1834-120319-3_56: &id232 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Nv9qmWC9yj8= - 1834-120319-4_55: &id268 + 1834-120319-4_55: &id262 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TkF2sWSQyj8= - 1834-150319-1_32: &id321 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Y3IaBwZFwT8= - 1834-150319-2_28: &id377 + 1834-150319-2_28: &id342 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | a6xGDyBHxz8= - 1834-150319-3_63: &id412 + 1834-150319-3_63: &id374 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EWi+d9xszj8= - 1834-150319-4_22: &id476 + 1834-150319-4_22: &id434 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Cczef5z6wj8= - 1834-220319-1_26: &id498 + 1834-220319-1_26: &id453 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TVwF5hT8wj8= - 1834-220319-2_45: &id603 + 1834-220319-2_45: &id550 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D759qlAXqj8= - 1834-220319-3_37: &id651 + 1834-220319-3_37: &id594 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RXmWOIDatD8= - 1834-220319-4_30: &id693 + 1834-220319-4_30: &id634 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1132,63 +1097,49 @@ _adj: - *id001 - !!binary | ZZjov5Pozj8= - 1834-110319-6_28: &id165 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - c/dnMKxI5D8= - 1834-150319-1_32: &id322 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - GiASrnetwz8= - 1834-150319-2_28: &id378 + 1834-150319-2_28: &id343 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kPsD+R7+xD8= - 1834-150319-3_63: &id413 + 1834-150319-3_63: &id375 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UjfToBN7yz8= - 1834-150319-4_22: &id477 + 1834-150319-4_22: &id435 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1Sz79WMPvz8= - 1834-220319-1_75: &id539 + 1834-220319-1_75: &id491 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DcdPydMBwj8= - 1834-220319-2_45: &id604 + 1834-220319-2_45: &id551 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BVopeWlcrT8= - 1834-220319-3_37: &id652 + 1834-220319-3_37: &id595 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Oln/jOgJsT8= - 1834-220319-4_30: &id694 + 1834-220319-4_30: &id635 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1232,91 +1183,91 @@ _adj: - *id001 - !!binary | J/1WwRU2xD8= - 1834-110319-6_29: &id173 + 1834-110319-6_114: &id155 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - FaeuMAZSyj8= - 1834-120319-1_33: &id198 + KwmOhxSPyz8= + 1834-120319-1_33: &id192 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j+fjyKprxz8= - 1834-120319-2_55: &id225 + 1834-120319-2_55: &id219 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n84hRoUcxz8= - 1834-120319-3_56: &id239 + 1834-120319-3_56: &id233 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FLiG36hzxz8= - 1834-120319-4_55: &id269 + 1834-120319-4_55: &id263 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YcXDtPIzxz8= - 1834-150319-1_29: &id298 + 1834-150319-1_29: &id295 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 34TycgLdyj8= - 1834-150319-2_26: &id344 + 1834-150319-2_26: &id310 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KOC/aeeZyD8= - 1834-150319-3_23: &id387 + 1834-150319-3_23: &id350 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aqIGiNwPzD8= - 1834-150319-4_21: &id459 + 1834-150319-4_21: &id417 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NMKKUMufyT8= - 1834-220319-1_26: &id499 + 1834-220319-1_26: &id454 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eKGaL4saxz8= - 1834-220319-2_19: &id574 + 1834-220319-2_19: &id524 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zPlFUnfzxD8= - 1834-220319-3_30: &id635 + 1834-220319-3_30: &id580 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VzLO46qyxD8= - 1834-220319-4_29: &id674 + 1834-220319-4_29: &id617 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1383,91 +1334,84 @@ _adj: - *id001 - !!binary | YanGNu1gyj8= - 1834-110319-6_27: &id155 + 1834-110319-6_116: &id167 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Z1M4ykMt1D8= - 1834-120319-1_31: &id185 + 4g3VOHEp1D8= + 1834-120319-1_31: &id179 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yHSlYTt+sj8= - 1834-120319-2_23: &id211 + 1834-120319-2_23: &id205 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mkt1E2M4sj8= - 1834-120319-3_66: &id254 + 1834-120319-3_66: &id248 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /0ztpUaptT8= - 1834-120319-4_71: &id285 + 1834-120319-4_71: &id279 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 39LfF400tj8= - 1834-150319-1_31: &id310 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - v8S1hecCvT8= - 1834-150319-2_27: &id361 + 1834-150319-2_27: &id327 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Vz64k9Qivz8= - 1834-150319-3_65: &id424 + 1834-150319-3_65: &id385 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d2Oeb2s6wD8= - 1834-150319-4_20: &id441 + 1834-150319-4_20: &id400 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5T24ne7Cvz8= - 1834-220319-1_41: &id520 + 1834-220319-1_41: &id475 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QQvDKJKFwT8= - 1834-220319-2_18: &id557 + 1834-220319-2_18: &id507 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P1KQNN6vsD8= - 1834-220319-3_22: &id616 + 1834-220319-3_22: &id562 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0D/aDMjlwD8= - 1834-220319-4_39: &id717 + 1834-220319-4_39: &id658 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1528,91 +1472,84 @@ _adj: - *id001 - !!binary | 5pOJPPef0T8= - 1834-110319-6_27: &id156 + 1834-110319-6_116: &id168 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - hBxEmclP1D8= - 1834-120319-1_31: &id186 + Xs4osJ9M1D8= + 1834-120319-1_31: &id180 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 27Y9KYqwyD8= - 1834-120319-2_23: &id212 + 1834-120319-2_23: &id206 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mKxe4ed8yD8= - 1834-120319-3_66: &id255 + 1834-120319-3_66: &id249 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VAXXW8cDyj8= - 1834-120319-4_71: &id286 + 1834-120319-4_71: &id280 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bm0i6d1TyT8= - 1834-150319-1_33: &id332 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - JkLBnSlexz8= - 1834-150319-2_28: &id379 + 1834-150319-2_28: &id344 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FPe4c9SFwz8= - 1834-150319-3_59: &id403 + 1834-150319-3_59: &id366 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 146iJrLHwD8= - 1834-150319-4_20: &id442 + 1834-150319-4_20: &id401 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yYwRWBW+yD8= - 1834-220319-1_41: &id521 + 1834-220319-1_41: &id476 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ve/KuhIdxT8= - 1834-220319-2_18: &id558 + 1834-220319-2_18: &id508 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hAFcaWanxz8= - 1834-220319-3_22: &id617 + 1834-220319-3_22: &id563 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EbnyqM67yj8= - 1834-220319-4_39: &id718 + 1834-220319-4_39: &id659 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1673,91 +1610,91 @@ _adj: - *id001 - !!binary | YM/OTEFpwT8= - 1834-110319-6_29: &id174 + 1834-110319-6_114: &id156 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - DwRfWCNCwj8= - 1834-120319-1_33: &id199 + HNx3Kbevwj8= + 1834-120319-1_33: &id193 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mnUjNdQjwj8= - 1834-120319-2_55: &id226 + 1834-120319-2_55: &id220 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | twOrDbuAwT8= - 1834-120319-3_56: &id240 + 1834-120319-3_56: &id234 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Esn4VZcBwj8= - 1834-120319-4_55: &id270 + 1834-120319-4_55: &id264 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | G14mNt8Xwj8= - 1834-150319-1_32: &id323 + 1834-150319-1_29: &id296 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - VbPTNATvwj8= - 1834-150319-2_26: &id345 + gO3IGlDSwz8= + 1834-150319-2_26: &id311 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | l+x07l2zwT8= - 1834-150319-3_63: &id414 + 1834-150319-3_63: &id376 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Fprs/VKwwD8= - 1834-150319-4_22: &id478 + 1834-150319-4_22: &id436 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vVk1RlMUvz8= - 1834-220319-1_26: &id500 + 1834-220319-1_26: &id455 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q/p54o0DuT8= - 1834-220319-2_45: &id605 + 1834-220319-2_45: &id552 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | V4ztICV+vD8= - 1834-220319-3_37: &id653 + 1834-220319-3_37: &id596 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | u2jlyrhXuj8= - 1834-220319-4_30: &id695 + 1834-220319-4_30: &id636 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1780,35 +1717,28 @@ _adj: - *id001 - !!binary | Ube1J6dFuD8= - 1834-110319-6_27: &id157 + 1834-110319-6_116: &id169 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 9EVguzAw0j8= - 1834-150319-1_33: &id333 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - lM7c1OtVyj8= - 1834-150319-3_59: &id404 + lTXzbvoh0j8= + 1834-150319-3_59: &id367 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LyCcNBiowD8= - 1834-220319-1_69: &id532 + 1834-220319-1_69: &id485 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gwUMKNhlwz8= - 1834-220319-2_18: &id559 + 1834-220319-2_18: &id509 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1863,91 +1793,91 @@ _adj: - *id001 - !!binary | WthL4bqiwT8= - 1834-110319-6_29: &id175 + 1834-110319-6_114: &id157 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MVRnVXpfwz8= - 1834-120319-1_33: &id200 + LRJPEM/jwz8= + 1834-120319-1_33: &id194 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kigcTm/vxT8= - 1834-120319-2_55: &id227 + 1834-120319-2_55: &id221 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oNo8nKRvxT8= - 1834-120319-3_56: &id241 + 1834-120319-3_56: &id235 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gGg186WsxT8= - 1834-120319-4_55: &id271 + 1834-120319-4_55: &id265 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yDYBQ0l9xT8= - 1834-150319-1_32: &id324 + 1834-150319-1_29: &id297 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - PoQ2K0Bgwj8= - 1834-150319-2_26: &id346 + 9nNjYbPCyD8= + 1834-150319-2_26: &id312 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3bZ+jcoixD8= - 1834-150319-3_23: &id388 + 1834-150319-3_23: &id351 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xQ8sx7H1xj8= - 1834-150319-4_21: &id460 + 1834-150319-4_21: &id418 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UctNJQfNxT8= - 1834-220319-1_26: &id501 + 1834-220319-1_26: &id456 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ybtyiwT6tT8= - 1834-220319-2_19: &id575 + 1834-220319-2_19: &id525 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | O745XjvluD8= - 1834-220319-3_37: &id654 + 1834-220319-3_37: &id597 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XtRcFT3ttj8= - 1834-220319-4_30: &id696 + 1834-220319-4_30: &id637 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1987,63 +1917,49 @@ _adj: - *id001 - !!binary | Yazf6G7CzD8= - 1834-110319-6_28: &id166 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - xCHuccZ94z8= - 1834-150319-1_34: &id340 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - D0OBn2eDyj8= - 1834-150319-2_28: &id380 + 1834-150319-2_28: &id345 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8vASqs3pwT8= - 1834-150319-3_63: &id415 + 1834-150319-3_63: &id377 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JiVOkKS6vD8= - 1834-150319-4_22: &id479 + 1834-150319-4_22: &id437 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T5d2aGQPxT8= - 1834-220319-1_75: &id540 + 1834-220319-1_75: &id492 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vfqy/ZfdwT8= - 1834-220319-2_45: &id606 + 1834-220319-2_45: &id553 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N32EFmr/yT8= - 1834-220319-3_30: &id636 + 1834-220319-3_30: &id581 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WS0Q9DuXzD8= - 1834-220319-4_29: &id675 + 1834-220319-4_29: &id618 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2088,84 +2004,77 @@ _adj: - *id001 - !!binary | bRM9XFd0zj8= - 1834-120319-1_31: &id187 + 1834-120319-1_31: &id181 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2R1JaXWfwz8= - 1834-120319-2_23: &id213 + 1834-120319-2_23: &id207 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HPa8C5FCwz8= - 1834-120319-3_66: &id256 + 1834-120319-3_66: &id250 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Xr0ZwrrJxD8= - 1834-120319-4_71: &id287 + 1834-120319-4_71: &id281 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 15f2QXp3wz8= - 1834-150319-1_31: &id311 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - WY8l9a6cyT8= - 1834-150319-2_27: &id362 + 1834-150319-2_27: &id328 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fbefHQjuvz8= - 1834-150319-3_65: &id425 + 1834-150319-3_65: &id386 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Hc72Honguz8= - 1834-150319-4_20: &id443 + 1834-150319-4_20: &id402 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | y/rBmi16wD8= - 1834-220319-1_41: &id522 + 1834-220319-1_41: &id477 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VCRf4KRhsz8= - 1834-220319-2_43: &id585 + 1834-220319-2_43: &id533 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8Vmy9tw8wT8= - 1834-220319-3_22: &id618 + 1834-220319-3_22: &id564 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | f7cq9YYQwz8= - 1834-220319-4_39: &id719 + 1834-220319-4_39: &id660 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2191,84 +2100,77 @@ _adj: - *id001 - !!binary | JfKU+5mqwD8= - 1834-120319-1_31: &id188 + 1834-120319-1_31: &id182 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 564BYESTwz8= - 1834-120319-2_23: &id214 + 1834-120319-2_23: &id208 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tEni1WxGwz8= - 1834-120319-3_66: &id257 + 1834-120319-3_66: &id251 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LpSwCXZPxT8= - 1834-120319-4_71: &id288 + 1834-120319-4_71: &id282 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dsTuKbIMxD8= - 1834-150319-1_31: &id312 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - EN5YX/J2xz8= - 1834-150319-2_28: &id381 + 1834-150319-2_28: &id346 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fUwxpiw7vD8= - 1834-150319-3_63: &id416 + 1834-150319-3_63: &id378 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | i7SWbKh7uD8= - 1834-150319-4_22: &id480 + 1834-150319-4_22: &id438 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PfcgRc56wT8= - 1834-220319-1_75: &id541 + 1834-220319-1_75: &id493 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q1ABnM+uwT8= - 1834-220319-2_18: &id560 + 1834-220319-2_18: &id510 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AH9D6MWLxT8= - 1834-220319-3_22: &id619 + 1834-220319-3_22: &id565 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LzG7BS8pxz8= - 1834-220319-4_29: &id676 + 1834-220319-4_29: &id619 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2315,63 +2217,56 @@ _adj: - *id001 - !!binary | m2yDnaq2zT8= - 1834-110319-6_29: &id176 + 1834-110319-6_116: &id170 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6BJ4zCEr0j8= - 1834-150319-1_34: &id341 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ZWTjFqKnzj8= - 1834-150319-2_27: &id363 + Ms5sjJ5N0z8= + 1834-150319-2_27: &id329 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FKOWsvSUwD8= - 1834-150319-3_65: &id426 + 1834-150319-3_65: &id387 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mMcg/RZpvT8= - 1834-150319-4_20: &id444 + 1834-150319-4_20: &id403 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q3Dtzt/bwD8= - 1834-220319-1_41: &id523 + 1834-220319-1_41: &id478 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wRK7IDxjtD8= - 1834-220319-2_43: &id586 + 1834-220319-2_43: &id534 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tqzJgkRswj8= - 1834-220319-3_30: &id637 + 1834-220319-3_30: &id582 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HI40hOx+xz8= - 1834-220319-4_39: &id720 + 1834-220319-4_39: &id661 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2420,91 +2315,91 @@ _adj: - *id001 - !!binary | XhLXgLj2wz8= - 1834-110319-6_28: &id167 + 1834-110319-6_114: &id158 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - eoogMe8z4z8= - 1834-120319-1_33: &id201 + vUcFP6y3xj8= + 1834-120319-1_33: &id195 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +Ymz3z3Dxj8= - 1834-120319-2_55: &id228 + 1834-120319-2_55: &id222 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j2/4jdMBxj8= - 1834-120319-3_56: &id242 + 1834-120319-3_56: &id236 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JM8Cx36nxj8= - 1834-120319-4_55: &id272 + 1834-120319-4_55: &id266 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 86TgTCrGxj8= - 1834-150319-1_32: &id325 + 1834-150319-1_29: &id298 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +UoVCv/CxD8= - 1834-150319-2_26: &id347 + 5G0er9plyD8= + 1834-150319-2_26: &id313 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dkUs7SbZxT8= - 1834-150319-3_23: &id389 + 1834-150319-3_23: &id352 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5ignzi1/xz8= - 1834-150319-4_21: &id461 + 1834-150319-4_21: &id419 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 921HPi70xj8= - 1834-220319-1_26: &id502 + 1834-220319-1_26: &id457 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3JDWMMRpsD8= - 1834-220319-2_45: &id607 + 1834-220319-2_45: &id554 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S8XHvTyKuz8= - 1834-220319-3_37: &id655 + 1834-220319-3_37: &id598 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5lnZNvPYuD8= - 1834-220319-4_30: &id697 + 1834-220319-4_30: &id638 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2521,35 +2416,21 @@ _adj: - *id001 - !!binary | VpkLsJ9yuT8= - 1834-110319-6_27: &id158 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - d3/Tfo+W0z8= - 1834-150319-1_33: &id334 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - +Xe1XU0xzT8= - 1834-150319-3_59: &id405 + 1834-150319-3_59: &id368 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Tlc9DSQmwj8= - 1834-220319-1_69: &id533 + 1834-220319-1_69: &id486 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EsaBIqgOxz8= - 1834-220319-2_17: &id548 + 1834-220319-2_17: &id499 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2582,91 +2463,84 @@ _adj: - *id001 - !!binary | z2Pbe/gv0D8= - 1834-110319-6_27: &id159 + 1834-110319-6_116: &id171 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - pPsId7Ag0j8= - 1834-120319-1_31: &id189 + 66eZpZwP0j8= + 1834-120319-1_31: &id183 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | epN+TwfpxD8= - 1834-120319-2_23: &id215 + 1834-120319-2_23: &id209 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ATWZ0pSRxD8= - 1834-120319-3_66: &id258 + 1834-120319-3_66: &id252 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RIpTxZoqxj8= - 1834-120319-4_71: &id289 + 1834-120319-4_71: &id283 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WnTzaJvsxD8= - 1834-150319-1_31: &id313 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9T2yweV3yj8= - 1834-150319-2_27: &id364 + 1834-150319-2_27: &id330 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SfQDtrftwT8= - 1834-150319-3_59: &id406 + 1834-150319-3_59: &id369 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Z6savOs2sj8= - 1834-150319-4_20: &id445 + 1834-150319-4_20: &id404 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1Kl8QzgAwj8= - 1834-220319-1_41: &id524 + 1834-220319-1_41: &id479 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 328ZmLdjtD8= - 1834-220319-2_43: &id587 + 1834-220319-2_43: &id535 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dZGTRmE2wj8= - 1834-220319-3_22: &id620 + 1834-220319-3_22: &id566 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tMAiGai1xD8= - 1834-220319-4_39: &id721 + 1834-220319-4_39: &id662 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2695,63 +2569,49 @@ _adj: - *id001 - !!binary | FgV9ckm0yz8= - 1834-110319-6_28: &id168 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - J9Ohvmur5j8= - 1834-150319-1_33: &id335 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Ge+JNN2DxD8= - 1834-150319-2_28: &id382 + 1834-150319-2_28: &id347 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JigiSgrmwD8= - 1834-150319-3_63: &id417 + 1834-150319-3_63: &id379 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Y9e559o5vD8= - 1834-150319-4_22: &id481 + 1834-150319-4_22: &id439 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9VG+hP+RxT8= - 1834-220319-1_75: &id542 + 1834-220319-1_75: &id494 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | E/TX5RjQxT8= - 1834-220319-2_18: &id561 + 1834-220319-2_18: &id511 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CXfxRhT6wj8= - 1834-220319-3_30: &id638 + 1834-220319-3_30: &id583 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n0VWBxD1yj8= - 1834-220319-4_29: &id677 + 1834-220319-4_29: &id620 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2794,91 +2654,91 @@ _adj: - *id001 - !!binary | clUQgMOUvT8= - 1834-110319-6_29: &id177 + 1834-110319-6_114: &id159 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - laviNd+MwD8= - 1834-120319-1_33: &id202 + Rg/mmOOMwT8= + 1834-120319-1_33: &id196 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | azofJ+oEwz8= - 1834-120319-2_55: &id229 + 1834-120319-2_55: &id223 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | f+tw2PZAwj8= - 1834-120319-3_56: &id243 + 1834-120319-3_56: &id237 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8W3lS2q7wj8= - 1834-120319-4_55: &id273 + 1834-120319-4_55: &id267 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wT8j/iGrwj8= - 1834-150319-1_32: &id326 + 1834-150319-1_29: &id299 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - eX2KRJffwz8= - 1834-150319-2_26: &id348 + sAKY3dGCxT8= + 1834-150319-2_26: &id314 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fQImZrgKwz8= - 1834-150319-3_23: &id390 + 1834-150319-3_23: &id353 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q5L/5nUyxT8= - 1834-150319-4_21: &id462 + 1834-150319-4_21: &id420 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A6cVY5E4xD8= - 1834-220319-1_26: &id503 + 1834-220319-1_26: &id458 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VvlsJeNewD8= - 1834-220319-2_19: &id576 + 1834-220319-2_19: &id526 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +Q3Vv/mqvD8= - 1834-220319-3_37: &id656 + 1834-220319-3_37: &id599 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7+sMpuBAvT8= - 1834-220319-4_30: &id698 + 1834-220319-4_30: &id639 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2915,91 +2775,84 @@ _adj: - *id001 - !!binary | rLj3yBfX0j8= - 1834-110319-6_27: &id160 + 1834-110319-6_116: &id172 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 7J/Ccr1g1D8= - 1834-120319-1_31: &id190 + q9fB4ytc1D8= + 1834-120319-1_31: &id184 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pgT3OJ4Lzj8= - 1834-120319-2_23: &id216 + 1834-120319-2_23: &id210 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6sB9j7MLzj8= - 1834-120319-3_66: &id259 + 1834-120319-3_66: &id253 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J+XAyjpdzj8= - 1834-120319-4_71: &id290 + 1834-120319-4_71: &id284 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bdURY9M8zj8= - 1834-150319-1_31: &id314 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - hhEg1UsC0T8= - 1834-150319-2_27: &id365 + 1834-150319-2_27: &id331 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ljctZl7izD8= - 1834-150319-3_65: &id427 + 1834-150319-3_65: &id388 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Wns57J30yj8= - 1834-150319-4_20: &id446 + 1834-150319-4_20: &id405 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Wk/zNMcCzT8= - 1834-220319-1_41: &id525 + 1834-220319-1_41: &id480 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RtCzpiaOxz8= - 1834-220319-2_43: &id588 + 1834-220319-2_43: &id536 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +r68IQ2Byj8= - 1834-220319-3_22: &id621 + 1834-220319-3_22: &id567 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OF6gjYb0zj8= - 1834-220319-4_39: &id722 + 1834-220319-4_39: &id663 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3036,91 +2889,91 @@ _adj: - *id001 - !!binary | 5/l1lmU4yz8= - 1834-110319-6_29: &id178 + 1834-110319-6_114: &id160 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - A7vzjThtyz8= - 1834-120319-1_33: &id203 + OF7bYEftyz8= + 1834-120319-1_33: &id197 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aPB506duzD8= - 1834-120319-2_55: &id230 + 1834-120319-2_55: &id224 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GNrCnOABzD8= - 1834-120319-3_56: &id244 + 1834-120319-3_56: &id238 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d4q17U1uzD8= - 1834-120319-4_55: &id274 + 1834-120319-4_55: &id268 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YeK1x2d4zD8= - 1834-150319-1_33: &id336 + 1834-150319-1_29: &id300 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - N6ik36oPyD8= - 1834-150319-2_28: &id383 + Oo2TY8gazT8= + 1834-150319-2_28: &id348 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Dwno6oxYyT8= - 1834-150319-3_63: &id418 + 1834-150319-3_63: &id380 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FPfcoVLoxj8= - 1834-150319-4_22: &id482 + 1834-150319-4_22: &id440 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | M24VCFWvyD8= - 1834-220319-1_26: &id504 + 1834-220319-1_26: &id459 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VqYHKNQfxj8= - 1834-220319-2_45: &id608 + 1834-220319-2_45: &id555 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c9mYvOMXyj8= - 1834-220319-3_37: &id657 + 1834-220319-3_37: &id600 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GlIr4mwEyT8= - 1834-220319-4_30: &id699 + 1834-220319-4_30: &id640 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3148,84 +3001,77 @@ _adj: - *id001 - !!binary | ECCD+hlsxz8= - 1834-120319-1_31: &id191 + 1834-120319-1_31: &id185 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wNjzQjEmwT8= - 1834-120319-2_23: &id217 + 1834-120319-2_23: &id211 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iCNRmFjIwD8= - 1834-120319-3_66: &id260 + 1834-120319-3_66: &id254 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ATHcdN+HwT8= - 1834-120319-4_71: &id291 + 1834-120319-4_71: &id285 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zD1pCX5XwD8= - 1834-150319-1_31: &id315 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - s9Jjm6OZxz8= - 1834-150319-2_27: &id366 + 1834-150319-2_27: &id332 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GISm6u5etT8= - 1834-150319-3_65: &id428 + 1834-150319-3_65: &id389 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Rasu7UiDsj8= - 1834-150319-4_20: &id447 + 1834-150319-4_20: &id406 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Img/lDBwtT8= - 1834-220319-1_24: &id488 + 1834-220319-1_24: &id444 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0JwvdCegrz8= - 1834-220319-2_43: &id589 + 1834-220319-2_43: &id537 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CrKEuFRLuj8= - 1834-220319-3_22: &id622 + 1834-220319-3_22: &id568 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n5YX7dlOuz8= - 1834-220319-4_39: &id723 + 1834-220319-4_39: &id664 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3241,63 +3087,49 @@ _adj: 1834-060319-2_40: *id096 1834-060319-3_28: *id097 1834-110319-1_44: *id098 - 1834-110319-6_29: &id179 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - rDEwjr4h0D8= - 1834-150319-1_33: &id337 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - NJJop2zKsj8= - 1834-150319-2_28: &id384 + 1834-150319-2_28: &id349 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MQNOe5UlwD8= - 1834-150319-3_63: &id419 + 1834-150319-3_63: &id381 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 91tM7xECuT8= - 1834-150319-4_22: &id483 + 1834-150319-4_22: &id441 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ip4K8Ap1vT8= - 1834-220319-1_75: &id543 + 1834-220319-1_75: &id495 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UjUx+YpPrT8= - 1834-220319-2_45: &id609 + 1834-220319-2_45: &id556 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fQuNThpQwj8= - 1834-220319-3_37: &id658 + 1834-220319-3_37: &id601 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0zjwkZL3wT8= - 1834-220319-4_30: &id700 + 1834-220319-4_30: &id641 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3323,91 +3155,91 @@ _adj: - *id001 - !!binary | I/WRlM6gwj8= - 1834-110319-6_28: &id169 + 1834-110319-6_114: &id161 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - h5odNul84T8= - 1834-120319-1_33: &id204 + 0w7GYRlWwD8= + 1834-120319-1_33: &id198 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KU6oTb65rT8= - 1834-120319-2_55: &id231 + 1834-120319-2_55: &id225 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nzzE/vIWrj8= - 1834-120319-3_56: &id245 + 1834-120319-3_56: &id239 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NV5+H4pBrj8= - 1834-120319-4_55: &id275 + 1834-120319-4_55: &id269 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZpXP1e4Jrj8= - 1834-150319-1_29: &id299 + 1834-150319-1_29: &id301 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EX+7tY21pT8= - 1834-150319-2_26: &id349 + 1834-150319-2_26: &id315 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yqa6Fl4EtT8= - 1834-150319-3_23: &id391 + 1834-150319-3_23: &id354 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | B6WEGyL3rD8= - 1834-150319-4_21: &id463 + 1834-150319-4_21: &id421 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | y2V7IDDAsT8= - 1834-220319-1_26: &id505 + 1834-220319-1_26: &id460 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1I3Wsyk1xz8= - 1834-220319-2_19: &id577 + 1834-220319-2_19: &id527 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Lxn40J+zyD8= - 1834-220319-3_30: &id639 + 1834-220319-3_30: &id584 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2Ywm2hvvyj8= - 1834-220319-4_29: &id678 + 1834-220319-4_29: &id621 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3421,35 +3253,28 @@ _adj: 1834-060319-2_122: *id106 1834-060319-3_43: *id107 1834-060319-4_21: *id108 - 1834-110319-6_27: &id161 + 1834-110319-6_116: &id173 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - aaZjwERG0z8= - 1834-150319-1_32: &id327 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - zDMujDtg0T8= - 1834-150319-3_59: &id407 + 5lloa+U+0z8= + 1834-150319-3_59: &id370 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1HrLSW+ZvT8= - 1834-220319-1_41: &id526 + 1834-220319-1_41: &id481 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | E5kx4cmExj8= - 1834-220319-2_18: &id562 + 1834-220319-2_18: &id512 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3458,21 +3283,14 @@ _adj: pnXcGys2yj8= 1834-110319-2_87: 1834-010319-3_91: *id109 - 1834-150319-1_34: &id342 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - dBuDf4f71D8= - 1834-220319-1_69: &id534 + 1834-220319-1_69: &id487 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hPMHS97C0T8= - 1834-220319-2_17: &id549 + 1834-220319-2_17: &id500 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3497,91 +3315,84 @@ _adj: - *id001 - !!binary | 3p7NcSOAzD8= - 1834-110319-6_27: &id162 + 1834-110319-6_116: &id174 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - nnLeYJLZ1z8= - 1834-120319-1_31: &id192 + zbiEvZ7Y1z8= + 1834-120319-1_31: &id186 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HUHJ5/LDyj8= - 1834-120319-2_23: &id218 + 1834-120319-2_23: &id212 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wtYeMlz4yj8= - 1834-120319-3_66: &id261 + 1834-120319-3_66: &id255 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DGyM60Asyj8= - 1834-120319-4_71: &id292 + 1834-120319-4_71: &id286 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Y33UUNfCyj8= - 1834-150319-1_32: &id328 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - S91hpePXzT8= - 1834-150319-2_27: &id367 + 1834-150319-2_27: &id333 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0Yidygt8yj8= - 1834-150319-3_65: &id429 + 1834-150319-3_65: &id390 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T3hgL7yfyD8= - 1834-150319-4_20: &id448 + 1834-150319-4_20: &id407 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Orruq9J/yj8= - 1834-220319-1_41: &id527 + 1834-220319-1_41: &id482 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | C8rTRMsdyD8= - 1834-220319-2_43: &id590 + 1834-220319-2_43: &id538 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1P303cP2yD8= - 1834-220319-3_22: &id623 + 1834-220319-3_22: &id569 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H40LJSLgyT8= - 1834-220319-4_29: &id679 + 1834-220319-4_29: &id622 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3606,91 +3417,91 @@ _adj: - *id001 - !!binary | t5/uZCA+xT8= - 1834-110319-6_29: &id180 + 1834-110319-6_114: &id162 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Aykp3ugHxD8= - 1834-120319-1_33: &id205 + JrVUElloxD8= + 1834-120319-1_33: &id199 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5aIUnyQMxz8= - 1834-120319-2_55: &id232 + 1834-120319-2_55: &id226 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GqIfURRsxj8= - 1834-120319-3_56: &id246 + 1834-120319-3_56: &id240 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | y5TzzWqhxj8= - 1834-120319-4_55: &id276 + 1834-120319-4_55: &id270 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IEgQAE52xj8= - 1834-150319-1_29: &id300 + 1834-150319-1_29: &id302 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TeVshnLEyD8= - 1834-150319-2_26: &id350 + 1834-150319-2_26: &id316 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4B43ygZ9yD8= - 1834-150319-3_23: &id392 + 1834-150319-3_23: &id355 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pqwylSmHyD8= - 1834-150319-4_21: &id464 + 1834-150319-4_21: &id422 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GqRTWdCAyD8= - 1834-220319-1_26: &id506 + 1834-220319-1_26: &id461 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IHpW4F06zT8= - 1834-220319-2_19: &id578 + 1834-220319-2_19: &id528 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sAGNoV3yyj8= - 1834-220319-3_37: &id659 + 1834-220319-3_37: &id602 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6JeDn9z+yz8= - 1834-220319-4_30: &id701 + 1834-220319-4_30: &id642 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3709,91 +3520,84 @@ _adj: 1834-110319-1_20: *id138 1834-110319-2_34: *id139 1834-110319-3_70: *id140 - 1834-110319-6_27: &id163 + 1834-110319-6_116: &id175 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - naii1aLi2D8= - 1834-120319-1_31: &id193 + biJ/MfLs2D8= + 1834-120319-1_31: &id187 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QSGE7IElyj8= - 1834-120319-2_23: &id219 + 1834-120319-2_23: &id213 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /SlqgeT+yT8= - 1834-120319-3_66: &id262 + 1834-120319-3_66: &id256 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DvT2ciZLyD8= - 1834-120319-4_71: &id293 + 1834-120319-4_71: &id287 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FkKHa8lCyD8= - 1834-150319-1_33: &id338 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ZJTJAEFr0T8= - 1834-150319-2_27: &id368 + 1834-150319-2_27: &id334 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nXG+M89twz8= - 1834-150319-3_65: &id430 + 1834-150319-3_65: &id391 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7WdTs4Slxz8= - 1834-150319-4_20: &id449 + 1834-150319-4_20: &id408 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /vZh8tabxD8= - 1834-220319-1_24: &id489 + 1834-220319-1_24: &id445 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SoaUKOnswz8= - 1834-220319-2_17: &id550 + 1834-220319-2_17: &id501 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zdgFxkkwuT8= - 1834-220319-3_30: &id640 + 1834-220319-3_30: &id585 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IhJKRkwFuj8= - 1834-220319-4_29: &id680 + 1834-220319-4_29: &id623 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3812,439 +3616,362 @@ _adj: 1834-110319-1_44: *id149 1834-110319-2_39: *id150 1834-110319-3_83: *id151 - 1834-110319-6_29: &id181 + 1834-110319-6_114: &id163 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - KysZWsmovD8= - 1834-120319-1_33: &id206 + UhmArD6ovz8= + 1834-120319-1_33: &id200 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tziqlR2jwj8= - 1834-120319-2_55: &id233 + 1834-120319-2_55: &id227 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2NhWgCKswT8= - 1834-120319-3_56: &id247 + 1834-120319-3_56: &id241 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /ysKUx9Pwj8= - 1834-120319-4_55: &id277 + 1834-120319-4_55: &id271 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 21Q+301Cwj8= - 1834-150319-1_29: &id301 + 1834-150319-1_29: &id303 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JEWKIzBHxT8= - 1834-150319-2_26: &id351 + 1834-150319-2_26: &id317 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | s1uhZ8nqvz8= - 1834-150319-3_23: &id393 + 1834-150319-3_23: &id356 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xUsYYlYkxD8= - 1834-150319-4_21: &id465 + 1834-150319-4_21: &id423 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZLJID5k+wj8= - 1834-220319-1_26: &id507 + 1834-220319-1_26: &id462 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2LMQfTtqyT8= - 1834-220319-2_18: &id563 + 1834-220319-2_18: &id513 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZQwq+jIzwT8= - 1834-220319-3_37: &id660 + 1834-220319-3_37: &id603 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | O3Ql3jMLxD8= - 1834-220319-4_30: &id702 + 1834-220319-4_30: &id643 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Klz4OvbTwj8= - 1834-110319-6_27: - 1834-010319-1_21: *id152 - 1834-010319-3_53: *id153 - 1834-010319-4_44: *id154 - 1834-010319-5_35: *id155 - 1834-060319-1_55: *id156 - 1834-060319-2_122: *id157 - 1834-060319-3_43: *id158 - 1834-060319-4_19: *id159 - 1834-110319-1_20: *id160 - 1834-110319-2_77: *id161 - 1834-110319-3_70: *id162 - 1834-110319-5_30: *id163 - 1834-120319-1_31: &id194 + 1834-110319-6_114: + 1834-010319-1_22: *id152 + 1834-010319-3_55: *id153 + 1834-010319-4_46: *id154 + 1834-010319-5_33: *id155 + 1834-060319-1_58: *id156 + 1834-060319-2_39: *id157 + 1834-060319-3_32: *id158 + 1834-060319-4_22: *id159 + 1834-110319-1_44: *id160 + 1834-110319-2_39: *id161 + 1834-110319-3_83: *id162 + 1834-110319-5_31: *id163 + 1834-120319-1_33: &id201 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - KqzsLQ7k1D8= - 1834-120319-2_23: &id220 + x0Yh6uycwD8= + 1834-120319-2_55: &id228 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - T/WygE7E1D8= - 1834-120319-3_66: &id263 + v0b2mDcyvz8= + 1834-120319-3_56: &id242 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - w8Kc3wZZ1T8= - 1834-120319-4_71: &id294 + d0GlC+oXwD8= + 1834-120319-4_55: &id272 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - wjjiG6441T8= - 1834-150319-1_31: &id316 + LrD7t7kpwD8= + 1834-150319-1_29: &id304 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - fN9e1IKO1j8= - 1834-150319-2_28: &id385 + ZET0DGXfwT8= + 1834-150319-2_26: &id318 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - PV1Qrg5R1j8= - 1834-150319-3_59: &id408 + 6BZXpXAtuz8= + 1834-150319-3_23: &id357 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5EKYTJiZ0z8= - 1834-150319-4_20: &id450 + P9vXi3CNvz8= + 1834-150319-4_21: &id424 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 9ymfCfe01D8= - 1834-220319-1_41: &id528 + kTZJ9rcgvj8= + 1834-220319-1_26: &id463 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 7m7CT+Ha0D8= - 1834-220319-2_43: &id591 + xinulbdkzj8= + 1834-220319-2_18: &id514 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - z4Ydo5Jj0j8= - 1834-220319-3_22: &id624 + DwzEop9uyT8= + 1834-220319-3_37: &id604 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ODxtiXCb0z8= - 1834-220319-4_39: &id724 + gJco3d4ayz8= + 1834-220319-4_30: &id644 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - d039t/oi1D8= - 1834-110319-6_28: - 1834-010319-3_55: *id164 - 1834-010319-5_20: *id165 - 1834-060319-2_40: *id166 - 1834-060319-3_32: *id167 - 1834-060319-4_21: *id168 - 1834-110319-2_39: *id169 - 1834-150319-1_32: &id329 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VEtP7KAg4z8= - 1834-150319-2_27: &id369 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - I3a4IpTU5j8= - 1834-150319-3_65: &id431 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - iFjFM+ru5j8= - 1834-150319-4_22: &id484 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 5zt1gXdX5j8= - 1834-220319-1_69: &id535 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ysb3qCwy5j8= - 1834-220319-2_19: &id579 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 0uuAtnbr4z8= - 1834-220319-3_30: &id641 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 7Bup0J1y5T8= - 1834-220319-4_29: &id681 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VKy13AJ45T8= - 1834-110319-6_29: - 1834-010319-1_22: *id170 - 1834-010319-3_91: *id171 - 1834-010319-4_46: *id172 - 1834-010319-5_33: *id173 - 1834-060319-1_58: *id174 - 1834-060319-2_39: *id175 - 1834-060319-3_30: *id176 - 1834-060319-4_22: *id177 - 1834-110319-1_44: *id178 - 1834-110319-2_38: *id179 - 1834-110319-3_83: *id180 - 1834-110319-5_31: *id181 - 1834-120319-1_33: &id207 + KeD/xXecyj8= + 1834-110319-6_116: + 1834-010319-1_21: *id164 + 1834-010319-3_53: *id165 + 1834-010319-4_44: *id166 + 1834-010319-5_35: *id167 + 1834-060319-1_55: *id168 + 1834-060319-2_122: *id169 + 1834-060319-3_30: *id170 + 1834-060319-4_19: *id171 + 1834-110319-1_20: *id172 + 1834-110319-2_77: *id173 + 1834-110319-3_70: *id174 + 1834-110319-5_30: *id175 + 1834-120319-1_31: &id188 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - q98RckBSwD8= - 1834-120319-2_55: &id234 + sUfr/wTl1D8= + 1834-120319-2_23: &id214 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sG73J0CXvj8= - 1834-120319-3_56: &id248 + vT2LHmrF1D8= + 1834-120319-3_66: &id257 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rMsoo5PJvz8= - 1834-120319-4_55: &id278 + 4mCpApVb1T8= + 1834-120319-4_71: &id288 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - mKttftPQvz8= - 1834-150319-1_29: &id302 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - w4CTqTnlwT8= - 1834-150319-2_26: &id352 + SW4RVIo61T8= + 1834-150319-2_27: &id335 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ItmxKiujuj8= - 1834-150319-3_23: &id394 + HQJaZR+o1D8= + 1834-150319-3_59: &id371 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - PzNu+BoOwD8= - 1834-150319-4_21: &id466 + nkdWMeaF0z8= + 1834-150319-4_20: &id409 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - mFTloq56vj8= - 1834-220319-1_26: &id508 + bFibbqy41D8= + 1834-220319-1_69: &id488 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - RCiy1flszT8= - 1834-220319-2_18: &id564 + mFU5wD660D8= + 1834-220319-2_43: &id539 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4Vb7/fdKyD8= - 1834-220319-3_37: &id661 + dHFTx/mC0j8= + 1834-220319-3_22: &id570 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Tt76oc0vyj8= - 1834-220319-4_30: &id703 + w69AKpel0z8= + 1834-220319-4_39: &id665 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - q7zN6p2TyT8= + ZvKki48s1D8= 1834-120319-1_31: - 1834-010319-1_21: *id182 - 1834-010319-3_53: *id183 - 1834-010319-4_44: *id184 - 1834-010319-5_35: *id185 - 1834-060319-1_55: *id186 - 1834-060319-2_45: *id187 - 1834-060319-3_28: *id188 - 1834-060319-4_19: *id189 - 1834-110319-1_20: *id190 - 1834-110319-2_34: *id191 - 1834-110319-3_70: *id192 - 1834-110319-5_30: *id193 - 1834-110319-6_27: *id194 - 1834-120319-2_23: &id221 + 1834-010319-1_21: *id176 + 1834-010319-3_53: *id177 + 1834-010319-4_44: *id178 + 1834-010319-5_35: *id179 + 1834-060319-1_55: *id180 + 1834-060319-2_45: *id181 + 1834-060319-3_28: *id182 + 1834-060319-4_19: *id183 + 1834-110319-1_20: *id184 + 1834-110319-2_34: *id185 + 1834-110319-3_70: *id186 + 1834-110319-5_30: *id187 + 1834-110319-6_116: *id188 + 1834-120319-2_23: &id215 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UWDqXLLigT8= - 1834-120319-3_66: &id264 + 1834-120319-3_66: &id258 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mZhc/QPumj8= - 1834-120319-4_71: &id295 + 1834-120319-4_71: &id289 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SbB1d2cvmz8= - 1834-150319-1_31: &id317 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - PV6sYWcquD8= - 1834-150319-2_27: &id370 + 1834-150319-2_27: &id336 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1sVYIb+ktD8= - 1834-150319-3_65: &id432 + 1834-150319-3_65: &id392 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mzXI3YXYtz8= - 1834-150319-4_20: &id451 + 1834-150319-4_20: &id410 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZmX/ygC+tT8= - 1834-220319-1_24: &id490 + 1834-220319-1_24: &id446 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tzqJ3GpTuz8= - 1834-220319-2_43: &id592 + 1834-220319-2_43: &id540 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | a3rO+czMwD8= - 1834-220319-3_22: &id625 + 1834-220319-3_22: &id571 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YDIqshpluj8= - 1834-220319-4_39: &id725 + 1834-220319-4_39: &id666 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4252,90 +3979,90 @@ _adj: - !!binary | V3Xuy10Juj8= 1834-120319-1_33: - 1834-010319-1_22: *id195 - 1834-010319-3_55: *id196 - 1834-010319-4_46: *id197 - 1834-010319-5_33: *id198 - 1834-060319-1_58: *id199 - 1834-060319-2_39: *id200 - 1834-060319-3_32: *id201 - 1834-060319-4_22: *id202 - 1834-110319-1_44: *id203 - 1834-110319-2_39: *id204 - 1834-110319-3_83: *id205 - 1834-110319-5_31: *id206 - 1834-110319-6_29: *id207 - 1834-120319-2_55: &id235 + 1834-010319-1_22: *id189 + 1834-010319-3_55: *id190 + 1834-010319-4_46: *id191 + 1834-010319-5_33: *id192 + 1834-060319-1_58: *id193 + 1834-060319-2_39: *id194 + 1834-060319-3_32: *id195 + 1834-060319-4_22: *id196 + 1834-110319-1_44: *id197 + 1834-110319-2_39: *id198 + 1834-110319-3_83: *id199 + 1834-110319-5_31: *id200 + 1834-110319-6_114: *id201 + 1834-120319-2_55: &id229 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7i97aU8qiz8= - 1834-120319-3_56: &id249 + 1834-120319-3_56: &id243 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | B6o/LHR7fj8= - 1834-120319-4_55: &id279 + 1834-120319-4_55: &id273 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | B2wD5b8Pez8= - 1834-150319-1_29: &id303 + 1834-150319-1_29: &id305 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5ngXCri+rD8= - 1834-150319-2_26: &id353 + 1834-150319-2_26: &id319 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZTEev2Ksrj8= - 1834-150319-3_23: &id395 + 1834-150319-3_23: &id358 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SG+dSFYLrz8= - 1834-150319-4_21: &id467 + 1834-150319-4_21: &id425 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4lEWAIGQpD8= - 1834-220319-1_26: &id509 + 1834-220319-1_26: &id464 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ee5WpXvXyT8= - 1834-220319-2_18: &id565 + 1834-220319-2_18: &id515 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MFfAcXt0xD8= - 1834-220319-3_37: &id662 + 1834-220319-3_37: &id605 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JsCk+OFByD8= - 1834-220319-4_30: &id704 + 1834-220319-4_30: &id645 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4343,84 +4070,77 @@ _adj: - !!binary | 0vfDfQFHxz8= 1834-120319-2_23: - 1834-010319-1_21: *id208 - 1834-010319-3_53: *id209 - 1834-010319-4_44: *id210 - 1834-010319-5_35: *id211 - 1834-060319-1_55: *id212 - 1834-060319-2_45: *id213 - 1834-060319-3_28: *id214 - 1834-060319-4_19: *id215 - 1834-110319-1_20: *id216 - 1834-110319-2_34: *id217 - 1834-110319-3_70: *id218 - 1834-110319-5_30: *id219 - 1834-110319-6_27: *id220 - 1834-120319-1_31: *id221 - 1834-120319-3_66: &id265 + 1834-010319-1_21: *id202 + 1834-010319-3_53: *id203 + 1834-010319-4_44: *id204 + 1834-010319-5_35: *id205 + 1834-060319-1_55: *id206 + 1834-060319-2_45: *id207 + 1834-060319-3_28: *id208 + 1834-060319-4_19: *id209 + 1834-110319-1_20: *id210 + 1834-110319-2_34: *id211 + 1834-110319-3_70: *id212 + 1834-110319-5_30: *id213 + 1834-110319-6_116: *id214 + 1834-120319-1_31: *id215 + 1834-120319-3_66: &id259 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XGkbLOk3nT8= - 1834-120319-4_71: &id296 + 1834-120319-4_71: &id290 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eZgmSiuCnD8= - 1834-150319-1_31: &id318 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - jxUsCL1MuD8= - 1834-150319-2_27: &id371 + 1834-150319-2_27: &id337 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ssyaYRtJtD8= - 1834-150319-3_65: &id433 + 1834-150319-3_65: &id393 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zaKaRAxXtz8= - 1834-150319-4_20: &id452 + 1834-150319-4_20: &id411 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8s465l0NtT8= - 1834-220319-1_24: &id491 + 1834-220319-1_24: &id447 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c5WjuNaouj8= - 1834-220319-2_43: &id593 + 1834-220319-2_43: &id541 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oClb+0O8wD8= - 1834-220319-3_22: &id626 + 1834-220319-3_22: &id572 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8FMAOGUZuj8= - 1834-220319-4_39: &id726 + 1834-220319-4_39: &id667 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4428,84 +4148,84 @@ _adj: - !!binary | 2XyFxcy9uT8= 1834-120319-2_55: - 1834-010319-1_22: *id222 - 1834-010319-3_55: *id223 - 1834-010319-4_46: *id224 - 1834-010319-5_33: *id225 - 1834-060319-1_58: *id226 - 1834-060319-2_39: *id227 - 1834-060319-3_32: *id228 - 1834-060319-4_22: *id229 - 1834-110319-1_44: *id230 - 1834-110319-2_39: *id231 - 1834-110319-3_83: *id232 - 1834-110319-5_31: *id233 - 1834-110319-6_29: *id234 - 1834-120319-1_33: *id235 - 1834-120319-3_56: &id250 + 1834-010319-1_22: *id216 + 1834-010319-3_55: *id217 + 1834-010319-4_46: *id218 + 1834-010319-5_33: *id219 + 1834-060319-1_58: *id220 + 1834-060319-2_39: *id221 + 1834-060319-3_32: *id222 + 1834-060319-4_22: *id223 + 1834-110319-1_44: *id224 + 1834-110319-2_39: *id225 + 1834-110319-3_83: *id226 + 1834-110319-5_31: *id227 + 1834-110319-6_114: *id228 + 1834-120319-1_33: *id229 + 1834-120319-3_56: &id244 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DtqwQZ7Kgz8= - 1834-120319-4_55: &id280 + 1834-120319-4_55: &id274 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sVJTuBGqiD8= - 1834-150319-1_29: &id304 + 1834-150319-1_29: &id306 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 48pEghczrz8= - 1834-150319-2_26: &id354 + 1834-150319-2_26: &id320 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Z0e/ay2cqT8= - 1834-150319-3_23: &id396 + 1834-150319-3_23: &id359 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FkHKom8mrj8= - 1834-150319-4_21: &id468 + 1834-150319-4_21: &id426 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T8ZyIc9voD8= - 1834-220319-1_26: &id510 + 1834-220319-1_26: &id465 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Gry/dl2FyT8= - 1834-220319-2_18: &id566 + 1834-220319-2_18: &id516 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lVLw+ZoexD8= - 1834-220319-3_37: &id663 + 1834-220319-3_37: &id606 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N8wAZ7udxz8= - 1834-220319-4_30: &id705 + 1834-220319-4_30: &id646 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4513,78 +4233,78 @@ _adj: - !!binary | 1FaM9U6dxj8= 1834-120319-3_56: - 1834-010319-1_22: *id236 - 1834-010319-3_55: *id237 - 1834-010319-4_46: *id238 - 1834-010319-5_33: *id239 - 1834-060319-1_58: *id240 - 1834-060319-2_39: *id241 - 1834-060319-3_32: *id242 - 1834-060319-4_22: *id243 - 1834-110319-1_44: *id244 - 1834-110319-2_39: *id245 - 1834-110319-3_83: *id246 - 1834-110319-5_31: *id247 - 1834-110319-6_29: *id248 - 1834-120319-1_33: *id249 - 1834-120319-2_55: *id250 - 1834-120319-4_55: &id281 + 1834-010319-1_22: *id230 + 1834-010319-3_55: *id231 + 1834-010319-4_46: *id232 + 1834-010319-5_33: *id233 + 1834-060319-1_58: *id234 + 1834-060319-2_39: *id235 + 1834-060319-3_32: *id236 + 1834-060319-4_22: *id237 + 1834-110319-1_44: *id238 + 1834-110319-2_39: *id239 + 1834-110319-3_83: *id240 + 1834-110319-5_31: *id241 + 1834-110319-6_114: *id242 + 1834-120319-1_33: *id243 + 1834-120319-2_55: *id244 + 1834-120319-4_55: &id275 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hRBmfaDldD8= - 1834-150319-1_29: &id305 + 1834-150319-1_29: &id307 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gtJpym4IrT8= - 1834-150319-2_26: &id355 + 1834-150319-2_26: &id321 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gJDqpsK+rD8= - 1834-150319-3_23: &id397 + 1834-150319-3_23: &id360 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rNAykgeOrT8= - 1834-150319-4_21: &id469 + 1834-150319-4_21: &id427 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tBnxfx0Yoj8= - 1834-220319-1_26: &id511 + 1834-220319-1_26: &id466 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yQWWQlCyyT8= - 1834-220319-2_18: &id567 + 1834-220319-2_18: &id517 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8afKK5SMxD8= - 1834-220319-3_37: &id664 + 1834-220319-3_37: &id607 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | O6bg7A72xz8= - 1834-220319-4_30: &id706 + 1834-220319-4_30: &id647 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4592,78 +4312,71 @@ _adj: - !!binary | FYIDZmkCxz8= 1834-120319-3_66: - 1834-010319-1_21: *id251 - 1834-010319-3_53: *id252 - 1834-010319-4_44: *id253 - 1834-010319-5_35: *id254 - 1834-060319-1_55: *id255 - 1834-060319-2_45: *id256 - 1834-060319-3_28: *id257 - 1834-060319-4_19: *id258 - 1834-110319-1_20: *id259 - 1834-110319-2_34: *id260 - 1834-110319-3_70: *id261 - 1834-110319-5_30: *id262 - 1834-110319-6_27: *id263 - 1834-120319-1_31: *id264 - 1834-120319-2_23: *id265 - 1834-120319-4_71: &id297 + 1834-010319-1_21: *id245 + 1834-010319-3_53: *id246 + 1834-010319-4_44: *id247 + 1834-010319-5_35: *id248 + 1834-060319-1_55: *id249 + 1834-060319-2_45: *id250 + 1834-060319-3_28: *id251 + 1834-060319-4_19: *id252 + 1834-110319-1_20: *id253 + 1834-110319-2_34: *id254 + 1834-110319-3_70: *id255 + 1834-110319-5_30: *id256 + 1834-110319-6_116: *id257 + 1834-120319-1_31: *id258 + 1834-120319-2_23: *id259 + 1834-120319-4_71: &id291 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | f/v9LboIlj8= - 1834-150319-1_31: &id319 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 9yOjDDrDuD8= - 1834-150319-2_27: &id372 + 1834-150319-2_27: &id338 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tbkiWENAtD8= - 1834-150319-3_65: &id434 + 1834-150319-3_65: &id394 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GrXFqNksuD8= - 1834-150319-4_20: &id453 + 1834-150319-4_20: &id412 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TV3f3ItXtT8= - 1834-220319-1_24: &id492 + 1834-220319-1_24: &id448 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9IVYq90Auz8= - 1834-220319-2_43: &id594 + 1834-220319-2_43: &id542 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SQI1VgWKwD8= - 1834-220319-3_30: &id642 + 1834-220319-3_30: &id586 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Vf6x7TIEtz8= - 1834-220319-4_29: &id682 + 1834-220319-4_29: &id624 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4671,72 +4384,72 @@ _adj: - !!binary | k7IFfjUktT8= 1834-120319-4_55: - 1834-010319-1_22: *id266 - 1834-010319-3_55: *id267 - 1834-010319-4_46: *id268 - 1834-010319-5_33: *id269 - 1834-060319-1_58: *id270 - 1834-060319-2_39: *id271 - 1834-060319-3_32: *id272 - 1834-060319-4_22: *id273 - 1834-110319-1_44: *id274 - 1834-110319-2_39: *id275 - 1834-110319-3_83: *id276 - 1834-110319-5_31: *id277 - 1834-110319-6_29: *id278 - 1834-120319-1_33: *id279 - 1834-120319-2_55: *id280 - 1834-120319-3_56: *id281 - 1834-150319-1_29: &id306 + 1834-010319-1_22: *id260 + 1834-010319-3_55: *id261 + 1834-010319-4_46: *id262 + 1834-010319-5_33: *id263 + 1834-060319-1_58: *id264 + 1834-060319-2_39: *id265 + 1834-060319-3_32: *id266 + 1834-060319-4_22: *id267 + 1834-110319-1_44: *id268 + 1834-110319-2_39: *id269 + 1834-110319-3_83: *id270 + 1834-110319-5_31: *id271 + 1834-110319-6_114: *id272 + 1834-120319-1_33: *id273 + 1834-120319-2_55: *id274 + 1834-120319-3_56: *id275 + 1834-150319-1_29: &id308 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1ZbqAIB4rD8= - 1834-150319-2_26: &id356 + 1834-150319-2_26: &id322 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SY0R0Yd4rT8= - 1834-150319-3_23: &id398 + 1834-150319-3_23: &id361 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P7QN6emrrT8= - 1834-150319-4_21: &id470 + 1834-150319-4_21: &id428 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | thAkxeUooz8= - 1834-220319-1_26: &id512 + 1834-220319-1_26: &id467 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pBpZBTd5yT8= - 1834-220319-2_18: &id568 + 1834-220319-2_18: &id518 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | soT5zMxaxD8= - 1834-220319-3_37: &id665 + 1834-220319-3_37: &id608 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OgqkXwvTxz8= - 1834-220319-4_30: &id707 + 1834-220319-4_30: &id648 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4744,72 +4457,65 @@ _adj: - !!binary | 66FJyEjmxj8= 1834-120319-4_71: - 1834-010319-1_21: *id282 - 1834-010319-3_53: *id283 - 1834-010319-4_44: *id284 - 1834-010319-5_35: *id285 - 1834-060319-1_55: *id286 - 1834-060319-2_45: *id287 - 1834-060319-3_28: *id288 - 1834-060319-4_19: *id289 - 1834-110319-1_20: *id290 - 1834-110319-2_34: *id291 - 1834-110319-3_70: *id292 - 1834-110319-5_30: *id293 - 1834-110319-6_27: *id294 - 1834-120319-1_31: *id295 - 1834-120319-2_23: *id296 - 1834-120319-3_66: *id297 - 1834-150319-1_31: &id320 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 7QMP1QO5uT8= - 1834-150319-2_27: &id373 + 1834-010319-1_21: *id276 + 1834-010319-3_53: *id277 + 1834-010319-4_44: *id278 + 1834-010319-5_35: *id279 + 1834-060319-1_55: *id280 + 1834-060319-2_45: *id281 + 1834-060319-3_28: *id282 + 1834-060319-4_19: *id283 + 1834-110319-1_20: *id284 + 1834-110319-2_34: *id285 + 1834-110319-3_70: *id286 + 1834-110319-5_30: *id287 + 1834-110319-6_116: *id288 + 1834-120319-1_31: *id289 + 1834-120319-2_23: *id290 + 1834-120319-3_66: *id291 + 1834-150319-2_27: &id339 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | geyVfutesT8= - 1834-150319-3_65: &id435 + 1834-150319-3_65: &id395 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lod/YoA7tT8= - 1834-150319-4_20: &id454 + 1834-150319-4_20: &id413 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nuAHVm4Ksj8= - 1834-220319-1_24: &id493 + 1834-220319-1_24: &id449 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2JiJUzGbuD8= - 1834-220319-2_43: &id595 + 1834-220319-2_43: &id543 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sRBEWMJ0vz8= - 1834-220319-3_22: &id627 + 1834-220319-3_22: &id573 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | deQW7tGbtz8= - 1834-220319-4_29: &id683 + 1834-220319-4_29: &id625 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4817,289 +4523,124 @@ _adj: - !!binary | 8FtL0JBytj8= 1834-150319-1_29: - 1834-010319-5_33: *id298 - 1834-110319-2_39: *id299 - 1834-110319-3_83: *id300 - 1834-110319-5_31: *id301 - 1834-110319-6_29: *id302 - 1834-120319-1_33: *id303 - 1834-120319-2_55: *id304 - 1834-120319-3_56: *id305 - 1834-120319-4_55: *id306 - 1834-150319-2_26: &id357 + 1834-010319-1_22: *id292 + 1834-010319-3_55: *id293 + 1834-010319-4_44: *id294 + 1834-010319-5_33: *id295 + 1834-060319-1_58: *id296 + 1834-060319-2_39: *id297 + 1834-060319-3_32: *id298 + 1834-060319-4_22: *id299 + 1834-110319-1_44: *id300 + 1834-110319-2_39: *id301 + 1834-110319-3_83: *id302 + 1834-110319-5_31: *id303 + 1834-110319-6_114: *id304 + 1834-120319-1_33: *id305 + 1834-120319-2_55: *id306 + 1834-120319-3_56: *id307 + 1834-120319-4_55: *id308 + 1834-150319-2_26: &id323 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9C4Jk0GptT8= - 1834-150319-3_23: &id399 + 1834-150319-3_23: &id362 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jTz+zSCroj8= - 1834-150319-4_21: &id471 + 1834-150319-4_21: &id429 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n+Oqxtw0rz8= - 1834-220319-1_24: &id494 + 1834-220319-1_26: &id468 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Bsafq0090D8= - 1834-220319-2_18: &id569 + +6LMu3sTzD8= + 1834-220319-2_18: &id519 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rF0bDSm0xz8= - 1834-150319-1_31: - 1834-010319-1_21: *id307 - 1834-010319-3_53: *id308 - 1834-010319-4_44: *id309 - 1834-010319-5_35: *id310 - 1834-060319-2_45: *id311 - 1834-060319-3_28: *id312 - 1834-060319-4_19: *id313 - 1834-110319-1_20: *id314 - 1834-110319-2_34: *id315 - 1834-110319-6_27: *id316 - 1834-120319-1_31: *id317 - 1834-120319-2_23: *id318 - 1834-120319-3_66: *id319 - 1834-120319-4_71: *id320 - 1834-150319-2_27: &id374 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - A7v1VZvdwT8= - 1834-150319-3_65: &id436 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 5jswe6SXxD8= - 1834-150319-4_20: &id455 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 2hZmmaKRwj8= - 1834-220319-1_41: &id529 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - GJYAK8VZxj8= - 1834-220319-2_17: &id551 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - x7Q5YRLixz8= - 1834-220319-3_22: &id628 + 1834-220319-3_37: &id609 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - yS16kbXOwj8= - 1834-220319-4_39: &id727 + m1TRbzlWzD8= + 1834-220319-4_30: &id649 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - kqO1NOmUwj8= - 1834-150319-1_32: - 1834-010319-4_46: *id321 - 1834-010319-5_20: *id322 - 1834-060319-1_58: *id323 - 1834-060319-2_39: *id324 - 1834-060319-3_32: *id325 - 1834-060319-4_22: *id326 - 1834-110319-2_77: *id327 - 1834-110319-3_70: *id328 - 1834-110319-6_28: *id329 - 1834-220319-1_69: &id536 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 6KYH8I1uzj8= - 1834-220319-2_19: &id580 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - sJ6sb+pOwD8= - 1834-220319-3_30: &id643 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - DJG/Yrk7zD8= - 1834-220319-4_30: &id708 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 0twPUKIlwj8= - 1834-150319-1_33: - 1834-010319-1_22: *id330 - 1834-010319-3_55: *id331 - 1834-060319-1_55: *id332 - 1834-060319-2_122: *id333 - 1834-060319-3_43: *id334 - 1834-060319-4_21: *id335 - 1834-110319-1_44: *id336 - 1834-110319-2_38: *id337 - 1834-110319-5_30: *id338 - 1834-150319-2_28: &id386 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - t28nf0BvvT8= - 1834-150319-3_63: &id420 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ToIFNQB8uj8= - 1834-150319-4_22: &id485 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - m332NCKJuT8= - 1834-220319-1_75: &id544 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ZRb/zgpjqj8= - 1834-220319-2_43: &id596 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - bNroDpEbzD8= - 1834-220319-3_37: &id666 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - l8dHKYG1wj8= - 1834-220319-4_29: &id684 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - hWbt3rQxzT8= - 1834-150319-1_34: - 1834-010319-3_91: *id339 - 1834-060319-2_40: *id340 - 1834-060319-3_30: *id341 - 1834-110319-2_87: *id342 - 1834-150319-3_59: &id409 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - gPpTLOpJ0j8= - 1834-220319-1_26: &id513 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - vf3V0OPjxj8= - 1834-220319-2_45: &id610 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - SZvQYUdxxD8= + XA9l8otSyz8= 1834-150319-2_26: - 1834-010319-3_55: *id343 - 1834-010319-5_33: *id344 - 1834-060319-1_58: *id345 - 1834-060319-2_39: *id346 - 1834-060319-3_32: *id347 - 1834-060319-4_22: *id348 - 1834-110319-2_39: *id349 - 1834-110319-3_83: *id350 - 1834-110319-5_31: *id351 - 1834-110319-6_29: *id352 - 1834-120319-1_33: *id353 - 1834-120319-2_55: *id354 - 1834-120319-3_56: *id355 - 1834-120319-4_55: *id356 - 1834-150319-1_29: *id357 - 1834-150319-3_23: &id400 + 1834-010319-3_55: *id309 + 1834-010319-5_33: *id310 + 1834-060319-1_58: *id311 + 1834-060319-2_39: *id312 + 1834-060319-3_32: *id313 + 1834-060319-4_22: *id314 + 1834-110319-2_39: *id315 + 1834-110319-3_83: *id316 + 1834-110319-5_31: *id317 + 1834-110319-6_114: *id318 + 1834-120319-1_33: *id319 + 1834-120319-2_55: *id320 + 1834-120319-3_56: *id321 + 1834-120319-4_55: *id322 + 1834-150319-1_29: *id323 + 1834-150319-3_23: &id363 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | a6RS9poysj8= - 1834-150319-4_21: &id472 + 1834-150319-4_21: &id430 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | opmpsTFjoj8= - 1834-220319-1_26: &id514 + 1834-220319-1_26: &id469 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dnU6eKaTzT8= - 1834-220319-2_19: &id581 + 1834-220319-2_19: &id529 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vYYp/HVPyj8= - 1834-220319-3_30: &id644 + 1834-220319-3_30: &id587 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DvFFjLYTzT8= - 1834-220319-4_29: &id685 + 1834-220319-4_29: &id626 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5107,59 +4648,58 @@ _adj: - !!binary | V2bdM7vDzD8= 1834-150319-2_27: - 1834-010319-1_21: *id358 - 1834-010319-3_53: *id359 - 1834-010319-4_44: *id360 - 1834-010319-5_35: *id361 - 1834-060319-2_45: *id362 - 1834-060319-3_30: *id363 - 1834-060319-4_19: *id364 - 1834-110319-1_20: *id365 - 1834-110319-2_34: *id366 - 1834-110319-3_70: *id367 - 1834-110319-5_30: *id368 - 1834-110319-6_28: *id369 - 1834-120319-1_31: *id370 - 1834-120319-2_23: *id371 - 1834-120319-3_66: *id372 - 1834-120319-4_71: *id373 - 1834-150319-1_31: *id374 - 1834-150319-3_65: &id437 + 1834-010319-1_21: *id324 + 1834-010319-3_53: *id325 + 1834-010319-4_44: *id326 + 1834-010319-5_35: *id327 + 1834-060319-2_45: *id328 + 1834-060319-3_30: *id329 + 1834-060319-4_19: *id330 + 1834-110319-1_20: *id331 + 1834-110319-2_34: *id332 + 1834-110319-3_70: *id333 + 1834-110319-5_30: *id334 + 1834-110319-6_116: *id335 + 1834-120319-1_31: *id336 + 1834-120319-2_23: *id337 + 1834-120319-3_66: *id338 + 1834-120319-4_71: *id339 + 1834-150319-3_65: &id396 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kP4h8JkQpz8= - 1834-150319-4_20: &id456 + 1834-150319-4_20: &id414 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oeeCNHZbmT8= - 1834-220319-1_24: &id495 + 1834-220319-1_24: &id450 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VXLGLTbYrD8= - 1834-220319-2_43: &id597 + 1834-220319-2_43: &id544 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8v+IVT8rtj8= - 1834-220319-3_22: &id629 + 1834-220319-3_22: &id574 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2lTevUfLqz8= - 1834-220319-4_39: &id728 + 1834-220319-4_39: &id668 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5167,54 +4707,52 @@ _adj: - !!binary | XzcrDPZ/qj8= 1834-150319-2_28: - 1834-010319-1_22: *id375 - 1834-010319-3_91: *id376 - 1834-010319-4_46: *id377 - 1834-010319-5_20: *id378 - 1834-060319-1_55: *id379 - 1834-060319-2_40: *id380 - 1834-060319-3_28: *id381 - 1834-060319-4_21: *id382 - 1834-110319-1_44: *id383 - 1834-110319-2_38: *id384 - 1834-110319-6_27: *id385 - 1834-150319-1_33: *id386 - 1834-150319-3_63: &id421 + 1834-010319-1_22: *id340 + 1834-010319-3_91: *id341 + 1834-010319-4_46: *id342 + 1834-010319-5_20: *id343 + 1834-060319-1_55: *id344 + 1834-060319-2_40: *id345 + 1834-060319-3_28: *id346 + 1834-060319-4_21: *id347 + 1834-110319-1_44: *id348 + 1834-110319-2_38: *id349 + 1834-150319-3_63: &id382 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | x8Ef3UIhuT8= - 1834-150319-4_22: &id486 + 1834-150319-4_22: &id442 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bNcyj2aYtj8= - 1834-220319-1_75: &id545 + 1834-220319-1_75: &id496 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xnqunKBevz8= - 1834-220319-2_18: &id570 + 1834-220319-2_18: &id520 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1I7NyjBMvz8= - 1834-220319-3_37: &id667 + 1834-220319-3_37: &id610 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zZqb0sjEvz8= - 1834-220319-4_30: &id709 + 1834-220319-4_30: &id650 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5222,35 +4760,35 @@ _adj: - !!binary | uNwi8kqqvz8= 1834-150319-3_23: - 1834-010319-5_33: *id387 - 1834-060319-2_39: *id388 - 1834-060319-3_32: *id389 - 1834-060319-4_22: *id390 - 1834-110319-2_39: *id391 - 1834-110319-3_83: *id392 - 1834-110319-5_31: *id393 - 1834-110319-6_29: *id394 - 1834-120319-1_33: *id395 - 1834-120319-2_55: *id396 - 1834-120319-3_56: *id397 - 1834-120319-4_55: *id398 - 1834-150319-1_29: *id399 - 1834-150319-2_26: *id400 - 1834-150319-4_21: &id473 + 1834-010319-5_33: *id350 + 1834-060319-2_39: *id351 + 1834-060319-3_32: *id352 + 1834-060319-4_22: *id353 + 1834-110319-2_39: *id354 + 1834-110319-3_83: *id355 + 1834-110319-5_31: *id356 + 1834-110319-6_114: *id357 + 1834-120319-1_33: *id358 + 1834-120319-2_55: *id359 + 1834-120319-3_56: *id360 + 1834-120319-4_55: *id361 + 1834-150319-1_29: *id362 + 1834-150319-2_26: *id363 + 1834-150319-4_21: &id431 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xQ74kvIfqT8= - 1834-220319-1_26: &id515 + 1834-220319-1_26: &id470 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QTRrpK0hzT8= - 1834-220319-2_19: &id582 + 1834-220319-2_19: &id530 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5258,37 +4796,36 @@ _adj: - !!binary | cWI6FDD3zD8= 1834-150319-3_59: - 1834-010319-1_21: *id401 - 1834-010319-3_53: *id402 - 1834-060319-1_55: *id403 - 1834-060319-2_122: *id404 - 1834-060319-3_43: *id405 - 1834-060319-4_19: *id406 - 1834-110319-2_77: *id407 - 1834-110319-6_27: *id408 - 1834-150319-1_34: *id409 - 1834-220319-1_41: &id530 + 1834-010319-1_21: *id364 + 1834-010319-3_53: *id365 + 1834-060319-1_55: *id366 + 1834-060319-2_122: *id367 + 1834-060319-3_43: *id368 + 1834-060319-4_19: *id369 + 1834-110319-2_77: *id370 + 1834-110319-6_116: *id371 + 1834-220319-1_41: &id483 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | e268HhKVvD8= - 1834-220319-2_43: &id598 + 1834-220319-2_43: &id545 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gz5GtAVXxT8= - 1834-220319-3_22: &id630 + 1834-220319-3_22: &id575 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EHvq1twMyD8= - 1834-220319-4_29: &id686 + 1834-220319-4_29: &id627 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5296,47 +4833,46 @@ _adj: - !!binary | kdLDmtTyyz8= 1834-150319-3_63: - 1834-010319-1_22: *id410 - 1834-010319-3_55: *id411 - 1834-010319-4_46: *id412 - 1834-010319-5_20: *id413 - 1834-060319-1_58: *id414 - 1834-060319-2_40: *id415 - 1834-060319-3_28: *id416 - 1834-060319-4_21: *id417 - 1834-110319-1_44: *id418 - 1834-110319-2_38: *id419 - 1834-150319-1_33: *id420 - 1834-150319-2_28: *id421 - 1834-150319-4_22: &id487 + 1834-010319-1_22: *id372 + 1834-010319-3_55: *id373 + 1834-010319-4_46: *id374 + 1834-010319-5_20: *id375 + 1834-060319-1_58: *id376 + 1834-060319-2_40: *id377 + 1834-060319-3_28: *id378 + 1834-060319-4_21: *id379 + 1834-110319-1_44: *id380 + 1834-110319-2_38: *id381 + 1834-150319-2_28: *id382 + 1834-150319-4_22: &id443 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | diYIpCtRvz8= - 1834-220319-1_75: &id546 + 1834-220319-1_75: &id497 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5Aen6IUMuj8= - 1834-220319-2_18: &id571 + 1834-220319-2_18: &id521 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | agfOfb13xT8= - 1834-220319-3_37: &id668 + 1834-220319-3_37: &id611 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YPY+fcSfxj8= - 1834-220319-4_30: &id710 + 1834-220319-4_30: &id651 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5344,51 +4880,49 @@ _adj: - !!binary | 5rIE3chnxj8= 1834-150319-3_65: - 1834-010319-3_91: *id422 - 1834-010319-4_44: *id423 - 1834-010319-5_35: *id424 - 1834-060319-2_45: *id425 - 1834-060319-3_30: *id426 - 1834-110319-1_20: *id427 - 1834-110319-2_34: *id428 - 1834-110319-3_70: *id429 - 1834-110319-5_30: *id430 - 1834-110319-6_28: *id431 - 1834-120319-1_31: *id432 - 1834-120319-2_23: *id433 - 1834-120319-3_66: *id434 - 1834-120319-4_71: *id435 - 1834-150319-1_31: *id436 - 1834-150319-2_27: *id437 - 1834-150319-4_20: &id457 + 1834-010319-3_91: *id383 + 1834-010319-4_44: *id384 + 1834-010319-5_35: *id385 + 1834-060319-2_45: *id386 + 1834-060319-3_30: *id387 + 1834-110319-1_20: *id388 + 1834-110319-2_34: *id389 + 1834-110319-3_70: *id390 + 1834-110319-5_30: *id391 + 1834-120319-1_31: *id392 + 1834-120319-2_23: *id393 + 1834-120319-3_66: *id394 + 1834-120319-4_71: *id395 + 1834-150319-2_27: *id396 + 1834-150319-4_20: &id415 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | niwh2hl5pj8= - 1834-220319-1_24: &id496 + 1834-220319-1_24: &id451 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | l2EupQPjqD8= - 1834-220319-2_17: &id552 + 1834-220319-2_17: &id502 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IDDdto8hwT8= - 1834-220319-3_30: &id645 + 1834-220319-3_30: &id588 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tSGEumIJvj8= - 1834-220319-4_39: &id729 + 1834-220319-4_39: &id669 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5396,48 +4930,47 @@ _adj: - !!binary | nS+vgT1itT8= 1834-150319-4_20: - 1834-010319-1_21: *id438 - 1834-010319-3_91: *id439 - 1834-010319-4_44: *id440 - 1834-010319-5_35: *id441 - 1834-060319-1_55: *id442 - 1834-060319-2_45: *id443 - 1834-060319-3_30: *id444 - 1834-060319-4_19: *id445 - 1834-110319-1_20: *id446 - 1834-110319-2_34: *id447 - 1834-110319-3_70: *id448 - 1834-110319-5_30: *id449 - 1834-110319-6_27: *id450 - 1834-120319-1_31: *id451 - 1834-120319-2_23: *id452 - 1834-120319-3_66: *id453 - 1834-120319-4_71: *id454 - 1834-150319-1_31: *id455 - 1834-150319-2_27: *id456 - 1834-150319-3_65: *id457 - 1834-220319-1_24: &id497 + 1834-010319-1_21: *id397 + 1834-010319-3_91: *id398 + 1834-010319-4_44: *id399 + 1834-010319-5_35: *id400 + 1834-060319-1_55: *id401 + 1834-060319-2_45: *id402 + 1834-060319-3_30: *id403 + 1834-060319-4_19: *id404 + 1834-110319-1_20: *id405 + 1834-110319-2_34: *id406 + 1834-110319-3_70: *id407 + 1834-110319-5_30: *id408 + 1834-110319-6_116: *id409 + 1834-120319-1_31: *id410 + 1834-120319-2_23: *id411 + 1834-120319-3_66: *id412 + 1834-120319-4_71: *id413 + 1834-150319-2_27: *id414 + 1834-150319-3_65: *id415 + 1834-220319-1_24: &id452 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w1QMkJ9krT8= - 1834-220319-2_43: &id599 + 1834-220319-2_43: &id546 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ya9tmaYquD8= - 1834-220319-3_22: &id631 + 1834-220319-3_22: &id576 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q6csduLLsD8= - 1834-220319-4_39: &id730 + 1834-220319-4_39: &id670 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5445,44 +4978,44 @@ _adj: - !!binary | /tZJkEH5rz8= 1834-150319-4_21: - 1834-010319-3_53: *id458 - 1834-010319-5_33: *id459 - 1834-060319-2_39: *id460 - 1834-060319-3_32: *id461 - 1834-060319-4_22: *id462 - 1834-110319-2_39: *id463 - 1834-110319-3_83: *id464 - 1834-110319-5_31: *id465 - 1834-110319-6_29: *id466 - 1834-120319-1_33: *id467 - 1834-120319-2_55: *id468 - 1834-120319-3_56: *id469 - 1834-120319-4_55: *id470 - 1834-150319-1_29: *id471 - 1834-150319-2_26: *id472 - 1834-150319-3_23: *id473 - 1834-220319-1_26: &id516 + 1834-010319-3_53: *id416 + 1834-010319-5_33: *id417 + 1834-060319-2_39: *id418 + 1834-060319-3_32: *id419 + 1834-060319-4_22: *id420 + 1834-110319-2_39: *id421 + 1834-110319-3_83: *id422 + 1834-110319-5_31: *id423 + 1834-110319-6_114: *id424 + 1834-120319-1_33: *id425 + 1834-120319-2_55: *id426 + 1834-120319-3_56: *id427 + 1834-120319-4_55: *id428 + 1834-150319-1_29: *id429 + 1834-150319-2_26: *id430 + 1834-150319-3_23: *id431 + 1834-220319-1_26: &id471 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yV1af8UUzT8= - 1834-220319-2_18: &id572 + 1834-220319-2_18: &id522 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MaQ+8fAZxz8= - 1834-220319-3_30: &id646 + 1834-220319-3_30: &id589 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vbTrZ9ahzT8= - 1834-220319-4_29: &id687 + 1834-220319-4_29: &id628 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5490,42 +5023,40 @@ _adj: - !!binary | jrqg4mtqzT8= 1834-150319-4_22: - 1834-010319-1_22: *id474 - 1834-010319-3_55: *id475 - 1834-010319-4_46: *id476 - 1834-010319-5_20: *id477 - 1834-060319-1_58: *id478 - 1834-060319-2_40: *id479 - 1834-060319-3_28: *id480 - 1834-060319-4_21: *id481 - 1834-110319-1_44: *id482 - 1834-110319-2_38: *id483 - 1834-110319-6_28: *id484 - 1834-150319-1_33: *id485 - 1834-150319-2_28: *id486 - 1834-150319-3_63: *id487 - 1834-220319-1_75: &id547 + 1834-010319-1_22: *id432 + 1834-010319-3_55: *id433 + 1834-010319-4_46: *id434 + 1834-010319-5_20: *id435 + 1834-060319-1_58: *id436 + 1834-060319-2_40: *id437 + 1834-060319-3_28: *id438 + 1834-060319-4_21: *id439 + 1834-110319-1_44: *id440 + 1834-110319-2_38: *id441 + 1834-150319-2_28: *id442 + 1834-150319-3_63: *id443 + 1834-220319-1_75: &id498 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qYP9COjWtj8= - 1834-220319-2_45: &id611 + 1834-220319-2_45: &id557 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2Nh3HJEvuz8= - 1834-220319-3_37: &id669 + 1834-220319-3_37: &id612 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +pnGuvcMtD8= - 1834-220319-4_30: &id711 + 1834-220319-4_30: &id652 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5533,31 +5064,30 @@ _adj: - !!binary | wCARWy28tD8= 1834-220319-1_24: - 1834-110319-2_34: *id488 - 1834-110319-5_30: *id489 - 1834-120319-1_31: *id490 - 1834-120319-2_23: *id491 - 1834-120319-3_66: *id492 - 1834-120319-4_71: *id493 - 1834-150319-1_29: *id494 - 1834-150319-2_27: *id495 - 1834-150319-3_65: *id496 - 1834-150319-4_20: *id497 - 1834-220319-2_17: &id553 + 1834-110319-2_34: *id444 + 1834-110319-5_30: *id445 + 1834-120319-1_31: *id446 + 1834-120319-2_23: *id447 + 1834-120319-3_66: *id448 + 1834-120319-4_71: *id449 + 1834-150319-2_27: *id450 + 1834-150319-3_65: *id451 + 1834-150319-4_20: *id452 + 1834-220319-2_17: &id503 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J88j1eJiuz8= - 1834-220319-3_30: &id647 + 1834-220319-3_30: &id590 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2876VWuOuD8= - 1834-220319-4_29: &id688 + 1834-220319-4_29: &id629 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5565,40 +5095,40 @@ _adj: - !!binary | sHhXOvLAuD8= 1834-220319-1_26: - 1834-010319-4_46: *id498 - 1834-010319-5_33: *id499 - 1834-060319-1_58: *id500 - 1834-060319-2_39: *id501 - 1834-060319-3_32: *id502 - 1834-060319-4_22: *id503 - 1834-110319-1_44: *id504 - 1834-110319-2_39: *id505 - 1834-110319-3_83: *id506 - 1834-110319-5_31: *id507 - 1834-110319-6_29: *id508 - 1834-120319-1_33: *id509 - 1834-120319-2_55: *id510 - 1834-120319-3_56: *id511 - 1834-120319-4_55: *id512 - 1834-150319-1_34: *id513 - 1834-150319-2_26: *id514 - 1834-150319-3_23: *id515 - 1834-150319-4_21: *id516 - 1834-220319-2_19: &id583 + 1834-010319-4_46: *id453 + 1834-010319-5_33: *id454 + 1834-060319-1_58: *id455 + 1834-060319-2_39: *id456 + 1834-060319-3_32: *id457 + 1834-060319-4_22: *id458 + 1834-110319-1_44: *id459 + 1834-110319-2_39: *id460 + 1834-110319-3_83: *id461 + 1834-110319-5_31: *id462 + 1834-110319-6_114: *id463 + 1834-120319-1_33: *id464 + 1834-120319-2_55: *id465 + 1834-120319-3_56: *id466 + 1834-120319-4_55: *id467 + 1834-150319-1_29: *id468 + 1834-150319-2_26: *id469 + 1834-150319-3_23: *id470 + 1834-150319-4_21: *id471 + 1834-220319-2_19: &id531 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ex7fBUcOvz8= - 1834-220319-3_37: &id670 + 1834-220319-3_37: &id613 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uCeX4VRiuj8= - 1834-220319-4_30: &id712 + 1834-220319-4_30: &id653 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5606,35 +5136,33 @@ _adj: - !!binary | h9URe8s/uz8= 1834-220319-1_41: - 1834-010319-1_21: *id517 - 1834-010319-3_53: *id518 - 1834-010319-4_44: *id519 - 1834-010319-5_35: *id520 - 1834-060319-1_55: *id521 - 1834-060319-2_45: *id522 - 1834-060319-3_30: *id523 - 1834-060319-4_19: *id524 - 1834-110319-1_20: *id525 - 1834-110319-2_77: *id526 - 1834-110319-3_70: *id527 - 1834-110319-6_27: *id528 - 1834-150319-1_31: *id529 - 1834-150319-3_59: *id530 - 1834-220319-2_43: &id600 + 1834-010319-1_21: *id472 + 1834-010319-3_53: *id473 + 1834-010319-4_44: *id474 + 1834-010319-5_35: *id475 + 1834-060319-1_55: *id476 + 1834-060319-2_45: *id477 + 1834-060319-3_30: *id478 + 1834-060319-4_19: *id479 + 1834-110319-1_20: *id480 + 1834-110319-2_77: *id481 + 1834-110319-3_70: *id482 + 1834-150319-3_59: *id483 + 1834-220319-2_43: &id547 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lXyf5MARtD8= - 1834-220319-3_22: &id632 + 1834-220319-3_22: &id577 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PRIB+2NOtj8= - 1834-220319-4_39: &id731 + 1834-220319-4_39: &id671 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5642,13 +5170,12 @@ _adj: - !!binary | caCLIGvPtz8= 1834-220319-1_69: - 1834-010319-3_91: *id531 - 1834-060319-2_122: *id532 - 1834-060319-3_43: *id533 - 1834-110319-2_87: *id534 - 1834-110319-6_28: *id535 - 1834-150319-1_32: *id536 - 1834-220319-2_18: &id573 + 1834-010319-3_91: *id484 + 1834-060319-2_122: *id485 + 1834-060319-3_43: *id486 + 1834-110319-2_87: *id487 + 1834-110319-6_116: *id488 + 1834-220319-2_18: &id523 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5656,18 +5183,17 @@ _adj: - !!binary | GRdMO/GrxD8= 1834-220319-1_75: - 1834-010319-1_22: *id537 - 1834-010319-3_55: *id538 - 1834-010319-5_20: *id539 - 1834-060319-2_40: *id540 - 1834-060319-3_28: *id541 - 1834-060319-4_21: *id542 - 1834-110319-2_38: *id543 - 1834-150319-1_33: *id544 - 1834-150319-2_28: *id545 - 1834-150319-3_63: *id546 - 1834-150319-4_22: *id547 - 1834-220319-2_45: &id612 + 1834-010319-1_22: *id489 + 1834-010319-3_55: *id490 + 1834-010319-5_20: *id491 + 1834-060319-2_40: *id492 + 1834-060319-3_28: *id493 + 1834-060319-4_21: *id494 + 1834-110319-2_38: *id495 + 1834-150319-2_28: *id496 + 1834-150319-3_63: *id497 + 1834-150319-4_22: *id498 + 1834-220319-2_45: &id558 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5675,20 +5201,19 @@ _adj: - !!binary | Ak3FAzj2vT8= 1834-220319-2_17: - 1834-060319-3_43: *id548 - 1834-110319-2_87: *id549 - 1834-110319-5_30: *id550 - 1834-150319-1_31: *id551 - 1834-150319-3_65: *id552 - 1834-220319-1_24: *id553 - 1834-220319-3_30: &id648 + 1834-060319-3_43: *id499 + 1834-110319-2_87: *id500 + 1834-110319-5_30: *id501 + 1834-150319-3_65: *id502 + 1834-220319-1_24: *id503 + 1834-220319-3_30: &id591 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7Pvl+yJ5sT8= - 1834-220319-4_29: &id689 + 1834-220319-4_29: &id630 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5696,38 +5221,36 @@ _adj: - !!binary | Z6y78tRCsz8= 1834-220319-2_18: - 1834-010319-1_21: *id554 - 1834-010319-3_53: *id555 - 1834-010319-4_44: *id556 - 1834-010319-5_35: *id557 - 1834-060319-1_55: *id558 - 1834-060319-2_122: *id559 - 1834-060319-3_28: *id560 - 1834-060319-4_21: *id561 - 1834-110319-2_77: *id562 - 1834-110319-5_31: *id563 - 1834-110319-6_29: *id564 - 1834-120319-1_33: *id565 - 1834-120319-2_55: *id566 - 1834-120319-3_56: *id567 - 1834-120319-4_55: *id568 - 1834-150319-1_29: *id569 - 1834-150319-2_28: *id570 - 1834-150319-3_63: *id571 - 1834-150319-4_21: *id572 - 1834-220319-1_69: *id573 + 1834-010319-1_21: *id504 + 1834-010319-3_53: *id505 + 1834-010319-4_44: *id506 + 1834-010319-5_35: *id507 + 1834-060319-1_55: *id508 + 1834-060319-2_122: *id509 + 1834-060319-3_28: *id510 + 1834-060319-4_21: *id511 + 1834-110319-2_77: *id512 + 1834-110319-5_31: *id513 + 1834-110319-6_114: *id514 + 1834-120319-1_33: *id515 + 1834-120319-2_55: *id516 + 1834-120319-3_56: *id517 + 1834-120319-4_55: *id518 + 1834-150319-1_29: *id519 + 1834-150319-2_28: *id520 + 1834-150319-3_63: *id521 + 1834-150319-4_21: *id522 + 1834-220319-1_69: *id523 1834-220319-2_19: - 1834-010319-5_33: *id574 - 1834-060319-2_39: *id575 - 1834-060319-4_22: *id576 - 1834-110319-2_39: *id577 - 1834-110319-3_83: *id578 - 1834-110319-6_28: *id579 - 1834-150319-1_32: *id580 - 1834-150319-2_26: *id581 - 1834-150319-3_23: *id582 - 1834-220319-1_26: *id583 - 1834-220319-4_30: &id713 + 1834-010319-5_33: *id524 + 1834-060319-2_39: *id525 + 1834-060319-4_22: *id526 + 1834-110319-2_39: *id527 + 1834-110319-3_83: *id528 + 1834-150319-2_26: *id529 + 1834-150319-3_23: *id530 + 1834-220319-1_26: *id531 + 1834-220319-4_30: &id654 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5735,31 +5258,30 @@ _adj: - !!binary | Axn5RC3dsT8= 1834-220319-2_43: - 1834-010319-3_91: *id584 - 1834-060319-2_45: *id585 - 1834-060319-3_30: *id586 - 1834-060319-4_19: *id587 - 1834-110319-1_20: *id588 - 1834-110319-2_34: *id589 - 1834-110319-3_70: *id590 - 1834-110319-6_27: *id591 - 1834-120319-1_31: *id592 - 1834-120319-2_23: *id593 - 1834-120319-3_66: *id594 - 1834-120319-4_71: *id595 - 1834-150319-1_33: *id596 - 1834-150319-2_27: *id597 - 1834-150319-3_59: *id598 - 1834-150319-4_20: *id599 - 1834-220319-1_41: *id600 - 1834-220319-3_22: &id633 + 1834-010319-3_91: *id532 + 1834-060319-2_45: *id533 + 1834-060319-3_30: *id534 + 1834-060319-4_19: *id535 + 1834-110319-1_20: *id536 + 1834-110319-2_34: *id537 + 1834-110319-3_70: *id538 + 1834-110319-6_116: *id539 + 1834-120319-1_31: *id540 + 1834-120319-2_23: *id541 + 1834-120319-3_66: *id542 + 1834-120319-4_71: *id543 + 1834-150319-2_27: *id544 + 1834-150319-3_59: *id545 + 1834-150319-4_20: *id546 + 1834-220319-1_41: *id547 + 1834-220319-3_22: &id578 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | s4ruUjo1rT8= - 1834-220319-4_39: &id732 + 1834-220319-4_39: &id672 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5767,19 +5289,18 @@ _adj: - !!binary | jLhbhdGErz8= 1834-220319-2_45: - 1834-010319-1_22: *id601 - 1834-010319-3_55: *id602 - 1834-010319-4_46: *id603 - 1834-010319-5_20: *id604 - 1834-060319-1_58: *id605 - 1834-060319-2_40: *id606 - 1834-060319-3_32: *id607 - 1834-110319-1_44: *id608 - 1834-110319-2_38: *id609 - 1834-150319-1_34: *id610 - 1834-150319-4_22: *id611 - 1834-220319-1_75: *id612 - 1834-220319-3_37: &id671 + 1834-010319-1_22: *id548 + 1834-010319-3_55: *id549 + 1834-010319-4_46: *id550 + 1834-010319-5_20: *id551 + 1834-060319-1_58: *id552 + 1834-060319-2_40: *id553 + 1834-060319-3_32: *id554 + 1834-110319-1_44: *id555 + 1834-110319-2_38: *id556 + 1834-150319-4_22: *id557 + 1834-220319-1_75: *id558 + 1834-220319-3_37: &id614 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5787,28 +5308,27 @@ _adj: - !!binary | 9upgD5birz8= 1834-220319-3_22: - 1834-010319-1_21: *id613 - 1834-010319-3_53: *id614 - 1834-010319-4_44: *id615 - 1834-010319-5_35: *id616 - 1834-060319-1_55: *id617 - 1834-060319-2_45: *id618 - 1834-060319-3_28: *id619 - 1834-060319-4_19: *id620 - 1834-110319-1_20: *id621 - 1834-110319-2_34: *id622 - 1834-110319-3_70: *id623 - 1834-110319-6_27: *id624 - 1834-120319-1_31: *id625 - 1834-120319-2_23: *id626 - 1834-120319-4_71: *id627 - 1834-150319-1_31: *id628 - 1834-150319-2_27: *id629 - 1834-150319-3_59: *id630 - 1834-150319-4_20: *id631 - 1834-220319-1_41: *id632 - 1834-220319-2_43: *id633 - 1834-220319-4_39: &id733 + 1834-010319-1_21: *id559 + 1834-010319-3_53: *id560 + 1834-010319-4_44: *id561 + 1834-010319-5_35: *id562 + 1834-060319-1_55: *id563 + 1834-060319-2_45: *id564 + 1834-060319-3_28: *id565 + 1834-060319-4_19: *id566 + 1834-110319-1_20: *id567 + 1834-110319-2_34: *id568 + 1834-110319-3_70: *id569 + 1834-110319-6_116: *id570 + 1834-120319-1_31: *id571 + 1834-120319-2_23: *id572 + 1834-120319-4_71: *id573 + 1834-150319-2_27: *id574 + 1834-150319-3_59: *id575 + 1834-150319-4_20: *id576 + 1834-220319-1_41: *id577 + 1834-220319-2_43: *id578 + 1834-220319-4_39: &id673 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5816,22 +5336,20 @@ _adj: - !!binary | 7VS+gt/YjT8= 1834-220319-3_30: - 1834-010319-3_91: *id634 - 1834-010319-5_33: *id635 - 1834-060319-2_40: *id636 - 1834-060319-3_30: *id637 - 1834-060319-4_21: *id638 - 1834-110319-2_39: *id639 - 1834-110319-5_30: *id640 - 1834-110319-6_28: *id641 - 1834-120319-3_66: *id642 - 1834-150319-1_32: *id643 - 1834-150319-2_26: *id644 - 1834-150319-3_65: *id645 - 1834-150319-4_21: *id646 - 1834-220319-1_24: *id647 - 1834-220319-2_17: *id648 - 1834-220319-4_29: &id690 + 1834-010319-3_91: *id579 + 1834-010319-5_33: *id580 + 1834-060319-2_40: *id581 + 1834-060319-3_30: *id582 + 1834-060319-4_21: *id583 + 1834-110319-2_39: *id584 + 1834-110319-5_30: *id585 + 1834-120319-3_66: *id586 + 1834-150319-2_26: *id587 + 1834-150319-3_65: *id588 + 1834-150319-4_21: *id589 + 1834-220319-1_24: *id590 + 1834-220319-2_17: *id591 + 1834-220319-4_29: &id631 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5839,30 +5357,30 @@ _adj: - !!binary | ihedn1Wmjj8= 1834-220319-3_37: - 1834-010319-1_22: *id649 - 1834-010319-3_55: *id650 - 1834-010319-4_46: *id651 - 1834-010319-5_20: *id652 - 1834-060319-1_58: *id653 - 1834-060319-2_39: *id654 - 1834-060319-3_32: *id655 - 1834-060319-4_22: *id656 - 1834-110319-1_44: *id657 - 1834-110319-2_38: *id658 - 1834-110319-3_83: *id659 - 1834-110319-5_31: *id660 - 1834-110319-6_29: *id661 - 1834-120319-1_33: *id662 - 1834-120319-2_55: *id663 - 1834-120319-3_56: *id664 - 1834-120319-4_55: *id665 - 1834-150319-1_33: *id666 - 1834-150319-2_28: *id667 - 1834-150319-3_63: *id668 - 1834-150319-4_22: *id669 - 1834-220319-1_26: *id670 - 1834-220319-2_45: *id671 - 1834-220319-4_30: &id714 + 1834-010319-1_22: *id592 + 1834-010319-3_55: *id593 + 1834-010319-4_46: *id594 + 1834-010319-5_20: *id595 + 1834-060319-1_58: *id596 + 1834-060319-2_39: *id597 + 1834-060319-3_32: *id598 + 1834-060319-4_22: *id599 + 1834-110319-1_44: *id600 + 1834-110319-2_38: *id601 + 1834-110319-3_83: *id602 + 1834-110319-5_31: *id603 + 1834-110319-6_114: *id604 + 1834-120319-1_33: *id605 + 1834-120319-2_55: *id606 + 1834-120319-3_56: *id607 + 1834-120319-4_55: *id608 + 1834-150319-1_29: *id609 + 1834-150319-2_28: *id610 + 1834-150319-3_63: *id611 + 1834-150319-4_22: *id612 + 1834-220319-1_26: *id613 + 1834-220319-2_45: *id614 + 1834-220319-4_30: &id655 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5870,75 +5388,72 @@ _adj: - !!binary | p0lg7N1nlD8= 1834-220319-4_29: - 1834-010319-3_91: *id672 - 1834-010319-4_44: *id673 - 1834-010319-5_33: *id674 - 1834-060319-2_40: *id675 - 1834-060319-3_28: *id676 - 1834-060319-4_21: *id677 - 1834-110319-2_39: *id678 - 1834-110319-3_70: *id679 - 1834-110319-5_30: *id680 - 1834-110319-6_28: *id681 - 1834-120319-3_66: *id682 - 1834-120319-4_71: *id683 - 1834-150319-1_33: *id684 - 1834-150319-2_26: *id685 - 1834-150319-3_59: *id686 - 1834-150319-4_21: *id687 - 1834-220319-1_24: *id688 - 1834-220319-2_17: *id689 - 1834-220319-3_30: *id690 + 1834-010319-3_91: *id615 + 1834-010319-4_44: *id616 + 1834-010319-5_33: *id617 + 1834-060319-2_40: *id618 + 1834-060319-3_28: *id619 + 1834-060319-4_21: *id620 + 1834-110319-2_39: *id621 + 1834-110319-3_70: *id622 + 1834-110319-5_30: *id623 + 1834-120319-3_66: *id624 + 1834-120319-4_71: *id625 + 1834-150319-2_26: *id626 + 1834-150319-3_59: *id627 + 1834-150319-4_21: *id628 + 1834-220319-1_24: *id629 + 1834-220319-2_17: *id630 + 1834-220319-3_30: *id631 1834-220319-4_30: - 1834-010319-1_22: *id691 - 1834-010319-3_55: *id692 - 1834-010319-4_46: *id693 - 1834-010319-5_20: *id694 - 1834-060319-1_58: *id695 - 1834-060319-2_39: *id696 - 1834-060319-3_32: *id697 - 1834-060319-4_22: *id698 - 1834-110319-1_44: *id699 - 1834-110319-2_38: *id700 - 1834-110319-3_83: *id701 - 1834-110319-5_31: *id702 - 1834-110319-6_29: *id703 - 1834-120319-1_33: *id704 - 1834-120319-2_55: *id705 - 1834-120319-3_56: *id706 - 1834-120319-4_55: *id707 - 1834-150319-1_32: *id708 - 1834-150319-2_28: *id709 - 1834-150319-3_63: *id710 - 1834-150319-4_22: *id711 - 1834-220319-1_26: *id712 - 1834-220319-2_19: *id713 - 1834-220319-3_37: *id714 + 1834-010319-1_22: *id632 + 1834-010319-3_55: *id633 + 1834-010319-4_46: *id634 + 1834-010319-5_20: *id635 + 1834-060319-1_58: *id636 + 1834-060319-2_39: *id637 + 1834-060319-3_32: *id638 + 1834-060319-4_22: *id639 + 1834-110319-1_44: *id640 + 1834-110319-2_38: *id641 + 1834-110319-3_83: *id642 + 1834-110319-5_31: *id643 + 1834-110319-6_114: *id644 + 1834-120319-1_33: *id645 + 1834-120319-2_55: *id646 + 1834-120319-3_56: *id647 + 1834-120319-4_55: *id648 + 1834-150319-1_29: *id649 + 1834-150319-2_28: *id650 + 1834-150319-3_63: *id651 + 1834-150319-4_22: *id652 + 1834-220319-1_26: *id653 + 1834-220319-2_19: *id654 + 1834-220319-3_37: *id655 1834-220319-4_39: - 1834-010319-1_21: *id715 - 1834-010319-3_53: *id716 - 1834-010319-5_35: *id717 - 1834-060319-1_55: *id718 - 1834-060319-2_45: *id719 - 1834-060319-3_30: *id720 - 1834-060319-4_19: *id721 - 1834-110319-1_20: *id722 - 1834-110319-2_34: *id723 - 1834-110319-6_27: *id724 - 1834-120319-1_31: *id725 - 1834-120319-2_23: *id726 - 1834-150319-1_31: *id727 - 1834-150319-2_27: *id728 - 1834-150319-3_65: *id729 - 1834-150319-4_20: *id730 - 1834-220319-1_41: *id731 - 1834-220319-2_43: *id732 - 1834-220319-3_22: *id733 -_node: &id736 + 1834-010319-1_21: *id656 + 1834-010319-3_53: *id657 + 1834-010319-5_35: *id658 + 1834-060319-1_55: *id659 + 1834-060319-2_45: *id660 + 1834-060319-3_30: *id661 + 1834-060319-4_19: *id662 + 1834-110319-1_20: *id663 + 1834-110319-2_34: *id664 + 1834-110319-6_116: *id665 + 1834-120319-1_31: *id666 + 1834-120319-2_23: *id667 + 1834-150319-2_27: *id668 + 1834-150319-3_65: *id669 + 1834-150319-4_20: *id670 + 1834-220319-1_41: *id671 + 1834-220319-2_43: *id672 + 1834-220319-3_22: *id673 +_node: &id676 1834-010319-1_21: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id734 !!python/object/apply:numpy.dtype + - &id674 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -5946,457 +5461,427 @@ _node: &id736 1834-010319-1_22: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FgAAAAAAAAA= 1834-010319-3_53: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | NQAAAAAAAAA= 1834-010319-3_55: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | NwAAAAAAAAA= 1834-010319-3_91: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | WwAAAAAAAAA= 1834-010319-4_44: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | LAAAAAAAAAA= 1834-010319-4_46: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | LgAAAAAAAAA= 1834-010319-5_20: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FAAAAAAAAAA= 1834-010319-5_33: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | IQAAAAAAAAA= 1834-010319-5_35: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | IwAAAAAAAAA= 1834-060319-1_55: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | NwAAAAAAAAA= 1834-060319-1_58: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | OgAAAAAAAAA= 1834-060319-2_122: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | egAAAAAAAAA= 1834-060319-2_39: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | JwAAAAAAAAA= 1834-060319-2_40: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | KAAAAAAAAAA= 1834-060319-2_45: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | LQAAAAAAAAA= 1834-060319-3_28: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HAAAAAAAAAA= 1834-060319-3_30: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HgAAAAAAAAA= 1834-060319-3_32: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | IAAAAAAAAAA= 1834-060319-3_43: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | KwAAAAAAAAA= 1834-060319-4_19: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | EwAAAAAAAAA= 1834-060319-4_21: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FQAAAAAAAAA= 1834-060319-4_22: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FgAAAAAAAAA= 1834-110319-1_20: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FAAAAAAAAAA= 1834-110319-1_44: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | LAAAAAAAAAA= 1834-110319-2_34: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | IgAAAAAAAAA= 1834-110319-2_38: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | JgAAAAAAAAA= 1834-110319-2_39: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | JwAAAAAAAAA= 1834-110319-2_77: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | TQAAAAAAAAA= 1834-110319-2_87: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | VwAAAAAAAAA= 1834-110319-3_70: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | RgAAAAAAAAA= 1834-110319-3_83: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | UwAAAAAAAAA= 1834-110319-5_30: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HgAAAAAAAAA= 1834-110319-5_31: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HwAAAAAAAAA= - 1834-110319-6_27: + 1834-110319-6_114: action_id: 1834-110319-6 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | - GwAAAAAAAAA= - 1834-110319-6_28: + cgAAAAAAAAA= + 1834-110319-6_116: action_id: 1834-110319-6 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | - HAAAAAAAAAA= - 1834-110319-6_29: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 - - !!binary | - HQAAAAAAAAA= + dAAAAAAAAAA= 1834-120319-1_31: action_id: 1834-120319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HwAAAAAAAAA= 1834-120319-1_33: action_id: 1834-120319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | IQAAAAAAAAA= 1834-120319-2_23: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FwAAAAAAAAA= 1834-120319-2_55: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | NwAAAAAAAAA= 1834-120319-3_56: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | OAAAAAAAAAA= 1834-120319-3_66: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | QgAAAAAAAAA= 1834-120319-4_55: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | NwAAAAAAAAA= 1834-120319-4_71: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | RwAAAAAAAAA= 1834-150319-1_29: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HQAAAAAAAAA= - 1834-150319-1_31: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 - - !!binary | - HwAAAAAAAAA= - 1834-150319-1_32: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 - - !!binary | - IAAAAAAAAAA= - 1834-150319-1_33: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 - - !!binary | - IQAAAAAAAAA= - 1834-150319-1_34: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 - - !!binary | - IgAAAAAAAAA= 1834-150319-2_26: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | GgAAAAAAAAA= 1834-150319-2_27: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | GwAAAAAAAAA= 1834-150319-2_28: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HAAAAAAAAAA= 1834-150319-3_23: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FwAAAAAAAAA= 1834-150319-3_59: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | OwAAAAAAAAA= 1834-150319-3_63: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | PwAAAAAAAAA= 1834-150319-3_65: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | QQAAAAAAAAA= 1834-150319-4_20: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FAAAAAAAAAA= 1834-150319-4_21: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FQAAAAAAAAA= 1834-150319-4_22: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FgAAAAAAAAA= 1834-220319-1_24: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | GAAAAAAAAAA= 1834-220319-1_26: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | GgAAAAAAAAA= 1834-220319-1_41: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | KQAAAAAAAAA= 1834-220319-1_69: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | RQAAAAAAAAA= 1834-220319-1_75: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | SwAAAAAAAAA= 1834-220319-2_17: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | EQAAAAAAAAA= 1834-220319-2_18: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | EgAAAAAAAAA= 1834-220319-2_19: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | EwAAAAAAAAA= 1834-220319-2_43: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | KwAAAAAAAAA= 1834-220319-2_45: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | LQAAAAAAAAA= 1834-220319-3_22: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | FgAAAAAAAAA= 1834-220319-3_30: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HgAAAAAAAAA= 1834-220319-3_37: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | JQAAAAAAAAA= 1834-220319-4_29: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HQAAAAAAAAA= 1834-220319-4_30: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | HgAAAAAAAAA= 1834-220319-4_39: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id734 + - *id674 - !!binary | JwAAAAAAAAA= -adjlist_inner_dict_factory: &id735 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id735 -edge_attr_dict_factory: *id735 +adjlist_inner_dict_factory: &id675 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id675 +edge_attr_dict_factory: *id675 graph: {} -node_dict_factory: *id735 +node_dict_factory: *id675 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id736 + _nodes: *id676 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml index 00452c63b..39ac24528 100644 --- a/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml +++ b/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml @@ -80,91 +80,84 @@ _adj: - *id001 - !!binary | 5mUzgF3g0D8= - 1834-110319-6_31: &id225 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - exVFN28q0T8= - 1834-120319-1_16: &id237 + 1834-120319-1_16: &id213 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YxrCeN9Wyz8= - 1834-120319-2_26: &id263 + 1834-120319-2_26: &id237 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xjdlJamZzD8= - 1834-120319-3_28: &id300 + 1834-120319-3_28: &id272 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | efHGV2kazD8= - 1834-120319-4_22: &id330 + 1834-120319-4_22: &id300 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UvuJ9v8czD8= - 1834-150319-1_41: &id373 + 1834-150319-1_106: &id330 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - SykS9qqTwz8= - 1834-150319-2_32: &id448 + yqKgtcL0wz8= + 1834-150319-2_32: &id413 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7KNdmoj4xT8= - 1834-150319-3_30: &id515 + 1834-150319-3_30: &id476 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6rLQyBA3wD8= - 1834-150319-4_24: &id580 + 1834-150319-4_24: &id537 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7NKOE+scwz8= - 1834-220319-1_67: &id695 + 1834-220319-1_67: &id649 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | daiFlk1qwD8= - 1834-220319-2_41: &id780 + 1834-220319-2_41: &id732 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JSI0RYGFxT8= - 1834-220319-3_31: &id868 + 1834-220319-3_31: &id818 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UicewQtkwT8= - 1834-220319-4_46: &id959 + 1834-220319-4_46: &id907 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -249,91 +242,84 @@ _adj: - *id001 - !!binary | OPFwMhy80T8= - 1834-110319-6_30: &id213 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - sPvg02OhzD8= - 1834-120319-1_17: &id250 + 1834-120319-1_17: &id225 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xCGsob9/zz8= - 1834-120319-2_61: &id276 + 1834-120319-2_61: &id249 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5EzRVnUnxz8= - 1834-120319-3_52: &id315 + 1834-120319-3_52: &id286 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7b2TGXKJyD8= - 1834-120319-4_52: &id346 + 1834-120319-4_52: &id315 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q63Rq+eHxj8= - 1834-150319-1_44: &id380 + 1834-150319-1_117: &id351 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 7Myc1k/NxT8= - 1834-150319-2_31: &id438 + cciOCNh5yj8= + 1834-150319-2_31: &id403 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z8HAEC6tzD8= - 1834-150319-3_53: &id530 + 1834-150319-3_53: &id489 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CWW9oAikyj8= - 1834-150319-4_25: &id592 + 1834-150319-4_25: &id549 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wvST/UPjyT8= - 1834-220319-1_29: &id635 + 1834-220319-1_29: &id591 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VmzYRCfGxT8= - 1834-220319-2_39: &id758 + 1834-220319-2_39: &id711 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lBJLcYYxyT8= - 1834-220319-3_23: &id796 + 1834-220319-3_23: &id748 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mVyaEg86yj8= - 1834-220319-4_32: &id906 + 1834-220319-4_32: &id855 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -398,56 +384,56 @@ _adj: - *id001 - !!binary | FbBN9jVmxD8= - 1834-150319-1_41: &id374 + 1834-150319-1_106: &id331 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Wja1fV+gxT8= - 1834-150319-2_31: &id439 + AYPT8qDixT8= + 1834-150319-2_31: &id404 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rKgcOPtXzD8= - 1834-150319-3_30: &id516 + 1834-150319-3_30: &id477 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pg/LqOxSvz8= - 1834-150319-4_26: &id606 + 1834-150319-4_26: &id563 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jasovUoE0D8= - 1834-220319-1_29: &id636 + 1834-220319-1_29: &id592 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3/REPo0xwj8= - 1834-220319-2_29: &id745 + 1834-220319-2_29: &id698 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TddcED0lzz8= - 1834-220319-3_23: &id797 + 1834-220319-3_23: &id749 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LL33JDP+zz8= - 1834-220319-4_46: &id960 + 1834-220319-4_46: &id908 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -525,91 +511,84 @@ _adj: - *id001 - !!binary | sCVogOzIzj8= - 1834-110319-6_31: &id226 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YQzaWaNVzT8= - 1834-120319-1_17: &id251 + 1834-120319-1_17: &id226 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 49moLwQAxj8= - 1834-120319-2_26: &id264 + 1834-120319-2_26: &id238 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1Mqj3zG1wj8= - 1834-120319-3_28: &id301 + 1834-120319-3_28: &id273 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gjYEk2i0wj8= - 1834-120319-4_22: &id331 + 1834-120319-4_22: &id301 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vMMxkkdIwj8= - 1834-150319-1_37: &id362 + 1834-150319-1_114: &id339 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - U0AMv9ZCtj8= - 1834-150319-2_37: &id465 + N5s9tpmztD8= + 1834-150319-2_37: &id429 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1LLK+AnSwD8= - 1834-150319-3_27: &id487 + 1834-150319-3_27: &id450 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9c5ExYzPtT8= - 1834-150319-4_33: &id616 + 1834-150319-4_33: &id573 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bDdrW/UltT8= - 1834-220319-1_49: &id679 + 1834-220319-1_49: &id634 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3lNJjwE1zD8= - 1834-220319-2_39: &id759 + 1834-220319-2_39: &id712 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | y33yRw2ctj8= - 1834-220319-3_26: &id833 + 1834-220319-3_26: &id784 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | obhwD9nguT8= - 1834-220319-4_33: &id928 + 1834-220319-4_33: &id876 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -653,56 +632,56 @@ _adj: - *id001 - !!binary | HWAIV/iXyD8= - 1834-150319-1_47: &id390 + 1834-150319-1_47: &id366 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aBebDKW+wj8= - 1834-150319-2_42: &id480 + 1834-150319-2_42: &id443 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nRIOxsx4xT8= - 1834-150319-3_55: &id545 + 1834-150319-3_55: &id503 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UWm3rF39xD8= - 1834-150319-4_24: &id581 + 1834-150319-4_24: &id538 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WK3sD3FRwj8= - 1834-220319-1_37: &id667 + 1834-220319-1_37: &id622 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Oh+ot5szvz8= - 1834-220319-2_21: &id733 + 1834-220319-2_21: &id686 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OMWFrdNJyj8= - 1834-220319-3_28: &id855 + 1834-220319-3_28: &id805 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Cd7FYrRixD8= - 1834-220319-4_45: &id944 + 1834-220319-4_45: &id892 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -766,84 +745,84 @@ _adj: - *id001 - !!binary | a/bi7h4hwz8= - 1834-120319-1_16: &id238 + 1834-120319-1_16: &id214 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | haynr+v5xz8= - 1834-120319-2_61: &id277 + 1834-120319-2_61: &id250 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RkeP+gXVvT8= - 1834-120319-3_52: &id316 + 1834-120319-3_52: &id287 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t4nmKywswD8= - 1834-120319-4_52: &id347 + 1834-120319-4_52: &id316 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kelpS+69vj8= - 1834-150319-1_74: &id395 + 1834-150319-1_76: &id373 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sTUqt+gYwD8= - 1834-150319-2_32: &id449 + 57aID6Enwj8= + 1834-150319-2_32: &id414 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wuwNUUEFwz8= - 1834-150319-3_53: &id531 + 1834-150319-3_53: &id490 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cuVMwGfDvj8= - 1834-150319-4_25: &id593 + 1834-150319-4_25: &id550 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /Qd/4prGxj8= - 1834-220319-1_67: &id696 + 1834-220319-1_67: &id650 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | re7flTRYwD8= - 1834-220319-2_41: &id781 + 1834-220319-2_41: &id733 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | u5SH/fJxwz8= - 1834-220319-3_31: &id869 + 1834-220319-3_31: &id819 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Jn5MDmROvj8= - 1834-220319-4_32: &id907 + 1834-220319-4_32: &id856 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -914,70 +893,63 @@ _adj: - *id001 - !!binary | yUV5EVAo0D8= - 1834-110319-6_30: &id214 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - OFK1kqPHzT8= - 1834-120319-2_78: &id289 + 1834-120319-2_78: &id261 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rsFuuvcjzT8= - 1834-150319-1_44: &id381 + 1834-150319-1_117: &id352 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - CKSiEQ4XwT8= - 1834-150319-2_29: &id422 + P5LU37zWyD8= + 1834-150319-2_29: &id387 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | g41p710Jzj8= - 1834-150319-3_28: &id501 + 1834-150319-3_28: &id463 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hb05JXFqzD8= - 1834-150319-4_23: &id562 + 1834-150319-4_23: &id520 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Gm/HYTrPzj8= - 1834-220319-1_36: &id656 + 1834-220319-1_36: &id611 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DIb/0Pqr0D8= - 1834-220319-2_20: &id713 + 1834-220319-2_20: &id667 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FtXUGVkPyT8= - 1834-220319-3_25: &id813 + 1834-220319-3_25: &id765 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t4qp3AXdyj8= - 1834-220319-4_31: &id884 + 1834-220319-4_31: &id834 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1043,70 +1015,63 @@ _adj: - *id001 - !!binary | lNhJlFI3wD8= - 1834-110319-6_31: &id227 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - XbWvVue/wD8= - 1834-120319-2_78: &id290 + 1834-120319-2_78: &id262 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nZaBJywivj8= - 1834-150319-1_74: &id396 + 1834-150319-1_117: &id353 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4BKX7r7Oyj8= - 1834-150319-2_30: &id431 + rDpperbIyj8= + 1834-150319-2_30: &id396 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ge/hUGO3xT8= - 1834-150319-3_28: &id502 + 1834-150319-3_28: &id464 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IxafbwpZwT8= - 1834-150319-4_25: &id594 + 1834-150319-4_25: &id551 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sJykHeQ3zD8= - 1834-220319-1_29: &id637 + 1834-220319-1_29: &id593 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vkweDzhV0T8= - 1834-220319-2_20: &id714 + 1834-220319-2_20: &id668 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rQE82OXGqD8= - 1834-220319-3_25: &id814 + 1834-220319-3_25: &id766 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pWuzNl2NsT8= - 1834-220319-4_31: &id885 + 1834-220319-4_31: &id835 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1178,91 +1143,84 @@ _adj: - *id001 - !!binary | 4IxH1mBUxz8= - 1834-110319-6_30: &id215 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - UiEzM5Qqyz8= - 1834-120319-1_17: &id252 + 1834-120319-1_17: &id227 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cX8rJ8/Otj8= - 1834-120319-2_26: &id265 + 1834-120319-2_26: &id239 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PlHmmxfttj8= - 1834-120319-3_52: &id317 + 1834-120319-3_52: &id288 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3C8jyzatuT8= - 1834-120319-4_52: &id348 + 1834-120319-4_52: &id317 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6OQbkK4uvj8= - 1834-150319-1_37: &id363 + 1834-150319-1_114: &id340 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - sNZH+wTKyD8= - 1834-150319-2_37: &id466 + CwsNl4sRyD8= + 1834-150319-2_37: &id430 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 12fr0xAmvD8= - 1834-150319-3_27: &id488 + 1834-150319-3_27: &id451 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eyfF592Lxj8= - 1834-150319-4_23: &id563 + 1834-150319-4_23: &id521 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XL67VB/0tj8= - 1834-220319-1_49: &id680 + 1834-220319-1_49: &id635 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cvx0qvOY0T8= - 1834-220319-2_39: &id760 + 1834-220319-2_39: &id713 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WUpyMbAEvD8= - 1834-220319-3_26: &id834 + 1834-220319-3_26: &id785 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ER3q523awD8= - 1834-220319-4_46: &id961 + 1834-220319-4_46: &id909 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1328,84 +1286,84 @@ _adj: - *id001 - !!binary | 8EW+N2Mrwz8= - 1834-120319-1_16: &id239 + 1834-120319-1_16: &id215 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rUfrajTwtT8= - 1834-120319-2_61: &id278 + 1834-120319-2_61: &id251 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0uUOoDgHvz8= - 1834-120319-3_28: &id302 + 1834-120319-3_28: &id274 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TO08Nu2Btj8= - 1834-120319-4_22: &id332 + 1834-120319-4_22: &id302 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SsZmU1bztj8= - 1834-150319-1_76: &id410 + 1834-150319-1_76: &id374 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wPZ083C6wz8= - 1834-150319-2_32: &id450 + 1834-150319-2_32: &id415 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8eEIC38Muj8= - 1834-150319-3_57: &id551 + 1834-150319-3_57: &id509 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +NcmwwP2xj8= - 1834-150319-4_33: &id617 + 1834-150319-4_33: &id574 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n82aRjL8wT8= - 1834-220319-1_67: &id697 + 1834-220319-1_67: &id651 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qR9fgycB0D8= - 1834-220319-2_41: &id782 + 1834-220319-2_41: &id734 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LAbct8tFxD8= - 1834-220319-3_23: &id798 + 1834-220319-3_23: &id750 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /OaRL0CowT8= - 1834-220319-4_32: &id908 + 1834-220319-4_32: &id857 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1465,77 +1423,70 @@ _adj: - *id001 - !!binary | 5Sf8EOIPxT8= - 1834-110319-6_31: &id228 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - NcZlrf3Lwj8= - 1834-120319-1_17: &id253 + 1834-120319-1_17: &id228 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3JbbJUw1vD8= - 1834-120319-2_26: &id266 + 1834-120319-2_26: &id240 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LqXYEhjKuz8= - 1834-150319-1_74: &id397 + 1834-150319-1_117: &id354 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - cajfB3Mcyj8= - 1834-150319-2_29: &id423 + a9qWdQQgyj8= + 1834-150319-2_29: &id388 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kxyIDA1zyD8= - 1834-150319-3_28: &id503 + 1834-150319-3_28: &id465 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | purzYI8Fvz8= - 1834-150319-4_23: &id564 + 1834-150319-4_23: &id522 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /8mq0vmfwz8= - 1834-220319-1_29: &id638 + 1834-220319-1_29: &id594 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | e7x8Gb3i0D8= - 1834-220319-2_20: &id715 + 1834-220319-2_20: &id669 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | owALBGJbqD8= - 1834-220319-3_25: &id815 + 1834-220319-3_25: &id767 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2L8J400EtT8= - 1834-220319-4_31: &id886 + 1834-220319-4_31: &id836 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1586,56 +1537,56 @@ _adj: - *id001 - !!binary | 9lf1nOWQ2T8= - 1834-150319-1_45: &id387 + 1834-150319-1_106: &id332 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Eenb2vO62z8= - 1834-150319-2_30: &id432 + 3oXQcKOu4D8= + 1834-150319-2_30: &id397 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /Uo3uzGz2T8= - 1834-150319-3_27: &id489 + 1834-150319-3_27: &id452 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YPkKq6wp3D8= - 1834-150319-4_26: &id607 + 1834-150319-4_26: &id564 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c8sWDrnu2j8= - 1834-220319-1_36: &id657 + 1834-220319-1_36: &id612 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SRJJ68LK4D8= - 1834-220319-2_21: &id734 + 1834-220319-2_21: &id687 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0IwKuhkq3j8= - 1834-220319-3_23: &id799 + 1834-220319-3_23: &id751 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xJNQnk1p2j8= - 1834-220319-4_32: &id909 + 1834-220319-4_32: &id858 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1702,91 +1653,84 @@ _adj: - *id001 - !!binary | ElPLH14Wxz8= - 1834-110319-6_30: &id216 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - CgTi39ZszD8= - 1834-120319-1_16: &id240 + 1834-120319-1_16: &id216 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RsI+iINHtz8= - 1834-120319-2_78: &id291 + 1834-120319-2_78: &id263 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | e9pcdnOmuD8= - 1834-120319-3_28: &id303 + 1834-120319-3_28: &id275 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | BkdjwkK6uD8= - 1834-120319-4_22: &id333 + 1834-120319-4_22: &id303 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cMu6BKspuT8= - 1834-150319-1_76: &id411 + 1834-150319-1_76: &id375 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nXOsFHatwz8= - 1834-150319-2_32: &id451 + 1834-150319-2_32: &id416 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6bKF1BB4tT8= - 1834-150319-3_57: &id552 + 1834-150319-3_57: &id510 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GyU+RCgfxj8= - 1834-150319-4_25: &id595 + 1834-150319-4_25: &id552 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JZB4ZHE2xj8= - 1834-220319-1_49: &id681 + 1834-220319-1_49: &id636 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J1FixMND0D8= - 1834-220319-2_41: &id783 + 1834-220319-2_41: &id735 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Evb242Zvwz8= - 1834-220319-3_31: &id870 + 1834-220319-3_31: &id820 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aNAJxuZMwz8= - 1834-220319-4_46: &id962 + 1834-220319-4_46: &id910 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1845,77 +1789,77 @@ _adj: - *id001 - !!binary | LBMe0e/kyT8= - 1834-120319-2_61: &id279 + 1834-120319-2_61: &id252 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | K1iTzleHuD8= - 1834-120319-3_52: &id318 + 1834-120319-3_52: &id289 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rPrQaUm7tD8= - 1834-120319-4_52: &id349 + 1834-120319-4_52: &id318 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nDmwTSDxtz8= - 1834-150319-1_37: &id364 + 1834-150319-1_114: &id341 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6fasGj4LxD8= - 1834-150319-2_37: &id467 + mIee9Pt4wz8= + 1834-150319-2_37: &id431 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 89Yjz8eWuT8= - 1834-150319-3_53: &id532 + 1834-150319-3_53: &id491 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zwL2+atGwj8= - 1834-150319-4_33: &id618 + 1834-150319-4_33: &id575 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZdLVVBhptj8= - 1834-220319-1_67: &id698 + 1834-220319-1_67: &id652 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WswgueuTzj8= - 1834-220319-2_39: &id761 + 1834-220319-2_39: &id714 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ybwH+y5Asz8= - 1834-220319-3_26: &id835 + 1834-220319-3_26: &id786 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5mouUFAvtj8= - 1834-220319-4_33: &id929 + 1834-220319-4_33: &id877 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -1976,91 +1920,84 @@ _adj: - *id001 - !!binary | jwdLzkLv1j8= - 1834-110319-6_30: &id217 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - smZZuCa91T8= - 1834-120319-1_16: &id241 + 1834-120319-1_16: &id217 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | e5T7a5Cb0j8= - 1834-120319-2_26: &id267 + 1834-120319-2_26: &id241 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Rb3oPaL00j8= - 1834-120319-3_28: &id304 + 1834-120319-3_28: &id276 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | A0z1S93p0j8= - 1834-120319-4_22: &id334 + 1834-120319-4_22: &id304 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HRZ0nu/K0j8= - 1834-150319-1_47: &id391 + 1834-150319-1_47: &id367 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IJECEJZ1uT8= - 1834-150319-2_31: &id440 + 1834-150319-2_31: &id405 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SWug8SgVyT8= - 1834-150319-3_30: &id517 + 1834-150319-3_30: &id478 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0NpfiVF6uz8= - 1834-150319-4_25: &id596 + 1834-150319-4_25: &id553 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PS9thfM20D8= - 1834-220319-1_29: &id639 + 1834-220319-1_29: &id595 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yraERcRvuT8= - 1834-220319-2_29: &id746 + 1834-220319-2_29: &id699 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uKG/WIsFzT8= - 1834-220319-3_28: &id856 + 1834-220319-3_28: &id806 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | G9N2GjV5yz8= - 1834-220319-4_45: &id945 + 1834-220319-4_45: &id893 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2121,91 +2058,84 @@ _adj: - *id001 - !!binary | XPJFtTLG2j8= - 1834-110319-6_31: &id229 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - P6f9ltje2D8= - 1834-120319-1_17: &id254 + 1834-120319-1_17: &id229 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CQ8iqfTj1j8= - 1834-120319-2_61: &id280 + 1834-120319-2_61: &id253 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CsamjN0zxz8= - 1834-120319-3_52: &id319 + 1834-120319-3_52: &id290 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UOtyKWnfyD8= - 1834-120319-4_52: &id350 + 1834-120319-4_52: &id319 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5jHV6MBIxz8= - 1834-150319-1_74: &id398 + 1834-150319-1_117: &id355 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - aIcKE9JNxj8= - 1834-150319-2_37: &id468 + haapRcZ9xj8= + 1834-150319-2_37: &id432 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HYh+0Dx3zj8= - 1834-150319-3_53: &id533 + 1834-150319-3_53: &id492 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6HREFLpYxT8= - 1834-150319-4_33: &id619 + 1834-150319-4_33: &id576 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nbF+cFkoyj8= - 1834-220319-1_37: &id668 + 1834-220319-1_37: &id623 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bh95w8Ns0D8= - 1834-220319-2_39: &id762 + 1834-220319-2_39: &id715 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5EIRi9mEyj8= - 1834-220319-3_26: &id836 + 1834-220319-3_26: &id787 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RqEapuVSzz8= - 1834-220319-4_46: &id963 + 1834-220319-4_46: &id911 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2251,77 +2181,77 @@ _adj: - *id001 - !!binary | 2tW/UeIAyT8= - 1834-120319-2_61: &id281 + 1834-120319-2_61: &id254 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WlnbF6wKwT8= - 1834-120319-3_52: &id320 + 1834-120319-3_52: &id291 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9VUCLV2swj8= - 1834-120319-4_52: &id351 + 1834-120319-4_52: &id320 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 63WGNOGZwD8= - 1834-150319-1_37: &id365 + 1834-150319-1_117: &id356 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 40n51OETvj8= - 1834-150319-2_29: &id424 + B6ODVvEgvT8= + 1834-150319-2_29: &id389 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OqExByItzD8= - 1834-150319-3_53: &id534 + 1834-150319-3_53: &id493 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OWWHPklCuD8= - 1834-150319-4_33: &id620 + 1834-150319-4_33: &id577 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j5V43iQQwj8= - 1834-220319-1_37: &id669 + 1834-220319-1_37: &id624 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mt5lSYUEzj8= - 1834-220319-2_39: &id763 + 1834-220319-2_39: &id716 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hMuw4bUbxD8= - 1834-220319-3_26: &id837 + 1834-220319-3_26: &id788 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wyIkObtaxz8= - 1834-220319-4_33: &id930 + 1834-220319-4_33: &id878 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2374,91 +2304,84 @@ _adj: - *id001 - !!binary | aOsI0FgQzT8= - 1834-110319-6_31: &id230 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - UZlmCLDbyD8= - 1834-120319-1_17: &id255 + 1834-120319-1_17: &id230 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xJIQl83QwT8= - 1834-120319-2_26: &id268 + 1834-120319-2_26: &id242 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8dqr+HnjwT8= - 1834-120319-3_28: &id305 + 1834-120319-3_28: &id277 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | br2OC34Lwz8= - 1834-120319-4_22: &id335 + 1834-120319-4_22: &id305 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sfYD5U/Nwj8= - 1834-150319-1_74: &id399 + 1834-150319-1_114: &id342 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Fgm99EvfxT8= - 1834-150319-2_37: &id469 + r3qBmvXlxT8= + 1834-150319-2_37: &id433 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iqt4u8/FxD8= - 1834-150319-3_27: &id490 + 1834-150319-3_27: &id453 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WdhfVYT2vj8= - 1834-150319-4_23: &id565 + 1834-150319-4_23: &id523 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CTqZp7TTwT8= - 1834-220319-1_36: &id658 + 1834-220319-1_36: &id613 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EuDzkwD30T8= - 1834-220319-2_20: &id716 + 1834-220319-2_20: &id670 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UNkBB7vCwD8= - 1834-220319-3_25: &id816 + 1834-220319-3_25: &id768 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AgTmxbKDxD8= - 1834-220319-4_31: &id887 + 1834-220319-4_31: &id837 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2505,70 +2428,70 @@ _adj: - *id001 - !!binary | u9xZnozuwj8= - 1834-120319-1_16: &id242 + 1834-120319-1_16: &id218 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nmfu+SgOyj8= - 1834-120319-2_78: &id292 + 1834-120319-2_78: &id264 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Am0lupAozT8= - 1834-150319-1_76: &id412 + 1834-150319-1_106: &id333 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - vUEwuJhJxT8= - 1834-150319-2_32: &id452 + invOX3WkxD8= + 1834-150319-2_32: &id417 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WgEykxXpxT8= - 1834-150319-3_57: &id553 + 1834-150319-3_57: &id511 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KDRkrrhByT8= - 1834-150319-4_24: &id582 + 1834-150319-4_24: &id539 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bpb8Du5FyD8= - 1834-220319-1_67: &id699 + 1834-220319-1_67: &id653 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6QHT354WwD8= - 1834-220319-2_41: &id784 + 1834-220319-2_41: &id736 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PY08ZHz6xj8= - 1834-220319-3_31: &id871 + 1834-220319-3_31: &id821 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sSNuRcrhwT8= - 1834-220319-4_32: &id910 + 1834-220319-4_32: &id859 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2622,63 +2545,56 @@ _adj: - *id001 - !!binary | fZLU3p5u0D8= - 1834-110319-6_30: &id218 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - rOp8pOlKzD8= - 1834-150319-1_44: &id382 + 1834-150319-1_76: &id376 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 7F2x8I0SxD8= - 1834-150319-2_31: &id441 + +Etpog/3yj8= + 1834-150319-2_31: &id406 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bwUJBXYPzD8= - 1834-150319-3_28: &id504 + 1834-150319-3_28: &id466 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /ViE0fKFzT8= - 1834-150319-4_25: &id597 + 1834-150319-4_25: &id554 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qdXYxp8MzD8= - 1834-220319-1_49: &id682 + 1834-220319-1_49: &id637 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GA9dMt2izz8= - 1834-220319-2_21: &id735 + 1834-220319-2_21: &id688 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | y26Dfe6Hzj8= - 1834-220319-3_23: &id800 + 1834-220319-3_23: &id752 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KrZxqgyvyj8= - 1834-220319-4_46: &id964 + 1834-220319-4_46: &id912 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2716,56 +2632,56 @@ _adj: - *id001 - !!binary | CZRPZTmwsT8= - 1834-150319-1_41: &id375 + 1834-150319-1_47: &id368 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +Danyko8wD8= - 1834-150319-2_42: &id481 + UngIzlLPxD8= + 1834-150319-2_42: &id444 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZQAaLnmZyz8= - 1834-150319-3_30: &id518 + 1834-150319-3_30: &id479 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Vb8jfQ3Usj8= - 1834-150319-4_26: &id608 + 1834-150319-4_26: &id565 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VSFwREstzT8= - 1834-220319-1_29: &id640 + 1834-220319-1_29: &id596 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | eFP6vVzbuD8= - 1834-220319-2_29: &id747 + 1834-220319-2_29: &id700 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j3K25NDTyz8= - 1834-220319-3_28: &id857 + 1834-220319-3_28: &id807 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AE0wdPK0yj8= - 1834-220319-4_45: &id946 + 1834-220319-4_45: &id894 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2812,91 +2728,84 @@ _adj: - *id001 - !!binary | ArcoRU8+zD8= - 1834-110319-6_31: &id231 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - X8ldmyKPxz8= - 1834-120319-1_17: &id256 + 1834-120319-1_17: &id231 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | s4abDviZwT8= - 1834-120319-2_26: &id269 + 1834-120319-2_26: &id243 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hic6zIhBwj8= - 1834-120319-3_28: &id306 + 1834-120319-3_28: &id278 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ewkgWACswz8= - 1834-120319-4_22: &id336 + 1834-120319-4_22: &id306 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 40WudSBpwz8= - 1834-150319-1_74: &id400 + 1834-150319-1_117: &id357 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IESaf+C5xj8= - 1834-150319-2_37: &id470 + A09seey8xj8= + 1834-150319-2_37: &id434 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | K3FzIRoixT8= - 1834-150319-3_28: &id505 + 1834-150319-3_28: &id467 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /SNmq+07yT8= - 1834-150319-4_23: &id566 + 1834-150319-4_23: &id524 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YjIXdp0qwT8= - 1834-220319-1_36: &id659 + 1834-220319-1_36: &id614 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LM+lCPRR0j8= - 1834-220319-2_20: &id717 + 1834-220319-2_20: &id671 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6xHnlg0GwT8= - 1834-220319-3_25: &id817 + 1834-220319-3_25: &id769 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ycFIkW4rxD8= - 1834-220319-4_31: &id888 + 1834-220319-4_31: &id838 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -2937,63 +2846,63 @@ _adj: - *id001 - !!binary | xv7AxDD4wT8= - 1834-120319-2_78: &id293 + 1834-120319-2_78: &id265 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YOMtf2HczD8= - 1834-150319-1_76: &id413 + 1834-150319-1_76: &id377 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kWz3VCXOxD8= - 1834-150319-2_32: &id453 + 1834-150319-2_32: &id418 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ycCeFYJ2xT8= - 1834-150319-3_57: &id554 + 1834-150319-3_57: &id512 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0eHqqDmDyD8= - 1834-150319-4_24: &id583 + 1834-150319-4_24: &id540 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FNDe+h2Mxz8= - 1834-220319-1_67: &id700 + 1834-220319-1_67: &id654 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Suot/7u6wD8= - 1834-220319-2_41: &id785 + 1834-220319-2_41: &id737 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0F2+YE9kxT8= - 1834-220319-3_31: &id872 + 1834-220319-3_31: &id822 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Xpcz880QwT8= - 1834-220319-4_32: &id911 + 1834-220319-4_32: &id860 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3041,63 +2950,56 @@ _adj: - *id001 - !!binary | rs5ZxXuC0D8= - 1834-110319-6_30: &id219 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - IJd2VfQazD8= - 1834-150319-1_44: &id383 + 1834-150319-1_106: &id334 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 99kkc2pBxD8= - 1834-150319-2_31: &id442 + DgjEM4aZyj8= + 1834-150319-2_31: &id407 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2n21fm0DzD8= - 1834-150319-3_53: &id535 + 1834-150319-3_53: &id494 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5OkAuivNxj8= - 1834-150319-4_25: &id598 + 1834-150319-4_25: &id555 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uHiHQyw2zD8= - 1834-220319-1_49: &id683 + 1834-220319-1_49: &id638 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rNbF7fDQzz8= - 1834-220319-2_21: &id736 + 1834-220319-2_21: &id689 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | k4xb/A/Azj8= - 1834-220319-3_23: &id801 + 1834-220319-3_23: &id753 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xjSqoEG1yz8= - 1834-220319-4_46: &id965 + 1834-220319-4_46: &id913 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3137,84 +3039,84 @@ _adj: - *id001 - !!binary | wCNseFWQwT8= - 1834-120319-1_16: &id243 + 1834-120319-1_16: &id219 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ahVSa3LQyD8= - 1834-120319-2_61: &id282 + 1834-120319-2_61: &id255 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Mwc/cyPHvj8= - 1834-120319-3_52: &id321 + 1834-120319-3_52: &id292 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jt9BT8Dcvj8= - 1834-120319-4_52: &id352 + 1834-120319-4_52: &id321 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8Ss1nWVVvz8= - 1834-150319-1_37: &id366 + 1834-150319-1_114: &id343 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - S3N5upN3vj8= - 1834-150319-2_29: &id425 + MRAV3KFFvT8= + 1834-150319-2_29: &id390 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j4wKAF+Vxj8= - 1834-150319-3_27: &id491 + 1834-150319-3_27: &id454 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D2TwVi5RtD8= - 1834-150319-4_33: &id621 + 1834-150319-4_33: &id578 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PCqPEFw5wD8= - 1834-220319-1_37: &id670 + 1834-220319-1_37: &id625 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jMJwx5g8zj8= - 1834-220319-2_39: &id764 + 1834-220319-2_39: &id717 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5ItKE9pdwT8= - 1834-220319-3_26: &id838 + 1834-220319-3_26: &id789 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iP8gNYEQxT8= - 1834-220319-4_33: &id931 + 1834-220319-4_33: &id879 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3246,56 +3148,56 @@ _adj: - *id001 - !!binary | IqrexCjXsT8= - 1834-150319-1_41: &id376 + 1834-150319-1_47: &id369 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 28NTJeKJwT8= - 1834-150319-2_42: &id482 + JbswTq/XxT8= + 1834-150319-2_42: &id445 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | m6ItA2QJzD8= - 1834-150319-3_30: &id519 + 1834-150319-3_30: &id480 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tY2yF+eptT8= - 1834-150319-4_26: &id609 + 1834-150319-4_26: &id566 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sfCBQavvzT8= - 1834-220319-1_29: &id641 + 1834-220319-1_29: &id597 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nYlYG5R/vD8= - 1834-220319-2_29: &id748 + 1834-220319-2_29: &id701 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 94fLl5sOzD8= - 1834-220319-3_28: &id858 + 1834-220319-3_28: &id808 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rBBQtAf6yj8= - 1834-220319-4_45: &id947 + 1834-220319-4_45: &id895 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3337,91 +3239,84 @@ _adj: - *id001 - !!binary | D3JlrKx70T8= - 1834-110319-6_31: &id232 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - juIwJtbgzj8= - 1834-120319-1_17: &id257 + 1834-120319-1_17: &id232 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +GU095rpxz8= - 1834-120319-2_26: &id270 + 1834-120319-2_26: &id244 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LIeMECEQxj8= - 1834-120319-3_28: &id307 + 1834-120319-3_28: &id279 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PWLkVZ+5xj8= - 1834-120319-4_22: &id337 + 1834-120319-4_22: &id307 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5n1ZsC1txj8= - 1834-150319-1_37: &id367 + 1834-150319-1_114: &id344 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ORRIpkw5wT8= - 1834-150319-2_37: &id471 + 2twp+FuCwD8= + 1834-150319-2_37: &id435 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rEaQpBL2xD8= - 1834-150319-3_27: &id492 + 1834-150319-3_27: &id455 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j26t0KeEsj8= - 1834-150319-4_23: &id567 + 1834-150319-4_23: &id525 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | hjXVCaZWxD8= - 1834-220319-1_36: &id660 + 1834-220319-1_36: &id615 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8qHCz2kS0T8= - 1834-220319-2_39: &id765 + 1834-220319-2_39: &id718 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Dfmn9uCgwD8= - 1834-220319-3_23: &id802 + 1834-220319-3_23: &id754 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NIHpa/kgyD8= - 1834-220319-4_31: &id889 + 1834-220319-4_31: &id839 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3456,84 +3351,84 @@ _adj: - *id001 - !!binary | H5PdriXTxT8= - 1834-120319-1_16: &id244 + 1834-120319-1_16: &id220 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HdUYLdhyyz8= - 1834-120319-2_61: &id283 + 1834-120319-2_61: &id256 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0MqxQgOowT8= - 1834-120319-3_52: &id322 + 1834-120319-3_52: &id293 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | d3ffoipMwz8= - 1834-120319-4_52: &id353 + 1834-120319-4_52: &id322 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dXY5S+dfwT8= - 1834-150319-1_74: &id401 + 1834-150319-1_76: &id378 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5iPvEmsOwT8= - 1834-150319-2_32: &id454 + MfMcaMklxD8= + 1834-150319-2_32: &id419 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | s0GOLPExxz8= - 1834-150319-3_53: &id536 + 1834-150319-3_53: &id495 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7GmEc/xSwD8= - 1834-150319-4_24: &id584 + 1834-150319-4_24: &id541 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S2nnsrCkxj8= - 1834-220319-1_67: &id701 + 1834-220319-1_67: &id655 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cWyLngIhuj8= - 1834-220319-2_41: &id786 + 1834-220319-2_41: &id738 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | msdh62G4xT8= - 1834-220319-3_31: &id873 + 1834-220319-3_31: &id823 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P07aR7qjwD8= - 1834-220319-4_46: &id966 + 1834-220319-4_46: &id914 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3575,70 +3470,63 @@ _adj: - *id001 - !!binary | 5Jr5dToX0j8= - 1834-110319-6_30: &id220 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - K/O8uOjxzz8= - 1834-120319-2_78: &id294 + 1834-120319-2_78: &id266 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bRaqFUXazz8= - 1834-150319-1_44: &id384 + 1834-150319-1_117: &id358 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - NyAcQlWSwj8= - 1834-150319-2_29: &id426 + pjf4CI9axj8= + 1834-150319-2_29: &id391 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YLRHHRu7zj8= - 1834-150319-3_57: &id555 + 1834-150319-3_57: &id513 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LikcT8IBzD8= - 1834-150319-4_33: &id622 + 1834-150319-4_33: &id579 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Wjb0TGs6yD8= - 1834-220319-1_49: &id684 + 1834-220319-1_49: &id639 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | T7dflSG4zj8= - 1834-220319-2_20: &id718 + 1834-220319-2_20: &id672 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jlRzsSOIyz8= - 1834-220319-3_25: &id818 + 1834-220319-3_25: &id770 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rYW3D+xX0D8= - 1834-220319-4_32: &id912 + 1834-220319-4_32: &id861 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3671,56 +3559,56 @@ _adj: - *id001 - !!binary | 6gbubzTGxT8= - 1834-150319-1_41: &id377 + 1834-150319-1_106: &id335 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 2k2Z1DCGwz8= - 1834-150319-2_42: &id483 + m6y4FaLcwz8= + 1834-150319-2_42: &id446 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iaDvFTEBzD8= - 1834-150319-3_30: &id520 + 1834-150319-3_30: &id481 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vGLcU7icuj8= - 1834-150319-4_26: &id610 + 1834-150319-4_26: &id567 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WUxS7p91zz8= - 1834-220319-1_37: &id671 + 1834-220319-1_37: &id626 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | y70JrtHEzD8= - 1834-220319-2_21: &id737 + 1834-220319-2_21: &id690 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VPGEYavS0D8= - 1834-220319-3_26: &id839 + 1834-220319-3_26: &id790 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LhU2LAH6yT8= - 1834-220319-4_33: &id932 + 1834-220319-4_33: &id880 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3746,56 +3634,56 @@ _adj: - *id001 - !!binary | 4p4zgGrYtT8= - 1834-150319-1_47: &id392 + 1834-150319-1_47: &id370 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 3d/5R7xAsz8= - 1834-150319-2_31: &id443 + 1834-150319-2_31: &id408 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Ls2NS77mxj8= - 1834-150319-3_55: &id546 + 1834-150319-3_55: &id504 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jlOFW0X6uT8= - 1834-150319-4_25: &id599 + 1834-150319-4_25: &id556 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FP5wd5R2zj8= - 1834-220319-1_29: &id642 + 1834-220319-1_29: &id598 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | R6ZdxDEjsz8= - 1834-220319-2_29: &id749 + 1834-220319-2_29: &id702 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GZgHwl+Tyj8= - 1834-220319-3_28: &id859 + 1834-220319-3_28: &id809 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lMaW4Bc7yT8= - 1834-220319-4_45: &id948 + 1834-220319-4_45: &id896 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3831,77 +3719,77 @@ _adj: - *id001 - !!binary | p1QuZbyN0j8= - 1834-120319-1_17: &id258 + 1834-120319-1_17: &id233 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4TOTnyKlzj8= - 1834-120319-2_61: &id284 + 1834-120319-2_61: &id257 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mlZsaAblwT8= - 1834-120319-4_52: &id354 + 1834-120319-4_52: &id323 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rxQQLzMewD8= - 1834-150319-1_74: &id402 + 1834-150319-1_117: &id359 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - IDSb0yg8rz8= - 1834-150319-2_37: &id472 + cfVz0qy9rz8= + 1834-150319-2_37: &id436 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /fkHaAxNyT8= - 1834-150319-3_53: &id537 + 1834-150319-3_53: &id496 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2KKsBMU5tj8= - 1834-150319-4_33: &id623 + 1834-150319-4_33: &id580 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Cz6yP7Fqwz8= - 1834-220319-1_37: &id672 + 1834-220319-1_37: &id627 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bQ1JFFx5xj8= - 1834-220319-2_21: &id738 + 1834-220319-2_21: &id691 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6PuZCLFGzT8= - 1834-220319-3_26: &id840 + 1834-220319-3_26: &id791 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 9yJ1MbRUxj8= - 1834-220319-4_33: &id933 + 1834-220319-4_33: &id881 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -3929,91 +3817,84 @@ _adj: - *id001 - !!binary | HXo5zNPbyT8= - 1834-110319-6_30: &id221 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 5HXQaSmp0D8= - 1834-120319-1_16: &id245 + 1834-120319-1_16: &id221 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0BuQnuGayT8= - 1834-120319-2_26: &id271 + 1834-120319-2_26: &id245 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | K/33FnLhyT8= - 1834-120319-3_52: &id323 + 1834-120319-3_52: &id294 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /101KQbmwT8= - 1834-120319-4_22: &id338 + 1834-120319-4_22: &id308 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H2R4mcv7yT8= - 1834-150319-1_44: &id385 + 1834-150319-1_76: &id379 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - C5odCYlixD8= - 1834-150319-2_29: &id427 + hHVosiH6yD8= + 1834-150319-2_29: &id392 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Hc0eb9jnxz8= - 1834-150319-3_27: &id493 + 1834-150319-3_27: &id456 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fBEn9IUCwT8= - 1834-150319-4_23: &id568 + 1834-150319-4_23: &id526 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iq1TInGjyz8= - 1834-220319-1_49: &id685 + 1834-220319-1_49: &id640 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bf9TXOA9zj8= - 1834-220319-2_20: &id719 + 1834-220319-2_20: &id673 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /dzmCbFpxz8= - 1834-220319-3_25: &id819 + 1834-220319-3_25: &id771 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Fg+uuW7SzD8= - 1834-220319-4_31: &id890 + 1834-220319-4_31: &id840 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4049,77 +3930,70 @@ _adj: - *id001 - !!binary | wdCKINYg0T8= - 1834-110319-6_31: &id233 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8W9hDV/J0D8= - 1834-120319-2_78: &id295 + 1834-120319-2_78: &id267 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | STrhK/uLzT8= - 1834-120319-3_28: &id308 + 1834-120319-3_28: &id280 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yaz080jLyz8= - 1834-150319-1_41: &id378 + 1834-150319-1_106: &id336 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - dt4hjhhYvz8= - 1834-150319-2_32: &id455 + hAI7MeoGwD8= + 1834-150319-2_32: &id420 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aZ2GzVPxxj8= - 1834-150319-3_57: &id556 + 1834-150319-3_57: &id514 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bojJDApAyT8= - 1834-150319-4_24: &id585 + 1834-150319-4_24: &id542 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | h+teb+A8xz8= - 1834-220319-1_67: &id702 + 1834-220319-1_67: &id656 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Uuzf95AouT8= - 1834-220319-2_41: &id787 + 1834-220319-2_41: &id739 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yyW6VPORxT8= - 1834-220319-3_23: &id803 + 1834-220319-3_23: &id755 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Qmc8C7iwxz8= - 1834-220319-4_32: &id913 + 1834-220319-4_32: &id862 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4147,56 +4021,56 @@ _adj: - *id001 - !!binary | 8g/y9z5LxD8= - 1834-150319-1_37: &id368 + 1834-150319-1_114: &id345 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - qYLjhPj8wz8= - 1834-150319-2_42: &id484 + +/khoxxpxD8= + 1834-150319-2_42: &id447 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WSUmgBhhzD8= - 1834-150319-3_30: &id521 + 1834-150319-3_30: &id482 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S+i92u2juT8= - 1834-150319-4_25: &id600 + 1834-150319-4_25: &id557 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Xrmil7ZpzD8= - 1834-220319-1_29: &id643 + 1834-220319-1_29: &id599 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 26W9WAxVwD8= - 1834-220319-2_39: &id766 + 1834-220319-2_39: &id719 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YXdkbRhPxj8= - 1834-220319-3_31: &id874 + 1834-220319-3_31: &id824 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GaU9FGFAxj8= - 1834-220319-4_46: &id967 + 1834-220319-4_46: &id915 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4216,56 +4090,56 @@ _adj: - *id001 - !!binary | VapjeXwcsj8= - 1834-150319-1_47: &id393 + 1834-150319-1_47: &id371 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | o0kE3/lHtD8= - 1834-150319-2_31: &id444 + 1834-150319-2_31: &id409 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S9UbZzNNyD8= - 1834-150319-3_55: &id547 + 1834-150319-3_55: &id505 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WSnEi082uz8= - 1834-150319-4_26: &id611 + 1834-150319-4_26: &id568 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ylNNGYlK0D8= - 1834-220319-1_36: &id661 + 1834-220319-1_36: &id616 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c+XGKT4lyz8= - 1834-220319-2_29: &id750 + 1834-220319-2_29: &id703 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | QbTRyXxGzD8= - 1834-220319-3_28: &id860 + 1834-220319-3_28: &id810 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | v/sklmbKyj8= - 1834-220319-4_45: &id949 + 1834-220319-4_45: &id897 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4292,70 +4166,56 @@ _adj: - *id001 - !!binary | KdezG2IA0j8= - 1834-110319-6_31: &id234 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ahnQHfMW0D8= - 1834-120319-1_17: &id259 + 1834-120319-1_17: &id234 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q9J9O4L/yz8= - 1834-120319-3_52: &id324 + 1834-120319-3_52: &id295 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bxyy50uywj8= - 1834-150319-1_76: &id414 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LjaOXfIczD8= - 1834-150319-2_37: &id473 + 1834-150319-2_37: &id437 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | O7K7g8sNyT8= - 1834-150319-3_27: &id494 + 1834-150319-3_27: &id457 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c/sJ4f4Uwj8= - 1834-150319-4_23: &id569 + 1834-150319-4_23: &id527 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N0d9P063yD8= - 1834-220319-2_20: &id720 + 1834-220319-2_20: &id674 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Mq1l+p82yT8= - 1834-220319-3_25: &id820 + 1834-220319-3_25: &id772 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | EzQLXEDzzT8= - 1834-220319-4_31: &id891 + 1834-220319-4_31: &id841 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4378,91 +4238,84 @@ _adj: - *id001 - !!binary | CbMKbKOTxz8= - 1834-110319-6_30: &id222 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - d+ThUEDLzj8= - 1834-120319-1_16: &id246 + 1834-120319-1_16: &id222 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cUBc32HoyD8= - 1834-120319-2_26: &id272 + 1834-120319-2_26: &id246 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H1j4Dp72yD8= - 1834-120319-3_28: &id309 + 1834-120319-3_28: &id281 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | H+dWSZQEyT8= - 1834-120319-4_22: &id339 + 1834-120319-4_22: &id309 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | w8nhX/P6yD8= - 1834-150319-1_44: &id386 + 1834-150319-1_76: &id380 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - oJiMu0kLxD8= - 1834-150319-2_30: &id433 + UvKcZPmHyD8= + 1834-150319-2_30: &id398 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FI2D6bzGzz8= - 1834-150319-3_28: &id506 + 1834-150319-3_28: &id468 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /QpQzDFezD8= - 1834-150319-4_26: &id612 + 1834-150319-4_26: &id569 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z+OcIDQGzT8= - 1834-220319-1_49: &id686 + 1834-220319-1_49: &id641 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | S+TLw6kdzj8= - 1834-220319-2_39: &id767 + 1834-220319-2_39: &id720 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yj0DcqHLwT8= - 1834-220319-3_23: &id804 + 1834-220319-3_23: &id756 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | z62X5+Q3yj8= - 1834-220319-4_32: &id914 + 1834-220319-4_32: &id863 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4474,56 +4327,56 @@ _adj: 1834-010319-5_39: *id134 1834-060319-3_40: *id135 1834-110319-1_23: *id136 - 1834-150319-1_74: &id403 + 1834-150319-1_117: &id360 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - KALdb5CvsT8= - 1834-150319-2_42: &id485 + i4KlKjYNsj8= + 1834-150319-2_42: &id448 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ql13bIPByT8= - 1834-150319-3_53: &id538 + 1834-150319-3_53: &id497 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FHk3dAVNtz8= - 1834-150319-4_24: &id586 + 1834-150319-4_24: &id543 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rL7UncDKyD8= - 1834-220319-1_37: &id673 + 1834-220319-1_37: &id628 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FTonMgEaxz8= - 1834-220319-2_21: &id739 + 1834-220319-2_21: &id692 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ag+hmTKzzT8= - 1834-220319-3_28: &id861 + 1834-220319-3_28: &id811 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jeJcdqrbxz8= - 1834-220319-4_45: &id950 + 1834-220319-4_45: &id898 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4553,63 +4406,63 @@ _adj: - *id001 - !!binary | AipgBF++0D8= - 1834-120319-2_78: &id296 + 1834-120319-2_78: &id268 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | nQ8+o6frzD8= - 1834-150319-1_45: &id388 + 1834-150319-1_106: &id337 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - T8DvqYTbwD8= - 1834-150319-2_32: &id456 + nQwvo5Z+vz8= + 1834-150319-2_32: &id421 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lfSF9m2Kxj8= - 1834-150319-3_30: &id522 + 1834-150319-3_30: &id483 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2D65yFgmuT8= - 1834-150319-4_25: &id601 + 1834-150319-4_25: &id558 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aAvpnA6hxj8= - 1834-220319-1_67: &id703 + 1834-220319-1_67: &id657 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | inoA9XRluT8= - 1834-220319-2_41: &id788 + 1834-220319-2_41: &id740 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cC3XBl0exT8= - 1834-220319-3_31: &id875 + 1834-220319-3_31: &id825 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | +lOj71fdwD8= - 1834-220319-4_46: &id968 + 1834-220319-4_46: &id916 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4630,28 +4483,28 @@ _adj: - *id001 - !!binary | ksKQc7V3xj8= - 1834-150319-1_41: &id379 + 1834-150319-1_47: &id372 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - vv+V4AYfwT8= - 1834-150319-2_31: &id445 + 1myMz5ErwT8= + 1834-150319-2_31: &id410 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cTx+XF1AyT8= - 1834-150319-3_55: &id548 + 1834-150319-3_55: &id506 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sQK+d+9wxD8= - 1834-220319-1_29: &id644 + 1834-220319-1_29: &id600 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4660,21 +4513,21 @@ _adj: 0YSzzqGtuj8= 1834-110319-2_86: 1834-060319-1_91: *id151 - 1834-150319-1_47: &id394 + 1834-150319-1_116: &id350 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - gY1Ft9QL0D8= - 1834-150319-2_29: &id428 + zRrVpDW30j8= + 1834-150319-2_29: &id393 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SjiepR5eyT8= - 1834-150319-3_44: &id525 + 1834-150319-3_44: &id486 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4686,63 +4539,63 @@ _adj: 1834-060319-2_41: *id153 1834-060319-4_28: *id154 1834-110319-1_26: *id155 - 1834-120319-2_61: &id285 + 1834-120319-2_61: &id258 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ap5FHPlBwT8= - 1834-120319-4_52: &id355 + 1834-120319-4_52: &id324 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wKUO6d5TwD8= - 1834-150319-1_37: &id369 + 1834-150319-1_114: &id346 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - WekkUy/wvT8= - 1834-150319-3_57: &id557 + XoLHJKTMvT8= + 1834-150319-3_57: &id515 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VPc3PXW7yD8= - 1834-150319-4_33: &id624 + 1834-150319-4_33: &id581 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rG+xn0MkxD8= - 1834-220319-1_36: &id662 + 1834-220319-1_36: &id617 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rBIhR5ywzz8= - 1834-220319-2_29: &id751 + 1834-220319-2_29: &id704 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | J1GLac29yT8= - 1834-220319-3_26: &id841 + 1834-220319-3_26: &id792 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2hf4C6fHxT8= - 1834-220319-4_33: &id934 + 1834-220319-4_33: &id882 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4759,56 +4612,56 @@ _adj: 1834-060319-4_28: *id162 1834-110319-1_26: *id163 1834-110319-2_47: *id164 - 1834-150319-1_74: &id404 + 1834-150319-1_117: &id361 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - VmLnyO20yD8= - 1834-150319-2_29: &id429 + gsOnN6bMyD8= + 1834-150319-2_29: &id394 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PeaurJvIzj8= - 1834-150319-3_30: &id523 + 1834-150319-3_30: &id484 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PZdqYlzzyT8= - 1834-150319-4_33: &id625 + 1834-150319-4_33: &id582 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 69wsSIkcyz8= - 1834-220319-1_29: &id645 + 1834-220319-1_29: &id601 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | D9r36rfKyz8= - 1834-220319-2_29: &id752 + 1834-220319-2_29: &id705 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8vtKzgRu0D8= - 1834-220319-3_31: &id876 + 1834-220319-3_31: &id826 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IlMTN44gzT8= - 1834-220319-4_45: &id951 + 1834-220319-4_45: &id899 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4832,91 +4685,84 @@ _adj: - *id001 - !!binary | RE+CCNSs0T8= - 1834-110319-6_31: &id235 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - IJ8KaG5QzD8= - 1834-120319-1_17: &id260 + 1834-120319-1_17: &id235 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PVxir90yyz8= - 1834-120319-2_61: &id286 + 1834-120319-2_61: &id259 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zV8609JTxD8= - 1834-120319-3_52: &id325 + 1834-120319-3_52: &id296 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wBG1dcA4wz8= - 1834-120319-4_52: &id356 + 1834-120319-4_52: &id325 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oHscZe7swz8= - 1834-150319-1_37: &id370 + 1834-150319-1_114: &id347 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 6p9ksgkhyj8= - 1834-150319-2_37: &id474 + H2f6MP6pyT8= + 1834-150319-2_37: &id438 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kfw/NAn9yT8= - 1834-150319-3_27: &id495 + 1834-150319-3_27: &id458 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | U7OXHaoZxz8= - 1834-150319-4_23: &id570 + 1834-150319-4_23: &id528 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XL3yAe0ayj8= - 1834-220319-1_37: &id674 + 1834-220319-1_37: &id629 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oOWXHXPY0T8= - 1834-220319-2_39: &id768 + 1834-220319-2_39: &id721 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4poVU9oMxj8= - 1834-220319-3_26: &id842 + 1834-220319-3_26: &id793 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pZlb7c3pyj8= - 1834-220319-4_31: &id892 + 1834-220319-4_31: &id842 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -4932,63 +4778,63 @@ _adj: 1834-060319-4_26: *id179 1834-110319-1_24: *id180 1834-110319-2_40: *id181 - 1834-120319-2_26: &id273 + 1834-120319-2_26: &id247 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TaJ+Bof7yz8= - 1834-150319-1_45: &id389 + 1834-150319-1_106: &id338 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - szbZgKeeyj8= - 1834-150319-2_31: &id446 + ssLEAmzs0D8= + 1834-150319-2_31: &id411 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zfjTK2Iazj8= - 1834-150319-3_53: &id539 + 1834-150319-3_53: &id498 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bdC/F6Bcyz8= - 1834-150319-4_25: &id602 + 1834-150319-4_25: &id559 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0mo3Xt+uzT8= - 1834-220319-1_49: &id687 + 1834-220319-1_49: &id642 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bJCk2VEh0T8= - 1834-220319-2_20: &id721 + 1834-220319-2_20: &id675 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VWCXjsBIxj8= - 1834-220319-3_25: &id821 + 1834-220319-3_25: &id773 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | x//0UxYFyD8= - 1834-220319-4_46: &id969 + 1834-220319-4_46: &id917 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5012,91 +4858,84 @@ _adj: - *id001 - !!binary | h5ZjbAYizD8= - 1834-110319-6_30: &id223 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8YgD4578yz8= - 1834-120319-1_16: &id247 + 1834-120319-1_16: &id223 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5OF97gy4yT8= - 1834-120319-2_78: &id297 + 1834-120319-2_78: &id269 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GcN3A1FByT8= - 1834-120319-3_28: &id310 + 1834-120319-3_28: &id282 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PWVYH2aoyT8= - 1834-120319-4_22: &id340 + 1834-120319-4_22: &id310 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NEFy4/iNyT8= - 1834-150319-1_76: &id415 + 1834-150319-1_76: &id381 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | N6SY01IqyT8= - 1834-150319-2_32: &id457 + 1834-150319-2_32: &id422 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jti8PiMmxT8= - 1834-150319-3_28: &id507 + 1834-150319-3_28: &id469 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ItmWznWMzD8= - 1834-150319-4_24: &id587 + 1834-150319-4_24: &id544 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dFZQYRF+yz8= - 1834-220319-1_67: &id704 + 1834-220319-1_67: &id658 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yCKam4mBzT8= - 1834-220319-2_41: &id789 + 1834-220319-2_41: &id741 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GdqLFRHixj8= - 1834-220319-3_23: &id805 + 1834-220319-3_23: &id757 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | exWS5oL6wD8= - 1834-220319-4_32: &id915 + 1834-220319-4_32: &id864 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5115,91 +4954,84 @@ _adj: 1834-110319-1_23: *id199 1834-110319-2_104: *id200 1834-110319-3_28: *id201 - 1834-110319-6_31: &id236 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YB29mlJkzj8= - 1834-120319-1_17: &id261 + 1834-120319-1_17: &id236 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vvI49GPxxD8= - 1834-120319-2_61: &id287 + 1834-120319-2_61: &id260 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | HWFD5vBLyD8= - 1834-120319-3_52: &id326 + 1834-120319-3_52: &id297 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | fxSRZ2uJxj8= - 1834-120319-4_52: &id357 + 1834-120319-4_52: &id326 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tv2/iPMGxz8= - 1834-150319-1_74: &id405 + 1834-150319-1_117: &id362 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MQTJJu1K0D8= - 1834-150319-2_30: &id434 + aiEThnxF0D8= + 1834-150319-2_30: &id399 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SxamZ3CCzT8= - 1834-150319-3_53: &id540 + 1834-150319-3_53: &id499 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wuOLjhva0D8= - 1834-150319-4_33: &id626 + 1834-150319-4_33: &id583 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SQDwCtsxzD8= - 1834-220319-1_49: &id688 + 1834-220319-1_49: &id643 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | CS2hXbwY1D8= - 1834-220319-2_39: &id769 + 1834-220319-2_39: &id722 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j0MjPAg5yT8= - 1834-220319-3_25: &id822 + 1834-220319-3_25: &id774 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gY/v8nf3wT8= - 1834-220319-4_31: &id893 + 1834-220319-4_31: &id843 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5218,376 +5050,174 @@ _adj: 1834-110319-1_25: *id210 1834-110319-2_45: *id211 1834-110319-3_30: *id212 - 1834-110319-6_30: &id224 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - WtVeKD67yj8= - 1834-120319-1_16: &id248 + 1834-120319-1_16: &id224 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WesnKtkfyT8= - 1834-120319-2_78: &id298 + 1834-120319-2_78: &id270 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Hf9KlCajxj8= - 1834-120319-3_28: &id311 + 1834-120319-3_28: &id283 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xa8QVRSwxz8= - 1834-120319-4_22: &id341 + 1834-120319-4_22: &id311 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qlox6NIXyD8= - 1834-150319-1_76: &id416 + 1834-150319-1_76: &id382 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | wxKH17EQzj8= - 1834-150319-2_32: &id458 + 1834-150319-2_32: &id423 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xK9eI/fdzD8= - 1834-150319-3_28: &id508 + 1834-150319-3_28: &id470 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vaKzziebzD8= - 1834-150319-4_23: &id571 + 1834-150319-4_23: &id529 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yV3ZmNebyD8= - 1834-220319-1_29: &id646 + 1834-220319-1_29: &id602 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dS5PrBbo0z8= - 1834-220319-2_20: &id722 + 1834-220319-2_20: &id676 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GxXZhIkfwT8= - 1834-220319-3_26: &id843 + 1834-220319-3_26: &id794 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JS0IycIRyz8= - 1834-220319-4_32: &id916 + 1834-220319-4_32: &id865 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KUoDmG3VzD8= - 1834-110319-6_30: - 1834-010319-1_25: *id213 - 1834-010319-3_63: *id214 - 1834-010319-4_48: *id215 + 1834-120319-1_16: + 1834-010319-1_24: *id213 + 1834-010319-3_61: *id214 + 1834-010319-4_49: *id215 1834-010319-5_23: *id216 1834-060319-1_59: *id217 - 1834-060319-2_44: *id218 - 1834-060319-3_37: *id219 - 1834-060319-4_26: *id220 + 1834-060319-2_43: *id218 + 1834-060319-3_40: *id219 + 1834-060319-4_24: *id220 1834-110319-1_24: *id221 1834-110319-2_40: *id222 1834-110319-3_30: *id223 1834-110319-5_90: *id224 - 1834-120319-1_16: &id249 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - clexH5Eozj8= - 1834-120319-2_61: &id288 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - b6SzH/exyD8= - 1834-120319-3_28: &id312 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - llgyD0SwzD8= - 1834-120319-4_52: &id358 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - jw9MxvR7xz8= - 1834-150319-1_74: &id406 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - pJNhxEaazz8= - 1834-150319-2_32: &id459 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - sWP1MJpN0D8= - 1834-150319-3_27: &id496 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LHLLTcUa0T8= - 1834-150319-4_33: &id627 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uDJeA04zzT8= - 1834-220319-1_29: &id647 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uwq72Lsm0z8= - 1834-220319-2_39: &id770 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - OVlnLBbCyT8= - 1834-220319-3_26: &id844 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ZhcbdI7OzT8= - 1834-220319-4_32: &id917 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - co1nrzbdzz8= - 1834-110319-6_31: - 1834-010319-1_24: *id225 - 1834-010319-3_58: *id226 - 1834-010319-4_45: *id227 - 1834-010319-5_19: *id228 - 1834-060319-1_91: *id229 - 1834-060319-2_42: *id230 - 1834-060319-3_33: *id231 - 1834-060319-4_23: *id232 - 1834-110319-1_25: *id233 - 1834-110319-2_104: *id234 - 1834-110319-3_28: *id235 - 1834-110319-5_78: *id236 - 1834-120319-1_17: &id262 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - hLVFOZA5xz8= - 1834-120319-2_26: &id274 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 8oexVU6Jyj8= - 1834-120319-3_52: &id327 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ml5qKbVvxj8= - 1834-120319-4_22: &id342 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - DtVZhfv5yz8= - 1834-150319-1_76: &id417 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uuJxkN7Vzz8= - 1834-150319-2_37: &id475 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - jl7hyQEo0D8= - 1834-150319-3_53: &id541 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - nCvq5cUi0D8= - 1834-150319-4_23: &id572 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - JvzpEBtQyz8= - 1834-220319-1_49: &id689 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - cqp/BpZI0z8= - 1834-220319-2_20: &id723 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - LcbtyXTWwT8= - 1834-220319-3_25: &id823 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Cm2hFQZuwD8= - 1834-220319-4_31: &id894 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - iBNDOZplwT8= - 1834-120319-1_16: - 1834-010319-1_24: *id237 - 1834-010319-3_61: *id238 - 1834-010319-4_49: *id239 - 1834-010319-5_23: *id240 - 1834-060319-1_59: *id241 - 1834-060319-2_43: *id242 - 1834-060319-3_40: *id243 - 1834-060319-4_24: *id244 - 1834-110319-1_24: *id245 - 1834-110319-2_40: *id246 - 1834-110319-3_30: *id247 - 1834-110319-5_90: *id248 - 1834-110319-6_30: *id249 - 1834-120319-2_26: &id275 + 1834-120319-2_26: &id248 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | byToHr+enD8= - 1834-120319-3_28: &id313 + 1834-120319-3_28: &id284 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LZEuIv5ckT8= - 1834-120319-4_22: &id343 + 1834-120319-4_22: &id312 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GBYYXR6qkD8= - 1834-150319-1_76: &id418 + 1834-150319-1_76: &id383 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | uAdajvvZxD8= - 1834-150319-2_32: &id460 + 1834-150319-2_32: &id424 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1Bk0ogO0tz8= - 1834-150319-3_28: &id509 + 1834-150319-3_28: &id471 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jZ4IsEvrsj8= - 1834-150319-4_33: &id628 + 1834-150319-4_33: &id584 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | IrZOpeB2vz8= - 1834-220319-1_67: &id705 + 1834-220319-1_67: &id659 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | vZs+O8UR0D8= - 1834-220319-2_39: &id771 + 1834-220319-2_39: &id723 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | n1gIoJVMuD8= - 1834-220319-3_26: &id845 + 1834-220319-3_26: &id795 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | avRVQUKmuj8= - 1834-220319-4_32: &id918 + 1834-220319-4_32: &id866 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5595,90 +5225,89 @@ _adj: - !!binary | 6kTK0JYkvT8= 1834-120319-1_17: - 1834-010319-1_25: *id250 - 1834-010319-3_58: *id251 - 1834-010319-4_48: *id252 - 1834-010319-5_19: *id253 - 1834-060319-1_91: *id254 - 1834-060319-2_42: *id255 - 1834-060319-3_33: *id256 - 1834-060319-4_23: *id257 - 1834-110319-1_23: *id258 - 1834-110319-2_104: *id259 - 1834-110319-3_28: *id260 - 1834-110319-5_78: *id261 - 1834-110319-6_31: *id262 - 1834-120319-2_78: &id299 + 1834-010319-1_25: *id225 + 1834-010319-3_58: *id226 + 1834-010319-4_48: *id227 + 1834-010319-5_19: *id228 + 1834-060319-1_91: *id229 + 1834-060319-2_42: *id230 + 1834-060319-3_33: *id231 + 1834-060319-4_23: *id232 + 1834-110319-1_23: *id233 + 1834-110319-2_104: *id234 + 1834-110319-3_28: *id235 + 1834-110319-5_78: *id236 + 1834-120319-2_78: &id271 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | AJJ77fXwuj8= - 1834-120319-3_52: &id328 + 1834-120319-3_52: &id298 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | PwtbU4rDvD8= - 1834-120319-4_52: &id359 + 1834-120319-4_52: &id327 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gvg99uiVwD8= - 1834-150319-1_74: &id407 + 1834-150319-1_117: &id363 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - A44qjAuwyT8= - 1834-150319-2_30: &id435 + jpK/4wSoyT8= + 1834-150319-2_30: &id400 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Jw3Ho0I2vD8= - 1834-150319-3_27: &id497 + 1834-150319-3_27: &id459 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6lBLLnQcyT8= - 1834-150319-4_23: &id573 + 1834-150319-4_23: &id530 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 6Qvg7Jeptj8= - 1834-220319-1_29: &id648 + 1834-220319-1_29: &id603 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | K8FccakT0j8= - 1834-220319-2_20: &id724 + 1834-220319-2_20: &id677 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | je9ascXytz8= - 1834-220319-3_25: &id824 + 1834-220319-3_25: &id775 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7V+tBuiJwD8= - 1834-220319-4_31: &id895 + 1834-220319-4_31: &id844 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5686,83 +5315,82 @@ _adj: - !!binary | w62UgFI6uT8= 1834-120319-2_26: - 1834-010319-1_24: *id263 - 1834-010319-3_58: *id264 - 1834-010319-4_48: *id265 - 1834-010319-5_19: *id266 - 1834-060319-1_59: *id267 - 1834-060319-2_42: *id268 - 1834-060319-3_33: *id269 - 1834-060319-4_23: *id270 - 1834-110319-1_24: *id271 - 1834-110319-2_40: *id272 - 1834-110319-3_29: *id273 - 1834-110319-6_31: *id274 - 1834-120319-1_16: *id275 - 1834-120319-3_28: &id314 + 1834-010319-1_24: *id237 + 1834-010319-3_58: *id238 + 1834-010319-4_48: *id239 + 1834-010319-5_19: *id240 + 1834-060319-1_59: *id241 + 1834-060319-2_42: *id242 + 1834-060319-3_33: *id243 + 1834-060319-4_23: *id244 + 1834-110319-1_24: *id245 + 1834-110319-2_40: *id246 + 1834-110319-3_29: *id247 + 1834-120319-1_16: *id248 + 1834-120319-3_28: &id285 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8BOzDL9QkT8= - 1834-120319-4_22: &id344 + 1834-120319-4_22: &id313 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 4LJ5ko/vjj8= - 1834-150319-1_74: &id408 + 1834-150319-1_117: &id364 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - R4DEbHhAxz8= - 1834-150319-2_30: &id436 + G1y2owE7xz8= + 1834-150319-2_30: &id401 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ujEYOfybvD8= - 1834-150319-3_27: &id498 + 1834-150319-3_27: &id460 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | geYB3WMQxT8= - 1834-150319-4_23: &id574 + 1834-150319-4_23: &id531 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7yIPheLYtz8= - 1834-220319-1_29: &id649 + 1834-220319-1_29: &id604 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RXXkgQqa0D8= - 1834-220319-2_39: &id772 + 1834-220319-2_39: &id724 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | C6gWgj6suD8= - 1834-220319-3_25: &id825 + 1834-220319-3_25: &id776 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | pomsPAFXwj8= - 1834-220319-4_31: &id896 + 1834-220319-4_31: &id845 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5770,83 +5398,82 @@ _adj: - !!binary | KyA+VljLuT8= 1834-120319-2_61: - 1834-010319-1_25: *id276 - 1834-010319-3_61: *id277 - 1834-010319-4_49: *id278 - 1834-010319-5_39: *id279 - 1834-060319-1_91: *id280 - 1834-060319-2_41: *id281 - 1834-060319-3_40: *id282 - 1834-060319-4_24: *id283 - 1834-110319-1_23: *id284 - 1834-110319-2_96: *id285 - 1834-110319-3_28: *id286 - 1834-110319-5_78: *id287 - 1834-110319-6_30: *id288 - 1834-120319-3_52: &id329 + 1834-010319-1_25: *id249 + 1834-010319-3_61: *id250 + 1834-010319-4_49: *id251 + 1834-010319-5_39: *id252 + 1834-060319-1_91: *id253 + 1834-060319-2_41: *id254 + 1834-060319-3_40: *id255 + 1834-060319-4_24: *id256 + 1834-110319-1_23: *id257 + 1834-110319-2_96: *id258 + 1834-110319-3_28: *id259 + 1834-110319-5_78: *id260 + 1834-120319-3_52: &id299 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5rxPrB9BpT8= - 1834-120319-4_52: &id360 + 1834-120319-4_52: &id328 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j1GH94RVoj8= - 1834-150319-1_37: &id371 + 1834-150319-1_114: &id348 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - HJUyrKrxuT8= - 1834-150319-2_37: &id476 + vwVhTn57uT8= + 1834-150319-2_37: &id439 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | NaNevMpCuT8= - 1834-150319-3_57: &id558 + 1834-150319-3_57: &id516 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | URKIqwTOtz8= - 1834-150319-4_24: &id588 + 1834-150319-4_24: &id545 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | X140FFeVwT8= - 1834-220319-1_67: &id706 + 1834-220319-1_67: &id660 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | krAY/qYzwz8= - 1834-220319-2_41: &id790 + 1834-220319-2_41: &id742 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FB4CSx7svz8= - 1834-220319-3_26: &id846 + 1834-220319-3_26: &id796 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | c4bzvC80sj8= - 1834-220319-4_33: &id935 + 1834-220319-4_33: &id883 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5854,67 +5481,67 @@ _adj: - !!binary | NQUB2HAjwD8= 1834-120319-2_78: - 1834-010319-3_63: *id289 - 1834-010319-4_45: *id290 - 1834-010319-5_23: *id291 - 1834-060319-2_43: *id292 - 1834-060319-3_35: *id293 - 1834-060319-4_26: *id294 - 1834-110319-1_25: *id295 - 1834-110319-2_45: *id296 - 1834-110319-3_30: *id297 - 1834-110319-5_90: *id298 - 1834-120319-1_17: *id299 - 1834-150319-1_76: &id419 + 1834-010319-3_63: *id261 + 1834-010319-4_45: *id262 + 1834-010319-5_23: *id263 + 1834-060319-2_43: *id264 + 1834-060319-3_35: *id265 + 1834-060319-4_26: *id266 + 1834-110319-1_25: *id267 + 1834-110319-2_45: *id268 + 1834-110319-3_30: *id269 + 1834-110319-5_90: *id270 + 1834-120319-1_17: *id271 + 1834-150319-1_76: &id384 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Au5jQHBEyD8= - 1834-150319-2_32: &id461 + 1834-150319-2_32: &id425 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ZdUblD3KwD8= - 1834-150319-3_28: &id510 + 1834-150319-3_28: &id472 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JpepV+Lpsj8= - 1834-150319-4_33: &id629 + 1834-150319-4_33: &id585 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | V4L0E0R8xD8= - 1834-220319-1_49: &id690 + 1834-220319-1_49: &id644 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | oDVZzRbR0T8= - 1834-220319-2_20: &id725 + 1834-220319-2_20: &id678 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TVysEu/4vD8= - 1834-220319-3_23: &id806 + 1834-220319-3_23: &id758 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8W3z0p9+xD8= - 1834-220319-4_32: &id919 + 1834-220319-4_32: &id867 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -5922,6 +5549,162 @@ _adj: - !!binary | PZ+vfg2qwT8= 1834-120319-3_28: + 1834-010319-1_24: *id272 + 1834-010319-3_58: *id273 + 1834-010319-4_49: *id274 + 1834-010319-5_23: *id275 + 1834-060319-1_59: *id276 + 1834-060319-2_42: *id277 + 1834-060319-3_33: *id278 + 1834-060319-4_23: *id279 + 1834-110319-1_25: *id280 + 1834-110319-2_40: *id281 + 1834-110319-3_30: *id282 + 1834-110319-5_90: *id283 + 1834-120319-1_16: *id284 + 1834-120319-2_26: *id285 + 1834-120319-4_22: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wU1340fDhz8= + 1834-150319-1_76: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +NGXkORWxT8= + 1834-150319-2_32: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ih17Wqcuj8= + 1834-150319-3_28: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mIR6Dz7bsj8= + 1834-150319-4_23: &id532 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gjNjm+rWuT8= + 1834-220319-1_29: &id605 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UJWXxMl+0D8= + 1834-220319-2_20: &id679 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KQ364Uu6uD8= + 1834-220319-3_25: &id777 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mmel5dnxwj8= + 1834-220319-4_31: &id846 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bMA5jYq9uj8= + 1834-120319-3_52: + 1834-010319-1_25: *id286 + 1834-010319-3_61: *id287 + 1834-010319-4_48: *id288 + 1834-010319-5_39: *id289 + 1834-060319-1_91: *id290 + 1834-060319-2_41: *id291 + 1834-060319-3_40: *id292 + 1834-060319-4_24: *id293 + 1834-110319-1_24: *id294 + 1834-110319-2_104: *id295 + 1834-110319-3_28: *id296 + 1834-110319-5_78: *id297 + 1834-120319-1_17: *id298 + 1834-120319-2_61: *id299 + 1834-120319-4_52: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 24fXAD7wqT8= + 1834-150319-1_114: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ta3nLkzSvD8= + 1834-150319-2_37: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zKD0jjZ/uD8= + 1834-150319-3_57: &id517 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TZAKAJRcvD8= + 1834-150319-4_33: &id586 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AtLvhC2ksj8= + 1834-220319-1_67: &id661 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AG4CEK/1xj8= + 1834-220319-2_39: &id725 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0gQ+dI1Jrj8= + 1834-220319-3_26: &id797 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fKdo6ORHtD8= + 1834-220319-4_32: &id868 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OKE4derhvD8= + 1834-120319-4_22: 1834-010319-1_24: *id300 1834-010319-3_58: *id301 1834-010319-4_49: *id302 @@ -5930,77 +5713,70 @@ _adj: 1834-060319-2_42: *id305 1834-060319-3_33: *id306 1834-060319-4_23: *id307 - 1834-110319-1_25: *id308 + 1834-110319-1_24: *id308 1834-110319-2_40: *id309 1834-110319-3_30: *id310 1834-110319-5_90: *id311 - 1834-110319-6_30: *id312 - 1834-120319-1_16: *id313 - 1834-120319-2_26: *id314 - 1834-120319-4_22: &id345 + 1834-120319-1_16: *id312 + 1834-120319-2_26: *id313 + 1834-120319-3_28: *id314 + 1834-150319-1_76: &id386 depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - wU1340fDhz8= - 1834-150319-1_76: &id420 + 1KvC7m4DxT8= + 1834-150319-2_32: &id427 depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - +NGXkORWxT8= - 1834-150319-2_32: &id462 + Rk4Wx5Bbuj8= + 1834-150319-3_28: &id474 depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 5ih17Wqcuj8= - 1834-150319-3_28: &id511 + YR1ON7U2tD8= + 1834-150319-4_23: &id533 depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - mIR6Dz7bsj8= - 1834-150319-4_23: &id575 + uq88/S5SuT8= + 1834-220319-1_29: &id606 depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - gjNjm+rWuT8= - 1834-220319-1_29: &id650 + ORY+thdz0D8= + 1834-220319-2_20: &id680 depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - UJWXxMl+0D8= - 1834-220319-2_20: &id726 + bG2Caxm6uT8= + 1834-220319-3_26: &id798 depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - KQ364Uu6uD8= - 1834-220319-3_25: &id826 + IBbxTcmQuj8= + 1834-220319-4_31: &id847 depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Mmel5dnxwj8= - 1834-220319-4_31: &id897 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - bMA5jYq9uj8= - 1834-120319-3_52: + UO31zHjOuz8= + 1834-120319-4_52: 1834-010319-1_25: *id315 1834-010319-3_61: *id316 1834-010319-4_48: *id317 @@ -6009,611 +5785,430 @@ _adj: 1834-060319-2_41: *id320 1834-060319-3_40: *id321 1834-060319-4_24: *id322 - 1834-110319-1_24: *id323 - 1834-110319-2_104: *id324 + 1834-110319-1_23: *id323 + 1834-110319-2_96: *id324 1834-110319-3_28: *id325 1834-110319-5_78: *id326 - 1834-110319-6_31: *id327 - 1834-120319-1_17: *id328 - 1834-120319-2_61: *id329 - 1834-120319-4_52: &id361 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 24fXAD7wqT8= - 1834-150319-1_37: &id372 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - gnHG2/EEvj8= - 1834-150319-2_37: &id477 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - zKD0jjZ/uD8= - 1834-150319-3_57: &id559 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - TZAKAJRcvD8= - 1834-150319-4_33: &id630 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - AtLvhC2ksj8= - 1834-220319-1_67: &id707 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - AG4CEK/1xj8= - 1834-220319-2_39: &id773 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - 0gQ+dI1Jrj8= - 1834-220319-3_26: &id847 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - fKdo6ORHtD8= - 1834-220319-4_32: &id920 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - OKE4derhvD8= - 1834-120319-4_22: - 1834-010319-1_24: *id330 - 1834-010319-3_58: *id331 - 1834-010319-4_49: *id332 - 1834-010319-5_23: *id333 - 1834-060319-1_59: *id334 - 1834-060319-2_42: *id335 - 1834-060319-3_33: *id336 - 1834-060319-4_23: *id337 - 1834-110319-1_24: *id338 - 1834-110319-2_40: *id339 - 1834-110319-3_30: *id340 - 1834-110319-5_90: *id341 - 1834-110319-6_31: *id342 - 1834-120319-1_16: *id343 - 1834-120319-2_26: *id344 - 1834-120319-3_28: *id345 - 1834-150319-1_76: &id421 + 1834-120319-1_17: *id327 + 1834-120319-2_61: *id328 + 1834-120319-3_52: *id329 + 1834-150319-1_117: &id365 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1KvC7m4DxT8= - 1834-150319-2_32: &id463 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Rk4Wx5Bbuj8= - 1834-150319-3_28: &id512 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - YR1ON7U2tD8= - 1834-150319-4_23: &id576 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uq88/S5SuT8= - 1834-220319-1_29: &id651 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ORY+thdz0D8= - 1834-220319-2_20: &id727 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - bG2Caxm6uT8= - 1834-220319-3_26: &id848 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - IBbxTcmQuj8= - 1834-220319-4_31: &id898 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - UO31zHjOuz8= - 1834-120319-4_52: - 1834-010319-1_25: *id346 - 1834-010319-3_61: *id347 - 1834-010319-4_48: *id348 - 1834-010319-5_39: *id349 - 1834-060319-1_91: *id350 - 1834-060319-2_41: *id351 - 1834-060319-3_40: *id352 - 1834-060319-4_24: *id353 - 1834-110319-1_23: *id354 - 1834-110319-2_96: *id355 - 1834-110319-3_28: *id356 - 1834-110319-5_78: *id357 - 1834-110319-6_30: *id358 - 1834-120319-1_17: *id359 - 1834-120319-2_61: *id360 - 1834-120319-3_52: *id361 - 1834-150319-1_74: &id409 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - jyTKHrgjtz8= - 1834-150319-2_37: &id478 + YvSLflQItz8= + 1834-150319-2_37: &id441 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | GiCMieJcuz8= - 1834-150319-3_53: &id542 + 1834-150319-3_53: &id500 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Kqx/Rimktz8= - 1834-150319-4_33: &id631 + 1834-150319-4_33: &id587 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dYKnGBHGsT8= - 1834-220319-1_67: &id708 + 1834-220319-1_67: &id662 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Mmn6BXeHwT8= - 1834-220319-2_39: &id774 + 1834-220319-2_39: &id726 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SMQkpEjmsD8= - 1834-220319-3_31: &id877 + 1834-220319-3_31: &id827 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | t3ko514hvj8= - 1834-220319-4_33: &id936 + 1834-220319-4_33: &id884 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RCZyuoo7vD8= - 1834-150319-1_37: - 1834-010319-3_58: *id362 - 1834-010319-4_48: *id363 - 1834-010319-5_39: *id364 - 1834-060319-2_41: *id365 - 1834-060319-3_40: *id366 - 1834-060319-4_23: *id367 - 1834-110319-1_26: *id368 - 1834-110319-2_96: *id369 - 1834-110319-3_28: *id370 - 1834-120319-2_61: *id371 - 1834-120319-3_52: *id372 - 1834-150319-2_29: &id430 + 1834-150319-1_106: + 1834-010319-1_24: *id330 + 1834-010319-3_57: *id331 + 1834-010319-5_21: *id332 + 1834-060319-2_43: *id333 + 1834-060319-3_37: *id334 + 1834-060319-4_28: *id335 + 1834-110319-1_25: *id336 + 1834-110319-2_45: *id337 + 1834-110319-3_29: *id338 + 1834-150319-2_31: &id412 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zffBX3HLxj8= - 1834-150319-3_27: &id499 + 6G+SkRalxD8= + 1834-150319-3_30: &id485 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 9jtqbVI2vj8= - 1834-150319-4_33: &id632 + ad4mwpTJsz8= + 1834-150319-4_25: &id560 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 3lQKVR/avT8= - 1834-220319-2_39: &id775 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uqmPhgzsvz8= - 1834-220319-3_26: &id849 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - zDIcCtfswD8= - 1834-220319-4_33: &id937 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - FmsFtFnTwT8= - 1834-150319-1_41: - 1834-010319-1_24: *id373 - 1834-010319-3_57: *id374 - 1834-060319-2_46: *id375 - 1834-060319-3_41: *id376 - 1834-060319-4_28: *id377 - 1834-110319-1_25: *id378 - 1834-110319-2_47: *id379 - 1834-150319-2_31: &id447 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - /er5JiajxD8= - 1834-150319-3_30: &id524 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ye/1dZHrsj8= - 1834-150319-4_26: &id613 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - svtpkUyq0T8= - 1834-220319-1_29: &id652 + B4R6qQuPzj8= + 1834-220319-1_29: &id607 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1FaxXVDpsD8= - 1834-220319-4_45: &id952 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - VoahCzXbxD8= - 1834-150319-1_44: - 1834-010319-1_25: *id380 - 1834-010319-3_63: *id381 - 1834-060319-2_44: *id382 - 1834-060319-3_37: *id383 - 1834-060319-4_26: *id384 - 1834-110319-1_24: *id385 - 1834-110319-2_40: *id386 - 1834-220319-2_21: &id740 + X81OPd+fsT8= + 1834-220319-2_29: &id706 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - d+X4TD6lyz8= - 1834-220319-3_31: &id878 + 1NM7/xiwxj8= + 1834-220319-3_31: &id828 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - L5VMf0ZPxj8= - 1834-150319-1_45: - 1834-010319-5_21: *id387 - 1834-110319-2_45: *id388 - 1834-110319-3_29: *id389 - 1834-150319-2_30: &id437 + UrikQEs1yD8= + 1834-220319-4_33: &id885 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oB1cSHSqxj8= + 1834-150319-1_114: + 1834-010319-3_58: *id339 + 1834-010319-4_48: *id340 + 1834-010319-5_39: *id341 + 1834-060319-2_42: *id342 + 1834-060319-3_40: *id343 + 1834-060319-4_23: *id344 + 1834-110319-1_26: *id345 + 1834-110319-2_96: *id346 + 1834-110319-3_28: *id347 + 1834-120319-2_61: *id348 + 1834-120319-3_52: *id349 + 1834-150319-2_29: &id395 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ff80MOeQ0j8= - 1834-150319-3_28: &id513 + BDYagIp7xj8= + 1834-150319-3_27: &id461 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - dRmri+kS0T8= - 1834-150319-4_25: &id603 + bLAp1ovAvD8= + 1834-150319-4_33: &id588 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1ATxH2iOyj8= - 1834-220319-2_41: &id791 + PHJaVTVNvD8= + 1834-220319-2_39: &id727 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - p3tVZFXOwz8= - 1834-220319-3_23: &id807 + rFPuuJTgvj8= + 1834-220319-3_23: &id759 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1HHkbvT7yj8= - 1834-220319-4_32: &id921 + rAEYPJ0SyT8= + 1834-220319-4_32: &id869 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - xjTe1W+KyT8= + q3ZGi/dJxj8= + 1834-150319-1_116: + 1834-110319-2_86: *id350 + 1834-150319-2_30: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vFwKG1pt1T8= + 1834-150319-3_45: &id488 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e3NQdrlDpj8= + 1834-220319-1_36: &id618 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yAwsrscVtj8= + 1834-220319-2_21: &id693 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UupcDArF0j8= + 1834-150319-1_117: + 1834-010319-1_25: *id351 + 1834-010319-3_63: *id352 + 1834-010319-4_45: *id353 + 1834-010319-5_19: *id354 + 1834-060319-1_91: *id355 + 1834-060319-2_41: *id356 + 1834-060319-3_33: *id357 + 1834-060319-4_26: *id358 + 1834-110319-1_23: *id359 + 1834-110319-2_41: *id360 + 1834-110319-3_27: *id361 + 1834-110319-5_78: *id362 + 1834-120319-1_17: *id363 + 1834-120319-2_26: *id364 + 1834-120319-4_52: *id365 + 1834-150319-2_37: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kP64ei2dxD8= + 1834-150319-3_53: &id501 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1sUu3SqqqD8= + 1834-150319-4_23: &id534 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KMyDh7juxj8= + 1834-220319-1_67: &id663 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VKEzjp+CvT8= + 1834-220319-2_20: &id681 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +TehXdlRyj8= + 1834-220319-3_25: &id778 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ve4C0MNPzT8= + 1834-220319-4_31: &id848 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v1QEC0/Nyj8= 1834-150319-1_47: - 1834-010319-3_60: *id390 - 1834-060319-1_59: *id391 - 1834-060319-4_29: *id392 - 1834-110319-1_30: *id393 - 1834-110319-2_86: *id394 - 1834-150319-2_42: &id486 + 1834-010319-3_60: *id366 + 1834-060319-1_59: *id367 + 1834-060319-2_46: *id368 + 1834-060319-3_41: *id369 + 1834-060319-4_29: *id370 + 1834-110319-1_30: *id371 + 1834-110319-2_47: *id372 + 1834-150319-2_42: &id449 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MQ2FRFHXyD8= - 1834-150319-3_55: &id549 + 1834-150319-3_55: &id507 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | b0pIYNfIrT8= - 1834-220319-1_37: &id675 + 1834-150319-4_26: &id570 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fXvXe/WJ0j8= + 1834-220319-1_37: &id630 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | RZg9Vfl4xD8= - 1834-150319-1_56: - 1834-150319-3_45: &id528 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - ez0NtssgrT8= - 1834-150319-1_74: - 1834-010319-3_61: *id395 - 1834-010319-4_45: *id396 - 1834-010319-5_19: *id397 - 1834-060319-1_91: *id398 - 1834-060319-2_42: *id399 - 1834-060319-3_33: *id400 - 1834-060319-4_24: *id401 - 1834-110319-1_23: *id402 - 1834-110319-2_41: *id403 - 1834-110319-3_27: *id404 - 1834-110319-5_78: *id405 - 1834-110319-6_30: *id406 - 1834-120319-1_17: *id407 - 1834-120319-2_26: *id408 - 1834-120319-4_52: *id409 - 1834-150319-2_37: &id479 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - yd2a2jeJxD8= - 1834-150319-3_53: &id543 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - eGJotSz+pz8= - 1834-150319-4_23: &id577 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - Jnyi62L1xj8= - 1834-220319-1_67: &id709 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uNjJ0meFvT8= - 1834-220319-2_20: &id728 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - gjiSWatRyj8= - 1834-220319-3_25: &id827 + 1834-220319-3_28: &id812 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - dKTCPmlTzT8= - 1834-220319-4_31: &id899 + f2fRkLfDyT8= + 1834-220319-4_45: &id900 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ipdAUhDPyj8= + saQm6zYayj8= 1834-150319-1_76: - 1834-010319-4_49: *id410 - 1834-010319-5_23: *id411 - 1834-060319-2_43: *id412 - 1834-060319-3_35: *id413 - 1834-110319-2_104: *id414 - 1834-110319-3_30: *id415 - 1834-110319-5_90: *id416 - 1834-110319-6_31: *id417 - 1834-120319-1_16: *id418 - 1834-120319-2_78: *id419 - 1834-120319-3_28: *id420 - 1834-120319-4_22: *id421 - 1834-150319-2_32: &id464 + 1834-010319-3_61: *id373 + 1834-010319-4_49: *id374 + 1834-010319-5_23: *id375 + 1834-060319-2_44: *id376 + 1834-060319-3_35: *id377 + 1834-060319-4_24: *id378 + 1834-110319-1_24: *id379 + 1834-110319-2_40: *id380 + 1834-110319-3_30: *id381 + 1834-110319-5_90: *id382 + 1834-120319-1_16: *id383 + 1834-120319-2_78: *id384 + 1834-120319-3_28: *id385 + 1834-120319-4_22: *id386 + 1834-150319-2_32: &id428 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | I2QFRzKBwj8= - 1834-150319-3_57: &id560 + 1834-150319-3_57: &id518 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | bbSSez38uj8= - 1834-150319-4_24: &id589 + 1834-150319-4_24: &id546 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2gSKx8DPwz8= - 1834-220319-2_29: &id753 + 1834-220319-1_49: &id645 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XfyKA/2fxz8= + 1834-220319-2_41: &id743 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - dyt6utqYvT8= - 1834-220319-3_28: &id862 + mjw3tieUvD8= + 1834-220319-3_26: &id799 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ZvsPjl85vD8= - 1834-220319-4_46: &id970 + g3noAB2fuz8= + 1834-220319-4_46: &id918 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7PSdGErbqT8= - 1834-150319-1_77: - 1834-150319-3_49: &id529 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - uX/250Y0wz8= - 1834-220319-1_49: &id691 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - TCoceKhBuT8= - 1834-150319-1_92: - 1834-150319-3_44: &id526 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - tXf0Jh67rz8= - 1834-220319-1_36: &id663 - depth_delta: 0.0 - time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] - weight: !!python/object/apply:numpy.core.multiarray.scalar - - *id001 - - !!binary | - lN6kBz7ItD8= 1834-150319-2_29: - 1834-010319-3_63: *id422 - 1834-010319-5_19: *id423 - 1834-060319-2_41: *id424 - 1834-060319-3_40: *id425 - 1834-060319-4_26: *id426 - 1834-110319-1_24: *id427 - 1834-110319-2_86: *id428 - 1834-110319-3_27: *id429 - 1834-150319-1_37: *id430 - 1834-150319-3_53: &id544 + 1834-010319-3_63: *id387 + 1834-010319-5_19: *id388 + 1834-060319-2_41: *id389 + 1834-060319-3_40: *id390 + 1834-060319-4_26: *id391 + 1834-110319-1_24: *id392 + 1834-110319-2_86: *id393 + 1834-110319-3_27: *id394 + 1834-150319-1_114: *id395 + 1834-150319-3_53: &id502 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | gsD495gSwz8= - 1834-150319-4_26: &id614 + 1834-150319-4_26: &id571 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SDB/kj/IxT8= - 1834-220319-1_29: &id653 + 1834-220319-1_29: &id608 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | xrQ1+SdYzz8= - 1834-220319-3_31: &id879 + 1834-220319-3_31: &id829 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | VCEF3bWMwj8= - 1834-220319-4_46: &id971 + 1834-220319-4_46: &id919 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6621,42 +6216,42 @@ _adj: - !!binary | 6UrzV54NyD8= 1834-150319-2_30: - 1834-010319-4_45: *id431 - 1834-010319-5_21: *id432 - 1834-110319-2_40: *id433 - 1834-110319-5_78: *id434 - 1834-120319-1_17: *id435 - 1834-120319-2_26: *id436 - 1834-150319-1_45: *id437 - 1834-150319-3_28: &id514 + 1834-010319-4_45: *id396 + 1834-010319-5_21: *id397 + 1834-110319-2_40: *id398 + 1834-110319-5_78: *id399 + 1834-120319-1_17: *id400 + 1834-120319-2_26: *id401 + 1834-150319-1_116: *id402 + 1834-150319-3_28: &id475 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j1/k7pP1wj8= - 1834-150319-4_23: &id578 + 1834-150319-4_23: &id535 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | p9RCh7sIvj8= - 1834-220319-2_20: &id729 + 1834-220319-2_20: &id682 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8FHZ/6LHwT8= - 1834-220319-3_25: &id828 + 1834-220319-3_25: &id779 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cJ3hWPJ6xz8= - 1834-220319-4_31: &id900 + 1834-220319-4_31: &id849 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6664,45 +6259,45 @@ _adj: - !!binary | dy5GPMxKwz8= 1834-150319-2_31: - 1834-010319-1_25: *id438 - 1834-010319-3_57: *id439 - 1834-060319-1_59: *id440 - 1834-060319-2_44: *id441 - 1834-060319-3_37: *id442 - 1834-060319-4_29: *id443 - 1834-110319-1_30: *id444 - 1834-110319-2_47: *id445 - 1834-110319-3_29: *id446 - 1834-150319-1_41: *id447 - 1834-150319-3_44: &id527 + 1834-010319-1_25: *id403 + 1834-010319-3_57: *id404 + 1834-060319-1_59: *id405 + 1834-060319-2_44: *id406 + 1834-060319-3_37: *id407 + 1834-060319-4_29: *id408 + 1834-110319-1_30: *id409 + 1834-110319-2_47: *id410 + 1834-110319-3_29: *id411 + 1834-150319-1_106: *id412 + 1834-150319-3_44: &id487 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | KvRtxn3jxD8= - 1834-220319-1_49: &id692 + 1834-220319-1_49: &id646 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | lEGxrD4avj8= - 1834-220319-2_29: &id754 + 1834-220319-2_29: &id707 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Slbkdl+AsD8= - 1834-220319-3_28: &id863 + 1834-220319-3_28: &id813 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 1MHdnzRqqz8= - 1834-220319-4_45: &id953 + 1834-220319-4_45: &id901 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6710,59 +6305,58 @@ _adj: - !!binary | 8ctMsJKRsT8= 1834-150319-2_32: - 1834-010319-1_24: *id448 - 1834-010319-3_61: *id449 - 1834-010319-4_49: *id450 - 1834-010319-5_23: *id451 - 1834-060319-2_43: *id452 - 1834-060319-3_35: *id453 - 1834-060319-4_24: *id454 - 1834-110319-1_25: *id455 - 1834-110319-2_45: *id456 - 1834-110319-3_30: *id457 - 1834-110319-5_90: *id458 - 1834-110319-6_30: *id459 - 1834-120319-1_16: *id460 - 1834-120319-2_78: *id461 - 1834-120319-3_28: *id462 - 1834-120319-4_22: *id463 - 1834-150319-1_76: *id464 - 1834-150319-3_57: &id561 + 1834-010319-1_24: *id413 + 1834-010319-3_61: *id414 + 1834-010319-4_49: *id415 + 1834-010319-5_23: *id416 + 1834-060319-2_43: *id417 + 1834-060319-3_35: *id418 + 1834-060319-4_24: *id419 + 1834-110319-1_25: *id420 + 1834-110319-2_45: *id421 + 1834-110319-3_30: *id422 + 1834-110319-5_90: *id423 + 1834-120319-1_16: *id424 + 1834-120319-2_78: *id425 + 1834-120319-3_28: *id426 + 1834-120319-4_22: *id427 + 1834-150319-1_76: *id428 + 1834-150319-3_57: &id519 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | sJKwDSpEwD8= - 1834-150319-4_25: &id604 + 1834-150319-4_25: &id561 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | dKWswFUrwj8= - 1834-220319-1_67: &id710 + 1834-220319-1_67: &id664 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | LhqldV7szD8= - 1834-220319-2_41: &id792 + 1834-220319-2_41: &id744 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | cYk80c7/wD8= - 1834-220319-3_23: &id808 + 1834-220319-3_23: &id760 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MWQ4BqsZtj8= - 1834-220319-4_32: &id922 + 1834-220319-4_32: &id870 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6770,50 +6364,49 @@ _adj: - !!binary | rN2HIhR0rD8= 1834-150319-2_37: - 1834-010319-3_58: *id465 - 1834-010319-4_48: *id466 - 1834-010319-5_39: *id467 - 1834-060319-1_91: *id468 - 1834-060319-2_42: *id469 - 1834-060319-3_33: *id470 - 1834-060319-4_23: *id471 - 1834-110319-1_23: *id472 - 1834-110319-2_104: *id473 - 1834-110319-3_28: *id474 - 1834-110319-6_31: *id475 - 1834-120319-2_61: *id476 - 1834-120319-3_52: *id477 - 1834-120319-4_52: *id478 - 1834-150319-1_74: *id479 - 1834-150319-3_27: &id500 + 1834-010319-3_58: *id429 + 1834-010319-4_48: *id430 + 1834-010319-5_39: *id431 + 1834-060319-1_91: *id432 + 1834-060319-2_42: *id433 + 1834-060319-3_33: *id434 + 1834-060319-4_23: *id435 + 1834-110319-1_23: *id436 + 1834-110319-2_104: *id437 + 1834-110319-3_28: *id438 + 1834-120319-2_61: *id439 + 1834-120319-3_52: *id440 + 1834-120319-4_52: *id441 + 1834-150319-1_117: *id442 + 1834-150319-3_27: &id462 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | obYiwaOfxD8= - 1834-150319-4_33: &id633 + 1834-150319-4_33: &id589 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | yh5aD4qZtj8= - 1834-220319-1_36: &id664 + 1834-220319-1_36: &id619 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | l+/6iMl00j8= - 1834-220319-2_39: &id776 + 1834-220319-2_39: &id728 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | aK54CCIxuT8= - 1834-220319-3_26: &id850 + 1834-220319-3_26: &id800 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6821,42 +6414,42 @@ _adj: - !!binary | WoTWpVwywD8= 1834-150319-2_42: - 1834-010319-3_60: *id480 - 1834-060319-2_46: *id481 - 1834-060319-3_41: *id482 - 1834-060319-4_28: *id483 - 1834-110319-1_26: *id484 - 1834-110319-2_41: *id485 - 1834-150319-1_47: *id486 - 1834-150319-3_55: &id550 + 1834-010319-3_60: *id443 + 1834-060319-2_46: *id444 + 1834-060319-3_41: *id445 + 1834-060319-4_28: *id446 + 1834-110319-1_26: *id447 + 1834-110319-2_41: *id448 + 1834-150319-1_47: *id449 + 1834-150319-3_55: &id508 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iLa23VzMyD8= - 1834-150319-4_24: &id590 + 1834-150319-4_24: &id547 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7EbfxX++wj8= - 1834-220319-1_37: &id676 + 1834-220319-1_37: &id631 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 7o8C5TPAwj8= - 1834-220319-2_21: &id741 + 1834-220319-2_21: &id694 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | q/AMc+3Vxj8= - 1834-220319-4_33: &id938 + 1834-220319-4_33: &id886 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6864,42 +6457,41 @@ _adj: - !!binary | qf7gnKJovj8= 1834-150319-3_27: - 1834-010319-3_58: *id487 - 1834-010319-4_48: *id488 - 1834-010319-5_21: *id489 - 1834-060319-2_42: *id490 - 1834-060319-3_40: *id491 - 1834-060319-4_23: *id492 - 1834-110319-1_24: *id493 - 1834-110319-2_104: *id494 - 1834-110319-3_28: *id495 - 1834-110319-6_30: *id496 - 1834-120319-1_17: *id497 - 1834-120319-2_26: *id498 - 1834-150319-1_37: *id499 - 1834-150319-2_37: *id500 - 1834-150319-4_33: &id634 + 1834-010319-3_58: *id450 + 1834-010319-4_48: *id451 + 1834-010319-5_21: *id452 + 1834-060319-2_42: *id453 + 1834-060319-3_40: *id454 + 1834-060319-4_23: *id455 + 1834-110319-1_24: *id456 + 1834-110319-2_104: *id457 + 1834-110319-3_28: *id458 + 1834-120319-1_17: *id459 + 1834-120319-2_26: *id460 + 1834-150319-1_114: *id461 + 1834-150319-2_37: *id462 + 1834-150319-4_33: &id590 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zSLPkYZhvT8= - 1834-220319-2_39: &id777 + 1834-220319-2_39: &id729 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jPq1GlpIvj8= - 1834-220319-3_23: &id809 + 1834-220319-3_23: &id761 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | mOvQZizNyD8= - 1834-220319-4_32: &id923 + 1834-220319-4_32: &id871 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6907,42 +6499,41 @@ _adj: - !!binary | byyY1P9/xj8= 1834-150319-3_28: - 1834-010319-3_63: *id501 - 1834-010319-4_45: *id502 - 1834-010319-5_19: *id503 - 1834-060319-2_44: *id504 - 1834-060319-3_33: *id505 - 1834-110319-2_40: *id506 - 1834-110319-3_30: *id507 - 1834-110319-5_90: *id508 - 1834-120319-1_16: *id509 - 1834-120319-2_78: *id510 - 1834-120319-3_28: *id511 - 1834-120319-4_22: *id512 - 1834-150319-1_45: *id513 - 1834-150319-2_30: *id514 - 1834-150319-4_23: &id579 + 1834-010319-3_63: *id463 + 1834-010319-4_45: *id464 + 1834-010319-5_19: *id465 + 1834-060319-2_44: *id466 + 1834-060319-3_33: *id467 + 1834-110319-2_40: *id468 + 1834-110319-3_30: *id469 + 1834-110319-5_90: *id470 + 1834-120319-1_16: *id471 + 1834-120319-2_78: *id472 + 1834-120319-3_28: *id473 + 1834-120319-4_22: *id474 + 1834-150319-2_30: *id475 + 1834-150319-4_23: &id536 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | njZ1GYbXwT8= - 1834-220319-2_20: &id730 + 1834-220319-2_20: &id683 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XJ25p79tvj8= - 1834-220319-3_25: &id829 + 1834-220319-3_25: &id780 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YYyPC65mxT8= - 1834-220319-4_31: &id901 + 1834-220319-4_31: &id850 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6950,38 +6541,38 @@ _adj: - !!binary | oJnMeHM+wD8= 1834-150319-3_30: - 1834-010319-1_24: *id515 - 1834-010319-3_57: *id516 - 1834-060319-1_59: *id517 - 1834-060319-2_46: *id518 - 1834-060319-3_41: *id519 - 1834-060319-4_28: *id520 - 1834-110319-1_26: *id521 - 1834-110319-2_45: *id522 - 1834-110319-3_27: *id523 - 1834-150319-1_41: *id524 - 1834-150319-4_25: &id605 + 1834-010319-1_24: *id476 + 1834-010319-3_57: *id477 + 1834-060319-1_59: *id478 + 1834-060319-2_46: *id479 + 1834-060319-3_41: *id480 + 1834-060319-4_28: *id481 + 1834-110319-1_26: *id482 + 1834-110319-2_45: *id483 + 1834-110319-3_27: *id484 + 1834-150319-1_106: *id485 + 1834-150319-4_25: &id562 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | ICK1AOoOyj8= - 1834-220319-1_29: &id654 + 1834-220319-1_29: &id609 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0GMV72NisD8= - 1834-220319-3_31: &id880 + 1834-220319-3_31: &id830 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | /jLq7I55xT8= - 1834-220319-4_45: &id954 + 1834-220319-4_45: &id902 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -6989,17 +6580,16 @@ _adj: - !!binary | Logl8CmExz8= 1834-150319-3_44: - 1834-110319-2_86: *id525 - 1834-150319-1_92: *id526 - 1834-150319-2_31: *id527 - 1834-220319-1_37: &id677 + 1834-110319-2_86: *id486 + 1834-150319-2_31: *id487 + 1834-220319-1_37: &id632 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OFq7BbnpvD8= - 1834-220319-2_29: &id755 + 1834-220319-2_29: &id708 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7007,8 +6597,8 @@ _adj: - !!binary | SoHCxaM5yD8= 1834-150319-3_45: - 1834-150319-1_56: *id528 - 1834-220319-1_36: &id665 + 1834-150319-1_116: *id488 + 1834-220319-1_36: &id620 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7016,8 +6606,7 @@ _adj: - !!binary | vZOLGiMOvT8= 1834-150319-3_49: - 1834-150319-1_77: *id529 - 1834-220319-1_49: &id693 + 1834-220319-1_49: &id647 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7025,50 +6614,49 @@ _adj: - !!binary | P7A1OPUxwz8= 1834-150319-3_53: - 1834-010319-1_25: *id530 - 1834-010319-3_61: *id531 - 1834-010319-5_39: *id532 - 1834-060319-1_91: *id533 - 1834-060319-2_41: *id534 - 1834-060319-3_37: *id535 - 1834-060319-4_24: *id536 - 1834-110319-1_23: *id537 - 1834-110319-2_41: *id538 - 1834-110319-3_29: *id539 - 1834-110319-5_78: *id540 - 1834-110319-6_31: *id541 - 1834-120319-4_52: *id542 - 1834-150319-1_74: *id543 - 1834-150319-2_29: *id544 - 1834-150319-4_26: &id615 + 1834-010319-1_25: *id489 + 1834-010319-3_61: *id490 + 1834-010319-5_39: *id491 + 1834-060319-1_91: *id492 + 1834-060319-2_41: *id493 + 1834-060319-3_37: *id494 + 1834-060319-4_24: *id495 + 1834-110319-1_23: *id496 + 1834-110319-2_41: *id497 + 1834-110319-3_29: *id498 + 1834-110319-5_78: *id499 + 1834-120319-4_52: *id500 + 1834-150319-1_117: *id501 + 1834-150319-2_29: *id502 + 1834-150319-4_26: &id572 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MprvaHhTyD8= - 1834-220319-1_67: &id711 + 1834-220319-1_67: &id665 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | JETdiKtEwD8= - 1834-220319-2_21: &id742 + 1834-220319-2_21: &id695 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kU4lytoexz8= - 1834-220319-3_28: &id864 + 1834-220319-3_28: &id814 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | DXybvsrjxD8= - 1834-220319-4_33: &id939 + 1834-220319-4_33: &id887 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7076,46 +6664,46 @@ _adj: - !!binary | P0f1fuOxwz8= 1834-150319-3_55: - 1834-010319-3_60: *id545 - 1834-060319-4_29: *id546 - 1834-110319-1_30: *id547 - 1834-110319-2_47: *id548 - 1834-150319-1_47: *id549 - 1834-150319-2_42: *id550 + 1834-010319-3_60: *id503 + 1834-060319-4_29: *id504 + 1834-110319-1_30: *id505 + 1834-110319-2_47: *id506 + 1834-150319-1_47: *id507 + 1834-150319-2_42: *id508 1834-150319-3_57: - 1834-010319-4_49: *id551 - 1834-010319-5_23: *id552 - 1834-060319-2_43: *id553 - 1834-060319-3_35: *id554 - 1834-060319-4_26: *id555 - 1834-110319-1_25: *id556 - 1834-110319-2_96: *id557 - 1834-120319-2_61: *id558 - 1834-120319-3_52: *id559 - 1834-150319-1_76: *id560 - 1834-150319-2_32: *id561 - 1834-150319-4_24: &id591 + 1834-010319-4_49: *id509 + 1834-010319-5_23: *id510 + 1834-060319-2_43: *id511 + 1834-060319-3_35: *id512 + 1834-060319-4_26: *id513 + 1834-110319-1_25: *id514 + 1834-110319-2_96: *id515 + 1834-120319-2_61: *id516 + 1834-120319-3_52: *id517 + 1834-150319-1_76: *id518 + 1834-150319-2_32: *id519 + 1834-150319-4_24: &id548 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | kIkBlAKFxT8= - 1834-220319-2_41: &id793 + 1834-220319-2_41: &id745 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | naP7BsJhwT8= - 1834-220319-3_26: &id851 + 1834-220319-3_26: &id801 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | j1+CPCDrsT8= - 1834-220319-4_46: &id972 + 1834-220319-4_46: &id920 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7123,46 +6711,45 @@ _adj: - !!binary | cSxTOWHKvj8= 1834-150319-4_23: - 1834-010319-3_63: *id562 - 1834-010319-4_48: *id563 - 1834-010319-5_19: *id564 - 1834-060319-2_42: *id565 - 1834-060319-3_33: *id566 - 1834-060319-4_23: *id567 - 1834-110319-1_24: *id568 - 1834-110319-2_104: *id569 - 1834-110319-3_28: *id570 - 1834-110319-5_90: *id571 - 1834-110319-6_31: *id572 - 1834-120319-1_17: *id573 - 1834-120319-2_26: *id574 - 1834-120319-3_28: *id575 - 1834-120319-4_22: *id576 - 1834-150319-1_74: *id577 - 1834-150319-2_30: *id578 - 1834-150319-3_28: *id579 - 1834-220319-1_36: &id666 + 1834-010319-3_63: *id520 + 1834-010319-4_48: *id521 + 1834-010319-5_19: *id522 + 1834-060319-2_42: *id523 + 1834-060319-3_33: *id524 + 1834-060319-4_23: *id525 + 1834-110319-1_24: *id526 + 1834-110319-2_104: *id527 + 1834-110319-3_28: *id528 + 1834-110319-5_90: *id529 + 1834-120319-1_17: *id530 + 1834-120319-2_26: *id531 + 1834-120319-3_28: *id532 + 1834-120319-4_22: *id533 + 1834-150319-1_117: *id534 + 1834-150319-2_30: *id535 + 1834-150319-3_28: *id536 + 1834-220319-1_36: &id621 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | SELJEFSt0j8= - 1834-220319-2_20: &id731 + 1834-220319-2_20: &id684 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | zO86ajO8wD8= - 1834-220319-3_25: &id830 + 1834-220319-3_25: &id781 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Bwiu+OgMxj8= - 1834-220319-4_31: &id902 + 1834-220319-4_31: &id851 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7170,40 +6757,40 @@ _adj: - !!binary | aOzbuVWgwT8= 1834-150319-4_24: - 1834-010319-1_24: *id580 - 1834-010319-3_60: *id581 - 1834-060319-2_43: *id582 - 1834-060319-3_35: *id583 - 1834-060319-4_24: *id584 - 1834-110319-1_25: *id585 - 1834-110319-2_41: *id586 - 1834-110319-3_30: *id587 - 1834-120319-2_61: *id588 - 1834-150319-1_76: *id589 - 1834-150319-2_42: *id590 - 1834-150319-3_57: *id591 - 1834-220319-1_37: &id678 + 1834-010319-1_24: *id537 + 1834-010319-3_60: *id538 + 1834-060319-2_43: *id539 + 1834-060319-3_35: *id540 + 1834-060319-4_24: *id541 + 1834-110319-1_25: *id542 + 1834-110319-2_41: *id543 + 1834-110319-3_30: *id544 + 1834-120319-2_61: *id545 + 1834-150319-1_76: *id546 + 1834-150319-2_42: *id547 + 1834-150319-3_57: *id548 + 1834-220319-1_37: &id633 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | YKxJYFmcyD8= - 1834-220319-2_29: &id756 + 1834-220319-2_29: &id709 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 90DZ5IimxT8= - 1834-220319-3_31: &id881 + 1834-220319-3_31: &id831 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | o0dnKd8Iuz8= - 1834-220319-4_45: &id955 + 1834-220319-4_45: &id903 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7211,42 +6798,42 @@ _adj: - !!binary | eGqVKm48wz8= 1834-150319-4_25: - 1834-010319-1_25: *id592 - 1834-010319-3_61: *id593 - 1834-010319-4_45: *id594 - 1834-010319-5_23: *id595 - 1834-060319-1_59: *id596 - 1834-060319-2_44: *id597 - 1834-060319-3_37: *id598 - 1834-060319-4_29: *id599 - 1834-110319-1_26: *id600 - 1834-110319-2_45: *id601 - 1834-110319-3_29: *id602 - 1834-150319-1_45: *id603 - 1834-150319-2_32: *id604 - 1834-150319-3_30: *id605 - 1834-220319-1_29: &id655 + 1834-010319-1_25: *id549 + 1834-010319-3_61: *id550 + 1834-010319-4_45: *id551 + 1834-010319-5_23: *id552 + 1834-060319-1_59: *id553 + 1834-060319-2_44: *id554 + 1834-060319-3_37: *id555 + 1834-060319-4_29: *id556 + 1834-110319-1_26: *id557 + 1834-110319-2_45: *id558 + 1834-110319-3_29: *id559 + 1834-150319-1_106: *id560 + 1834-150319-2_32: *id561 + 1834-150319-3_30: *id562 + 1834-220319-1_29: &id610 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 8W3W7PD1yz8= - 1834-220319-2_41: &id794 + 1834-220319-2_41: &id746 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | UKFYiwfswj8= - 1834-220319-3_23: &id810 + 1834-220319-3_23: &id762 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 0Ak7ZIxwwD8= - 1834-220319-4_32: &id924 + 1834-220319-4_32: &id872 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7254,38 +6841,38 @@ _adj: - !!binary | M+n/xcdkwD8= 1834-150319-4_26: - 1834-010319-3_57: *id606 - 1834-010319-5_21: *id607 - 1834-060319-2_46: *id608 - 1834-060319-3_41: *id609 - 1834-060319-4_28: *id610 - 1834-110319-1_30: *id611 - 1834-110319-2_40: *id612 - 1834-150319-1_41: *id613 - 1834-150319-2_29: *id614 - 1834-150319-3_53: *id615 - 1834-220319-1_49: &id694 + 1834-010319-3_57: *id563 + 1834-010319-5_21: *id564 + 1834-060319-2_46: *id565 + 1834-060319-3_41: *id566 + 1834-060319-4_28: *id567 + 1834-110319-1_30: *id568 + 1834-110319-2_40: *id569 + 1834-150319-1_47: *id570 + 1834-150319-2_29: *id571 + 1834-150319-3_53: *id572 + 1834-220319-1_49: &id648 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | m4r5ketA0T8= - 1834-220319-2_21: &id743 + 1834-220319-2_21: &id696 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | P0qS96Odzz8= - 1834-220319-3_28: &id865 + 1834-220319-3_28: &id815 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | jnvc0eSWzT8= - 1834-220319-4_46: &id973 + 1834-220319-4_46: &id921 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7293,47 +6880,46 @@ _adj: - !!binary | 1D3tDfyZzD8= 1834-150319-4_33: - 1834-010319-3_58: *id616 - 1834-010319-4_49: *id617 - 1834-010319-5_39: *id618 - 1834-060319-1_91: *id619 - 1834-060319-2_41: *id620 - 1834-060319-3_40: *id621 - 1834-060319-4_26: *id622 - 1834-110319-1_23: *id623 - 1834-110319-2_96: *id624 - 1834-110319-3_27: *id625 - 1834-110319-5_78: *id626 - 1834-110319-6_30: *id627 - 1834-120319-1_16: *id628 - 1834-120319-2_78: *id629 - 1834-120319-3_52: *id630 - 1834-120319-4_52: *id631 - 1834-150319-1_37: *id632 - 1834-150319-2_37: *id633 - 1834-150319-3_27: *id634 - 1834-220319-1_67: &id712 + 1834-010319-3_58: *id573 + 1834-010319-4_49: *id574 + 1834-010319-5_39: *id575 + 1834-060319-1_91: *id576 + 1834-060319-2_41: *id577 + 1834-060319-3_40: *id578 + 1834-060319-4_26: *id579 + 1834-110319-1_23: *id580 + 1834-110319-2_96: *id581 + 1834-110319-3_27: *id582 + 1834-110319-5_78: *id583 + 1834-120319-1_16: *id584 + 1834-120319-2_78: *id585 + 1834-120319-3_52: *id586 + 1834-120319-4_52: *id587 + 1834-150319-1_114: *id588 + 1834-150319-2_37: *id589 + 1834-150319-3_27: *id590 + 1834-220319-1_67: &id666 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FvXKw+P4yT8= - 1834-220319-2_39: &id778 + 1834-220319-2_39: &id730 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | qc5DLDI2sz8= - 1834-220319-3_26: &id852 + 1834-220319-3_26: &id802 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Se+MzDBWtT8= - 1834-220319-4_33: &id940 + 1834-220319-4_33: &id888 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7341,42 +6927,41 @@ _adj: - !!binary | aDT8oZw6wz8= 1834-220319-1_29: - 1834-010319-1_25: *id635 - 1834-010319-3_57: *id636 - 1834-010319-4_45: *id637 - 1834-010319-5_19: *id638 - 1834-060319-1_59: *id639 - 1834-060319-2_46: *id640 - 1834-060319-3_41: *id641 - 1834-060319-4_29: *id642 - 1834-110319-1_26: *id643 - 1834-110319-2_47: *id644 - 1834-110319-3_27: *id645 - 1834-110319-5_90: *id646 - 1834-110319-6_30: *id647 - 1834-120319-1_17: *id648 - 1834-120319-2_26: *id649 - 1834-120319-3_28: *id650 - 1834-120319-4_22: *id651 - 1834-150319-1_41: *id652 - 1834-150319-2_29: *id653 - 1834-150319-3_30: *id654 - 1834-150319-4_25: *id655 - 1834-220319-2_41: &id795 + 1834-010319-1_25: *id591 + 1834-010319-3_57: *id592 + 1834-010319-4_45: *id593 + 1834-010319-5_19: *id594 + 1834-060319-1_59: *id595 + 1834-060319-2_46: *id596 + 1834-060319-3_41: *id597 + 1834-060319-4_29: *id598 + 1834-110319-1_26: *id599 + 1834-110319-2_47: *id600 + 1834-110319-3_27: *id601 + 1834-110319-5_90: *id602 + 1834-120319-1_17: *id603 + 1834-120319-2_26: *id604 + 1834-120319-3_28: *id605 + 1834-120319-4_22: *id606 + 1834-150319-1_106: *id607 + 1834-150319-2_29: *id608 + 1834-150319-3_30: *id609 + 1834-150319-4_25: *id610 + 1834-220319-2_41: &id747 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | tanfcRgVyz8= - 1834-220319-3_31: &id882 + 1834-220319-3_31: &id832 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | MVPcIlqrxj8= - 1834-220319-4_32: &id925 + 1834-220319-4_32: &id873 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7384,32 +6969,32 @@ _adj: - !!binary | vdvB44NHyz8= 1834-220319-1_36: - 1834-010319-3_63: *id656 - 1834-010319-5_21: *id657 - 1834-060319-2_42: *id658 - 1834-060319-3_33: *id659 - 1834-060319-4_23: *id660 - 1834-110319-1_30: *id661 - 1834-110319-2_96: *id662 - 1834-150319-1_92: *id663 - 1834-150319-2_37: *id664 - 1834-150319-3_45: *id665 - 1834-150319-4_23: *id666 - 1834-220319-2_20: &id732 + 1834-010319-3_63: *id611 + 1834-010319-5_21: *id612 + 1834-060319-2_42: *id613 + 1834-060319-3_33: *id614 + 1834-060319-4_23: *id615 + 1834-110319-1_30: *id616 + 1834-110319-2_96: *id617 + 1834-150319-1_116: *id618 + 1834-150319-2_37: *id619 + 1834-150319-3_45: *id620 + 1834-150319-4_23: *id621 + 1834-220319-2_20: &id685 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | OkH6xtMb0z8= - 1834-220319-3_25: &id831 + 1834-220319-3_25: &id782 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | iJjDQHXX0z8= - 1834-220319-4_31: &id903 + 1834-220319-4_31: &id852 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7417,33 +7002,33 @@ _adj: - !!binary | TwoCM2Qy0z8= 1834-220319-1_37: - 1834-010319-3_60: *id667 - 1834-060319-1_91: *id668 - 1834-060319-2_41: *id669 - 1834-060319-3_40: *id670 - 1834-060319-4_28: *id671 - 1834-110319-1_23: *id672 - 1834-110319-2_41: *id673 - 1834-110319-3_28: *id674 - 1834-150319-1_47: *id675 - 1834-150319-2_42: *id676 - 1834-150319-3_44: *id677 - 1834-150319-4_24: *id678 - 1834-220319-2_21: &id744 + 1834-010319-3_60: *id622 + 1834-060319-1_91: *id623 + 1834-060319-2_41: *id624 + 1834-060319-3_40: *id625 + 1834-060319-4_28: *id626 + 1834-110319-1_23: *id627 + 1834-110319-2_41: *id628 + 1834-110319-3_28: *id629 + 1834-150319-1_47: *id630 + 1834-150319-2_42: *id631 + 1834-150319-3_44: *id632 + 1834-150319-4_24: *id633 + 1834-220319-2_21: &id697 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 5afcq+fLzj8= - 1834-220319-3_23: &id811 + 1834-220319-3_23: &id763 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | FFsELJ+a0D8= - 1834-220319-4_33: &id941 + 1834-220319-4_33: &id889 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7451,37 +7036,36 @@ _adj: - !!binary | E4AR6hjgxj8= 1834-220319-1_49: - 1834-010319-3_58: *id679 - 1834-010319-4_48: *id680 - 1834-010319-5_23: *id681 - 1834-060319-2_44: *id682 - 1834-060319-3_37: *id683 - 1834-060319-4_26: *id684 - 1834-110319-1_24: *id685 - 1834-110319-2_40: *id686 - 1834-110319-3_29: *id687 - 1834-110319-5_78: *id688 - 1834-110319-6_31: *id689 - 1834-120319-2_78: *id690 - 1834-150319-1_77: *id691 - 1834-150319-2_31: *id692 - 1834-150319-3_49: *id693 - 1834-150319-4_26: *id694 - 1834-220319-2_29: &id757 + 1834-010319-3_58: *id634 + 1834-010319-4_48: *id635 + 1834-010319-5_23: *id636 + 1834-060319-2_44: *id637 + 1834-060319-3_37: *id638 + 1834-060319-4_26: *id639 + 1834-110319-1_24: *id640 + 1834-110319-2_40: *id641 + 1834-110319-3_29: *id642 + 1834-110319-5_78: *id643 + 1834-120319-2_78: *id644 + 1834-150319-1_76: *id645 + 1834-150319-2_31: *id646 + 1834-150319-3_49: *id647 + 1834-150319-4_26: *id648 + 1834-220319-2_29: &id710 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 06I+uw94wj8= - 1834-220319-3_28: &id866 + 1834-220319-3_28: &id816 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | XZ5fDRxNwT8= - 1834-220319-4_45: &id956 + 1834-220319-4_45: &id904 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7489,39 +7073,39 @@ _adj: - !!binary | Fzdvf9+PwT8= 1834-220319-1_67: - 1834-010319-1_24: *id695 - 1834-010319-3_61: *id696 - 1834-010319-4_49: *id697 - 1834-010319-5_39: *id698 - 1834-060319-2_43: *id699 - 1834-060319-3_35: *id700 - 1834-060319-4_24: *id701 - 1834-110319-1_25: *id702 - 1834-110319-2_45: *id703 - 1834-110319-3_30: *id704 - 1834-120319-1_16: *id705 - 1834-120319-2_61: *id706 - 1834-120319-3_52: *id707 - 1834-120319-4_52: *id708 - 1834-150319-1_74: *id709 - 1834-150319-2_32: *id710 - 1834-150319-3_53: *id711 - 1834-150319-4_33: *id712 - 1834-220319-2_39: &id779 + 1834-010319-1_24: *id649 + 1834-010319-3_61: *id650 + 1834-010319-4_49: *id651 + 1834-010319-5_39: *id652 + 1834-060319-2_43: *id653 + 1834-060319-3_35: *id654 + 1834-060319-4_24: *id655 + 1834-110319-1_25: *id656 + 1834-110319-2_45: *id657 + 1834-110319-3_30: *id658 + 1834-120319-1_16: *id659 + 1834-120319-2_61: *id660 + 1834-120319-3_52: *id661 + 1834-120319-4_52: *id662 + 1834-150319-1_117: *id663 + 1834-150319-2_32: *id664 + 1834-150319-3_53: *id665 + 1834-150319-4_33: *id666 + 1834-220319-2_39: &id731 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | WKPdsPNexz8= - 1834-220319-3_26: &id853 + 1834-220319-3_26: &id803 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | srLE+cJvyT8= - 1834-220319-4_46: &id974 + 1834-220319-4_46: &id922 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7529,34 +7113,33 @@ _adj: - !!binary | LyDUk4L7wj8= 1834-220319-2_20: - 1834-010319-3_63: *id713 - 1834-010319-4_45: *id714 - 1834-010319-5_19: *id715 - 1834-060319-2_42: *id716 - 1834-060319-3_33: *id717 - 1834-060319-4_26: *id718 - 1834-110319-1_24: *id719 - 1834-110319-2_104: *id720 - 1834-110319-3_29: *id721 - 1834-110319-5_90: *id722 - 1834-110319-6_31: *id723 - 1834-120319-1_17: *id724 - 1834-120319-2_78: *id725 - 1834-120319-3_28: *id726 - 1834-120319-4_22: *id727 - 1834-150319-1_74: *id728 - 1834-150319-2_30: *id729 - 1834-150319-3_28: *id730 - 1834-150319-4_23: *id731 - 1834-220319-1_36: *id732 - 1834-220319-3_25: &id832 + 1834-010319-3_63: *id667 + 1834-010319-4_45: *id668 + 1834-010319-5_19: *id669 + 1834-060319-2_42: *id670 + 1834-060319-3_33: *id671 + 1834-060319-4_26: *id672 + 1834-110319-1_24: *id673 + 1834-110319-2_104: *id674 + 1834-110319-3_29: *id675 + 1834-110319-5_90: *id676 + 1834-120319-1_17: *id677 + 1834-120319-2_78: *id678 + 1834-120319-3_28: *id679 + 1834-120319-4_22: *id680 + 1834-150319-1_117: *id681 + 1834-150319-2_30: *id682 + 1834-150319-3_28: *id683 + 1834-150319-4_23: *id684 + 1834-220319-1_36: *id685 + 1834-220319-3_25: &id783 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | Q4wfKPYlrT8= - 1834-220319-4_31: &id904 + 1834-220319-4_31: &id853 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7564,26 +7147,26 @@ _adj: - !!binary | CXBWmbQfmT8= 1834-220319-2_21: - 1834-010319-3_60: *id733 - 1834-010319-5_21: *id734 - 1834-060319-2_44: *id735 - 1834-060319-3_37: *id736 - 1834-060319-4_28: *id737 - 1834-110319-1_23: *id738 - 1834-110319-2_41: *id739 - 1834-150319-1_44: *id740 - 1834-150319-2_42: *id741 - 1834-150319-3_53: *id742 - 1834-150319-4_26: *id743 - 1834-220319-1_37: *id744 - 1834-220319-3_23: &id812 + 1834-010319-3_60: *id686 + 1834-010319-5_21: *id687 + 1834-060319-2_44: *id688 + 1834-060319-3_37: *id689 + 1834-060319-4_28: *id690 + 1834-110319-1_23: *id691 + 1834-110319-2_41: *id692 + 1834-150319-1_116: *id693 + 1834-150319-2_42: *id694 + 1834-150319-3_53: *id695 + 1834-150319-4_26: *id696 + 1834-220319-1_37: *id697 + 1834-220319-3_23: &id764 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | rNEVcPxbyT8= - 1834-220319-4_33: &id942 + 1834-220319-4_33: &id890 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7591,27 +7174,27 @@ _adj: - !!binary | czuIrVnOxD8= 1834-220319-2_29: - 1834-010319-3_57: *id745 - 1834-060319-1_59: *id746 - 1834-060319-2_46: *id747 - 1834-060319-3_41: *id748 - 1834-060319-4_29: *id749 - 1834-110319-1_30: *id750 - 1834-110319-2_96: *id751 - 1834-110319-3_27: *id752 - 1834-150319-1_76: *id753 - 1834-150319-2_31: *id754 - 1834-150319-3_44: *id755 - 1834-150319-4_24: *id756 - 1834-220319-1_49: *id757 - 1834-220319-3_28: &id867 + 1834-010319-3_57: *id698 + 1834-060319-1_59: *id699 + 1834-060319-2_46: *id700 + 1834-060319-3_41: *id701 + 1834-060319-4_29: *id702 + 1834-110319-1_30: *id703 + 1834-110319-2_96: *id704 + 1834-110319-3_27: *id705 + 1834-150319-1_106: *id706 + 1834-150319-2_31: *id707 + 1834-150319-3_44: *id708 + 1834-150319-4_24: *id709 + 1834-220319-1_49: *id710 + 1834-220319-3_28: &id817 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | b8akvjcVnT8= - 1834-220319-4_45: &id957 + 1834-220319-4_45: &id905 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7619,36 +7202,35 @@ _adj: - !!binary | NUu/s8rOnj8= 1834-220319-2_39: - 1834-010319-1_25: *id758 - 1834-010319-3_58: *id759 - 1834-010319-4_48: *id760 - 1834-010319-5_39: *id761 - 1834-060319-1_91: *id762 - 1834-060319-2_41: *id763 - 1834-060319-3_40: *id764 - 1834-060319-4_23: *id765 - 1834-110319-1_26: *id766 - 1834-110319-2_40: *id767 - 1834-110319-3_28: *id768 - 1834-110319-5_78: *id769 - 1834-110319-6_30: *id770 - 1834-120319-1_16: *id771 - 1834-120319-2_26: *id772 - 1834-120319-3_52: *id773 - 1834-120319-4_52: *id774 - 1834-150319-1_37: *id775 - 1834-150319-2_37: *id776 - 1834-150319-3_27: *id777 - 1834-150319-4_33: *id778 - 1834-220319-1_67: *id779 - 1834-220319-3_26: &id854 + 1834-010319-1_25: *id711 + 1834-010319-3_58: *id712 + 1834-010319-4_48: *id713 + 1834-010319-5_39: *id714 + 1834-060319-1_91: *id715 + 1834-060319-2_41: *id716 + 1834-060319-3_40: *id717 + 1834-060319-4_23: *id718 + 1834-110319-1_26: *id719 + 1834-110319-2_40: *id720 + 1834-110319-3_28: *id721 + 1834-110319-5_78: *id722 + 1834-120319-1_16: *id723 + 1834-120319-2_26: *id724 + 1834-120319-3_52: *id725 + 1834-120319-4_52: *id726 + 1834-150319-1_114: *id727 + 1834-150319-2_37: *id728 + 1834-150319-3_27: *id729 + 1834-150319-4_33: *id730 + 1834-220319-1_67: *id731 + 1834-220319-3_26: &id804 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | 2n7Gq0fzpT8= - 1834-220319-4_32: &id926 + 1834-220319-4_32: &id874 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7656,30 +7238,30 @@ _adj: - !!binary | lOy1QId/uj8= 1834-220319-2_41: - 1834-010319-1_24: *id780 - 1834-010319-3_61: *id781 - 1834-010319-4_49: *id782 - 1834-010319-5_23: *id783 - 1834-060319-2_43: *id784 - 1834-060319-3_35: *id785 - 1834-060319-4_24: *id786 - 1834-110319-1_25: *id787 - 1834-110319-2_45: *id788 - 1834-110319-3_30: *id789 - 1834-120319-2_61: *id790 - 1834-150319-1_45: *id791 - 1834-150319-2_32: *id792 - 1834-150319-3_57: *id793 - 1834-150319-4_25: *id794 - 1834-220319-1_29: *id795 - 1834-220319-3_31: &id883 + 1834-010319-1_24: *id732 + 1834-010319-3_61: *id733 + 1834-010319-4_49: *id734 + 1834-010319-5_23: *id735 + 1834-060319-2_43: *id736 + 1834-060319-3_35: *id737 + 1834-060319-4_24: *id738 + 1834-110319-1_25: *id739 + 1834-110319-2_45: *id740 + 1834-110319-3_30: *id741 + 1834-120319-2_61: *id742 + 1834-150319-1_76: *id743 + 1834-150319-2_32: *id744 + 1834-150319-3_57: *id745 + 1834-150319-4_25: *id746 + 1834-220319-1_29: *id747 + 1834-220319-3_31: &id833 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | TcJcrIxgrz8= - 1834-220319-4_46: &id975 + 1834-220319-4_46: &id923 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7687,24 +7269,24 @@ _adj: - !!binary | ZKrpFu59wD8= 1834-220319-3_23: - 1834-010319-1_25: *id796 - 1834-010319-3_57: *id797 - 1834-010319-4_49: *id798 - 1834-010319-5_21: *id799 - 1834-060319-2_44: *id800 - 1834-060319-3_37: *id801 - 1834-060319-4_23: *id802 - 1834-110319-1_25: *id803 - 1834-110319-2_40: *id804 - 1834-110319-3_30: *id805 - 1834-120319-2_78: *id806 - 1834-150319-1_45: *id807 - 1834-150319-2_32: *id808 - 1834-150319-3_27: *id809 - 1834-150319-4_25: *id810 - 1834-220319-1_37: *id811 - 1834-220319-2_21: *id812 - 1834-220319-4_32: &id927 + 1834-010319-1_25: *id748 + 1834-010319-3_57: *id749 + 1834-010319-4_49: *id750 + 1834-010319-5_21: *id751 + 1834-060319-2_44: *id752 + 1834-060319-3_37: *id753 + 1834-060319-4_23: *id754 + 1834-110319-1_25: *id755 + 1834-110319-2_40: *id756 + 1834-110319-3_30: *id757 + 1834-120319-2_78: *id758 + 1834-150319-1_114: *id759 + 1834-150319-2_32: *id760 + 1834-150319-3_27: *id761 + 1834-150319-4_25: *id762 + 1834-220319-1_37: *id763 + 1834-220319-2_21: *id764 + 1834-220319-4_32: &id875 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7712,27 +7294,26 @@ _adj: - !!binary | W6tiuMhjtD8= 1834-220319-3_25: - 1834-010319-3_63: *id813 - 1834-010319-4_45: *id814 - 1834-010319-5_19: *id815 - 1834-060319-2_42: *id816 - 1834-060319-3_33: *id817 - 1834-060319-4_26: *id818 - 1834-110319-1_24: *id819 - 1834-110319-2_104: *id820 - 1834-110319-3_29: *id821 - 1834-110319-5_78: *id822 - 1834-110319-6_31: *id823 - 1834-120319-1_17: *id824 - 1834-120319-2_26: *id825 - 1834-120319-3_28: *id826 - 1834-150319-1_74: *id827 - 1834-150319-2_30: *id828 - 1834-150319-3_28: *id829 - 1834-150319-4_23: *id830 - 1834-220319-1_36: *id831 - 1834-220319-2_20: *id832 - 1834-220319-4_31: &id905 + 1834-010319-3_63: *id765 + 1834-010319-4_45: *id766 + 1834-010319-5_19: *id767 + 1834-060319-2_42: *id768 + 1834-060319-3_33: *id769 + 1834-060319-4_26: *id770 + 1834-110319-1_24: *id771 + 1834-110319-2_104: *id772 + 1834-110319-3_29: *id773 + 1834-110319-5_78: *id774 + 1834-120319-1_17: *id775 + 1834-120319-2_26: *id776 + 1834-120319-3_28: *id777 + 1834-150319-1_117: *id778 + 1834-150319-2_30: *id779 + 1834-150319-3_28: *id780 + 1834-150319-4_23: *id781 + 1834-220319-1_36: *id782 + 1834-220319-2_20: *id783 + 1834-220319-4_31: &id854 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7740,29 +7321,28 @@ _adj: - !!binary | eR2773RpqD8= 1834-220319-3_26: - 1834-010319-3_58: *id833 - 1834-010319-4_48: *id834 - 1834-010319-5_39: *id835 - 1834-060319-1_91: *id836 - 1834-060319-2_41: *id837 - 1834-060319-3_40: *id838 - 1834-060319-4_28: *id839 - 1834-110319-1_23: *id840 - 1834-110319-2_96: *id841 - 1834-110319-3_28: *id842 - 1834-110319-5_90: *id843 - 1834-110319-6_30: *id844 - 1834-120319-1_16: *id845 - 1834-120319-2_61: *id846 - 1834-120319-3_52: *id847 - 1834-120319-4_22: *id848 - 1834-150319-1_37: *id849 - 1834-150319-2_37: *id850 - 1834-150319-3_57: *id851 - 1834-150319-4_33: *id852 - 1834-220319-1_67: *id853 - 1834-220319-2_39: *id854 - 1834-220319-4_33: &id943 + 1834-010319-3_58: *id784 + 1834-010319-4_48: *id785 + 1834-010319-5_39: *id786 + 1834-060319-1_91: *id787 + 1834-060319-2_41: *id788 + 1834-060319-3_40: *id789 + 1834-060319-4_28: *id790 + 1834-110319-1_23: *id791 + 1834-110319-2_96: *id792 + 1834-110319-3_28: *id793 + 1834-110319-5_90: *id794 + 1834-120319-1_16: *id795 + 1834-120319-2_61: *id796 + 1834-120319-3_52: *id797 + 1834-120319-4_22: *id798 + 1834-150319-1_76: *id799 + 1834-150319-2_37: *id800 + 1834-150319-3_57: *id801 + 1834-150319-4_33: *id802 + 1834-220319-1_67: *id803 + 1834-220319-2_39: *id804 + 1834-220319-4_33: &id891 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7770,20 +7350,20 @@ _adj: - !!binary | ZZ6BTQbnvj8= 1834-220319-3_28: - 1834-010319-3_60: *id855 - 1834-060319-1_59: *id856 - 1834-060319-2_46: *id857 - 1834-060319-3_41: *id858 - 1834-060319-4_29: *id859 - 1834-110319-1_30: *id860 - 1834-110319-2_41: *id861 - 1834-150319-1_76: *id862 - 1834-150319-2_31: *id863 - 1834-150319-3_53: *id864 - 1834-150319-4_26: *id865 - 1834-220319-1_49: *id866 - 1834-220319-2_29: *id867 - 1834-220319-4_45: &id958 + 1834-010319-3_60: *id805 + 1834-060319-1_59: *id806 + 1834-060319-2_46: *id807 + 1834-060319-3_41: *id808 + 1834-060319-4_29: *id809 + 1834-110319-1_30: *id810 + 1834-110319-2_41: *id811 + 1834-150319-1_47: *id812 + 1834-150319-2_31: *id813 + 1834-150319-3_53: *id814 + 1834-150319-4_26: *id815 + 1834-220319-1_49: *id816 + 1834-220319-2_29: *id817 + 1834-220319-4_45: &id906 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7791,23 +7371,23 @@ _adj: - !!binary | NwR1Riowlj8= 1834-220319-3_31: - 1834-010319-1_24: *id868 - 1834-010319-3_61: *id869 - 1834-010319-5_23: *id870 - 1834-060319-2_43: *id871 - 1834-060319-3_35: *id872 - 1834-060319-4_24: *id873 - 1834-110319-1_26: *id874 - 1834-110319-2_45: *id875 - 1834-110319-3_27: *id876 - 1834-120319-4_52: *id877 - 1834-150319-1_44: *id878 - 1834-150319-2_29: *id879 - 1834-150319-3_30: *id880 - 1834-150319-4_24: *id881 - 1834-220319-1_29: *id882 - 1834-220319-2_41: *id883 - 1834-220319-4_46: &id976 + 1834-010319-1_24: *id818 + 1834-010319-3_61: *id819 + 1834-010319-5_23: *id820 + 1834-060319-2_43: *id821 + 1834-060319-3_35: *id822 + 1834-060319-4_24: *id823 + 1834-110319-1_26: *id824 + 1834-110319-2_45: *id825 + 1834-110319-3_27: *id826 + 1834-120319-4_52: *id827 + 1834-150319-1_106: *id828 + 1834-150319-2_29: *id829 + 1834-150319-3_30: *id830 + 1834-150319-4_24: *id831 + 1834-220319-1_29: *id832 + 1834-220319-2_41: *id833 + 1834-220319-4_46: &id924 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -7815,108 +7395,106 @@ _adj: - !!binary | 5uGFpzwWwD8= 1834-220319-4_31: - 1834-010319-3_63: *id884 - 1834-010319-4_45: *id885 - 1834-010319-5_19: *id886 - 1834-060319-2_42: *id887 - 1834-060319-3_33: *id888 - 1834-060319-4_23: *id889 - 1834-110319-1_24: *id890 - 1834-110319-2_104: *id891 - 1834-110319-3_28: *id892 - 1834-110319-5_78: *id893 - 1834-110319-6_31: *id894 - 1834-120319-1_17: *id895 - 1834-120319-2_26: *id896 - 1834-120319-3_28: *id897 - 1834-120319-4_22: *id898 - 1834-150319-1_74: *id899 - 1834-150319-2_30: *id900 - 1834-150319-3_28: *id901 - 1834-150319-4_23: *id902 - 1834-220319-1_36: *id903 - 1834-220319-2_20: *id904 - 1834-220319-3_25: *id905 + 1834-010319-3_63: *id834 + 1834-010319-4_45: *id835 + 1834-010319-5_19: *id836 + 1834-060319-2_42: *id837 + 1834-060319-3_33: *id838 + 1834-060319-4_23: *id839 + 1834-110319-1_24: *id840 + 1834-110319-2_104: *id841 + 1834-110319-3_28: *id842 + 1834-110319-5_78: *id843 + 1834-120319-1_17: *id844 + 1834-120319-2_26: *id845 + 1834-120319-3_28: *id846 + 1834-120319-4_22: *id847 + 1834-150319-1_117: *id848 + 1834-150319-2_30: *id849 + 1834-150319-3_28: *id850 + 1834-150319-4_23: *id851 + 1834-220319-1_36: *id852 + 1834-220319-2_20: *id853 + 1834-220319-3_25: *id854 1834-220319-4_32: - 1834-010319-1_25: *id906 - 1834-010319-3_61: *id907 - 1834-010319-4_49: *id908 - 1834-010319-5_21: *id909 - 1834-060319-2_43: *id910 - 1834-060319-3_35: *id911 - 1834-060319-4_26: *id912 - 1834-110319-1_25: *id913 - 1834-110319-2_40: *id914 - 1834-110319-3_30: *id915 - 1834-110319-5_90: *id916 - 1834-110319-6_30: *id917 - 1834-120319-1_16: *id918 - 1834-120319-2_78: *id919 - 1834-120319-3_52: *id920 - 1834-150319-1_45: *id921 - 1834-150319-2_32: *id922 - 1834-150319-3_27: *id923 - 1834-150319-4_25: *id924 - 1834-220319-1_29: *id925 - 1834-220319-2_39: *id926 - 1834-220319-3_23: *id927 + 1834-010319-1_25: *id855 + 1834-010319-3_61: *id856 + 1834-010319-4_49: *id857 + 1834-010319-5_21: *id858 + 1834-060319-2_43: *id859 + 1834-060319-3_35: *id860 + 1834-060319-4_26: *id861 + 1834-110319-1_25: *id862 + 1834-110319-2_40: *id863 + 1834-110319-3_30: *id864 + 1834-110319-5_90: *id865 + 1834-120319-1_16: *id866 + 1834-120319-2_78: *id867 + 1834-120319-3_52: *id868 + 1834-150319-1_114: *id869 + 1834-150319-2_32: *id870 + 1834-150319-3_27: *id871 + 1834-150319-4_25: *id872 + 1834-220319-1_29: *id873 + 1834-220319-2_39: *id874 + 1834-220319-3_23: *id875 1834-220319-4_33: - 1834-010319-3_58: *id928 - 1834-010319-5_39: *id929 - 1834-060319-2_41: *id930 - 1834-060319-3_40: *id931 - 1834-060319-4_28: *id932 - 1834-110319-1_23: *id933 - 1834-110319-2_96: *id934 - 1834-120319-2_61: *id935 - 1834-120319-4_52: *id936 - 1834-150319-1_37: *id937 - 1834-150319-2_42: *id938 - 1834-150319-3_53: *id939 - 1834-150319-4_33: *id940 - 1834-220319-1_37: *id941 - 1834-220319-2_21: *id942 - 1834-220319-3_26: *id943 + 1834-010319-3_58: *id876 + 1834-010319-5_39: *id877 + 1834-060319-2_41: *id878 + 1834-060319-3_40: *id879 + 1834-060319-4_28: *id880 + 1834-110319-1_23: *id881 + 1834-110319-2_96: *id882 + 1834-120319-2_61: *id883 + 1834-120319-4_52: *id884 + 1834-150319-1_106: *id885 + 1834-150319-2_42: *id886 + 1834-150319-3_53: *id887 + 1834-150319-4_33: *id888 + 1834-220319-1_37: *id889 + 1834-220319-2_21: *id890 + 1834-220319-3_26: *id891 1834-220319-4_45: - 1834-010319-3_60: *id944 - 1834-060319-1_59: *id945 - 1834-060319-2_46: *id946 - 1834-060319-3_41: *id947 - 1834-060319-4_29: *id948 - 1834-110319-1_30: *id949 - 1834-110319-2_41: *id950 - 1834-110319-3_27: *id951 - 1834-150319-1_41: *id952 - 1834-150319-2_31: *id953 - 1834-150319-3_30: *id954 - 1834-150319-4_24: *id955 - 1834-220319-1_49: *id956 - 1834-220319-2_29: *id957 - 1834-220319-3_28: *id958 + 1834-010319-3_60: *id892 + 1834-060319-1_59: *id893 + 1834-060319-2_46: *id894 + 1834-060319-3_41: *id895 + 1834-060319-4_29: *id896 + 1834-110319-1_30: *id897 + 1834-110319-2_41: *id898 + 1834-110319-3_27: *id899 + 1834-150319-1_47: *id900 + 1834-150319-2_31: *id901 + 1834-150319-3_30: *id902 + 1834-150319-4_24: *id903 + 1834-220319-1_49: *id904 + 1834-220319-2_29: *id905 + 1834-220319-3_28: *id906 1834-220319-4_46: - 1834-010319-1_24: *id959 - 1834-010319-3_57: *id960 - 1834-010319-4_48: *id961 - 1834-010319-5_23: *id962 - 1834-060319-1_91: *id963 - 1834-060319-2_44: *id964 - 1834-060319-3_37: *id965 - 1834-060319-4_24: *id966 - 1834-110319-1_26: *id967 - 1834-110319-2_45: *id968 - 1834-110319-3_29: *id969 - 1834-150319-1_76: *id970 - 1834-150319-2_29: *id971 - 1834-150319-3_57: *id972 - 1834-150319-4_26: *id973 - 1834-220319-1_67: *id974 - 1834-220319-2_41: *id975 - 1834-220319-3_31: *id976 -_node: &id979 + 1834-010319-1_24: *id907 + 1834-010319-3_57: *id908 + 1834-010319-4_48: *id909 + 1834-010319-5_23: *id910 + 1834-060319-1_91: *id911 + 1834-060319-2_44: *id912 + 1834-060319-3_37: *id913 + 1834-060319-4_24: *id914 + 1834-110319-1_26: *id915 + 1834-110319-2_45: *id916 + 1834-110319-3_29: *id917 + 1834-150319-1_76: *id918 + 1834-150319-2_29: *id919 + 1834-150319-3_57: *id920 + 1834-150319-4_26: *id921 + 1834-220319-1_67: *id922 + 1834-220319-2_41: *id923 + 1834-220319-3_31: *id924 +_node: &id927 1834-010319-1_24: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - &id977 !!python/object/apply:numpy.dtype + - &id925 !!python/object/apply:numpy.dtype args: [i8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | @@ -7924,661 +7502,625 @@ _node: &id979 1834-010319-1_25: action_id: 1834-010319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GQAAAAAAAAA= 1834-010319-3_57: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | OQAAAAAAAAA= 1834-010319-3_58: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | OgAAAAAAAAA= 1834-010319-3_60: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | PAAAAAAAAAA= 1834-010319-3_61: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | PQAAAAAAAAA= 1834-010319-3_63: action_id: 1834-010319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | PwAAAAAAAAA= 1834-010319-4_45: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LQAAAAAAAAA= 1834-010319-4_48: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | MAAAAAAAAAA= 1834-010319-4_49: action_id: 1834-010319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | MQAAAAAAAAA= 1834-010319-5_19: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | EwAAAAAAAAA= 1834-010319-5_21: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FQAAAAAAAAA= 1834-010319-5_23: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FwAAAAAAAAA= 1834-010319-5_39: action_id: 1834-010319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | JwAAAAAAAAA= 1834-060319-1_59: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | OwAAAAAAAAA= 1834-060319-1_91: action_id: 1834-060319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | WwAAAAAAAAA= 1834-060319-2_41: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KQAAAAAAAAA= 1834-060319-2_42: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KgAAAAAAAAA= 1834-060319-2_43: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KwAAAAAAAAA= 1834-060319-2_44: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LAAAAAAAAAA= 1834-060319-2_46: action_id: 1834-060319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LgAAAAAAAAA= 1834-060319-3_33: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | IQAAAAAAAAA= 1834-060319-3_35: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | IwAAAAAAAAA= 1834-060319-3_37: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | JQAAAAAAAAA= 1834-060319-3_40: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KAAAAAAAAAA= 1834-060319-3_41: action_id: 1834-060319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KQAAAAAAAAA= 1834-060319-4_23: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FwAAAAAAAAA= 1834-060319-4_24: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GAAAAAAAAAA= 1834-060319-4_26: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GgAAAAAAAAA= 1834-060319-4_28: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HAAAAAAAAAA= 1834-060319-4_29: action_id: 1834-060319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HQAAAAAAAAA= 1834-110319-1_23: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FwAAAAAAAAA= 1834-110319-1_24: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GAAAAAAAAAA= 1834-110319-1_25: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GQAAAAAAAAA= 1834-110319-1_26: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GgAAAAAAAAA= 1834-110319-1_30: action_id: 1834-110319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HgAAAAAAAAA= 1834-110319-2_104: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | aAAAAAAAAAA= 1834-110319-2_40: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KAAAAAAAAAA= 1834-110319-2_41: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KQAAAAAAAAA= 1834-110319-2_45: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LQAAAAAAAAA= 1834-110319-2_47: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LwAAAAAAAAA= 1834-110319-2_86: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | VgAAAAAAAAA= 1834-110319-2_96: action_id: 1834-110319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | YAAAAAAAAAA= 1834-110319-3_27: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GwAAAAAAAAA= 1834-110319-3_28: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HAAAAAAAAAA= 1834-110319-3_29: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HQAAAAAAAAA= 1834-110319-3_30: action_id: 1834-110319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HgAAAAAAAAA= 1834-110319-5_78: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | TgAAAAAAAAA= 1834-110319-5_90: action_id: 1834-110319-5 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | WgAAAAAAAAA= - 1834-110319-6_30: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 - - !!binary | - HgAAAAAAAAA= - 1834-110319-6_31: - action_id: 1834-110319-6 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 - - !!binary | - HwAAAAAAAAA= 1834-120319-1_16: action_id: 1834-120319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | EAAAAAAAAAA= 1834-120319-1_17: action_id: 1834-120319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | EQAAAAAAAAA= 1834-120319-2_26: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GgAAAAAAAAA= 1834-120319-2_61: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | PQAAAAAAAAA= 1834-120319-2_78: action_id: 1834-120319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | TgAAAAAAAAA= 1834-120319-3_28: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HAAAAAAAAAA= 1834-120319-3_52: action_id: 1834-120319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | NAAAAAAAAAA= 1834-120319-4_22: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FgAAAAAAAAA= 1834-120319-4_52: action_id: 1834-120319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | NAAAAAAAAAA= - 1834-150319-1_37: + 1834-150319-1_106: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | - JQAAAAAAAAA= - 1834-150319-1_41: + agAAAAAAAAA= + 1834-150319-1_114: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | - KQAAAAAAAAA= - 1834-150319-1_44: + cgAAAAAAAAA= + 1834-150319-1_116: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | - LAAAAAAAAAA= - 1834-150319-1_45: + dAAAAAAAAAA= + 1834-150319-1_117: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | - LQAAAAAAAAA= + dQAAAAAAAAA= 1834-150319-1_47: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LwAAAAAAAAA= - 1834-150319-1_56: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 - - !!binary | - OAAAAAAAAAA= - 1834-150319-1_74: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 - - !!binary | - SgAAAAAAAAA= 1834-150319-1_76: action_id: 1834-150319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | TAAAAAAAAAA= - 1834-150319-1_77: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 - - !!binary | - TQAAAAAAAAA= - 1834-150319-1_92: - action_id: 1834-150319-1 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 - - !!binary | - XAAAAAAAAAA= 1834-150319-2_29: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HQAAAAAAAAA= 1834-150319-2_30: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HgAAAAAAAAA= 1834-150319-2_31: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HwAAAAAAAAA= 1834-150319-2_32: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | IAAAAAAAAAA= 1834-150319-2_37: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | JQAAAAAAAAA= 1834-150319-2_42: action_id: 1834-150319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KgAAAAAAAAA= 1834-150319-3_27: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GwAAAAAAAAA= 1834-150319-3_28: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HAAAAAAAAAA= 1834-150319-3_30: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HgAAAAAAAAA= 1834-150319-3_44: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LAAAAAAAAAA= 1834-150319-3_45: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LQAAAAAAAAA= 1834-150319-3_49: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | MQAAAAAAAAA= 1834-150319-3_53: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | NQAAAAAAAAA= 1834-150319-3_55: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | NwAAAAAAAAA= 1834-150319-3_57: action_id: 1834-150319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | OQAAAAAAAAA= 1834-150319-4_23: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FwAAAAAAAAA= 1834-150319-4_24: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GAAAAAAAAAA= 1834-150319-4_25: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GQAAAAAAAAA= 1834-150319-4_26: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GgAAAAAAAAA= 1834-150319-4_33: action_id: 1834-150319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | IQAAAAAAAAA= 1834-220319-1_29: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HQAAAAAAAAA= 1834-220319-1_36: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | JAAAAAAAAAA= 1834-220319-1_37: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | JQAAAAAAAAA= 1834-220319-1_49: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | MQAAAAAAAAA= 1834-220319-1_67: action_id: 1834-220319-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | QwAAAAAAAAA= 1834-220319-2_20: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FAAAAAAAAAA= 1834-220319-2_21: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FQAAAAAAAAA= 1834-220319-2_29: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HQAAAAAAAAA= 1834-220319-2_39: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | JwAAAAAAAAA= 1834-220319-2_41: action_id: 1834-220319-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | KQAAAAAAAAA= 1834-220319-3_23: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | FwAAAAAAAAA= 1834-220319-3_25: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GQAAAAAAAAA= 1834-220319-3_26: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | GgAAAAAAAAA= 1834-220319-3_28: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HAAAAAAAAAA= 1834-220319-3_31: action_id: 1834-220319-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HwAAAAAAAAA= 1834-220319-4_31: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | HwAAAAAAAAA= 1834-220319-4_32: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | IAAAAAAAAAA= 1834-220319-4_33: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | IQAAAAAAAAA= 1834-220319-4_45: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LQAAAAAAAAA= 1834-220319-4_46: action_id: 1834-220319-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id977 + - *id925 - !!binary | LgAAAAAAAAA= -adjlist_inner_dict_factory: &id978 !!python/name:builtins.dict '' -adjlist_outer_dict_factory: *id978 -edge_attr_dict_factory: *id978 +adjlist_inner_dict_factory: &id926 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id926 +edge_attr_dict_factory: *id926 graph: {} -node_dict_factory: *id978 +node_dict_factory: *id926 nodes: !!python/object:networkx.classes.reportviews.NodeView - _nodes: *id979 + _nodes: *id927 diff --git a/actions/identify-neurons/data/1834-units.csv b/actions/identify-neurons/data/1834-units.csv index ceb040680..21e0d8b02 100644 --- a/actions/identify-neurons/data/1834-units.csv +++ b/actions/identify-neurons/data/1834-units.csv @@ -1,399 +1,342 @@ action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name -1834-010319-1,0,100,0.05,32afb72e-d27c-4990-b4ea-f9136a8226d1,2 -1834-010319-1,0,100,0.05,e3017dcb-7612-452b-b2fd-7cbaad5c7532,39 -1834-010319-3,0,100,0.05,603a3306-e906-4f95-971b-4d8164015554,1 -1834-010319-3,0,100,0.05,2896bab7-e9f6-4bbb-bfa2-ce85dc2dd93f,12 -1834-010319-3,0,100,0.05,cd46dcdd-1c31-4c1c-9e7a-ed174064f3f3,72 -1834-110319-1,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,65 -1834-110319-2,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,108 -1834-010319-4,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,7 -1834-060319-4,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,3 -1834-110319-3,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,101 -1834-110319-5,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,98 -1834-060319-1,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,7 -1834-060319-1,0,100,0.05,d4d044df-2487-4a43-8cd5-c3ff4ee38ee2,70 -1834-060319-1,0,100,0.05,f4d6e79f-1164-4134-80ca-9cb5942140d1,71 -1834-060319-1,0,100,0.05,a26e7b94-1d82-4f03-88ae-edf62c9ec266,72 -1834-110319-6,0,100,0.05,031623da-a207-4beb-ad22-edaf249e0dc9,2 -1834-060319-1,0,100,0.05,031623da-a207-4beb-ad22-edaf249e0dc9,73 -1834-060319-1,0,100,0.05,ce9b87a4-9414-475b-b057-1dc2cbf65ced,74 -1834-060319-1,0,100,0.05,54dd6650-5e36-4385-bdda-d337397e883c,79 -1834-060319-3,0,100,0.05,363f6f73-45dc-4da0-9ebf-f8299c7c3400,4 -1834-110319-1,0,100,0.05,cccf5646-1426-4217-b4f1-4d323f26ec1a,0 -1834-110319-2,0,100,0.05,468a74ac-ce3f-4c5d-a9a4-44da8b19dd13,11 -1834-110319-6,0,100,0.05,aefff1cf-c039-4223-8ad9-31d9919ef705,0 -1834-110319-6,0,100,0.05,4fa5d7dc-504f-47ee-b32e-0ec52c58c6c3,1 -1834-110319-6,0,100,0.05,ffd0fa52-30a3-46c3-a6b1-4038aed5b510,10 -1834-110319-6,0,100,0.05,a6f26265-030e-4c48-8d75-6f20031a9062,13 -1834-110319-6,0,100,0.05,55449278-6106-46cb-8f64-6d1093f8098a,15 -1834-110319-6,0,100,0.05,210d0bd2-29bb-4f15-b036-17ef0c128829,3 -1834-110319-6,0,100,0.05,0f45c421-4df8-430d-b662-ed509bf164f8,32 -1834-110319-6,0,100,0.05,cfa3c5b5-9338-4f9e-88dc-35c578919f10,33 -1834-110319-6,0,100,0.05,4a331395-c9f9-4c86-983f-72949d710136,34 -1834-110319-6,0,100,0.05,aa5c25a5-663f-44fc-a146-99b5d806f892,38 -1834-110319-6,0,100,0.05,1de48ce3-1aff-4bb8-8873-d83eae4e0e57,4 -1834-110319-6,0,100,0.05,0656b4d2-c0b6-4a06-ac3c-dee33807370b,5 -1834-110319-6,0,100,0.05,7b629bbe-09f3-4686-a0c9-1b98cb1e15c2,6 -1834-110319-6,0,100,0.05,d95b5271-6d54-4c27-9bbb-a4874f850d95,7 -1834-110319-6,0,100,0.05,89892043-0ccc-40a1-a47f-11e68b477d32,8 -1834-110319-6,0,100,0.05,88c41151-4186-42b8-81dc-46ae6d56ccff,9 -1834-150319-3,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,71 -1834-120319-2,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,39 -1834-120319-3,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,36 -1834-150319-2,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,2 -1834-120319-4,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,85 -1834-120319-1,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,1 -1834-150319-4,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,0 -1834-150319-1,0,100,0.05,7b0389cf-dd0d-4be6-9b00-36b6f09126fb,3 -1834-150319-3,0,100,0.05,0484dc42-c4ff-4ebb-9493-2e131afe43a4,75 -1834-220319-2,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,1 -1834-220319-3,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,1 -1834-220319-4,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,0 -1834-220319-1,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,81 -1834-220319-1,0,100,0.05,b12b6948-7b28-47b8-ac81-9f1b47c17361,87 -1834-010319-1,1,100,0.05,a0daca30-6616-4c60-b0b8-310fc21e2757,48 -1834-010319-3,1,100,0.05,9728e512-1fc6-4a84-b21c-6e5fa271c64f,18 -1834-010319-4,1,100,0.05,969edf06-9796-4bfa-b1cd-adc2a9217b12,10 -1834-060319-2,1,100,0.05,871cfead-7fb9-4ab3-8b35-a571b9312a40,104 -1834-110319-6,1,100,0.05,d4b94300-3ad7-4c4c-8173-c974cfe5f07f,11 -1834-110319-6,1,100,0.05,bda010db-d4b8-45ec-9d89-4d957777747e,12 -1834-110319-6,1,100,0.05,7cf1101d-b91c-4a3f-b663-4471a33b8500,19 -1834-110319-6,1,100,0.05,26797422-5fd5-45df-8952-fc592ef12e74,35 -1834-110319-6,1,100,0.05,10b9d84d-ca02-48fc-8b12-c0b368251cfc,36 -1834-120319-1,1,100,0.05,fbbcce03-64d3-42d1-bdcc-cf8bc669b646,3 -1834-120319-2,1,100,0.05,47181a39-cd46-4edc-bc41-f034762dac72,41 -1834-120319-3,1,100,0.05,47181a39-cd46-4edc-bc41-f034762dac72,38 -1834-150319-1,1,100,0.05,a7b074ef-3220-4969-9606-40d31a5638b8,4 -1834-150319-1,1,100,0.05,e1107f56-9c39-4c65-a933-1367273b4049,46 -1834-150319-1,1,100,0.05,43c89925-fafc-4ab1-8b91-ceeca45961d7,50 -1834-150319-1,1,100,0.05,1702dfd2-1bbe-4bf0-904e-0c95b24c6744,7 -1834-110319-3,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,47 -1834-060319-2,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,113 -1834-110319-6,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,16 -1834-110319-5,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,18 -1834-110319-6,2,100,0.05,3a237c11-5372-44ae-a25a-457085ff0894,17 -1834-120319-2,2,100,0.05,04e0b56f-2056-49e9-96cc-a845816b57d0,43 -1834-120319-2,2,100,0.05,c33d5c13-706a-4891-acf0-62e2e650563e,51 -1834-120319-3,2,100,0.05,c3a7d7a1-7c9a-4d12-b4ce-ddbdf12d2376,70 -1834-220319-3,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,46 -1834-220319-2,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,49 -1834-120319-4,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,75 -1834-220319-1,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,83 -1834-220319-1,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,73 -1834-220319-2,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,7 -1834-220319-3,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,29 -1834-220319-1,2,100,0.05,d81e5efc-876d-4003-9684-ad295c0ec604,79 -1834-220319-4,2,100,0.05,43640b2b-437b-4036-bdd5-a3cb8aa3ca16,60 -1834-010319-3,3,100,0.05,a77ab842-af8d-44f5-9531-a15ba2833af3,76 -1834-010319-1,3,100,0.05,a77ab842-af8d-44f5-9531-a15ba2833af3,52 -1834-010319-1,3,100,0.05,af5a91fa-89c1-474b-ad44-a7dc4f699589,7 -1834-010319-1,3,100,0.05,c8b52f08-bb22-4f6c-a3f9-ec6e21724d05,8 -1834-010319-3,3,100,0.05,ddf11da3-3d87-4aa7-8ae1-102f3b1fcdf0,87 -1834-010319-4,3,100,0.05,1c15df06-157e-4004-abc7-a27c8febb5d4,21 -1834-010319-4,3,100,0.05,ea0ae2d9-9e23-4d0e-a8bd-e676ccfb0365,22 -1834-010319-5,3,100,0.05,ba45e41f-ae2f-41fe-9a7e-618a97110ab7,11 -1834-010319-5,3,100,0.05,89b07752-06b1-4d22-b1eb-a4a16b242f18,28 -1834-060319-1,3,100,0.05,8fbf4571-c7c0-4637-b087-8077ddfb99d7,33 -1834-060319-1,3,100,0.05,fe55b314-f450-4190-9a50-f1cd12db7c1b,85 -1834-060319-4,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,8 -1834-110319-3,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,41 -1834-060319-3,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,13 -1834-060319-2,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,24 -1834-060319-1,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,95 -1834-060319-2,3,100,0.05,9b4c268b-64e5-45ce-acde-bc974c486791,25 -1834-060319-4,3,100,0.05,77da2151-d669-4297-bf35-f9b2f0869fb0,10 -1834-110319-2,3,100,0.05,1e520264-65d0-462c-ba8b-6d5fab6d2c13,16 -1834-110319-5,3,100,0.05,812686d3-16b4-486a-82ac-5b26727c2e92,24 -1834-110319-6,3,100,0.05,2fe3d399-7790-4e50-a3f2-59af2773c18c,18 -1834-110319-6,3,100,0.05,56566a1a-4b2a-4260-90f9-d2bf3e4c5a66,20 -1834-120319-2,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,15 -1834-120319-3,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,62 -1834-120319-1,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,8 -1834-120319-2,3,100,0.05,8b68722d-72b2-4b94-a020-b01202028c62,6 -1834-120319-4,3,100,0.05,6ca6dede-9564-4f2b-984d-b350ccdb50f6,59 -1834-150319-1,3,100,0.05,18803619-4068-4ebe-9fea-29afadf5a5ec,13 -1834-150319-1,3,100,0.05,b7160669-5452-4ac4-b1a7-96ddfdb8e203,14 -1834-150319-1,3,100,0.05,cf398e29-7b7b-413a-99ff-c43f6e306a52,2 -1834-150319-1,3,100,0.05,9239cd9f-1284-4662-af82-e6fb61527c1e,6 -1834-150319-2,3,100,0.05,6e8411b3-7ec5-4b53-84cd-6b1ace0f6631,13 -1834-150319-4,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,5 -1834-150319-2,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,46 -1834-150319-3,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,61 -1834-150319-3,3,100,0.05,5228baa7-e404-4379-9251-bd4930a59fb8,8 -1834-150319-4,3,100,0.05,5790eaee-1c8d-4034-8d5a-dc7f2b88cc29,6 -1834-220319-1,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,11 -1834-220319-2,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,8 -1834-220319-4,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,10 -1834-220319-3,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,10 -1834-010319-1,4,100,0.05,b7df3619-3152-4ab2-a2a8-6c4fbd330a0b,13 -1834-010319-1,4,100,0.05,9ad22849-722a-4d83-bfd0-0522aa049cee,62 -1834-010319-3,4,100,0.05,c7312978-36b6-4124-b0e8-71816d8ae7da,34 -1834-010319-3,4,100,0.05,408b2b89-3445-43f5-80af-5307238012e9,36 -1834-010319-3,4,100,0.05,7365e283-a88b-4981-b022-c17a9521329b,66 -1834-010319-3,4,100,0.05,856b03fd-4050-4ed9-aff6-881c50368f5a,90 -1834-010319-4,4,100,0.05,dd6aa058-9d07-45be-bcf6-b05bf590486a,29 -1834-010319-4,4,100,0.05,cdd1cb11-370c-46f6-899c-bc9f4aa7ac12,35 -1834-010319-4,4,100,0.05,4ca0ef20-31ea-48c5-bb74-bd8abb08f6d5,53 -1834-060319-2,4,100,0.05,d400b6d7-2db2-47b6-9859-ce6f72c1e3fc,115 -1834-060319-3,4,100,0.05,b757598d-2721-4634-a9b5-36b0ec038e2e,19 -1834-060319-4,4,100,0.05,1436fedf-6974-43f9-91e8-d80200e47cd3,13 -1834-110319-2,4,100,0.05,3d5052ee-3e70-49df-8ce0-6c6d14ab600b,19 -1834-110319-1,4,100,0.05,3d5052ee-3e70-49df-8ce0-6c6d14ab600b,11 -1834-110319-5,4,100,0.05,517b674c-84b9-4b3b-a88e-d7184024ad75,76 -1834-110319-6,4,100,0.05,4ff6b16b-8ebf-48be-877c-217d590c663e,14 -1834-110319-6,4,100,0.05,9f85632e-7ea3-4e16-bead-194e70ff3435,21 -1834-110319-6,4,100,0.05,3ef2f997-d1e1-48ec-b230-9b708d802257,22 -1834-110319-6,4,100,0.05,9a62a913-5dc4-47ce-9532-b0773a7e481e,23 -1834-110319-6,4,100,0.05,2957c978-526d-488e-becd-6a018c183d19,25 -1834-110319-6,4,100,0.05,2c6a4654-e733-4287-b591-8f7d31c77062,37 -1834-120319-3,4,100,0.05,09ffea69-40c1-4a30-9526-1a1428f0384c,40 -1834-120319-3,4,100,0.05,8a086389-8c74-46fa-a529-4ab8a419b621,95 -1834-150319-1,4,100,0.05,9dfb4584-8d3f-4fce-9048-ff09abdb209b,0 -1834-150319-1,4,100,0.05,aceda409-a236-476e-8b77-5a49246b07d7,23 -1834-150319-1,4,100,0.05,87c965de-8a82-4bb4-9463-f591626562de,40 -1834-150319-1,4,100,0.05,d7701cae-f3f6-451e-b61d-986baa60abd7,5 -1834-150319-1,4,100,0.05,a0f100e7-5978-4d82-aa8e-a3f3dfb5e2e8,52 -1834-150319-2,4,100,0.05,4b3d8406-ec60-4e37-834e-b10c07c11967,54 -1834-220319-2,4,100,0.05,969c81cf-b80f-4dc4-a526-c1c02fde8630,34 -1834-220319-1,4,100,0.05,969c81cf-b80f-4dc4-a526-c1c02fde8630,65 -1834-220319-2,4,100,0.05,3d9a98a2-df47-4162-a5bc-d65b2f06b643,47 -1834-220319-4,4,100,0.05,38695b4d-fc1a-4c56-bad2-44e1ead15d71,51 -1834-220319-3,4,100,0.05,38695b4d-fc1a-4c56-bad2-44e1ead15d71,15 -1834-220319-4,4,100,0.05,150b4106-361d-43a3-a501-f90a43072647,36 -1834-220319-4,4,100,0.05,e0ad6514-eed6-47b6-b115-709d7d9b82e4,63 -1834-220319-4,4,100,0.05,97084ab3-dc72-4c1b-8045-2f5caf65ddc1,65 -1834-010319-1,5,100,0.05,82d449c5-3427-46ca-8aed-aed8a12a7476,16 -1834-010319-1,5,100,0.05,4cfe6043-03c1-49ea-92c6-4eef79035381,18 -1834-010319-3,5,100,0.05,2f60791f-a7a6-44ff-9242-399e48b3a133,41 -1834-010319-4,5,100,0.05,8eebb60d-1d37-48b2-8e51-5c278a025fab,37 -1834-010319-3,5,100,0.05,8eebb60d-1d37-48b2-8e51-5c278a025fab,42 -1834-010319-4,5,100,0.05,4dccbb8a-c59e-4b1e-be55-eed0699413c3,36 -1834-010319-5,5,100,0.05,dad7f735-8e7c-416a-9b87-d6b5f0834160,14 -1834-010319-5,5,100,0.05,3eafe78a-fb22-4b24-9ec2-c7541f10671f,15 -1834-060319-1,5,100,0.05,be353be9-41e9-45e5-a82b-27307c4916f1,87 -1834-060319-2,5,100,0.05,faa79273-6832-4706-b88b-69db0e59873f,34 -1834-060319-4,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,15 -1834-060319-3,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,25 -1834-060319-2,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,35 -1834-060319-3,5,100,0.05,cd9b8f7f-55bc-48d0-99eb-2fd27b9e7800,24 -1834-060319-3,5,100,0.05,dfb1bfa0-cb65-4d85-9b5d-77a36704e9d1,26 -1834-060319-4,5,100,0.05,abc7a0d6-a424-4ee0-ba64-2b53c6c4f465,16 -1834-110319-1,5,100,0.05,abc7a0d6-a424-4ee0-ba64-2b53c6c4f465,14 -1834-060319-4,5,100,0.05,fa949f01-2919-4ecc-b577-33210f83f9e9,17 -1834-110319-1,5,100,0.05,4c4dcde6-7401-49b0-a6e1-ddc318b2f841,16 -1834-110319-2,5,100,0.05,cef1efe8-86d4-4f69-bb9e-b91c4568b982,28 -1834-110319-1,5,100,0.05,cef1efe8-86d4-4f69-bb9e-b91c4568b982,28 -1834-110319-2,5,100,0.05,51da778a-0dcc-4c47-8802-562e95852772,29 -1834-110319-2,5,100,0.05,1e04d4e6-f9fb-451f-b7b3-1da7e4e95b86,31 -1834-110319-5,5,100,0.05,9400b7ff-e3d8-49c1-9c38-06406ee558d0,27 -1834-110319-6,5,100,0.05,108fb12d-6d33-4da9-a576-a92ab20a285a,24 -1834-110319-6,5,100,0.05,d538d0f5-af4f-494c-aa15-3c58b81ec718,26 -1834-120319-1,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,11 -1834-120319-3,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,23 -1834-120319-2,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,21 -1834-120319-4,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,69 -1834-120319-3,5,100,0.05,53bc8cf7-58a2-4b25-88da-b90859dd3c21,68 -1834-120319-4,5,100,0.05,215b7bd2-9140-427e-8c0b-83816239273a,73 -1834-120319-4,5,100,0.05,7f917dc4-a420-4fd6-aabe-46eb61f0d3dc,83 -1834-150319-1,5,100,0.05,db2eb916-376f-4d5a-bef8-67dedde30881,24 -1834-150319-1,5,100,0.05,f9cba19c-ebdb-42ed-b9d0-43b2759a52ae,25 -1834-150319-1,5,100,0.05,01643e99-a8bc-40f1-8e60-4007e120ce90,28 -1834-150319-1,5,100,0.05,556b0998-272c-4129-b0a6-be66c894db18,51 -1834-150319-1,5,100,0.05,89cc1c82-38df-4a17-a323-78f00af076d6,58 -1834-150319-1,5,100,0.05,e4c2e126-8f49-4cdf-bf3f-4735afe9910a,60 -1834-150319-2,5,100,0.05,e0b35ef8-254a-4ed5-8ab0-90a8f243cb6f,48 -1834-150319-4,5,100,0.05,08cdb1f6-daf6-4c77-8e6a-28c62592b13b,13 -1834-150319-3,5,100,0.05,08cdb1f6-daf6-4c77-8e6a-28c62592b13b,47 -1834-150319-3,5,100,0.05,0199ee26-7405-4cd0-ac11-dbaa3c330356,67 -1834-150319-4,5,100,0.05,aacad4de-818a-4a74-b585-172e7eb1fa8b,11 -1834-150319-4,5,100,0.05,d8cb3830-9cbb-42de-9807-2d0545b43d1c,12 -1834-150319-4,5,100,0.05,499a6c0b-4f93-4fa8-a78c-fce18d305725,15 -1834-150319-4,5,100,0.05,9846e14e-08a4-431d-9bfc-403e83505036,16 -1834-150319-4,5,100,0.05,b68e9820-7f31-41f8-ad0f-7179c7413711,36 -1834-220319-1,5,100,0.05,50bea372-9a84-4167-934a-adb43d6fcde3,77 -1834-060319-1,6,100,0.05,021bf6f7-b1d7-458d-9fd5-81bbf34ad5dd,55 -1834-010319-1,6,100,0.05,021bf6f7-b1d7-458d-9fd5-81bbf34ad5dd,21 -1834-010319-3,6,100,0.05,838fdcc1-e031-4bc7-a818-caed33f36db7,55 -1834-010319-1,6,100,0.05,838fdcc1-e031-4bc7-a818-caed33f36db7,22 -1834-010319-3,6,100,0.05,1d7eb45e-8d2b-4ff1-b2a5-8c2304d8ed2f,53 -1834-010319-3,6,100,0.05,767954a1-c204-4e29-b3b9-6c5436a498dc,91 -1834-010319-4,6,100,0.05,62e17327-2136-4aff-96bd-4c3392119368,44 -1834-010319-5,6,100,0.05,62e17327-2136-4aff-96bd-4c3392119368,35 -1834-010319-5,6,100,0.05,c3d98537-a9d1-4bc1-9a84-314de43999fa,20 -1834-010319-4,6,100,0.05,c3d98537-a9d1-4bc1-9a84-314de43999fa,46 -1834-010319-5,6,100,0.05,a1067402-0b01-4f53-b684-b9c1d4946a31,33 -1834-060319-2,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,39 -1834-060319-3,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,32 -1834-060319-1,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,58 -1834-060319-2,6,100,0.05,b214c130-7830-426d-90b4-145c7fe476b7,122 -1834-060319-3,6,100,0.05,b214c130-7830-426d-90b4-145c7fe476b7,43 -1834-060319-2,6,100,0.05,b5ed181b-4b74-49d1-980c-2b9651c0ded8,40 -1834-060319-3,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,30 -1834-060319-2,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,45 -1834-060319-4,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,19 -1834-060319-3,6,100,0.05,754d05a2-f6a9-4155-9f64-69ade6f50a96,28 -1834-060319-4,6,100,0.05,61be488d-6c86-4386-af06-e054183543a3,21 -1834-060319-4,6,100,0.05,8081a3b7-da28-48a4-aa62-31307fd0f177,22 -1834-110319-1,6,100,0.05,0afb8188-2ed3-4123-af62-2181652d9456,20 -1834-110319-1,6,100,0.05,86033f51-0950-4277-aed5-300b64934a06,44 -1834-110319-2,6,100,0.05,28718409-6a9f-45f6-8bfe-56a8579fb4a4,34 -1834-110319-2,6,100,0.05,8ca774d4-c5bf-4884-8a44-2f1f7b904679,38 -1834-120319-1,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,33 -1834-150319-4,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,21 -1834-150319-1,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,29 -1834-120319-3,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,56 -1834-120319-4,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,55 -1834-110319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,39 -1834-150319-3,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,23 -1834-150319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,26 -1834-120319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,55 -1834-110319-2,6,100,0.05,89589911-d40e-4b69-91ab-83f5dae753bc,77 -1834-110319-2,6,100,0.05,474a90b7-75e4-4d33-968d-6d3020e34212,87 -1834-110319-3,6,100,0.05,1b35e75d-b923-4953-afd6-5326f4d47471,70 -1834-110319-3,6,100,0.05,551a161a-5152-40df-8a1d-e209481e124c,83 -1834-110319-5,6,100,0.05,21061932-1d6c-40af-bd58-47e9342b17d7,30 -1834-110319-5,6,100,0.05,8c3907b2-eb1a-4d50-8ebd-129cdf52c293,31 -1834-110319-6,6,100,0.05,7dd9059f-0d20-4e37-ac09-bfc81528005b,27 -1834-110319-6,6,100,0.05,c4b7cc21-0497-4acb-8c24-077a25b19f67,28 -1834-110319-6,6,100,0.05,d97b4f66-8787-4efa-bae0-f1e27a267d86,29 -1834-120319-1,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,31 -1834-120319-4,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,71 -1834-120319-2,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,23 -1834-120319-3,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,66 -1834-150319-1,6,100,0.05,83e4829b-5a58-4c49-ba21-77b1fdde5dea,31 -1834-150319-1,6,100,0.05,d445d411-5107-4767-a42c-c1527223ec9b,32 -1834-150319-1,6,100,0.05,599358d7-607e-4579-a756-cd1aefe1b223,33 -1834-150319-1,6,100,0.05,3535728e-5721-4f9f-a542-7f4faa37e5ad,34 -1834-150319-4,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,20 -1834-220319-1,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,24 -1834-150319-2,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,27 -1834-150319-3,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,65 -1834-150319-2,6,100,0.05,ee96c439-09de-4606-958d-8ca116d96d39,28 -1834-150319-3,6,100,0.05,cacc775e-a02b-4f3c-b51a-9149f98fa3ab,59 -1834-150319-3,6,100,0.05,313cf53d-59c0-47bf-b7e8-058c82b4d435,63 -1834-150319-4,6,100,0.05,db6381cb-f62b-4c73-9c0e-ab3f436dde5f,22 -1834-220319-1,6,100,0.05,ce51195f-3741-408b-a555-ceb73ce07ad0,26 -1834-220319-1,6,100,0.05,baa0e90d-317c-46db-9b84-cdceb1eff30d,41 -1834-220319-1,6,100,0.05,a6aea939-51c7-4cb4-bdf3-767937c5d4b3,69 -1834-220319-1,6,100,0.05,66e4874c-f061-4c11-b46a-ede7e71156c2,75 -1834-220319-2,6,100,0.05,a15bd840-e664-4c30-aee3-5ca17af87394,17 -1834-220319-2,6,100,0.05,bfac0cce-de5e-4392-ac4e-7c49c05d44f1,18 -1834-220319-2,6,100,0.05,b6a9b95a-474d-4eda-a9c3-aa45354614e6,19 -1834-220319-2,6,100,0.05,eee313ff-1f62-4705-910d-42f6efd5fad0,43 -1834-220319-2,6,100,0.05,9f40f9f0-faff-4ef8-9ab8-5b658e9822ad,45 -1834-220319-4,6,100,0.05,de8e860b-0974-498f-b91a-cbee61e11f4c,39 -1834-220319-3,6,100,0.05,de8e860b-0974-498f-b91a-cbee61e11f4c,22 -1834-220319-3,6,100,0.05,f3f224f5-ac7b-4304-8a95-7667b3e3632d,30 -1834-220319-4,6,100,0.05,f3f224f5-ac7b-4304-8a95-7667b3e3632d,29 -1834-220319-4,6,100,0.05,1f84f053-ece0-4d40-bf65-fd0857ab5c92,30 -1834-220319-3,6,100,0.05,1f84f053-ece0-4d40-bf65-fd0857ab5c92,37 -1834-010319-1,7,100,0.05,67fe05bd-16af-4f37-80bf-3ad24dabe5dd,24 -1834-010319-1,7,100,0.05,b613cf34-c12f-4a75-b5c7-27adff4a18e8,25 -1834-010319-3,7,100,0.05,8d8cfbaa-fa24-4eb1-b877-3161afd472d9,57 -1834-010319-3,7,100,0.05,b9fa6092-df69-4022-bb78-a7fe31f7e23d,58 -1834-010319-3,7,100,0.05,76043e1c-f615-472e-b57c-4b61fe1cadb5,60 -1834-010319-3,7,100,0.05,c9fd8a58-c3c6-42f9-ab7e-2679596875e2,61 -1834-010319-3,7,100,0.05,38bba347-47df-4c57-a99b-633ed5c522dc,63 -1834-220319-2,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,20 -1834-220319-3,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,25 -1834-010319-5,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,19 -1834-220319-4,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,31 -1834-010319-4,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,45 -1834-010319-4,7,100,0.05,5b282cae-5b65-48d0-8519-301ee007effa,48 -1834-010319-5,7,100,0.05,d56c29ac-a301-431b-82f8-d20bc2b251cf,23 -1834-010319-4,7,100,0.05,d56c29ac-a301-431b-82f8-d20bc2b251cf,49 -1834-010319-5,7,100,0.05,851b0f89-f74a-4bf6-acf9-b10c392d51d8,21 -1834-010319-5,7,100,0.05,713d30a9-fe7f-400b-bdd3-273e1ad53232,39 -1834-060319-1,7,100,0.05,46b3613b-6e9c-44ad-ab57-4622c051eeee,59 -1834-060319-1,7,100,0.05,df527a21-e349-47a8-8b2f-d5e89d458bea,91 -1834-060319-2,7,100,0.05,ea4e69a3-143b-4bc0-994d-1a1ffdf756e4,41 -1834-060319-2,7,100,0.05,16fd6f7f-271d-49aa-bd88-dd111f031a52,42 -1834-060319-3,7,100,0.05,16fd6f7f-271d-49aa-bd88-dd111f031a52,33 -1834-060319-3,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,35 -1834-060319-2,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,43 -1834-060319-4,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,24 -1834-060319-2,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,44 -1834-060319-4,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,26 -1834-060319-3,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,37 -1834-060319-2,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,46 -1834-060319-3,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,41 -1834-060319-4,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,28 -1834-060319-3,7,100,0.05,d4eb0f77-0a4a-4e6f-8365-d1be6ba62502,40 -1834-060319-4,7,100,0.05,ca1b3e99-853a-48c9-9d14-778e7a7269a9,23 -1834-060319-4,7,100,0.05,0f8c0d64-b4a5-4d2a-8f33-fad87723f5b4,29 -1834-110319-1,7,100,0.05,0f8c0d64-b4a5-4d2a-8f33-fad87723f5b4,30 -1834-110319-1,7,100,0.05,ab8c205a-b2c1-4084-a857-4377fcca0f06,23 -1834-110319-2,7,100,0.05,ab8c205a-b2c1-4084-a857-4377fcca0f06,41 -1834-110319-1,7,100,0.05,f4ea6e1d-5739-4cb0-a56f-cd0000756e42,24 -1834-110319-1,7,100,0.05,1627bbbd-e16c-43ab-b1a8-5f06969adc4c,25 -1834-110319-2,7,100,0.05,1627bbbd-e16c-43ab-b1a8-5f06969adc4c,45 -1834-110319-1,7,100,0.05,cdb89f6d-6f78-48d5-80cd-a4efe3ce60ef,26 -1834-110319-2,7,100,0.05,5a0d6354-2a6c-4c97-9411-fae7c2e40b5f,104 -1834-110319-2,7,100,0.05,e953fc20-f0d5-4b63-a839-83e1310b127a,40 -1834-110319-2,7,100,0.05,4a2c3fc9-4803-4728-ad19-e0cf147b76f0,47 -1834-110319-2,7,100,0.05,0487dc85-31d8-46dd-ac77-7ed48e3fc5ad,86 -1834-110319-2,7,100,0.05,698e435e-8b80-4b36-a50d-6daea3096071,96 -1834-110319-3,7,100,0.05,e1b066e0-f52c-4d5a-8947-a8f8da3dbe81,27 -1834-110319-3,7,100,0.05,83121451-85d0-4d5a-9e99-6fadce72bfa3,28 -1834-110319-3,7,100,0.05,08e8401f-7a5d-4ac0-ac7e-95f448b111ab,29 -1834-110319-3,7,100,0.05,e4827cd4-0f34-419f-9e60-ad6c2fbb2fcd,30 -1834-110319-5,7,100,0.05,61761d51-3273-454b-8707-555f265c9e6e,78 -1834-110319-5,7,100,0.05,5ee19cc7-585e-4469-bb15-2999b046e4dc,90 -1834-110319-6,7,100,0.05,d37b7899-7ae3-4263-823c-6af2f294d798,30 -1834-110319-6,7,100,0.05,280d5431-ee95-4173-a054-1f02124be41c,31 -1834-120319-2,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,26 -1834-120319-1,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,16 -1834-120319-3,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,28 -1834-120319-4,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,22 -1834-120319-1,7,100,0.05,194a642f-5f5c-496e-af0a-7474a3b2b84e,17 -1834-120319-3,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,52 -1834-120319-2,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,61 -1834-120319-4,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,52 -1834-120319-2,7,100,0.05,8ba033e2-b959-49d5-9a94-222dc23c8fc5,78 -1834-150319-1,7,100,0.05,f53ba045-bc25-4e1a-bc8c-2437af5d3af9,37 -1834-150319-1,7,100,0.05,7e0b064f-d850-459a-aebd-8905673e7a6b,41 -1834-150319-1,7,100,0.05,06b521be-fa9f-465e-9075-2e2d12a2ff1f,44 -1834-150319-1,7,100,0.05,11b7c89b-8431-475f-8471-25f5b3f3d2ba,45 -1834-150319-1,7,100,0.05,c0caf6f3-8280-4e5e-9e24-9ecc0a92645f,47 -1834-150319-1,7,100,0.05,e6f9d4cf-e263-4f6c-b2e6-e1be8b67f2e0,56 -1834-150319-3,7,100,0.05,76030eec-c9a1-4bba-bf4e-8ba12f487f4e,53 -1834-150319-1,7,100,0.05,76030eec-c9a1-4bba-bf4e-8ba12f487f4e,74 -1834-150319-1,7,100,0.05,a647bd81-c486-43da-92a7-e0da9a1c89d2,76 -1834-150319-1,7,100,0.05,2f4186af-7079-46ba-bda9-b77d70459b3e,77 -1834-150319-1,7,100,0.05,49ca57ca-8796-4d3e-88cd-7120eaaf6c92,92 -1834-150319-2,7,100,0.05,55ad4ae8-db2e-43b1-9517-049375f4f1dd,29 -1834-150319-2,7,100,0.05,fa2905f9-3070-4aec-ac2f-e7e55b945823,30 -1834-150319-2,7,100,0.05,bca39b92-9f54-4405-bfc1-d1104a8f4334,31 -1834-150319-2,7,100,0.05,04cc84c9-eea0-4848-ba22-e82992bb2264,32 -1834-150319-2,7,100,0.05,df25b7da-fc7b-4e2c-abf7-7dfd74a4da49,37 -1834-150319-2,7,100,0.05,f61cdff0-8458-4cee-b94b-6a54da35ae96,42 -1834-150319-3,7,100,0.05,638b2bbb-fe09-41a5-bb3c-00d964e0066b,27 -1834-150319-3,7,100,0.05,c5d4d53e-d074-4be7-af93-19fa6644e485,28 -1834-150319-3,7,100,0.05,5ca32a75-fb97-43a3-9688-89c76593c64e,30 -1834-150319-3,7,100,0.05,6786c504-a6f6-4ca2-88ef-740161529a1c,44 -1834-150319-3,7,100,0.05,84161ccd-4ea7-4fb3-bac3-65c092f1a328,45 -1834-150319-3,7,100,0.05,74ffdb38-658e-460e-a02d-5ce5098a8e06,49 -1834-150319-3,7,100,0.05,fb79170c-f42f-45d3-bfa2-1c655fb18176,55 -1834-150319-3,7,100,0.05,cda8e309-30b0-41ba-b48f-4080bd856ffd,57 -1834-150319-4,7,100,0.05,39241d89-d43c-4b4a-b636-77b7ef8b8979,23 -1834-150319-4,7,100,0.05,7bad7f0b-c55c-4139-9c4a-82fdb0253aa6,24 -1834-150319-4,7,100,0.05,80e6f4a4-ba9b-4dbe-81e0-ce8458e9895c,25 -1834-150319-4,7,100,0.05,5febb318-f33b-4b7e-98ff-0426c3ea70b5,26 -1834-150319-4,7,100,0.05,8fb53487-962a-40e4-bafa-5074102c7eca,33 -1834-220319-1,7,100,0.05,ed26b894-7548-45d1-b09b-da43a58730a5,29 -1834-220319-1,7,100,0.05,801f1c19-2b94-49b4-bfed-72359e22e795,36 -1834-220319-1,7,100,0.05,9033063c-9842-49a9-be92-7ab74c8540f3,37 -1834-220319-1,7,100,0.05,8de37e93-61b4-4fe8-ab49-5cfa18d02a71,49 -1834-220319-1,7,100,0.05,f4b1e9bf-90cc-4102-b814-dad7a85b7bfa,67 -1834-220319-2,7,100,0.05,4268ef94-0c73-4883-860c-2e6b3658bf1d,21 -1834-220319-4,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,45 -1834-220319-3,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,28 -1834-220319-2,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,29 -1834-220319-2,7,100,0.05,cf608811-7ad6-410e-93e2-efa1114d6ba7,39 -1834-220319-3,7,100,0.05,cf608811-7ad6-410e-93e2-efa1114d6ba7,26 -1834-220319-2,7,100,0.05,b4aea166-1104-4f07-b4c9-35c2582a3691,41 -1834-220319-3,7,100,0.05,61a4f383-08eb-44d8-b434-e6cb4f2a31c0,23 -1834-220319-3,7,100,0.05,aa3e4061-fa80-4101-ac7e-e3e896074240,31 -1834-220319-4,7,100,0.05,0bf35ce6-a932-4f1c-ae29-07bf6a81e1ef,32 -1834-220319-4,7,100,0.05,0c1b699a-4568-45b3-afc9-506e299042a0,33 -1834-220319-4,7,100,0.05,910fe900-f52a-41c1-aae2-b53259911cca,46 +1834-010319-1,0,100,0.05,ba8d31fb-a511-41a0-91b2-138d4862a505,2 +1834-010319-1,0,100,0.05,8d7e50e8-3496-4576-8c13-43b675da7198,39 +1834-010319-3,0,100,0.05,366ae5c7-b1c4-4104-8646-17de9424f4c3,1 +1834-010319-3,0,100,0.05,2b8af9d5-e216-478f-ad75-d8e41057de23,12 +1834-010319-3,0,100,0.05,dbc51162-50a4-4dc8-8460-efc2342c4f9e,72 +1834-110319-1,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,65 +1834-060319-4,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,3 +1834-060319-1,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,7 +1834-110319-5,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,98 +1834-010319-4,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,7 +1834-110319-2,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,108 +1834-110319-3,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,101 +1834-060319-1,0,100,0.05,4a90d982-ec1a-419d-a1c2-f2d4a7de7d17,70 +1834-060319-1,0,100,0.05,6637c14a-b253-48d2-8703-5f1b6243897c,71 +1834-060319-1,0,100,0.05,159d2a30-6e74-42ab-8ace-387a55d224d4,72 +1834-060319-1,0,100,0.05,47be527a-2d8f-4fe1-8a82-cbe0e8dd5755,73 +1834-060319-1,0,100,0.05,d6a56f04-ef88-4cd8-a5c3-df1fe601380d,74 +1834-060319-1,0,100,0.05,4488ef04-a63f-4248-98e9-3a991a05ab76,79 +1834-060319-3,0,100,0.05,49711b68-263d-46e8-9984-bd87eb439e5b,4 +1834-110319-1,0,100,0.05,da1214c1-766a-4aaa-918e-5a49e963fe12,0 +1834-110319-2,0,100,0.05,b7b2f4b9-4c64-42e4-9bc4-e692d98e3f90,11 +1834-110319-6,0,100,0.05,f0a9ce71-8b6a-46b8-8eaa-e021e962f72b,98 +1834-150319-4,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,0 +1834-120319-3,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,36 +1834-150319-2,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,2 +1834-120319-4,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,85 +1834-150319-3,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,71 +1834-120319-1,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,1 +1834-120319-2,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,39 +1834-150319-3,0,100,0.05,3322123c-d978-44e2-9203-88c6f87537b5,75 +1834-220319-4,0,100,0.05,de526724-e1b1-4836-950a-d62e6beb25fe,0 +1834-220319-2,0,100,0.05,de526724-e1b1-4836-950a-d62e6beb25fe,1 +1834-220319-3,0,100,0.05,de526724-e1b1-4836-950a-d62e6beb25fe,1 +1834-220319-1,0,100,0.05,de526724-e1b1-4836-950a-d62e6beb25fe,81 +1834-220319-1,0,100,0.05,938a7ac8-2210-4a2c-bf76-b69180f6d577,87 +1834-010319-1,1,100,0.05,690b8817-fea7-46fe-9e07-356cd4dc3e14,48 +1834-010319-3,1,100,0.05,fcc053f1-bfa4-4d3f-a84f-215ff857b5a9,18 +1834-010319-4,1,100,0.05,d30b325b-259d-4aaf-b7a9-016bd34e4a93,10 +1834-060319-2,1,100,0.05,8326a63c-797a-48d8-a597-8c03f2a7d819,104 +1834-120319-1,1,100,0.05,88f4ca9e-f444-44ba-be53-32ed89d07498,3 +1834-120319-3,1,100,0.05,2a65b1c8-1818-4ced-b072-90f228c2dbf3,38 +1834-120319-2,1,100,0.05,2a65b1c8-1818-4ced-b072-90f228c2dbf3,41 +1834-110319-6,2,100,0.05,fcf3f7b1-c2c4-472c-908f-342a5abb406c,104 +1834-110319-5,2,100,0.05,fcf3f7b1-c2c4-472c-908f-342a5abb406c,18 +1834-110319-3,2,100,0.05,fcf3f7b1-c2c4-472c-908f-342a5abb406c,47 +1834-060319-2,2,100,0.05,fcf3f7b1-c2c4-472c-908f-342a5abb406c,113 +1834-120319-2,2,100,0.05,2208bcf0-b6eb-4a38-9b75-3c9e20a58c03,43 +1834-120319-2,2,100,0.05,5facd2b5-08de-46d8-ba87-555300d49e6a,51 +1834-120319-3,2,100,0.05,f4f30ef6-81aa-4f0c-84dd-0439e0ad0c86,70 +1834-120319-4,2,100,0.05,a58dbd1d-080c-4198-b069-181a575f1a00,75 +1834-220319-2,2,100,0.05,a58dbd1d-080c-4198-b069-181a575f1a00,49 +1834-220319-3,2,100,0.05,a58dbd1d-080c-4198-b069-181a575f1a00,46 +1834-220319-1,2,100,0.05,a58dbd1d-080c-4198-b069-181a575f1a00,83 +1834-220319-2,2,100,0.05,3f81f644-7def-4aaf-8667-c4ba2d841153,7 +1834-220319-1,2,100,0.05,3f81f644-7def-4aaf-8667-c4ba2d841153,73 +1834-220319-3,2,100,0.05,3f81f644-7def-4aaf-8667-c4ba2d841153,29 +1834-220319-1,2,100,0.05,2908c638-e02a-489c-8cb4-ff4b33f02f9e,79 +1834-220319-4,2,100,0.05,c9990b3a-f350-4dae-a59b-62e3de85a992,60 +1834-010319-1,3,100,0.05,bf4e3373-1bc6-414b-8694-9c97d4bc8c4f,52 +1834-010319-3,3,100,0.05,bf4e3373-1bc6-414b-8694-9c97d4bc8c4f,76 +1834-010319-1,3,100,0.05,40f09c39-62dd-407a-943e-e2367d3bb0be,7 +1834-010319-1,3,100,0.05,abb92bcc-5559-4071-8c68-144a0fc376fb,8 +1834-010319-3,3,100,0.05,32b61362-ae34-4834-aa33-56acb9cb7700,87 +1834-010319-4,3,100,0.05,3756d79b-0ea6-4593-b2da-e66cb4ae5ef0,21 +1834-010319-4,3,100,0.05,3cf953a4-371a-4efb-87c2-a478cf6e1abe,22 +1834-010319-5,3,100,0.05,5a02519f-dd23-4ff9-b77e-6df2ccf47d28,11 +1834-010319-5,3,100,0.05,293e799d-4de6-4ab3-a293-f9c044461fd3,28 +1834-060319-1,3,100,0.05,5ff341ca-c42a-4238-937f-4f932bf2485e,33 +1834-060319-1,3,100,0.05,c64f1d18-0873-4c2a-8f2d-47188f78fe77,85 +1834-060319-1,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,95 +1834-060319-3,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,13 +1834-060319-2,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,24 +1834-110319-3,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,41 +1834-060319-4,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,8 +1834-060319-2,3,100,0.05,f12d9d14-8d5d-4799-ab14-10ac47b77542,25 +1834-060319-4,3,100,0.05,845fbe49-4f67-4d07-8e65-63536f0117ac,10 +1834-110319-2,3,100,0.05,56d85532-29f2-4ecb-b105-b006301a7cbb,16 +1834-110319-5,3,100,0.05,33b57fa7-3f6a-418c-a642-99e38d252219,24 +1834-120319-2,3,100,0.05,847e4a86-4051-453b-a16e-60307e568fcb,15 +1834-120319-3,3,100,0.05,847e4a86-4051-453b-a16e-60307e568fcb,62 +1834-120319-1,3,100,0.05,847e4a86-4051-453b-a16e-60307e568fcb,8 +1834-120319-2,3,100,0.05,9eb07444-bdde-4258-b85e-02f076d95bb1,6 +1834-120319-4,3,100,0.05,35f11f0d-a0a9-4735-8129-9de2a8c12737,59 +1834-150319-1,3,100,0.05,bcf217f7-450a-48a3-9d66-1fcce7126c68,95 +1834-150319-2,3,100,0.05,92121c42-435f-4a0d-9e9d-6939cd7ae701,13 +1834-150319-3,3,100,0.05,2b1bbdcd-3a24-43ba-997a-48813da4e27e,61 +1834-150319-4,3,100,0.05,2b1bbdcd-3a24-43ba-997a-48813da4e27e,5 +1834-150319-2,3,100,0.05,2b1bbdcd-3a24-43ba-997a-48813da4e27e,46 +1834-150319-3,3,100,0.05,2b2f5d20-b737-4c7c-b49d-45a2ee36012e,8 +1834-150319-4,3,100,0.05,4b615d65-5228-4c85-9550-904c42782586,6 +1834-220319-3,3,100,0.05,ba0d7e24-4986-4ea9-b9c9-6d566e97f667,10 +1834-220319-4,3,100,0.05,ba0d7e24-4986-4ea9-b9c9-6d566e97f667,10 +1834-220319-2,3,100,0.05,ba0d7e24-4986-4ea9-b9c9-6d566e97f667,8 +1834-220319-1,3,100,0.05,ba0d7e24-4986-4ea9-b9c9-6d566e97f667,11 +1834-010319-1,4,100,0.05,3d62d9ee-b4f0-4936-9c92-52dcefeb81a0,13 +1834-010319-1,4,100,0.05,fd336b63-d868-4123-b744-af6b30e0931e,62 +1834-010319-3,4,100,0.05,54ed976d-5bcd-4c5e-9274-bbabbcc8a1a3,34 +1834-010319-3,4,100,0.05,c6b6d61b-742b-43fc-b758-a66e29bafe1f,36 +1834-010319-3,4,100,0.05,410cf677-7b47-4b8e-a5e9-2cc11d039270,66 +1834-010319-3,4,100,0.05,a9991fd3-13b9-4a6f-8574-78c11a43bdb9,90 +1834-010319-4,4,100,0.05,86cfc374-07ab-4b6b-8c0d-d5b1baa18210,29 +1834-010319-4,4,100,0.05,93df498d-cbc2-4159-afe0-a9ca2c5c9625,35 +1834-010319-4,4,100,0.05,2d6a070e-cd37-4cea-8eb9-1aec38b0364e,53 +1834-060319-2,4,100,0.05,5bd60c79-54d0-4863-b587-46ddcbba8ba5,115 +1834-060319-3,4,100,0.05,1b8c01ca-e9d3-4d57-b51e-5c36f9e19879,19 +1834-060319-4,4,100,0.05,c4589c86-3665-49a5-b11a-871ba9b80c44,13 +1834-110319-1,4,100,0.05,68df2d07-45eb-47b8-95c3-5731e45d9d5d,11 +1834-110319-2,4,100,0.05,68df2d07-45eb-47b8-95c3-5731e45d9d5d,19 +1834-110319-5,4,100,0.05,d936fe73-8a55-41d7-a68d-c87776550eb6,76 +1834-120319-3,4,100,0.05,4f5e6b43-7550-45f4-b233-c31e24a14ce4,40 +1834-120319-3,4,100,0.05,6d10b1f8-64b5-44cd-8f88-92b5f28dd326,95 +1834-150319-2,4,100,0.05,8a07c4f1-35ff-4815-b231-780bce803904,54 +1834-220319-1,4,100,0.05,cb76286e-88b6-4042-8c31-a06a73432f59,65 +1834-220319-2,4,100,0.05,cb76286e-88b6-4042-8c31-a06a73432f59,34 +1834-220319-2,4,100,0.05,f1091174-7e16-45ea-b0ac-9496388df0ac,47 +1834-220319-3,4,100,0.05,71dfbf61-981c-4b19-8f93-997652d902c7,15 +1834-220319-4,4,100,0.05,71dfbf61-981c-4b19-8f93-997652d902c7,51 +1834-220319-4,4,100,0.05,d6a5a781-f794-4e86-a233-e82ca99a833f,36 +1834-220319-4,4,100,0.05,43238212-283c-490c-bfb9-1e44063b8c43,63 +1834-220319-4,4,100,0.05,4a12ae02-b9e3-48a9-8b1c-e32a78c87d4b,65 +1834-010319-1,5,100,0.05,d967b66d-e3e8-4d44-aa4b-578c23ad2d99,16 +1834-010319-1,5,100,0.05,48bbae81-2938-4725-b2e9-84e04f341833,18 +1834-010319-3,5,100,0.05,224d04d4-c718-4abb-a546-b9d9b4c1dc09,41 +1834-010319-4,5,100,0.05,65ff8309-2cc1-4ce2-8776-742f123b4e45,37 +1834-010319-3,5,100,0.05,65ff8309-2cc1-4ce2-8776-742f123b4e45,42 +1834-010319-4,5,100,0.05,434e9092-e483-46f3-a133-64865e9f2bb3,36 +1834-010319-5,5,100,0.05,52c45f64-86f0-44c6-abca-a481f806e86c,14 +1834-010319-5,5,100,0.05,a5eec966-c449-44c2-8275-1849b10bc0c8,15 +1834-060319-1,5,100,0.05,fee656cf-79eb-41bc-9f2d-b97aa2a11f59,87 +1834-060319-2,5,100,0.05,ab9b538a-6636-4af6-93e8-7cab124ab7dc,34 +1834-060319-4,5,100,0.05,1eae3282-a23b-4c0c-9e43-c910073817d6,15 +1834-060319-2,5,100,0.05,1eae3282-a23b-4c0c-9e43-c910073817d6,35 +1834-060319-3,5,100,0.05,1eae3282-a23b-4c0c-9e43-c910073817d6,25 +1834-060319-3,5,100,0.05,187166f1-96aa-47bf-b672-d49e55ef1441,24 +1834-060319-3,5,100,0.05,c3c759db-386c-4230-abf9-7ccbcb77336c,26 +1834-060319-4,5,100,0.05,615976b1-72d8-440f-9248-44798dbbca10,16 +1834-110319-1,5,100,0.05,615976b1-72d8-440f-9248-44798dbbca10,14 +1834-060319-4,5,100,0.05,eef3483e-10f6-47e9-9a45-c3acc88f0c0f,17 +1834-110319-1,5,100,0.05,7a27534a-1ff7-4d35-922b-36f09e75341d,16 +1834-110319-2,5,100,0.05,b75a0079-84d0-4410-a1e0-595f243b2560,28 +1834-110319-1,5,100,0.05,b75a0079-84d0-4410-a1e0-595f243b2560,28 +1834-110319-2,5,100,0.05,4410e299-eed8-49e2-ac4a-85d0f2d653f1,29 +1834-110319-2,5,100,0.05,155118c5-5411-4df6-a3fe-8774d795a2c5,31 +1834-110319-5,5,100,0.05,86aefe11-b2c1-4cc3-9631-826c21078349,27 +1834-110319-6,5,100,0.05,c446186c-5d6b-4d7e-b69b-98761ca66231,90 +1834-120319-3,5,100,0.05,75281a58-de5e-4e64-9fa1-276551f4d9dd,23 +1834-120319-4,5,100,0.05,75281a58-de5e-4e64-9fa1-276551f4d9dd,69 +1834-120319-1,5,100,0.05,75281a58-de5e-4e64-9fa1-276551f4d9dd,11 +1834-120319-2,5,100,0.05,75281a58-de5e-4e64-9fa1-276551f4d9dd,21 +1834-120319-3,5,100,0.05,d8755b95-f8de-40fe-b06f-0c15351e0466,68 +1834-120319-4,5,100,0.05,70002885-d06a-4bf6-8773-84c206bca972,73 +1834-120319-4,5,100,0.05,8f806a25-06af-439d-addc-15ce62345ff8,83 +1834-150319-1,5,100,0.05,e5981420-29ea-4fbd-a4c9-d7b98ddb95b6,104 +1834-150319-1,5,100,0.05,e0f41896-a341-4047-8a99-186c0f340523,121 +1834-150319-1,5,100,0.05,365d89ab-d4f3-4e48-bebb-4ec7fdc45d38,25 +1834-150319-1,5,100,0.05,01470427-57ea-42e7-af3e-d99fd42bbad8,51 +1834-150319-2,5,100,0.05,a2be271f-e8fb-47c1-9e76-a9d1f16923ea,48 +1834-150319-3,5,100,0.05,ba56190b-19f5-4f99-b93f-a9f97350d961,47 +1834-150319-4,5,100,0.05,ba56190b-19f5-4f99-b93f-a9f97350d961,13 +1834-150319-3,5,100,0.05,a4fc59d7-7858-4476-9dab-7af2965f38a6,67 +1834-150319-4,5,100,0.05,dace6fba-4276-49b2-8c51-048d1f79bbee,11 +1834-150319-4,5,100,0.05,97430ff0-c8ed-462c-83c6-3f5acf172c4d,12 +1834-150319-4,5,100,0.05,b12cdef6-cde4-4040-bcb2-c0a88d094435,15 +1834-150319-4,5,100,0.05,04e7025c-e706-4a22-9cf5-07482d7b75a4,16 +1834-150319-4,5,100,0.05,fcd05d3e-491e-4c53-b5a4-5a46bb9436cc,36 +1834-220319-1,5,100,0.05,f4f67b5f-9ff4-4c71-99db-bda1845a11c0,77 +1834-060319-1,6,100,0.05,4f577056-0fdd-4e4c-ac42-42c7bf2054b6,55 +1834-010319-1,6,100,0.05,4f577056-0fdd-4e4c-ac42-42c7bf2054b6,21 +1834-010319-3,6,100,0.05,ff3ab24a-0755-4a47-83ea-993259f8aef8,55 +1834-010319-1,6,100,0.05,ff3ab24a-0755-4a47-83ea-993259f8aef8,22 +1834-010319-3,6,100,0.05,4cec7e7f-4120-4f59-877c-2912ee5624b3,53 +1834-010319-3,6,100,0.05,e49d3f2d-c6f6-4a43-8f65-577f4f8bf374,91 +1834-010319-4,6,100,0.05,b2ba2bc0-f4a9-47f6-9d75-21dbdcc46507,44 +1834-010319-5,6,100,0.05,b2ba2bc0-f4a9-47f6-9d75-21dbdcc46507,35 +1834-010319-4,6,100,0.05,2ff284a3-8f4c-4fc3-8e65-7df4a5c6d530,46 +1834-010319-5,6,100,0.05,2ff284a3-8f4c-4fc3-8e65-7df4a5c6d530,20 +1834-010319-5,6,100,0.05,6534ec1d-4996-43c3-bf0c-f15f8b01df21,33 +1834-060319-1,6,100,0.05,63f88367-c8be-48c6-8287-283759154419,58 +1834-060319-3,6,100,0.05,63f88367-c8be-48c6-8287-283759154419,32 +1834-060319-2,6,100,0.05,63f88367-c8be-48c6-8287-283759154419,39 +1834-060319-3,6,100,0.05,40c56e09-f78d-4f55-a93d-367dbedddb26,43 +1834-060319-2,6,100,0.05,40c56e09-f78d-4f55-a93d-367dbedddb26,122 +1834-060319-2,6,100,0.05,88b274b8-4335-449a-8e58-2c10ad6fbf8c,40 +1834-060319-2,6,100,0.05,4f073dde-7bbb-4161-8e6a-76d2608a49bf,45 +1834-060319-3,6,100,0.05,4f073dde-7bbb-4161-8e6a-76d2608a49bf,30 +1834-060319-4,6,100,0.05,4f073dde-7bbb-4161-8e6a-76d2608a49bf,19 +1834-060319-3,6,100,0.05,63143254-5c49-4bab-860a-fe43c93c5201,28 +1834-060319-4,6,100,0.05,c2823285-29da-4da4-9b7a-6f456966f18c,21 +1834-060319-4,6,100,0.05,1af18034-921e-4096-bd33-6f48672a7a1c,22 +1834-110319-1,6,100,0.05,a9693ee8-7e85-41fe-8b94-aa7f209a5e0f,20 +1834-110319-1,6,100,0.05,4f357cdb-02ce-41a6-a68d-5b0908d654c6,44 +1834-110319-2,6,100,0.05,0dd69813-7d4b-444b-a2d5-7e8ed22c1fb9,34 +1834-110319-2,6,100,0.05,6b545036-c6e9-4888-83c7-f7338d7d479b,38 +1834-110319-2,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,39 +1834-120319-4,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,55 +1834-120319-2,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,55 +1834-150319-2,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,26 +1834-150319-3,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,23 +1834-150319-1,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,29 +1834-150319-4,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,21 +1834-120319-1,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,33 +1834-120319-3,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,56 +1834-110319-2,6,100,0.05,b3e4daba-8b77-44dd-afdf-a511ba9016bf,77 +1834-110319-2,6,100,0.05,dc66702a-c1d9-47a6-8983-4a35a7c4cfe4,87 +1834-110319-3,6,100,0.05,09c5a6cf-223a-4457-adac-89692fbe4bf1,70 +1834-110319-3,6,100,0.05,b625409f-75af-4353-a55a-f3a44db2bf74,83 +1834-110319-5,6,100,0.05,3fdee238-cd1c-4af0-8210-9cb8035bab08,30 +1834-110319-5,6,100,0.05,fc29229b-3670-4266-ab59-292bffc0878b,31 +1834-110319-6,6,100,0.05,4e3e88ee-81d3-4015-b46a-79212cc5bd96,114 +1834-110319-6,6,100,0.05,1c8ba769-ecb4-48d1-a695-d28e5ffdf5a7,116 +1834-120319-4,6,100,0.05,e472d3b7-c90e-48f0-ad02-f9b30e2d1ca2,71 +1834-120319-1,6,100,0.05,e472d3b7-c90e-48f0-ad02-f9b30e2d1ca2,31 +1834-120319-2,6,100,0.05,e472d3b7-c90e-48f0-ad02-f9b30e2d1ca2,23 +1834-120319-3,6,100,0.05,e472d3b7-c90e-48f0-ad02-f9b30e2d1ca2,66 +1834-220319-1,6,100,0.05,4885e4a6-4f45-4873-8aef-21a29f9c75dc,24 +1834-150319-3,6,100,0.05,4885e4a6-4f45-4873-8aef-21a29f9c75dc,65 +1834-150319-4,6,100,0.05,4885e4a6-4f45-4873-8aef-21a29f9c75dc,20 +1834-150319-2,6,100,0.05,4885e4a6-4f45-4873-8aef-21a29f9c75dc,27 +1834-150319-2,6,100,0.05,101a5b4d-65ec-435e-bd90-39b0916584e8,28 +1834-150319-3,6,100,0.05,03fd7c9e-1c44-4083-a3e3-f4da15643c02,59 +1834-150319-3,6,100,0.05,08973b47-4968-4d74-8292-b1436a7d3be5,63 +1834-150319-4,6,100,0.05,a7342215-10c0-4e32-acbf-8d1ecb9dfc05,22 +1834-220319-1,6,100,0.05,660035f1-f3d8-4143-a06f-328f64f31bc6,26 +1834-220319-1,6,100,0.05,fb4cd291-3824-446b-9ed0-925298dc6c71,41 +1834-220319-1,6,100,0.05,cc245705-5215-4809-86e4-c84cf9636b2d,69 +1834-220319-1,6,100,0.05,a44b7bd8-3622-442a-98a7-520d4768e03e,75 +1834-220319-2,6,100,0.05,6f8f632b-59e3-4603-8b53-23412a225fe2,17 +1834-220319-2,6,100,0.05,c6b1f0e7-f1b0-4545-b856-0f16c9cb222d,18 +1834-220319-2,6,100,0.05,4965c371-7fdd-4244-91bd-fb3e0a5109cc,19 +1834-220319-2,6,100,0.05,998465d2-3d19-4e8d-960b-2d4300254edd,43 +1834-220319-2,6,100,0.05,6662dedd-4186-427e-afe8-a6d8d43349b2,45 +1834-220319-3,6,100,0.05,0dbbe8f1-99c7-4f76-b9b8-73b91df7dc27,22 +1834-220319-4,6,100,0.05,0dbbe8f1-99c7-4f76-b9b8-73b91df7dc27,39 +1834-220319-4,6,100,0.05,afcb59de-3dd8-4320-b30f-2743cdb9ad12,29 +1834-220319-3,6,100,0.05,afcb59de-3dd8-4320-b30f-2743cdb9ad12,30 +1834-220319-4,6,100,0.05,c3a82b70-b806-4a2e-b8db-f92eb8310139,30 +1834-220319-3,6,100,0.05,c3a82b70-b806-4a2e-b8db-f92eb8310139,37 +1834-010319-1,7,100,0.05,1a7e2a95-450c-4257-86c2-044127d60c3e,24 +1834-010319-1,7,100,0.05,bbda5d40-711d-45fc-8ac4-7772dfbed754,25 +1834-010319-3,7,100,0.05,cdd578a8-4481-4a77-95cc-dde5643a05a7,57 +1834-010319-3,7,100,0.05,62e05a1a-dca2-4c40-a451-9b76ca6c9c7a,58 +1834-010319-3,7,100,0.05,0dfd63ef-40b4-46ac-9d22-1df32ec0c66c,60 +1834-010319-3,7,100,0.05,100dfda6-f79e-4a45-b2fc-f6cd0848cced,61 +1834-010319-3,7,100,0.05,855c6e8e-921b-40b5-96c5-9638e4c0707d,63 +1834-010319-5,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,19 +1834-220319-2,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,20 +1834-220319-3,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,25 +1834-220319-4,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,31 +1834-010319-4,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,45 +1834-010319-4,7,100,0.05,5f18ec34-e08a-4033-a136-33499deafb05,48 +1834-010319-5,7,100,0.05,47246698-32f8-42f6-ad9e-b2aac36fd361,23 +1834-010319-4,7,100,0.05,47246698-32f8-42f6-ad9e-b2aac36fd361,49 +1834-010319-5,7,100,0.05,4c47ce43-9ac5-4e57-a815-517b244640c7,21 +1834-010319-5,7,100,0.05,3c386ec2-c22d-43b3-a687-c8ac42eed150,39 +1834-060319-1,7,100,0.05,4f3d1acf-4438-4103-ad83-44612bdef481,59 +1834-060319-1,7,100,0.05,0c71d421-5b30-4497-9711-2adcf5968f33,91 +1834-060319-2,7,100,0.05,8f5433e0-7be4-499d-97fd-d4a2a6d711d5,41 +1834-060319-2,7,100,0.05,5aa52ec4-d7e5-460e-849b-a021c469e2eb,42 +1834-060319-3,7,100,0.05,5aa52ec4-d7e5-460e-849b-a021c469e2eb,33 +1834-060319-3,7,100,0.05,9f6eb181-321a-4ef7-8e2d-870bac6ceb37,35 +1834-060319-2,7,100,0.05,9f6eb181-321a-4ef7-8e2d-870bac6ceb37,43 +1834-060319-4,7,100,0.05,9f6eb181-321a-4ef7-8e2d-870bac6ceb37,24 +1834-060319-3,7,100,0.05,e1bf7e66-4fad-4125-8185-9842c1e3f79c,37 +1834-060319-4,7,100,0.05,e1bf7e66-4fad-4125-8185-9842c1e3f79c,26 +1834-060319-2,7,100,0.05,e1bf7e66-4fad-4125-8185-9842c1e3f79c,44 +1834-060319-3,7,100,0.05,14b4753a-3b46-445d-9260-9cdbf5ce4898,41 +1834-060319-2,7,100,0.05,14b4753a-3b46-445d-9260-9cdbf5ce4898,46 +1834-060319-4,7,100,0.05,14b4753a-3b46-445d-9260-9cdbf5ce4898,28 +1834-060319-3,7,100,0.05,ca559370-a8d8-4ddf-a266-7d210a2570a8,40 +1834-060319-4,7,100,0.05,9f612818-789a-494c-87e6-5b114e1ad939,23 +1834-060319-4,7,100,0.05,ae9ea3e4-8fff-410f-b045-bb3a682ca8b2,29 +1834-110319-1,7,100,0.05,ae9ea3e4-8fff-410f-b045-bb3a682ca8b2,30 +1834-110319-2,7,100,0.05,523af64d-491c-4a3d-956e-9226f8491442,41 +1834-110319-1,7,100,0.05,523af64d-491c-4a3d-956e-9226f8491442,23 +1834-110319-1,7,100,0.05,1b75d4ae-81f6-4699-ac42-351a7858a51f,24 +1834-110319-1,7,100,0.05,d99e8653-4124-4283-a54f-20368732e416,25 +1834-110319-2,7,100,0.05,d99e8653-4124-4283-a54f-20368732e416,45 +1834-110319-1,7,100,0.05,df990a64-ce40-4ed0-b5ac-f6e8902de6bb,26 +1834-110319-2,7,100,0.05,e1260923-321b-41a1-8177-eedd11a940a2,104 +1834-110319-2,7,100,0.05,e31905d6-49d9-46d2-a0fc-9b65990cc5ee,40 +1834-110319-2,7,100,0.05,05b102a5-726f-4ac6-a88b-9e59c63e60bd,47 +1834-110319-2,7,100,0.05,06de7e5e-5c87-404c-8b56-180fd2620c66,86 +1834-110319-2,7,100,0.05,d94d4c5c-878e-49a7-9655-3d680f797c35,96 +1834-110319-3,7,100,0.05,cf6869da-1ab3-4122-b195-ef5b7a382e53,27 +1834-110319-3,7,100,0.05,22d2f141-8350-4ce5-812b-f406ee913f73,28 +1834-110319-3,7,100,0.05,2ab525e7-e1e7-49d7-8090-c64050e5a811,29 +1834-110319-3,7,100,0.05,067f320e-2baf-4fe5-91f6-b4d1b27d7800,30 +1834-110319-5,7,100,0.05,06b66419-682e-40db-8e41-0f0c53cb2e38,78 +1834-110319-5,7,100,0.05,3cef4b91-94b3-4dba-94d4-0f64b1967dab,90 +1834-120319-3,7,100,0.05,23008245-ab98-4d2f-8d52-521556d09fb8,28 +1834-120319-4,7,100,0.05,23008245-ab98-4d2f-8d52-521556d09fb8,22 +1834-120319-2,7,100,0.05,23008245-ab98-4d2f-8d52-521556d09fb8,26 +1834-120319-1,7,100,0.05,23008245-ab98-4d2f-8d52-521556d09fb8,16 +1834-120319-1,7,100,0.05,8fef5055-116a-4389-a67c-886a2fc57842,17 +1834-120319-3,7,100,0.05,ebf94cb1-255c-408f-9bdc-dfb9b2416066,52 +1834-120319-2,7,100,0.05,ebf94cb1-255c-408f-9bdc-dfb9b2416066,61 +1834-120319-4,7,100,0.05,ebf94cb1-255c-408f-9bdc-dfb9b2416066,52 +1834-120319-2,7,100,0.05,8a4dc8a1-6520-4b20-8ffe-809726dd8a24,78 +1834-150319-1,7,100,0.05,5f8c3b2b-5e5f-4a9c-9ba1-c4a8d229ff79,106 +1834-150319-1,7,100,0.05,738bb033-f65b-40ca-9993-6cf2a062d584,114 +1834-150319-3,7,100,0.05,f6758adc-51c1-4898-94b5-96bc0aa52050,45 +1834-150319-1,7,100,0.05,f6758adc-51c1-4898-94b5-96bc0aa52050,116 +1834-150319-1,7,100,0.05,31beac31-763d-4e21-b0a4-5c4f1ccd52c3,117 +1834-150319-3,7,100,0.05,31beac31-763d-4e21-b0a4-5c4f1ccd52c3,53 +1834-150319-1,7,100,0.05,c1145d48-5f85-45f1-8d76-4a44fc665ee4,47 +1834-150319-1,7,100,0.05,7f92f005-59cf-430e-967c-bd49013f2a76,76 +1834-150319-2,7,100,0.05,ec7a8aa1-1e06-4791-bd99-1258cf36c710,29 +1834-150319-2,7,100,0.05,69a099c1-9dd3-45ce-a8a9-0c2eabf87922,30 +1834-150319-2,7,100,0.05,627b751c-55d4-4df2-b9c6-640cf6bf07fd,31 +1834-150319-2,7,100,0.05,beaca059-4368-4b20-8589-6d84b3b59c42,32 +1834-150319-2,7,100,0.05,22bf3833-4e3d-468a-89af-2965d2a51002,37 +1834-150319-2,7,100,0.05,c96ed8da-3951-4eeb-9248-177c5ce04032,42 +1834-150319-3,7,100,0.05,edcf06b2-9d17-4059-83cf-3f74a9f354de,27 +1834-150319-3,7,100,0.05,8ab38247-89ac-4d90-9550-2ed1cf161338,28 +1834-150319-3,7,100,0.05,46599ffa-444f-4673-8e52-c92afc83c9bf,30 +1834-150319-3,7,100,0.05,d2647864-247d-4942-9a6c-173ac37fe090,44 +1834-150319-3,7,100,0.05,de9c01f8-8168-4dfb-8ace-24fbf7f27040,49 +1834-150319-3,7,100,0.05,3f936b1e-bdca-4f80-82b9-d2685edfc0fa,55 +1834-150319-3,7,100,0.05,a0b6a381-ab2b-432d-93f4-4ea1e7c6bd13,57 +1834-150319-4,7,100,0.05,44782215-da18-4cd4-b71f-1085bf379aa4,23 +1834-150319-4,7,100,0.05,61afe5e7-43a8-469b-954e-4e0e2b80fb78,24 +1834-150319-4,7,100,0.05,f1857fe5-6bd8-47d3-ad55-e20fcbb4fea3,25 +1834-150319-4,7,100,0.05,15d43d29-f621-450a-b40b-cd9955f82271,26 +1834-150319-4,7,100,0.05,5a97800d-6787-455b-bda1-7103715d72f5,33 +1834-220319-1,7,100,0.05,b4c67054-eef7-4677-b513-8129cf5f5b22,29 +1834-220319-1,7,100,0.05,4a727f7e-b015-4b00-9f28-e18605eb7f48,36 +1834-220319-1,7,100,0.05,53d79670-e857-46ba-ac17-f908cf2298d8,37 +1834-220319-1,7,100,0.05,f9929c67-0c93-44f0-b2c5-f4b4ff7cb390,49 +1834-220319-1,7,100,0.05,9e21c4bd-05cf-472e-9bc1-dd58e9d7606e,67 +1834-220319-2,7,100,0.05,aea56a70-7844-478c-be62-fe3838c37cd8,21 +1834-220319-3,7,100,0.05,c9b7d4e9-e312-49b3-bcc6-9976b428d4e6,28 +1834-220319-2,7,100,0.05,c9b7d4e9-e312-49b3-bcc6-9976b428d4e6,29 +1834-220319-4,7,100,0.05,c9b7d4e9-e312-49b3-bcc6-9976b428d4e6,45 +1834-220319-2,7,100,0.05,57137c66-f012-45df-926e-02263653b304,39 +1834-220319-3,7,100,0.05,57137c66-f012-45df-926e-02263653b304,26 +1834-220319-2,7,100,0.05,dff1dd59-2802-4a78-8ede-e7e1d4dc61a2,41 +1834-220319-3,7,100,0.05,e094778a-1148-4369-b07b-b5c88a2123b8,23 +1834-220319-3,7,100,0.05,54015f95-d46a-4503-a7d4-8c098acc9445,31 +1834-220319-4,7,100,0.05,c4c42dfa-ca31-4bde-80c8-0ebd096ea781,32 +1834-220319-4,7,100,0.05,53328a33-9f74-4230-b6d3-0f6869d42807,33 +1834-220319-4,7,100,0.05,8eff42ab-1fd2-4d04-abc9-c1945e4e92b3,46 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml index d3c147be1..22214fd44 100644 --- a/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml +++ b/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml @@ -1,7 +1,7 @@ !!python/object:networkx.classes.graph.Graph _adj: 1839-120619-3_137: - 1839-120619-4_29: &id002 + 1839-120619-4_112: &id002 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -9,7 +9,7 @@ _adj: args: [f8, 0, 1] state: !!python/tuple [3, <, null, null, null, -1, -1, 0] - !!binary | - BVG0luLo1z8= + KRvO7p+u3T8= 1839-200619-1_153: &id003 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 80776, 0] @@ -24,8 +24,7 @@ _adj: - *id001 - !!binary | a4O4pJSa4T8= - 1839-120619-4_112: {} - 1839-120619-4_29: + 1839-120619-4_112: 1839-120619-3_137: *id002 1839-200619-1_153: &id004 depth_delta: 0.0 @@ -33,17 +32,17 @@ _adj: weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - lI3IwQucyz8= + eKTWNwHG4T8= 1839-200619-2_118: &id006 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MZ9jA3cS0D8= + 7qfmwZf52T8= 1839-200619-1_153: 1839-120619-3_137: *id003 - 1839-120619-4_29: *id004 + 1839-120619-4_112: *id004 1839-200619-2_118: &id007 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2406, 0] @@ -53,7 +52,7 @@ _adj: T0vN4gDN2T8= 1839-200619-2_118: 1839-120619-3_137: *id005 - 1839-120619-4_29: *id006 + 1839-120619-4_112: *id006 1839-200619-1_153: *id007 _node: &id010 1839-120619-3_137: @@ -70,12 +69,6 @@ _node: &id010 - *id008 - !!binary | cAAAAAAAAAA= - 1839-120619-4_29: - action_id: 1839-120619-4 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id008 - - !!binary | - HQAAAAAAAAA= 1839-200619-1_153: action_id: 1839-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml index 23c7ced9d..73a0f69e7 100644 --- a/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml +++ b/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml @@ -204,7 +204,7 @@ _adj: - *id001 - !!binary | Zl8O5sPF2j8= - 1839-120619-4_134: &id031 + 1839-120619-4_140: &id031 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -286,7 +286,7 @@ _adj: - *id001 - !!binary | 1YSAAVrrqz8= - 1839-120619-4_134: &id032 + 1839-120619-4_140: &id032 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -459,7 +459,7 @@ _adj: 1839-120619-3_133: 1839-060619-5_166: *id017 1839-120619-2_106: *id018 - 1839-120619-4_134: &id033 + 1839-120619-4_140: &id033 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -596,7 +596,7 @@ _adj: - *id001 - !!binary | 6EF1vTfUwD8= - 1839-120619-4_134: + 1839-120619-4_140: 1839-060619-5_168: *id031 1839-120619-2_106: *id032 1839-120619-3_133: *id033 @@ -701,7 +701,7 @@ _adj: 1839-120619-4_124: *id055 1839-200619-1_139: *id056 1839-200619-2_78: - 1839-120619-4_134: *id057 + 1839-120619-4_140: *id057 1839-200619-2_89: 1839-060619-5_166: *id058 1839-120619-4_90: *id059 @@ -874,12 +874,12 @@ _node: &id094 - *id092 - !!binary | hAAAAAAAAAA= - 1839-120619-4_134: + 1839-120619-4_140: action_id: 1839-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - *id092 - !!binary | - hgAAAAAAAAA= + jAAAAAAAAAA= 1839-120619-4_90: action_id: 1839-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml index df11c0260..3e37f1d78 100644 --- a/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml +++ b/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml @@ -312,13 +312,13 @@ _adj: - *id001 - !!binary | 6sgrvHIovz8= - 1839-120619-4_136: &id038 + 1839-120619-4_138: &id038 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - Qf5FPU5GtD8= + dRQ8s9httD8= 1839-200619-2_74: &id057 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] @@ -526,13 +526,13 @@ _adj: - *id001 - !!binary | m+kjBvocvT8= - 1839-120619-4_136: &id039 + 1839-120619-4_138: &id039 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - ZZBGOQaHtD8= + K/1NnPnItD8= 1839-200619-2_74: &id058 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] @@ -702,7 +702,7 @@ _adj: - *id001 - !!binary | rEDBL+4qtD8= - 1839-120619-4_136: + 1839-120619-4_138: 1839-060619-5_136: *id038 1839-120619-2_90: *id039 1839-200619-2_90: &id062 @@ -711,21 +711,21 @@ _adj: weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - tc5U4ZU/1j8= + 5HeGxEJQ1j8= 1839-290519-1_139: &id078 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - kzG07RNQvT8= + J5w0zpSKvT8= 1839-290519-2_135: &id087 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 4088, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zV814mcywz8= + 1BzYv2FJwz8= 1839-200619-1_135: 1839-060619-1_234: *id040 1839-060619-3_93: *id041 @@ -815,7 +815,7 @@ _adj: - !!binary | YJUPP3qVyj8= 1839-200619-2_90: - 1839-120619-4_136: *id062 + 1839-120619-4_138: *id062 1839-290519-1_139: &id079 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] @@ -869,7 +869,7 @@ _adj: 1839-120619-1_152: *id075 1839-120619-2_90: *id076 1839-120619-3_127: *id077 - 1839-120619-4_136: *id078 + 1839-120619-4_138: *id078 1839-200619-2_90: *id079 1839-290519-2_135: &id088 depth_delta: 0.0 @@ -896,7 +896,7 @@ _adj: 1839-290519-2_135: 1839-060619-5_136: *id085 1839-120619-2_90: *id086 - 1839-120619-4_136: *id087 + 1839-120619-4_138: *id087 1839-290519-1_139: *id088 1839-290519-2_142: 1839-060619-4_200: *id089 @@ -1015,12 +1015,12 @@ _node: &id117 - *id115 - !!binary | gAAAAAAAAAA= - 1839-120619-4_136: + 1839-120619-4_138: action_id: 1839-120619-4 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - *id115 - !!binary | - iAAAAAAAAAA= + igAAAAAAAAA= 1839-200619-1_135: action_id: 1839-200619-1 unit_id: !!python/object/apply:numpy.core.multiarray.scalar diff --git a/actions/identify-neurons/data/1839-units.csv b/actions/identify-neurons/data/1839-units.csv index cbd78d0f0..2fe36e7d0 100644 --- a/actions/identify-neurons/data/1839-units.csv +++ b/actions/identify-neurons/data/1839-units.csv @@ -1,122 +1,121 @@ action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name -1839-120619-2,0,100,0.05,f0775773-fbf5-420f-94a8-0da5bb8078b9,76 -1839-200619-2,0,100,0.05,3ff1c318-dcc2-4420-bf7c-7e6c0e41f1b0,104 -1839-200619-2,0,100,0.05,f00fc288-5a04-4fd3-8e02-a8b080f06016,98 -1839-290519-1,0,100,0.05,540ff964-f827-4636-9668-9316f9913036,120 -1839-290519-2,0,100,0.05,e80515fe-6afa-4111-b6a9-b0aa25ce9eab,107 -1839-290519-2,0,100,0.05,ffd28074-e64d-484b-957a-c54cdb3bc8ee,117 -1839-290519-3,0,100,0.05,48093105-79d7-4297-8eca-8b0f678dae6b,111 -1839-120619-3,1,100,0.05,7f83a7fa-acf8-41e5-87fb-1ceee625e055,113 -1839-120619-4,1,100,0.05,7f83a7fa-acf8-41e5-87fb-1ceee625e055,86 -1839-120619-4,1,100,0.05,d903e411-e604-4650-a832-41293e8d7c8b,104 -1839-120619-4,1,100,0.05,2d459081-0519-4c1f-996f-51bcc07db975,84 -1839-200619-2,1,100,0.05,ca51bbb5-f48b-48c8-a5d1-5453e9615aeb,7 -1839-290519-1,1,100,0.05,594d6d32-4f22-43bb-bb89-a9550c473de0,110 -1839-120619-3,2,100,0.05,8501cf01-86b6-4150-8184-bbb0a732b343,129 -1839-120619-3,3,100,0.05,60487709-d416-4994-8a05-69d01a8bc41b,137 -1839-120619-4,3,100,0.05,80d770cf-1635-4b8d-91d0-d676cdb14f08,112 -1839-120619-4,3,100,0.05,9a2182b2-814b-40da-9c30-5c320a7a87bd,29 -1839-200619-1,3,100,0.05,e7f5de5a-bcd9-493c-bc86-88fc8765d9b8,153 -1839-200619-2,3,100,0.05,42fd4cd3-ff7b-41d7-a045-3e63723912dc,118 -1839-060619-1,4,100,0.05,dcea3f10-31fd-4205-8f73-738bcb450ac7,240 -1839-060619-3,4,100,0.05,30ca722e-de14-420c-810f-68c00d0c1ecf,101 -1839-060619-4,4,100,0.05,c0f7d912-ef41-4e6f-9c7b-d10ac2de8945,230 -1839-060619-5,4,100,0.05,0d4be660-2ffa-4bcf-8ced-0e66c1abfb96,164 -1839-120619-2,4,100,0.05,9da942f8-ceff-48b6-b7b0-b4ddac27ccb1,78 -1839-120619-3,4,100,0.05,081300d5-ad12-4439-9430-bf8683f9a3e2,115 -1839-120619-3,4,100,0.05,a5ab1513-d07d-4c59-bd4d-e77c4dbc193c,121 -1839-120619-4,4,100,0.05,c20f5e63-4aca-4b1e-9e55-6f61f08052f0,102 -1839-120619-4,4,100,0.05,2f2a0765-d42f-4780-8ed9-7c814516932c,110 -1839-120619-4,4,100,0.05,6b5e6c13-8fd2-4650-aba9-58502f58c406,120 -1839-120619-4,4,100,0.05,00735893-cefe-4787-b4be-c3732fe38032,82 -1839-200619-1,4,100,0.05,d26ab521-2ec2-463c-98e5-318c6b28b783,141 -1839-200619-2,4,100,0.05,cb7125ac-b42c-48ea-b4d7-3574479657ae,100 -1839-200619-2,4,100,0.05,ceb026a7-c384-4393-82e0-14548dde9c80,106 -1839-200619-2,4,100,0.05,a3735e8d-afa3-41ea-b564-d217f27df0f1,108 -1839-290519-1,4,100,0.05,d7789a2a-bf46-4fb5-b6ff-a68fa2dd5982,122 -1839-290519-2,4,100,0.05,09748bcf-3f4b-4d12-b826-2ebc71b65063,39 -1839-290519-1,4,100,0.05,09748bcf-3f4b-4d12-b826-2ebc71b65063,127 -1839-290519-2,4,100,0.05,dfbebfa5-59a0-4396-80a1-561b7ff067e7,119 -1839-290519-3,4,100,0.05,4260fa93-6adf-47a2-973c-88573a246dfc,117 -1839-290519-3,4,100,0.05,afd91775-da1c-474b-9b04-d903223cbe98,72 -1839-060619-3,5,100,0.05,a3a75173-a74e-429b-ad9c-181d0a8ce485,87 -1839-060619-5,5,100,0.05,a3a75173-a74e-429b-ad9c-181d0a8ce485,138 -1839-060619-4,5,100,0.05,f5093eb0-00a1-4380-a969-88cc0884cf00,228 -1839-060619-5,5,100,0.05,5f7baf9f-f3c0-4db4-8fea-29b646391d75,170 -1839-120619-1,5,100,0.05,fd462693-5444-41f4-a33b-fbddb32ef860,158 -1839-120619-2,5,100,0.05,0b122e55-d128-483e-a87b-f8502138b448,104 -1839-120619-2,5,100,0.05,bcdaf715-a00d-417b-8ef6-2adead534845,47 -1839-120619-3,5,100,0.05,2050f360-b8d7-437d-ac29-687ce93fe798,131 -1839-200619-1,5,100,0.05,3424c2c8-6641-4c06-8ad8-4a21bb20a313,145 -1839-200619-2,5,100,0.05,a7fff0c6-dd66-49fd-9716-59cc8ea50bdf,96 -1839-290519-1,5,100,0.05,690e2bfb-5547-4a44-9ef6-c7afc77f1958,133 -1839-290519-1,5,100,0.05,7d4f6a7b-6bc6-4593-863d-b3539b4492bc,137 -1839-290519-2,5,100,0.05,a1d20299-ee5c-4229-be95-6409d8012603,125 -1839-290519-2,5,100,0.05,58f1fcec-b421-4c30-85e6-2d800ed035fc,146 -1839-290519-2,5,100,0.05,c3c01aaa-816b-4951-91d4-7e40df253479,148 -1839-290519-2,5,100,0.05,dea1d5fd-d209-49e9-b4fd-413157d8d405,95 -1839-290519-3,5,100,0.05,f23701a2-efd6-47ca-9f44-810f1d730f03,115 -1839-290519-3,5,100,0.05,27c7ccb0-fcf4-4dea-8c31-916ad511a818,119 -1839-060619-3,6,100,0.05,5c945fe0-f844-4dbb-83dc-48b2047af07f,91 -1839-060619-5,6,100,0.05,92b4016f-9dba-4b17-816f-76203357947c,142 -1839-060619-5,6,100,0.05,473755f1-37e1-48a3-b45f-12474e6253f3,162 -1839-060619-5,6,100,0.05,1bcb53fd-8430-44e0-94c9-bbf52cfaca5d,166 -1839-060619-5,6,100,0.05,9dd8608c-6497-42bf-acde-24ba333c31f7,168 -1839-120619-1,6,100,0.05,9e233b53-7361-4bd6-896c-883df42f4002,143 -1839-120619-3,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,133 -1839-120619-4,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,134 -1839-120619-2,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,106 -1839-120619-2,6,100,0.05,94066a2c-a39f-4df4-8bb1-d6055b5cb302,51 -1839-120619-2,6,100,0.05,10dfea94-74a5-4fca-8301-75d71901081a,86 -1839-120619-2,6,100,0.05,bc3b0ebf-00cc-47e1-8d3b-ab0650fb4e5a,88 -1839-120619-3,6,100,0.05,83ece9ee-03a3-47d4-80ff-72ebe53ce453,123 -1839-120619-4,6,100,0.05,83ece9ee-03a3-47d4-80ff-72ebe53ce453,124 -1839-120619-3,6,100,0.05,81f711e2-f2b8-42d4-9aaf-7b0b8a7f8a28,125 -1839-120619-3,6,100,0.05,d41b7af3-99be-4ed3-951d-c667d9d1815b,71 -1839-120619-4,6,100,0.05,f8f9ee57-c08a-42f1-882d-9e409ecd39ae,106 -1839-120619-4,6,100,0.05,b3cea08a-e187-407a-b564-aa9acac2c72d,116 -1839-120619-4,6,100,0.05,c1c7fc7d-0c81-4a9a-96a2-e13dce152e2c,122 -1839-120619-4,6,100,0.05,e1471060-f521-4b36-8259-ff0818ba0343,132 -1839-120619-4,6,100,0.05,fb55d16f-4d4a-4f24-992f-66d25cf7d453,90 -1839-120619-4,6,100,0.05,9f4596b2-4e64-4255-93f1-5b613a7d6da0,92 -1839-200619-1,6,100,0.05,49ab3c78-1290-4a08-ac14-c74aeba17d25,139 -1839-200619-2,6,100,0.05,c4864ae4-6017-45da-9b3e-119ef9e3f083,112 -1839-200619-2,6,100,0.05,3a29b37d-af36-4364-ad13-1b9b890c5f98,114 -1839-200619-2,6,100,0.05,76ef2569-d70c-42dd-98e5-01cb99271b5b,48 -1839-200619-2,6,100,0.05,1c0bee3e-925c-48d3-823c-e9cafae25e7e,54 -1839-200619-2,6,100,0.05,315c4f2d-92c7-426f-992c-c1d3d4956392,78 -1839-200619-2,6,100,0.05,f20d1f36-910a-4c39-9662-95129cb0d53c,89 -1839-200619-2,6,100,0.05,e410e2c1-94c9-4c14-9a97-075c4438cccc,92 -1839-200619-2,6,100,0.05,5f6018c8-60eb-43ba-9070-61d0d338a4bf,94 -1839-290519-1,6,100,0.05,b88c092f-2b36-46d5-bcef-72f7f4c6407b,116 -1839-290519-1,6,100,0.05,a4f52935-526b-4f93-9e4b-367427cbb4ad,131 -1839-290519-2,6,100,0.05,2bc2d97a-a4e2-4410-8218-ed9b9943d38c,113 -1839-290519-2,6,100,0.05,089951ba-9860-460d-b3d0-74a4c4b5dac1,115 -1839-060619-5,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,183 -1839-290519-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,113 -1839-120619-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,119 -1839-120619-2,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,71 -1839-120619-4,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,108 -1839-060619-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,93 -1839-060619-1,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,234 -1839-060619-4,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,200 -1839-120619-2,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,90 -1839-060619-5,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,136 -1839-290519-2,7,100,0.05,3a0d3478-8a69-4296-a163-0ec0758909ae,144 -1839-060619-4,7,100,0.05,3a0d3478-8a69-4296-a163-0ec0758909ae,227 -1839-120619-1,7,100,0.05,a4487f1c-edd5-4b58-b469-7f1773c1bdd4,152 -1839-120619-3,7,100,0.05,72e1eb07-e7f6-4dd8-8dbf-27d4521dabaf,127 -1839-120619-4,7,100,0.05,72e1eb07-e7f6-4dd8-8dbf-27d4521dabaf,128 -1839-120619-4,7,100,0.05,e1c1cda0-8997-473b-bdab-cde222202d74,136 -1839-200619-1,7,100,0.05,f86f8cda-78fd-4e8b-bcd5-952f53f70efc,135 -1839-200619-2,7,100,0.05,3fb9ef13-aeab-41e2-9e1a-94f3e2bf046f,116 -1839-200619-2,7,100,0.05,0e5d3c29-f507-45e0-8b48-ff04bfb14a98,74 -1839-200619-2,7,100,0.05,ed518405-8668-402d-8760-0f317d304254,90 -1839-290519-1,7,100,0.05,3a3dcd61-851a-4a06-97a0-15b1532d19a1,114 -1839-290519-1,7,100,0.05,7e23c896-0304-4f15-9384-c534058a9932,129 -1839-290519-1,7,100,0.05,9d9110a0-97ae-4030-9e7a-53a1ae4d99ce,139 -1839-290519-1,7,100,0.05,835a2ff9-9977-499d-8216-b7545e1a3408,87 -1839-290519-2,7,100,0.05,9f25a7a4-3465-40c5-9e51-0e8c6ece7516,109 -1839-290519-2,7,100,0.05,df12e673-14a3-4753-a004-35cb8c4afdb0,111 -1839-290519-2,7,100,0.05,2363a3b3-f346-4842-8d59-25dd551d7afb,135 -1839-290519-2,7,100,0.05,adf18369-e8e9-498b-8d7c-8bedd8d43a9b,142 +1839-120619-2,0,100,0.05,ca331977-9a55-4d1c-b9d3-d55c7bf5c196,76 +1839-200619-2,0,100,0.05,e84c86db-0fa0-4396-97f6-9785881f266b,104 +1839-200619-2,0,100,0.05,9d93eed1-acfe-4cdf-bfaa-54e3a454f42f,98 +1839-290519-1,0,100,0.05,f9b14958-1fda-4dae-853f-b59fc1fe4a49,120 +1839-290519-2,0,100,0.05,4253ec20-a568-452f-9e24-ad9ceed7211f,107 +1839-290519-2,0,100,0.05,e6b04268-adfc-42b2-a9f4-2bcd7b985b20,117 +1839-290519-3,0,100,0.05,37ff5ee5-6b33-4560-a941-bfef77149617,111 +1839-120619-4,1,100,0.05,ff766d6f-39e0-4224-a96c-1ab20bb70324,86 +1839-120619-3,1,100,0.05,ff766d6f-39e0-4224-a96c-1ab20bb70324,113 +1839-120619-4,1,100,0.05,a593c8c5-e25b-4798-ab78-8f3be4a16306,104 +1839-120619-4,1,100,0.05,0e675b17-87df-4f2d-b7cf-14714f744fc0,84 +1839-200619-2,1,100,0.05,5901b53c-9f18-4d75-9484-b265b34babea,7 +1839-290519-1,1,100,0.05,59c15752-40ec-46b3-a43f-2ece2b45e13e,110 +1839-120619-3,2,100,0.05,ef37562e-f987-4014-9a93-68bdfa5fefea,129 +1839-120619-3,3,100,0.05,7526f8a7-66c5-4d15-86a6-70d6909887b7,137 +1839-120619-4,3,100,0.05,c6789ade-6639-4010-a79e-c5296891a0c7,112 +1839-200619-1,3,100,0.05,10d3bcff-4315-4a7a-97a5-59e3cc9be929,153 +1839-200619-2,3,100,0.05,e19246d0-babf-496a-a70f-424efc0b7385,118 +1839-060619-1,4,100,0.05,aaae4b91-94d9-49c8-9e2f-83b5fbe11823,240 +1839-060619-3,4,100,0.05,b109e080-3efe-4935-8f47-ef03b3329dfa,101 +1839-060619-4,4,100,0.05,7c165f6f-dacc-41e6-94e9-cd38d9b1b9e8,230 +1839-060619-5,4,100,0.05,08551f6a-98f2-4b92-8e4e-4dacc56367d3,164 +1839-120619-2,4,100,0.05,918ea70b-e595-46f9-a0b8-a24fb7492d48,78 +1839-120619-3,4,100,0.05,f3a5c55a-d1d9-4565-8753-09589e5f908a,115 +1839-120619-3,4,100,0.05,836f3b57-688e-422a-9cbb-76a5e7eaf366,121 +1839-120619-4,4,100,0.05,cb20d7d6-b546-4a54-8ea8-0de64a628579,102 +1839-120619-4,4,100,0.05,3c7b11d4-2177-49af-98b3-9d7c8ac429c5,110 +1839-120619-4,4,100,0.05,1d91961e-5790-4368-89f7-9578161310be,120 +1839-120619-4,4,100,0.05,d3e4f55e-aa93-4e7d-bf2d-2ddef4390907,82 +1839-200619-1,4,100,0.05,25472319-8dd8-4c98-ba14-82ba7552dc4c,141 +1839-200619-2,4,100,0.05,64b7662d-b31f-4cfe-8f38-9b7794aa672c,100 +1839-200619-2,4,100,0.05,f0b26722-0823-49d7-a9ff-b13699126177,106 +1839-200619-2,4,100,0.05,50e6f787-d7b8-46bf-bc32-86ffc6330cc5,108 +1839-290519-1,4,100,0.05,2286c1e7-68cd-430b-88e3-052b9304ea39,122 +1839-290519-2,4,100,0.05,2dadd4c2-862a-44cf-86b9-67884876757f,39 +1839-290519-1,4,100,0.05,2dadd4c2-862a-44cf-86b9-67884876757f,127 +1839-290519-2,4,100,0.05,4863a330-27ed-432e-bafb-8cfc399fb5d7,119 +1839-290519-3,4,100,0.05,95763de3-aa05-4835-9c4d-68d4c4428d34,117 +1839-290519-3,4,100,0.05,f113a996-9af4-472d-a46d-1737ccdaad57,72 +1839-060619-5,5,100,0.05,ada87343-dde7-4b6a-9da9-71f33232dd1e,138 +1839-060619-3,5,100,0.05,ada87343-dde7-4b6a-9da9-71f33232dd1e,87 +1839-060619-4,5,100,0.05,221d7a6d-cb87-4257-90d6-2a4d2cc305d2,228 +1839-060619-5,5,100,0.05,0b7bda86-9ee0-4f7d-8c13-6e8c97e21853,170 +1839-120619-1,5,100,0.05,b2d9553e-5ae9-4ced-ae14-1d84d03fdeae,158 +1839-120619-2,5,100,0.05,cf6431e3-f043-4d42-882f-38bfd52fe7f9,104 +1839-120619-2,5,100,0.05,ac5176e1-076c-4f2c-b883-f204a679bad0,47 +1839-120619-3,5,100,0.05,7d008957-c5a2-487b-8170-a926c2e7fbec,131 +1839-200619-1,5,100,0.05,9a6e25f6-6440-4a0f-af91-55ae045af923,145 +1839-200619-2,5,100,0.05,0de7af2c-4697-4a20-9d69-7df742f22298,96 +1839-290519-1,5,100,0.05,08ea46b1-5e62-4dc7-904e-702417ac49c3,133 +1839-290519-1,5,100,0.05,e161c25b-1468-4087-aa15-7663a4601161,137 +1839-290519-2,5,100,0.05,47adb54c-dbad-424f-91fe-485431d4034c,125 +1839-290519-2,5,100,0.05,2b337163-cf9a-47bb-b0ba-a24609cc7159,146 +1839-290519-2,5,100,0.05,aeb2ff8b-9176-4bd3-81a8-7c3d8781fe30,148 +1839-290519-2,5,100,0.05,1bbaaf0b-f912-461d-9bca-bde011a0fe09,95 +1839-290519-3,5,100,0.05,21172d8f-9475-424d-b368-d3fba3bff3a0,115 +1839-290519-3,5,100,0.05,c09b5fe8-c804-4d27-8d9a-1e7a9c4e41bd,119 +1839-060619-3,6,100,0.05,06454272-4b3d-4a95-87b6-c4a92c73c1c4,91 +1839-060619-5,6,100,0.05,c5e3dade-b6aa-4a10-a5c3-3dadd9a84dbf,142 +1839-060619-5,6,100,0.05,ad50cce4-b1cd-48d8-abc9-6a97eccc802a,162 +1839-060619-5,6,100,0.05,67462fa6-19d0-4f20-8139-4c8cf8b00162,166 +1839-060619-5,6,100,0.05,f5f3117e-a807-4bd0-a15b-b140192c342c,168 +1839-120619-1,6,100,0.05,11d92b4f-7130-4f0d-b22b-6f35cf281503,143 +1839-120619-4,6,100,0.05,196d2eff-b4fa-4784-8bf3-b25a1fd48bca,140 +1839-120619-2,6,100,0.05,196d2eff-b4fa-4784-8bf3-b25a1fd48bca,106 +1839-120619-3,6,100,0.05,196d2eff-b4fa-4784-8bf3-b25a1fd48bca,133 +1839-120619-2,6,100,0.05,9cf18a4b-6d60-4435-b9a8-faac6c875924,51 +1839-120619-2,6,100,0.05,9e6cf9a9-9e96-4fe5-ac5a-f18ef73b2381,86 +1839-120619-2,6,100,0.05,870e4b4d-6462-4ef4-b530-bc32c1754817,88 +1839-120619-4,6,100,0.05,02713495-67d9-4001-aaf4-1569c2c6db68,124 +1839-120619-3,6,100,0.05,02713495-67d9-4001-aaf4-1569c2c6db68,123 +1839-120619-3,6,100,0.05,8cb76110-819a-42cf-9992-abeac18b9580,125 +1839-120619-3,6,100,0.05,48f340ef-fa49-44b0-8b75-84ba4c67d5eb,71 +1839-120619-4,6,100,0.05,89992508-eb0a-4f84-bf16-8284ea6d3201,106 +1839-120619-4,6,100,0.05,f410f6b9-edd2-401f-a8af-6ee6ed211dd0,116 +1839-120619-4,6,100,0.05,9e6f6f41-a7e2-40c2-b241-da44406b063d,122 +1839-120619-4,6,100,0.05,2c4b46a4-5dab-4ffa-9a24-1050644e1dec,132 +1839-120619-4,6,100,0.05,f97b4682-d18a-40ab-978e-f3e9f7185ee6,90 +1839-120619-4,6,100,0.05,716262a9-4c0c-4800-b854-a6f1d67eaf86,92 +1839-200619-1,6,100,0.05,ac19afdc-4be6-4456-8221-9b0408cc513e,139 +1839-200619-2,6,100,0.05,89f66916-75e1-4b76-a3be-ab8197a69008,112 +1839-200619-2,6,100,0.05,a1181734-8053-4ba7-95fc-3782bcd91b19,114 +1839-200619-2,6,100,0.05,7c281c91-d39f-4f13-b3d0-da1a45244cf4,48 +1839-200619-2,6,100,0.05,c065b76d-c6cd-4969-878c-3ede77b10a16,54 +1839-200619-2,6,100,0.05,647dba69-4878-4bf8-983a-180896674e47,78 +1839-200619-2,6,100,0.05,5cca0543-f83b-43ad-9abc-d23c1217afde,89 +1839-200619-2,6,100,0.05,1838f1c4-4b53-4030-82ac-a9563f885908,92 +1839-200619-2,6,100,0.05,db8ed4c2-8b2d-47c0-895b-a5da9bc64e09,94 +1839-290519-1,6,100,0.05,8327cb68-e1e5-415e-b3f4-bdab99a517ec,116 +1839-290519-1,6,100,0.05,fbf3001e-f949-4c7d-85af-aa2581168e11,131 +1839-290519-2,6,100,0.05,c1ba389b-827c-49d2-9521-0f73272e2a2f,113 +1839-290519-2,6,100,0.05,8930a428-ae29-47fd-94a7-506c68b02973,115 +1839-290519-3,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,113 +1839-120619-2,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,71 +1839-120619-3,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,119 +1839-060619-1,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,234 +1839-060619-5,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,183 +1839-060619-3,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,93 +1839-120619-4,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,108 +1839-120619-2,7,100,0.05,a3628e66-3256-4752-909f-89a105f865e2,90 +1839-060619-4,7,100,0.05,a3628e66-3256-4752-909f-89a105f865e2,200 +1839-060619-5,7,100,0.05,a3628e66-3256-4752-909f-89a105f865e2,136 +1839-060619-4,7,100,0.05,0aadccef-bfd0-416c-bd4d-886da3b7f147,227 +1839-290519-2,7,100,0.05,0aadccef-bfd0-416c-bd4d-886da3b7f147,144 +1839-120619-1,7,100,0.05,ad3f30ac-24cd-457b-b769-5a493a5784e3,152 +1839-120619-3,7,100,0.05,4263567c-54e0-4e01-889f-fa7a0bb737c2,127 +1839-120619-4,7,100,0.05,4263567c-54e0-4e01-889f-fa7a0bb737c2,128 +1839-120619-4,7,100,0.05,4fde4913-073f-431a-8bf6-c07c517357c3,138 +1839-200619-1,7,100,0.05,f9d0bf84-91c8-4722-8918-d20a9f509f49,135 +1839-200619-2,7,100,0.05,180945f1-5f36-4733-be07-7dda4afb2a86,116 +1839-200619-2,7,100,0.05,f2b4f466-2939-4fed-811f-bb055fbb9f1e,74 +1839-200619-2,7,100,0.05,f76f70d7-7008-42af-a7d0-c0be97a2d165,90 +1839-290519-1,7,100,0.05,5e38025f-6365-47df-ae13-518914a41f06,114 +1839-290519-1,7,100,0.05,705c61f1-70e6-4557-a675-affe7938b7c0,129 +1839-290519-1,7,100,0.05,85889925-bd75-475d-93b8-9eab6b7c964a,139 +1839-290519-1,7,100,0.05,07dd543f-e670-4b2a-a3ab-f3d4604ffb94,87 +1839-290519-2,7,100,0.05,dc0b766d-f854-4c10-8849-0c31f66f62dd,109 +1839-290519-2,7,100,0.05,f8a078f5-3051-4457-8824-f5cdd2304c80,111 +1839-290519-2,7,100,0.05,08c4b329-3b0d-4bd4-b2e2-4cda7d724207,135 +1839-290519-2,7,100,0.05,edcb7e6b-10f4-422d-8f4d-1b29f663fcb5,142 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml index 4f1361cad..d6a6bec07 100644 --- a/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml +++ b/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml @@ -299,13 +299,13 @@ _adj: - *id001 - !!binary | Ft+qCVU5yz8= - 1849-280219-2_70: &id294 + 1849-280219-2_119: &id294 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - diad0cvkuj8= + nTGEmFvKuj8= 1849-280219-4_74: &id361 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] @@ -485,13 +485,13 @@ _adj: - *id001 - !!binary | fdP/NVKe0T8= - 1849-280219-2_70: &id295 + 1849-280219-2_119: &id295 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - e0URiBuwuT8= + RTL/5BGbuT8= 1849-280219-4_74: &id362 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] @@ -665,13 +665,13 @@ _adj: - *id001 - !!binary | 0HrS5h4x0j8= - 1849-280219-2_70: &id296 + 1849-280219-2_119: &id296 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zex8+S0Ztz8= + 6EeEn20Dtz8= 1849-280219-4_74: &id363 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] @@ -1203,13 +1203,13 @@ _adj: - *id001 - !!binary | rt+XuXTevT8= - 1849-280219-2_70: &id297 + 1849-280219-2_119: &id297 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 0qDob2BVwj8= + Vp8NXbZcwj8= 1849-280219-3_141: &id330 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] @@ -1396,13 +1396,13 @@ _adj: - *id001 - !!binary | asynq+autT8= - 1849-280219-2_70: &id298 + 1849-280219-2_119: &id298 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - LXQVZEMZxj8= + UG0QnXMhxj8= 1849-280219-3_141: &id331 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] @@ -1478,13 +1478,13 @@ _adj: - *id001 - !!binary | axH5jC8Sxz8= - 1849-280219-2_70: &id299 + 1849-280219-2_119: &id299 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - jln13aEYwT8= + ZZUVmRYTwT8= 1849-110319-1_50: 1849-010319-2_103: *id034 1849-010319-4_67: *id035 @@ -1701,13 +1701,13 @@ _adj: - *id001 - !!binary | CThSQ6Zhxj8= - 1849-280219-2_70: &id300 + 1849-280219-2_119: &id300 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - kYTw94t5wT8= + 4YrM8bh4wT8= 1849-280219-4_70: &id350 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] @@ -1890,13 +1890,13 @@ _adj: - *id001 - !!binary | tNGE6u/DyD8= - 1849-280219-2_70: &id301 + 1849-280219-2_119: &id301 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - fvDS+aDBwz8= + ud+VucXCwz8= 1849-280219-4_74: &id369 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] @@ -2068,13 +2068,13 @@ _adj: - *id001 - !!binary | bdLM/LWo1j8= - 1849-280219-2_70: &id302 + 1849-280219-2_119: &id302 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - rfAw7HH8wT8= + WLvdJVMEwj8= 1849-280219-4_74: &id370 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] @@ -2308,13 +2308,13 @@ _adj: - *id001 - !!binary | WsO3/k+cwT8= - 1849-280219-2_70: &id303 + 1849-280219-2_119: &id303 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /BGuQr7Hxj8= + EIcifunGxj8= 1849-280219-4_70: &id353 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] @@ -2421,13 +2421,13 @@ _adj: - *id001 - !!binary | yVGVFSXMwj8= - 1849-280219-2_70: &id304 + 1849-280219-2_119: &id304 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - LbvXKaDDxT8= + 3utqJiDFxT8= 1849-280219-4_70: &id354 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] @@ -2568,13 +2568,13 @@ _adj: - *id001 - !!binary | GowpSpQxuT8= - 1849-280219-2_70: &id305 + 1849-280219-2_119: &id305 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - A/oET6Peyj8= + hjJhmg/hyj8= 1849-280219-4_70: &id355 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] @@ -2678,13 +2678,13 @@ _adj: - *id001 - !!binary | ht6my/7Lwj8= - 1849-280219-2_70: &id306 + 1849-280219-2_119: &id306 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - G5ip7eXeyz8= + 95S/xMbjyz8= 1849-280219-4_74: &id374 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] @@ -2856,13 +2856,13 @@ _adj: - *id001 - !!binary | 9lsmSH5JtT8= - 1849-280219-2_70: &id307 + 1849-280219-2_119: &id307 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - XO2mM06Eyz8= + JFY8Cb15yz8= 1849-280219-4_70: &id358 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] @@ -2913,13 +2913,13 @@ _adj: 1849-150319-4_62: *id276 1849-220319-2_91: *id277 1849-220319-5_83: *id278 - 1849-280219-2_70: &id308 + 1849-280219-2_119: &id308 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - PCAEwXCYzz8= + Vy8bNZeNzz8= 1849-280219-4_70: &id359 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] @@ -2952,7 +2952,7 @@ _adj: - *id001 - !!binary | CxAjDAw4xT8= - 1849-280219-2_70: + 1849-280219-2_119: 1849-010319-2_83: *id294 1849-010319-4_61: *id295 1849-010319-5_103: *id296 @@ -2974,7 +2974,7 @@ _adj: weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 2iu++tJotz8= + Zj1o826Ktz8= 1849-280219-2_72: 1849-010319-2_103: *id309 1849-010319-4_67: *id310 @@ -3068,7 +3068,7 @@ _adj: 1849-220319-3_61: *id374 1849-220319-5_104: *id375 1849-280219-1_86: *id376 - 1849-280219-2_70: *id377 + 1849-280219-2_119: *id377 1849-280219-3_141: *id378 _node: &id381 1849-010319-2_103: @@ -3355,12 +3355,12 @@ _node: &id381 - *id379 - !!binary | VgAAAAAAAAA= - 1849-280219-2_70: + 1849-280219-2_119: action_id: 1849-280219-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - *id379 - !!binary | - RgAAAAAAAAA= + dwAAAAAAAAA= 1849-280219-2_72: action_id: 1849-280219-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml index 414bac5bb..9833541c9 100644 --- a/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml +++ b/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml @@ -221,13 +221,13 @@ _adj: - *id001 - !!binary | lB01LS1Wyj8= - 1849-280219-2_64: &id290 + 1849-280219-2_115: &id290 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - tDuXnIbbyD8= + hrMDz5+7yD8= 1849-280219-3_129: &id309 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] @@ -363,13 +363,13 @@ _adj: - *id001 - !!binary | q8Fu9c/ywD8= - 1849-280219-2_64: &id291 + 1849-280219-2_115: &id291 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - G5EDbyWDuT8= + N0CDpNVmuT8= 1849-280219-3_129: &id310 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] @@ -499,13 +499,13 @@ _adj: - *id001 - !!binary | nzWGBjIUwT8= - 1849-280219-2_64: &id292 + 1849-280219-2_115: &id292 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - OFr6cZ6YuD8= + diegFmaTuD8= 1849-280219-3_129: &id311 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] @@ -629,13 +629,13 @@ _adj: - *id001 - !!binary | fcd+1ccmvz8= - 1849-280219-2_64: &id293 + 1849-280219-2_115: &id293 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - FI1qbpfUwD8= + NYKBN+jOwD8= 1849-280219-3_129: &id312 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] @@ -896,13 +896,13 @@ _adj: - *id001 - !!binary | 54pOho5uwj8= - 1849-280219-2_64: &id294 + 1849-280219-2_115: &id294 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - srEElziCwz8= + evmDQfp3wz8= 1849-280219-3_129: &id313 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] @@ -1094,13 +1094,13 @@ _adj: - *id001 - !!binary | KvOeukyYxD8= - 1849-280219-2_64: &id295 + 1849-280219-2_115: &id295 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - zBW63JxuxT8= + LMgydtBbxT8= 1849-280219-3_129: &id314 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] @@ -1206,13 +1206,13 @@ _adj: - *id001 - !!binary | /l2erZ5yyD8= - 1849-280219-2_64: &id296 + 1849-280219-2_115: &id296 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - MZSovHTDyT8= + hXIMd6yvyT8= 1849-280219-3_129: &id315 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] @@ -1357,13 +1357,13 @@ _adj: - *id001 - !!binary | /qtmnxIrxD8= - 1849-280219-2_64: &id297 + 1849-280219-2_115: &id297 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4Wu9edvtwD8= + 6Eqx7rgMwT8= 1849-280219-3_129: &id316 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 67174, 0] @@ -1528,13 +1528,13 @@ _adj: - *id001 - !!binary | qicFTtV6xz8= - 1849-280219-2_64: &id298 + 1849-280219-2_115: &id298 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - E2Xz63Kkvj8= + ZaD8nj+Yvj8= 1849-280219-3_137: &id333 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] @@ -1699,13 +1699,13 @@ _adj: - *id001 - !!binary | IByQnLRYzD8= - 1849-280219-2_64: &id299 + 1849-280219-2_115: &id299 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 78322, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - BgMB9Cn4yD8= + q5YK9DsEyT8= 1849-280219-3_129: &id318 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [10, 76015, 0] @@ -1909,13 +1909,13 @@ _adj: - *id001 - !!binary | Pg05MS9KxD8= - 1849-280219-2_64: &id300 + 1849-280219-2_115: &id300 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - hNSm8iJcxT8= + Qgqh8XxJxT8= 1849-280219-3_137: &id334 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] @@ -2079,13 +2079,13 @@ _adj: - *id001 - !!binary | L6fMp5sAxj8= - 1849-280219-2_64: &id301 + 1849-280219-2_115: &id301 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - KRru7LF5xz8= + Wm1Ow4pwxz8= 1849-280219-3_129: &id320 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] @@ -2170,13 +2170,13 @@ _adj: - *id001 - !!binary | sUExjsx4yj8= - 1849-280219-2_64: &id302 + 1849-280219-2_115: &id302 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - muiMhaLWxT8= + ra2cuprKxT8= 1849-280219-3_137: &id336 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] @@ -2368,13 +2368,13 @@ _adj: - *id001 - !!binary | qQaK5NQmzD8= - 1849-280219-2_64: &id303 + 1849-280219-2_115: &id303 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 1UmheGRrxz8= + gVKof1pdxz8= 1849-280219-3_129: &id322 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] @@ -2427,13 +2427,13 @@ _adj: - *id001 - !!binary | 9FETzjS+xT8= - 1849-280219-2_64: &id304 + 1849-280219-2_115: &id304 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - hY+OmoHKxj8= + 7CqNY9DCxj8= 1849-280219-3_129: &id323 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] @@ -2586,13 +2586,13 @@ _adj: - *id001 - !!binary | gpFv9/51xT8= - 1849-280219-2_64: &id305 + 1849-280219-2_115: &id305 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - /ktPSEwYxz8= + N9N3DW0Pxz8= 1849-280219-3_137: &id339 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] @@ -2675,13 +2675,13 @@ _adj: - *id001 - !!binary | Fl8Fwn1CwT8= - 1849-280219-2_64: &id306 + 1849-280219-2_115: &id306 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - E1IZkVKdwj8= + xGUdeVeXwj8= 1849-280219-3_129: &id325 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] @@ -2771,13 +2771,13 @@ _adj: - *id001 - !!binary | CEuxxeGhwj8= - 1849-280219-2_64: &id307 + 1849-280219-2_115: &id307 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 8MagTpPjwD8= + Tj5PmaPiwD8= 1849-280219-3_137: &id341 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] @@ -2819,13 +2819,13 @@ _adj: 1849-220319-3_73: *id287 1849-220319-4_110: *id288 1849-220319-5_38: *id289 - 1849-280219-2_64: &id308 + 1849-280219-2_115: &id308 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - CeXCdz3UuD8= + z0Q/B7LKuD8= 1849-280219-3_129: &id327 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] @@ -2840,7 +2840,7 @@ _adj: - *id001 - !!binary | fUIlt6hDwz8= - 1849-280219-2_64: + 1849-280219-2_115: 1849-010319-2_93: *id290 1849-010319-4_58: *id291 1849-010319-5_87: *id292 @@ -2866,14 +2866,14 @@ _adj: weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - dg2tH60hvD8= + m7F0IwgmvD8= 1849-280219-4_44: &id361 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4SC9s9B5vz8= + n6Rv8ZGyvz8= 1849-280219-3_129: 1849-010319-2_93: *id309 1849-010319-4_58: *id310 @@ -2894,7 +2894,7 @@ _adj: 1849-220319-4_110: *id325 1849-220319-5_34: *id326 1849-280219-1_40: *id327 - 1849-280219-2_64: *id328 + 1849-280219-2_115: *id328 1849-280219-4_44: &id362 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] @@ -2936,7 +2936,7 @@ _adj: 1849-220319-4_110: *id358 1849-220319-5_38: *id359 1849-280219-1_40: *id360 - 1849-280219-2_64: *id361 + 1849-280219-2_115: *id361 1849-280219-3_129: *id362 _node: &id365 1849-010319-2_91: @@ -3205,12 +3205,12 @@ _node: &id365 - *id363 - !!binary | KAAAAAAAAAA= - 1849-280219-2_64: + 1849-280219-2_115: action_id: 1849-280219-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar - *id363 - !!binary | - QAAAAAAAAAA= + cwAAAAAAAAA= 1849-280219-3_129: action_id: 1849-280219-3 unit_id: !!python/object/apply:numpy.core.multiarray.scalar diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml index a81ca1eae..8f6061a19 100644 --- a/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml +++ b/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml @@ -52,7 +52,7 @@ _adj: - *id001 - !!binary | FgPfYm58vD8= - 1849-280219-2_43: &id061 + 1849-280219-2_43: &id062 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -116,7 +116,7 @@ _adj: - *id001 - !!binary | uKW+IUSvuz8= - 1849-280219-2_42: &id054 + 1849-280219-2_42: &id055 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -188,7 +188,7 @@ _adj: - *id001 - !!binary | tmBC77B8wD8= - 1849-280219-2_43: &id062 + 1849-280219-2_43: &id063 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -239,7 +239,7 @@ _adj: - *id001 - !!binary | JuD5wGURxD8= - 1849-280219-2_42: &id055 + 1849-280219-2_42: &id056 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -305,7 +305,7 @@ _adj: - *id001 - !!binary | 4b1lKBsIuj8= - 1849-280219-2_43: &id063 + 1849-280219-2_43: &id064 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -364,7 +364,7 @@ _adj: - *id001 - !!binary | g+1lpGN7xj8= - 1849-280219-2_43: &id064 + 1849-280219-2_43: &id065 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -410,7 +410,7 @@ _adj: - *id001 - !!binary | +LMpVphXwj8= - 1849-280219-2_42: &id056 + 1849-280219-2_42: &id057 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -448,7 +448,7 @@ _adj: - *id001 - !!binary | 0B6lBHguzD8= - 1849-280219-2_42: &id057 + 1849-280219-2_42: &id058 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -532,7 +532,7 @@ _adj: - *id001 - !!binary | jqjNq4adwT8= - 1849-280219-2_43: &id065 + 1849-280219-2_43: &id066 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -565,13 +565,13 @@ _adj: - *id001 - !!binary | Jl/rq9Qz0D8= - 1849-280219-2_42: &id058 + 1849-280219-2_113: &id054 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 95AZxlHIxj8= + DN2F7BnQyj8= 1849-280219-3_158: &id081 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] @@ -613,13 +613,13 @@ _adj: - *id001 - !!binary | 3x27s4iHwz8= - 1849-280219-2_43: &id066 + 1849-280219-2_42: &id059 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar - *id001 - !!binary | - 4MvdZs3sxD8= + OKzqNY9Hvz8= 1849-280219-3_164: &id088 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] @@ -655,7 +655,7 @@ _adj: - *id001 - !!binary | 2r7T7GkHxT8= - 1849-280219-2_42: &id059 + 1849-280219-2_42: &id060 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -719,7 +719,7 @@ _adj: 1849-060319-2_50: *id043 1849-060319-3_92: *id044 1849-060319-4_60: *id045 - 1849-280219-2_42: &id060 + 1849-280219-2_42: &id061 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] weight: !!python/object/apply:numpy.core.multiarray.scalar @@ -792,14 +792,17 @@ _adj: - *id001 - !!binary | ogq8otfZuj8= + 1849-280219-2_113: + 1849-060319-3_118: *id054 + 1849-280219-2_117: {} 1849-280219-2_42: - 1849-010319-2_70: *id054 - 1849-010319-5_54: *id055 - 1849-060319-1_90: *id056 - 1849-060319-2_50: *id057 - 1849-060319-3_118: *id058 - 1849-060319-4_60: *id059 - 1849-280219-1_52: *id060 + 1849-010319-2_70: *id055 + 1849-010319-5_54: *id056 + 1849-060319-1_90: *id057 + 1849-060319-2_50: *id058 + 1849-060319-3_92: *id059 + 1849-060319-4_60: *id060 + 1849-280219-1_52: *id061 1849-280219-3_158: &id083 depth_delta: 0.0 time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] @@ -815,12 +818,11 @@ _adj: - !!binary | aRLa494xsD8= 1849-280219-2_43: - 1849-010319-2_101: *id061 - 1849-010319-4_59: *id062 - 1849-010319-5_57: *id063 - 1849-060319-1_49: *id064 - 1849-060319-2_92: *id065 - 1849-060319-3_92: *id066 + 1849-010319-2_101: *id062 + 1849-010319-4_59: *id063 + 1849-010319-5_57: *id064 + 1849-060319-1_49: *id065 + 1849-060319-2_92: *id066 1849-280219-1_62: *id067 1849-280219-3_149: &id076 depth_delta: 0.0 @@ -836,8 +838,6 @@ _adj: - *id001 - !!binary | VE1ikEWpuj8= - 1849-280219-2_61: {} - 1849-280219-2_66: {} 1849-280219-2_92: 1849-060319-2_71: *id068 1849-150319-1_56: *id069 @@ -1031,6 +1031,18 @@ _node: &id116 - *id114 - !!binary | PgAAAAAAAAA= + 1849-280219-2_113: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + cQAAAAAAAAA= + 1849-280219-2_117: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + dQAAAAAAAAA= 1849-280219-2_42: action_id: 1849-280219-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar @@ -1043,18 +1055,6 @@ _node: &id116 - *id114 - !!binary | KwAAAAAAAAA= - 1849-280219-2_61: - action_id: 1849-280219-2 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id114 - - !!binary | - PQAAAAAAAAA= - 1849-280219-2_66: - action_id: 1849-280219-2 - unit_id: !!python/object/apply:numpy.core.multiarray.scalar - - *id114 - - !!binary | - QgAAAAAAAAA= 1849-280219-2_92: action_id: 1849-280219-2 unit_id: !!python/object/apply:numpy.core.multiarray.scalar diff --git a/actions/identify-neurons/data/1849-units.csv b/actions/identify-neurons/data/1849-units.csv index bec161070..fa8e7a0d6 100644 --- a/actions/identify-neurons/data/1849-units.csv +++ b/actions/identify-neurons/data/1849-units.csv @@ -1,333 +1,333 @@ action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name -1849-010319-5,0,100,0.05,901070db-103b-49b1-a6d7-bc5bfeb2d945,117 -1849-060319-1,0,100,0.05,4227ab70-a38d-46b5-9964-fdafdd8fe99d,85 -1849-110319-1,0,100,0.05,1767497c-2bd5-4974-8b03-89313f79789e,52 -1849-110319-2,0,100,0.05,ae0a01af-98ea-4e9a-a2f0-7e8245f2e4a5,56 -1849-150319-2,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,60 -1849-150319-1,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,39 -1849-150319-4,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,85 -1849-150319-3,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,6 -1849-150319-1,0,100,0.05,224c8606-eb2b-4001-b497-dfdc3b402e60,74 -1849-150319-2,0,100,0.05,99183ea7-75e3-4d86-a1be-e165ddb88cc8,40 -1849-150319-3,0,100,0.05,c3fdad70-6df8-45f4-b08a-fa13a8027322,69 -1849-150319-4,0,100,0.05,158bb647-0934-40f2-aef1-ac555194ded3,70 -1849-150319-4,0,100,0.05,9c98907f-625c-4310-bca1-bb3b567b31e3,76 -1849-220319-4,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,100 -1849-220319-5,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,79 -1849-220319-2,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,93 -1849-220319-3,0,100,0.05,ce7262a6-5c97-4427-aa92-783305886a88,0 -1849-280219-1,0,100,0.05,f8470422-542e-4fc7-b713-356737d1d5b0,90 -1849-280219-2,0,100,0.05,7ebbcece-a580-4ddc-898c-07d047e6f187,88 -1849-280219-3,0,100,0.05,c2987b1a-b966-49b6-93e7-23985cedb72e,153 -1849-280219-3,0,100,0.05,05c4b0ff-00bd-4dac-9773-7c5be41b4b5b,160 -1849-280219-4,0,100,0.05,a2e8973c-6160-4165-b26e-0d3bc5881dea,62 -1849-280219-4,0,100,0.05,aba6002f-1ed8-4f21-a399-83b6e91b0872,64 -1849-010319-2,1,100,0.05,f945dfc5-baed-4824-82f5-54d7c345f207,115 -1849-220319-5,1,100,0.05,f945dfc5-baed-4824-82f5-54d7c345f207,117 -1849-010319-4,1,100,0.05,5ac96bb6-8342-44d2-a3d5-e43459b3c845,109 -1849-010319-4,1,100,0.05,48d315a1-e369-49b2-8b3d-397f602eced5,87 -1849-010319-4,1,100,0.05,988d4c67-9183-42f7-b025-77c0803e77c3,97 -1849-010319-4,1,100,0.05,2324f9e9-f406-4315-a3fa-dde6a219a9d7,99 -1849-010319-5,1,100,0.05,fc482c48-79e9-437b-896a-fe85436c185c,127 -1849-010319-5,1,100,0.05,4e72665f-0530-4d81-bf09-4755eeb9623b,137 -1849-010319-5,1,100,0.05,42ebd006-564c-402c-8c34-9259ceae25fa,159 -1849-060319-1,1,100,0.05,61057ea0-2a1d-484f-962d-793f8a6964bd,106 -1849-060319-1,1,100,0.05,4b90f61c-aefb-472b-9fea-af7bd4c0362c,108 -1849-060319-1,1,100,0.05,12a55f1b-7847-47a8-aec2-7ba2517d73c5,71 -1849-060319-1,1,100,0.05,0208d654-111a-4139-876f-3ee6adaeca98,73 -1849-060319-3,1,100,0.05,44dedaa3-5378-43f9-b5b9-8eb78e88122e,104 -1849-060319-3,1,100,0.05,4804082d-033f-4a19-a528-ca0794678c43,108 -1849-060319-3,1,100,0.05,29e545c2-8a47-4184-b5ae-f28c4da53816,85 -1849-060319-3,1,100,0.05,0eb3cb3d-1a75-4829-bccb-aa4b5176e644,94 -1849-060319-3,1,100,0.05,3643cdcb-3ec9-4ec9-9980-df109c8e94be,98 -1849-060319-4,1,100,0.05,a4d8f10a-d912-4532-9f9f-548b706b2b00,76 -1849-110319-1,1,100,0.05,bf474d8d-038e-4cef-850d-65257e269184,31 -1849-110319-1,1,100,0.05,f6ea37fb-f1be-48dd-87f2-71e298a9a826,41 -1849-110319-1,1,100,0.05,0bc28031-b4b5-494d-b7b1-5516d0ce82ad,54 -1849-110319-1,1,100,0.05,e3ecbdeb-518b-47bc-9185-056c12b8e7d0,59 -1849-110319-1,1,100,0.05,3f01af4b-bdc3-4b56-9895-33a06976012a,60 -1849-110319-1,1,100,0.05,03ad2dfa-c3b0-4a2d-9578-4042d90cbd87,64 -1849-110319-2,1,100,0.05,03ad2dfa-c3b0-4a2d-9578-4042d90cbd87,66 -1849-110319-2,1,100,0.05,d94dcb9d-be41-4d2a-845e-909b9d0d786a,68 -1849-110319-1,1,100,0.05,d94dcb9d-be41-4d2a-845e-909b9d0d786a,66 -1849-110319-2,1,100,0.05,4a6d682f-3503-4169-86ac-226afaddbba4,50 -1849-110319-2,1,100,0.05,3083d778-eec3-4500-b624-f7183423b5f3,58 -1849-110319-2,1,100,0.05,be495cb2-bad3-488a-9e13-8d1e29a793b0,62 -1849-110319-3,1,100,0.05,99e26db1-d407-46da-9898-44875dc3fc97,177 -1849-150319-2,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,48 -1849-150319-1,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,105 -1849-280219-4,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,84 -1849-150319-3,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,8 -1849-150319-3,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,98 -1849-150319-2,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,64 -1849-150319-1,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,121 -1849-150319-1,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,93 -1849-150319-3,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,7 -1849-150319-2,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,44 -1849-150319-3,1,100,0.05,c184a29f-4b8a-4bee-be31-c00b26d8ed78,11 -1849-280219-4,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,105 -1849-150319-4,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,100 -1849-280219-2,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,102 -1849-150319-4,1,100,0.05,029892c2-6897-44f3-857a-cf9cc67eb8cf,78 -1849-150319-4,1,100,0.05,4faa3964-3974-489d-a3ad-81ccb6d6c23d,99 -1849-220319-2,1,100,0.05,ff9e75a0-7ea5-44c7-a5c4-fa2c8d8320c4,99 -1849-220319-3,1,100,0.05,eb0c4c1b-f0ab-4af2-9f32-cd2cbc2d1e97,59 -1849-220319-3,1,100,0.05,0b2c621e-1cc0-46b3-898c-dcb8165b7faa,63 -1849-220319-3,1,100,0.05,fe9ce1fa-2209-42db-8b70-49c90879b680,67 -1849-220319-4,1,100,0.05,fe9ce1fa-2209-42db-8b70-49c90879b680,118 -1849-220319-4,1,100,0.05,6117881b-a2f1-4d1f-9a62-7ff7d1a7c506,108 -1849-220319-4,1,100,0.05,9520ecaf-391e-44e1-af0f-cb36a66597b8,117 -1849-220319-4,1,100,0.05,e9d35fae-dc22-43db-a4fc-79355b2ce744,90 -1849-280219-1,1,100,0.05,c5f628f0-34cf-4e3b-bb24-69ac34496e25,102 -1849-280219-1,1,100,0.05,fec96997-dc62-4818-9a2e-ac8f4e87ca12,104 -1849-280219-1,1,100,0.05,dcfa74fa-4b40-4b2b-adf4-dc7ad3848e37,112 -1849-280219-1,1,100,0.05,b84b5fa3-5445-4c68-9604-dab99ca0d392,114 -1849-280219-1,1,100,0.05,545ff8f9-7ed6-4c31-9152-d1669013cfbe,116 -1849-280219-4,1,100,0.05,d3abe753-b5b1-419e-bd2e-0e5676eb12c7,101 -1849-280219-2,1,100,0.05,d3abe753-b5b1-419e-bd2e-0e5676eb12c7,110 -1849-280219-2,1,100,0.05,59074938-007f-4546-9201-94f1edc93b49,78 -1849-280219-3,1,100,0.05,85bade90-21d8-4d76-82f4-57da6daf89bc,180 -1849-280219-3,1,100,0.05,2f483a25-5dca-47cc-b979-6c67959c1854,182 -1849-280219-4,1,100,0.05,15670c68-c11e-417f-b8a1-3c819ea6c64c,32 -1849-280219-4,1,100,0.05,c67dc573-0394-4857-9bd7-9ce3913f355c,81 -1849-010319-2,2,100,0.05,995deed1-c12b-4f1e-9c42-8fce9e5126af,103 -1849-010319-4,2,100,0.05,5fced8d5-40a4-4c50-afbf-5a9989cd7816,103 -1849-010319-2,2,100,0.05,5fced8d5-40a4-4c50-afbf-5a9989cd7816,119 -1849-010319-2,2,100,0.05,6ccc70c7-139c-4673-9bb1-1caf4cbfb5d8,83 -1849-010319-5,2,100,0.05,91b3a06e-5488-47d9-96c5-776f0fc3984e,103 -1849-010319-4,2,100,0.05,91b3a06e-5488-47d9-96c5-776f0fc3984e,61 -1849-010319-4,2,100,0.05,20e7773e-deca-478a-a8c9-a6b010526c46,67 -1849-010319-5,2,100,0.05,20e7773e-deca-478a-a8c9-a6b010526c46,93 -1849-110319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,60 -1849-010319-5,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,121 -1849-150319-3,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,76 -1849-150319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,9 -1849-150319-1,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,91 -1849-220319-4,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,99 -1849-220319-5,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,104 -1849-150319-4,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,81 -1849-110319-1,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,50 -1849-220319-3,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,61 -1849-220319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,95 -1849-010319-5,2,100,0.05,774ac625-07a9-4fb9-b29a-5de8b70a5bca,78 -1849-060319-4,2,100,0.05,66e3674a-43ac-4d74-a682-78001f83fc72,72 -1849-060319-2,2,100,0.05,66e3674a-43ac-4d74-a682-78001f83fc72,81 -1849-060319-3,2,100,0.05,55d851a6-4c6c-4a72-945b-5214f913be00,114 -1849-060319-3,2,100,0.05,85b8afcd-66e3-4ca7-9a78-f964d94bac54,130 -1849-060319-4,2,100,0.05,786ccaf7-c202-4eeb-a6fc-752a86731c34,82 -1849-110319-2,2,100,0.05,7ab4673c-044b-43a4-a031-03938b83cabb,52 -1849-110319-1,2,100,0.05,7ab4673c-044b-43a4-a031-03938b83cabb,46 -1849-110319-2,2,100,0.05,dc68fd0a-728d-4899-b746-3d94cd128d30,64 -1849-110319-1,2,100,0.05,dc68fd0a-728d-4899-b746-3d94cd128d30,62 -1849-150319-2,2,100,0.05,e3e3fe41-fb34-4d5e-88bb-688b8484c0b6,34 -1849-150319-1,2,100,0.05,e3e3fe41-fb34-4d5e-88bb-688b8484c0b6,62 -1849-150319-1,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,72 -1849-150319-3,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,25 -1849-150319-4,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,62 -1849-150319-2,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,36 -1849-150319-4,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,90 -1849-150319-3,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,21 -1849-150319-2,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,62 -1849-150319-4,2,100,0.05,22aed85a-0141-4486-a7b0-902573fd115f,87 -1849-220319-2,2,100,0.05,14486b20-6ff3-4c03-ae15-3bcdfbbeb0e4,91 -1849-220319-5,2,100,0.05,14486b20-6ff3-4c03-ae15-3bcdfbbeb0e4,83 -1849-220319-3,2,100,0.05,ab05f922-bb18-4f22-9354-ea37c2489eb1,65 -1849-280219-1,2,100,0.05,812e8a51-28f8-4a74-96f7-f3cabe48d4af,100 -1849-280219-1,2,100,0.05,81573fb8-5117-48cc-bc2c-bcc4d248ff62,16 -1849-280219-1,2,100,0.05,f558c6be-f286-4e04-8751-fbac1ea5eca8,18 -1849-280219-1,2,100,0.05,db24a924-bb76-4629-8a92-6587b69670ff,84 -1849-280219-1,2,100,0.05,767068ea-a19c-484e-9647-1c4139ed390c,86 -1849-280219-2,2,100,0.05,e129d7e8-72f9-4295-9fc3-5de34a924b48,70 -1849-280219-2,2,100,0.05,f533ec65-508a-47aa-a49e-0e3621d3b010,72 -1849-280219-3,2,100,0.05,a3245cb9-a93e-4ae0-9e3c-e275c6dc0c47,141 -1849-280219-4,2,100,0.05,7f63e82c-cb77-4e6b-a2b1-4336eacb52d5,70 -1849-280219-4,2,100,0.05,0e310b30-e767-4601-9cce-40154eec1ba6,74 -1849-010319-2,3,100,0.05,c6df4551-4969-47ee-81be-ea88fe45e77e,107 -1849-010319-2,3,100,0.05,63278a1b-4bea-4054-ad94-fcc62c3fe34d,111 -1849-010319-2,3,100,0.05,9b438d0d-615d-4648-8df6-4b308963e9e9,40 -1849-010319-4,3,100,0.05,bb383829-1612-45cb-8504-bfb00c6e7897,115 -1849-010319-5,3,100,0.05,bb383829-1612-45cb-8504-bfb00c6e7897,148 -1849-010319-5,3,100,0.05,3e88c624-cb3d-456e-a904-baa1e99ebd9f,99 -1849-010319-4,3,100,0.05,3e88c624-cb3d-456e-a904-baa1e99ebd9f,65 -1849-010319-4,3,100,0.05,1a6ddca9-31a6-453a-afc8-d889320746ef,73 -1849-010319-5,3,100,0.05,1a6ddca9-31a6-453a-afc8-d889320746ef,113 -1849-060319-1,3,100,0.05,421c32ac-f805-403c-9532-c142579eb0a9,102 -1849-060319-1,3,100,0.05,fe007121-4442-49c5-a6b4-60e2446e43cc,77 -1849-060319-1,3,100,0.05,459ad287-b0f9-4dc7-95b8-f56e1a50f8e3,83 -1849-060319-4,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,74 -1849-060319-2,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,99 -1849-060319-3,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,110 -1849-060319-1,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,98 -1849-060319-2,3,100,0.05,17e94d15-5124-4bd2-baa8-edafc5c9b57a,67 -1849-060319-4,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,68 -1849-060319-3,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,100 -1849-060319-2,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,94 -1849-110319-1,3,100,0.05,75306d23-086b-41b1-9603-75dd646b279b,35 -1849-110319-2,3,100,0.05,df1a1a45-5a6c-42f4-bba2-6e8a28636093,40 -1849-150319-1,3,100,0.05,b72da5fe-e0f3-4f39-a1e6-a964c32daa2b,58 -1849-150319-1,3,100,0.05,7b57f633-a87d-42a3-9b8f-a38570d6362d,64 -1849-150319-2,3,100,0.05,0a68341c-9b60-45bd-a520-1db4eefd5527,32 -1849-150319-2,3,100,0.05,a8d410f4-d232-4fd4-86cf-3c4818798ae2,38 -1849-150319-3,3,100,0.05,74a750e4-ac7d-4772-8b7a-5bc5bf9f0a5d,60 -1849-150319-4,3,100,0.05,c2a108cf-b5d1-4f53-a944-f7080c4bf792,58 -1849-220319-2,3,100,0.05,829373a4-573b-4dbd-839c-3b32bb4bbcdc,57 -1849-220319-2,3,100,0.05,d14a6cb4-b30b-41c5-955e-5e9508f31118,59 -1849-220319-2,3,100,0.05,f4190499-2f52-408b-9bc5-78898513a1ca,68 -1849-220319-2,3,100,0.05,6d65ccfb-cd8f-4b9c-8e0b-dc509d333b3c,86 -1849-220319-3,3,100,0.05,19072f12-538b-4bc9-bfd2-5302f85484f4,53 -1849-220319-3,3,100,0.05,b17f8393-c08b-4bf8-bc6a-94c4dc75e890,55 -1849-220319-4,3,100,0.05,5b6c8660-a2e7-4dbb-b6db-b5e52b698016,122 -1849-220319-4,3,100,0.05,e9be012d-3f6e-41e3-a3cd-400f942292ed,79 -1849-220319-4,3,100,0.05,4616134e-8862-47b3-919b-8520ad887297,87 -1849-220319-5,3,100,0.05,21d4a54b-514b-44d9-81f6-7347c1d6ca4f,27 -1849-220319-5,3,100,0.05,ef87c70d-806a-4e0b-8d2f-9d3934a665b0,71 -1849-220319-5,3,100,0.05,195b6f4e-e166-4ede-bf0e-752b773edff5,98 -1849-280219-1,3,100,0.05,81fee3d1-dd2d-44fd-bd84-f396f9ab348b,110 -1849-280219-1,3,100,0.05,c2d44b46-548e-40f5-ad24-8d74a0e411f3,27 -1849-280219-1,3,100,0.05,055c8d4d-667f-4748-9d14-3904b1b0fcf3,28 -1849-280219-1,3,100,0.05,d3219bc6-106f-46ee-8c0b-ab10d5be9569,64 -1849-280219-2,3,100,0.05,e8e8ad81-4260-4f38-8a35-760592f77f8c,51 -1849-280219-2,3,100,0.05,2416f99e-8a20-47c7-9b8a-49d834895536,76 -1849-280219-2,3,100,0.05,a37e302a-ec76-4159-99c5-3eaf890f2f3c,96 -1849-280219-2,3,100,0.05,dc4ded50-3c34-44ba-8dce-fff940d7267e,98 -1849-280219-4,3,100,0.05,dc4ded50-3c34-44ba-8dce-fff940d7267e,125 -1849-280219-3,3,100,0.05,3e99529d-7844-43c7-8e7e-3eee619d499d,166 -1849-280219-3,3,100,0.05,1efe3fb6-7a0c-423a-937f-3aff3895567b,170 -1849-280219-4,3,100,0.05,791f4f4f-057f-471e-b881-a027e71986cf,121 -1849-280219-4,3,100,0.05,190ed37f-6437-4a07-81f8-9c95e39da61c,60 -1849-280219-4,3,100,0.05,e6ca2b59-ad19-48ac-ba17-671c770e95a8,72 -1849-060319-1,4,100,0.05,86c409f3-5503-456d-9b17-37f9d27b3613,104 -1849-060319-4,4,100,0.05,86c409f3-5503-456d-9b17-37f9d27b3613,80 -1849-060319-1,4,100,0.05,9b11a6fc-abae-4b0f-8b91-9883c1111177,88 -1849-060319-2,4,100,0.05,24a0e459-d94f-43ed-8c22-3bdb9a8b27d2,122 -1849-060319-2,4,100,0.05,13e77440-b0be-4253-9151-6d0ca37860e0,95 -1849-060319-3,4,100,0.05,e440f346-ef7e-45e5-82e8-ad22aa25f0df,120 -1849-060319-4,4,100,0.05,d0af3ffc-fe31-4aad-b1cc-fb0e88bc18fb,64 -1849-110319-2,4,100,0.05,c379705d-aa0c-4ecd-831d-8ba21e18dfad,23 -1849-110319-3,4,100,0.05,afdc3efc-52de-4f36-810c-d16a1289bc16,104 -1849-110319-3,4,100,0.05,2195288a-7de9-4486-9f97-402dba50e9c1,163 -1849-150319-1,4,100,0.05,3e1cc8ab-74e5-434f-bd5a-6ef998ad120f,79 -1849-150319-1,4,100,0.05,d8e82b4b-b389-4c4b-940b-3cf223bdee15,85 -1849-150319-1,4,100,0.05,bc0ded9b-eea8-4bf0-83b9-134422a6e9fb,89 -1849-150319-2,4,100,0.05,1b48ab42-285c-4ace-8fc9-380d82422330,17 -1849-150319-3,4,100,0.05,1b48ab42-285c-4ace-8fc9-380d82422330,74 -1849-150319-2,4,100,0.05,6db857e7-e265-4375-9a47-942f86bd06e7,46 -1849-150319-3,4,100,0.05,1098c4ac-8d80-4698-a76f-64eac601bec5,97 -1849-220319-4,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,112 -1849-220319-5,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,112 -1849-150319-4,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,34 -1849-150319-4,4,100,0.05,bb99ad2c-115d-44d1-9f55-2e8ce2a05c59,60 -1849-220319-2,4,100,0.05,80aa98c0-0689-4f27-a9b8-67cd162fc530,101 -1849-220319-2,4,100,0.05,51c43cff-ce8f-4862-b16b-32cd07202a85,107 -1849-220319-2,4,100,0.05,8ba1d7d4-f404-4e2e-ae65-152879a9c650,109 -1849-220319-2,4,100,0.05,44392d0e-e8d8-4774-ad6b-8b6b49a8350b,43 -1849-220319-3,4,100,0.05,6fcb2249-c536-4aa3-b2ba-675ea6ebcee9,69 -1849-220319-3,4,100,0.05,27c2658b-2a4e-4c00-94e1-eb021accec90,71 -1849-280219-1,4,100,0.05,6ad7883e-d45c-4dce-bfcc-90163ef1eadb,66 -1849-280219-2,4,100,0.05,ee588341-3383-4da1-b71c-4f5524144a7f,80 -1849-280219-2,4,100,0.05,34e5491b-16e9-4560-90fe-7616171970f1,86 -1849-280219-3,4,100,0.05,1b359a5d-70e9-4bcc-9ed3-4c835cd0d268,133 -1849-280219-3,4,100,0.05,acec4683-4357-49a0-bd28-89b389607fb4,151 -1849-280219-4,4,100,0.05,55bb8927-0e57-49a6-9d5b-c574f555cb6f,55 -1849-010319-2,5,100,0.05,c2a5482b-e4da-440d-9c4c-d07bf2deb791,91 -1849-010319-2,5,100,0.05,e1c0b0b8-2237-42b1-9013-9404bb1fefab,93 -1849-010319-5,5,100,0.05,b61218f1-0326-46d7-96f1-53489925bef7,87 -1849-010319-4,5,100,0.05,b61218f1-0326-46d7-96f1-53489925bef7,58 -1849-060319-1,5,100,0.05,e096e19e-bed2-4f25-ab5c-ace464256a25,100 -1849-060319-1,5,100,0.05,9cd870c2-a14a-47b1-b6f5-baf26053486a,75 -1849-060319-1,5,100,0.05,f62c2002-0403-43a1-9e70-1a1274c6d0ad,92 -1849-060319-2,5,100,0.05,a2cf723a-8fb8-4e7a-95d8-f9fb9c037532,114 -1849-060319-3,5,100,0.05,a2cf723a-8fb8-4e7a-95d8-f9fb9c037532,112 -1849-060319-2,5,100,0.05,58e0e4f3-6658-4029-a438-18c340919f62,118 -1849-060319-4,5,100,0.05,d4c28ae1-3811-481b-b4b1-aefbc96800bb,78 -1849-110319-1,5,100,0.05,891576de-b4a6-4d7a-a587-2106a882c92f,16 -1849-110319-1,5,100,0.05,eaae5ed3-f001-4938-b11b-a7523337fe2e,17 -1849-110319-1,5,100,0.05,d2bf439a-eda1-4730-91f9-6daa406e07f5,29 -1849-110319-2,5,100,0.05,456858f8-0984-4256-ab05-18c4b241442e,24 -1849-110319-2,5,100,0.05,3dbf3064-1371-41c9-9007-47fa20120840,48 -1849-110319-3,5,100,0.05,d5caa155-4bb8-4ba9-97c1-6810c4603407,165 -1849-150319-1,5,100,0.05,6e77b600-c0b0-4c5c-adcc-8d64de01a365,107 -1849-150319-1,5,100,0.05,d876a92f-79da-4981-8731-af5bfca0041d,60 -1849-150319-1,5,100,0.05,eae35328-c2ee-4e46-bcf9-adebb519ac34,80 -1849-150319-1,5,100,0.05,bdbb00ff-747e-4233-bdcf-0a4b73506472,95 -1849-150319-2,5,100,0.05,dcde8219-5008-48c7-a54e-3ff7dd110798,18 -1849-150319-4,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,64 -1849-150319-2,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,19 -1849-150319-3,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,38 -1849-150319-2,5,100,0.05,6ebfa10d-e096-4293-b09b-2b9c2c78ff56,22 -1849-150319-2,5,100,0.05,6c2679a7-a038-4f81-ab25-16ba343f8821,67 -1849-150319-3,5,100,0.05,c24246c2-07d3-4b76-a37e-f7fe719a5df2,64 -1849-150319-3,5,100,0.05,7e5600ab-e034-47f1-905d-744be2bd1f92,78 -1849-150319-4,5,100,0.05,428ae809-71d4-4682-bbff-39fc1c0bed56,37 -1849-220319-2,5,100,0.05,ac8b26cb-6423-4b70-a2d7-e846c3410f42,32 -1849-220319-2,5,100,0.05,3ee8dab4-5041-46d8-a3e0-f320164e1bd7,45 -1849-220319-2,5,100,0.05,103838e1-a72b-4984-8ff0-c809d8938722,46 -1849-220319-3,5,100,0.05,74743f08-27a9-411d-be99-47f4da5822a8,28 -1849-220319-3,5,100,0.05,dbe25484-cf52-421c-ac3f-c26859186134,73 -1849-220319-3,5,100,0.05,1f07493c-a93a-409f-9a87-8cc5fea712af,75 -1849-220319-4,5,100,0.05,8e21806d-9915-40b4-b1be-4c434c862e8a,102 -1849-220319-4,5,100,0.05,948594d3-ddcf-4954-a04c-b5586bff6995,110 -1849-220319-4,5,100,0.05,10e77237-3825-45ec-8b58-7cf61b7dd428,84 -1849-220319-5,5,100,0.05,fdc089d8-1c49-4258-b9a8-ff7a23f70c01,34 -1849-220319-5,5,100,0.05,fb5caec8-6eaa-4983-b698-3a1070bd6827,35 -1849-220319-5,5,100,0.05,9d6b7eb6-f5de-41e3-a205-1584d57d7f2b,38 -1849-220319-5,5,100,0.05,10997df0-e0bd-4699-9d3b-f95c6b4d9dcf,39 -1849-280219-1,5,100,0.05,39c74c6d-ec64-4962-847e-07eb35e35713,40 -1849-280219-2,5,100,0.05,3239a2ef-5b3e-4643-8ec8-1644821c9a65,64 -1849-280219-3,5,100,0.05,7d4053a4-7caf-41fa-9bb0-dfaf9faaaa82,129 -1849-280219-3,5,100,0.05,19b3d94d-b637-4ada-9caf-7290649ea5cc,137 -1849-280219-4,5,100,0.05,60503a00-13b9-4315-8b44-8ab191913b53,44 -1849-010319-2,6,100,0.05,0fe53439-3ae2-4d3b-b6c1-48869823d892,85 -1849-010319-2,6,100,0.05,838728e2-ec8b-459b-baae-da9f8ef138b9,97 -1849-010319-2,6,100,0.05,bdb7c6e1-4de4-4845-86f9-43393976f357,99 -1849-010319-4,6,100,0.05,ec7620a7-64cf-4c59-b1f5-7a05d703b20d,79 -1849-010319-5,6,100,0.05,6ca97a27-6af1-447f-afc9-0a1cea35e320,105 -1849-010319-5,6,100,0.05,2cb7277b-1d4f-4be0-8ab6-3dfd71c6807c,107 -1849-010319-5,6,100,0.05,41ed1439-2627-46bc-82d6-08583a65a583,109 -1849-060319-1,6,100,0.05,3a120b27-58ad-438d-b3e7-1b2a6fbe5b9e,44 -1849-060319-1,6,100,0.05,e023f131-df43-413c-907a-dc0d8dda1daa,81 -1849-060319-4,6,100,0.05,8da6ec29-00bd-478e-8b0d-6e98378377f0,62 -1849-060319-4,6,100,0.05,4f397d6b-671c-487e-9c4f-da7960ee4cf6,66 -1849-280219-1,6,100,0.05,970d5ca8-a143-4ba8-a862-31327a470ec1,106 -1849-280219-1,6,100,0.05,3e1d3408-86d0-40f5-8768-aa9abe42dfa2,108 -1849-280219-1,6,100,0.05,c5ff3103-ea11-4867-a1f7-9c2f0d415cad,44 -1849-280219-1,6,100,0.05,1bc9b538-04e3-4cf3-ac2b-a7d118987439,45 -1849-280219-1,6,100,0.05,36618e0c-9dc1-472c-a794-ed36c50c3d2f,96 -1849-280219-1,6,100,0.05,23b8e6c1-f4ac-4702-ad70-bb5645513a0e,98 -1849-280219-2,6,100,0.05,dcaa3d76-433b-40c5-bc66-54b4a3affaf2,38 -1849-280219-2,6,100,0.05,e729a175-0be6-4150-bcf5-8cdf16c3b6cf,90 -1849-280219-2,6,100,0.05,f0365b87-f1dd-4ec2-9231-601fe78a9dba,94 -1849-280219-3,6,100,0.05,348eb05e-1d40-47f7-83d7-e78e5ac6a05a,127 -1849-280219-3,6,100,0.05,f96586a6-b9cf-476e-b37c-84ce7c74995e,131 -1849-280219-3,6,100,0.05,100ab2e5-742b-4cd9-873f-04336aefa76f,135 -1849-280219-3,6,100,0.05,cdceb0f3-ae50-402b-970d-263b988f15e5,139 -1849-280219-4,6,100,0.05,e6fc3b7f-eb2e-4446-bea7-51ca9b051c15,66 -1849-280219-4,6,100,0.05,ff5340cb-3904-4f93-b690-493ebf8d65e2,68 -1849-280219-4,7,100,0.05,15f3d73d-90b9-40a8-94f1-75763e3647f1,58 -1849-010319-2,7,100,0.05,15f3d73d-90b9-40a8-94f1-75763e3647f1,101 -1849-280219-2,7,100,0.05,326620da-da95-4232-9314-309575f89963,42 -1849-280219-3,7,100,0.05,326620da-da95-4232-9314-309575f89963,158 -1849-010319-2,7,100,0.05,326620da-da95-4232-9314-309575f89963,70 -1849-280219-4,7,100,0.05,326620da-da95-4232-9314-309575f89963,56 -1849-010319-4,7,100,0.05,87670e0f-1783-462f-b522-0bdd850cddea,59 -1849-010319-5,7,100,0.05,87670e0f-1783-462f-b522-0bdd850cddea,57 -1849-010319-5,7,100,0.05,75421a7a-4265-42ea-9997-24cea4ed02ac,54 -1849-060319-1,7,100,0.05,0778701f-e685-446b-a291-4163a8346fce,49 -1849-060319-1,7,100,0.05,3af3e489-e70b-41f4-93fd-8604d80f1d3e,90 -1849-060319-2,7,100,0.05,6338c3d5-cdfc-41ac-a7e1-afc4363470b7,50 -1849-060319-2,7,100,0.05,d6cb1145-8c8c-4193-a66d-1f54416703b6,71 -1849-060319-2,7,100,0.05,64b621dc-f53c-4d37-9b37-dc63839be641,92 -1849-060319-3,7,100,0.05,f2bc9b83-a96d-4128-8cd1-7bb6a1ffb415,118 -1849-060319-3,7,100,0.05,35843308-4317-4714-9914-9e36623cb1ce,92 -1849-060319-4,7,100,0.05,70bf3009-8a81-4319-b588-fd3fe4d70a1c,60 -1849-150319-1,7,100,0.05,d0c6dbd6-081a-4e1f-8a3c-6a9f17d34763,56 -1849-280219-1,7,100,0.05,f018946b-21db-4a52-a5ba-bffac84887b4,52 -1849-280219-1,7,100,0.05,1414e14e-00a2-451a-aaf2-fa7c8624c6bc,53 -1849-280219-1,7,100,0.05,2336b444-1562-455d-b1d4-a7e49b83fc78,62 -1849-280219-2,7,100,0.05,64fbb0ba-8cf4-4e40-ab66-8c56c262d938,43 -1849-280219-2,7,100,0.05,2a91a55f-011d-46c8-9531-844871317c8b,61 -1849-280219-2,7,100,0.05,a4a4c813-9e64-47c3-9c8f-6984e88b2384,66 -1849-280219-2,7,100,0.05,12bda732-cd13-41a9-9dc8-c9a22720607b,92 -1849-280219-3,7,100,0.05,2e6568a6-509d-4e86-9d41-56e889bcc0ee,149 -1849-280219-3,7,100,0.05,e972ab3f-bbe6-4b5b-b34c-e56aa51a2f5f,164 -1849-280219-4,7,100,0.05,67788bb5-ebf0-4c1a-a686-75a658c75d08,86 +1849-010319-5,0,100,0.05,c647a9dd-29fb-42a3-acc7-796a3ae4c147,117 +1849-060319-1,0,100,0.05,5e5df3e9-34e8-4862-b8d3-b84f89db4a15,85 +1849-110319-1,0,100,0.05,5ff23df9-f274-4382-ac81-c7c96b53c885,52 +1849-110319-2,0,100,0.05,8259f314-d021-42af-a98f-c539ee543473,56 +1849-150319-4,0,100,0.05,5c0cd33d-0382-4b78-b574-f5d442ab6d3f,85 +1849-150319-1,0,100,0.05,5c0cd33d-0382-4b78-b574-f5d442ab6d3f,39 +1849-150319-2,0,100,0.05,5c0cd33d-0382-4b78-b574-f5d442ab6d3f,60 +1849-150319-3,0,100,0.05,5c0cd33d-0382-4b78-b574-f5d442ab6d3f,6 +1849-150319-1,0,100,0.05,4a6b6ec9-c06a-4b84-a318-558a0095b01b,74 +1849-150319-2,0,100,0.05,7da8953a-dcbe-487e-bf4d-8a81b1728b50,40 +1849-150319-3,0,100,0.05,d67b2c2a-c1c5-436c-a877-0d57834d606e,69 +1849-150319-4,0,100,0.05,622c5f9f-7289-483b-b268-2a2634e1994d,70 +1849-150319-4,0,100,0.05,586c281c-8f34-4362-a0f4-ac7aacffcce3,76 +1849-220319-4,0,100,0.05,12e4de49-9ecf-4952-a983-eed259e029b0,100 +1849-220319-5,0,100,0.05,12e4de49-9ecf-4952-a983-eed259e029b0,79 +1849-220319-2,0,100,0.05,12e4de49-9ecf-4952-a983-eed259e029b0,93 +1849-220319-3,0,100,0.05,52b1ebc4-fefd-4dd9-aeb8-aeabbc39c6ea,0 +1849-280219-1,0,100,0.05,dbfe7b3f-a084-4c17-af00-7f6a2bb1eb27,90 +1849-280219-2,0,100,0.05,38515cfe-b829-4594-9f10-4b639f7f6aef,88 +1849-280219-3,0,100,0.05,a162ba66-e66e-422b-87da-c6792ae23868,153 +1849-280219-3,0,100,0.05,f7d5527c-4a45-425d-a970-618df8834204,160 +1849-280219-4,0,100,0.05,dc0a4927-3e38-45eb-963b-b7507c955407,62 +1849-280219-4,0,100,0.05,78313383-f119-4c17-b674-4563006070a5,64 +1849-010319-2,1,100,0.05,224fa7fc-2b0e-48d6-b043-b93c91e9d215,115 +1849-220319-5,1,100,0.05,224fa7fc-2b0e-48d6-b043-b93c91e9d215,117 +1849-010319-4,1,100,0.05,a737a794-e25c-4698-b370-58f048ac572b,109 +1849-010319-4,1,100,0.05,2956abfd-ca40-46d3-9daa-88b3c70935c0,87 +1849-010319-4,1,100,0.05,db2cb676-800b-48e8-b572-874549add363,97 +1849-010319-4,1,100,0.05,fa716a75-ff9e-43f4-8b81-85412994868f,99 +1849-010319-5,1,100,0.05,86fcc415-bec7-49f6-8698-b5cc83771ecc,127 +1849-010319-5,1,100,0.05,5c52f552-65d5-4d13-9bfe-93c40f3d4212,137 +1849-010319-5,1,100,0.05,5c5385ea-ca6b-4279-9c29-08d0cff747cf,159 +1849-060319-1,1,100,0.05,54f5f201-732b-4ec6-8508-8db88e7f3cb3,106 +1849-060319-1,1,100,0.05,11bb4101-c18e-4ee8-ad3d-0e977bbbbcb0,108 +1849-060319-1,1,100,0.05,c19df5e1-2944-4612-84dd-d60e75b784e8,71 +1849-060319-1,1,100,0.05,cb655143-f396-47a0-9b5a-e83ca0e36dfc,73 +1849-060319-3,1,100,0.05,06215522-8928-4d20-ade7-dfdc71ac629d,104 +1849-060319-3,1,100,0.05,dff4a56b-bcf5-410f-a7da-f6214083c599,108 +1849-060319-3,1,100,0.05,345c2f16-18d5-49ee-a934-0bae7c3700a0,85 +1849-060319-3,1,100,0.05,e93133f2-4b68-4032-8b81-f7ee139169a7,94 +1849-060319-3,1,100,0.05,2f373e70-f8a4-49a2-b219-55b15b32b752,98 +1849-060319-4,1,100,0.05,87cf4fb2-848b-42cb-abf4-486faa568bf3,76 +1849-110319-1,1,100,0.05,d65c7e82-0a61-4dde-9be7-bad79c4feadf,31 +1849-110319-1,1,100,0.05,2ebe3571-22cb-439f-baed-9c117a49f9ed,41 +1849-110319-1,1,100,0.05,29fa76fc-b1d2-48c8-82a2-e119a2793290,54 +1849-110319-1,1,100,0.05,7050bffb-e235-4de9-a10e-12a53b406452,59 +1849-110319-1,1,100,0.05,5b6b402c-4072-483b-a89e-4da6c49b4323,60 +1849-110319-2,1,100,0.05,d3169083-e30b-4845-b28e-1cfc7a95d341,66 +1849-110319-1,1,100,0.05,d3169083-e30b-4845-b28e-1cfc7a95d341,64 +1849-110319-2,1,100,0.05,21790ef8-9afb-4700-9819-eebe0e7a824e,68 +1849-110319-1,1,100,0.05,21790ef8-9afb-4700-9819-eebe0e7a824e,66 +1849-110319-2,1,100,0.05,1f7c75f5-615e-4e41-956c-3390af52665b,50 +1849-110319-2,1,100,0.05,b3b22124-40e3-4627-af8f-7eb64357573f,58 +1849-110319-2,1,100,0.05,064d5801-fb23-4dfd-8c03-394024e09500,62 +1849-110319-3,1,100,0.05,513ce397-2834-4471-b591-acb73523f8df,177 +1849-150319-2,1,100,0.05,2a00cbdb-d72a-43a2-aff8-d83f4c76d993,48 +1849-280219-4,1,100,0.05,2a00cbdb-d72a-43a2-aff8-d83f4c76d993,84 +1849-150319-3,1,100,0.05,2a00cbdb-d72a-43a2-aff8-d83f4c76d993,8 +1849-150319-1,1,100,0.05,2a00cbdb-d72a-43a2-aff8-d83f4c76d993,105 +1849-150319-1,1,100,0.05,0280fccd-c5a5-4de6-9f10-776dc1869e7f,121 +1849-150319-3,1,100,0.05,0280fccd-c5a5-4de6-9f10-776dc1869e7f,98 +1849-150319-2,1,100,0.05,0280fccd-c5a5-4de6-9f10-776dc1869e7f,64 +1849-150319-1,1,100,0.05,2a5c4c39-034f-45de-a829-f4ffc5ca8d1f,93 +1849-150319-2,1,100,0.05,2a5c4c39-034f-45de-a829-f4ffc5ca8d1f,44 +1849-150319-3,1,100,0.05,2a5c4c39-034f-45de-a829-f4ffc5ca8d1f,7 +1849-150319-3,1,100,0.05,acac48d3-250f-4265-b3aa-e3574fcd5c7e,11 +1849-150319-4,1,100,0.05,bf9b35f7-836c-411b-86a6-0b8e02a16c59,100 +1849-280219-4,1,100,0.05,bf9b35f7-836c-411b-86a6-0b8e02a16c59,105 +1849-280219-2,1,100,0.05,bf9b35f7-836c-411b-86a6-0b8e02a16c59,102 +1849-150319-4,1,100,0.05,96ce29de-9616-4e5a-9089-ae70052bc686,78 +1849-150319-4,1,100,0.05,fad89edb-23cb-4955-a51c-d863b9ed5086,99 +1849-220319-2,1,100,0.05,8427249d-3085-4531-8eeb-917c46448768,99 +1849-220319-3,1,100,0.05,e6b48787-c7d2-48f4-8428-62a632db1160,59 +1849-220319-3,1,100,0.05,bcf9fb53-032f-4ab5-9baa-0bb74e2d3e0f,63 +1849-220319-3,1,100,0.05,e1afa22c-a5a6-4bc9-80d2-556a8192a5cf,67 +1849-220319-4,1,100,0.05,e1afa22c-a5a6-4bc9-80d2-556a8192a5cf,118 +1849-220319-4,1,100,0.05,ae491eb3-0dff-42e6-9e9b-e559cea763ab,108 +1849-220319-4,1,100,0.05,b7617172-bc9c-4cc8-a82a-9690654fe766,117 +1849-220319-4,1,100,0.05,f661d6df-b2b5-4fc7-b40f-02fde9e6c181,90 +1849-280219-1,1,100,0.05,a64527ef-4cf3-408a-a2ca-89b59e3f59f0,102 +1849-280219-1,1,100,0.05,2a54da2b-f5bd-4c26-ae01-edd6fb85ff17,104 +1849-280219-1,1,100,0.05,83fda535-7506-42eb-97cb-71676c9a06ed,112 +1849-280219-1,1,100,0.05,3e01a168-05a9-4461-87e0-5c6e2918c5ab,114 +1849-280219-1,1,100,0.05,935f9859-1d55-4af6-ba32-411783900426,116 +1849-280219-4,1,100,0.05,d4272bd3-8ca4-4cbd-97ac-f7b6640d9370,101 +1849-280219-2,1,100,0.05,d4272bd3-8ca4-4cbd-97ac-f7b6640d9370,110 +1849-280219-2,1,100,0.05,b5053b15-b9d3-4fcc-8c65-14b1bd6f10b1,78 +1849-280219-3,1,100,0.05,14143efc-72ec-4801-99f0-e426d19b0794,180 +1849-280219-3,1,100,0.05,53d03210-67a3-4335-857c-a6e31103bf51,182 +1849-280219-4,1,100,0.05,98a5bbe7-e677-4750-ba91-fa20edd66cd1,32 +1849-280219-4,1,100,0.05,2b18a790-4ee2-4f6f-a47c-2d93af9889e5,81 +1849-010319-2,2,100,0.05,a9467287-99d9-4a92-aafa-5244db21ae71,103 +1849-010319-2,2,100,0.05,2d2fbb31-29c2-4932-a85c-5584299cf818,119 +1849-010319-4,2,100,0.05,2d2fbb31-29c2-4932-a85c-5584299cf818,103 +1849-010319-2,2,100,0.05,62d409ab-845c-4bb8-a809-7b6666f88e4d,83 +1849-010319-5,2,100,0.05,d6c66348-ecf1-4d6a-b75f-9db2db830059,103 +1849-010319-4,2,100,0.05,d6c66348-ecf1-4d6a-b75f-9db2db830059,61 +1849-010319-5,2,100,0.05,0779b599-834e-45ef-a6bc-fecbefcc440f,93 +1849-010319-4,2,100,0.05,0779b599-834e-45ef-a6bc-fecbefcc440f,67 +1849-220319-4,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,99 +1849-010319-5,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,121 +1849-220319-2,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,95 +1849-150319-1,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,91 +1849-220319-3,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,61 +1849-150319-3,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,76 +1849-110319-1,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,50 +1849-220319-5,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,104 +1849-110319-2,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,60 +1849-150319-4,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,81 +1849-150319-2,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,9 +1849-010319-5,2,100,0.05,10b0b374-d1ec-4bbe-976d-037e5d46bdcb,78 +1849-060319-4,2,100,0.05,ed9331d1-5a45-48b1-aed1-5efbcc57c2fa,72 +1849-060319-2,2,100,0.05,ed9331d1-5a45-48b1-aed1-5efbcc57c2fa,81 +1849-060319-3,2,100,0.05,344637cf-ee74-4aee-8bc7-669e15c84706,114 +1849-060319-3,2,100,0.05,d8fcec78-89f8-47a3-92c5-d9499e1623dd,130 +1849-060319-4,2,100,0.05,6db71b75-e928-4d37-bdfa-224a736128fa,82 +1849-110319-2,2,100,0.05,197184a7-dae3-47ae-bf82-ef5fa4f4a1c9,52 +1849-110319-1,2,100,0.05,197184a7-dae3-47ae-bf82-ef5fa4f4a1c9,46 +1849-110319-1,2,100,0.05,9ee0aa53-5e63-41d2-b497-2292252b2acc,62 +1849-110319-2,2,100,0.05,9ee0aa53-5e63-41d2-b497-2292252b2acc,64 +1849-150319-2,2,100,0.05,52cc5d39-4c20-48df-980e-e3c476e5082f,34 +1849-150319-1,2,100,0.05,52cc5d39-4c20-48df-980e-e3c476e5082f,62 +1849-150319-3,2,100,0.05,474822fb-cc18-4acf-bea5-4b5ea7dba54c,25 +1849-150319-1,2,100,0.05,474822fb-cc18-4acf-bea5-4b5ea7dba54c,72 +1849-150319-4,2,100,0.05,474822fb-cc18-4acf-bea5-4b5ea7dba54c,62 +1849-150319-2,2,100,0.05,474822fb-cc18-4acf-bea5-4b5ea7dba54c,36 +1849-150319-4,2,100,0.05,26e0b870-0a3b-405f-b908-86c1b125730e,90 +1849-150319-2,2,100,0.05,26e0b870-0a3b-405f-b908-86c1b125730e,62 +1849-150319-3,2,100,0.05,26e0b870-0a3b-405f-b908-86c1b125730e,21 +1849-150319-4,2,100,0.05,dcbe6b45-284e-4d3b-ac00-e4dd6bf3dfbe,87 +1849-220319-2,2,100,0.05,e018992d-3542-4f5f-97c9-ec24b8edf41f,91 +1849-220319-5,2,100,0.05,e018992d-3542-4f5f-97c9-ec24b8edf41f,83 +1849-220319-3,2,100,0.05,f46e213d-5b77-4d83-8c43-131ad6f49dc7,65 +1849-280219-1,2,100,0.05,c2104375-fd13-48f9-a7b0-13eaba601079,100 +1849-280219-1,2,100,0.05,cf39ffac-3e31-4015-90fa-ae7759d85d03,16 +1849-280219-1,2,100,0.05,a7e0417b-091a-43fa-b978-afbb2828768e,18 +1849-280219-1,2,100,0.05,8346bbc4-23a5-47b6-81f8-d2eb93aadbf7,84 +1849-280219-1,2,100,0.05,5990a30e-67b8-47bf-bae4-3fc011ce928b,86 +1849-280219-2,2,100,0.05,f2af289c-3207-496a-9dc5-2d4d95074634,119 +1849-280219-2,2,100,0.05,3c969c1b-36d3-4eb3-bce3-61ff8446f583,72 +1849-280219-3,2,100,0.05,b092da07-f413-4568-b5c9-322a7a5d147f,141 +1849-280219-4,2,100,0.05,5c782264-06ef-4999-9f5f-f04117e1bd09,70 +1849-280219-4,2,100,0.05,6fc50b13-e626-44fa-8f8f-2c89a56e73b2,74 +1849-010319-2,3,100,0.05,102465e9-343f-40ed-b933-c12d9ada2956,107 +1849-010319-2,3,100,0.05,f28d19f0-1d29-4077-84f9-f838314abbd6,111 +1849-010319-2,3,100,0.05,04413898-2706-4a05-a973-4e4ccf03fff0,40 +1849-010319-4,3,100,0.05,6cb8ebac-73fa-4d2c-8d01-2cee978c0704,115 +1849-010319-5,3,100,0.05,6cb8ebac-73fa-4d2c-8d01-2cee978c0704,148 +1849-010319-4,3,100,0.05,26f20291-2b7a-4f2c-9a42-1fe8ba0c941d,65 +1849-010319-5,3,100,0.05,26f20291-2b7a-4f2c-9a42-1fe8ba0c941d,99 +1849-010319-5,3,100,0.05,3b4a5c02-74fc-46f6-8e31-e393ef9cec42,113 +1849-010319-4,3,100,0.05,3b4a5c02-74fc-46f6-8e31-e393ef9cec42,73 +1849-060319-1,3,100,0.05,57eef88b-2b1e-435e-83fa-ccc0f8ed4bb8,102 +1849-060319-1,3,100,0.05,8f6a97cb-9471-43f3-b533-b3b9ed6ea4e2,77 +1849-060319-1,3,100,0.05,50ed52a4-2fd0-45a1-8b77-c068391cb123,83 +1849-060319-3,3,100,0.05,2a277179-8d8e-4ffd-893b-4733c6c0f67f,110 +1849-060319-2,3,100,0.05,2a277179-8d8e-4ffd-893b-4733c6c0f67f,99 +1849-060319-1,3,100,0.05,2a277179-8d8e-4ffd-893b-4733c6c0f67f,98 +1849-060319-4,3,100,0.05,2a277179-8d8e-4ffd-893b-4733c6c0f67f,74 +1849-060319-2,3,100,0.05,35c973e5-6ae0-4368-8af0-2225c3212f78,67 +1849-060319-2,3,100,0.05,9ac324da-f3cc-488d-876b-ce73f50f2433,94 +1849-060319-3,3,100,0.05,9ac324da-f3cc-488d-876b-ce73f50f2433,100 +1849-060319-4,3,100,0.05,9ac324da-f3cc-488d-876b-ce73f50f2433,68 +1849-110319-1,3,100,0.05,d1067617-850b-4015-b45d-7dd17f8bea3d,35 +1849-110319-2,3,100,0.05,139951c8-caac-432f-8445-cd60ebe0455d,40 +1849-150319-1,3,100,0.05,03fd2337-a9ba-4a41-8cc6-590f744c16b1,58 +1849-150319-1,3,100,0.05,edd320e0-1c96-4869-9659-ab0da2b1d64b,64 +1849-150319-2,3,100,0.05,6a849592-588d-4a7d-98d5-627f05f045ea,32 +1849-150319-2,3,100,0.05,fb5510ae-fe46-4c11-93d1-5a8b09dac3cc,38 +1849-150319-3,3,100,0.05,8178055e-0ae6-4d9a-a40c-82fb2e2c777e,60 +1849-150319-4,3,100,0.05,1790f083-5b74-4c76-ba83-23603e2b2959,58 +1849-220319-2,3,100,0.05,057730fe-42c9-4041-b13b-a6253c6586b5,57 +1849-220319-2,3,100,0.05,57408c62-be9c-411d-aa35-d045a47732c1,59 +1849-220319-2,3,100,0.05,aedc5356-a38c-4394-aa7e-7e15a671b641,68 +1849-220319-2,3,100,0.05,4d2bc6ba-3c1d-415a-a2ab-dcbb0111a25a,86 +1849-220319-3,3,100,0.05,5ab6ee70-385e-49a5-83c5-997f49a10f25,53 +1849-220319-3,3,100,0.05,82204e41-3415-4bda-82c2-a74e48792a34,55 +1849-220319-4,3,100,0.05,b1f18ce6-5ddd-4f14-8bce-b30224421e95,122 +1849-220319-4,3,100,0.05,eef44d5f-c7a7-4da1-8e2c-3d7955646b4c,79 +1849-220319-4,3,100,0.05,8c32cba6-955b-47ab-84a0-e31ec5b5120e,87 +1849-220319-5,3,100,0.05,8e431236-ddb7-4ed4-8db4-40d0d0b9079b,27 +1849-220319-5,3,100,0.05,322d3c50-29ba-43c3-9549-81f09d6c1dcf,71 +1849-220319-5,3,100,0.05,b15b6ad5-a52d-464f-a016-917c3a569522,98 +1849-280219-1,3,100,0.05,6ccf9d76-4b2c-49bd-a67a-b45a0302dd07,110 +1849-280219-1,3,100,0.05,39102f5e-ede0-4281-8fda-e4bf10dcc30c,27 +1849-280219-1,3,100,0.05,a41c4a50-4934-4caf-936b-9f270a633c95,28 +1849-280219-1,3,100,0.05,108a4994-de1d-4824-be90-cc0243ec8f53,64 +1849-280219-2,3,100,0.05,ab3ac212-fcd5-4f62-88b5-caa936fcb889,51 +1849-280219-2,3,100,0.05,96ab99cc-e2d8-4464-85a9-2df33f37eaac,76 +1849-280219-2,3,100,0.05,b7f08bb0-9f1e-4bb8-9ff4-c18d668601c9,96 +1849-280219-4,3,100,0.05,299badc0-ed40-407c-b5de-1a1ee2ee6a6c,125 +1849-280219-2,3,100,0.05,299badc0-ed40-407c-b5de-1a1ee2ee6a6c,98 +1849-280219-3,3,100,0.05,88b005b1-db68-4b8a-87b8-ccb7a53b7b17,166 +1849-280219-3,3,100,0.05,064850e2-5c83-4f94-891a-fefffe52bcf7,170 +1849-280219-4,3,100,0.05,23b7a1cd-b768-454f-96de-708fa3dcb382,121 +1849-280219-4,3,100,0.05,75042a6c-386a-483a-8e88-7039317f04f6,60 +1849-280219-4,3,100,0.05,fe1586a7-b9cd-4baf-a773-cc73f648c58a,72 +1849-060319-1,4,100,0.05,6897efc1-a8d1-4002-bc43-3dec26f09262,104 +1849-060319-4,4,100,0.05,6897efc1-a8d1-4002-bc43-3dec26f09262,80 +1849-060319-1,4,100,0.05,2dd03c91-510e-4a18-a71f-fffe7f652b4e,88 +1849-060319-2,4,100,0.05,fc9e4323-f830-49da-841b-a492bc574a68,122 +1849-060319-2,4,100,0.05,fa038b70-2764-4db6-9804-1419c3e235ee,95 +1849-060319-3,4,100,0.05,0c91deae-ca38-4368-ab78-748e815fc6f2,120 +1849-060319-4,4,100,0.05,1fadce33-eafe-4e60-b08c-36ec8b5194c7,64 +1849-110319-2,4,100,0.05,53f2d04d-f5c9-42ee-8db3-14742190bd3c,23 +1849-110319-3,4,100,0.05,ab45e9ca-9226-40d3-9685-d69f21460af3,104 +1849-110319-3,4,100,0.05,7e45cdb1-b034-49ee-9dd3-46fe89090d40,163 +1849-150319-1,4,100,0.05,f7bf8b9f-ed1e-47d9-975e-d85b5a70c5e4,79 +1849-150319-1,4,100,0.05,fc820d05-b990-4d5c-a871-47c4ce11b8c2,85 +1849-150319-1,4,100,0.05,eb86b501-d568-4a09-a54a-ed042f1d742f,89 +1849-150319-3,4,100,0.05,33a8a3e3-d9c4-476d-95c7-edcb25f23acb,74 +1849-150319-2,4,100,0.05,33a8a3e3-d9c4-476d-95c7-edcb25f23acb,17 +1849-150319-2,4,100,0.05,e874ac5a-019e-4749-94c2-51b0818266cc,46 +1849-150319-3,4,100,0.05,a4a489c3-52b6-472d-9687-ba6c8e6f0635,97 +1849-150319-4,4,100,0.05,06258155-b326-4072-9148-6a9b41f93638,34 +1849-220319-4,4,100,0.05,06258155-b326-4072-9148-6a9b41f93638,112 +1849-220319-5,4,100,0.05,06258155-b326-4072-9148-6a9b41f93638,112 +1849-150319-4,4,100,0.05,1287be74-b7f9-4644-a2bb-c12f7be1842e,60 +1849-220319-2,4,100,0.05,974a4422-28c6-4146-96c1-4da873336428,101 +1849-220319-2,4,100,0.05,6900cf67-2acf-4b31-8b8e-41013c41af9d,107 +1849-220319-2,4,100,0.05,c5e5297e-f3a0-41a3-87bf-ecb999986f47,109 +1849-220319-2,4,100,0.05,2bd93d5c-7f0e-4fa6-81ad-a2b4807b4a1e,43 +1849-220319-3,4,100,0.05,b3b216dc-74f1-4373-9ecd-cd3b146514b9,69 +1849-220319-3,4,100,0.05,d79c94db-364e-48b5-87fe-4a8dae62d557,71 +1849-280219-1,4,100,0.05,3b129274-e2e7-4c35-917e-58f8a9df768c,66 +1849-280219-2,4,100,0.05,fea403f0-e10f-4aaf-8a4b-076712fb984d,80 +1849-280219-2,4,100,0.05,1ccc7c39-a349-4bce-8662-bd740d717290,86 +1849-280219-3,4,100,0.05,e4d3264c-0b97-4e34-b625-17e420306870,133 +1849-280219-3,4,100,0.05,54c9ec68-a5fe-4a74-aed8-babae78c9746,151 +1849-280219-4,4,100,0.05,6b3df4ed-9784-4762-aa13-20e7abb3d7b7,55 +1849-010319-2,5,100,0.05,c584ed6c-bedf-4746-9f81-a8995d4fbbf7,91 +1849-010319-2,5,100,0.05,1d475957-1314-4b2a-8a38-a4710ef7ee8b,93 +1849-010319-4,5,100,0.05,addec98e-ef4e-4c2d-98f0-50a5c31aa281,58 +1849-010319-5,5,100,0.05,addec98e-ef4e-4c2d-98f0-50a5c31aa281,87 +1849-060319-1,5,100,0.05,b331cfab-08a7-4c2d-ba5d-0303fd76c930,100 +1849-060319-1,5,100,0.05,3452d998-02cd-476b-881f-afaa9166d1ef,75 +1849-060319-1,5,100,0.05,2f962b5f-306c-47f3-b7a0-d8bf561f5648,92 +1849-060319-2,5,100,0.05,61fd0e03-5868-4a26-bf12-a00461ad0d1d,114 +1849-060319-3,5,100,0.05,61fd0e03-5868-4a26-bf12-a00461ad0d1d,112 +1849-060319-2,5,100,0.05,8da9212f-5b6b-41f5-a0ab-8ca9c73315d8,118 +1849-060319-4,5,100,0.05,ec179019-8071-4826-99d0-68efd183a0c6,78 +1849-110319-1,5,100,0.05,16fefcda-42be-400b-8330-d32808bc316d,16 +1849-110319-1,5,100,0.05,d88ad2f8-1987-42dd-8c84-500ca71b589d,17 +1849-110319-1,5,100,0.05,83c429f0-8853-45ad-a61e-710a436cb83a,29 +1849-110319-2,5,100,0.05,7947f076-c400-42ee-ae64-d12a5e1ec498,24 +1849-110319-2,5,100,0.05,bc332bce-d32a-4927-b2d1-4d20370418a9,48 +1849-110319-3,5,100,0.05,37a87c3f-bcd9-4940-8d10-9f64e7726313,165 +1849-150319-1,5,100,0.05,7d016051-3ad5-4468-b25b-906a7e245c0b,107 +1849-150319-1,5,100,0.05,48c19e2d-990e-4ca8-8c8a-ebc2dbc25cb1,60 +1849-150319-1,5,100,0.05,47cade87-03fa-472b-a0fc-13fc19bbf336,80 +1849-150319-1,5,100,0.05,fc8d286e-21e8-430b-8c81-0548d337084c,95 +1849-150319-2,5,100,0.05,e37b5d40-e10e-4a99-b301-69ca4971e4a0,18 +1849-150319-3,5,100,0.05,6d67f715-2515-419b-b392-fec9f0da0682,38 +1849-150319-4,5,100,0.05,6d67f715-2515-419b-b392-fec9f0da0682,64 +1849-150319-2,5,100,0.05,6d67f715-2515-419b-b392-fec9f0da0682,19 +1849-150319-2,5,100,0.05,ec89d0dd-4fa0-473a-a190-b94c1c2ec940,22 +1849-150319-2,5,100,0.05,68594b45-f026-490a-a52b-8caa68877a64,67 +1849-150319-3,5,100,0.05,676baa00-42e7-47fb-b385-d3a086da4656,64 +1849-150319-3,5,100,0.05,e955c07b-301d-4e41-be02-7d4a883d2ed9,78 +1849-150319-4,5,100,0.05,3bcc2bf8-7460-4b59-8a5d-a4855bedbe76,37 +1849-220319-2,5,100,0.05,57a31d6d-fd34-49da-a9f6-81c05a593673,32 +1849-220319-2,5,100,0.05,91b94352-443a-48a6-a992-517fee9ecaae,45 +1849-220319-2,5,100,0.05,7bda8f16-c918-4bcf-b515-fdc210115e35,46 +1849-220319-3,5,100,0.05,f6a0a207-5075-4627-a34a-643b6e1f4f12,28 +1849-220319-3,5,100,0.05,103b1022-49dd-4bb6-a9cc-9563e7cf629b,73 +1849-220319-3,5,100,0.05,302f83ba-d90c-44f7-a208-96c382d0957a,75 +1849-220319-4,5,100,0.05,aa2bdfc8-ac91-4d44-b0c5-2452c77fa55d,102 +1849-220319-4,5,100,0.05,8b69cac9-1365-4200-8e71-c7355f6cf2fc,110 +1849-220319-4,5,100,0.05,234e44e8-eb09-4f8c-ae5e-e51057f00c50,84 +1849-220319-5,5,100,0.05,24aa6024-105a-4911-9f3c-60e286d431fa,34 +1849-220319-5,5,100,0.05,5ff04c08-22c3-4971-ae0a-663fe3d0ef53,35 +1849-220319-5,5,100,0.05,f5388f03-ca85-4743-9589-26687a72b818,38 +1849-220319-5,5,100,0.05,22f6bc21-941c-4c40-9273-8163690f751b,39 +1849-280219-1,5,100,0.05,c47b29ae-8295-4da3-8cc8-e61d18be7d6d,40 +1849-280219-2,5,100,0.05,84a52e84-1b4a-479e-8c20-29a3cb871ebd,115 +1849-280219-3,5,100,0.05,6a4ef2de-1630-4cac-8186-bc77c70aec38,129 +1849-280219-3,5,100,0.05,4cd5541a-af86-47df-867a-025fdf5fb769,137 +1849-280219-4,5,100,0.05,04cbe5a5-04e9-4d21-b8cd-332b732f9954,44 +1849-010319-2,6,100,0.05,f886dcca-fbaa-45cb-9022-d203431f9288,85 +1849-010319-2,6,100,0.05,cd07f442-639c-447c-b36a-e1bddd95dcd4,97 +1849-010319-2,6,100,0.05,3a7bdcc3-3991-49f7-a375-3d86271eef05,99 +1849-010319-4,6,100,0.05,c0bfc261-07f7-4bb7-95c8-2615b4732801,79 +1849-010319-5,6,100,0.05,ccb304b2-35c4-4f13-8c85-a211b455f966,105 +1849-010319-5,6,100,0.05,b55eb441-dc25-4350-b630-4ce36301f137,107 +1849-010319-5,6,100,0.05,f0a2bdd5-0715-4bb9-9eb6-d84adc38b7f1,109 +1849-060319-1,6,100,0.05,f6c731fd-8137-443b-b42c-8f4e26d41e46,44 +1849-060319-1,6,100,0.05,4604f1f9-ac27-4c75-9e89-881ddb545817,81 +1849-060319-4,6,100,0.05,89d11a5d-48c2-4670-bcbd-eb453f10d7db,62 +1849-060319-4,6,100,0.05,cd3f6cb7-c345-40d0-a467-a1efee05f133,66 +1849-280219-1,6,100,0.05,e44dd8cb-8faf-4cdd-9cfe-0d06b648217f,106 +1849-280219-1,6,100,0.05,cb396e71-1db2-4851-b6ab-f3701fc2122a,108 +1849-280219-1,6,100,0.05,9beb9805-9811-445e-baf5-7ece818069b5,44 +1849-280219-1,6,100,0.05,8e44aff2-17ab-44d5-b808-e03415688462,45 +1849-280219-1,6,100,0.05,df2c90b7-757d-42ca-92e2-95609ad4075c,96 +1849-280219-1,6,100,0.05,954c6998-2a77-46c0-aaa2-2ff9321036a5,98 +1849-280219-2,6,100,0.05,2cf74818-4530-46a2-aace-da590b80ee5b,38 +1849-280219-2,6,100,0.05,3ba988c4-22eb-4172-920a-7a497229fb00,90 +1849-280219-2,6,100,0.05,bc952b05-918b-4aa5-8834-badd4c11d898,94 +1849-280219-3,6,100,0.05,38104c2a-576c-4e9e-accb-e5b41b10928e,127 +1849-280219-3,6,100,0.05,cdee4df0-a75a-4379-b6cb-bac4149cebec,131 +1849-280219-3,6,100,0.05,19767b25-08bd-4a05-90b7-ac62ca81e42c,135 +1849-280219-3,6,100,0.05,1fa0e9bf-9afc-4d7f-82d1-62e2d2f97e54,139 +1849-280219-4,6,100,0.05,fde0ec07-c949-4728-9afe-20a9901aad1c,66 +1849-280219-4,6,100,0.05,52d62395-d6f1-447a-89ab-223ad7f67b25,68 +1849-280219-4,7,100,0.05,9cd659bc-0168-452e-ba3d-30b48e7f7294,58 +1849-010319-2,7,100,0.05,9cd659bc-0168-452e-ba3d-30b48e7f7294,101 +1849-280219-4,7,100,0.05,89452b09-bd0c-4b7b-a577-fb7fb0554af5,56 +1849-280219-2,7,100,0.05,89452b09-bd0c-4b7b-a577-fb7fb0554af5,42 +1849-010319-2,7,100,0.05,89452b09-bd0c-4b7b-a577-fb7fb0554af5,70 +1849-280219-3,7,100,0.05,89452b09-bd0c-4b7b-a577-fb7fb0554af5,158 +1849-010319-4,7,100,0.05,63028c14-d683-44b8-a74f-f4b35b8717f9,59 +1849-010319-5,7,100,0.05,63028c14-d683-44b8-a74f-f4b35b8717f9,57 +1849-010319-5,7,100,0.05,02a45a2d-7724-4360-8001-1e5094f57972,54 +1849-060319-1,7,100,0.05,b55d9133-3dd4-439e-afeb-fb03ee7aa2d6,49 +1849-060319-1,7,100,0.05,9cb6dbbc-0024-48b2-892f-e4972967b363,90 +1849-060319-2,7,100,0.05,7e6254ef-1520-4de2-9613-0897de002688,50 +1849-060319-2,7,100,0.05,f0732bcf-478b-4f19-b022-f5ae663ebb6c,71 +1849-060319-2,7,100,0.05,705fdc5a-24dc-4553-912f-c5bf2119c9ce,92 +1849-060319-3,7,100,0.05,a6850f6a-f3bc-4e31-a33c-cdd8d59c7f50,118 +1849-060319-3,7,100,0.05,e51de77d-de1e-46cd-b3fa-4c5fd4eaa9b4,92 +1849-060319-4,7,100,0.05,3e9502fd-17f2-4a00-9732-464a9ae0be43,60 +1849-150319-1,7,100,0.05,97eff7e5-d500-4bdb-9fe6-f86d770ffd25,56 +1849-280219-1,7,100,0.05,7bd48471-0e14-4a7b-ac56-cce8d907b60d,52 +1849-280219-1,7,100,0.05,5a9ecbb9-2af6-439d-8bf4-e8b456a8c4f1,53 +1849-280219-1,7,100,0.05,a3f07bb0-ef6f-458b-90b4-1ca72dfb7d9c,62 +1849-280219-2,7,100,0.05,e4a39463-4e12-4a9f-8a71-cc3428c4b9ae,113 +1849-280219-2,7,100,0.05,9d244fe9-10f6-4921-aaeb-e71f356cf084,117 +1849-280219-2,7,100,0.05,dd9ee6ab-3382-4fd3-98b2-65b5f656f735,43 +1849-280219-2,7,100,0.05,02f2ad3f-16d3-4463-982e-3bc5acbfa8ab,92 +1849-280219-3,7,100,0.05,28752b83-604d-4f78-a776-728d49b81aa6,149 +1849-280219-3,7,100,0.05,9ecb717e-8bd4-49a1-a0d2-39d49ea89dd0,164 +1849-280219-4,7,100,0.05,ba30b5fb-7f97-450a-8548-da0096b1e545,86 diff --git a/actions/identify-neurons/data/units.csv b/actions/identify-neurons/data/units.csv index f7cf90af7..bf9e22496 100644 --- a/actions/identify-neurons/data/units.csv +++ b/actions/identify-neurons/data/units.csv @@ -1,2909 +1,1299 @@ action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name -1834-010319-1,0,100,0.05,32afb72e-d27c-4990-b4ea-f9136a8226d1,2 -1834-010319-1,0,100,0.05,e3017dcb-7612-452b-b2fd-7cbaad5c7532,39 -1834-010319-3,0,100,0.05,603a3306-e906-4f95-971b-4d8164015554,1 -1834-010319-3,0,100,0.05,2896bab7-e9f6-4bbb-bfa2-ce85dc2dd93f,12 -1834-010319-3,0,100,0.05,cd46dcdd-1c31-4c1c-9e7a-ed174064f3f3,72 -1834-110319-1,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,65 -1834-110319-2,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,108 -1834-010319-4,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,7 -1834-060319-4,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,3 -1834-110319-3,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,101 -1834-110319-5,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,98 -1834-060319-1,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,7 -1834-060319-1,0,100,0.05,d4d044df-2487-4a43-8cd5-c3ff4ee38ee2,70 -1834-060319-1,0,100,0.05,f4d6e79f-1164-4134-80ca-9cb5942140d1,71 -1834-060319-1,0,100,0.05,a26e7b94-1d82-4f03-88ae-edf62c9ec266,72 -1834-110319-6,0,100,0.05,031623da-a207-4beb-ad22-edaf249e0dc9,2 -1834-060319-1,0,100,0.05,031623da-a207-4beb-ad22-edaf249e0dc9,73 -1834-060319-1,0,100,0.05,ce9b87a4-9414-475b-b057-1dc2cbf65ced,74 -1834-060319-1,0,100,0.05,54dd6650-5e36-4385-bdda-d337397e883c,79 -1834-060319-3,0,100,0.05,363f6f73-45dc-4da0-9ebf-f8299c7c3400,4 -1834-110319-1,0,100,0.05,cccf5646-1426-4217-b4f1-4d323f26ec1a,0 -1834-110319-2,0,100,0.05,468a74ac-ce3f-4c5d-a9a4-44da8b19dd13,11 -1834-110319-6,0,100,0.05,aefff1cf-c039-4223-8ad9-31d9919ef705,0 -1834-110319-6,0,100,0.05,4fa5d7dc-504f-47ee-b32e-0ec52c58c6c3,1 -1834-110319-6,0,100,0.05,ffd0fa52-30a3-46c3-a6b1-4038aed5b510,10 -1834-110319-6,0,100,0.05,a6f26265-030e-4c48-8d75-6f20031a9062,13 -1834-110319-6,0,100,0.05,55449278-6106-46cb-8f64-6d1093f8098a,15 -1834-110319-6,0,100,0.05,210d0bd2-29bb-4f15-b036-17ef0c128829,3 -1834-110319-6,0,100,0.05,0f45c421-4df8-430d-b662-ed509bf164f8,32 -1834-110319-6,0,100,0.05,cfa3c5b5-9338-4f9e-88dc-35c578919f10,33 -1834-110319-6,0,100,0.05,4a331395-c9f9-4c86-983f-72949d710136,34 -1834-110319-6,0,100,0.05,aa5c25a5-663f-44fc-a146-99b5d806f892,38 -1834-110319-6,0,100,0.05,1de48ce3-1aff-4bb8-8873-d83eae4e0e57,4 -1834-110319-6,0,100,0.05,0656b4d2-c0b6-4a06-ac3c-dee33807370b,5 -1834-110319-6,0,100,0.05,7b629bbe-09f3-4686-a0c9-1b98cb1e15c2,6 -1834-110319-6,0,100,0.05,d95b5271-6d54-4c27-9bbb-a4874f850d95,7 -1834-110319-6,0,100,0.05,89892043-0ccc-40a1-a47f-11e68b477d32,8 -1834-110319-6,0,100,0.05,88c41151-4186-42b8-81dc-46ae6d56ccff,9 -1834-150319-3,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,71 -1834-120319-2,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,39 -1834-120319-3,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,36 -1834-150319-2,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,2 -1834-120319-4,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,85 -1834-120319-1,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,1 -1834-150319-4,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,0 -1834-150319-1,0,100,0.05,7b0389cf-dd0d-4be6-9b00-36b6f09126fb,3 -1834-150319-3,0,100,0.05,0484dc42-c4ff-4ebb-9493-2e131afe43a4,75 -1834-220319-2,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,1 -1834-220319-3,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,1 -1834-220319-4,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,0 -1834-220319-1,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,81 -1834-220319-1,0,100,0.05,b12b6948-7b28-47b8-ac81-9f1b47c17361,87 -1834-010319-1,1,100,0.05,a0daca30-6616-4c60-b0b8-310fc21e2757,48 -1834-010319-3,1,100,0.05,9728e512-1fc6-4a84-b21c-6e5fa271c64f,18 -1834-010319-4,1,100,0.05,969edf06-9796-4bfa-b1cd-adc2a9217b12,10 -1834-060319-2,1,100,0.05,871cfead-7fb9-4ab3-8b35-a571b9312a40,104 -1834-110319-6,1,100,0.05,d4b94300-3ad7-4c4c-8173-c974cfe5f07f,11 -1834-110319-6,1,100,0.05,bda010db-d4b8-45ec-9d89-4d957777747e,12 -1834-110319-6,1,100,0.05,7cf1101d-b91c-4a3f-b663-4471a33b8500,19 -1834-110319-6,1,100,0.05,26797422-5fd5-45df-8952-fc592ef12e74,35 -1834-110319-6,1,100,0.05,10b9d84d-ca02-48fc-8b12-c0b368251cfc,36 -1834-120319-1,1,100,0.05,fbbcce03-64d3-42d1-bdcc-cf8bc669b646,3 -1834-120319-2,1,100,0.05,47181a39-cd46-4edc-bc41-f034762dac72,41 -1834-120319-3,1,100,0.05,47181a39-cd46-4edc-bc41-f034762dac72,38 -1834-150319-1,1,100,0.05,a7b074ef-3220-4969-9606-40d31a5638b8,4 -1834-150319-1,1,100,0.05,e1107f56-9c39-4c65-a933-1367273b4049,46 -1834-150319-1,1,100,0.05,43c89925-fafc-4ab1-8b91-ceeca45961d7,50 -1834-150319-1,1,100,0.05,1702dfd2-1bbe-4bf0-904e-0c95b24c6744,7 -1834-110319-3,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,47 -1834-060319-2,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,113 -1834-110319-6,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,16 -1834-110319-5,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,18 -1834-110319-6,2,100,0.05,3a237c11-5372-44ae-a25a-457085ff0894,17 -1834-120319-2,2,100,0.05,04e0b56f-2056-49e9-96cc-a845816b57d0,43 -1834-120319-2,2,100,0.05,c33d5c13-706a-4891-acf0-62e2e650563e,51 -1834-120319-3,2,100,0.05,c3a7d7a1-7c9a-4d12-b4ce-ddbdf12d2376,70 -1834-220319-3,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,46 -1834-220319-2,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,49 -1834-120319-4,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,75 -1834-220319-1,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,83 -1834-220319-1,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,73 -1834-220319-2,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,7 -1834-220319-3,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,29 -1834-220319-1,2,100,0.05,d81e5efc-876d-4003-9684-ad295c0ec604,79 -1834-220319-4,2,100,0.05,43640b2b-437b-4036-bdd5-a3cb8aa3ca16,60 -1834-010319-3,3,100,0.05,a77ab842-af8d-44f5-9531-a15ba2833af3,76 -1834-010319-1,3,100,0.05,a77ab842-af8d-44f5-9531-a15ba2833af3,52 -1834-010319-1,3,100,0.05,af5a91fa-89c1-474b-ad44-a7dc4f699589,7 -1834-010319-1,3,100,0.05,c8b52f08-bb22-4f6c-a3f9-ec6e21724d05,8 -1834-010319-3,3,100,0.05,ddf11da3-3d87-4aa7-8ae1-102f3b1fcdf0,87 -1834-010319-4,3,100,0.05,1c15df06-157e-4004-abc7-a27c8febb5d4,21 -1834-010319-4,3,100,0.05,ea0ae2d9-9e23-4d0e-a8bd-e676ccfb0365,22 -1834-010319-5,3,100,0.05,ba45e41f-ae2f-41fe-9a7e-618a97110ab7,11 -1834-010319-5,3,100,0.05,89b07752-06b1-4d22-b1eb-a4a16b242f18,28 -1834-060319-1,3,100,0.05,8fbf4571-c7c0-4637-b087-8077ddfb99d7,33 -1834-060319-1,3,100,0.05,fe55b314-f450-4190-9a50-f1cd12db7c1b,85 -1834-060319-4,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,8 -1834-110319-3,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,41 -1834-060319-3,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,13 -1834-060319-2,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,24 -1834-060319-1,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,95 -1834-060319-2,3,100,0.05,9b4c268b-64e5-45ce-acde-bc974c486791,25 -1834-060319-4,3,100,0.05,77da2151-d669-4297-bf35-f9b2f0869fb0,10 -1834-110319-2,3,100,0.05,1e520264-65d0-462c-ba8b-6d5fab6d2c13,16 -1834-110319-5,3,100,0.05,812686d3-16b4-486a-82ac-5b26727c2e92,24 -1834-110319-6,3,100,0.05,2fe3d399-7790-4e50-a3f2-59af2773c18c,18 -1834-110319-6,3,100,0.05,56566a1a-4b2a-4260-90f9-d2bf3e4c5a66,20 -1834-120319-2,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,15 -1834-120319-3,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,62 -1834-120319-1,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,8 -1834-120319-2,3,100,0.05,8b68722d-72b2-4b94-a020-b01202028c62,6 -1834-120319-4,3,100,0.05,6ca6dede-9564-4f2b-984d-b350ccdb50f6,59 -1834-150319-1,3,100,0.05,18803619-4068-4ebe-9fea-29afadf5a5ec,13 -1834-150319-1,3,100,0.05,b7160669-5452-4ac4-b1a7-96ddfdb8e203,14 -1834-150319-1,3,100,0.05,cf398e29-7b7b-413a-99ff-c43f6e306a52,2 -1834-150319-1,3,100,0.05,9239cd9f-1284-4662-af82-e6fb61527c1e,6 -1834-150319-2,3,100,0.05,6e8411b3-7ec5-4b53-84cd-6b1ace0f6631,13 -1834-150319-4,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,5 -1834-150319-2,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,46 -1834-150319-3,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,61 -1834-150319-3,3,100,0.05,5228baa7-e404-4379-9251-bd4930a59fb8,8 -1834-150319-4,3,100,0.05,5790eaee-1c8d-4034-8d5a-dc7f2b88cc29,6 -1834-220319-1,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,11 -1834-220319-2,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,8 -1834-220319-4,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,10 -1834-220319-3,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,10 -1834-010319-1,4,100,0.05,b7df3619-3152-4ab2-a2a8-6c4fbd330a0b,13 -1834-010319-1,4,100,0.05,9ad22849-722a-4d83-bfd0-0522aa049cee,62 -1834-010319-3,4,100,0.05,c7312978-36b6-4124-b0e8-71816d8ae7da,34 -1834-010319-3,4,100,0.05,408b2b89-3445-43f5-80af-5307238012e9,36 -1834-010319-3,4,100,0.05,7365e283-a88b-4981-b022-c17a9521329b,66 -1834-010319-3,4,100,0.05,856b03fd-4050-4ed9-aff6-881c50368f5a,90 -1834-010319-4,4,100,0.05,dd6aa058-9d07-45be-bcf6-b05bf590486a,29 -1834-010319-4,4,100,0.05,cdd1cb11-370c-46f6-899c-bc9f4aa7ac12,35 -1834-010319-4,4,100,0.05,4ca0ef20-31ea-48c5-bb74-bd8abb08f6d5,53 -1834-060319-2,4,100,0.05,d400b6d7-2db2-47b6-9859-ce6f72c1e3fc,115 -1834-060319-3,4,100,0.05,b757598d-2721-4634-a9b5-36b0ec038e2e,19 -1834-060319-4,4,100,0.05,1436fedf-6974-43f9-91e8-d80200e47cd3,13 -1834-110319-2,4,100,0.05,3d5052ee-3e70-49df-8ce0-6c6d14ab600b,19 -1834-110319-1,4,100,0.05,3d5052ee-3e70-49df-8ce0-6c6d14ab600b,11 -1834-110319-5,4,100,0.05,517b674c-84b9-4b3b-a88e-d7184024ad75,76 -1834-110319-6,4,100,0.05,4ff6b16b-8ebf-48be-877c-217d590c663e,14 -1834-110319-6,4,100,0.05,9f85632e-7ea3-4e16-bead-194e70ff3435,21 -1834-110319-6,4,100,0.05,3ef2f997-d1e1-48ec-b230-9b708d802257,22 -1834-110319-6,4,100,0.05,9a62a913-5dc4-47ce-9532-b0773a7e481e,23 -1834-110319-6,4,100,0.05,2957c978-526d-488e-becd-6a018c183d19,25 -1834-110319-6,4,100,0.05,2c6a4654-e733-4287-b591-8f7d31c77062,37 -1834-120319-3,4,100,0.05,09ffea69-40c1-4a30-9526-1a1428f0384c,40 -1834-120319-3,4,100,0.05,8a086389-8c74-46fa-a529-4ab8a419b621,95 -1834-150319-1,4,100,0.05,9dfb4584-8d3f-4fce-9048-ff09abdb209b,0 -1834-150319-1,4,100,0.05,aceda409-a236-476e-8b77-5a49246b07d7,23 -1834-150319-1,4,100,0.05,87c965de-8a82-4bb4-9463-f591626562de,40 -1834-150319-1,4,100,0.05,d7701cae-f3f6-451e-b61d-986baa60abd7,5 -1834-150319-1,4,100,0.05,a0f100e7-5978-4d82-aa8e-a3f3dfb5e2e8,52 -1834-150319-2,4,100,0.05,4b3d8406-ec60-4e37-834e-b10c07c11967,54 -1834-220319-2,4,100,0.05,969c81cf-b80f-4dc4-a526-c1c02fde8630,34 -1834-220319-1,4,100,0.05,969c81cf-b80f-4dc4-a526-c1c02fde8630,65 -1834-220319-2,4,100,0.05,3d9a98a2-df47-4162-a5bc-d65b2f06b643,47 -1834-220319-4,4,100,0.05,38695b4d-fc1a-4c56-bad2-44e1ead15d71,51 -1834-220319-3,4,100,0.05,38695b4d-fc1a-4c56-bad2-44e1ead15d71,15 -1834-220319-4,4,100,0.05,150b4106-361d-43a3-a501-f90a43072647,36 -1834-220319-4,4,100,0.05,e0ad6514-eed6-47b6-b115-709d7d9b82e4,63 -1834-220319-4,4,100,0.05,97084ab3-dc72-4c1b-8045-2f5caf65ddc1,65 -1834-010319-1,5,100,0.05,82d449c5-3427-46ca-8aed-aed8a12a7476,16 -1834-010319-1,5,100,0.05,4cfe6043-03c1-49ea-92c6-4eef79035381,18 -1834-010319-3,5,100,0.05,2f60791f-a7a6-44ff-9242-399e48b3a133,41 -1834-010319-4,5,100,0.05,8eebb60d-1d37-48b2-8e51-5c278a025fab,37 -1834-010319-3,5,100,0.05,8eebb60d-1d37-48b2-8e51-5c278a025fab,42 -1834-010319-4,5,100,0.05,4dccbb8a-c59e-4b1e-be55-eed0699413c3,36 -1834-010319-5,5,100,0.05,dad7f735-8e7c-416a-9b87-d6b5f0834160,14 -1834-010319-5,5,100,0.05,3eafe78a-fb22-4b24-9ec2-c7541f10671f,15 -1834-060319-1,5,100,0.05,be353be9-41e9-45e5-a82b-27307c4916f1,87 -1834-060319-2,5,100,0.05,faa79273-6832-4706-b88b-69db0e59873f,34 -1834-060319-4,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,15 -1834-060319-3,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,25 -1834-060319-2,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,35 -1834-060319-3,5,100,0.05,cd9b8f7f-55bc-48d0-99eb-2fd27b9e7800,24 -1834-060319-3,5,100,0.05,dfb1bfa0-cb65-4d85-9b5d-77a36704e9d1,26 -1834-060319-4,5,100,0.05,abc7a0d6-a424-4ee0-ba64-2b53c6c4f465,16 -1834-110319-1,5,100,0.05,abc7a0d6-a424-4ee0-ba64-2b53c6c4f465,14 -1834-060319-4,5,100,0.05,fa949f01-2919-4ecc-b577-33210f83f9e9,17 -1834-110319-1,5,100,0.05,4c4dcde6-7401-49b0-a6e1-ddc318b2f841,16 -1834-110319-2,5,100,0.05,cef1efe8-86d4-4f69-bb9e-b91c4568b982,28 -1834-110319-1,5,100,0.05,cef1efe8-86d4-4f69-bb9e-b91c4568b982,28 -1834-110319-2,5,100,0.05,51da778a-0dcc-4c47-8802-562e95852772,29 -1834-110319-2,5,100,0.05,1e04d4e6-f9fb-451f-b7b3-1da7e4e95b86,31 -1834-110319-5,5,100,0.05,9400b7ff-e3d8-49c1-9c38-06406ee558d0,27 -1834-110319-6,5,100,0.05,108fb12d-6d33-4da9-a576-a92ab20a285a,24 -1834-110319-6,5,100,0.05,d538d0f5-af4f-494c-aa15-3c58b81ec718,26 -1834-120319-1,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,11 -1834-120319-3,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,23 -1834-120319-2,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,21 -1834-120319-4,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,69 -1834-120319-3,5,100,0.05,53bc8cf7-58a2-4b25-88da-b90859dd3c21,68 -1834-120319-4,5,100,0.05,215b7bd2-9140-427e-8c0b-83816239273a,73 -1834-120319-4,5,100,0.05,7f917dc4-a420-4fd6-aabe-46eb61f0d3dc,83 -1834-150319-1,5,100,0.05,db2eb916-376f-4d5a-bef8-67dedde30881,24 -1834-150319-1,5,100,0.05,f9cba19c-ebdb-42ed-b9d0-43b2759a52ae,25 -1834-150319-1,5,100,0.05,01643e99-a8bc-40f1-8e60-4007e120ce90,28 -1834-150319-1,5,100,0.05,556b0998-272c-4129-b0a6-be66c894db18,51 -1834-150319-1,5,100,0.05,89cc1c82-38df-4a17-a323-78f00af076d6,58 -1834-150319-1,5,100,0.05,e4c2e126-8f49-4cdf-bf3f-4735afe9910a,60 -1834-150319-2,5,100,0.05,e0b35ef8-254a-4ed5-8ab0-90a8f243cb6f,48 -1834-150319-4,5,100,0.05,08cdb1f6-daf6-4c77-8e6a-28c62592b13b,13 -1834-150319-3,5,100,0.05,08cdb1f6-daf6-4c77-8e6a-28c62592b13b,47 -1834-150319-3,5,100,0.05,0199ee26-7405-4cd0-ac11-dbaa3c330356,67 -1834-150319-4,5,100,0.05,aacad4de-818a-4a74-b585-172e7eb1fa8b,11 -1834-150319-4,5,100,0.05,d8cb3830-9cbb-42de-9807-2d0545b43d1c,12 -1834-150319-4,5,100,0.05,499a6c0b-4f93-4fa8-a78c-fce18d305725,15 -1834-150319-4,5,100,0.05,9846e14e-08a4-431d-9bfc-403e83505036,16 -1834-150319-4,5,100,0.05,b68e9820-7f31-41f8-ad0f-7179c7413711,36 -1834-220319-1,5,100,0.05,50bea372-9a84-4167-934a-adb43d6fcde3,77 -1834-060319-1,6,100,0.05,021bf6f7-b1d7-458d-9fd5-81bbf34ad5dd,55 -1834-010319-1,6,100,0.05,021bf6f7-b1d7-458d-9fd5-81bbf34ad5dd,21 -1834-010319-3,6,100,0.05,838fdcc1-e031-4bc7-a818-caed33f36db7,55 -1834-010319-1,6,100,0.05,838fdcc1-e031-4bc7-a818-caed33f36db7,22 -1834-010319-3,6,100,0.05,1d7eb45e-8d2b-4ff1-b2a5-8c2304d8ed2f,53 -1834-010319-3,6,100,0.05,767954a1-c204-4e29-b3b9-6c5436a498dc,91 -1834-010319-4,6,100,0.05,62e17327-2136-4aff-96bd-4c3392119368,44 -1834-010319-5,6,100,0.05,62e17327-2136-4aff-96bd-4c3392119368,35 -1834-010319-5,6,100,0.05,c3d98537-a9d1-4bc1-9a84-314de43999fa,20 -1834-010319-4,6,100,0.05,c3d98537-a9d1-4bc1-9a84-314de43999fa,46 -1834-010319-5,6,100,0.05,a1067402-0b01-4f53-b684-b9c1d4946a31,33 -1834-060319-2,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,39 -1834-060319-3,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,32 -1834-060319-1,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,58 -1834-060319-2,6,100,0.05,b214c130-7830-426d-90b4-145c7fe476b7,122 -1834-060319-3,6,100,0.05,b214c130-7830-426d-90b4-145c7fe476b7,43 -1834-060319-2,6,100,0.05,b5ed181b-4b74-49d1-980c-2b9651c0ded8,40 -1834-060319-3,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,30 -1834-060319-2,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,45 -1834-060319-4,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,19 -1834-060319-3,6,100,0.05,754d05a2-f6a9-4155-9f64-69ade6f50a96,28 -1834-060319-4,6,100,0.05,61be488d-6c86-4386-af06-e054183543a3,21 -1834-060319-4,6,100,0.05,8081a3b7-da28-48a4-aa62-31307fd0f177,22 -1834-110319-1,6,100,0.05,0afb8188-2ed3-4123-af62-2181652d9456,20 -1834-110319-1,6,100,0.05,86033f51-0950-4277-aed5-300b64934a06,44 -1834-110319-2,6,100,0.05,28718409-6a9f-45f6-8bfe-56a8579fb4a4,34 -1834-110319-2,6,100,0.05,8ca774d4-c5bf-4884-8a44-2f1f7b904679,38 -1834-120319-1,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,33 -1834-150319-4,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,21 -1834-150319-1,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,29 -1834-120319-3,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,56 -1834-120319-4,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,55 -1834-110319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,39 -1834-150319-3,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,23 -1834-150319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,26 -1834-120319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,55 -1834-110319-2,6,100,0.05,89589911-d40e-4b69-91ab-83f5dae753bc,77 -1834-110319-2,6,100,0.05,474a90b7-75e4-4d33-968d-6d3020e34212,87 -1834-110319-3,6,100,0.05,1b35e75d-b923-4953-afd6-5326f4d47471,70 -1834-110319-3,6,100,0.05,551a161a-5152-40df-8a1d-e209481e124c,83 -1834-110319-5,6,100,0.05,21061932-1d6c-40af-bd58-47e9342b17d7,30 -1834-110319-5,6,100,0.05,8c3907b2-eb1a-4d50-8ebd-129cdf52c293,31 -1834-110319-6,6,100,0.05,7dd9059f-0d20-4e37-ac09-bfc81528005b,27 -1834-110319-6,6,100,0.05,c4b7cc21-0497-4acb-8c24-077a25b19f67,28 -1834-110319-6,6,100,0.05,d97b4f66-8787-4efa-bae0-f1e27a267d86,29 -1834-120319-1,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,31 -1834-120319-4,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,71 -1834-120319-2,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,23 -1834-120319-3,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,66 -1834-150319-1,6,100,0.05,83e4829b-5a58-4c49-ba21-77b1fdde5dea,31 -1834-150319-1,6,100,0.05,d445d411-5107-4767-a42c-c1527223ec9b,32 -1834-150319-1,6,100,0.05,599358d7-607e-4579-a756-cd1aefe1b223,33 -1834-150319-1,6,100,0.05,3535728e-5721-4f9f-a542-7f4faa37e5ad,34 -1834-150319-4,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,20 -1834-220319-1,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,24 -1834-150319-2,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,27 -1834-150319-3,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,65 -1834-150319-2,6,100,0.05,ee96c439-09de-4606-958d-8ca116d96d39,28 -1834-150319-3,6,100,0.05,cacc775e-a02b-4f3c-b51a-9149f98fa3ab,59 -1834-150319-3,6,100,0.05,313cf53d-59c0-47bf-b7e8-058c82b4d435,63 -1834-150319-4,6,100,0.05,db6381cb-f62b-4c73-9c0e-ab3f436dde5f,22 -1834-220319-1,6,100,0.05,ce51195f-3741-408b-a555-ceb73ce07ad0,26 -1834-220319-1,6,100,0.05,baa0e90d-317c-46db-9b84-cdceb1eff30d,41 -1834-220319-1,6,100,0.05,a6aea939-51c7-4cb4-bdf3-767937c5d4b3,69 -1834-220319-1,6,100,0.05,66e4874c-f061-4c11-b46a-ede7e71156c2,75 -1834-220319-2,6,100,0.05,a15bd840-e664-4c30-aee3-5ca17af87394,17 -1834-220319-2,6,100,0.05,bfac0cce-de5e-4392-ac4e-7c49c05d44f1,18 -1834-220319-2,6,100,0.05,b6a9b95a-474d-4eda-a9c3-aa45354614e6,19 -1834-220319-2,6,100,0.05,eee313ff-1f62-4705-910d-42f6efd5fad0,43 -1834-220319-2,6,100,0.05,9f40f9f0-faff-4ef8-9ab8-5b658e9822ad,45 -1834-220319-4,6,100,0.05,de8e860b-0974-498f-b91a-cbee61e11f4c,39 -1834-220319-3,6,100,0.05,de8e860b-0974-498f-b91a-cbee61e11f4c,22 -1834-220319-3,6,100,0.05,f3f224f5-ac7b-4304-8a95-7667b3e3632d,30 -1834-220319-4,6,100,0.05,f3f224f5-ac7b-4304-8a95-7667b3e3632d,29 -1834-220319-4,6,100,0.05,1f84f053-ece0-4d40-bf65-fd0857ab5c92,30 -1834-220319-3,6,100,0.05,1f84f053-ece0-4d40-bf65-fd0857ab5c92,37 -1834-010319-1,7,100,0.05,67fe05bd-16af-4f37-80bf-3ad24dabe5dd,24 -1834-010319-1,7,100,0.05,b613cf34-c12f-4a75-b5c7-27adff4a18e8,25 -1834-010319-3,7,100,0.05,8d8cfbaa-fa24-4eb1-b877-3161afd472d9,57 -1834-010319-3,7,100,0.05,b9fa6092-df69-4022-bb78-a7fe31f7e23d,58 -1834-010319-3,7,100,0.05,76043e1c-f615-472e-b57c-4b61fe1cadb5,60 -1834-010319-3,7,100,0.05,c9fd8a58-c3c6-42f9-ab7e-2679596875e2,61 -1834-010319-3,7,100,0.05,38bba347-47df-4c57-a99b-633ed5c522dc,63 -1834-220319-2,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,20 -1834-220319-3,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,25 -1834-010319-5,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,19 -1834-220319-4,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,31 -1834-010319-4,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,45 -1834-010319-4,7,100,0.05,5b282cae-5b65-48d0-8519-301ee007effa,48 -1834-010319-5,7,100,0.05,d56c29ac-a301-431b-82f8-d20bc2b251cf,23 -1834-010319-4,7,100,0.05,d56c29ac-a301-431b-82f8-d20bc2b251cf,49 -1834-010319-5,7,100,0.05,851b0f89-f74a-4bf6-acf9-b10c392d51d8,21 -1834-010319-5,7,100,0.05,713d30a9-fe7f-400b-bdd3-273e1ad53232,39 -1834-060319-1,7,100,0.05,46b3613b-6e9c-44ad-ab57-4622c051eeee,59 -1834-060319-1,7,100,0.05,df527a21-e349-47a8-8b2f-d5e89d458bea,91 -1834-060319-2,7,100,0.05,ea4e69a3-143b-4bc0-994d-1a1ffdf756e4,41 -1834-060319-2,7,100,0.05,16fd6f7f-271d-49aa-bd88-dd111f031a52,42 -1834-060319-3,7,100,0.05,16fd6f7f-271d-49aa-bd88-dd111f031a52,33 -1834-060319-3,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,35 -1834-060319-2,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,43 -1834-060319-4,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,24 -1834-060319-2,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,44 -1834-060319-4,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,26 -1834-060319-3,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,37 -1834-060319-2,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,46 -1834-060319-3,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,41 -1834-060319-4,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,28 -1834-060319-3,7,100,0.05,d4eb0f77-0a4a-4e6f-8365-d1be6ba62502,40 -1834-060319-4,7,100,0.05,ca1b3e99-853a-48c9-9d14-778e7a7269a9,23 -1834-060319-4,7,100,0.05,0f8c0d64-b4a5-4d2a-8f33-fad87723f5b4,29 -1834-110319-1,7,100,0.05,0f8c0d64-b4a5-4d2a-8f33-fad87723f5b4,30 -1834-110319-1,7,100,0.05,ab8c205a-b2c1-4084-a857-4377fcca0f06,23 -1834-110319-2,7,100,0.05,ab8c205a-b2c1-4084-a857-4377fcca0f06,41 -1834-110319-1,7,100,0.05,f4ea6e1d-5739-4cb0-a56f-cd0000756e42,24 -1834-110319-1,7,100,0.05,1627bbbd-e16c-43ab-b1a8-5f06969adc4c,25 -1834-110319-2,7,100,0.05,1627bbbd-e16c-43ab-b1a8-5f06969adc4c,45 -1834-110319-1,7,100,0.05,cdb89f6d-6f78-48d5-80cd-a4efe3ce60ef,26 -1834-110319-2,7,100,0.05,5a0d6354-2a6c-4c97-9411-fae7c2e40b5f,104 -1834-110319-2,7,100,0.05,e953fc20-f0d5-4b63-a839-83e1310b127a,40 -1834-110319-2,7,100,0.05,4a2c3fc9-4803-4728-ad19-e0cf147b76f0,47 -1834-110319-2,7,100,0.05,0487dc85-31d8-46dd-ac77-7ed48e3fc5ad,86 -1834-110319-2,7,100,0.05,698e435e-8b80-4b36-a50d-6daea3096071,96 -1834-110319-3,7,100,0.05,e1b066e0-f52c-4d5a-8947-a8f8da3dbe81,27 -1834-110319-3,7,100,0.05,83121451-85d0-4d5a-9e99-6fadce72bfa3,28 -1834-110319-3,7,100,0.05,08e8401f-7a5d-4ac0-ac7e-95f448b111ab,29 -1834-110319-3,7,100,0.05,e4827cd4-0f34-419f-9e60-ad6c2fbb2fcd,30 -1834-110319-5,7,100,0.05,61761d51-3273-454b-8707-555f265c9e6e,78 -1834-110319-5,7,100,0.05,5ee19cc7-585e-4469-bb15-2999b046e4dc,90 -1834-110319-6,7,100,0.05,d37b7899-7ae3-4263-823c-6af2f294d798,30 -1834-110319-6,7,100,0.05,280d5431-ee95-4173-a054-1f02124be41c,31 -1834-120319-2,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,26 -1834-120319-1,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,16 -1834-120319-3,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,28 -1834-120319-4,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,22 -1834-120319-1,7,100,0.05,194a642f-5f5c-496e-af0a-7474a3b2b84e,17 -1834-120319-3,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,52 -1834-120319-2,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,61 -1834-120319-4,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,52 -1834-120319-2,7,100,0.05,8ba033e2-b959-49d5-9a94-222dc23c8fc5,78 -1834-150319-1,7,100,0.05,f53ba045-bc25-4e1a-bc8c-2437af5d3af9,37 -1834-150319-1,7,100,0.05,7e0b064f-d850-459a-aebd-8905673e7a6b,41 -1834-150319-1,7,100,0.05,06b521be-fa9f-465e-9075-2e2d12a2ff1f,44 -1834-150319-1,7,100,0.05,11b7c89b-8431-475f-8471-25f5b3f3d2ba,45 -1834-150319-1,7,100,0.05,c0caf6f3-8280-4e5e-9e24-9ecc0a92645f,47 -1834-150319-1,7,100,0.05,e6f9d4cf-e263-4f6c-b2e6-e1be8b67f2e0,56 -1834-150319-3,7,100,0.05,76030eec-c9a1-4bba-bf4e-8ba12f487f4e,53 -1834-150319-1,7,100,0.05,76030eec-c9a1-4bba-bf4e-8ba12f487f4e,74 -1834-150319-1,7,100,0.05,a647bd81-c486-43da-92a7-e0da9a1c89d2,76 -1834-150319-1,7,100,0.05,2f4186af-7079-46ba-bda9-b77d70459b3e,77 -1834-150319-1,7,100,0.05,49ca57ca-8796-4d3e-88cd-7120eaaf6c92,92 -1834-150319-2,7,100,0.05,55ad4ae8-db2e-43b1-9517-049375f4f1dd,29 -1834-150319-2,7,100,0.05,fa2905f9-3070-4aec-ac2f-e7e55b945823,30 -1834-150319-2,7,100,0.05,bca39b92-9f54-4405-bfc1-d1104a8f4334,31 -1834-150319-2,7,100,0.05,04cc84c9-eea0-4848-ba22-e82992bb2264,32 -1834-150319-2,7,100,0.05,df25b7da-fc7b-4e2c-abf7-7dfd74a4da49,37 -1834-150319-2,7,100,0.05,f61cdff0-8458-4cee-b94b-6a54da35ae96,42 -1834-150319-3,7,100,0.05,638b2bbb-fe09-41a5-bb3c-00d964e0066b,27 -1834-150319-3,7,100,0.05,c5d4d53e-d074-4be7-af93-19fa6644e485,28 -1834-150319-3,7,100,0.05,5ca32a75-fb97-43a3-9688-89c76593c64e,30 -1834-150319-3,7,100,0.05,6786c504-a6f6-4ca2-88ef-740161529a1c,44 -1834-150319-3,7,100,0.05,84161ccd-4ea7-4fb3-bac3-65c092f1a328,45 -1834-150319-3,7,100,0.05,74ffdb38-658e-460e-a02d-5ce5098a8e06,49 -1834-150319-3,7,100,0.05,fb79170c-f42f-45d3-bfa2-1c655fb18176,55 -1834-150319-3,7,100,0.05,cda8e309-30b0-41ba-b48f-4080bd856ffd,57 -1834-150319-4,7,100,0.05,39241d89-d43c-4b4a-b636-77b7ef8b8979,23 -1834-150319-4,7,100,0.05,7bad7f0b-c55c-4139-9c4a-82fdb0253aa6,24 -1834-150319-4,7,100,0.05,80e6f4a4-ba9b-4dbe-81e0-ce8458e9895c,25 -1834-150319-4,7,100,0.05,5febb318-f33b-4b7e-98ff-0426c3ea70b5,26 -1834-150319-4,7,100,0.05,8fb53487-962a-40e4-bafa-5074102c7eca,33 -1834-220319-1,7,100,0.05,ed26b894-7548-45d1-b09b-da43a58730a5,29 -1834-220319-1,7,100,0.05,801f1c19-2b94-49b4-bfed-72359e22e795,36 -1834-220319-1,7,100,0.05,9033063c-9842-49a9-be92-7ab74c8540f3,37 -1834-220319-1,7,100,0.05,8de37e93-61b4-4fe8-ab49-5cfa18d02a71,49 -1834-220319-1,7,100,0.05,f4b1e9bf-90cc-4102-b814-dad7a85b7bfa,67 -1834-220319-2,7,100,0.05,4268ef94-0c73-4883-860c-2e6b3658bf1d,21 -1834-220319-4,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,45 -1834-220319-3,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,28 -1834-220319-2,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,29 -1834-220319-2,7,100,0.05,cf608811-7ad6-410e-93e2-efa1114d6ba7,39 -1834-220319-3,7,100,0.05,cf608811-7ad6-410e-93e2-efa1114d6ba7,26 -1834-220319-2,7,100,0.05,b4aea166-1104-4f07-b4c9-35c2582a3691,41 -1834-220319-3,7,100,0.05,61a4f383-08eb-44d8-b434-e6cb4f2a31c0,23 -1834-220319-3,7,100,0.05,aa3e4061-fa80-4101-ac7e-e3e896074240,31 -1834-220319-4,7,100,0.05,0bf35ce6-a932-4f1c-ae29-07bf6a81e1ef,32 -1834-220319-4,7,100,0.05,0c1b699a-4568-45b3-afc9-506e299042a0,33 -1834-220319-4,7,100,0.05,910fe900-f52a-41c1-aae2-b53259911cca,46 -1849-010319-5,0,100,0.05,901070db-103b-49b1-a6d7-bc5bfeb2d945,117 -1849-060319-1,0,100,0.05,4227ab70-a38d-46b5-9964-fdafdd8fe99d,85 -1849-110319-1,0,100,0.05,1767497c-2bd5-4974-8b03-89313f79789e,52 -1849-110319-2,0,100,0.05,ae0a01af-98ea-4e9a-a2f0-7e8245f2e4a5,56 -1849-150319-2,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,60 -1849-150319-1,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,39 -1849-150319-4,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,85 -1849-150319-3,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,6 -1849-150319-1,0,100,0.05,224c8606-eb2b-4001-b497-dfdc3b402e60,74 -1849-150319-2,0,100,0.05,99183ea7-75e3-4d86-a1be-e165ddb88cc8,40 -1849-150319-3,0,100,0.05,c3fdad70-6df8-45f4-b08a-fa13a8027322,69 -1849-150319-4,0,100,0.05,158bb647-0934-40f2-aef1-ac555194ded3,70 -1849-150319-4,0,100,0.05,9c98907f-625c-4310-bca1-bb3b567b31e3,76 -1849-220319-4,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,100 -1849-220319-5,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,79 -1849-220319-2,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,93 -1849-220319-3,0,100,0.05,ce7262a6-5c97-4427-aa92-783305886a88,0 -1849-280219-1,0,100,0.05,f8470422-542e-4fc7-b713-356737d1d5b0,90 -1849-280219-2,0,100,0.05,7ebbcece-a580-4ddc-898c-07d047e6f187,88 -1849-280219-3,0,100,0.05,c2987b1a-b966-49b6-93e7-23985cedb72e,153 -1849-280219-3,0,100,0.05,05c4b0ff-00bd-4dac-9773-7c5be41b4b5b,160 -1849-280219-4,0,100,0.05,a2e8973c-6160-4165-b26e-0d3bc5881dea,62 -1849-280219-4,0,100,0.05,aba6002f-1ed8-4f21-a399-83b6e91b0872,64 -1849-010319-2,1,100,0.05,f945dfc5-baed-4824-82f5-54d7c345f207,115 -1849-220319-5,1,100,0.05,f945dfc5-baed-4824-82f5-54d7c345f207,117 -1849-010319-4,1,100,0.05,5ac96bb6-8342-44d2-a3d5-e43459b3c845,109 -1849-010319-4,1,100,0.05,48d315a1-e369-49b2-8b3d-397f602eced5,87 -1849-010319-4,1,100,0.05,988d4c67-9183-42f7-b025-77c0803e77c3,97 -1849-010319-4,1,100,0.05,2324f9e9-f406-4315-a3fa-dde6a219a9d7,99 -1849-010319-5,1,100,0.05,fc482c48-79e9-437b-896a-fe85436c185c,127 -1849-010319-5,1,100,0.05,4e72665f-0530-4d81-bf09-4755eeb9623b,137 -1849-010319-5,1,100,0.05,42ebd006-564c-402c-8c34-9259ceae25fa,159 -1849-060319-1,1,100,0.05,61057ea0-2a1d-484f-962d-793f8a6964bd,106 -1849-060319-1,1,100,0.05,4b90f61c-aefb-472b-9fea-af7bd4c0362c,108 -1849-060319-1,1,100,0.05,12a55f1b-7847-47a8-aec2-7ba2517d73c5,71 -1849-060319-1,1,100,0.05,0208d654-111a-4139-876f-3ee6adaeca98,73 -1849-060319-3,1,100,0.05,44dedaa3-5378-43f9-b5b9-8eb78e88122e,104 -1849-060319-3,1,100,0.05,4804082d-033f-4a19-a528-ca0794678c43,108 -1849-060319-3,1,100,0.05,29e545c2-8a47-4184-b5ae-f28c4da53816,85 -1849-060319-3,1,100,0.05,0eb3cb3d-1a75-4829-bccb-aa4b5176e644,94 -1849-060319-3,1,100,0.05,3643cdcb-3ec9-4ec9-9980-df109c8e94be,98 -1849-060319-4,1,100,0.05,a4d8f10a-d912-4532-9f9f-548b706b2b00,76 -1849-110319-1,1,100,0.05,bf474d8d-038e-4cef-850d-65257e269184,31 -1849-110319-1,1,100,0.05,f6ea37fb-f1be-48dd-87f2-71e298a9a826,41 -1849-110319-1,1,100,0.05,0bc28031-b4b5-494d-b7b1-5516d0ce82ad,54 -1849-110319-1,1,100,0.05,e3ecbdeb-518b-47bc-9185-056c12b8e7d0,59 -1849-110319-1,1,100,0.05,3f01af4b-bdc3-4b56-9895-33a06976012a,60 -1849-110319-1,1,100,0.05,03ad2dfa-c3b0-4a2d-9578-4042d90cbd87,64 -1849-110319-2,1,100,0.05,03ad2dfa-c3b0-4a2d-9578-4042d90cbd87,66 -1849-110319-2,1,100,0.05,d94dcb9d-be41-4d2a-845e-909b9d0d786a,68 -1849-110319-1,1,100,0.05,d94dcb9d-be41-4d2a-845e-909b9d0d786a,66 -1849-110319-2,1,100,0.05,4a6d682f-3503-4169-86ac-226afaddbba4,50 -1849-110319-2,1,100,0.05,3083d778-eec3-4500-b624-f7183423b5f3,58 -1849-110319-2,1,100,0.05,be495cb2-bad3-488a-9e13-8d1e29a793b0,62 -1849-110319-3,1,100,0.05,99e26db1-d407-46da-9898-44875dc3fc97,177 -1849-150319-2,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,48 -1849-150319-1,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,105 -1849-280219-4,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,84 -1849-150319-3,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,8 -1849-150319-3,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,98 -1849-150319-2,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,64 -1849-150319-1,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,121 -1849-150319-1,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,93 -1849-150319-3,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,7 -1849-150319-2,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,44 -1849-150319-3,1,100,0.05,c184a29f-4b8a-4bee-be31-c00b26d8ed78,11 -1849-280219-4,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,105 -1849-150319-4,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,100 -1849-280219-2,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,102 -1849-150319-4,1,100,0.05,029892c2-6897-44f3-857a-cf9cc67eb8cf,78 -1849-150319-4,1,100,0.05,4faa3964-3974-489d-a3ad-81ccb6d6c23d,99 -1849-220319-2,1,100,0.05,ff9e75a0-7ea5-44c7-a5c4-fa2c8d8320c4,99 -1849-220319-3,1,100,0.05,eb0c4c1b-f0ab-4af2-9f32-cd2cbc2d1e97,59 -1849-220319-3,1,100,0.05,0b2c621e-1cc0-46b3-898c-dcb8165b7faa,63 -1849-220319-3,1,100,0.05,fe9ce1fa-2209-42db-8b70-49c90879b680,67 -1849-220319-4,1,100,0.05,fe9ce1fa-2209-42db-8b70-49c90879b680,118 -1849-220319-4,1,100,0.05,6117881b-a2f1-4d1f-9a62-7ff7d1a7c506,108 -1849-220319-4,1,100,0.05,9520ecaf-391e-44e1-af0f-cb36a66597b8,117 -1849-220319-4,1,100,0.05,e9d35fae-dc22-43db-a4fc-79355b2ce744,90 -1849-280219-1,1,100,0.05,c5f628f0-34cf-4e3b-bb24-69ac34496e25,102 -1849-280219-1,1,100,0.05,fec96997-dc62-4818-9a2e-ac8f4e87ca12,104 -1849-280219-1,1,100,0.05,dcfa74fa-4b40-4b2b-adf4-dc7ad3848e37,112 -1849-280219-1,1,100,0.05,b84b5fa3-5445-4c68-9604-dab99ca0d392,114 -1849-280219-1,1,100,0.05,545ff8f9-7ed6-4c31-9152-d1669013cfbe,116 -1849-280219-4,1,100,0.05,d3abe753-b5b1-419e-bd2e-0e5676eb12c7,101 -1849-280219-2,1,100,0.05,d3abe753-b5b1-419e-bd2e-0e5676eb12c7,110 -1849-280219-2,1,100,0.05,59074938-007f-4546-9201-94f1edc93b49,78 -1849-280219-3,1,100,0.05,85bade90-21d8-4d76-82f4-57da6daf89bc,180 -1849-280219-3,1,100,0.05,2f483a25-5dca-47cc-b979-6c67959c1854,182 -1849-280219-4,1,100,0.05,15670c68-c11e-417f-b8a1-3c819ea6c64c,32 -1849-280219-4,1,100,0.05,c67dc573-0394-4857-9bd7-9ce3913f355c,81 -1849-010319-2,2,100,0.05,995deed1-c12b-4f1e-9c42-8fce9e5126af,103 -1849-010319-4,2,100,0.05,5fced8d5-40a4-4c50-afbf-5a9989cd7816,103 -1849-010319-2,2,100,0.05,5fced8d5-40a4-4c50-afbf-5a9989cd7816,119 -1849-010319-2,2,100,0.05,6ccc70c7-139c-4673-9bb1-1caf4cbfb5d8,83 -1849-010319-5,2,100,0.05,91b3a06e-5488-47d9-96c5-776f0fc3984e,103 -1849-010319-4,2,100,0.05,91b3a06e-5488-47d9-96c5-776f0fc3984e,61 -1849-010319-4,2,100,0.05,20e7773e-deca-478a-a8c9-a6b010526c46,67 -1849-010319-5,2,100,0.05,20e7773e-deca-478a-a8c9-a6b010526c46,93 -1849-110319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,60 -1849-010319-5,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,121 -1849-150319-3,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,76 -1849-150319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,9 -1849-150319-1,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,91 -1849-220319-4,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,99 -1849-220319-5,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,104 -1849-150319-4,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,81 -1849-110319-1,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,50 -1849-220319-3,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,61 -1849-220319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,95 -1849-010319-5,2,100,0.05,774ac625-07a9-4fb9-b29a-5de8b70a5bca,78 -1849-060319-4,2,100,0.05,66e3674a-43ac-4d74-a682-78001f83fc72,72 -1849-060319-2,2,100,0.05,66e3674a-43ac-4d74-a682-78001f83fc72,81 -1849-060319-3,2,100,0.05,55d851a6-4c6c-4a72-945b-5214f913be00,114 -1849-060319-3,2,100,0.05,85b8afcd-66e3-4ca7-9a78-f964d94bac54,130 -1849-060319-4,2,100,0.05,786ccaf7-c202-4eeb-a6fc-752a86731c34,82 -1849-110319-2,2,100,0.05,7ab4673c-044b-43a4-a031-03938b83cabb,52 -1849-110319-1,2,100,0.05,7ab4673c-044b-43a4-a031-03938b83cabb,46 -1849-110319-2,2,100,0.05,dc68fd0a-728d-4899-b746-3d94cd128d30,64 -1849-110319-1,2,100,0.05,dc68fd0a-728d-4899-b746-3d94cd128d30,62 -1849-150319-2,2,100,0.05,e3e3fe41-fb34-4d5e-88bb-688b8484c0b6,34 -1849-150319-1,2,100,0.05,e3e3fe41-fb34-4d5e-88bb-688b8484c0b6,62 -1849-150319-1,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,72 -1849-150319-3,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,25 -1849-150319-4,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,62 -1849-150319-2,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,36 -1849-150319-4,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,90 -1849-150319-3,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,21 -1849-150319-2,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,62 -1849-150319-4,2,100,0.05,22aed85a-0141-4486-a7b0-902573fd115f,87 -1849-220319-2,2,100,0.05,14486b20-6ff3-4c03-ae15-3bcdfbbeb0e4,91 -1849-220319-5,2,100,0.05,14486b20-6ff3-4c03-ae15-3bcdfbbeb0e4,83 -1849-220319-3,2,100,0.05,ab05f922-bb18-4f22-9354-ea37c2489eb1,65 -1849-280219-1,2,100,0.05,812e8a51-28f8-4a74-96f7-f3cabe48d4af,100 -1849-280219-1,2,100,0.05,81573fb8-5117-48cc-bc2c-bcc4d248ff62,16 -1849-280219-1,2,100,0.05,f558c6be-f286-4e04-8751-fbac1ea5eca8,18 -1849-280219-1,2,100,0.05,db24a924-bb76-4629-8a92-6587b69670ff,84 -1849-280219-1,2,100,0.05,767068ea-a19c-484e-9647-1c4139ed390c,86 -1849-280219-2,2,100,0.05,e129d7e8-72f9-4295-9fc3-5de34a924b48,70 -1849-280219-2,2,100,0.05,f533ec65-508a-47aa-a49e-0e3621d3b010,72 -1849-280219-3,2,100,0.05,a3245cb9-a93e-4ae0-9e3c-e275c6dc0c47,141 -1849-280219-4,2,100,0.05,7f63e82c-cb77-4e6b-a2b1-4336eacb52d5,70 -1849-280219-4,2,100,0.05,0e310b30-e767-4601-9cce-40154eec1ba6,74 -1849-010319-2,3,100,0.05,c6df4551-4969-47ee-81be-ea88fe45e77e,107 -1849-010319-2,3,100,0.05,63278a1b-4bea-4054-ad94-fcc62c3fe34d,111 -1849-010319-2,3,100,0.05,9b438d0d-615d-4648-8df6-4b308963e9e9,40 -1849-010319-4,3,100,0.05,bb383829-1612-45cb-8504-bfb00c6e7897,115 -1849-010319-5,3,100,0.05,bb383829-1612-45cb-8504-bfb00c6e7897,148 -1849-010319-5,3,100,0.05,3e88c624-cb3d-456e-a904-baa1e99ebd9f,99 -1849-010319-4,3,100,0.05,3e88c624-cb3d-456e-a904-baa1e99ebd9f,65 -1849-010319-4,3,100,0.05,1a6ddca9-31a6-453a-afc8-d889320746ef,73 -1849-010319-5,3,100,0.05,1a6ddca9-31a6-453a-afc8-d889320746ef,113 -1849-060319-1,3,100,0.05,421c32ac-f805-403c-9532-c142579eb0a9,102 -1849-060319-1,3,100,0.05,fe007121-4442-49c5-a6b4-60e2446e43cc,77 -1849-060319-1,3,100,0.05,459ad287-b0f9-4dc7-95b8-f56e1a50f8e3,83 -1849-060319-4,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,74 -1849-060319-2,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,99 -1849-060319-3,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,110 -1849-060319-1,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,98 -1849-060319-2,3,100,0.05,17e94d15-5124-4bd2-baa8-edafc5c9b57a,67 -1849-060319-4,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,68 -1849-060319-3,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,100 -1849-060319-2,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,94 -1849-110319-1,3,100,0.05,75306d23-086b-41b1-9603-75dd646b279b,35 -1849-110319-2,3,100,0.05,df1a1a45-5a6c-42f4-bba2-6e8a28636093,40 -1849-150319-1,3,100,0.05,b72da5fe-e0f3-4f39-a1e6-a964c32daa2b,58 -1849-150319-1,3,100,0.05,7b57f633-a87d-42a3-9b8f-a38570d6362d,64 -1849-150319-2,3,100,0.05,0a68341c-9b60-45bd-a520-1db4eefd5527,32 -1849-150319-2,3,100,0.05,a8d410f4-d232-4fd4-86cf-3c4818798ae2,38 -1849-150319-3,3,100,0.05,74a750e4-ac7d-4772-8b7a-5bc5bf9f0a5d,60 -1849-150319-4,3,100,0.05,c2a108cf-b5d1-4f53-a944-f7080c4bf792,58 -1849-220319-2,3,100,0.05,829373a4-573b-4dbd-839c-3b32bb4bbcdc,57 -1849-220319-2,3,100,0.05,d14a6cb4-b30b-41c5-955e-5e9508f31118,59 -1849-220319-2,3,100,0.05,f4190499-2f52-408b-9bc5-78898513a1ca,68 -1849-220319-2,3,100,0.05,6d65ccfb-cd8f-4b9c-8e0b-dc509d333b3c,86 -1849-220319-3,3,100,0.05,19072f12-538b-4bc9-bfd2-5302f85484f4,53 -1849-220319-3,3,100,0.05,b17f8393-c08b-4bf8-bc6a-94c4dc75e890,55 -1849-220319-4,3,100,0.05,5b6c8660-a2e7-4dbb-b6db-b5e52b698016,122 -1849-220319-4,3,100,0.05,e9be012d-3f6e-41e3-a3cd-400f942292ed,79 -1849-220319-4,3,100,0.05,4616134e-8862-47b3-919b-8520ad887297,87 -1849-220319-5,3,100,0.05,21d4a54b-514b-44d9-81f6-7347c1d6ca4f,27 -1849-220319-5,3,100,0.05,ef87c70d-806a-4e0b-8d2f-9d3934a665b0,71 -1849-220319-5,3,100,0.05,195b6f4e-e166-4ede-bf0e-752b773edff5,98 -1849-280219-1,3,100,0.05,81fee3d1-dd2d-44fd-bd84-f396f9ab348b,110 -1849-280219-1,3,100,0.05,c2d44b46-548e-40f5-ad24-8d74a0e411f3,27 -1849-280219-1,3,100,0.05,055c8d4d-667f-4748-9d14-3904b1b0fcf3,28 -1849-280219-1,3,100,0.05,d3219bc6-106f-46ee-8c0b-ab10d5be9569,64 -1849-280219-2,3,100,0.05,e8e8ad81-4260-4f38-8a35-760592f77f8c,51 -1849-280219-2,3,100,0.05,2416f99e-8a20-47c7-9b8a-49d834895536,76 -1849-280219-2,3,100,0.05,a37e302a-ec76-4159-99c5-3eaf890f2f3c,96 -1849-280219-2,3,100,0.05,dc4ded50-3c34-44ba-8dce-fff940d7267e,98 -1849-280219-4,3,100,0.05,dc4ded50-3c34-44ba-8dce-fff940d7267e,125 -1849-280219-3,3,100,0.05,3e99529d-7844-43c7-8e7e-3eee619d499d,166 -1849-280219-3,3,100,0.05,1efe3fb6-7a0c-423a-937f-3aff3895567b,170 -1849-280219-4,3,100,0.05,791f4f4f-057f-471e-b881-a027e71986cf,121 -1849-280219-4,3,100,0.05,190ed37f-6437-4a07-81f8-9c95e39da61c,60 -1849-280219-4,3,100,0.05,e6ca2b59-ad19-48ac-ba17-671c770e95a8,72 -1849-060319-1,4,100,0.05,86c409f3-5503-456d-9b17-37f9d27b3613,104 -1849-060319-4,4,100,0.05,86c409f3-5503-456d-9b17-37f9d27b3613,80 -1849-060319-1,4,100,0.05,9b11a6fc-abae-4b0f-8b91-9883c1111177,88 -1849-060319-2,4,100,0.05,24a0e459-d94f-43ed-8c22-3bdb9a8b27d2,122 -1849-060319-2,4,100,0.05,13e77440-b0be-4253-9151-6d0ca37860e0,95 -1849-060319-3,4,100,0.05,e440f346-ef7e-45e5-82e8-ad22aa25f0df,120 -1849-060319-4,4,100,0.05,d0af3ffc-fe31-4aad-b1cc-fb0e88bc18fb,64 -1849-110319-2,4,100,0.05,c379705d-aa0c-4ecd-831d-8ba21e18dfad,23 -1849-110319-3,4,100,0.05,afdc3efc-52de-4f36-810c-d16a1289bc16,104 -1849-110319-3,4,100,0.05,2195288a-7de9-4486-9f97-402dba50e9c1,163 -1849-150319-1,4,100,0.05,3e1cc8ab-74e5-434f-bd5a-6ef998ad120f,79 -1849-150319-1,4,100,0.05,d8e82b4b-b389-4c4b-940b-3cf223bdee15,85 -1849-150319-1,4,100,0.05,bc0ded9b-eea8-4bf0-83b9-134422a6e9fb,89 -1849-150319-2,4,100,0.05,1b48ab42-285c-4ace-8fc9-380d82422330,17 -1849-150319-3,4,100,0.05,1b48ab42-285c-4ace-8fc9-380d82422330,74 -1849-150319-2,4,100,0.05,6db857e7-e265-4375-9a47-942f86bd06e7,46 -1849-150319-3,4,100,0.05,1098c4ac-8d80-4698-a76f-64eac601bec5,97 -1849-220319-4,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,112 -1849-220319-5,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,112 -1849-150319-4,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,34 -1849-150319-4,4,100,0.05,bb99ad2c-115d-44d1-9f55-2e8ce2a05c59,60 -1849-220319-2,4,100,0.05,80aa98c0-0689-4f27-a9b8-67cd162fc530,101 -1849-220319-2,4,100,0.05,51c43cff-ce8f-4862-b16b-32cd07202a85,107 -1849-220319-2,4,100,0.05,8ba1d7d4-f404-4e2e-ae65-152879a9c650,109 -1849-220319-2,4,100,0.05,44392d0e-e8d8-4774-ad6b-8b6b49a8350b,43 -1849-220319-3,4,100,0.05,6fcb2249-c536-4aa3-b2ba-675ea6ebcee9,69 -1849-220319-3,4,100,0.05,27c2658b-2a4e-4c00-94e1-eb021accec90,71 -1849-280219-1,4,100,0.05,6ad7883e-d45c-4dce-bfcc-90163ef1eadb,66 -1849-280219-2,4,100,0.05,ee588341-3383-4da1-b71c-4f5524144a7f,80 -1849-280219-2,4,100,0.05,34e5491b-16e9-4560-90fe-7616171970f1,86 -1849-280219-3,4,100,0.05,1b359a5d-70e9-4bcc-9ed3-4c835cd0d268,133 -1849-280219-3,4,100,0.05,acec4683-4357-49a0-bd28-89b389607fb4,151 -1849-280219-4,4,100,0.05,55bb8927-0e57-49a6-9d5b-c574f555cb6f,55 -1849-010319-2,5,100,0.05,c2a5482b-e4da-440d-9c4c-d07bf2deb791,91 -1849-010319-2,5,100,0.05,e1c0b0b8-2237-42b1-9013-9404bb1fefab,93 -1849-010319-5,5,100,0.05,b61218f1-0326-46d7-96f1-53489925bef7,87 -1849-010319-4,5,100,0.05,b61218f1-0326-46d7-96f1-53489925bef7,58 -1849-060319-1,5,100,0.05,e096e19e-bed2-4f25-ab5c-ace464256a25,100 -1849-060319-1,5,100,0.05,9cd870c2-a14a-47b1-b6f5-baf26053486a,75 -1849-060319-1,5,100,0.05,f62c2002-0403-43a1-9e70-1a1274c6d0ad,92 -1849-060319-2,5,100,0.05,a2cf723a-8fb8-4e7a-95d8-f9fb9c037532,114 -1849-060319-3,5,100,0.05,a2cf723a-8fb8-4e7a-95d8-f9fb9c037532,112 -1849-060319-2,5,100,0.05,58e0e4f3-6658-4029-a438-18c340919f62,118 -1849-060319-4,5,100,0.05,d4c28ae1-3811-481b-b4b1-aefbc96800bb,78 -1849-110319-1,5,100,0.05,891576de-b4a6-4d7a-a587-2106a882c92f,16 -1849-110319-1,5,100,0.05,eaae5ed3-f001-4938-b11b-a7523337fe2e,17 -1849-110319-1,5,100,0.05,d2bf439a-eda1-4730-91f9-6daa406e07f5,29 -1849-110319-2,5,100,0.05,456858f8-0984-4256-ab05-18c4b241442e,24 -1849-110319-2,5,100,0.05,3dbf3064-1371-41c9-9007-47fa20120840,48 -1849-110319-3,5,100,0.05,d5caa155-4bb8-4ba9-97c1-6810c4603407,165 -1849-150319-1,5,100,0.05,6e77b600-c0b0-4c5c-adcc-8d64de01a365,107 -1849-150319-1,5,100,0.05,d876a92f-79da-4981-8731-af5bfca0041d,60 -1849-150319-1,5,100,0.05,eae35328-c2ee-4e46-bcf9-adebb519ac34,80 -1849-150319-1,5,100,0.05,bdbb00ff-747e-4233-bdcf-0a4b73506472,95 -1849-150319-2,5,100,0.05,dcde8219-5008-48c7-a54e-3ff7dd110798,18 -1849-150319-4,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,64 -1849-150319-2,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,19 -1849-150319-3,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,38 -1849-150319-2,5,100,0.05,6ebfa10d-e096-4293-b09b-2b9c2c78ff56,22 -1849-150319-2,5,100,0.05,6c2679a7-a038-4f81-ab25-16ba343f8821,67 -1849-150319-3,5,100,0.05,c24246c2-07d3-4b76-a37e-f7fe719a5df2,64 -1849-150319-3,5,100,0.05,7e5600ab-e034-47f1-905d-744be2bd1f92,78 -1849-150319-4,5,100,0.05,428ae809-71d4-4682-bbff-39fc1c0bed56,37 -1849-220319-2,5,100,0.05,ac8b26cb-6423-4b70-a2d7-e846c3410f42,32 -1849-220319-2,5,100,0.05,3ee8dab4-5041-46d8-a3e0-f320164e1bd7,45 -1849-220319-2,5,100,0.05,103838e1-a72b-4984-8ff0-c809d8938722,46 -1849-220319-3,5,100,0.05,74743f08-27a9-411d-be99-47f4da5822a8,28 -1849-220319-3,5,100,0.05,dbe25484-cf52-421c-ac3f-c26859186134,73 -1849-220319-3,5,100,0.05,1f07493c-a93a-409f-9a87-8cc5fea712af,75 -1849-220319-4,5,100,0.05,8e21806d-9915-40b4-b1be-4c434c862e8a,102 -1849-220319-4,5,100,0.05,948594d3-ddcf-4954-a04c-b5586bff6995,110 -1849-220319-4,5,100,0.05,10e77237-3825-45ec-8b58-7cf61b7dd428,84 -1849-220319-5,5,100,0.05,fdc089d8-1c49-4258-b9a8-ff7a23f70c01,34 -1849-220319-5,5,100,0.05,fb5caec8-6eaa-4983-b698-3a1070bd6827,35 -1849-220319-5,5,100,0.05,9d6b7eb6-f5de-41e3-a205-1584d57d7f2b,38 -1849-220319-5,5,100,0.05,10997df0-e0bd-4699-9d3b-f95c6b4d9dcf,39 -1849-280219-1,5,100,0.05,39c74c6d-ec64-4962-847e-07eb35e35713,40 -1849-280219-2,5,100,0.05,3239a2ef-5b3e-4643-8ec8-1644821c9a65,64 -1849-280219-3,5,100,0.05,7d4053a4-7caf-41fa-9bb0-dfaf9faaaa82,129 -1849-280219-3,5,100,0.05,19b3d94d-b637-4ada-9caf-7290649ea5cc,137 -1849-280219-4,5,100,0.05,60503a00-13b9-4315-8b44-8ab191913b53,44 -1849-010319-2,6,100,0.05,0fe53439-3ae2-4d3b-b6c1-48869823d892,85 -1849-010319-2,6,100,0.05,838728e2-ec8b-459b-baae-da9f8ef138b9,97 -1849-010319-2,6,100,0.05,bdb7c6e1-4de4-4845-86f9-43393976f357,99 -1849-010319-4,6,100,0.05,ec7620a7-64cf-4c59-b1f5-7a05d703b20d,79 -1849-010319-5,6,100,0.05,6ca97a27-6af1-447f-afc9-0a1cea35e320,105 -1849-010319-5,6,100,0.05,2cb7277b-1d4f-4be0-8ab6-3dfd71c6807c,107 -1849-010319-5,6,100,0.05,41ed1439-2627-46bc-82d6-08583a65a583,109 -1849-060319-1,6,100,0.05,3a120b27-58ad-438d-b3e7-1b2a6fbe5b9e,44 -1849-060319-1,6,100,0.05,e023f131-df43-413c-907a-dc0d8dda1daa,81 -1849-060319-4,6,100,0.05,8da6ec29-00bd-478e-8b0d-6e98378377f0,62 -1849-060319-4,6,100,0.05,4f397d6b-671c-487e-9c4f-da7960ee4cf6,66 -1849-280219-1,6,100,0.05,970d5ca8-a143-4ba8-a862-31327a470ec1,106 -1849-280219-1,6,100,0.05,3e1d3408-86d0-40f5-8768-aa9abe42dfa2,108 -1849-280219-1,6,100,0.05,c5ff3103-ea11-4867-a1f7-9c2f0d415cad,44 -1849-280219-1,6,100,0.05,1bc9b538-04e3-4cf3-ac2b-a7d118987439,45 -1849-280219-1,6,100,0.05,36618e0c-9dc1-472c-a794-ed36c50c3d2f,96 -1849-280219-1,6,100,0.05,23b8e6c1-f4ac-4702-ad70-bb5645513a0e,98 -1849-280219-2,6,100,0.05,dcaa3d76-433b-40c5-bc66-54b4a3affaf2,38 -1849-280219-2,6,100,0.05,e729a175-0be6-4150-bcf5-8cdf16c3b6cf,90 -1849-280219-2,6,100,0.05,f0365b87-f1dd-4ec2-9231-601fe78a9dba,94 -1849-280219-3,6,100,0.05,348eb05e-1d40-47f7-83d7-e78e5ac6a05a,127 -1849-280219-3,6,100,0.05,f96586a6-b9cf-476e-b37c-84ce7c74995e,131 -1849-280219-3,6,100,0.05,100ab2e5-742b-4cd9-873f-04336aefa76f,135 -1849-280219-3,6,100,0.05,cdceb0f3-ae50-402b-970d-263b988f15e5,139 -1849-280219-4,6,100,0.05,e6fc3b7f-eb2e-4446-bea7-51ca9b051c15,66 -1849-280219-4,6,100,0.05,ff5340cb-3904-4f93-b690-493ebf8d65e2,68 -1849-280219-4,7,100,0.05,15f3d73d-90b9-40a8-94f1-75763e3647f1,58 -1849-010319-2,7,100,0.05,15f3d73d-90b9-40a8-94f1-75763e3647f1,101 -1849-280219-2,7,100,0.05,326620da-da95-4232-9314-309575f89963,42 -1849-280219-3,7,100,0.05,326620da-da95-4232-9314-309575f89963,158 -1849-010319-2,7,100,0.05,326620da-da95-4232-9314-309575f89963,70 -1849-280219-4,7,100,0.05,326620da-da95-4232-9314-309575f89963,56 -1849-010319-4,7,100,0.05,87670e0f-1783-462f-b522-0bdd850cddea,59 -1849-010319-5,7,100,0.05,87670e0f-1783-462f-b522-0bdd850cddea,57 -1849-010319-5,7,100,0.05,75421a7a-4265-42ea-9997-24cea4ed02ac,54 -1849-060319-1,7,100,0.05,0778701f-e685-446b-a291-4163a8346fce,49 -1849-060319-1,7,100,0.05,3af3e489-e70b-41f4-93fd-8604d80f1d3e,90 -1849-060319-2,7,100,0.05,6338c3d5-cdfc-41ac-a7e1-afc4363470b7,50 -1849-060319-2,7,100,0.05,d6cb1145-8c8c-4193-a66d-1f54416703b6,71 -1849-060319-2,7,100,0.05,64b621dc-f53c-4d37-9b37-dc63839be641,92 -1849-060319-3,7,100,0.05,f2bc9b83-a96d-4128-8cd1-7bb6a1ffb415,118 -1849-060319-3,7,100,0.05,35843308-4317-4714-9914-9e36623cb1ce,92 -1849-060319-4,7,100,0.05,70bf3009-8a81-4319-b588-fd3fe4d70a1c,60 -1849-150319-1,7,100,0.05,d0c6dbd6-081a-4e1f-8a3c-6a9f17d34763,56 -1849-280219-1,7,100,0.05,f018946b-21db-4a52-a5ba-bffac84887b4,52 -1849-280219-1,7,100,0.05,1414e14e-00a2-451a-aaf2-fa7c8624c6bc,53 -1849-280219-1,7,100,0.05,2336b444-1562-455d-b1d4-a7e49b83fc78,62 -1849-280219-2,7,100,0.05,64fbb0ba-8cf4-4e40-ab66-8c56c262d938,43 -1849-280219-2,7,100,0.05,2a91a55f-011d-46c8-9531-844871317c8b,61 -1849-280219-2,7,100,0.05,a4a4c813-9e64-47c3-9c8f-6984e88b2384,66 -1849-280219-2,7,100,0.05,12bda732-cd13-41a9-9dc8-c9a22720607b,92 -1849-280219-3,7,100,0.05,2e6568a6-509d-4e86-9d41-56e889bcc0ee,149 -1849-280219-3,7,100,0.05,e972ab3f-bbe6-4b5b-b34c-e56aa51a2f5f,164 -1849-280219-4,7,100,0.05,67788bb5-ebf0-4c1a-a686-75a658c75d08,86 -1833-020719-4,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,302 -1833-020719-1,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,123 -1833-010719-1,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,127 -1833-020719-3,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,143 -1833-260619-1,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,120 -1833-010719-1,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,161 -1833-010719-2,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,239 -1833-260619-3,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,196 -1833-260619-4,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,202 -1833-010719-1,0,100,0.05,7e1588d9-1a79-4ed2-8b53-067d2720aaaa,191 -1833-010719-2,0,100,0.05,fec1202b-1434-48c9-b3a1-adb167ea6410,261 -1833-010719-1,0,100,0.05,fec1202b-1434-48c9-b3a1-adb167ea6410,223 -1833-010719-1,0,100,0.05,8c326156-1f80-4195-82a1-b401c2db5ad6,225 -1833-010719-2,0,100,0.05,8c326156-1f80-4195-82a1-b401c2db5ad6,267 -1833-010719-2,0,100,0.05,02d0ee49-9dc0-439e-9a1e-0fc77ff0dfc0,4 -1833-010719-1,0,100,0.05,02d0ee49-9dc0-439e-9a1e-0fc77ff0dfc0,235 -1833-010719-2,0,100,0.05,4ae30aee-ff04-4884-b1d4-4e48cc0880ce,254 -1833-010719-2,0,100,0.05,689fed74-131b-4886-a5f3-37dd15752d14,265 -1833-020719-1,0,100,0.05,202551c8-3fcc-452f-983d-b70565a7b775,119 -1833-020719-1,0,100,0.05,4d299216-6ff1-4aad-9a6f-3fff3445a726,121 -1833-020719-3,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,156 -1833-020719-2,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,142 -1833-020719-4,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,308 -1833-020719-1,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,145 -1833-020719-2,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,8 -1833-020719-3,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,162 -1833-020719-1,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,158 -1833-020719-4,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,320 -1833-020719-2,0,100,0.05,07b04948-20e9-4795-aec3-0337458fc7e6,105 -1833-020719-2,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,129 -1833-020719-4,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,306 -1833-020719-3,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,141 -1833-020719-3,0,100,0.05,369a3fff-a276-46d3-b03e-8da0e884418c,116 -1833-020719-2,0,100,0.05,369a3fff-a276-46d3-b03e-8da0e884418c,95 -1833-020719-3,0,100,0.05,eb8328bd-6c97-4c68-9e68-9aadd76a4ce0,104 -1833-020719-3,0,100,0.05,bcc59a37-9843-4014-8565-9b6e5f9ec8f9,105 -1833-020719-3,0,100,0.05,4c126cc1-e670-448d-a9ab-4959a01eb941,112 -1833-020719-3,0,100,0.05,ce50f334-97f7-456d-a99c-fad237eeb945,150 -1833-020719-4,0,100,0.05,674a447f-91e7-4283-b54a-6d0ed998cb76,258 -1833-060619-2,0,100,0.05,59986384-12a6-4559-b70f-e62c97ca6ff2,76 -1833-060619-2,0,100,0.05,97701855-c0cb-41ab-98c4-ccade07950ad,90 -1833-120619-1,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,139 -1833-120619-3,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,153 -1833-120619-2,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,175 -1833-120619-2,0,100,0.05,0c9928cc-c3e9-4e22-9654-6624fe221b4c,89 -1833-200619-1,0,100,0.05,82886983-4c61-4e36-80d2-f856dc5eb4e7,147 -1833-200619-2,0,100,0.05,018b9d2d-f76f-4804-ab2c-825f67d098a8,268 -1833-200619-3,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,0 -1833-200619-2,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,283 -1833-200619-4,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,1 -1833-200619-4,0,100,0.05,53953323-230e-470b-b76c-127344489492,90 -1833-200619-3,0,100,0.05,53953323-230e-470b-b76c-127344489492,91 -1833-200619-4,0,100,0.05,460e1206-848b-43b2-b7c5-850a13e43a89,92 -1833-200619-3,0,100,0.05,460e1206-848b-43b2-b7c5-850a13e43a89,93 -1833-200619-4,0,100,0.05,dd2e5d79-ee67-44e4-b3ec-a5d35e308c41,78 -1833-200619-4,0,100,0.05,6c5ba75a-5e66-4992-83f5-6ca382044292,96 -1833-260619-3,0,100,0.05,75abbf10-2eca-425c-93b4-bf01951b3fab,182 -1833-260619-1,0,100,0.05,75abbf10-2eca-425c-93b4-bf01951b3fab,118 -1833-260619-4,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,115 -1833-260619-3,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,141 -1833-260619-1,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,130 -1833-260619-2,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,174 -1833-260619-1,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,132 -1833-260619-4,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,233 -1833-260619-3,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,209 -1833-260619-2,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,2 -1833-260619-1,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,2 -1833-260619-4,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,235 -1833-260619-3,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,1 -1833-260619-4,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,208 -1833-260619-2,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,152 -1833-260619-3,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,180 -1833-260619-3,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,194 -1833-260619-2,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,164 -1833-260619-4,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,222 -1833-260619-3,0,100,0.05,4309c130-a353-4e38-beba-4d9350678e07,0 -1833-260619-3,0,100,0.05,61101fef-2583-4c30-8157-dbfc83a9611b,140 -1833-290519-1,0,100,0.05,e04fcb6f-004a-4e3a-8793-18e48a595cba,112 -1833-290519-1,0,100,0.05,d6360ea3-c460-4cfd-95ed-03489c5bbdda,120 -1833-290519-1,0,100,0.05,846d339e-b666-4fbc-af86-6727f45e500b,146 -1833-290519-2,0,100,0.05,b3216c92-197d-4642-be0e-bb28fdab0907,78 -1833-290519-2,0,100,0.05,82d976f8-1ffa-461b-b69a-b32a5b9ba894,82 -1833-290519-3,0,100,0.05,55ab237c-d434-4d10-98f5-9ebefa56639e,107 -1833-290519-3,0,100,0.05,c1d06f73-d01e-4088-b710-16c61711194f,137 -1833-290519-4,0,100,0.05,16689d25-454f-4bb8-ba02-a784b11996db,117 -1833-290519-4,0,100,0.05,1094cdee-8aa1-4043-8535-0514b66b9617,88 -1833-260619-2,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,123 -1833-260619-1,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,104 -1833-010719-1,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,146 -1833-010719-1,1,100,0.05,f17b2419-e7b8-484a-9a3f-0235b0f56e84,219 -1833-010719-1,1,100,0.05,23d99789-c3bd-4061-b3e9-400fa934c297,221 -1833-010719-1,1,100,0.05,020f3eb7-9cd9-476a-b402-dccdd5c85313,229 -1833-010719-2,1,100,0.05,020f3eb7-9cd9-476a-b402-dccdd5c85313,273 -1833-010719-1,1,100,0.05,288a1eb2-b910-4741-973f-b7eb943d578c,6 -1833-010719-1,1,100,0.05,e3b0028a-00aa-4651-b9be-d39f7220e756,8 -1833-020719-2,1,100,0.05,d210e396-aebb-495f-8060-d0a3b586541c,131 -1833-010719-2,1,100,0.05,d210e396-aebb-495f-8060-d0a3b586541c,135 -1833-200619-3,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,97 -1833-200619-4,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,76 -1833-200619-1,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,159 -1833-010719-2,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,18 -1833-020719-2,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,15 -1833-020719-2,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,14 -1833-010719-2,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,227 -1833-020719-3,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,123 -1833-010719-2,1,100,0.05,fe8aafe3-b466-40a0-9c83-a710844a4812,229 -1833-010719-2,1,100,0.05,0098c6a1-ff90-40cb-9548-df7201ebb0c6,233 -1833-010719-2,1,100,0.05,10b2d316-2498-4dfe-9bfe-5a31ad425dde,269 -1833-020719-1,1,100,0.05,4cd53be4-0731-4da7-87aa-838c831a166b,115 -1833-020719-3,1,100,0.05,97507bc1-b15b-4d54-a874-f63dc47ba240,154 -1833-020719-1,1,100,0.05,97507bc1-b15b-4d54-a874-f63dc47ba240,147 -1833-020719-3,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,166 -1833-020719-1,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,155 -1833-020719-2,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,87 -1833-020719-2,1,100,0.05,549df16a-fe87-41de-9a70-4b08fe799efd,152 -1833-020719-3,1,100,0.05,b222d608-82c0-4b57-ae73-9d5ed6dd21b4,139 -1833-020719-4,1,100,0.05,bbaea364-eb5b-40b4-b202-a0d4f264c205,256 -1833-020719-4,1,100,0.05,0e48da29-eac7-4941-9268-44e096a63d1c,278 -1833-020719-4,1,100,0.05,b4ee613f-7453-4f2d-ada8-81ae84a206b0,300 -1833-050619-1,1,100,0.05,fa14536b-2b32-4007-93e7-64f5f4fc32de,75 -1833-050619-2,1,100,0.05,b2252178-0f9e-47ab-b401-4b28ef78ee60,129 -1833-050619-3,1,100,0.05,b2252178-0f9e-47ab-b401-4b28ef78ee60,125 -1833-050619-4,1,100,0.05,4bc21424-b8fd-4e08-82f6-effa388cda03,68 -1833-050619-4,1,100,0.05,d150807a-e271-4ec7-9115-b43526bbe93b,84 -1833-050619-4,1,100,0.05,ed0fdcbe-7aa9-4a79-840d-67eca618c1aa,86 -1833-060619-1,1,100,0.05,c48dd287-ffc9-4ab6-8f6f-f081837cf784,137 -1833-060619-2,1,100,0.05,90c2de30-5695-4a91-b403-af76f2cdf61b,64 -1833-060619-2,1,100,0.05,1038a388-166d-422a-8c65-1ac1e6d9ad54,78 -1833-120619-1,1,100,0.05,6de199c5-36fb-411c-825a-8d1871a5c737,114 -1833-120619-2,1,100,0.05,5d01e49b-9ae7-45f5-9287-18ab13cd6136,104 -1833-200619-1,1,100,0.05,19a1525b-c2bf-49a8-8fb8-dbc76f93e02d,155 -1833-200619-2,1,100,0.05,498eef1b-8a69-490c-8685-b9d84bec1e05,278 -1833-200619-4,1,100,0.05,3cba268e-7bee-4ffc-831c-7f060b8abd3d,70 -1833-200619-3,1,100,0.05,3cba268e-7bee-4ffc-831c-7f060b8abd3d,89 -1833-260619-1,1,100,0.05,d5c0812a-92a3-4ef0-a9fa-66b40acb5dc5,10 -1833-260619-1,1,100,0.05,1f18345d-c22a-4e69-8412-895f8dc184e1,116 -1833-260619-1,1,100,0.05,1d244994-074c-49ad-a789-2c86feb6ed74,126 -1833-260619-2,1,100,0.05,1d244994-074c-49ad-a789-2c86feb6ed74,166 -1833-260619-2,1,100,0.05,eb701b37-e917-4d0f-9469-ee01b46d623e,130 -1833-260619-3,1,100,0.05,f29743b1-4d3e-4a17-8e11-3a2b9087662b,119 -1833-260619-4,1,100,0.05,ca960139-81eb-4c8c-b93a-55103ba52728,198 -1833-260619-3,1,100,0.05,ca960139-81eb-4c8c-b93a-55103ba52728,170 -1833-260619-3,1,100,0.05,e9e7a50d-3eb3-4e78-a5c1-5c04995f69a9,207 -1833-260619-4,1,100,0.05,234fcaba-1510-4c14-b5bb-114318ac6e83,178 -1833-260619-4,1,100,0.05,f1a20652-80aa-4984-a052-7102dd162994,204 -1833-260619-4,1,100,0.05,eea49e8a-8c74-49f1-9c90-5d0e353ac3da,226 -1833-290519-1,1,100,0.05,191b3d9d-611a-4a90-bd37-246adbd13fb5,138 -1833-290519-1,1,100,0.05,a84af5e8-cec8-4d8a-acef-27ee8a03c53f,92 -1833-290519-2,1,100,0.05,3009f1b5-041b-4676-95c2-4ffabb182ab1,102 -1833-290519-2,1,100,0.05,7d79acf2-1dc2-4390-a035-3c0bcdc8d7a9,104 -1833-290519-2,1,100,0.05,6dc5b1be-f79b-495c-90ed-7b6e89681ae5,116 -1833-290519-2,1,100,0.05,1d8987a6-7610-4c00-9bb0-81a3cc8fd9b7,120 -1833-290519-3,1,100,0.05,89f364f3-f5c5-4051-856b-1022b6ccc407,119 -1833-290519-3,1,100,0.05,5aa5469d-f80b-43df-a63e-632e39c9164f,72 -1833-290519-4,1,100,0.05,9d2e0623-35c2-419e-af51-93cf20a52ead,85 -1833-290519-4,1,100,0.05,0bb3d6b8-64f2-49bd-bf6c-b107666d92ef,96 -1833-010719-1,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,202 -1833-020719-1,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,143 -1833-010719-2,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,249 -1833-010719-2,2,100,0.05,fe8950da-16eb-4810-97dc-3e103708d8bd,29 -1833-010719-1,2,100,0.05,fe8950da-16eb-4810-97dc-3e103708d8bd,231 -1833-010719-2,2,100,0.05,277503b6-e87a-4dd2-80cd-536a65cbc59a,271 -1833-020719-1,2,100,0.05,40e5d65a-3b34-4a85-80b1-8ab409bf659f,149 -1833-020719-2,2,100,0.05,d28a01dd-3d09-4482-90c0-0a46c727a30b,119 -1833-020719-2,2,100,0.05,cb36a2aa-c8a3-4d74-9248-7af22fe9e2af,120 -1833-020719-2,2,100,0.05,60146bd8-44fe-4704-8a3a-b4314b2d11e4,93 -1833-020719-3,2,100,0.05,5f8eeed0-7967-4b9d-882c-76807a0eecd2,147 -1833-020719-3,2,100,0.05,bee1eff1-59a4-49f9-b4b3-5c0d04c838d5,168 -1833-020719-4,2,100,0.05,a4861b4d-8f8d-408a-a626-c2388be50d62,260 -1833-060619-1,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,168 -1833-050619-1,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,99 -1833-050619-2,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,135 -1833-060619-2,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,106 -1833-050619-3,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,133 -1833-050619-2,2,100,0.05,0ad3c1a0-cb9c-4dcd-9715-598e6e4ac3f9,111 -1833-050619-3,2,100,0.05,633e1f45-88f2-48a8-a79d-44d25712ac41,111 -1833-050619-2,2,100,0.05,633e1f45-88f2-48a8-a79d-44d25712ac41,89 -1833-120619-3,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,104 -1833-120619-1,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,120 -1833-120619-2,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,142 -1833-120619-2,2,100,0.05,1f0800f6-0353-445b-a594-1a071ea0c8d5,118 -1833-200619-4,2,100,0.05,a954bf7f-0d42-47c2-907f-7faa6e4bfde5,115 -1833-200619-1,2,100,0.05,a954bf7f-0d42-47c2-907f-7faa6e4bfde5,228 -1833-200619-3,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,142 -1833-200619-1,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,239 -1833-200619-4,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,117 -1833-200619-2,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,325 -1833-260619-1,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,128 -1833-260619-4,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,216 -1833-260619-2,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,168 -1833-260619-3,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,198 -1833-260619-2,2,100,0.05,c06363fb-12f8-47d6-8a89-ef4821bd7f8c,148 -1833-290519-2,2,100,0.05,8cd50dd4-efb3-4f2c-910d-94594a1dfd17,100 -1833-290519-2,2,100,0.05,4d525d3d-ed38-4c46-90ec-d0833b6f46a7,112 -1833-290519-2,2,100,0.05,8477d63c-5861-4087-8724-02fd49219829,132 -1833-010719-1,3,100,0.05,453c4f77-cce3-477c-8537-78e4b361d1a1,171 -1833-010719-1,3,100,0.05,58bf4f43-955d-4084-98e4-49d2cf63bcb1,198 -1833-020719-1,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,151 -1833-010719-1,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,216 -1833-020719-2,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,136 -1833-010719-2,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,243 -1833-020719-3,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,17 -1833-010719-2,3,100,0.05,072e4f5b-2df4-4414-a409-f592f25a7a43,133 -1833-010719-1,3,100,0.05,072e4f5b-2df4-4414-a409-f592f25a7a43,240 -1833-010719-2,3,100,0.05,9aaf9893-5849-421c-9014-187b6f4ade94,157 -1833-010719-2,3,100,0.05,66f45b2c-5020-4d83-8fcb-0afed316c574,173 -1833-010719-2,3,100,0.05,e80f3819-5049-4986-bbed-a9e0ed42e5de,174 -1833-010719-2,3,100,0.05,268c7a27-f7f9-40c2-a2da-e7d4ce28ded0,187 -1833-010719-2,3,100,0.05,86410a4b-5196-4cc0-8672-17e2e8f100b5,188 -1833-010719-2,3,100,0.05,c08ccbbe-e52f-4166-9cfa-df5e587735ed,241 -1833-010719-2,3,100,0.05,19a93460-8f00-4af8-b993-a47e6fa9b97d,259 -1833-020719-1,3,100,0.05,91673fec-cd7a-492d-9124-6cf9a8ca9128,135 -1833-020719-2,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,140 -1833-020719-1,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,140 -1833-020719-3,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,23 -1833-020719-1,3,100,0.05,29aa8dbf-2bd8-4691-97f3-df202c52a96d,153 -1833-020719-3,3,100,0.05,29aa8dbf-2bd8-4691-97f3-df202c52a96d,164 -1833-020719-1,3,100,0.05,56e178b7-f788-4c06-b625-af7a1ceec5c3,164 -1833-020719-3,3,100,0.05,56e178b7-f788-4c06-b625-af7a1ceec5c3,170 -1833-020719-2,3,100,0.05,1d2c7ebd-3d48-489f-aba7-f4dfd44edb4e,107 -1833-020719-2,3,100,0.05,c296df8e-e7cd-4e56-9484-34abbbb957b2,139 -1833-020719-2,3,100,0.05,9d06cb6f-baf1-4420-87c5-949e06f4f822,146 -1833-020719-3,3,100,0.05,d75eeafe-b067-4bc9-a4c9-74a11bb1466f,152 -1833-020719-4,3,100,0.05,4a75a257-1f81-421c-a4a9-c4121b559c34,289 -1833-020719-4,3,100,0.05,d0bb4f6b-bc6b-485d-88cf-afa1fb7f28fb,290 -1833-020719-4,3,100,0.05,3e90e233-d807-4a2b-8338-dd8a9b1a5376,298 -1833-020719-4,3,100,0.05,9fcb03a0-c55f-4319-8f97-a51c1bfd4c2d,318 -1833-050619-1,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,107 -1833-050619-2,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,143 -1833-050619-3,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,147 -1833-050619-4,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,148 -1833-060619-1,3,100,0.05,cf77fc85-610c-407b-8773-58e63c7fbf23,174 -1833-120619-2,3,100,0.05,2385a66c-be2e-443a-aad7-8c7b0f41f6be,143 -1833-120619-2,3,100,0.05,e0226db9-04e3-4b45-b5f8-8fac79b1cafa,69 -1833-200619-1,3,100,0.05,939b507b-6464-4fd7-a8d1-41297a26c4e7,151 -1833-200619-3,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,128 -1833-200619-1,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,184 -1833-200619-4,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,102 -1833-200619-2,3,100,0.05,24dc1793-ffdc-4198-ba73-ab1665ceefd9,257 -1833-200619-2,3,100,0.05,8de86bad-f183-44f6-9d04-44e93472df4c,264 -1833-200619-4,3,100,0.05,0e24b310-e0f7-431a-b4b1-ece804b0228f,74 -1833-200619-3,3,100,0.05,0e24b310-e0f7-431a-b4b1-ece804b0228f,82 -1833-260619-1,3,100,0.05,db78137d-99cf-48a6-baf9-9252426a3db8,114 -1833-260619-2,3,100,0.05,db78137d-99cf-48a6-baf9-9252426a3db8,146 -1833-260619-3,3,100,0.05,80d08bcc-be1f-484d-86d7-3af87cef5d0f,160 -1833-260619-4,3,100,0.05,7723d3af-a375-42b0-9d19-3c22107785e0,206 -1833-260619-3,3,100,0.05,7723d3af-a375-42b0-9d19-3c22107785e0,176 -1833-260619-4,3,100,0.05,e1aa87ab-1e5c-43b7-83c2-1d4fc57bd082,196 -1833-290519-1,3,100,0.05,5f647e04-cb09-4ff5-9328-ec5602b2303c,101 -1833-290519-1,3,100,0.05,81aa445a-3d2f-46ce-9e7b-6be0b260a1d0,102 -1833-290519-4,3,100,0.05,81aa445a-3d2f-46ce-9e7b-6be0b260a1d0,92 -1833-290519-1,3,100,0.05,67e49adb-e93d-42f9-a5f1-bcf9e27aced5,162 -1833-290519-4,3,100,0.05,36fb06f7-aca0-45c1-b674-14ddddc7069f,130 -1833-290519-1,3,100,0.05,36fb06f7-aca0-45c1-b674-14ddddc7069f,176 -1833-290519-2,3,100,0.05,7d3e0f3f-bd1f-4d65-9f8e-482d5ed961c9,108 -1833-290519-2,3,100,0.05,b2466e1a-e64d-40e7-a170-218093a0397e,72 -1833-290519-2,3,100,0.05,e1c6111b-1869-4ff5-8ef2-aea5f6f67d01,74 -1833-290519-3,3,100,0.05,26a21d49-d7b4-443e-9c32-ced22bc64042,102 -1833-290519-3,3,100,0.05,d4612cb4-0882-4dbd-bc19-b86322c59082,153 -1833-290519-3,3,100,0.05,43c4c6e8-153c-4276-8a63-5f7d29cf9ee8,68 -1833-290519-3,3,100,0.05,cbec3a74-927e-48a8-adaa-e51f89b4fd08,99 -1833-290519-4,3,100,0.05,b61b8b0d-e8d7-4923-925d-71f9d7abf9ce,129 -1833-010719-2,4,100,0.05,7425d62e-bab4-4d04-a3a0-cead89764b12,223 -1833-010719-2,4,100,0.05,98732e86-3445-43d9-a50e-78340d22dec1,231 -1833-020719-3,4,100,0.05,df8a86ea-ac4f-49d4-b421-9f536b722f07,45 -1833-020719-3,4,100,0.05,0987b826-6d91-4a05-98f9-484f5e51826b,94 -1833-020719-3,4,100,0.05,7c214d30-6511-4943-8ea0-b97c649d1e2e,95 -1833-020719-4,4,100,0.05,37857f27-7998-4cfe-8e25-fa5d534e3dc8,250 -1833-050619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,25 -1833-050619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,137 -1833-050619-3,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,145 -1833-050619-4,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,151 -1833-060619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,172 -1833-120619-4,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,119 -1833-060619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,108 -1833-120619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,137 -1833-120619-3,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,147 -1833-120619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,170 -1833-050619-2,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,97 -1833-050619-3,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,123 -1833-050619-4,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,80 -1833-060619-1,4,100,0.05,109d6ed6-4405-4323-926f-62effd49df67,144 -1833-120619-2,4,100,0.05,1acaab2a-d0d0-45e0-a89c-da4634b4d09f,81 -1833-120619-3,4,100,0.05,84a5cec3-cd43-4600-a2eb-f55b2b4992b1,100 -1833-120619-3,4,100,0.05,67655ae0-e1a2-4e1d-ad33-3d223ab1d129,101 -1833-200619-1,4,100,0.05,881bb6ab-97fd-4d7f-928c-19b650988ec1,165 -1833-200619-2,4,100,0.05,8bb6b506-f0a7-4397-a9a9-91a667a55b6c,254 -1833-200619-3,4,100,0.05,0191e631-4293-4bec-9756-2a9b24052717,113 -1833-200619-4,4,100,0.05,47a87161-3ebc-4f4b-b73f-241b9cfdb9d4,124 -1833-290519-1,4,100,0.05,bbfad854-6959-4860-858d-f6bd256a069e,118 -1833-290519-1,4,100,0.05,68c780fd-1dc3-4b22-a0bb-66b882fb8933,80 -1833-290519-2,4,100,0.05,3a635e40-482a-475f-936f-99ba9f5fa787,114 -1833-290519-2,4,100,0.05,61095d50-52a2-46a3-9819-8f6596af71c5,122 -1833-290519-2,4,100,0.05,c35b9ee0-78ce-4b24-9fb2-1085fda8e422,124 -1833-290519-3,4,100,0.05,68283812-8cd3-4b52-9d62-63878e27cf3d,135 -1833-290519-3,4,100,0.05,a7140f1e-6d13-4757-bc0e-e7e1df634a88,145 -1833-290519-3,4,100,0.05,fa10acbf-1cb3-4590-bd8f-7abb782ad5df,76 -1833-290519-4,4,100,0.05,bd7de171-9f6d-4267-8d01-7691fefa2d36,71 -1833-010719-1,5,100,0.05,41b1434f-a3e3-45f5-a2c3-9044479e6a80,134 -1833-010719-1,5,100,0.05,755fb028-82f6-4264-847c-5508653873d8,144 -1833-010719-1,5,100,0.05,be674bb8-6374-4d5c-a10d-4ce6fa2fc031,150 -1833-260619-4,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,212 -1833-260619-2,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,154 -1833-010719-2,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,235 -1833-010719-1,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,166 -1833-260619-1,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,110 -1833-260619-3,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,184 -1833-010719-2,5,100,0.05,e4f2b711-e694-46c8-8a85-73f871046d2d,221 -1833-020719-1,5,100,0.05,7ad05a2f-fd4f-4cfd-bce4-69a50db190a0,109 -1833-020719-2,5,100,0.05,a5ef9291-41c2-449f-aab4-3af00c573726,103 -1833-020719-2,5,100,0.05,18b062a6-70a3-4d83-b208-470247ff0a0a,126 -1833-020719-3,5,100,0.05,3ede0ba0-45c2-43b5-b729-a8fd59966686,117 -1833-020719-3,5,100,0.05,7b237f5a-cea9-47b0-bc5d-b25d829cf355,121 -1833-020719-4,5,100,0.05,7b237f5a-cea9-47b0-bc5d-b25d829cf355,266 -1833-020719-3,5,100,0.05,5c74c150-9611-41f9-a960-c4e93038faa3,135 -1833-020719-4,5,100,0.05,5c74c150-9611-41f9-a960-c4e93038faa3,294 -1833-200619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,270 -1833-290519-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,115 -1833-050619-1,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,73 -1833-120619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,136 -1833-050619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,123 -1833-050619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,127 -1833-050619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,82 -1833-200619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,122 -1833-060619-1,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,156 -1833-120619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,122 -1833-120619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,145 -1833-200619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,94 -1833-050619-4,5,100,0.05,8e750e81-5a90-409e-a646-dd1c815bffbb,79 -1833-060619-2,5,100,0.05,8e750e81-5a90-409e-a646-dd1c815bffbb,68 -1833-060619-1,5,100,0.05,d2f1b62a-2251-4ac2-80d4-95221c63e793,164 -1833-060619-2,5,100,0.05,54a030ed-cfed-41a4-9e5e-fe6d7ebfe5c2,98 -1833-120619-1,5,100,0.05,417e44ce-183a-4a4a-a081-6cc8b73bbd55,133 -1833-120619-2,5,100,0.05,d87389d5-f8d7-472c-8121-527e195930df,100 -1833-120619-2,5,100,0.05,6d4aa130-9258-4a71-a718-a9d77cfbfe49,123 -1833-120619-2,5,100,0.05,c57ce315-12e2-4e26-94e6-a6fc015ddb0f,133 -1833-200619-3,5,100,0.05,791b5b20-41c7-471e-881b-2293fab54e40,59 -1833-260619-1,5,100,0.05,0319b8ce-8b28-44ec-b90a-d5de9736d50b,100 -1833-260619-2,5,100,0.05,2948d4ad-337d-4b20-99b4-71c690bd483d,115 -1833-260619-3,5,100,0.05,2948d4ad-337d-4b20-99b4-71c690bd483d,111 -1833-260619-3,5,100,0.05,16289c5d-e679-43bb-8f20-b15bf6185391,109 -1833-260619-3,5,100,0.05,626a18ce-5a2a-4a8d-b129-904004595b7d,113 -1833-260619-4,5,100,0.05,b2a58b32-3717-4741-a24f-bc5e921f29a8,162 -1833-260619-4,5,100,0.05,fb2ae576-39bf-4fd6-9512-87ed0b0949da,188 -1833-290519-1,5,100,0.05,cf56171b-496c-4aae-8340-26adfcc8e0fe,134 -1833-290519-1,5,100,0.05,9c770226-006d-414c-b04d-e743df77c5e8,158 -1833-290519-1,5,100,0.05,3a3bd569-b249-446b-91c2-07993a1fc4de,172 -1833-290519-1,5,100,0.05,f0b2aa01-32d6-4830-872d-4e2578b0171e,94 -1833-290519-2,5,100,0.05,db0a4b07-759b-4e0f-bf2d-03353582f748,80 -1833-290519-3,5,100,0.05,5502f0db-4eea-4ef2-a934-808123e162e5,109 -1833-290519-3,5,100,0.05,ba65c205-b59d-42ad-826f-04aba95abc0f,117 -1833-290519-3,5,100,0.05,346f7d40-a879-44c5-b786-c67d7bed4694,139 -1833-290519-3,5,100,0.05,2de58598-a677-407f-aa09-5179fde482b7,143 -1833-290519-4,5,100,0.05,c0dff757-d66c-4c96-8b61-ab79eb569d6a,121 -1833-290519-4,5,100,0.05,8d762aa9-1ade-4255-a288-84225eacaab2,98 -1833-010719-1,6,100,0.05,f76a581e-8c2b-4314-9456-67579f4f7fd1,152 -1833-010719-1,6,100,0.05,a55723a7-2775-4001-941e-430855dece20,183 -1833-010719-1,6,100,0.05,730e466e-e879-4db3-9fda-5b227248c873,200 -1833-010719-1,6,100,0.05,5f56e3f9-f08e-4065-87ce-f6ff82b66eea,227 -1833-010719-2,6,100,0.05,c0e5171c-e874-482a-8b7b-34451d1093e4,225 -1833-020719-1,6,100,0.05,4161c5eb-2cb2-40e3-8c61-29a33f708789,107 -1833-020719-2,6,100,0.05,82b5bfef-1991-40d2-89dc-ca9ae378ce84,99 -1833-020719-3,6,100,0.05,69809b0c-ff29-4b0d-a861-3fa6cdbf2b02,63 -1833-020719-3,6,100,0.05,78595052-c80e-4686-a83a-4e8a4d0a696b,64 -1833-020719-4,6,100,0.05,1cfaaf89-1845-4f7b-ba77-6591a2711ca9,254 -1833-020719-3,6,100,0.05,1cfaaf89-1845-4f7b-ba77-6591a2711ca9,96 -1833-020719-4,6,100,0.05,6a5978cf-669c-4b46-a875-da7c23dc19db,248 -1833-020719-4,6,100,0.05,a52a0cac-1560-4fb0-bc9e-8a88f315954b,310 -1833-050619-4,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,157 -1833-050619-1,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,111 -1833-050619-3,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,149 -1833-060619-1,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,176 -1833-050619-2,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,152 -1833-060619-2,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,112 -1833-050619-4,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,133 -1833-050619-1,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,60 -1833-260619-1,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,106 -1833-050619-3,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,117 -1833-050619-2,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,119 -1833-120619-3,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,118 -1833-060619-1,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,162 -1833-290519-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,108 -1833-050619-2,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,125 -1833-050619-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,92 -1833-060619-2,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,82 -1833-050619-1,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,64 -1833-120619-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,80 -1833-050619-3,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,129 -1833-060619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,170 -1833-060619-2,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,105 -1833-050619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,91 -1833-120619-2,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,151 -1833-120619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,129 -1833-050619-4,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,135 -1833-120619-4,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,127 -1833-050619-2,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,146 -1833-120619-3,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,94 -1833-050619-3,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,143 -1833-050619-2,6,100,0.05,42631620-f795-462c-addb-a6475a5b111c,74 -1833-050619-2,6,100,0.05,711a946f-69b3-47c5-82f4-f11cfd2d22ef,81 -1833-050619-3,6,100,0.05,00780e53-a0bf-4923-8fcc-7393dde0a2a8,109 -1833-050619-4,6,100,0.05,b0c2059e-dadd-4726-8fe1-d60b15456f97,117 -1833-060619-1,6,100,0.05,98445d76-55d4-4334-a354-d127b190cc23,158 -1833-120619-4,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,120 -1833-060619-1,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,160 -1833-120619-3,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,143 -1833-200619-3,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,126 -1833-060619-2,6,100,0.05,05fd1acb-78bb-4398-9611-ec4753de6719,116 -1833-060619-2,6,100,0.05,aaff5be0-15cd-4fad-bbde-627ed1803de2,74 -1833-260619-2,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,160 -1833-120619-1,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,127 -1833-260619-1,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,124 -1833-260619-3,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,192 -1833-120619-3,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,141 -1833-200619-3,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,132 -1833-120619-2,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,169 -1833-200619-2,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,287 -1833-120619-3,6,100,0.05,9a5865f3-b57a-4af5-a3b2-5f695378542d,122 -1833-120619-3,6,100,0.05,fe5bda32-a4df-4a42-b7e9-eee85f9ee727,145 -1833-120619-4,6,100,0.05,18140d38-b9a5-4841-9f5a-ffe3f374fd5b,124 -1833-120619-4,6,100,0.05,7b76ab64-6441-436e-9b31-a266818e8cf9,85 -1833-120619-4,6,100,0.05,b248e3eb-23e2-4e21-8bd9-ddcbce4ca1b2,95 -1833-200619-3,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,120 -1833-260619-3,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,168 -1833-200619-1,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,163 -1833-200619-1,6,100,0.05,ba1187ef-dedb-4791-8716-a8f7befb6fd3,171 -1833-200619-1,6,100,0.05,67a4c883-8ed0-4207-8bf1-9846151486db,206 -1833-200619-1,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,240 -1833-200619-4,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,121 -1833-200619-2,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,327 -1833-200619-3,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,150 -1833-200619-2,6,100,0.05,010880bf-8f2f-4440-819d-f69a7aec1e8e,28 -1833-200619-2,6,100,0.05,7435f4c7-2f39-461c-bf55-881400546594,281 -1833-200619-2,6,100,0.05,1fbb1aab-3b27-49b7-b40c-5fc6f86e553d,308 -1833-200619-2,6,100,0.05,50c6122d-e7e1-4637-999b-2fb0654304d9,321 -1833-200619-3,6,100,0.05,e831cf28-05f9-4176-a427-f8803f497ad4,75 -1833-200619-4,6,100,0.05,403c2d3c-3dae-4af2-b36d-83cf8b91c0fb,101 -1833-200619-4,6,100,0.05,d5e9dda8-c5eb-448d-933c-b9ce23dd5902,109 -1833-200619-4,6,100,0.05,de4e5e22-d1d6-4a4d-8fec-ef3219c5d5fc,80 -1833-200619-4,6,100,0.05,c46da61e-5eb8-46dd-b399-cb27e195ec35,89 -1833-260619-4,6,100,0.05,b4ce78b7-d09c-4b35-86ba-c258a7fd6cf4,182 -1833-260619-1,6,100,0.05,b4ce78b7-d09c-4b35-86ba-c258a7fd6cf4,102 -1833-260619-1,6,100,0.05,43f4ddd2-5ccc-4afb-b43f-22b0cbab6279,108 -1833-260619-1,6,100,0.05,9c177eab-36b8-4288-b89d-9368b7b96e2a,112 -1833-260619-2,6,100,0.05,8aac20f0-160f-4cc0-921e-c3db97a7e8f1,140 -1833-260619-2,6,100,0.05,7b36f452-222f-4d0f-b3f3-3c984e0f6ec2,144 -1833-260619-2,6,100,0.05,21026732-ebf7-49b7-b3ce-b01ffddf603f,156 -1833-260619-2,6,100,0.05,97ecf9a9-8823-49e3-8d83-e7db1b2e915d,170 -1833-260619-3,6,100,0.05,5fb73ac3-40d4-4152-a506-de8c0d502ebe,142 -1833-260619-4,6,100,0.05,3739c7f8-39e6-45f6-aa9e-d46952816e2a,184 -1833-260619-4,6,100,0.05,70219b23-7421-40ef-acb0-99d612e35537,200 -1833-260619-4,6,100,0.05,48731479-d41f-4898-8c2f-aee6dbb8c983,214 -1833-260619-4,6,100,0.05,11253d04-3f93-41e8-9aa2-4502d631f34e,218 -1833-260619-4,6,100,0.05,98d95bae-0e6f-449c-9923-8753820c2b64,80 -1833-290519-1,6,100,0.05,3874d7bd-5e71-42fe-a32d-d5ec94774c26,124 -1833-290519-1,6,100,0.05,72b517bc-403c-44b7-a22b-ccce17a9f531,132 -1833-290519-1,6,100,0.05,1ba61dd3-4f40-4f65-8560-1b4988a179e8,142 -1833-290519-1,6,100,0.05,8706f2d2-2c53-40d7-8b24-b0e65e72bb1c,150 -1833-290519-1,6,100,0.05,36a75459-7464-4619-aaf7-31d752ee8e83,154 -1833-290519-1,6,100,0.05,174d10bc-8f12-42f9-a79e-1284d5055f97,166 -1833-290519-1,6,100,0.05,228a3e7e-5e13-4c9a-a9de-cbf8b12cf95a,89 -1833-290519-2,6,100,0.05,976ae92f-87d8-403e-abb6-97d9514db949,76 -1833-290519-3,6,100,0.05,7af41fe8-eb72-4629-8a79-481d1ff5e373,125 -1833-290519-3,6,100,0.05,d984d89c-250d-40af-a86f-8cfc6a6513b9,141 -1833-290519-3,6,100,0.05,de287c1f-fd48-4b18-b1d6-5dc4eb18c93c,147 -1833-290519-3,6,100,0.05,c003fb49-3b59-4dec-957f-b83249a6cbb6,149 -1833-290519-3,6,100,0.05,0f291093-c33b-4614-ad43-74f353c7662e,151 -1833-290519-3,6,100,0.05,9cabed8b-26ac-4dba-bf9f-620dee3a24f7,155 -1833-290519-4,6,100,0.05,2f7c00b2-2b59-49bb-ac3e-5776ef1fd628,65 -1833-290519-4,6,100,0.05,185f9a41-d718-479e-a9c1-1a336ce55980,79 -1833-290519-4,6,100,0.05,59b005fe-d706-40ec-b9ea-ba82dc553205,90 -1833-010719-1,7,100,0.05,1762e942-7c2d-4d03-9ef0-fe603c828788,114 -1833-010719-1,7,100,0.05,64f39f10-ee1a-434b-87e4-74c0f74394b9,132 -1833-010719-2,7,100,0.05,64f39f10-ee1a-434b-87e4-74c0f74394b9,217 -1833-010719-1,7,100,0.05,0ec4ca85-7869-437b-bf87-cbc8bf104682,54 -1833-010719-2,7,100,0.05,9b0c0a7d-a892-46e1-a8fb-3971e2a1612e,211 -1833-010719-2,7,100,0.05,71fe68ed-e519-48b0-847a-f2f8c1d629bf,213 -1833-050619-2,7,100,0.05,aa0b7db7-13b2-4b69-971c-b3aec0eea645,66 -1833-050619-3,7,100,0.05,aa0b7db7-13b2-4b69-971c-b3aec0eea645,105 -1833-060619-1,7,100,0.05,19d857bc-8636-4474-b1bc-3d0c41c4407c,139 -1833-060619-2,7,100,0.05,5088f6c5-7539-4aad-80b3-d40a35ae61f1,58 -1833-120619-2,7,100,0.05,b1d528f9-e0f6-41e1-b98b-d7a3ccfa0dbc,85 -1833-120619-3,7,100,0.05,d4263fed-5f10-4af5-bd35-b4e2847592e8,120 -1833-120619-4,7,100,0.05,e48f6f36-983f-4216-a1c7-a598a8ce561b,65 -1833-200619-3,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,65 -1833-200619-4,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,68 -1833-200619-1,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,143 -1833-200619-2,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,261 -1833-200619-2,7,100,0.05,74db72d7-a48b-4d98-b68d-890ea7ee3ffb,203 -1833-200619-2,7,100,0.05,e0dac4a4-1530-42c7-8da1-c176b6c55bfa,204 -1833-200619-3,7,100,0.05,bed1c8ae-1f7d-46db-a3dc-af3ce9fad396,53 -1833-260619-1,7,100,0.05,597a49e0-d445-4452-9af7-b9db0488f573,98 -1833-260619-3,7,100,0.05,f96a458c-0715-4732-b502-f08bbfe0f449,103 -1833-260619-3,7,100,0.05,9a1550ae-203e-4e74-8e82-f98ad50ccac3,105 -1833-260619-4,7,100,0.05,fed1a5c4-acd2-4dbc-9325-7c5ce42e0f29,177 -1833-290519-1,7,100,0.05,4f257d47-b65f-466b-a493-69e4902b3ec5,106 -1833-290519-1,7,100,0.05,e1a3376d-1280-4a83-8235-f5ab8f3cac22,116 -1833-290519-1,7,100,0.05,733aa07b-e73f-4a4a-a954-cd6493b21f9d,129 -1833-290519-1,7,100,0.05,f04a80d4-083a-4f7f-bf63-e3e078bcf730,136 -1833-290519-1,7,100,0.05,a2180cfb-24e6-4b67-97a0-c9585fecda97,74 -1833-290519-1,7,100,0.05,8187534a-aa00-4ff9-aabb-356434ada9bd,82 -1833-290519-2,7,100,0.05,d762e3e5-5c37-4036-89bb-b2ad773fdf68,126 -1833-290519-2,7,100,0.05,65e44135-6c47-42a3-a199-1d0e666bba23,130 -1833-290519-2,7,100,0.05,e100fec4-122b-4de5-b1c0-78e60117aa73,97 -1833-290519-2,7,100,0.05,cafa506a-136c-46db-a949-72f54a250200,98 -1833-290519-3,7,100,0.05,a606539a-0bae-443d-9e23-8f04f12f0766,103 -1833-290519-3,7,100,0.05,11166f49-8b3e-4120-b18a-e6db4cdc278d,113 -1833-290519-3,7,100,0.05,43cc73f9-d76b-4ba7-a3ee-88d70f26e366,129 -1833-290519-3,7,100,0.05,051e75ab-ce84-450e-8489-3faf7f4bcb32,82 -1833-290519-4,7,100,0.05,837b559d-1284-4f07-9dc0-20bee50697ef,67 -1833-290519-4,7,100,0.05,546e963b-d509-4790-8811-6c0c8a1d580c,75 -1833-290519-4,7,100,0.05,edcbf7bc-de11-4821-bd20-e6d614cce147,77 -1833-290519-4,7,100,0.05,082497ec-eb32-43f5-b32c-c76f57ec54b7,94 -1834-010319-1,0,100,0.05,8d8cecbe-e2e5-4020-9c94-9573ca55cdfc,2 -1834-010319-1,0,100,0.05,5b7fc3e8-b76d-4eed-a876-9ba184e508ac,39 -1834-010319-3,0,100,0.05,1b42831d-5d71-4cb1-ba85-b5019b56ca2e,1 -1834-010319-3,0,100,0.05,270fb3b3-3a7d-4060-bc1a-bc68d2ecab1a,12 -1834-010319-3,0,100,0.05,6da7e1db-2d4f-4bd7-b45c-a1855aaa2fec,72 -1834-110319-5,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,98 -1834-110319-2,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,108 -1834-110319-1,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,65 -1834-060319-1,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,7 -1834-010319-4,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,7 -1834-060319-4,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,3 -1834-110319-3,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,101 -1834-060319-1,0,100,0.05,2f1ea23c-f3cb-4ae5-b49b-bc701b76a4d2,70 -1834-060319-1,0,100,0.05,e10985d6-b9db-4588-a874-b24042b4fd86,71 -1834-060319-1,0,100,0.05,4b6d17c4-e9f1-4fa7-8cda-f9858463976f,72 -1834-110319-6,0,100,0.05,7981bfb8-c5f3-4ebc-a77c-ca8f3e994baa,2 -1834-060319-1,0,100,0.05,7981bfb8-c5f3-4ebc-a77c-ca8f3e994baa,73 -1834-060319-1,0,100,0.05,46f9e835-eaad-483a-8ead-894b5b707412,74 -1834-060319-1,0,100,0.05,a0e8d73d-1a5e-4197-a007-320965f34b36,79 -1834-060319-3,0,100,0.05,b1e762c4-48d9-4068-898d-86974b0087a9,4 -1834-110319-1,0,100,0.05,ebea63c6-c99d-4bea-aaae-e1e27c578394,0 -1834-110319-2,0,100,0.05,846c2733-3d6b-4c4e-9e1c-0b81effd8afa,11 -1834-110319-6,0,100,0.05,6de5fbce-681b-4984-a217-eedb007e186d,0 -1834-110319-6,0,100,0.05,47585fef-ccec-4f98-a41d-87acb4d40e9a,1 -1834-110319-6,0,100,0.05,0b288ce6-3a2e-4d6b-ab4c-5a93a7e60482,10 -1834-110319-6,0,100,0.05,2ab88543-2f0a-416f-955e-28acbc3e3c01,13 -1834-110319-6,0,100,0.05,3ab1852f-441b-4df7-910a-10b11e0ff9e0,15 -1834-110319-6,0,100,0.05,4cfb9722-0610-49fc-8e53-55466c031484,3 -1834-110319-6,0,100,0.05,9fee9f21-928b-4dfe-98ba-25a6e7b337ca,32 -1834-110319-6,0,100,0.05,3bc0c979-0826-4380-9453-c914068c90b3,33 -1834-110319-6,0,100,0.05,9ccfd173-ed14-4285-bd7e-352a5bcbc87b,34 -1834-110319-6,0,100,0.05,c08e4484-e2c0-49d8-a8da-58f06ad2b246,38 -1834-110319-6,0,100,0.05,b8de7f7d-f528-410d-8474-7ad25d5ab5d0,4 -1834-110319-6,0,100,0.05,a0815321-446d-4b33-9ac1-cf67e37ceb34,5 -1834-110319-6,0,100,0.05,19bdbb74-b915-4512-9c09-9502aafeb60e,6 -1834-110319-6,0,100,0.05,f3e87902-fcd1-4495-961a-bb5ddbab0a79,7 -1834-110319-6,0,100,0.05,32819f71-1c5b-430e-b54b-8781d23545c9,8 -1834-110319-6,0,100,0.05,2ba7d0e5-271c-4b3a-9a0d-db998e1a8b93,9 -1834-120319-4,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,85 -1834-120319-2,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,39 -1834-120319-3,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,36 -1834-150319-3,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,71 -1834-150319-2,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,2 -1834-120319-1,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,1 -1834-150319-4,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,0 -1834-150319-1,0,100,0.05,6127b4e7-d305-47a2-9918-41c78332e473,3 -1834-150319-3,0,100,0.05,b01c341d-27d6-4998-8f86-798adaeb1235,75 -1834-220319-4,0,100,0.05,1dd2beaf-6024-4729-831f-5a0a603750c2,0 -1834-220319-1,0,100,0.05,1dd2beaf-6024-4729-831f-5a0a603750c2,81 -1834-220319-3,0,100,0.05,1dd2beaf-6024-4729-831f-5a0a603750c2,1 -1834-220319-2,0,100,0.05,1dd2beaf-6024-4729-831f-5a0a603750c2,1 -1834-220319-1,0,100,0.05,61b40d6d-5c2e-44f2-8158-e7263ed06316,87 -1834-010319-1,1,100,0.05,21803ca3-72ba-424b-aaaf-deb12a45d78e,48 -1834-010319-3,1,100,0.05,b2584c67-7454-42da-a3d2-f904642c4eca,18 -1834-010319-4,1,100,0.05,f274686c-a787-49cb-adfc-52aab715a2a0,10 -1834-060319-2,1,100,0.05,62aa3646-a09f-4b96-9474-87ef0270e4dc,104 -1834-110319-6,1,100,0.05,6ea22814-3e2f-4406-a5d8-9506182ac3bf,11 -1834-110319-6,1,100,0.05,5decd312-b1b0-4a64-b050-3e6dfdef0985,12 -1834-110319-6,1,100,0.05,d7d3e18c-64dd-4d4e-8e62-60ae90c3eb68,19 -1834-110319-6,1,100,0.05,649eb14c-d406-4a2c-8656-ffb41f750a44,35 -1834-110319-6,1,100,0.05,9a0555df-7558-47b7-8e96-8dcf4bd18d6e,36 -1834-120319-1,1,100,0.05,2ad8f0f5-6014-4290-b626-423f0e10b302,3 -1834-120319-2,1,100,0.05,56260407-e50d-4c97-a804-6e7baa9c61a5,41 -1834-120319-3,1,100,0.05,56260407-e50d-4c97-a804-6e7baa9c61a5,38 -1834-150319-1,1,100,0.05,28cbfc7c-6d74-4f28-8fd1-461936de2358,4 -1834-150319-1,1,100,0.05,c42c66ef-f2a6-457b-828b-aadb694c0bbf,46 -1834-150319-1,1,100,0.05,8938cfa5-a56f-4b88-831f-54a5750f3753,50 -1834-150319-1,1,100,0.05,57b45bb9-bf68-46b1-883c-7d8e2824465a,7 -1834-110319-5,2,100,0.05,b0ddfc21-eac7-4d23-94c8-74205c283074,18 -1834-110319-3,2,100,0.05,b0ddfc21-eac7-4d23-94c8-74205c283074,47 -1834-060319-2,2,100,0.05,b0ddfc21-eac7-4d23-94c8-74205c283074,113 -1834-110319-6,2,100,0.05,b0ddfc21-eac7-4d23-94c8-74205c283074,16 -1834-110319-6,2,100,0.05,e79f23b4-36cc-4332-a1d2-2d92916574d3,17 -1834-120319-2,2,100,0.05,47f0ff5d-19fd-4d3f-b08a-a53b951091dd,43 -1834-120319-2,2,100,0.05,6b812817-7de4-4c43-9071-87a6e0eb16e9,51 -1834-120319-3,2,100,0.05,176f0847-e8ff-48de-b00c-7041fe6ccf7a,70 -1834-220319-3,2,100,0.05,49062e70-cd84-41e7-884f-fc39bf606a61,46 -1834-220319-2,2,100,0.05,49062e70-cd84-41e7-884f-fc39bf606a61,49 -1834-120319-4,2,100,0.05,49062e70-cd84-41e7-884f-fc39bf606a61,75 -1834-220319-1,2,100,0.05,49062e70-cd84-41e7-884f-fc39bf606a61,83 -1834-220319-2,2,100,0.05,53facde3-31aa-4b3c-ae1d-8ba05102aeba,7 -1834-220319-1,2,100,0.05,53facde3-31aa-4b3c-ae1d-8ba05102aeba,73 -1834-220319-3,2,100,0.05,53facde3-31aa-4b3c-ae1d-8ba05102aeba,29 -1834-220319-1,2,100,0.05,30731c3c-fc81-476b-a5ed-e45e384ad271,79 -1834-220319-4,2,100,0.05,1f9a6593-5dc9-49ec-bea3-96d9d179e512,60 -1834-010319-3,3,100,0.05,fe6b98b7-b08f-46c3-b197-717d7ac6f245,76 -1834-010319-1,3,100,0.05,fe6b98b7-b08f-46c3-b197-717d7ac6f245,52 -1834-010319-1,3,100,0.05,3ba001ec-8393-4e60-a70a-6f23689cc7c6,7 -1834-010319-1,3,100,0.05,a40cd8fa-85e2-4eaf-873b-de36a556df05,8 -1834-010319-3,3,100,0.05,db2d7bda-c1ce-4809-ba2b-df286218a836,87 -1834-010319-4,3,100,0.05,94f0e2a5-b6b9-42fa-bf40-a85f496c047b,21 -1834-010319-4,3,100,0.05,223784a7-1e7a-4a2c-97be-a79f659b1dea,22 -1834-010319-5,3,100,0.05,7f0a94ca-8426-4010-a5ef-981eda071851,11 -1834-010319-5,3,100,0.05,eb7513a2-6f64-4338-8caa-68080aef7e5b,28 -1834-060319-1,3,100,0.05,2511b026-4c2b-45bb-8166-3eaa612051c2,33 -1834-060319-1,3,100,0.05,b70b3da6-1125-40dd-82dd-ec3fa3db417d,85 -1834-060319-3,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,13 -1834-060319-1,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,95 -1834-060319-4,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,8 -1834-110319-3,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,41 -1834-060319-2,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,24 -1834-060319-2,3,100,0.05,6998c3fc-df7f-411c-8ac8-94a60572d264,25 -1834-060319-4,3,100,0.05,f3bfae78-b5a5-4828-8f53-c4767ce7fdca,10 -1834-110319-2,3,100,0.05,f6c82c9e-cb12-4f2c-894a-35723b3749af,16 -1834-110319-5,3,100,0.05,6a7ce2c1-0666-475b-8070-eedbd63a61a4,24 -1834-110319-6,3,100,0.05,ef950b3e-ea88-40b0-bc63-10dd7aacbda4,18 -1834-110319-6,3,100,0.05,ce41ad74-51d1-48da-a5eb-6792b85b875d,20 -1834-120319-2,3,100,0.05,2a18ec75-3fa9-4a88-b7e5-c71bb62ca664,15 -1834-120319-1,3,100,0.05,2a18ec75-3fa9-4a88-b7e5-c71bb62ca664,8 -1834-120319-3,3,100,0.05,2a18ec75-3fa9-4a88-b7e5-c71bb62ca664,62 -1834-120319-2,3,100,0.05,4de967b3-d33b-4fb9-b252-db44516daae7,6 -1834-120319-4,3,100,0.05,5b143707-4cca-4f8f-bd1e-5814f4a28844,59 -1834-150319-1,3,100,0.05,dd4c2fd0-e0c2-415e-bfe4-9d54206beeea,13 -1834-150319-1,3,100,0.05,0ba98218-f2ec-43ab-847f-267e3ee8afde,14 -1834-150319-1,3,100,0.05,dd6224b5-4778-4783-bdc0-8f597f735da0,2 -1834-150319-1,3,100,0.05,ef0a9a01-2d2c-44c4-8f14-37afa5e63647,6 -1834-150319-2,3,100,0.05,9153df66-9e1b-43c6-8acd-e7085a1ac2a5,13 -1834-150319-3,3,100,0.05,4a0295a2-7d5c-42b3-b9aa-b0c93365df3f,61 -1834-150319-4,3,100,0.05,4a0295a2-7d5c-42b3-b9aa-b0c93365df3f,5 -1834-150319-2,3,100,0.05,4a0295a2-7d5c-42b3-b9aa-b0c93365df3f,46 -1834-150319-3,3,100,0.05,5ff23f28-4a5d-4134-81e1-fed44609a759,8 -1834-150319-4,3,100,0.05,559a6570-9569-4558-bcdb-448b1348d7f7,6 -1834-220319-4,3,100,0.05,19cf14a4-2ceb-4136-95ff-3b1438215b7c,10 -1834-220319-1,3,100,0.05,19cf14a4-2ceb-4136-95ff-3b1438215b7c,11 -1834-220319-2,3,100,0.05,19cf14a4-2ceb-4136-95ff-3b1438215b7c,8 -1834-220319-3,3,100,0.05,19cf14a4-2ceb-4136-95ff-3b1438215b7c,10 -1834-010319-1,4,100,0.05,d39540f9-4027-4b06-9fa1-b5e968e1a5b8,13 -1834-010319-1,4,100,0.05,5b81c62a-a955-4676-821a-62ce6d61ce02,62 -1834-010319-3,4,100,0.05,b411df58-a646-4e67-86dd-460ae708cf8f,34 -1834-010319-3,4,100,0.05,490cf9ad-16ad-42ce-8a04-6c3d8a708df4,36 -1834-010319-3,4,100,0.05,9156f9be-93dd-47f5-85da-6e2c8c2d9893,66 -1834-010319-3,4,100,0.05,3fff0d92-7f50-4e58-bc30-228e3b0602d4,90 -1834-010319-4,4,100,0.05,577bcaed-8c9f-49cb-8213-ccc5cc1640e5,29 -1834-010319-4,4,100,0.05,ef8234ff-bbc9-45cf-9740-f5fa58c024c3,35 -1834-010319-4,4,100,0.05,547bb552-e70e-4a7b-b99e-170c15a51086,53 -1834-060319-2,4,100,0.05,91cd5995-d7e2-4375-9e42-c9b23b42ea8a,115 -1834-060319-3,4,100,0.05,3f7b9a2a-6344-4866-9bef-1769dafe85d8,19 -1834-060319-4,4,100,0.05,f1f3c059-f278-473e-aad3-65ea1170547a,13 -1834-110319-1,4,100,0.05,439a91a0-9aab-4923-998e-08640301faf8,11 -1834-110319-2,4,100,0.05,439a91a0-9aab-4923-998e-08640301faf8,19 -1834-110319-5,4,100,0.05,86de97fd-7764-43ee-a8bf-22cdd4485495,76 -1834-110319-6,4,100,0.05,2e5f1562-1a2d-498b-9d3c-1b58c2f717ef,14 -1834-110319-6,4,100,0.05,bcc067ce-6acd-4008-a640-14a2db8a5e9b,21 -1834-110319-6,4,100,0.05,5e63df13-1179-4aa9-a2fd-dfcf1e34c1fe,22 -1834-110319-6,4,100,0.05,7ec25768-1914-4f77-a512-b03db7df23bc,23 -1834-110319-6,4,100,0.05,a14e41bd-f7a3-4fbe-bb49-9b3ee4076c0e,25 -1834-110319-6,4,100,0.05,77f80209-b291-4117-9d28-281f5f121cc2,37 -1834-120319-3,4,100,0.05,253602e5-3601-47d7-a93b-efa594626cfc,40 -1834-120319-3,4,100,0.05,cd82ec27-a62d-4cec-a175-536f3e3eb679,95 -1834-150319-1,4,100,0.05,5f23447f-3696-4b23-af28-2654817c53e4,0 -1834-150319-1,4,100,0.05,8e3ae26f-b7a2-4380-a076-25955a694981,23 -1834-150319-1,4,100,0.05,86738cdc-03db-4ba9-b0e6-31ce0774ae7c,40 -1834-150319-1,4,100,0.05,b0974a77-48ad-430a-b784-7161ebae40a6,5 -1834-150319-1,4,100,0.05,3ba94f01-0b4b-4064-9a07-4a76426c85ff,52 -1834-150319-2,4,100,0.05,aa901574-de25-4cc7-a731-2f08f0552340,54 -1834-220319-1,4,100,0.05,c7a2d252-be0f-4d05-9a73-72e1f906217e,65 -1834-220319-2,4,100,0.05,c7a2d252-be0f-4d05-9a73-72e1f906217e,34 -1834-220319-2,4,100,0.05,1811346b-fc57-49d9-8cb9-0b8e4c8a87ba,47 -1834-220319-4,4,100,0.05,95ca94b3-cc12-44cc-8373-7d7a72978bb0,51 -1834-220319-3,4,100,0.05,95ca94b3-cc12-44cc-8373-7d7a72978bb0,15 -1834-220319-4,4,100,0.05,e381690f-d8c2-43a1-b165-6999a0ce71a3,36 -1834-220319-4,4,100,0.05,d72055ec-3d6c-4f51-9532-9ecc003a579c,63 -1834-220319-4,4,100,0.05,69fac4f7-c7a7-4b61-ae2b-8a563091df30,65 -1834-010319-1,5,100,0.05,522704b2-09a6-45fb-bb8c-030f4882209b,16 -1834-010319-1,5,100,0.05,ff16cfb6-2ce1-4e27-bc65-e3944af6a9ae,18 -1834-010319-3,5,100,0.05,2f7ae3da-6432-4c50-b8a3-e201d9106a0f,41 -1834-010319-4,5,100,0.05,c6bed0ab-cfaa-4224-88ae-ddbe99ef3f71,37 -1834-010319-3,5,100,0.05,c6bed0ab-cfaa-4224-88ae-ddbe99ef3f71,42 -1834-010319-4,5,100,0.05,87d3fa39-7cfa-4269-9dfd-df9aea14adf9,36 -1834-010319-5,5,100,0.05,dfe22f82-7b12-4b31-ba8d-55a1884af901,14 -1834-010319-5,5,100,0.05,cf2875a5-4494-4981-8e69-8b31f9fd7323,15 -1834-060319-1,5,100,0.05,da79e2f5-8c8d-41ee-b625-f8791ceeda86,87 -1834-060319-2,5,100,0.05,543d8609-1db7-4280-9968-24183bfd2906,34 -1834-060319-4,5,100,0.05,407035f4-e46d-4c01-b946-799585b8856b,15 -1834-060319-3,5,100,0.05,407035f4-e46d-4c01-b946-799585b8856b,25 -1834-060319-2,5,100,0.05,407035f4-e46d-4c01-b946-799585b8856b,35 -1834-060319-3,5,100,0.05,4151eadf-f305-4e87-b46a-698643dd8e6f,24 -1834-060319-3,5,100,0.05,216d6ace-2937-48b4-8dd8-0913e7faa6bd,26 -1834-110319-1,5,100,0.05,75010fbf-bc00-4d61-8aa0-e710e452cf05,14 -1834-060319-4,5,100,0.05,75010fbf-bc00-4d61-8aa0-e710e452cf05,16 -1834-060319-4,5,100,0.05,1760b858-a580-49d0-97f6-561b74cf2396,17 -1834-110319-1,5,100,0.05,571d5c7c-a0b4-49a8-a36f-6abd876228a1,16 -1834-110319-2,5,100,0.05,76f1123e-66e5-4fd4-b5d9-c3907d6b648d,28 -1834-110319-1,5,100,0.05,76f1123e-66e5-4fd4-b5d9-c3907d6b648d,28 -1834-110319-2,5,100,0.05,fe490f11-e3b4-45d9-ace9-ecfad9f9c724,29 -1834-110319-2,5,100,0.05,b8692464-8523-4aaa-a874-41bd1de2cfc8,31 -1834-110319-5,5,100,0.05,ae77d32d-0215-4bb1-adfd-f689a7e5f1fb,27 -1834-110319-6,5,100,0.05,86aa2ce4-1ee7-47ee-a56e-93ad5d46cc48,24 -1834-110319-6,5,100,0.05,f33d3afa-7bd5-48f6-8125-3f394bf0b9e4,26 -1834-120319-4,5,100,0.05,c8d27f7e-636a-4286-9582-0e9646097103,69 -1834-120319-2,5,100,0.05,c8d27f7e-636a-4286-9582-0e9646097103,21 -1834-120319-3,5,100,0.05,c8d27f7e-636a-4286-9582-0e9646097103,23 -1834-120319-1,5,100,0.05,c8d27f7e-636a-4286-9582-0e9646097103,11 -1834-120319-3,5,100,0.05,3b4a4c86-4ba1-4d6e-948f-971c4edba71a,68 -1834-120319-4,5,100,0.05,7446accc-cff0-4677-95e2-0137216a8440,73 -1834-120319-4,5,100,0.05,08dff0b6-ee9d-4dd4-8ee1-50eb91cec0b1,83 -1834-150319-1,5,100,0.05,ed3aa6f5-66f9-4250-90b2-204444b10d7b,24 -1834-150319-1,5,100,0.05,c61b9d65-b0c2-4523-99b8-02b4eca00bb8,25 -1834-150319-1,5,100,0.05,ef7cab07-403a-4107-b54c-20c785056ee1,28 -1834-150319-1,5,100,0.05,78cba31b-aafe-4047-a9d6-b73e269ad5da,51 -1834-150319-1,5,100,0.05,34f2fa3b-e9f7-4da5-a7d1-b70baa06aeb1,58 -1834-150319-1,5,100,0.05,7cf9c71d-774e-406a-b5b9-72510f6795cf,60 -1834-150319-2,5,100,0.05,f3286a38-4547-4bf4-badb-16cd331330df,48 -1834-150319-4,5,100,0.05,b0dbfb9b-453c-4e07-b959-d3c441df475f,13 -1834-150319-3,5,100,0.05,b0dbfb9b-453c-4e07-b959-d3c441df475f,47 -1834-150319-3,5,100,0.05,905b5fd1-15e0-49ba-9f3e-f7b9e283666a,67 -1834-150319-4,5,100,0.05,e44b5dcf-1cd0-4a7d-8460-e60628ddd759,11 -1834-150319-4,5,100,0.05,7cec5ff3-e357-4407-bf60-c3446835e83b,12 -1834-150319-4,5,100,0.05,d98c413a-f6b7-4849-9173-164300b4c4d6,15 -1834-150319-4,5,100,0.05,26c0d69c-e38e-4116-8a82-a3d51f776a65,16 -1834-150319-4,5,100,0.05,78f5d701-e84d-4601-9cfb-64a1ee4b5e40,36 -1834-220319-1,5,100,0.05,75172998-5a05-4cc4-9d31-e9447ea46109,77 -1834-060319-1,6,100,0.05,c3c94665-f545-4787-8d08-b87ddfe9ae6a,55 -1834-010319-1,6,100,0.05,c3c94665-f545-4787-8d08-b87ddfe9ae6a,21 -1834-010319-1,6,100,0.05,2c8f6dd9-c082-4a48-9753-5915e8b91462,22 -1834-010319-3,6,100,0.05,2c8f6dd9-c082-4a48-9753-5915e8b91462,55 -1834-010319-3,6,100,0.05,896eb6e1-ded3-4a36-8e9c-eff8355dd3ae,53 -1834-010319-3,6,100,0.05,ae038ebf-a9b8-47eb-b7dc-db92e04ad58e,91 -1834-010319-4,6,100,0.05,cbb22f3a-4bee-4444-b4e2-799442e2440e,44 -1834-010319-5,6,100,0.05,cbb22f3a-4bee-4444-b4e2-799442e2440e,35 -1834-010319-4,6,100,0.05,9b13e925-1dbe-4ecd-b9fa-c81e88545124,46 -1834-010319-5,6,100,0.05,9b13e925-1dbe-4ecd-b9fa-c81e88545124,20 -1834-010319-5,6,100,0.05,618e327b-02a1-4ee5-9f8d-8946ebd7dbb9,33 -1834-060319-3,6,100,0.05,ff3bdb13-a958-4747-aec0-0e7b5015d167,32 -1834-060319-1,6,100,0.05,ff3bdb13-a958-4747-aec0-0e7b5015d167,58 -1834-060319-2,6,100,0.05,ff3bdb13-a958-4747-aec0-0e7b5015d167,39 -1834-060319-2,6,100,0.05,88ee3e9c-094a-4dbb-94d4-4d920fbedeaf,122 -1834-060319-3,6,100,0.05,88ee3e9c-094a-4dbb-94d4-4d920fbedeaf,43 -1834-060319-2,6,100,0.05,b9a9735d-ac74-409f-b57e-96cd3f6c23db,40 -1834-060319-4,6,100,0.05,348f5741-0723-496a-b70d-4974dde437bb,19 -1834-060319-3,6,100,0.05,348f5741-0723-496a-b70d-4974dde437bb,30 -1834-060319-2,6,100,0.05,348f5741-0723-496a-b70d-4974dde437bb,45 -1834-060319-3,6,100,0.05,cdce8614-b617-469b-83ac-5cd96d1f5dcc,28 -1834-060319-4,6,100,0.05,029abb33-3e58-4e28-aa93-171d5a527358,21 -1834-060319-4,6,100,0.05,2409a8ee-38fc-449c-a859-ac2cdd93373e,22 -1834-110319-1,6,100,0.05,700a38c7-8a53-4b02-ac3c-7d167f01f767,20 -1834-110319-1,6,100,0.05,94adf144-718a-44d3-8833-cb3352d1375e,44 -1834-110319-2,6,100,0.05,482f3fab-9f17-4973-bb4d-e73d74a1f0c9,34 -1834-110319-2,6,100,0.05,58050493-b5c9-4e28-92c8-4d35fbbe7cad,38 -1834-120319-2,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,55 -1834-120319-1,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,33 -1834-120319-3,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,56 -1834-150319-4,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,21 -1834-150319-3,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,23 -1834-120319-4,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,55 -1834-150319-2,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,26 -1834-150319-1,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,29 -1834-110319-2,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,39 -1834-110319-2,6,100,0.05,e044724f-898b-4a4e-b827-bd0a7c550558,77 -1834-110319-2,6,100,0.05,e6c8fbc1-d313-43c6-9874-ca1cbbb53034,87 -1834-110319-3,6,100,0.05,54393b15-29dc-4090-bd33-33a4e58d30b3,70 -1834-110319-3,6,100,0.05,c46a271d-e179-49de-804a-a5e6b1ed005d,83 -1834-110319-5,6,100,0.05,fc8fce58-b610-4a7e-9155-a036fcb65f20,30 -1834-110319-5,6,100,0.05,e7ade0ce-eba8-4264-908d-fd98e075b45c,31 -1834-110319-6,6,100,0.05,8edcf618-65c3-4c29-bc68-bbf33ba61b28,27 -1834-110319-6,6,100,0.05,220f77b1-bd02-44d4-b77d-70c2dd5cf76e,28 -1834-110319-6,6,100,0.05,4a8ff338-874e-4df9-ab6f-66f9ff8802e7,29 -1834-120319-3,6,100,0.05,b75d4e80-934d-4397-b84f-726428c39452,66 -1834-120319-2,6,100,0.05,b75d4e80-934d-4397-b84f-726428c39452,23 -1834-120319-1,6,100,0.05,b75d4e80-934d-4397-b84f-726428c39452,31 -1834-120319-4,6,100,0.05,b75d4e80-934d-4397-b84f-726428c39452,71 -1834-150319-1,6,100,0.05,07c6d593-bc4d-4c03-a225-914994307c93,31 -1834-150319-1,6,100,0.05,4560db66-6ee4-4fdf-9ec4-13056b4c901d,32 -1834-150319-1,6,100,0.05,74c719a4-9fec-470a-b109-3f18b8b6daf0,33 -1834-150319-1,6,100,0.05,0394bb61-bc1a-441f-941a-b953b1bed519,34 -1834-150319-3,6,100,0.05,6ddd9f4e-73cc-423a-92ef-17da522124d4,65 -1834-220319-1,6,100,0.05,6ddd9f4e-73cc-423a-92ef-17da522124d4,24 -1834-150319-4,6,100,0.05,6ddd9f4e-73cc-423a-92ef-17da522124d4,20 -1834-150319-2,6,100,0.05,6ddd9f4e-73cc-423a-92ef-17da522124d4,27 -1834-150319-2,6,100,0.05,a45ca2f9-1297-484c-b339-79aac024ee52,28 -1834-150319-3,6,100,0.05,396cdcd8-9762-4df0-b3de-4987686f3289,59 -1834-150319-3,6,100,0.05,1baa7585-a9d3-408e-8ac9-f693847aff0e,63 -1834-150319-4,6,100,0.05,23c8a0fc-3166-4ac9-a595-e7821ec480bc,22 -1834-220319-1,6,100,0.05,5e249ee3-ad31-4c74-9548-a8c3e2fff820,26 -1834-220319-1,6,100,0.05,c49d1950-738d-4811-a058-b20f88a193de,41 -1834-220319-1,6,100,0.05,cdca162e-30ed-4666-b61c-2efd2a4340eb,69 -1834-220319-1,6,100,0.05,3a82e937-9e66-4127-89a1-0b01b23db625,75 -1834-220319-2,6,100,0.05,4bd6fe3c-a6b2-4bb0-9633-33cdcd9ba705,17 -1834-220319-2,6,100,0.05,740822e8-e0b2-46a6-9758-c3a0b70c5b05,18 -1834-220319-2,6,100,0.05,c429d0a9-9be0-45df-a1f4-41268b4fc4e9,19 -1834-220319-2,6,100,0.05,62584f57-ca55-4e28-8573-3f51dffb8451,43 -1834-220319-2,6,100,0.05,6baff7ec-f845-423b-ad61-d966565787c2,45 -1834-220319-4,6,100,0.05,a4dc49d9-f0ff-419d-b97a-42f68b77c53f,39 -1834-220319-3,6,100,0.05,a4dc49d9-f0ff-419d-b97a-42f68b77c53f,22 -1834-220319-4,6,100,0.05,5d3d9ce1-47e6-4ed9-a559-155642d92940,29 -1834-220319-3,6,100,0.05,5d3d9ce1-47e6-4ed9-a559-155642d92940,30 -1834-220319-3,6,100,0.05,6c9bdd92-e414-4dab-acc0-e610d8786e3a,37 -1834-220319-4,6,100,0.05,6c9bdd92-e414-4dab-acc0-e610d8786e3a,30 -1834-010319-1,7,100,0.05,9f64ab71-d4af-4faf-af97-9b7f0013081a,24 -1834-010319-1,7,100,0.05,a557ca37-7395-4ecf-bb62-a475a84fb1ad,25 -1834-010319-3,7,100,0.05,0e42cb05-a37f-4814-a8c6-3ab5aca9221b,57 -1834-010319-3,7,100,0.05,c1a50673-2c38-4b07-8e47-86ea8513c8d8,58 -1834-010319-3,7,100,0.05,85c5586d-e570-4b7e-a8f7-1ff49cb447e6,60 -1834-010319-3,7,100,0.05,65de03b0-4eca-458e-b5eb-1e17f9ba8e02,61 -1834-010319-3,7,100,0.05,f7ce0f84-fd1f-49b8-bf52-49d56821edeb,63 -1834-010319-5,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,19 -1834-220319-4,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,31 -1834-220319-3,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,25 -1834-010319-4,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,45 -1834-220319-2,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,20 -1834-010319-4,7,100,0.05,58c881af-4e62-4fed-9876-c5ac1115cb5d,48 -1834-010319-5,7,100,0.05,4af822fd-143c-4fe2-b56f-eabf75169042,23 -1834-010319-4,7,100,0.05,4af822fd-143c-4fe2-b56f-eabf75169042,49 -1834-010319-5,7,100,0.05,94067ab5-3b52-4a4d-bb18-ae8848ee2615,21 -1834-010319-5,7,100,0.05,e6122f99-975f-4c91-8b5c-aa06fe89f01e,39 -1834-060319-1,7,100,0.05,aed73f4e-6508-409a-8d60-6798cbd0b518,59 -1834-060319-1,7,100,0.05,6f084d87-69c4-45b1-aee9-ef1a9d5c72bb,91 -1834-060319-2,7,100,0.05,76b4f02c-0431-40c1-9d73-12c1e9928836,41 -1834-060319-3,7,100,0.05,83eb3ff5-34c5-4c52-a0a0-f9fcf416a63d,33 -1834-060319-2,7,100,0.05,83eb3ff5-34c5-4c52-a0a0-f9fcf416a63d,42 -1834-060319-3,7,100,0.05,954b6d61-0ab4-4ed2-960f-052e6d16c1cf,35 -1834-060319-4,7,100,0.05,954b6d61-0ab4-4ed2-960f-052e6d16c1cf,24 -1834-060319-2,7,100,0.05,954b6d61-0ab4-4ed2-960f-052e6d16c1cf,43 -1834-060319-3,7,100,0.05,7b67dc81-ff4e-4770-a2c3-bd3728838718,37 -1834-060319-4,7,100,0.05,7b67dc81-ff4e-4770-a2c3-bd3728838718,26 -1834-060319-2,7,100,0.05,7b67dc81-ff4e-4770-a2c3-bd3728838718,44 -1834-060319-2,7,100,0.05,17df4954-66a0-41c2-b93b-6a212a15dcbf,46 -1834-060319-4,7,100,0.05,17df4954-66a0-41c2-b93b-6a212a15dcbf,28 -1834-060319-3,7,100,0.05,17df4954-66a0-41c2-b93b-6a212a15dcbf,41 -1834-060319-3,7,100,0.05,910e4cb8-770f-40c1-8b92-061b06a9e61e,40 -1834-060319-4,7,100,0.05,2b6af1a6-53b5-44a4-b16b-5ce0ab32dbeb,23 -1834-110319-1,7,100,0.05,eddfa77e-265e-47b0-90c4-998827c1de59,30 -1834-060319-4,7,100,0.05,eddfa77e-265e-47b0-90c4-998827c1de59,29 -1834-110319-1,7,100,0.05,7aadcaab-1811-4119-ba97-72582aacc3d5,23 -1834-110319-2,7,100,0.05,7aadcaab-1811-4119-ba97-72582aacc3d5,41 -1834-110319-1,7,100,0.05,dc81331b-866b-4ef5-9622-5a0e4d66a3cd,24 -1834-110319-1,7,100,0.05,301f928d-9bff-41d3-b59a-4eea8b8aff3b,25 -1834-110319-2,7,100,0.05,301f928d-9bff-41d3-b59a-4eea8b8aff3b,45 -1834-110319-1,7,100,0.05,8710b843-b231-45c7-bc13-ec4f2dba8446,26 -1834-110319-2,7,100,0.05,433b2231-ad50-478e-8164-679421cf0ccc,104 -1834-110319-2,7,100,0.05,daabcdfd-a96e-43cc-ac43-1a0866844169,40 -1834-110319-2,7,100,0.05,197a14e8-de60-4d5a-8095-4cdea65fd953,47 -1834-110319-2,7,100,0.05,98d21c26-6788-47ee-b87a-49f3a99869ef,86 -1834-110319-2,7,100,0.05,8f7090c1-cbd6-4015-b84b-9b88ffad06d4,96 -1834-110319-3,7,100,0.05,b679f1c0-d67c-4fad-8192-70e7f4f023b7,27 -1834-110319-3,7,100,0.05,e9956c37-85a8-4b03-8299-a22f5ef8f8fb,28 -1834-110319-3,7,100,0.05,80ef6b02-8c15-4169-9653-682c8ddd9d2a,29 -1834-110319-3,7,100,0.05,d7859fa5-4842-4aea-ab94-97b682dfec57,30 -1834-110319-5,7,100,0.05,1784266c-4501-4ca6-8aa6-556ce33be57c,78 -1834-110319-5,7,100,0.05,556a17a1-034a-4488-9fe3-ec12bec9bf79,90 -1834-110319-6,7,100,0.05,b7019d04-22a1-4590-b647-196f5eca78e4,30 -1834-110319-6,7,100,0.05,f9acb26a-2be6-4cf9-b70f-93576eb4aa96,31 -1834-120319-2,7,100,0.05,6774f9bd-ab2b-422f-8782-a86406a0784d,26 -1834-120319-4,7,100,0.05,6774f9bd-ab2b-422f-8782-a86406a0784d,22 -1834-120319-3,7,100,0.05,6774f9bd-ab2b-422f-8782-a86406a0784d,28 -1834-120319-1,7,100,0.05,6774f9bd-ab2b-422f-8782-a86406a0784d,16 -1834-120319-1,7,100,0.05,1e409cd8-6a24-484e-82bd-f983d55d586e,17 -1834-120319-4,7,100,0.05,df59aeb2-3522-48f9-82a6-a99c57ad2c43,52 -1834-120319-2,7,100,0.05,df59aeb2-3522-48f9-82a6-a99c57ad2c43,61 -1834-120319-3,7,100,0.05,df59aeb2-3522-48f9-82a6-a99c57ad2c43,52 -1834-120319-2,7,100,0.05,f7d20998-98e8-441d-9f09-fc913783929a,78 -1834-150319-1,7,100,0.05,e0bad997-7e0a-42aa-be31-a9f8e3965047,37 -1834-150319-1,7,100,0.05,f73b436d-7446-44fb-bafa-840813dc1950,41 -1834-150319-1,7,100,0.05,307387cc-eec8-4845-bbcd-d8ca220fc421,44 -1834-150319-1,7,100,0.05,8ffdf1a6-9f30-41a2-8b58-581fb3494c10,45 -1834-150319-1,7,100,0.05,54842ca6-4b36-4923-ac70-7ab37022ab3d,47 -1834-150319-1,7,100,0.05,61897b3d-7ed6-4b66-9b94-bba15a124e30,56 -1834-150319-1,7,100,0.05,7cd8dd2a-bb72-47c9-a8e1-d2488684f465,74 -1834-150319-3,7,100,0.05,7cd8dd2a-bb72-47c9-a8e1-d2488684f465,53 -1834-150319-1,7,100,0.05,0bee56aa-9d70-489c-8d87-3c9f10cd2d2e,76 -1834-150319-1,7,100,0.05,e04fcc0d-11df-49ef-b374-5ab83413055c,77 -1834-150319-1,7,100,0.05,f85018f4-703d-4902-acf6-717c8208e005,92 -1834-150319-2,7,100,0.05,50a854a2-2266-4c02-afed-50092cfcefe9,29 -1834-150319-2,7,100,0.05,bcd6cbf3-e42b-458c-a882-23f79b1c7df8,30 -1834-150319-2,7,100,0.05,d6076bb2-8320-47da-9bb6-6955541786b7,31 -1834-150319-2,7,100,0.05,78d21bff-d64c-42e8-9046-15c5c8677aec,32 -1834-150319-2,7,100,0.05,e5aace54-ddde-41c4-9c7a-9f428106035f,37 -1834-150319-2,7,100,0.05,e9098508-4732-43d8-8268-99b700722cfe,42 -1834-150319-3,7,100,0.05,6cc226f4-d45c-4a59-a239-479f241c5cf0,27 -1834-150319-3,7,100,0.05,98500a03-0954-4e2e-bc44-9f550171fdec,28 -1834-150319-3,7,100,0.05,e9ac1f93-7d71-4531-ad4f-1d6563fe7dd2,30 -1834-150319-3,7,100,0.05,a6e69ffb-c68f-4d5f-bf4d-4a94a38ed140,44 -1834-150319-3,7,100,0.05,18821597-78aa-4979-aea2-d2d26938a73b,45 -1834-150319-3,7,100,0.05,a38ff8db-b100-440b-9745-4da1c9573af6,49 -1834-150319-3,7,100,0.05,34394be7-37a3-4c7c-a7b1-1064e79d5219,55 -1834-150319-3,7,100,0.05,314e50b8-5d76-4ba6-ae5f-1edec655371c,57 -1834-150319-4,7,100,0.05,0ff707ca-23fe-45e1-987c-7fd3de96e56f,23 -1834-150319-4,7,100,0.05,77b614f1-dc69-420d-9e05-2b4e39bf2211,24 -1834-150319-4,7,100,0.05,1d3ff647-80b3-459a-89f2-a664459e3684,25 -1834-150319-4,7,100,0.05,c00b331a-1753-4ac5-8c85-6febd08bc8d0,26 -1834-150319-4,7,100,0.05,08de5758-2392-474b-8095-e5dd028290d2,33 -1834-220319-1,7,100,0.05,4fa9178f-3b86-4178-9c89-4d34ccf13691,29 -1834-220319-1,7,100,0.05,ecf2d8f3-6358-4d50-a115-78d74d2a815d,36 -1834-220319-1,7,100,0.05,90d1cd31-3730-48eb-a64d-f7a8591c7bff,37 -1834-220319-1,7,100,0.05,87858304-07f0-4543-bf3e-257f63901d42,49 -1834-220319-1,7,100,0.05,50ed2a7e-b43d-4ae8-b942-e4cbc8158205,67 -1834-220319-2,7,100,0.05,921e0cbb-a0d0-4442-ab1c-d475cc4403f7,21 -1834-220319-3,7,100,0.05,ee399476-729b-4de1-8cb4-d6c661ad7cad,28 -1834-220319-4,7,100,0.05,ee399476-729b-4de1-8cb4-d6c661ad7cad,45 -1834-220319-2,7,100,0.05,ee399476-729b-4de1-8cb4-d6c661ad7cad,29 -1834-220319-2,7,100,0.05,44203fb1-90cb-4476-a216-6bb92d030cf8,39 -1834-220319-3,7,100,0.05,44203fb1-90cb-4476-a216-6bb92d030cf8,26 -1834-220319-2,7,100,0.05,e1f4dea9-9836-439a-b134-de2b02243c7e,41 -1834-220319-3,7,100,0.05,07345aca-60f5-47a4-ac5b-38ee0a5c7e63,23 -1834-220319-3,7,100,0.05,d0f56f8f-63c7-4b7a-8786-5bd0925cde91,31 -1834-220319-4,7,100,0.05,892ed8ac-f8f8-4af5-8602-8afd250ab696,32 -1834-220319-4,7,100,0.05,666e41f3-afee-4b98-b9e4-3afcce41d3a8,33 -1834-220319-4,7,100,0.05,41b235fc-d8b2-452f-8db6-b34f450a3da5,46 -1849-010319-2,0,100,0.05,93cae7ae-2a39-4a6b-b951-8a36063bca88,0 -1849-010319-2,0,100,0.05,a46f515d-4854-4f0d-92da-aaf103d043db,1 -1849-010319-2,0,100,0.05,94e006e7-4775-47cd-a061-cf0cd2e8cbf6,10 -1849-010319-2,0,100,0.05,aee2de23-b34b-407f-9b4e-4b13342390cb,30 -1849-010319-2,0,100,0.05,9d7aa0b6-6799-4697-9863-bd262ba52ea6,31 -1849-010319-2,0,100,0.05,e414ec14-7488-49b9-ba83-ac6e18530acd,32 -1849-010319-2,0,100,0.05,b382ebc7-439a-47ab-ae12-a58e55b01dd5,35 -1849-010319-2,0,100,0.05,0443998a-76de-4c16-8db1-5c206043ff87,39 -1849-010319-2,0,100,0.05,e669d305-7038-471a-b450-0b11c392d211,44 -1849-010319-2,0,100,0.05,e62ad420-9105-4423-a3bc-dc2244fcfff6,49 -1849-010319-2,0,100,0.05,b3a3111c-5f66-4a78-93f6-9fc29c2eaadb,5 -1849-010319-2,0,100,0.05,868df009-0539-4211-9a7d-389f8d88a8ad,6 -1849-010319-2,0,100,0.05,b38380f7-509d-4005-8b8e-3b0a4fe16703,7 -1849-010319-2,0,100,0.05,f38272ad-826b-44ae-8f96-a0c13e952091,8 -1849-010319-2,0,100,0.05,640c0dd0-2f15-4c63-8257-0a20a03ccaed,9 -1849-010319-4,0,100,0.05,75857f4d-56ea-4d08-84f2-66652ccc2c6d,0 -1849-010319-4,0,100,0.05,61798ea7-14d1-413f-a061-8b3dfa876e1d,1 -1849-010319-4,0,100,0.05,981e6e85-1e61-4ecb-a568-d7cae0ff764e,10 -1849-010319-4,0,100,0.05,891cab83-7f20-43be-9960-e8919cc15622,11 -1849-010319-4,0,100,0.05,104374dd-5f2e-422a-8491-689219356f1d,12 -1849-010319-4,0,100,0.05,dd92b052-d82b-4a65-b172-a5804750f22e,13 -1849-010319-4,0,100,0.05,6c8f4e99-b66c-4951-bc0f-8d43b1b8e76f,19 -1849-010319-4,0,100,0.05,984cc682-66f3-48b3-afc8-6af6c32845f8,2 -1849-010319-4,0,100,0.05,9739040c-f2c4-48ce-a2f5-c10f8e15e099,20 -1849-010319-4,0,100,0.05,08d91224-4033-4aab-a8f9-5feda321a39b,27 -1849-010319-4,0,100,0.05,205415bf-32a6-4064-a6b7-fd963d22b96a,29 -1849-010319-4,0,100,0.05,8d2599d5-4bab-43b2-8a7b-dba2e37695cf,3 -1849-010319-4,0,100,0.05,039d1fca-d079-4dff-b6e5-44ddb1c496ce,34 -1849-010319-4,0,100,0.05,e7ee612d-4c03-4825-bb0f-0300ff5efda6,35 -1849-010319-4,0,100,0.05,13fa50bc-0a93-401a-88f9-4a40f201340e,42 -1849-010319-4,0,100,0.05,716abc38-2fd9-4548-b707-b148e5771f8f,43 -1849-010319-4,0,100,0.05,f297b99f-f20c-485a-a784-400ff8158035,44 -1849-010319-4,0,100,0.05,f820df61-6879-4c57-bf2c-8bf507da8242,47 -1849-010319-4,0,100,0.05,c8c7c82d-79f9-4a29-96f0-4ed7c5a573a7,5 -1849-010319-4,0,100,0.05,7df53fc0-eff1-42f5-a175-fbd4449c1b45,51 -1849-010319-4,0,100,0.05,d21bdc5b-4552-487e-908a-ea923efa6735,6 -1849-010319-4,0,100,0.05,a516a477-e432-429b-ad77-d3540dc3b429,7 -1849-010319-4,0,100,0.05,bcc76ae4-efc1-4246-ac0d-969c30fbb3a2,8 -1849-010319-4,0,100,0.05,ed1f9704-ae2e-41d1-bc65-831bc34a5752,9 -1849-010319-5,0,100,0.05,613d8fe3-eb9b-4f92-89e0-a83b587addab,0 -1849-010319-5,0,100,0.05,ea618c0a-084a-4f85-b8d3-04f2e6020f78,1 -1849-010319-5,0,100,0.05,af5eaff1-1a6c-43e7-a8a8-fbcd227efcaf,11 -1849-010319-5,0,100,0.05,dcddcf57-ccb1-4629-85f1-a2a6eab3e2a0,2 -1849-010319-5,0,100,0.05,6e69a27f-ce60-49ac-8b1d-d4b580e6c230,20 -1849-010319-5,0,100,0.05,c8956abe-e9e3-4970-8184-c08e35d7471a,3 -1849-010319-5,0,100,0.05,2533a8ac-73ca-40d6-9d3a-85e054514f87,34 -1849-010319-5,0,100,0.05,dd5ba889-e594-4068-8419-3500ffa52a9e,35 -1849-010319-5,0,100,0.05,30feb34b-248f-4d63-9f1e-3ca5f0f91a73,37 -1849-010319-5,0,100,0.05,a599d9ea-6847-4a35-b7d6-cb101885be95,38 -1849-010319-5,0,100,0.05,91c4daf2-31dd-445a-8774-074a00016875,4 -1849-010319-5,0,100,0.05,279550c0-816d-439f-84b2-ecb56fe6999b,42 -1849-010319-5,0,100,0.05,d8e14e08-0c22-4a43-ab90-09b509e60f3a,45 -1849-010319-5,0,100,0.05,f618741d-5fe0-4bc0-a57b-b99106c2fc88,5 -1849-010319-5,0,100,0.05,a9a4de1d-41f0-4148-828b-f2344186973e,50 -1849-010319-5,0,100,0.05,ce37e0d2-eeb0-4428-8a9a-8e9c89fecf6b,52 -1849-010319-5,0,100,0.05,98a57c8e-ef20-428f-8892-84e3ed03b938,53 -1849-010319-5,0,100,0.05,0e8b89f9-88b4-4c51-a715-d12aeb3df941,56 -1849-010319-5,0,100,0.05,6c8a06a0-9d45-4a4c-8738-8c4393acbe61,58 -1849-010319-5,0,100,0.05,ab1294e6-0781-46b0-870d-0d4dce26e0da,6 -1849-010319-5,0,100,0.05,b0f85902-c95c-4817-bf67-4fdb9d4bd38e,61 -1849-010319-5,0,100,0.05,33d3e814-08d9-49dc-92ec-784c08d2ac62,62 -1849-010319-5,0,100,0.05,378a8009-cefa-43e6-b7be-8bc5a75ff858,63 -1849-010319-5,0,100,0.05,2a36cd4f-e225-4a8f-b328-7c03f5b1fe74,64 -1849-010319-5,0,100,0.05,8f1ff760-5eac-4554-9685-b88897972050,65 -1849-010319-5,0,100,0.05,c5a98cdd-be87-49fa-94ec-e1395f833773,66 -1849-010319-5,0,100,0.05,2810e678-2294-40cb-a6c8-f2da4b84c6f7,67 -1849-010319-5,0,100,0.05,31696113-422a-4132-8c58-3b026048cc5a,7 -1849-010319-5,0,100,0.05,6f56f026-1287-47eb-bcaf-238cfcc2ef0e,8 -1849-010319-5,0,100,0.05,1db090b4-0e09-4e98-94ec-d96e690d7e9d,86 -1849-010319-5,0,100,0.05,b731b9ef-eb60-4ca4-8905-1783aa8b35c0,9 -1849-060319-1,0,100,0.05,4fd71e3a-71c6-4cf1-a4b5-19e62b2904b3,85 -1849-110319-1,0,100,0.05,2e4dbe53-aed4-4e94-ac77-dd50d3505d2c,52 -1849-110319-2,0,100,0.05,2eb17c78-64e1-4cef-bb1c-0350ed9b2473,56 -1849-150319-2,0,100,0.05,7260a67a-5073-4195-8383-8d7fb45e2324,60 -1849-150319-1,0,100,0.05,7260a67a-5073-4195-8383-8d7fb45e2324,39 -1849-150319-4,0,100,0.05,7260a67a-5073-4195-8383-8d7fb45e2324,85 -1849-150319-3,0,100,0.05,7260a67a-5073-4195-8383-8d7fb45e2324,6 -1849-150319-1,0,100,0.05,91e5725f-224f-4d20-9ef2-0eb79fb7c585,74 -1849-150319-2,0,100,0.05,b5461838-d5e7-43ae-b560-8973062bbede,40 -1849-150319-3,0,100,0.05,28c20311-6fd5-456f-82fd-cd368ce36f2c,69 -1849-150319-4,0,100,0.05,bc0caf25-7afc-412b-b3f0-72b6272faebe,70 -1849-150319-4,0,100,0.05,db801d73-9bfc-4005-9632-8cfe418f8db6,76 -1849-220319-2,0,100,0.05,86f9d756-4a06-4106-a1a4-9e7d4f42bc9f,93 -1849-220319-5,0,100,0.05,86f9d756-4a06-4106-a1a4-9e7d4f42bc9f,79 -1849-220319-4,0,100,0.05,86f9d756-4a06-4106-a1a4-9e7d4f42bc9f,100 -1849-220319-3,0,100,0.05,580dde57-c926-46db-a8a7-a790eb0c1dc5,0 -1849-280219-1,0,100,0.05,e84dd8a4-dac5-43af-9cf7-cfb0dbb65c64,90 -1849-280219-2,0,100,0.05,b2fd41ce-e847-482d-8579-b58d4cced199,88 -1849-280219-3,0,100,0.05,f4580c58-cef5-4d17-87d0-c014b9852f6a,153 -1849-280219-3,0,100,0.05,dec859aa-5757-4457-a8ac-1aa4484e4d35,160 -1849-280219-4,0,100,0.05,85bfb9f7-ea6b-441f-bb6c-b3e50bd956cb,62 -1849-280219-4,0,100,0.05,1564f910-d4f2-45b7-a9dc-78a7494723aa,64 -1849-010319-2,1,100,0.05,b636d739-c2c5-40e0-99d5-6cfb3ce39400,11 -1849-010319-2,1,100,0.05,d8e9945d-f4d6-4cc5-96de-a4a5ec52f77b,12 -1849-010319-2,1,100,0.05,19574ae6-df6b-4087-8fda-ee18b78e0a54,13 -1849-010319-2,1,100,0.05,96d88e38-caa7-4993-9fa9-fdb0261920f5,14 -1849-010319-2,1,100,0.05,6034b1ab-c338-4b21-928b-29e7a301364d,15 -1849-010319-2,1,100,0.05,f1cb7b64-ac3c-49df-958a-b3d0f3b3a782,16 -1849-010319-2,1,100,0.05,57e30530-1f2d-485f-82f6-ecc90445cdce,17 -1849-010319-2,1,100,0.05,f9f07332-503c-4085-8fbe-a7c8435e6e15,18 -1849-010319-2,1,100,0.05,2c672ca1-d614-45cf-a519-c64326de2341,19 -1849-010319-2,1,100,0.05,12359a50-0a9c-457d-86c6-77eabec4b4c1,2 -1849-010319-2,1,100,0.05,0dfb0ad7-1b91-47e4-a6ce-ed5896ba3fe6,20 -1849-010319-2,1,100,0.05,5f5755b7-849d-4a3e-8197-358b54a0fc51,21 -1849-010319-2,1,100,0.05,3e4c6213-ba55-41f1-9285-7b76d238ea84,22 -1849-010319-2,1,100,0.05,a41a963c-8e01-4bd4-8a07-fd32545261cb,23 -1849-010319-2,1,100,0.05,987aad42-9e5c-4335-83c8-c86fe817a317,24 -1849-010319-2,1,100,0.05,1ef2d755-6c58-48e7-ab02-71d2bb1739ac,25 -1849-010319-2,1,100,0.05,8d58f177-4d25-4d55-9893-be9fa0886a76,26 -1849-010319-2,1,100,0.05,2cf573f4-441c-4c0a-9bec-72c4d5bf1732,27 -1849-010319-2,1,100,0.05,e656fd05-db6d-42f1-9f07-552285a2eaec,3 -1849-010319-2,1,100,0.05,334147c8-e2ef-4e4b-9df3-e41454ce987a,34 -1849-010319-2,1,100,0.05,1418e6c8-b580-4b7b-9097-7f77f940d139,4 -1849-010319-2,1,100,0.05,7644ef36-9ca7-4aac-af83-ad57a67df750,41 -1849-010319-2,1,100,0.05,cc98fd56-6b99-4b9a-a7c7-371c5af6f0af,42 -1849-010319-2,1,100,0.05,1a1cfa9f-ff26-4d88-8049-a2d7065608f5,43 -1849-010319-2,1,100,0.05,59a69847-7e71-46f2-ad5a-47a5465f21af,45 -1849-010319-2,1,100,0.05,f99df93b-159f-4e9a-a415-42be1001c9de,47 -1849-010319-2,1,100,0.05,aa36f7cf-18c8-417a-a773-81adf57d7bbb,51 -1849-010319-2,1,100,0.05,1ea0d82f-c046-41f9-b855-1ac7fc830ed6,52 -1849-010319-2,1,100,0.05,d1ecba13-3070-494b-a112-871c8e431dc5,55 -1849-010319-2,1,100,0.05,e4140987-51c7-4293-81d9-b335b4efb8d3,57 -1849-010319-2,1,100,0.05,9666d73a-591c-4033-ad74-f7bf64ee21b7,58 -1849-010319-2,1,100,0.05,0a38b97a-6360-4ce0-b047-be87deac5fb2,61 -1849-010319-2,1,100,0.05,5df59742-3dfe-44f7-9b4e-37c3ea133f8e,62 -1849-010319-2,1,100,0.05,3304189c-9aed-4168-8fd6-f40edc51e966,69 -1849-010319-2,1,100,0.05,1e55af82-db7c-4638-8d34-c6e4e2ed8caf,71 -1849-010319-2,1,100,0.05,7266a7f3-6bf9-4f82-a566-b7e6007feca6,72 -1849-010319-2,1,100,0.05,c22a607c-b52e-48cf-a804-d635083a502b,73 -1849-010319-2,1,100,0.05,c2e48940-74fb-46d2-bd0a-990481b94ebe,75 -1849-010319-2,1,100,0.05,973b4423-4405-4caf-8ba9-42a0ef71ab85,76 -1849-010319-2,1,100,0.05,7c5486ec-5f7f-42af-b325-7b9164db73ba,77 -1849-010319-2,1,100,0.05,4f24e393-8df4-4987-84ee-afe57ac0b4e6,78 -1849-010319-4,1,100,0.05,4775d6b9-d837-4006-bbdb-1f3aafa3783f,14 -1849-010319-4,1,100,0.05,867afee5-546e-4364-b1f9-c0dbe3d26e25,15 -1849-010319-4,1,100,0.05,94c058b7-b92a-403b-b2bb-9c683134bcc5,16 -1849-010319-4,1,100,0.05,64b752f6-a9a7-4d83-84e4-65fd28fa8642,22 -1849-010319-4,1,100,0.05,ec44d94c-06c0-40b7-ba78-c3ee364e7e6e,45 -1849-010319-4,1,100,0.05,b9beda9d-3508-4c73-bea2-01f2caf19c85,46 -1849-010319-4,1,100,0.05,37340c7f-5a56-49c3-8f31-b0e49946fcb7,49 -1849-010319-4,1,100,0.05,f25509a8-041a-414e-909c-f08d0b62aa16,50 -1849-010319-4,1,100,0.05,fc0460bd-9c54-4b9c-9732-e696de613b65,52 -1849-010319-4,1,100,0.05,ad59b019-e23d-4326-b42d-fc27db57dd67,53 -1849-010319-4,1,100,0.05,c17ec775-e442-4817-95c7-aedcdfe473dc,54 -1849-010319-4,1,100,0.05,ed922ef4-2d51-4dd6-bd0f-25490a677778,55 -1849-010319-5,1,100,0.05,c8e3dd1b-ef25-4e61-802b-c09bbb9755b5,10 -1849-010319-5,1,100,0.05,27c34348-53ad-401f-9c40-fe2e11dcf643,12 -1849-010319-5,1,100,0.05,86e1a213-c9db-4517-88cd-a56e607429ef,13 -1849-010319-5,1,100,0.05,23e2ffd9-45d7-4b6f-8f55-b3f6503b1153,14 -1849-010319-5,1,100,0.05,9b335120-9a73-46ff-992f-b894e28724c0,16 -1849-010319-5,1,100,0.05,e5ca1e39-6e6e-4df9-bab6-ae399c1820dd,17 -1849-010319-5,1,100,0.05,dfcd6460-efc5-4a5a-941e-5bcf3fa99166,18 -1849-010319-5,1,100,0.05,eaf8487c-d0b5-49a1-b19f-a8e39cf1ccf0,21 -1849-010319-5,1,100,0.05,3f7bb081-e8f7-4526-b366-676e3d10d419,22 -1849-010319-5,1,100,0.05,b3418cf0-b81c-4a8c-87e2-8dc9fc807b55,26 -1849-010319-5,1,100,0.05,4afa29e7-c94a-4477-ab2c-3e86d2ef41c0,55 -1849-010319-5,1,100,0.05,ebca2c31-b8f2-4c00-a277-b155716477b3,68 -1849-010319-5,1,100,0.05,7e010c81-de6f-4870-965b-1b7f8406fe93,69 -1849-010319-5,1,100,0.05,dd0b6a94-322e-4bf7-8717-b88dbc722d5f,70 -1849-010319-5,1,100,0.05,6d9248d3-1a2b-4470-b17b-054fa36461e6,71 -1849-010319-5,1,100,0.05,2722d44e-b76e-421f-bb31-6cde14c8d070,72 -1849-010319-5,1,100,0.05,543aa939-cde4-4f0f-b59b-6de774a81412,75 -1849-010319-5,1,100,0.05,b16ac9c3-aede-4c14-af1c-790da4b4e2f5,76 -1849-010319-5,1,100,0.05,ee12e03c-06b9-4113-b80e-621fecd050bf,80 -1849-010319-5,1,100,0.05,d02fdf2a-9739-45fb-8f58-c89ffd8a0922,81 -1849-010319-5,1,100,0.05,49d09e98-5257-4bbe-9a2f-0ed8f5a8dab2,82 -1849-010319-5,1,100,0.05,b02b7d14-215b-4526-8332-453a3c3d3bd6,83 -1849-010319-5,1,100,0.05,ef27b871-ce22-487e-8c3b-45707362d251,84 -1849-060319-1,1,100,0.05,4d8f219e-f4ee-4255-aa6a-41fcab033b46,106 -1849-060319-1,1,100,0.05,1d0af68b-5d78-4424-aa76-9b6bcc8fb209,108 -1849-060319-1,1,100,0.05,775ac17f-cecd-4e6f-ad48-33da7d1a015d,71 -1849-060319-1,1,100,0.05,3f04a3fc-ad3e-4c1b-841c-27fba13cff7a,73 -1849-060319-3,1,100,0.05,9fa4e5ff-c6a8-4996-8e7a-ae0793d57dd6,104 -1849-060319-3,1,100,0.05,ca68a08d-f837-496e-9796-719dea135f65,108 -1849-060319-3,1,100,0.05,9b7a54ca-fdc8-4807-bf6d-6caac692c02c,85 -1849-060319-3,1,100,0.05,eb1c77ee-7e5f-46f0-b75e-6968d44a9a60,94 -1849-060319-3,1,100,0.05,0d70e256-47fc-444e-b936-deaa92e5c68a,98 -1849-060319-4,1,100,0.05,9abb647c-b1b0-4211-ad45-e658016123f5,76 -1849-110319-1,1,100,0.05,5a0a790c-dff8-4b17-9057-b2ae2dcc91e0,31 -1849-110319-1,1,100,0.05,064d134e-aeb7-4570-a4a2-0f27f3299304,41 -1849-110319-1,1,100,0.05,af3cb364-8963-48a7-8893-c5f07ba6addb,54 -1849-110319-1,1,100,0.05,4c6e670e-f34d-479c-a76a-cb3b746699db,59 -1849-110319-1,1,100,0.05,9923a7e7-8378-4452-840c-c080aeab1d90,60 -1849-110319-2,1,100,0.05,a22f42e4-029c-48ca-8e8a-cdbef79892b5,66 -1849-110319-1,1,100,0.05,a22f42e4-029c-48ca-8e8a-cdbef79892b5,64 -1849-110319-1,1,100,0.05,343114a9-dc62-4a74-a48f-6d1b98344223,66 -1849-110319-2,1,100,0.05,343114a9-dc62-4a74-a48f-6d1b98344223,68 -1849-110319-2,1,100,0.05,78bcd405-76c2-4b84-87cb-e197ff766803,50 -1849-110319-2,1,100,0.05,361b71f1-91b4-4108-ba81-2c9f53ee2403,58 -1849-110319-2,1,100,0.05,be46b3dc-bbd9-4d85-9b9f-72caea648b1b,62 -1849-110319-3,1,100,0.05,49a060fc-a471-4dd7-8ffd-517f47ef7176,177 -1849-150319-2,1,100,0.05,1d63420f-1401-47ca-9784-84ef8297e809,48 -1849-280219-4,1,100,0.05,1d63420f-1401-47ca-9784-84ef8297e809,84 -1849-150319-3,1,100,0.05,1d63420f-1401-47ca-9784-84ef8297e809,8 -1849-150319-1,1,100,0.05,1d63420f-1401-47ca-9784-84ef8297e809,105 -1849-150319-2,1,100,0.05,3eae1a02-93f1-45ed-bfcc-834f66c7ee2c,64 -1849-150319-1,1,100,0.05,3eae1a02-93f1-45ed-bfcc-834f66c7ee2c,121 -1849-150319-3,1,100,0.05,3eae1a02-93f1-45ed-bfcc-834f66c7ee2c,98 -1849-150319-2,1,100,0.05,a514cdf1-3288-4a16-8caa-ecf5f6c1d59e,44 -1849-150319-1,1,100,0.05,a514cdf1-3288-4a16-8caa-ecf5f6c1d59e,93 -1849-150319-3,1,100,0.05,a514cdf1-3288-4a16-8caa-ecf5f6c1d59e,7 -1849-150319-3,1,100,0.05,d3db7c32-d81f-46fc-9219-aace2567b084,11 -1849-150319-4,1,100,0.05,8f6ac7bb-a6a0-4365-a9bf-d42c9337510e,100 -1849-280219-4,1,100,0.05,8f6ac7bb-a6a0-4365-a9bf-d42c9337510e,105 -1849-280219-2,1,100,0.05,8f6ac7bb-a6a0-4365-a9bf-d42c9337510e,102 -1849-150319-4,1,100,0.05,c2e3dd81-e6ff-4144-954f-1a56d6f6ed5b,78 -1849-150319-4,1,100,0.05,b48b1744-8edc-4f7d-964e-5a1cee4573f1,99 -1849-220319-2,1,100,0.05,0d2d7e3f-0196-472e-9659-09a7b797b05d,99 -1849-220319-3,1,100,0.05,01612c1c-df3b-4114-92bc-ff2a69085850,59 -1849-220319-3,1,100,0.05,040bfeee-9295-47e8-8739-1a37171f225e,63 -1849-220319-3,1,100,0.05,4be4ef6c-9056-4785-b32e-ce0a54484f14,67 -1849-220319-4,1,100,0.05,4be4ef6c-9056-4785-b32e-ce0a54484f14,118 -1849-220319-4,1,100,0.05,82725ae2-d7fb-4719-bb6c-0b5a8366c261,108 -1849-220319-4,1,100,0.05,e3732aa8-1fb7-4750-942d-0f9636eeece1,117 -1849-220319-4,1,100,0.05,c5fc116a-db7a-4303-8a07-9504bf4de47f,90 -1849-220319-5,1,100,0.05,b6be12f7-e687-4354-beb4-62f75c7d7c40,117 -1849-280219-1,1,100,0.05,68be1dc3-7e43-43d9-94f0-51a6f17268e8,102 -1849-280219-1,1,100,0.05,cd7a19da-6bf9-4deb-96b9-09621a11b647,104 -1849-280219-1,1,100,0.05,6aa07228-c177-48e5-a6c5-f5520fff0a24,112 -1849-280219-1,1,100,0.05,0a82e6fa-c7a2-4394-9dc6-b918fd4db7b2,114 -1849-280219-1,1,100,0.05,78007a94-d35c-4097-ad94-b88fe0f0e682,116 -1849-280219-2,1,100,0.05,8e8850f1-4418-472b-adbd-0f5e73371fb4,110 -1849-280219-4,1,100,0.05,8e8850f1-4418-472b-adbd-0f5e73371fb4,101 -1849-280219-2,1,100,0.05,28d46e64-e4a4-4311-8566-d20ded616551,78 -1849-280219-3,1,100,0.05,0a32d890-fa61-43d6-b4ac-76fcb988d57a,180 -1849-280219-3,1,100,0.05,33d29061-38ef-4e4a-8a76-0315ace63e1f,182 -1849-280219-4,1,100,0.05,eefb81ff-642c-4eab-9803-e87c20a2bc98,32 -1849-280219-4,1,100,0.05,6f6af93b-559b-41af-ad37-837052ca0ae4,81 -1849-010319-2,2,100,0.05,d5fe4870-8acc-475e-86bf-61282fee39e4,28 -1849-010319-5,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,74 -1849-220319-3,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,61 -1849-150319-2,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,9 -1849-150319-3,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,76 -1849-110319-2,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,60 -1849-150319-1,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,91 -1849-220319-4,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,99 -1849-220319-2,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,95 -1849-010319-2,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,29 -1849-220319-5,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,104 -1849-150319-4,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,81 -1849-110319-1,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,50 -1849-010319-2,2,100,0.05,7151933e-883d-4c51-aab6-955d2a26f1ee,33 -1849-010319-5,2,100,0.05,41628393-86b2-4a2b-b3d3-daf14953ce2c,73 -1849-010319-4,2,100,0.05,41628393-86b2-4a2b-b3d3-daf14953ce2c,17 -1849-010319-4,2,100,0.05,1c889c58-177e-4722-bba3-b45dd579c9b9,18 -1849-010319-4,2,100,0.05,e8c5ef0f-41fe-4b07-86ba-45c53bd4f6ce,21 -1849-010319-4,2,100,0.05,a8c57285-c69b-49e6-9b49-c7be6b770e86,23 -1849-010319-5,2,100,0.05,bf20902e-07a1-452e-94da-d896dbde4655,77 -1849-010319-4,2,100,0.05,bf20902e-07a1-452e-94da-d896dbde4655,48 -1849-010319-5,2,100,0.05,1a161e99-0a21-4da3-9a17-0c0d5239d4cb,15 -1849-010319-5,2,100,0.05,6f12ed45-128d-4991-90d4-f130c1e96b67,19 -1849-010319-5,2,100,0.05,7b042f1b-2af3-4592-93c1-44e5893b0bfc,23 -1849-010319-5,2,100,0.05,7ec4d4a2-4bb0-46c4-b974-06fe00540a94,24 -1849-010319-5,2,100,0.05,ef035409-5eed-43b0-9f7c-919fec7ad0d7,78 -1849-060319-2,2,100,0.05,0f0ea8b2-8e8c-4035-b5bc-987e5bac6e11,81 -1849-060319-4,2,100,0.05,0f0ea8b2-8e8c-4035-b5bc-987e5bac6e11,72 -1849-060319-3,2,100,0.05,276eba79-49ad-4c91-a8f9-5b86fe89be09,114 -1849-060319-3,2,100,0.05,0e672982-7edb-4c0e-989a-2ebb8dbe33e9,130 -1849-060319-4,2,100,0.05,756ea423-26b6-4f99-8244-bfa7e38c8bae,82 -1849-110319-2,2,100,0.05,ce8fa007-c96e-4830-bf38-aa5b7e36edff,52 -1849-110319-1,2,100,0.05,ce8fa007-c96e-4830-bf38-aa5b7e36edff,46 -1849-110319-2,2,100,0.05,79b76d14-9985-4e8a-96ac-01990eabbc74,64 -1849-110319-1,2,100,0.05,79b76d14-9985-4e8a-96ac-01990eabbc74,62 -1849-150319-1,2,100,0.05,f27e74c8-007f-488d-bbf2-419ebeb0fc67,62 -1849-150319-2,2,100,0.05,f27e74c8-007f-488d-bbf2-419ebeb0fc67,34 -1849-150319-4,2,100,0.05,653f1dd6-5959-4f31-b3aa-85c11bee4bb5,62 -1849-150319-2,2,100,0.05,653f1dd6-5959-4f31-b3aa-85c11bee4bb5,36 -1849-150319-3,2,100,0.05,653f1dd6-5959-4f31-b3aa-85c11bee4bb5,25 -1849-150319-1,2,100,0.05,653f1dd6-5959-4f31-b3aa-85c11bee4bb5,72 -1849-150319-3,2,100,0.05,7338009d-9067-42e4-9530-95fae7bca6b1,21 -1849-150319-2,2,100,0.05,7338009d-9067-42e4-9530-95fae7bca6b1,62 -1849-150319-4,2,100,0.05,7338009d-9067-42e4-9530-95fae7bca6b1,90 -1849-150319-4,2,100,0.05,d4ba4c1a-6ddd-4942-a3ce-22634482635d,87 -1849-220319-2,2,100,0.05,3fffea44-59b1-4c55-b6d9-3106a34a6ce1,91 -1849-220319-5,2,100,0.05,3fffea44-59b1-4c55-b6d9-3106a34a6ce1,83 -1849-220319-3,2,100,0.05,8af7c55c-3e95-45aa-bbad-2cd0d4f64a2f,65 -1849-280219-1,2,100,0.05,b3e18e97-1aa4-47d8-a114-ec5e92dec5df,100 -1849-280219-1,2,100,0.05,e3d473ba-4376-403d-b0dd-cbcc363a3ad6,16 -1849-280219-1,2,100,0.05,2da2cc41-ecc1-4db8-ab08-069e1931a1a1,18 -1849-280219-1,2,100,0.05,c80ee36b-60bf-4ecb-85cb-8c61b84d402b,84 -1849-280219-1,2,100,0.05,3cfdb2d3-9c3d-4c9b-80ce-9011cca98aa2,86 -1849-280219-2,2,100,0.05,42bb9e49-c871-4c60-ac13-d2d20582f48c,70 -1849-280219-2,2,100,0.05,1851968e-6681-4ea2-84dc-48a61f711958,72 -1849-280219-3,2,100,0.05,4aa8d453-83b7-4d81-8b83-9481bb7563c5,141 -1849-280219-4,2,100,0.05,b0350b90-26b9-48f9-8f16-c714c706c6cc,70 -1849-280219-4,2,100,0.05,08a2d06b-ec50-414d-94cf-ec9d7046f54d,74 -1849-010319-2,3,100,0.05,86382731-7667-4b2e-9139-2a9109a9ffde,36 -1849-010319-2,3,100,0.05,16be6b61-af30-4ac9-8e25-fed03116f876,37 -1849-010319-2,3,100,0.05,e815ee33-09f7-49bd-9d8d-2b64bae77d27,38 -1849-010319-2,3,100,0.05,b8a7e1ee-8d21-4e44-9566-c8d911449831,40 -1849-010319-4,3,100,0.05,a3dd6d26-b832-4368-805a-ba802d70e98c,24 -1849-010319-5,3,100,0.05,c0b6e8cf-ef25-4f2c-8df2-d25c6e55fe1e,30 -1849-010319-4,3,100,0.05,c0b6e8cf-ef25-4f2c-8df2-d25c6e55fe1e,25 -1849-010319-4,3,100,0.05,51ef7c20-02e2-42e7-a4a9-1ecf397f99f3,26 -1849-010319-4,3,100,0.05,51737b7d-cd1b-428c-80d5-29e45aaf1cf2,28 -1849-010319-5,3,100,0.05,3563b78d-f9f0-4c90-8e8f-fe362a861f7b,25 -1849-010319-5,3,100,0.05,0c296dc4-a9e3-4aa8-b106-0877b7b04a68,27 -1849-010319-5,3,100,0.05,27e44e96-cf67-4c7f-a288-b043eb5de2d5,28 -1849-010319-5,3,100,0.05,061a4293-c4b1-447a-90fb-1c8dfa758e09,29 -1849-010319-5,3,100,0.05,5b034dff-2a33-4114-9f4c-4a086704a6d3,59 -1849-010319-5,3,100,0.05,aa6b2531-c76a-4608-bca3-0f61edd6810e,79 -1849-060319-1,3,100,0.05,8bbfc8c9-6196-4c5d-a5c0-8556616c3a33,102 -1849-060319-1,3,100,0.05,09c63470-1747-4d1e-8a28-8f9c7e1bd9fd,77 -1849-060319-1,3,100,0.05,7714749a-6edc-404c-afdc-58d9a9b0b112,83 -1849-060319-1,3,100,0.05,9ffb7397-3a40-4afa-a974-75b1820f09eb,98 -1849-060319-2,3,100,0.05,9ffb7397-3a40-4afa-a974-75b1820f09eb,99 -1849-060319-3,3,100,0.05,9ffb7397-3a40-4afa-a974-75b1820f09eb,110 -1849-060319-4,3,100,0.05,9ffb7397-3a40-4afa-a974-75b1820f09eb,74 -1849-060319-2,3,100,0.05,3c1c607b-12bf-4c24-8e0e-ae68bc4cc5f3,67 -1849-060319-2,3,100,0.05,88844f8d-74b3-4bcc-909d-b83f98e56408,94 -1849-060319-3,3,100,0.05,88844f8d-74b3-4bcc-909d-b83f98e56408,100 -1849-060319-4,3,100,0.05,88844f8d-74b3-4bcc-909d-b83f98e56408,68 -1849-110319-1,3,100,0.05,a92c460b-abd6-4051-ba8d-d14d5d2211c9,35 -1849-110319-2,3,100,0.05,384a910f-c873-4fe1-806e-23a06679adbd,40 -1849-150319-1,3,100,0.05,3dad75f6-7fa3-4875-8e0a-2aef2a2544e4,58 -1849-150319-1,3,100,0.05,5875a4e9-3ac7-4372-8dda-5848655546c2,64 -1849-150319-2,3,100,0.05,cff065a4-5689-4f83-90d7-ab678c1a425c,32 -1849-150319-2,3,100,0.05,65b5b2ff-e4b2-4635-bc45-37494752df0a,38 -1849-150319-3,3,100,0.05,18a79c67-ed9e-42d6-bc38-dce9aac3bb25,60 -1849-150319-4,3,100,0.05,172193aa-a51f-4eef-8a21-968c6bd0adf6,58 -1849-220319-2,3,100,0.05,86b3dcd9-6547-4448-a1df-f02598f14cad,57 -1849-220319-2,3,100,0.05,0921bf6d-5c15-4603-9599-ebcaee582dea,59 -1849-220319-2,3,100,0.05,33b921f0-b590-4c54-8171-7888d928e469,68 -1849-220319-2,3,100,0.05,9afcfb83-a6d2-422e-b6ce-6bbdbde59bce,86 -1849-220319-3,3,100,0.05,ff669f45-36fc-4b65-bdf5-fa3d263ef890,53 -1849-220319-3,3,100,0.05,c4182e34-cf6d-40eb-a9af-a14e9fee1554,55 -1849-220319-4,3,100,0.05,ca6a358f-abe4-49f0-afc3-ced871876870,122 -1849-220319-4,3,100,0.05,54c84a43-ce91-4609-b646-bafe2d3d3bdd,79 -1849-220319-4,3,100,0.05,625294c5-8e8e-4bdc-9567-fd5c744e9ca4,87 -1849-220319-5,3,100,0.05,5957eaf3-1c66-4367-a656-a777c3872aa7,27 -1849-220319-5,3,100,0.05,901ab17e-5265-4e3e-a77c-99bef74c78bd,71 -1849-220319-5,3,100,0.05,160bf7a7-1fe3-40f7-ad3f-31810b344e1c,98 -1849-280219-1,3,100,0.05,7b3f86c9-8f6e-4755-8a0e-75df97d49135,110 -1849-280219-1,3,100,0.05,3c7ef747-b714-4011-8f75-efe9453dfb74,27 -1849-280219-1,3,100,0.05,f9b4d0ce-a72b-4184-9348-4bdc92b33b21,28 -1849-280219-1,3,100,0.05,06f73680-fdff-4dfa-ab21-ecb6b09da907,64 -1849-280219-2,3,100,0.05,80a981bc-6175-492c-8f4c-293b0298cb0b,51 -1849-280219-2,3,100,0.05,ea1270fa-f80f-4ec7-ac4b-662fb3834ca2,76 -1849-280219-2,3,100,0.05,713a86ee-a1a2-47aa-b649-858d61039ed2,96 -1849-280219-4,3,100,0.05,8804768c-f765-498b-9ebe-a966efa6fe3a,125 -1849-280219-2,3,100,0.05,8804768c-f765-498b-9ebe-a966efa6fe3a,98 -1849-280219-3,3,100,0.05,bb715956-001b-486f-8ca3-746bcc9f676d,166 -1849-280219-3,3,100,0.05,6b55bc78-d04d-4d0c-9107-87885adadb83,170 -1849-280219-4,3,100,0.05,f25907ec-ba42-4de0-81ae-1ad365649f56,121 -1849-280219-4,3,100,0.05,5eead8bb-c5ef-457c-ad7d-749c89c6f9e7,60 -1849-280219-4,3,100,0.05,8bc3604a-78d9-4743-a944-77fadc4887d9,72 -1849-010319-2,4,100,0.05,337a1e87-6013-493e-a273-ddf6413c3283,48 -1849-010319-4,4,100,0.05,d1ad7ecb-9593-44ad-94bd-83a82b1fc229,30 -1849-010319-4,4,100,0.05,9e58eddf-2615-4e66-96e0-80979e972056,32 -1849-010319-4,4,100,0.05,d0dbbc2f-13df-4982-a9fa-eccf4494c169,33 -1849-010319-4,4,100,0.05,5068274b-dd26-4715-87d7-2b85e8ee148b,4 -1849-010319-5,4,100,0.05,08abeabf-ca36-4b08-98f1-4eeef36585a3,31 -1849-010319-5,4,100,0.05,98a2c707-f0b7-4ec2-be65-00d54b56f70e,32 -1849-010319-5,4,100,0.05,b8018a1d-bf3b-41f2-bbae-f453f63e73f8,36 -1849-010319-5,4,100,0.05,406f34df-9f77-4a98-8edc-a12806643766,39 -1849-010319-5,4,100,0.05,93fe43be-a84f-40f9-943b-d351fcac2ea0,40 -1849-010319-5,4,100,0.05,9300887a-153a-4d72-9e91-be104749044a,43 -1849-010319-5,4,100,0.05,f478ff35-c2f3-4415-98fc-e70c8d0b0f16,44 -1849-010319-5,4,100,0.05,f28a47d7-5f33-4639-ace2-b1cea3728f68,46 -1849-010319-5,4,100,0.05,902251b6-7ca7-47ec-980a-960844e93e2b,60 -1849-010319-5,4,100,0.05,88550d1d-93c7-4605-ae62-1f8763d06c8f,85 -1849-060319-4,4,100,0.05,c4801661-7934-4c8c-b165-5fdbc6cde786,80 -1849-060319-1,4,100,0.05,c4801661-7934-4c8c-b165-5fdbc6cde786,104 -1849-060319-1,4,100,0.05,ae0ade00-93d2-472f-9eb3-74a07cd3634e,88 -1849-060319-2,4,100,0.05,0c25d0d2-cdce-4f76-917e-d9c4fe8b6086,122 -1849-060319-2,4,100,0.05,9c560cf1-2e50-4fa6-9fd7-4c70f8644fdd,95 -1849-060319-3,4,100,0.05,2c449439-c7c4-41b5-8506-984c801cb937,120 -1849-060319-4,4,100,0.05,cc415c95-278e-4d67-b031-c7f20c298f7e,64 -1849-110319-2,4,100,0.05,2c56a04e-8616-466c-a3ed-ea88f79d31fb,23 -1849-110319-3,4,100,0.05,eb71dc1f-21e1-4785-a09d-a2e1d475b97d,104 -1849-110319-3,4,100,0.05,7856ef46-4c08-4630-a70d-f5c20c258e3c,163 -1849-150319-1,4,100,0.05,7b19070a-6308-4aa1-b7dc-250059e50ad7,79 -1849-150319-1,4,100,0.05,472b6f08-f4dc-4476-9388-695fa4eeef8b,85 -1849-150319-1,4,100,0.05,1f2f4cc8-4899-4eaf-b589-a95d3f86c920,89 -1849-150319-3,4,100,0.05,46d864d0-1e55-4c91-8b7c-f72ed861baf7,74 -1849-150319-2,4,100,0.05,46d864d0-1e55-4c91-8b7c-f72ed861baf7,17 -1849-150319-2,4,100,0.05,51be77c1-36bb-4118-a7fe-87533cffcbb6,46 -1849-150319-3,4,100,0.05,98da8d18-f68e-4a84-adc3-eb0ca8d248ad,97 -1849-150319-4,4,100,0.05,b9c8c686-4639-45e3-b2f7-dcb88e720728,34 -1849-220319-4,4,100,0.05,b9c8c686-4639-45e3-b2f7-dcb88e720728,112 -1849-220319-5,4,100,0.05,b9c8c686-4639-45e3-b2f7-dcb88e720728,112 -1849-150319-4,4,100,0.05,826ef880-1a7a-44ab-ab86-c5a62aead66f,60 -1849-220319-2,4,100,0.05,e40261da-c0b8-4502-9156-49de0073ec3f,101 -1849-220319-2,4,100,0.05,362dc910-6e65-416b-bc28-3e4972598465,107 -1849-220319-2,4,100,0.05,8e1fa64f-4a34-4128-8b87-63d0b543a1c8,109 -1849-220319-2,4,100,0.05,12c453f6-0336-4772-9266-16a0ae92a54c,43 -1849-220319-3,4,100,0.05,fde3cdec-9d4c-40df-8b46-70a752b1ace2,69 -1849-220319-3,4,100,0.05,3a0142dc-2b8c-42dc-8d9e-ae6350d75b9f,71 -1849-280219-1,4,100,0.05,99ef5432-6bfc-4ea3-aab2-64dc1d521554,66 -1849-280219-2,4,100,0.05,89405110-a1ae-4a5b-a44c-663b7ec7b842,80 -1849-280219-2,4,100,0.05,7adb4026-22dd-4000-a1c3-28e8b28817dc,86 -1849-280219-3,4,100,0.05,7c5f96df-c4f6-49f9-aa19-bb1ea3a85f12,133 -1849-280219-3,4,100,0.05,70c561d7-98e0-4bf5-a66d-c36f3fbcbc43,151 -1849-280219-4,4,100,0.05,14bae571-26fb-43b0-8ea2-d37e907a2b2c,55 -1849-010319-2,5,100,0.05,5a455939-2498-466b-93ad-044ae68fc959,46 -1849-010319-2,5,100,0.05,800bb0e2-00d6-4218-bfd7-67ef2915f0fb,50 -1849-010319-2,5,100,0.05,5f8f817d-15c7-4b17-b5c6-ac07aba0f5e7,53 -1849-010319-2,5,100,0.05,16a8818c-1b2b-4ee0-a158-09c69da03157,54 -1849-010319-2,5,100,0.05,ebf75de2-0dfa-4d02-84c7-9613159917f3,56 -1849-010319-2,5,100,0.05,e0421ed0-32a8-4fc5-9298-e76ce75e8e65,59 -1849-010319-2,5,100,0.05,b83c4ad8-7a2f-4980-b8b0-2d40cd55a391,60 -1849-010319-2,5,100,0.05,817cbcc5-dd82-4b6c-a015-a7e18749ee32,74 -1849-010319-2,5,100,0.05,cb85413b-755a-4bf6-b979-da0e8cfa394f,79 -1849-010319-2,5,100,0.05,611d9282-6049-4a3b-9e0a-43ebff6d2b17,80 -1849-010319-5,5,100,0.05,b237282a-fe4b-423f-b7fa-386f160c4b06,41 -1849-010319-4,5,100,0.05,b237282a-fe4b-423f-b7fa-386f160c4b06,31 -1849-060319-1,5,100,0.05,6a6d6552-8538-4710-b0b7-840f3f7ab2cd,100 -1849-060319-1,5,100,0.05,a08629d3-5b0a-471c-a241-85a41567f961,75 -1849-060319-1,5,100,0.05,6ec5854a-8d6e-46ea-81f7-911b43a5eb5e,92 -1849-060319-3,5,100,0.05,2aa7a45c-1b17-49ab-8ae8-61b8a52e0f7c,112 -1849-060319-2,5,100,0.05,2aa7a45c-1b17-49ab-8ae8-61b8a52e0f7c,114 -1849-060319-2,5,100,0.05,f3cab6b6-a20b-4d6a-b84e-0f1696346ff0,118 -1849-060319-4,5,100,0.05,7f3dcc9c-a33f-42dc-99f3-8bee5eff9c5f,78 -1849-110319-1,5,100,0.05,cd5d0271-f8e7-4548-b7b9-3c3fb537d6e1,16 -1849-110319-1,5,100,0.05,0e63eeb4-e6dc-41f8-b424-90b7a8985c1c,17 -1849-110319-1,5,100,0.05,deb6463b-04e6-472d-b4ae-ff084235d300,29 -1849-110319-2,5,100,0.05,41bf8868-be15-49e9-a0fa-6cf99558bc61,24 -1849-110319-2,5,100,0.05,fad375f7-e533-4ee2-857a-6e15e3e9a5bc,48 -1849-110319-3,5,100,0.05,ddc66744-467f-4ee0-b93d-6581d1c71293,165 -1849-150319-1,5,100,0.05,42107876-4cdc-425e-bc73-e6d8b94bdc01,107 -1849-150319-1,5,100,0.05,61daa5e0-aa64-4ad5-bd7e-722491a20263,60 -1849-150319-1,5,100,0.05,6661e694-abfe-4b31-a8e1-4d6b63bba0de,80 -1849-150319-1,5,100,0.05,a7456e3a-2f0d-4939-ac21-a9db8142b2e3,95 -1849-150319-2,5,100,0.05,f80b3cc3-38e9-4fb5-b207-fdaea508390d,18 -1849-150319-2,5,100,0.05,50a82c1d-cb2c-49d5-8db2-9f93655ad040,19 -1849-150319-3,5,100,0.05,50a82c1d-cb2c-49d5-8db2-9f93655ad040,38 -1849-150319-4,5,100,0.05,50a82c1d-cb2c-49d5-8db2-9f93655ad040,64 -1849-150319-2,5,100,0.05,c758e016-9f26-47bd-b7c1-bed26cf969ce,22 -1849-150319-2,5,100,0.05,aa8319aa-0096-459c-8f57-33015802e5a7,67 -1849-150319-3,5,100,0.05,c094ed4f-8c1e-478e-ac36-78dbd93af50e,64 -1849-150319-3,5,100,0.05,7707909f-e1af-4115-8a8f-22f647a94b85,78 -1849-150319-4,5,100,0.05,fe9eb063-9b76-4498-82d4-036c914f2fc6,37 -1849-220319-2,5,100,0.05,0ed639ea-5af3-463a-b979-b9d5c4254798,32 -1849-220319-2,5,100,0.05,007b4342-cd89-4c7e-a3ba-11f06ba2453a,45 -1849-220319-2,5,100,0.05,0e89975d-33c8-4e92-87c7-13c2397aaeab,46 -1849-220319-3,5,100,0.05,357a9214-8554-40b8-8179-7eebcc9cc5d1,28 -1849-220319-3,5,100,0.05,59993a9b-a03f-4779-bd96-76841778478b,73 -1849-220319-3,5,100,0.05,24d88d9b-a044-41ec-b92c-866014f97cce,75 -1849-220319-4,5,100,0.05,29b43539-e945-4505-a5d1-78a61e3860e6,102 -1849-220319-4,5,100,0.05,ad01f579-c475-46c0-96d1-89943c76f9b3,110 -1849-220319-4,5,100,0.05,716c9436-1ff7-48ed-acb7-31375212e551,84 -1849-220319-5,5,100,0.05,5a0a9417-b6e1-4258-b28b-652ae616c53d,34 -1849-220319-5,5,100,0.05,0bccdd44-1d16-4822-ae3b-c3eac8b31180,35 -1849-220319-5,5,100,0.05,83455f62-e99d-4f02-a284-2cf9d1cf22a2,38 -1849-220319-5,5,100,0.05,55ee09a2-8940-435f-8032-66800f75358f,39 -1849-280219-1,5,100,0.05,13f5a9cb-75e2-454c-b4dd-ce059c65feaf,40 -1849-280219-2,5,100,0.05,4d81a6f7-fc81-4ebc-9103-63363f62a050,64 -1849-280219-3,5,100,0.05,8014d693-8aba-4b93-9b2a-48beaca294f4,129 -1849-280219-3,5,100,0.05,87580bf8-4eff-401f-a4cd-f75dfc6e9177,137 -1849-280219-4,5,100,0.05,50e6e04d-657b-4b9a-9533-5db1d6c7caf7,44 -1849-010319-2,6,100,0.05,c55aecd9-e338-4a12-bf60-bcafbb494a52,63 -1849-010319-2,6,100,0.05,a5d831b9-18e2-4f4e-b55a-a0f524e1a79d,64 -1849-010319-2,6,100,0.05,3f6b3228-ae52-4e84-8d7e-8eaecc946bc6,65 -1849-010319-2,6,100,0.05,53c275a6-a4ca-464a-8df2-9a1bd02c0e5d,66 -1849-010319-4,6,100,0.05,76de2021-8b63-4253-b1f2-2cf8daa6a98d,36 -1849-010319-4,6,100,0.05,030f9898-a18e-460c-b734-0b57f9951821,37 -1849-010319-5,6,100,0.05,7c99e8f7-93de-4fe6-b1da-141f297d5eaa,33 -1849-010319-5,6,100,0.05,2800f35d-bbf8-45f9-80f5-7166858c0e15,47 -1849-010319-5,6,100,0.05,068e05e9-e154-4a27-a613-d667f669cb63,48 -1849-010319-5,6,100,0.05,139d799f-b85e-4771-946f-537638c6793a,49 -1849-060319-1,6,100,0.05,97387fd3-e4a8-4457-be9f-3586413e7cc3,44 -1849-060319-1,6,100,0.05,844564b0-1b6c-4a68-a287-f118245d2471,81 -1849-060319-4,6,100,0.05,2293ff61-e13b-40e4-b738-ed65f60661ee,62 -1849-060319-4,6,100,0.05,3d3102aa-e423-4744-bf1d-1bfbd2ae8c56,66 -1849-280219-1,6,100,0.05,dcc0fd1e-2f48-4aa3-8ce7-9952d9e9b844,106 -1849-280219-1,6,100,0.05,2fc54f79-f855-4039-9937-13e13cccf93d,108 -1849-280219-1,6,100,0.05,4982026e-438b-4432-bfb1-b81566622682,44 -1849-280219-1,6,100,0.05,70346dd2-e8b7-4d05-995c-41ef6de42489,45 -1849-280219-1,6,100,0.05,e8da8280-5171-4c31-9ded-b69fdd005a62,96 -1849-280219-1,6,100,0.05,dfb88585-c4e0-4fb7-9d9b-f6cfe55c509c,98 -1849-280219-2,6,100,0.05,2fa742e1-fd6c-4461-ba3f-a8cafcbe5d36,38 -1849-280219-2,6,100,0.05,38d03c90-38d4-4d6a-aeae-b9cb67b65d8c,90 -1849-280219-2,6,100,0.05,01da7c1c-213a-4d86-874a-795113a80133,94 -1849-280219-3,6,100,0.05,43a2df67-89e6-426b-826d-0d11b81b51e1,127 -1849-280219-3,6,100,0.05,b5b081e5-fbb0-4951-8dad-e9c83fdbc45a,131 -1849-280219-3,6,100,0.05,ae6ce252-72ce-4193-aa44-10e035f4280e,135 -1849-280219-3,6,100,0.05,25a3039f-db92-42f6-b9a5-d52ba006174c,139 -1849-280219-4,6,100,0.05,2355ab9c-a355-4100-bd9e-5239f3ef9221,66 -1849-280219-4,6,100,0.05,92a1ab59-7693-4d59-9059-ba13230b4fa4,68 -1849-010319-2,7,100,0.05,2d9cdb86-6502-43bc-a86e-93a11929c2f9,67 -1849-280219-4,7,100,0.05,2d9cdb86-6502-43bc-a86e-93a11929c2f9,58 -1849-010319-2,7,100,0.05,473416fe-858d-4b6a-84fd-e9eb34066076,68 -1849-280219-4,7,100,0.05,b584b4cc-fc27-4553-9550-22e7b6e5dec4,56 -1849-280219-2,7,100,0.05,b584b4cc-fc27-4553-9550-22e7b6e5dec4,42 -1849-280219-3,7,100,0.05,b584b4cc-fc27-4553-9550-22e7b6e5dec4,158 -1849-010319-2,7,100,0.05,b584b4cc-fc27-4553-9550-22e7b6e5dec4,70 -1849-010319-4,7,100,0.05,5ffce4f5-b838-4709-9d63-642e747f7f3f,38 -1849-010319-5,7,100,0.05,ec44d4da-d0f0-4da1-9a9b-f696a87acc51,57 -1849-010319-4,7,100,0.05,ec44d4da-d0f0-4da1-9a9b-f696a87acc51,39 -1849-010319-4,7,100,0.05,d194d293-0304-4056-989f-714c8d3f131a,40 -1849-010319-4,7,100,0.05,bbaa9e6e-78b6-43ce-84d5-366debf8a7ca,41 -1849-010319-5,7,100,0.05,ef16d09c-0d57-419d-b4bd-0ae4943338ef,51 -1849-010319-5,7,100,0.05,9729773c-9659-4d91-a8e6-ed155318dbc3,54 -1849-060319-1,7,100,0.05,e5a0af3a-af81-4a49-97bb-fcbbf64bae1b,49 -1849-060319-1,7,100,0.05,f25da898-1084-403e-9964-cae315280399,90 -1849-060319-2,7,100,0.05,f1bfa678-4401-40ce-bd0d-42c0f1a0739d,50 -1849-060319-2,7,100,0.05,4987ee0e-55c8-454e-a2b9-9b25f461fb83,71 -1849-060319-2,7,100,0.05,15a2b5fa-2bea-4db2-bdcd-afe36997a499,92 -1849-060319-3,7,100,0.05,d8c804e8-5ad8-4cb5-9345-4c44fd546ae9,118 -1849-060319-3,7,100,0.05,d4148f8f-d1fa-4ead-86e2-9bb4802482d5,92 -1849-060319-4,7,100,0.05,d917413c-3895-4dd9-98ee-02d7e06efcd9,60 -1849-150319-1,7,100,0.05,4ac7bd1c-40fe-46db-95e0-22256b718dc2,56 -1849-280219-1,7,100,0.05,6bbd2297-20b0-41e2-a070-809624a8ed89,52 -1849-280219-1,7,100,0.05,9a8b203b-75a8-47fb-ad4a-47c840a44d53,53 -1849-280219-1,7,100,0.05,78e2e7a1-8239-407f-ab35-c57181c7672b,62 -1849-280219-2,7,100,0.05,f25164cc-caa2-4cdf-a04f-ffe841664685,43 -1849-280219-2,7,100,0.05,cc935957-67f1-448a-930d-cc3e30d2a420,61 -1849-280219-2,7,100,0.05,45885efb-8adc-438c-8563-dcff91391915,66 -1849-280219-2,7,100,0.05,6d7df974-715e-43a8-abd0-5aa13c04ac6b,92 -1849-280219-3,7,100,0.05,c960cd69-9834-4a0c-b5c3-e74b2f3f5d71,149 -1849-280219-3,7,100,0.05,0ed53f0e-6e5c-4771-8b05-aac4023b5a4a,164 -1849-280219-4,7,100,0.05,b1e6c75f-c7dd-4432-bd89-872d957ef7dc,86 -1833-020719-3,0,100,0.05,ba4e252f-1ed8-4a25-8954-85f12eb4c723,143 -1833-020719-4,0,100,0.05,ba4e252f-1ed8-4a25-8954-85f12eb4c723,302 -1833-020719-1,0,100,0.05,ba4e252f-1ed8-4a25-8954-85f12eb4c723,123 -1833-010719-1,0,100,0.05,ba4e252f-1ed8-4a25-8954-85f12eb4c723,127 -1833-260619-4,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,202 -1833-010719-1,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,161 -1833-260619-3,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,196 -1833-260619-1,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,120 -1833-010719-2,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,239 -1833-010719-1,0,100,0.05,ebe9064b-ecdd-4ee8-b8c9-4a48e71764b9,191 -1833-010719-1,0,100,0.05,898df8ee-543c-4e61-81b0-d4054dff1561,223 -1833-010719-2,0,100,0.05,898df8ee-543c-4e61-81b0-d4054dff1561,261 -1833-010719-1,0,100,0.05,b98ac340-6205-4429-adee-270f767ad486,225 -1833-010719-2,0,100,0.05,b98ac340-6205-4429-adee-270f767ad486,267 -1833-010719-1,0,100,0.05,7eb726d3-73df-4a64-add2-f59a70133700,235 -1833-010719-2,0,100,0.05,7eb726d3-73df-4a64-add2-f59a70133700,4 -1833-010719-2,0,100,0.05,1db228ea-9618-4fa6-90b2-5cc2ad5cfbed,254 -1833-010719-2,0,100,0.05,5a252573-4d76-45b0-8717-07908c6882e8,265 -1833-020719-1,0,100,0.05,eeece253-7ee8-4165-b7f7-0c8f76a36761,119 -1833-020719-1,0,100,0.05,6190734f-2d77-4ba4-a0f1-e5612e242a10,121 -1833-020719-4,0,100,0.05,b1e63404-52d5-4970-8b93-33513da717a4,308 -1833-020719-2,0,100,0.05,b1e63404-52d5-4970-8b93-33513da717a4,142 -1833-020719-1,0,100,0.05,b1e63404-52d5-4970-8b93-33513da717a4,145 -1833-020719-3,0,100,0.05,b1e63404-52d5-4970-8b93-33513da717a4,156 -1833-020719-4,0,100,0.05,1d7387a7-c7fb-48b8-929e-6b64a78c808c,320 -1833-020719-1,0,100,0.05,1d7387a7-c7fb-48b8-929e-6b64a78c808c,158 -1833-020719-3,0,100,0.05,1d7387a7-c7fb-48b8-929e-6b64a78c808c,162 -1833-020719-2,0,100,0.05,1d7387a7-c7fb-48b8-929e-6b64a78c808c,8 -1833-020719-2,0,100,0.05,e3be68e5-2a14-4709-b753-a8a2a2ad5bcf,105 -1833-020719-3,0,100,0.05,9e6cc2cb-f2d8-4d77-b707-8cebc2a20de7,141 -1833-020719-4,0,100,0.05,9e6cc2cb-f2d8-4d77-b707-8cebc2a20de7,306 -1833-020719-2,0,100,0.05,9e6cc2cb-f2d8-4d77-b707-8cebc2a20de7,129 -1833-020719-2,0,100,0.05,ce7fe149-8724-44ff-b98b-1532910f5830,95 -1833-020719-3,0,100,0.05,ce7fe149-8724-44ff-b98b-1532910f5830,116 -1833-020719-3,0,100,0.05,4ac7c4cc-656b-4670-857c-84a1af8974de,104 -1833-020719-3,0,100,0.05,5d0cdb56-c832-432f-960d-6500f55ccab9,105 -1833-020719-3,0,100,0.05,936a100e-5346-44a4-a55c-f3df64f0275c,112 -1833-020719-3,0,100,0.05,bfcaa1c0-6726-4bb7-a281-c0e585633e96,150 -1833-020719-4,0,100,0.05,542a6469-48fe-448c-9f8d-6406977a5cc6,258 -1833-060619-2,0,100,0.05,68eeca3a-f6c6-4c2e-a00f-6506b3fa64d3,76 -1833-060619-2,0,100,0.05,cd289bee-5024-460e-be9f-a2b4a4075b4a,90 -1833-120619-1,0,100,0.05,7ce98e4c-5e4d-4e7f-9a48-ccc014e806f1,139 -1833-120619-2,0,100,0.05,7ce98e4c-5e4d-4e7f-9a48-ccc014e806f1,175 -1833-120619-3,0,100,0.05,7ce98e4c-5e4d-4e7f-9a48-ccc014e806f1,153 -1833-120619-2,0,100,0.05,ad2d65a5-f318-4fac-aec3-0ce3d079a39b,89 -1833-200619-1,0,100,0.05,72f52a84-56e5-4e77-9b17-43a218ed4bf5,147 -1833-200619-2,0,100,0.05,00ae4fcb-d602-4404-a413-58d8979d11d0,268 -1833-200619-3,0,100,0.05,7f5b87d4-3ac6-4f0e-bc85-e26874d9bb15,0 -1833-200619-4,0,100,0.05,7f5b87d4-3ac6-4f0e-bc85-e26874d9bb15,1 -1833-200619-2,0,100,0.05,7f5b87d4-3ac6-4f0e-bc85-e26874d9bb15,283 -1833-200619-4,0,100,0.05,5edace4e-5305-406c-954b-ebe81c7ceac7,90 -1833-200619-3,0,100,0.05,5edace4e-5305-406c-954b-ebe81c7ceac7,91 -1833-200619-4,0,100,0.05,a1631c76-74d8-4d29-9ff9-22106858eb50,92 -1833-200619-3,0,100,0.05,a1631c76-74d8-4d29-9ff9-22106858eb50,93 -1833-200619-4,0,100,0.05,50140f4e-5c10-4b2a-92d9-1bcbd1a19f69,78 -1833-200619-4,0,100,0.05,af14ac5d-547d-4165-b573-127e8159470f,96 -1833-260619-3,0,100,0.05,e6f1a3ab-5f03-4040-95a8-011377383bd8,182 -1833-260619-1,0,100,0.05,e6f1a3ab-5f03-4040-95a8-011377383bd8,118 -1833-260619-3,0,100,0.05,33c70b65-fa05-409e-a4fc-4bb8e376f040,141 -1833-260619-4,0,100,0.05,33c70b65-fa05-409e-a4fc-4bb8e376f040,115 -1833-260619-1,0,100,0.05,33c70b65-fa05-409e-a4fc-4bb8e376f040,130 -1833-260619-2,0,100,0.05,2ee4470e-a5f5-43df-81b6-1031273bb616,174 -1833-260619-4,0,100,0.05,2ee4470e-a5f5-43df-81b6-1031273bb616,233 -1833-260619-1,0,100,0.05,2ee4470e-a5f5-43df-81b6-1031273bb616,132 -1833-260619-3,0,100,0.05,2ee4470e-a5f5-43df-81b6-1031273bb616,209 -1833-260619-3,0,100,0.05,57cbdea0-536a-4c8c-955f-ec475a563051,1 -1833-260619-4,0,100,0.05,57cbdea0-536a-4c8c-955f-ec475a563051,235 -1833-260619-2,0,100,0.05,57cbdea0-536a-4c8c-955f-ec475a563051,2 -1833-260619-1,0,100,0.05,57cbdea0-536a-4c8c-955f-ec475a563051,2 -1833-260619-3,0,100,0.05,2a5d347a-c7bb-416e-8025-486433ddbda5,180 -1833-260619-4,0,100,0.05,2a5d347a-c7bb-416e-8025-486433ddbda5,208 -1833-260619-2,0,100,0.05,2a5d347a-c7bb-416e-8025-486433ddbda5,152 -1833-260619-4,0,100,0.05,6bde3ee2-5cd9-44df-9601-389fee3d8500,222 -1833-260619-2,0,100,0.05,6bde3ee2-5cd9-44df-9601-389fee3d8500,164 -1833-260619-3,0,100,0.05,6bde3ee2-5cd9-44df-9601-389fee3d8500,194 -1833-260619-3,0,100,0.05,e1a5b13b-2c85-4054-ab9a-8b9f37265fbe,0 -1833-260619-3,0,100,0.05,09b7b4a7-e168-44ea-9a2a-54ff1835aacf,140 -1833-290519-1,0,100,0.05,6fb25ed1-ea29-4878-bc81-27927f7f73a0,112 -1833-290519-1,0,100,0.05,34a862c6-e89d-4dc2-a685-915bfcbbda8c,120 -1833-290519-1,0,100,0.05,db14da8f-776c-41c2-b51c-1da6876c0532,146 -1833-290519-2,0,100,0.05,d7974416-6132-4ee0-9f16-b093cce4c902,78 -1833-290519-2,0,100,0.05,6a41dc74-b1ba-4703-82df-3a7f1e7c18d5,82 -1833-290519-3,0,100,0.05,558500a6-7ba2-4580-a578-8ef97f6cc3e9,107 -1833-290519-3,0,100,0.05,b168bc20-b133-4699-a23a-3df93410f3c7,137 -1833-290519-4,0,100,0.05,a3127d30-b71f-4bd4-9b13-9a1813e8166e,117 -1833-290519-4,0,100,0.05,4507bae7-c644-4bb8-8903-8953a5959e2b,88 -1833-260619-1,1,100,0.05,fb914cf8-e51a-4bde-9548-fc88837196f7,104 -1833-010719-1,1,100,0.05,fb914cf8-e51a-4bde-9548-fc88837196f7,146 -1833-260619-2,1,100,0.05,fb914cf8-e51a-4bde-9548-fc88837196f7,123 -1833-010719-1,1,100,0.05,ec359714-7abd-4aff-84a2-ae56976cd3d1,219 -1833-010719-1,1,100,0.05,fbb86cc8-a3f5-4b1e-822e-069b20698f61,221 -1833-010719-2,1,100,0.05,27de8536-f3c1-40d9-9945-3d67e817e91f,273 -1833-010719-1,1,100,0.05,27de8536-f3c1-40d9-9945-3d67e817e91f,229 -1833-010719-1,1,100,0.05,fee0eade-67c4-4a3f-acce-a285a0339c31,6 -1833-010719-1,1,100,0.05,c8b0ba69-6061-4bf4-bc9e-6f6852322720,8 -1833-010719-2,1,100,0.05,1b507849-b4d8-485a-95a2-c451712e3db3,135 -1833-020719-2,1,100,0.05,1b507849-b4d8-485a-95a2-c451712e3db3,131 -1833-020719-2,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,15 -1833-200619-1,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,159 -1833-010719-2,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,18 -1833-200619-3,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,97 -1833-200619-4,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,76 -1833-010719-2,1,100,0.05,d1d6a4e1-3306-4fd3-a186-6eaefcfd0999,227 -1833-020719-2,1,100,0.05,d1d6a4e1-3306-4fd3-a186-6eaefcfd0999,14 -1833-020719-3,1,100,0.05,d1d6a4e1-3306-4fd3-a186-6eaefcfd0999,123 -1833-010719-2,1,100,0.05,1d7953e8-e2f7-46d5-8eb6-dd1148a4823d,229 -1833-010719-2,1,100,0.05,341d5c1e-8bf2-4c6b-a9bc-436cd729eda4,233 -1833-010719-2,1,100,0.05,6a7b9e3a-c45e-4f75-9d3b-08690246e8a9,269 -1833-020719-1,1,100,0.05,9920c275-9d0a-45f6-9d8e-084d9aa3c342,115 -1833-020719-3,1,100,0.05,84a160f2-a560-4368-9174-7d5bdf8b8247,154 -1833-020719-1,1,100,0.05,84a160f2-a560-4368-9174-7d5bdf8b8247,147 -1833-020719-1,1,100,0.05,bbdde041-a751-4a7e-a44b-15974a171de0,155 -1833-020719-3,1,100,0.05,bbdde041-a751-4a7e-a44b-15974a171de0,166 -1833-020719-2,1,100,0.05,bbdde041-a751-4a7e-a44b-15974a171de0,87 -1833-020719-2,1,100,0.05,8b1f640b-b234-4133-a5bd-667ac105fa59,152 -1833-020719-3,1,100,0.05,0ffe2dc9-ffe1-4dd5-9bcc-03a2a246e7e4,139 -1833-020719-4,1,100,0.05,30abc9d9-0a39-4497-8d3c-1d6866982249,256 -1833-020719-4,1,100,0.05,5bb6cb1b-d452-48c2-aea4-d6fe0471e2aa,278 -1833-020719-4,1,100,0.05,6e42a957-3b54-4316-a2c8-b057897b09e9,300 -1833-050619-1,1,100,0.05,985959f0-f728-4c9f-93ae-e13ad7a02c74,75 -1833-050619-2,1,100,0.05,bc21bc4b-6c3e-478a-8e14-99669645d06d,129 -1833-050619-3,1,100,0.05,bc21bc4b-6c3e-478a-8e14-99669645d06d,125 -1833-050619-4,1,100,0.05,129c45d8-9158-4a43-94fd-dee516a2e1c9,68 -1833-050619-4,1,100,0.05,a6e87c39-eb26-4ed0-bf32-3aa44cd4f0af,84 -1833-050619-4,1,100,0.05,a55daf30-aefa-43ab-9a95-e5d9bd06e823,86 -1833-060619-1,1,100,0.05,7ae12999-7d35-4a8f-898c-bdc390c8c4a9,137 -1833-060619-2,1,100,0.05,fe0084d9-dd50-4488-8ee7-d98155ed1990,64 -1833-060619-2,1,100,0.05,9664c9b0-a86b-4d71-81fb-b12c65d86393,78 -1833-120619-1,1,100,0.05,3f0fa5ed-6d31-488a-a457-195737d2a086,114 -1833-120619-2,1,100,0.05,f27d9c98-8e2e-4072-adc6-017c89645659,104 -1833-200619-1,1,100,0.05,14b6d7fa-262b-49ac-ac5b-33e1add41874,155 -1833-200619-2,1,100,0.05,17d861e8-3a37-40eb-8318-6ec985459858,278 -1833-200619-3,1,100,0.05,e33305f4-99cf-4977-a5a3-618f44b71b70,89 -1833-200619-4,1,100,0.05,e33305f4-99cf-4977-a5a3-618f44b71b70,70 -1833-260619-1,1,100,0.05,2243bc1a-9c0d-48e4-875d-7224a66f0c88,10 -1833-260619-1,1,100,0.05,ec3817dd-1675-4f2b-8858-d4a1500d87c0,116 -1833-260619-1,1,100,0.05,7e70f8da-d97a-4fcd-8858-401c6260c47a,126 -1833-260619-2,1,100,0.05,7e70f8da-d97a-4fcd-8858-401c6260c47a,166 -1833-260619-2,1,100,0.05,4c452acd-e9f2-4b0f-b82d-0fe1ccdc33c3,130 -1833-260619-3,1,100,0.05,7678a9ed-257d-4f53-a717-e0ad0d85e25c,119 -1833-260619-4,1,100,0.05,0b537e87-e582-4c91-8874-1de2ce803d7d,198 -1833-260619-3,1,100,0.05,0b537e87-e582-4c91-8874-1de2ce803d7d,170 -1833-260619-3,1,100,0.05,9bdddedc-261e-4ac0-93c7-d5cd19d91185,207 -1833-260619-4,1,100,0.05,8627d7aa-866b-400f-94d3-a99a4d07259e,178 -1833-260619-4,1,100,0.05,442d143b-4391-4c9a-a46e-2a7349dd3286,204 -1833-260619-4,1,100,0.05,84a1b5ee-dfdf-4abf-8813-da8865de6965,226 -1833-290519-1,1,100,0.05,cace33a4-5c22-438c-9cf9-dcdaa29bf69a,138 -1833-290519-1,1,100,0.05,46d2d86d-9797-4cf9-89a5-6a703ccaa558,92 -1833-290519-2,1,100,0.05,bd08c0d8-98d7-4191-9637-3e926596ef62,102 -1833-290519-2,1,100,0.05,abe72ea0-c01d-4efb-be32-78edabdd5678,104 -1833-290519-2,1,100,0.05,671487d3-e127-45ec-a8bd-ed9357a7467c,116 -1833-290519-2,1,100,0.05,606d3d11-836e-439e-b92b-2347a7aaee16,120 -1833-290519-3,1,100,0.05,76fc320f-ba62-44ad-b3c3-bdf2b485b10f,119 -1833-290519-3,1,100,0.05,d9ebc2e4-f37f-489b-bca5-29fc0ba6bf8c,72 -1833-290519-4,1,100,0.05,3de35167-5d99-4aaa-a56d-934cad6031db,85 -1833-290519-4,1,100,0.05,2ebc9e09-dcde-4f22-9843-ba659532e735,96 -1833-010719-2,2,100,0.05,7f2bf469-88e5-4f74-a055-1e81842fa3ab,249 -1833-010719-1,2,100,0.05,7f2bf469-88e5-4f74-a055-1e81842fa3ab,202 -1833-020719-1,2,100,0.05,7f2bf469-88e5-4f74-a055-1e81842fa3ab,143 -1833-010719-1,2,100,0.05,c8c679c1-7f99-4dbc-824b-74ab7bb0432f,231 -1833-010719-2,2,100,0.05,c8c679c1-7f99-4dbc-824b-74ab7bb0432f,29 -1833-010719-2,2,100,0.05,6f17b6f2-a62f-4178-aade-eff09d7bdc0e,271 -1833-020719-1,2,100,0.05,49227bb5-82c2-4b2b-9a2b-34129b562b16,149 -1833-020719-2,2,100,0.05,0677e33d-8b76-48b5-b250-85514835ed05,119 -1833-020719-2,2,100,0.05,975d43cb-d8e8-4f50-9c17-465a869c07c9,120 -1833-020719-2,2,100,0.05,fc67c9f2-a89e-4328-b609-a73139780335,93 -1833-020719-3,2,100,0.05,3ab9b371-8e69-46e7-b6a8-17958d5384a3,147 -1833-020719-3,2,100,0.05,f818556d-1db6-4222-a7b8-f77923007102,168 -1833-020719-4,2,100,0.05,234d31aa-cb9b-481a-9370-f6fcbfba5933,260 -1833-060619-1,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,168 -1833-050619-1,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,99 -1833-050619-2,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,135 -1833-050619-3,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,133 -1833-060619-2,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,106 -1833-050619-2,2,100,0.05,03e38f64-e61c-40d2-aa07-c4945b2d75f2,111 -1833-050619-3,2,100,0.05,e303077b-825b-4c41-b684-ee2d9b3acc2d,111 -1833-050619-2,2,100,0.05,e303077b-825b-4c41-b684-ee2d9b3acc2d,89 -1833-120619-1,2,100,0.05,481f74e6-b1ba-458e-aa81-1585dd051e92,120 -1833-120619-2,2,100,0.05,481f74e6-b1ba-458e-aa81-1585dd051e92,142 -1833-120619-3,2,100,0.05,481f74e6-b1ba-458e-aa81-1585dd051e92,104 -1833-120619-2,2,100,0.05,14b4abd8-4a15-471e-89a2-35f7ad285cd7,118 -1833-200619-4,2,100,0.05,584ac75f-ede2-41a8-a4f9-c14b46d7e4f2,115 -1833-200619-1,2,100,0.05,584ac75f-ede2-41a8-a4f9-c14b46d7e4f2,228 -1833-200619-3,2,100,0.05,7670f7b8-b500-4f38-b178-d94fbd3ec6bb,142 -1833-200619-4,2,100,0.05,7670f7b8-b500-4f38-b178-d94fbd3ec6bb,117 -1833-200619-1,2,100,0.05,7670f7b8-b500-4f38-b178-d94fbd3ec6bb,239 -1833-200619-2,2,100,0.05,7670f7b8-b500-4f38-b178-d94fbd3ec6bb,325 -1833-260619-4,2,100,0.05,98b53e63-7269-46be-89f5-f1490ae2e6d9,216 -1833-260619-2,2,100,0.05,98b53e63-7269-46be-89f5-f1490ae2e6d9,168 -1833-260619-3,2,100,0.05,98b53e63-7269-46be-89f5-f1490ae2e6d9,198 -1833-260619-1,2,100,0.05,98b53e63-7269-46be-89f5-f1490ae2e6d9,128 -1833-260619-2,2,100,0.05,33d22c65-5b53-4f4f-8566-34b520b6c5b4,148 -1833-290519-2,2,100,0.05,ca6cc9c9-586f-4d54-b743-5119b11761e8,100 -1833-290519-2,2,100,0.05,ec8fe95d-3f52-4100-a292-f9c8ec7183e9,112 -1833-290519-2,2,100,0.05,0e323e78-df63-48c4-b3b3-a9f71949b74f,132 -1833-010719-1,3,100,0.05,df15fe2f-0a8e-43d5-b477-91d779574d70,171 -1833-010719-1,3,100,0.05,e147fd2f-c645-4ff6-bc2e-f7a06f49d066,198 -1833-010719-1,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,216 -1833-020719-1,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,151 -1833-010719-2,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,243 -1833-020719-2,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,136 -1833-020719-3,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,17 -1833-010719-2,3,100,0.05,7c87262c-745c-4487-869d-b6cc7e683171,133 -1833-010719-1,3,100,0.05,7c87262c-745c-4487-869d-b6cc7e683171,240 -1833-010719-2,3,100,0.05,6bdd1031-84e1-4546-8b1f-a749e77912ca,157 -1833-010719-2,3,100,0.05,0ae09502-ac16-4b67-936c-4d5453a43692,173 -1833-010719-2,3,100,0.05,4189362e-74af-4574-bc81-1a8a4d1fb88d,174 -1833-010719-2,3,100,0.05,f3ff370e-e0e9-4b9c-9a8c-6b6b2a5dc0dd,187 -1833-010719-2,3,100,0.05,4dc2ac0f-74f6-4129-879b-24e991349882,188 -1833-010719-2,3,100,0.05,ac2af137-4806-405c-86c4-ab2dc5a5547a,241 -1833-010719-2,3,100,0.05,5ce98f13-1520-436a-96ef-3d36ec768b53,259 -1833-020719-1,3,100,0.05,25e001bb-3686-48b6-8f17-323b2047ca41,135 -1833-020719-1,3,100,0.05,38521459-c85a-4e89-9ec1-b981a040b9aa,140 -1833-020719-2,3,100,0.05,38521459-c85a-4e89-9ec1-b981a040b9aa,140 -1833-020719-3,3,100,0.05,38521459-c85a-4e89-9ec1-b981a040b9aa,23 -1833-020719-1,3,100,0.05,36fc2255-4ab4-474f-9af0-a3f0e562d85d,153 -1833-020719-3,3,100,0.05,36fc2255-4ab4-474f-9af0-a3f0e562d85d,164 -1833-020719-3,3,100,0.05,50e83d44-0a53-4aef-8613-69eb76ecf07b,170 -1833-020719-1,3,100,0.05,50e83d44-0a53-4aef-8613-69eb76ecf07b,164 -1833-020719-2,3,100,0.05,7881596e-9ce1-4bda-bcdf-cda78024e746,107 -1833-020719-2,3,100,0.05,3c8df1c3-1c38-4c1d-9483-15d8d0bd0f20,139 -1833-020719-2,3,100,0.05,b13b7c7c-5c7d-4791-b737-f66630604049,146 -1833-020719-3,3,100,0.05,c52544da-4ac6-416b-a53e-a29d43132edf,152 -1833-020719-4,3,100,0.05,bf250897-99a1-455a-9413-e3cbc7b75a6b,289 -1833-020719-4,3,100,0.05,06851ad9-2e5d-48de-88f1-7d7e91a0193d,290 -1833-020719-4,3,100,0.05,95817cdb-2bb3-4bbd-b2fd-6cd973fe11db,298 -1833-020719-4,3,100,0.05,4ad9c2b9-4495-4eab-8b7c-3bf0fcd760a1,318 -1833-050619-4,3,100,0.05,fa02e41b-5ef1-412f-b055-fd73199bc338,148 -1833-050619-3,3,100,0.05,fa02e41b-5ef1-412f-b055-fd73199bc338,147 -1833-050619-2,3,100,0.05,fa02e41b-5ef1-412f-b055-fd73199bc338,143 -1833-050619-1,3,100,0.05,fa02e41b-5ef1-412f-b055-fd73199bc338,107 -1833-060619-1,3,100,0.05,1e512e65-896f-4923-a3ee-98278cdf2cae,174 -1833-120619-2,3,100,0.05,8bf54ec3-1743-41ed-baf5-fa72bcfdceef,143 -1833-120619-2,3,100,0.05,c3b79b01-0195-47cd-a579-b2f5e33c4965,69 -1833-200619-1,3,100,0.05,1e2be93e-8259-4891-a0cc-dd4db5825242,151 -1833-200619-3,3,100,0.05,b11f3592-9751-4869-b614-b12c5f6bc102,128 -1833-200619-4,3,100,0.05,b11f3592-9751-4869-b614-b12c5f6bc102,102 -1833-200619-1,3,100,0.05,b11f3592-9751-4869-b614-b12c5f6bc102,184 -1833-200619-2,3,100,0.05,1d61ed03-2384-49f0-b821-e75277ad8dce,257 -1833-200619-2,3,100,0.05,402ed1c6-a672-4d1f-a102-5a80e420e3b9,264 -1833-200619-3,3,100,0.05,71248abf-b0b0-4c5c-be83-98292ab20b75,82 -1833-200619-4,3,100,0.05,71248abf-b0b0-4c5c-be83-98292ab20b75,74 -1833-260619-1,3,100,0.05,cba25692-bed2-4a56-8a06-9c02e35b07bb,114 -1833-260619-2,3,100,0.05,cba25692-bed2-4a56-8a06-9c02e35b07bb,146 -1833-260619-3,3,100,0.05,34d0f1bb-661c-41d9-aa7c-74b0c0397bd0,160 -1833-260619-3,3,100,0.05,984a4441-c5a3-4295-9a86-e3fb730e3607,176 -1833-260619-4,3,100,0.05,984a4441-c5a3-4295-9a86-e3fb730e3607,206 -1833-260619-4,3,100,0.05,0b4bbf88-554e-4643-bce1-7a59d2c94fe8,196 -1833-290519-1,3,100,0.05,6fdfd9f7-ebf5-41a9-95be-436bac6d351d,101 -1833-290519-1,3,100,0.05,c9155b1b-91e1-46df-8754-9b10ec59805e,102 -1833-290519-4,3,100,0.05,c9155b1b-91e1-46df-8754-9b10ec59805e,92 -1833-290519-1,3,100,0.05,8d86c33a-8213-4e38-8821-024a39a10aae,162 -1833-290519-1,3,100,0.05,fc8e55f0-4726-43f7-81c6-8dd00ea482ab,176 -1833-290519-4,3,100,0.05,fc8e55f0-4726-43f7-81c6-8dd00ea482ab,130 -1833-290519-2,3,100,0.05,146fac0b-b657-41c8-aff2-8c117ab211fd,108 -1833-290519-2,3,100,0.05,59b01abe-0296-4850-9b3e-9dceda2147b8,72 -1833-290519-2,3,100,0.05,286b7743-0973-4c58-bd75-b8cc9cfc7058,74 -1833-290519-3,3,100,0.05,8ff98a1f-5a34-49f9-84a4-f3846bc4b018,102 -1833-290519-3,3,100,0.05,2177af70-9d3f-4cd0-9548-b403f073a33b,153 -1833-290519-3,3,100,0.05,0c0c3ac1-393d-4769-921f-3ef7da530ff1,68 -1833-290519-3,3,100,0.05,7aa32a78-6e0e-4ce5-9a89-5e93e74d857c,99 -1833-290519-4,3,100,0.05,ca22e646-70ab-4002-a94a-437b9a9e225e,129 -1833-010719-2,4,100,0.05,cc641056-b416-4754-a6d6-835d06bd5ecb,223 -1833-010719-2,4,100,0.05,cbbf2f90-61b1-4a68-ad95-4d370c348e20,231 -1833-020719-3,4,100,0.05,ce2429c9-0229-4524-b23b-04004c618c54,45 -1833-020719-3,4,100,0.05,93bcf188-5263-418b-83c2-6e10247113bf,94 -1833-020719-3,4,100,0.05,a820a57b-756a-4c96-a574-a36a94b5db75,95 -1833-020719-4,4,100,0.05,df07e67f-1c94-43b8-baca-f7e6da64572c,250 -1833-050619-1,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,25 -1833-060619-1,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,172 -1833-120619-4,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,119 -1833-050619-4,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,151 -1833-120619-2,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,170 -1833-050619-3,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,145 -1833-060619-2,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,108 -1833-120619-1,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,137 -1833-050619-2,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,137 -1833-120619-3,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,147 -1833-050619-3,4,100,0.05,c1e4160a-3097-4d3e-ad5a-461630a25b16,123 -1833-050619-4,4,100,0.05,c1e4160a-3097-4d3e-ad5a-461630a25b16,80 -1833-050619-2,4,100,0.05,c1e4160a-3097-4d3e-ad5a-461630a25b16,97 -1833-060619-1,4,100,0.05,55f2cc54-a46f-4c6f-b176-ed3f710af168,144 -1833-120619-2,4,100,0.05,0b3a5541-2aae-4572-9168-7ff6595d33a7,81 -1833-120619-3,4,100,0.05,7b9d90ee-5556-414d-9b33-d11b417ab788,100 -1833-120619-3,4,100,0.05,4926b1bb-cf02-414d-94d8-2855acd88cf6,101 -1833-200619-1,4,100,0.05,aaa9648f-6d27-48e5-acc7-f653af763d29,165 -1833-200619-2,4,100,0.05,6e4ad009-e0c8-4d8d-8053-60b7bf5488b8,254 -1833-200619-3,4,100,0.05,313a0026-1c60-43c8-8632-a83c6eea3ecf,113 -1833-200619-4,4,100,0.05,a780a428-c84f-4663-9377-cd3b2111bcbb,124 -1833-290519-1,4,100,0.05,affb462c-1d16-4d6d-a8f1-d4ec4dcbd5e2,118 -1833-290519-1,4,100,0.05,12f18a6f-1fa7-4dad-9be0-c3424d16adb0,80 -1833-290519-2,4,100,0.05,f82d6e04-d5b4-43c8-8da0-014d9f0c57fd,114 -1833-290519-2,4,100,0.05,17eb4990-ae4a-40f4-aee5-5b09cc855af3,122 -1833-290519-2,4,100,0.05,016abb40-3e1d-44ab-9458-770b4c64cf7f,124 -1833-290519-3,4,100,0.05,badb172c-4817-4c6d-a739-72ca808f21d6,135 -1833-290519-3,4,100,0.05,0962d6e7-19cf-4d0b-aed3-8ca418c18ea5,145 -1833-290519-3,4,100,0.05,2c5b9980-b277-4f98-a21f-c9e589f5d736,76 -1833-290519-4,4,100,0.05,4d9b7a4f-3111-4f9b-a7dc-8da8155d52a7,71 -1833-010719-1,5,100,0.05,6e8494b4-e361-4d7a-b878-0cf61c3d2ef3,134 -1833-010719-1,5,100,0.05,b5733944-def2-436d-96ec-8c53604451eb,144 -1833-010719-1,5,100,0.05,df8bc9c9-9229-478b-8a80-ab968ec8058e,150 -1833-260619-1,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,110 -1833-260619-3,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,184 -1833-010719-1,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,166 -1833-260619-4,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,212 -1833-260619-2,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,154 -1833-010719-2,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,235 -1833-010719-2,5,100,0.05,4bf38c9c-c804-4e3d-be19-b90ec7ce4a2c,221 -1833-020719-1,5,100,0.05,ada83a2f-0f77-4772-86f3-c2cf580f7838,109 -1833-020719-2,5,100,0.05,8353c05a-50df-4d89-8204-256c43afcde4,103 -1833-020719-2,5,100,0.05,dc42cc94-b6b4-48bd-ab99-c14125e686cf,126 -1833-020719-3,5,100,0.05,e064ae87-8947-40b4-adcc-91fa8e5f3d88,117 -1833-020719-4,5,100,0.05,24917243-77bb-4ed2-80b5-74651911e6fe,266 -1833-020719-3,5,100,0.05,24917243-77bb-4ed2-80b5-74651911e6fe,121 -1833-020719-4,5,100,0.05,35480fbb-38b5-4230-a18c-22659442c3df,294 -1833-020719-3,5,100,0.05,35480fbb-38b5-4230-a18c-22659442c3df,135 -1833-050619-2,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,123 -1833-120619-3,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,136 -1833-200619-2,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,270 -1833-200619-3,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,122 -1833-060619-1,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,156 -1833-050619-1,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,73 -1833-050619-3,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,127 -1833-050619-4,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,82 -1833-120619-4,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,122 -1833-120619-2,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,145 -1833-200619-4,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,94 -1833-290519-4,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,115 -1833-050619-4,5,100,0.05,1e16a183-14cb-403d-b821-6769e75c695e,79 -1833-060619-2,5,100,0.05,1e16a183-14cb-403d-b821-6769e75c695e,68 -1833-060619-1,5,100,0.05,c641a12e-f3a1-4194-a83b-75dadba5243e,164 -1833-060619-2,5,100,0.05,a8167b56-b495-47f7-b20f-8cd25798a6bc,98 -1833-120619-1,5,100,0.05,27a317d0-c936-4b6d-8255-31d2a2ac5daf,133 -1833-120619-2,5,100,0.05,d8dca668-df35-467b-9af9-f051ad15b9cd,100 -1833-120619-2,5,100,0.05,d323a411-4071-4cc1-bd2c-11105848a8e9,123 -1833-120619-2,5,100,0.05,677157db-937a-4962-a34c-9f55ba63b6c1,133 -1833-200619-3,5,100,0.05,b66b884d-fb1e-447e-ada8-054ebddf246f,59 -1833-260619-1,5,100,0.05,197ffa18-b012-4e9b-8a85-c92547d8f220,100 -1833-260619-3,5,100,0.05,88b2a908-c6a6-4617-aae1-ba06a6e4b793,111 -1833-260619-2,5,100,0.05,88b2a908-c6a6-4617-aae1-ba06a6e4b793,115 -1833-260619-3,5,100,0.05,7468e539-40fb-4246-8ff8-3e315e63e862,109 -1833-260619-3,5,100,0.05,4c169434-fbfd-4cb4-b663-36cead3f7550,113 -1833-260619-4,5,100,0.05,a33e2e17-a551-4cd4-8dc4-a6c9f4a622e0,162 -1833-260619-4,5,100,0.05,7042cb9d-66d6-4c93-8bae-df0774c244dd,188 -1833-290519-1,5,100,0.05,af3173d9-f5d8-4b73-9440-921e888cffe3,134 -1833-290519-1,5,100,0.05,3ee00ef3-4fae-4760-a2df-5154fa616399,158 -1833-290519-1,5,100,0.05,6e050211-f716-4959-9766-dcb3982cf740,172 -1833-290519-1,5,100,0.05,03cbcd90-a522-4ff5-acb8-f06d806a82c2,94 -1833-290519-2,5,100,0.05,0f0c093f-b972-4e02-ab16-bd3d191f8986,80 -1833-290519-3,5,100,0.05,21fccefb-a783-4bdd-a908-89f8dc200167,109 -1833-290519-3,5,100,0.05,1d818e90-f813-4c85-aa8e-e58e9b96fb56,117 -1833-290519-3,5,100,0.05,521d1ddc-c2f0-4f19-b771-af9d6f807456,139 -1833-290519-3,5,100,0.05,f7a0b28c-611b-4577-b384-72e39c4f3bef,143 -1833-290519-4,5,100,0.05,34ac6b8d-dc99-42a8-ac25-44c14846bf41,121 -1833-290519-4,5,100,0.05,d5001e10-7d17-4c9a-8009-614fa31e9632,98 -1833-010719-1,6,100,0.05,4796f455-b2c3-427c-b232-56675634264e,152 -1833-010719-1,6,100,0.05,ec47a81a-3792-4f1f-8d0b-6e450bef9ff0,183 -1833-010719-1,6,100,0.05,6a372aca-2c7d-43eb-ba8a-c953da5f6e14,200 -1833-010719-1,6,100,0.05,f0c022ff-8af3-447d-8e97-48276988c01c,227 -1833-010719-2,6,100,0.05,fb18025c-4f7f-458f-a6dc-aa7bddf0be89,225 -1833-020719-1,6,100,0.05,63f26584-d3e6-4bb6-b75d-a38b3e89df2d,107 -1833-020719-2,6,100,0.05,7c0a0726-be53-4013-a90b-44dde50e0a13,99 -1833-020719-3,6,100,0.05,90ed8580-c9e6-40c3-abb1-fd2b73482139,63 -1833-020719-3,6,100,0.05,d0bcba62-84ee-4d7a-81d2-74e4e2895cd9,64 -1833-020719-4,6,100,0.05,26e116f7-e848-4d92-bee2-9c0e2b580b2f,254 -1833-020719-3,6,100,0.05,26e116f7-e848-4d92-bee2-9c0e2b580b2f,96 -1833-020719-4,6,100,0.05,7a44c1ee-4974-440c-99da-424f3425d12d,248 -1833-020719-4,6,100,0.05,db02336e-a03b-42ec-a9ad-4869511d51a7,310 -1833-050619-3,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,149 -1833-060619-1,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,176 -1833-050619-1,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,111 -1833-050619-4,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,157 -1833-050619-2,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,152 -1833-060619-2,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,112 -1833-050619-3,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,117 -1833-050619-4,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,133 -1833-050619-1,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,60 -1833-050619-2,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,119 -1833-260619-1,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,106 -1833-290519-4,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,108 -1833-060619-1,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,162 -1833-050619-2,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,125 -1833-050619-3,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,129 -1833-060619-2,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,82 -1833-120619-3,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,118 -1833-120619-4,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,80 -1833-050619-4,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,92 -1833-050619-1,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,64 -1833-060619-1,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,170 -1833-050619-1,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,91 -1833-120619-2,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,151 -1833-060619-2,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,105 -1833-120619-1,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,129 -1833-120619-4,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,127 -1833-050619-4,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,135 -1833-120619-3,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,94 -1833-050619-2,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,146 -1833-050619-3,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,143 -1833-050619-2,6,100,0.05,3f4f9675-e972-48b4-866f-026a4a941d0c,74 -1833-050619-2,6,100,0.05,fd3bf86f-4506-41da-8959-e4793e633f2e,81 -1833-050619-3,6,100,0.05,b72a75f2-0b4f-49c7-940d-c39776671014,109 -1833-050619-4,6,100,0.05,d24d5c14-6cde-4ee4-90e0-e974749f1864,117 -1833-060619-1,6,100,0.05,e62a583c-c959-4081-9e4b-7e9ce8c113ae,158 -1833-060619-1,6,100,0.05,204521ee-91aa-46b4-9318-5ea87c025168,160 -1833-120619-4,6,100,0.05,204521ee-91aa-46b4-9318-5ea87c025168,120 -1833-200619-3,6,100,0.05,204521ee-91aa-46b4-9318-5ea87c025168,126 -1833-120619-3,6,100,0.05,204521ee-91aa-46b4-9318-5ea87c025168,143 -1833-060619-2,6,100,0.05,b5300d6c-3695-4033-bc59-151e3636a19b,116 -1833-060619-2,6,100,0.05,093b0500-a48c-4a6c-b8cf-6837b69d892d,74 -1833-260619-1,6,100,0.05,1c46735e-f33b-4267-b057-d9900ed5bb27,124 -1833-260619-3,6,100,0.05,1c46735e-f33b-4267-b057-d9900ed5bb27,192 -1833-260619-2,6,100,0.05,1c46735e-f33b-4267-b057-d9900ed5bb27,160 -1833-120619-1,6,100,0.05,1c46735e-f33b-4267-b057-d9900ed5bb27,127 -1833-120619-2,6,100,0.05,d05ec771-3825-4082-a385-fbf0317a34c6,169 -1833-120619-3,6,100,0.05,d05ec771-3825-4082-a385-fbf0317a34c6,141 -1833-200619-2,6,100,0.05,d05ec771-3825-4082-a385-fbf0317a34c6,287 -1833-200619-3,6,100,0.05,d05ec771-3825-4082-a385-fbf0317a34c6,132 -1833-120619-3,6,100,0.05,407c6c46-b05d-4640-a854-ef8255fbe233,122 -1833-120619-3,6,100,0.05,734e08cc-5f68-4092-82e1-8746ca5634a6,145 -1833-120619-4,6,100,0.05,d0d93262-fbbf-4209-802e-ae687841af94,124 -1833-120619-4,6,100,0.05,5a40fcc3-a1ad-4e1e-bf0a-86b3476b3020,85 -1833-120619-4,6,100,0.05,905c6d81-c060-42ed-9377-8709bab18f32,95 -1833-200619-1,6,100,0.05,fb4f3c27-2693-4bf7-b294-8d5697d5773a,163 -1833-200619-3,6,100,0.05,fb4f3c27-2693-4bf7-b294-8d5697d5773a,120 -1833-260619-3,6,100,0.05,fb4f3c27-2693-4bf7-b294-8d5697d5773a,168 -1833-200619-1,6,100,0.05,b8c5017c-c310-4df4-899c-d8ba56a68355,171 -1833-200619-1,6,100,0.05,aa57a07e-f18b-4818-b97b-96edec65aba5,206 -1833-200619-4,6,100,0.05,e666bedd-4dda-4454-b6a7-27358d81c1cf,121 -1833-200619-2,6,100,0.05,e666bedd-4dda-4454-b6a7-27358d81c1cf,327 -1833-200619-3,6,100,0.05,e666bedd-4dda-4454-b6a7-27358d81c1cf,150 -1833-200619-1,6,100,0.05,e666bedd-4dda-4454-b6a7-27358d81c1cf,240 -1833-200619-2,6,100,0.05,78984d84-3a93-4163-8026-252fb4e2a314,28 -1833-200619-2,6,100,0.05,7084624c-6e95-4d1a-bc65-b806f34dcf42,281 -1833-200619-2,6,100,0.05,6bbbd255-976f-4db8-8ef9-18373c171937,308 -1833-200619-2,6,100,0.05,e5d4488b-e71b-4925-93cb-e735d7e6dc52,321 -1833-200619-3,6,100,0.05,f42736be-08da-4de5-94fc-85fe594ebffd,75 -1833-200619-4,6,100,0.05,f209d8dd-b801-492f-b42c-b49d45a56522,101 -1833-200619-4,6,100,0.05,1052e0ae-ded3-4693-b04a-a24c146efa8f,109 -1833-200619-4,6,100,0.05,16366a61-bde0-406f-bddb-e8347694a236,80 -1833-200619-4,6,100,0.05,d6c7720b-5850-45bb-8583-4fe508433790,89 -1833-260619-1,6,100,0.05,4cec2afb-2d1b-4efc-85e3-afcc69edc927,102 -1833-260619-4,6,100,0.05,4cec2afb-2d1b-4efc-85e3-afcc69edc927,182 -1833-260619-1,6,100,0.05,fc8c8883-ae60-4af5-9b66-c638c9d83d15,108 -1833-260619-1,6,100,0.05,69dc99fd-5141-4aed-a3eb-1f0c7da3e637,112 -1833-260619-2,6,100,0.05,c00d2884-4dc0-49ae-9dfb-3b5f78dc2240,140 -1833-260619-2,6,100,0.05,4de52b7f-4a1b-4b89-99b5-8f4120bd16f9,144 -1833-260619-2,6,100,0.05,a6ec54c7-15de-4f41-a1e6-151bd24b304e,156 -1833-260619-2,6,100,0.05,19dd0838-7025-48b0-b857-6b095285982d,170 -1833-260619-3,6,100,0.05,6ccf758e-486b-4c2e-8974-ebf954bb3b18,142 -1833-260619-4,6,100,0.05,de0677ac-57a0-4601-930c-938443317e84,184 -1833-260619-4,6,100,0.05,2d8a57b8-ef21-4f49-b68a-203128f97c66,200 -1833-260619-4,6,100,0.05,af87cd83-1b4a-4182-8a83-7e21c8046788,214 -1833-260619-4,6,100,0.05,9acc0174-90e0-4b71-890f-0fa0fb093332,218 -1833-260619-4,6,100,0.05,c14413dd-5587-4593-a1cf-4becb1e947fb,80 -1833-290519-1,6,100,0.05,79a8cb9c-01b5-4c69-9352-d0b5f51a6ea7,124 -1833-290519-1,6,100,0.05,69694279-7253-4202-a834-3f9f19faa5d2,132 -1833-290519-1,6,100,0.05,e990ecc5-4490-4648-b8ad-dded232e72a8,142 -1833-290519-1,6,100,0.05,7619b262-581e-4633-a1b1-b375918e7b01,150 -1833-290519-1,6,100,0.05,23290c6a-8c9d-4c3b-af94-60f1565a710d,154 -1833-290519-1,6,100,0.05,b5c3b194-f762-4a1c-bf3e-10965e07b4c5,166 -1833-290519-1,6,100,0.05,82ff02ac-b216-4b66-941f-388a06318b8a,89 -1833-290519-2,6,100,0.05,9e7c34f5-fd98-4f54-9616-c6ed378af242,76 -1833-290519-3,6,100,0.05,cb4203f8-dc5a-4c7e-9ca2-04e0153ee2b7,125 -1833-290519-3,6,100,0.05,c36a9ee7-28d4-41b1-8fed-ce6c86042f06,141 -1833-290519-3,6,100,0.05,6e1b2e7f-311d-460e-a726-ebc90a04e6e7,147 -1833-290519-3,6,100,0.05,ca9dbc51-b595-4322-a993-503677fb7ab4,149 -1833-290519-3,6,100,0.05,88fc1432-38dc-4d4e-84cc-7e2fe61ad335,151 -1833-290519-3,6,100,0.05,8e646e16-f70b-43da-a47e-4ff14c7a92c1,155 -1833-290519-4,6,100,0.05,38777978-9f50-4d31-9a8d-4bfb3287d7a8,65 -1833-290519-4,6,100,0.05,bb0161d1-c2fe-4221-89b2-0d600ddd94db,79 -1833-290519-4,6,100,0.05,de7f5f70-c1a6-41bd-94bc-2779abbca748,90 -1833-010719-1,7,100,0.05,0476bb10-f5ae-4eb2-a484-ca279b2c2a57,114 -1833-010719-2,7,100,0.05,c2a69763-6ace-4bb0-8bb1-1f4ffc0a23d1,217 -1833-010719-1,7,100,0.05,c2a69763-6ace-4bb0-8bb1-1f4ffc0a23d1,132 -1833-010719-1,7,100,0.05,68d8010a-f280-49e0-b623-46b97fabb30c,54 -1833-010719-2,7,100,0.05,4ffcb2d4-d9a8-4457-87fa-82267fcd6841,211 -1833-010719-2,7,100,0.05,d013c07c-1537-4627-9678-5d1be34f6b04,213 -1833-050619-3,7,100,0.05,ede02add-ed9d-4d3b-b1ec-341270e4e0a7,105 -1833-050619-2,7,100,0.05,ede02add-ed9d-4d3b-b1ec-341270e4e0a7,66 -1833-060619-1,7,100,0.05,a4a80037-5a22-4b5a-ac21-df132492c9fd,139 -1833-060619-2,7,100,0.05,dd5f58c2-cc21-4b3f-afd6-93910c2cfde6,58 -1833-120619-2,7,100,0.05,7960b208-108a-40cc-8597-c20f747b00fd,85 -1833-120619-3,7,100,0.05,93aabc8f-5733-4ac9-9326-d3271ac58b98,120 -1833-120619-4,7,100,0.05,9da5462f-3ba6-436e-81cc-e4330c0b033b,65 -1833-200619-4,7,100,0.05,4ce1f839-e1d4-433e-98a0-83f9164199d4,68 -1833-200619-3,7,100,0.05,4ce1f839-e1d4-433e-98a0-83f9164199d4,65 -1833-200619-2,7,100,0.05,4ce1f839-e1d4-433e-98a0-83f9164199d4,261 -1833-200619-1,7,100,0.05,4ce1f839-e1d4-433e-98a0-83f9164199d4,143 -1833-200619-2,7,100,0.05,195c565c-1f98-4f51-94b7-a2f02d1993dd,203 -1833-200619-2,7,100,0.05,e9431e1c-501e-4291-a168-1fd4a87d9d94,204 -1833-200619-3,7,100,0.05,72567251-80e7-4fab-a61c-2c1b0c1b5295,53 -1833-260619-1,7,100,0.05,18fb1cf2-bc1d-44c6-af27-99d72fe48877,98 -1833-260619-3,7,100,0.05,bebac6c1-7393-47c5-8545-882d774841e8,103 -1833-260619-3,7,100,0.05,e90b655d-61d3-402e-9fc0-e42d233b7282,105 -1833-260619-4,7,100,0.05,819f7d23-eb77-4ab1-a2a2-171ff3c37971,177 -1833-290519-1,7,100,0.05,816db01b-0ac0-4f5a-9809-0812a584a7b7,106 -1833-290519-1,7,100,0.05,29429cf9-b1da-4d98-be7d-97c6b5f106f8,116 -1833-290519-1,7,100,0.05,befc337f-188f-475d-9425-1fad0f223849,129 -1833-290519-1,7,100,0.05,76f91093-e8b1-4315-8a8b-416c172c72bd,136 -1833-290519-1,7,100,0.05,29d1d633-bc7b-4e8c-a00c-002576ac64da,74 -1833-290519-1,7,100,0.05,e5cd8c70-2c68-4079-bfd2-e89cc019ec3c,82 -1833-290519-2,7,100,0.05,548879c2-b827-4ddb-b83e-951bdbe5e253,126 -1833-290519-2,7,100,0.05,a41f05c9-b2a2-4346-9982-bf43e9e446f3,130 -1833-290519-2,7,100,0.05,d88ba846-02ac-4e4e-9189-87b22f954c25,97 -1833-290519-2,7,100,0.05,120f7272-ff80-46dc-b6d5-d4db87d33023,98 -1833-290519-3,7,100,0.05,9a48afac-5155-4d02-b417-26bd8812a051,103 -1833-290519-3,7,100,0.05,34593582-2928-4472-b251-a1ecfc373385,113 -1833-290519-3,7,100,0.05,19021ff4-8d84-467b-a0e1-748abfcb7ad8,129 -1833-290519-3,7,100,0.05,b6118568-6f12-4511-b971-6b4006b1cb9c,82 -1833-290519-4,7,100,0.05,77d6148b-3c8a-4aa3-b565-06a0cb5bd08d,67 -1833-290519-4,7,100,0.05,d9b3d1c2-5c5d-4cba-82af-ed142fd736ff,75 -1833-290519-4,7,100,0.05,36b43716-ac2c-44f3-a48a-a7f41dce1b68,77 -1833-290519-4,7,100,0.05,a4dcaa5a-1775-45c9-8d8e-e19fb16a0cbe,94 -1839-120619-2,0,100,0.05,3ed189a4-f4ab-4317-8b6d-b97fb7ff2fd4,76 -1839-200619-2,0,100,0.05,f52fad42-6558-406b-b2db-68e05d28ea54,104 -1839-200619-2,0,100,0.05,96d2a048-2558-48b6-b869-f3919f2a0b02,98 -1839-290519-1,0,100,0.05,798a693a-7c5e-41ad-ac5a-aadf0ec583fc,120 -1839-290519-2,0,100,0.05,273eca19-8034-485d-8a33-7cd2f4a23670,107 -1839-290519-2,0,100,0.05,d0e464ce-25f5-435a-b286-0f62cadf25e0,117 -1839-290519-3,0,100,0.05,6ef95244-0fc4-4e33-bca7-25a56724a57e,111 -1839-120619-3,1,100,0.05,7989fd20-2d01-4f83-8527-6cb378d66fdc,113 -1839-120619-4,1,100,0.05,7989fd20-2d01-4f83-8527-6cb378d66fdc,86 -1839-120619-4,1,100,0.05,af047564-1bfa-47b9-9dc8-19ffec9f540f,104 -1839-120619-4,1,100,0.05,e6737a3f-9f0e-4ae5-9404-47dcb53a485f,84 -1839-200619-2,1,100,0.05,25bd51c3-24f1-45b4-b172-e6f00a47a23f,7 -1839-290519-1,1,100,0.05,99bc98a9-72d0-44fd-920c-bb7043e28801,110 -1839-120619-3,2,100,0.05,94aa9b70-eba7-45b7-b93e-23f6b6a6c463,129 -1839-120619-3,3,100,0.05,32536cb4-1afa-4837-8b77-945cc590ab25,137 -1839-120619-4,3,100,0.05,3d581e6a-48ef-482e-9374-1db607341aff,112 -1839-120619-4,3,100,0.05,d8899e81-2b69-403f-bd9f-9feb4df17fa5,29 -1839-200619-1,3,100,0.05,0b247fdb-2cb6-4b9c-901f-5910a418318b,153 -1839-200619-2,3,100,0.05,e1566e62-051c-4c0c-adb9-a06b3ffd0688,118 -1839-060619-1,4,100,0.05,464c0bec-01dd-4872-9e6f-c995537122e0,240 -1839-060619-3,4,100,0.05,c51f5200-396b-457a-a693-be19842fdc25,101 -1839-060619-4,4,100,0.05,c4264c91-cb48-4601-a144-1a9cf1647a44,230 -1839-060619-5,4,100,0.05,b84b72c6-5517-4331-9007-b2f16b1c1a1f,164 -1839-120619-2,4,100,0.05,84f0f7fb-5946-4f1b-8561-fe54d30950b0,78 -1839-120619-3,4,100,0.05,75fc45a2-2204-42bf-a2e6-f875d98af2c8,115 -1839-120619-3,4,100,0.05,da18898b-8884-4ee5-8b55-87c9fec8b66f,121 -1839-120619-4,4,100,0.05,ed2d9b1a-bac3-4cb1-ac3f-6eb1047054d7,102 -1839-120619-4,4,100,0.05,83ce1f60-86bd-4939-bf7d-9b1431ef4d6a,110 -1839-120619-4,4,100,0.05,ca8cb6a2-6e9d-44a8-b8d1-85de406b06f3,120 -1839-120619-4,4,100,0.05,a9404a21-6f14-4a7b-875d-ef76ddb10f84,82 -1839-200619-1,4,100,0.05,e1ca58de-3334-416b-8103-ea5176152348,141 -1839-200619-2,4,100,0.05,0aa1dbcc-d422-4263-a1b7-c823884c3fa0,100 -1839-200619-2,4,100,0.05,8fa7a3f3-15ca-4549-a5c8-9a0807df844b,106 -1839-200619-2,4,100,0.05,b5111fdd-8f5f-4ca3-aa64-2f446a5b10a7,108 -1839-290519-1,4,100,0.05,5cb1ca63-9eef-4ffb-a688-4e0265cf1726,122 -1839-290519-2,4,100,0.05,b3959b16-e39e-4f46-bbcb-b9d7e512f0c6,39 -1839-290519-1,4,100,0.05,b3959b16-e39e-4f46-bbcb-b9d7e512f0c6,127 -1839-290519-2,4,100,0.05,8d1a9d1e-cfb0-4fd3-8247-2fb279e22393,119 -1839-290519-3,4,100,0.05,4c15d14a-1e16-40ec-9e23-84f0d722827c,117 -1839-290519-3,4,100,0.05,d863020e-5667-42e0-bdea-3e2704f80569,72 -1839-060619-5,5,100,0.05,c8ad4fce-363c-4a35-85db-cfeb0e7f27c0,138 -1839-060619-3,5,100,0.05,c8ad4fce-363c-4a35-85db-cfeb0e7f27c0,87 -1839-060619-4,5,100,0.05,ed87d6a4-a3f0-4bf6-a1c0-f6d4e7a19f7a,228 -1839-060619-5,5,100,0.05,5643712c-0eac-40e7-b095-35366c741bae,170 -1839-120619-1,5,100,0.05,7ef3b094-d777-470f-b564-26929b0d31c5,158 -1839-120619-2,5,100,0.05,6ec628e1-1ca6-49b1-957c-daa9943fbfe4,104 -1839-120619-2,5,100,0.05,f15d9abe-cba9-48f7-8f09-5f715d58744d,47 -1839-120619-3,5,100,0.05,7929d9eb-8f20-4c21-aed4-29eb07fc36b8,131 -1839-200619-1,5,100,0.05,5ddf2d81-965f-4570-91dc-de2b6ac8e505,145 -1839-200619-2,5,100,0.05,e154cfcf-dcbf-4f66-b4c8-d33223a18720,96 -1839-290519-1,5,100,0.05,f3a0876d-9af2-475d-bbf2-e001fcab72c7,133 -1839-290519-1,5,100,0.05,1755eae5-6f1f-495c-a9da-f536361d5cd8,137 -1839-290519-2,5,100,0.05,5822f6e4-5945-4014-b2fe-fcd41a692a9e,125 -1839-290519-2,5,100,0.05,82b2a5da-ab6e-427b-9613-1462a24fa340,146 -1839-290519-2,5,100,0.05,b2bde4dd-b9f0-4fa8-9c30-7842ec65ada0,148 -1839-290519-2,5,100,0.05,f4db2a87-e70a-44d3-9a93-c9ae10d266e9,95 -1839-290519-3,5,100,0.05,816797aa-90af-4264-bb20-6dd8eca9b519,115 -1839-290519-3,5,100,0.05,c780c31a-cbd7-4f21-b3ae-20b07cdebd76,119 -1839-060619-3,6,100,0.05,b1d863ea-9efd-4adb-91f2-4d8e3c71fef0,91 -1839-060619-5,6,100,0.05,27fdb994-3d24-4bdf-b4dd-30e24eb28f08,142 -1839-060619-5,6,100,0.05,6a1df4f7-4421-4a81-980a-60d8d994951c,162 -1839-060619-5,6,100,0.05,d8fb6d00-a6ec-47b0-9c44-7d5059b004ca,166 -1839-060619-5,6,100,0.05,9db08385-9f23-4dc3-ba13-1e9fe4867bf9,168 -1839-120619-1,6,100,0.05,d7e4e3c6-c367-4cf0-bfa9-ede67c3dbc2f,143 -1839-120619-2,6,100,0.05,e7d843c1-99b2-48d4-a6f0-4a18b9646163,106 -1839-120619-3,6,100,0.05,e7d843c1-99b2-48d4-a6f0-4a18b9646163,133 -1839-120619-4,6,100,0.05,e7d843c1-99b2-48d4-a6f0-4a18b9646163,134 -1839-120619-2,6,100,0.05,81818d68-7725-47ae-bff6-a4d413fc99d0,51 -1839-120619-2,6,100,0.05,d8ca3985-eed9-4b81-882f-ac50fc6188ba,86 -1839-120619-2,6,100,0.05,57b4c793-bffd-4af9-8dec-76bfbcd3b7cb,88 -1839-120619-3,6,100,0.05,4f0c6a09-ea30-46ad-b83f-a02ea750f68b,123 -1839-120619-4,6,100,0.05,4f0c6a09-ea30-46ad-b83f-a02ea750f68b,124 -1839-120619-3,6,100,0.05,81759d16-2f63-4fe0-bc47-b4778f7bf912,125 -1839-120619-3,6,100,0.05,e0041e30-edfc-45ac-9d2a-ce61e16152be,71 -1839-120619-4,6,100,0.05,a6d64932-71e9-41b6-8498-83f638e36da2,106 -1839-120619-4,6,100,0.05,c3332569-8fa7-401b-9b8f-d923d39ea14e,116 -1839-120619-4,6,100,0.05,fe390dc3-ab1a-455c-8cb1-dab845bdccd9,122 -1839-120619-4,6,100,0.05,000a6e8e-f298-4a85-8dc7-17a294c0fefc,132 -1839-120619-4,6,100,0.05,4e010a5b-d393-4ba3-8676-df7f919b7e2b,90 -1839-120619-4,6,100,0.05,cf153905-0778-4700-96d3-b6edb69dfbaf,92 -1839-200619-1,6,100,0.05,cd5d5380-0725-4a6c-bf73-1be12a5cdc61,139 -1839-200619-2,6,100,0.05,45b44692-615e-4d49-8939-5d162e49c548,112 -1839-200619-2,6,100,0.05,eed2a954-f68c-4eb5-816f-1f5437f168be,114 -1839-200619-2,6,100,0.05,8750dc25-0aa7-4544-9121-6112efad1c00,48 -1839-200619-2,6,100,0.05,1f2c3155-472f-402b-97db-7519c60a8c2b,54 -1839-200619-2,6,100,0.05,5898817d-b6ab-482e-b871-d0d38eb936b9,78 -1839-200619-2,6,100,0.05,153ce269-c73a-41cf-a1a6-182936c42668,89 -1839-200619-2,6,100,0.05,d3d2b4df-bea5-49fa-b5f8-87f387513cdd,92 -1839-200619-2,6,100,0.05,ce07a84c-e5b5-405f-b623-26db38fad082,94 -1839-290519-1,6,100,0.05,20bc60e6-411f-444e-b348-b38ab556e97a,116 -1839-290519-1,6,100,0.05,6f887b6f-8b3b-45bd-87ac-4e2b72b8ddea,131 -1839-290519-2,6,100,0.05,7e0e430d-a028-4184-b4c7-4d3ed5e1c3e6,113 -1839-290519-2,6,100,0.05,ba7b8852-e8cf-48f2-83e5-46aad068ca17,115 -1839-060619-5,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,183 -1839-060619-1,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,234 -1839-060619-3,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,93 -1839-120619-2,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,71 -1839-120619-3,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,119 -1839-120619-4,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,108 -1839-290519-3,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,113 -1839-120619-2,7,100,0.05,9d8d0151-6884-4f31-b02f-49d6acad9fcd,90 -1839-060619-4,7,100,0.05,9d8d0151-6884-4f31-b02f-49d6acad9fcd,200 -1839-060619-5,7,100,0.05,9d8d0151-6884-4f31-b02f-49d6acad9fcd,136 -1839-290519-2,7,100,0.05,b4065c76-2216-44bb-9ab5-aa65c12e32a3,144 -1839-060619-4,7,100,0.05,b4065c76-2216-44bb-9ab5-aa65c12e32a3,227 -1839-120619-1,7,100,0.05,8fef611c-3cc7-4da6-aa94-c9cc0a0337ea,152 -1839-120619-3,7,100,0.05,df41e14a-0559-4d3b-9ae7-e0fe7552333d,127 -1839-120619-4,7,100,0.05,df41e14a-0559-4d3b-9ae7-e0fe7552333d,128 -1839-120619-4,7,100,0.05,9bec52c4-16a8-461c-9f8e-0e470e93bd82,136 -1839-200619-1,7,100,0.05,dee1dd8f-21f0-452b-ae0b-5f2bece563a8,135 -1839-200619-2,7,100,0.05,116a7346-affc-4b2f-81cb-996e5c1c8589,116 -1839-200619-2,7,100,0.05,dc0bede5-3b5e-4a05-8fd2-d50f117c9252,74 -1839-200619-2,7,100,0.05,2dec1520-dbed-435e-82c1-ad7c191776f9,90 -1839-290519-1,7,100,0.05,a706435e-d8d9-451a-8cf2-04ffd10dd625,114 -1839-290519-1,7,100,0.05,131f4a62-88d6-4359-9222-6796f178a916,129 -1839-290519-1,7,100,0.05,5e444321-772e-4685-80fb-e2d51d97b307,139 -1839-290519-1,7,100,0.05,ea7023d4-9b10-46b8-a9c7-ec7f0b60870f,87 -1839-290519-2,7,100,0.05,82a6162a-ac4e-4204-ac9d-8684d6c16898,109 -1839-290519-2,7,100,0.05,c870ca31-9b7d-4f18-9c4c-ce6abc69801d,111 -1839-290519-2,7,100,0.05,9c430052-ae2c-4b4e-a48e-5f1c23e5127d,135 -1839-290519-2,7,100,0.05,8dd0dcbc-ff29-499c-aa7f-7642b692d682,142 -1839-120619-2,0,100,0.05,f0775773-fbf5-420f-94a8-0da5bb8078b9,76 -1839-200619-2,0,100,0.05,3ff1c318-dcc2-4420-bf7c-7e6c0e41f1b0,104 -1839-200619-2,0,100,0.05,f00fc288-5a04-4fd3-8e02-a8b080f06016,98 -1839-290519-1,0,100,0.05,540ff964-f827-4636-9668-9316f9913036,120 -1839-290519-2,0,100,0.05,e80515fe-6afa-4111-b6a9-b0aa25ce9eab,107 -1839-290519-2,0,100,0.05,ffd28074-e64d-484b-957a-c54cdb3bc8ee,117 -1839-290519-3,0,100,0.05,48093105-79d7-4297-8eca-8b0f678dae6b,111 -1839-120619-3,1,100,0.05,7f83a7fa-acf8-41e5-87fb-1ceee625e055,113 -1839-120619-4,1,100,0.05,7f83a7fa-acf8-41e5-87fb-1ceee625e055,86 -1839-120619-4,1,100,0.05,d903e411-e604-4650-a832-41293e8d7c8b,104 -1839-120619-4,1,100,0.05,2d459081-0519-4c1f-996f-51bcc07db975,84 -1839-200619-2,1,100,0.05,ca51bbb5-f48b-48c8-a5d1-5453e9615aeb,7 -1839-290519-1,1,100,0.05,594d6d32-4f22-43bb-bb89-a9550c473de0,110 -1839-120619-3,2,100,0.05,8501cf01-86b6-4150-8184-bbb0a732b343,129 -1839-120619-3,3,100,0.05,60487709-d416-4994-8a05-69d01a8bc41b,137 -1839-120619-4,3,100,0.05,80d770cf-1635-4b8d-91d0-d676cdb14f08,112 -1839-120619-4,3,100,0.05,9a2182b2-814b-40da-9c30-5c320a7a87bd,29 -1839-200619-1,3,100,0.05,e7f5de5a-bcd9-493c-bc86-88fc8765d9b8,153 -1839-200619-2,3,100,0.05,42fd4cd3-ff7b-41d7-a045-3e63723912dc,118 -1839-060619-1,4,100,0.05,dcea3f10-31fd-4205-8f73-738bcb450ac7,240 -1839-060619-3,4,100,0.05,30ca722e-de14-420c-810f-68c00d0c1ecf,101 -1839-060619-4,4,100,0.05,c0f7d912-ef41-4e6f-9c7b-d10ac2de8945,230 -1839-060619-5,4,100,0.05,0d4be660-2ffa-4bcf-8ced-0e66c1abfb96,164 -1839-120619-2,4,100,0.05,9da942f8-ceff-48b6-b7b0-b4ddac27ccb1,78 -1839-120619-3,4,100,0.05,081300d5-ad12-4439-9430-bf8683f9a3e2,115 -1839-120619-3,4,100,0.05,a5ab1513-d07d-4c59-bd4d-e77c4dbc193c,121 -1839-120619-4,4,100,0.05,c20f5e63-4aca-4b1e-9e55-6f61f08052f0,102 -1839-120619-4,4,100,0.05,2f2a0765-d42f-4780-8ed9-7c814516932c,110 -1839-120619-4,4,100,0.05,6b5e6c13-8fd2-4650-aba9-58502f58c406,120 -1839-120619-4,4,100,0.05,00735893-cefe-4787-b4be-c3732fe38032,82 -1839-200619-1,4,100,0.05,d26ab521-2ec2-463c-98e5-318c6b28b783,141 -1839-200619-2,4,100,0.05,cb7125ac-b42c-48ea-b4d7-3574479657ae,100 -1839-200619-2,4,100,0.05,ceb026a7-c384-4393-82e0-14548dde9c80,106 -1839-200619-2,4,100,0.05,a3735e8d-afa3-41ea-b564-d217f27df0f1,108 -1839-290519-1,4,100,0.05,d7789a2a-bf46-4fb5-b6ff-a68fa2dd5982,122 -1839-290519-2,4,100,0.05,09748bcf-3f4b-4d12-b826-2ebc71b65063,39 -1839-290519-1,4,100,0.05,09748bcf-3f4b-4d12-b826-2ebc71b65063,127 -1839-290519-2,4,100,0.05,dfbebfa5-59a0-4396-80a1-561b7ff067e7,119 -1839-290519-3,4,100,0.05,4260fa93-6adf-47a2-973c-88573a246dfc,117 -1839-290519-3,4,100,0.05,afd91775-da1c-474b-9b04-d903223cbe98,72 -1839-060619-3,5,100,0.05,a3a75173-a74e-429b-ad9c-181d0a8ce485,87 -1839-060619-5,5,100,0.05,a3a75173-a74e-429b-ad9c-181d0a8ce485,138 -1839-060619-4,5,100,0.05,f5093eb0-00a1-4380-a969-88cc0884cf00,228 -1839-060619-5,5,100,0.05,5f7baf9f-f3c0-4db4-8fea-29b646391d75,170 -1839-120619-1,5,100,0.05,fd462693-5444-41f4-a33b-fbddb32ef860,158 -1839-120619-2,5,100,0.05,0b122e55-d128-483e-a87b-f8502138b448,104 -1839-120619-2,5,100,0.05,bcdaf715-a00d-417b-8ef6-2adead534845,47 -1839-120619-3,5,100,0.05,2050f360-b8d7-437d-ac29-687ce93fe798,131 -1839-200619-1,5,100,0.05,3424c2c8-6641-4c06-8ad8-4a21bb20a313,145 -1839-200619-2,5,100,0.05,a7fff0c6-dd66-49fd-9716-59cc8ea50bdf,96 -1839-290519-1,5,100,0.05,690e2bfb-5547-4a44-9ef6-c7afc77f1958,133 -1839-290519-1,5,100,0.05,7d4f6a7b-6bc6-4593-863d-b3539b4492bc,137 -1839-290519-2,5,100,0.05,a1d20299-ee5c-4229-be95-6409d8012603,125 -1839-290519-2,5,100,0.05,58f1fcec-b421-4c30-85e6-2d800ed035fc,146 -1839-290519-2,5,100,0.05,c3c01aaa-816b-4951-91d4-7e40df253479,148 -1839-290519-2,5,100,0.05,dea1d5fd-d209-49e9-b4fd-413157d8d405,95 -1839-290519-3,5,100,0.05,f23701a2-efd6-47ca-9f44-810f1d730f03,115 -1839-290519-3,5,100,0.05,27c7ccb0-fcf4-4dea-8c31-916ad511a818,119 -1839-060619-3,6,100,0.05,5c945fe0-f844-4dbb-83dc-48b2047af07f,91 -1839-060619-5,6,100,0.05,92b4016f-9dba-4b17-816f-76203357947c,142 -1839-060619-5,6,100,0.05,473755f1-37e1-48a3-b45f-12474e6253f3,162 -1839-060619-5,6,100,0.05,1bcb53fd-8430-44e0-94c9-bbf52cfaca5d,166 -1839-060619-5,6,100,0.05,9dd8608c-6497-42bf-acde-24ba333c31f7,168 -1839-120619-1,6,100,0.05,9e233b53-7361-4bd6-896c-883df42f4002,143 -1839-120619-3,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,133 -1839-120619-4,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,134 -1839-120619-2,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,106 -1839-120619-2,6,100,0.05,94066a2c-a39f-4df4-8bb1-d6055b5cb302,51 -1839-120619-2,6,100,0.05,10dfea94-74a5-4fca-8301-75d71901081a,86 -1839-120619-2,6,100,0.05,bc3b0ebf-00cc-47e1-8d3b-ab0650fb4e5a,88 -1839-120619-3,6,100,0.05,83ece9ee-03a3-47d4-80ff-72ebe53ce453,123 -1839-120619-4,6,100,0.05,83ece9ee-03a3-47d4-80ff-72ebe53ce453,124 -1839-120619-3,6,100,0.05,81f711e2-f2b8-42d4-9aaf-7b0b8a7f8a28,125 -1839-120619-3,6,100,0.05,d41b7af3-99be-4ed3-951d-c667d9d1815b,71 -1839-120619-4,6,100,0.05,f8f9ee57-c08a-42f1-882d-9e409ecd39ae,106 -1839-120619-4,6,100,0.05,b3cea08a-e187-407a-b564-aa9acac2c72d,116 -1839-120619-4,6,100,0.05,c1c7fc7d-0c81-4a9a-96a2-e13dce152e2c,122 -1839-120619-4,6,100,0.05,e1471060-f521-4b36-8259-ff0818ba0343,132 -1839-120619-4,6,100,0.05,fb55d16f-4d4a-4f24-992f-66d25cf7d453,90 -1839-120619-4,6,100,0.05,9f4596b2-4e64-4255-93f1-5b613a7d6da0,92 -1839-200619-1,6,100,0.05,49ab3c78-1290-4a08-ac14-c74aeba17d25,139 -1839-200619-2,6,100,0.05,c4864ae4-6017-45da-9b3e-119ef9e3f083,112 -1839-200619-2,6,100,0.05,3a29b37d-af36-4364-ad13-1b9b890c5f98,114 -1839-200619-2,6,100,0.05,76ef2569-d70c-42dd-98e5-01cb99271b5b,48 -1839-200619-2,6,100,0.05,1c0bee3e-925c-48d3-823c-e9cafae25e7e,54 -1839-200619-2,6,100,0.05,315c4f2d-92c7-426f-992c-c1d3d4956392,78 -1839-200619-2,6,100,0.05,f20d1f36-910a-4c39-9662-95129cb0d53c,89 -1839-200619-2,6,100,0.05,e410e2c1-94c9-4c14-9a97-075c4438cccc,92 -1839-200619-2,6,100,0.05,5f6018c8-60eb-43ba-9070-61d0d338a4bf,94 -1839-290519-1,6,100,0.05,b88c092f-2b36-46d5-bcef-72f7f4c6407b,116 -1839-290519-1,6,100,0.05,a4f52935-526b-4f93-9e4b-367427cbb4ad,131 -1839-290519-2,6,100,0.05,2bc2d97a-a4e2-4410-8218-ed9b9943d38c,113 -1839-290519-2,6,100,0.05,089951ba-9860-460d-b3d0-74a4c4b5dac1,115 -1839-060619-5,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,183 -1839-290519-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,113 -1839-120619-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,119 -1839-120619-2,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,71 -1839-120619-4,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,108 -1839-060619-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,93 -1839-060619-1,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,234 -1839-060619-4,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,200 -1839-120619-2,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,90 -1839-060619-5,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,136 -1839-290519-2,7,100,0.05,3a0d3478-8a69-4296-a163-0ec0758909ae,144 -1839-060619-4,7,100,0.05,3a0d3478-8a69-4296-a163-0ec0758909ae,227 -1839-120619-1,7,100,0.05,a4487f1c-edd5-4b58-b469-7f1773c1bdd4,152 -1839-120619-3,7,100,0.05,72e1eb07-e7f6-4dd8-8dbf-27d4521dabaf,127 -1839-120619-4,7,100,0.05,72e1eb07-e7f6-4dd8-8dbf-27d4521dabaf,128 -1839-120619-4,7,100,0.05,e1c1cda0-8997-473b-bdab-cde222202d74,136 -1839-200619-1,7,100,0.05,f86f8cda-78fd-4e8b-bcd5-952f53f70efc,135 -1839-200619-2,7,100,0.05,3fb9ef13-aeab-41e2-9e1a-94f3e2bf046f,116 -1839-200619-2,7,100,0.05,0e5d3c29-f507-45e0-8b48-ff04bfb14a98,74 -1839-200619-2,7,100,0.05,ed518405-8668-402d-8760-0f317d304254,90 -1839-290519-1,7,100,0.05,3a3dcd61-851a-4a06-97a0-15b1532d19a1,114 -1839-290519-1,7,100,0.05,7e23c896-0304-4f15-9384-c534058a9932,129 -1839-290519-1,7,100,0.05,9d9110a0-97ae-4030-9e7a-53a1ae4d99ce,139 -1839-290519-1,7,100,0.05,835a2ff9-9977-499d-8216-b7545e1a3408,87 -1839-290519-2,7,100,0.05,9f25a7a4-3465-40c5-9e51-0e8c6ece7516,109 -1839-290519-2,7,100,0.05,df12e673-14a3-4753-a004-35cb8c4afdb0,111 -1839-290519-2,7,100,0.05,2363a3b3-f346-4842-8d59-25dd551d7afb,135 -1839-290519-2,7,100,0.05,adf18369-e8e9-498b-8d7c-8bedd8d43a9b,142 +1834-010319-1,0,100,0.05,ba8d31fb-a511-41a0-91b2-138d4862a505,2 +1834-010319-1,0,100,0.05,8d7e50e8-3496-4576-8c13-43b675da7198,39 +1834-010319-3,0,100,0.05,366ae5c7-b1c4-4104-8646-17de9424f4c3,1 +1834-010319-3,0,100,0.05,2b8af9d5-e216-478f-ad75-d8e41057de23,12 +1834-010319-3,0,100,0.05,dbc51162-50a4-4dc8-8460-efc2342c4f9e,72 +1834-110319-1,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,65 +1834-060319-4,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,3 +1834-060319-1,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,7 +1834-110319-5,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,98 +1834-010319-4,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,7 +1834-110319-2,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,108 +1834-110319-3,0,100,0.05,614c55ed-a408-4ba9-a32b-829f4547ef05,101 +1834-060319-1,0,100,0.05,4a90d982-ec1a-419d-a1c2-f2d4a7de7d17,70 +1834-060319-1,0,100,0.05,6637c14a-b253-48d2-8703-5f1b6243897c,71 +1834-060319-1,0,100,0.05,159d2a30-6e74-42ab-8ace-387a55d224d4,72 +1834-060319-1,0,100,0.05,47be527a-2d8f-4fe1-8a82-cbe0e8dd5755,73 +1834-060319-1,0,100,0.05,d6a56f04-ef88-4cd8-a5c3-df1fe601380d,74 +1834-060319-1,0,100,0.05,4488ef04-a63f-4248-98e9-3a991a05ab76,79 +1834-060319-3,0,100,0.05,49711b68-263d-46e8-9984-bd87eb439e5b,4 +1834-110319-1,0,100,0.05,da1214c1-766a-4aaa-918e-5a49e963fe12,0 +1834-110319-2,0,100,0.05,b7b2f4b9-4c64-42e4-9bc4-e692d98e3f90,11 +1834-110319-6,0,100,0.05,f0a9ce71-8b6a-46b8-8eaa-e021e962f72b,98 +1834-150319-4,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,0 +1834-120319-3,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,36 +1834-150319-2,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,2 +1834-120319-4,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,85 +1834-150319-3,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,71 +1834-120319-1,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,1 +1834-120319-2,0,100,0.05,451cdfc9-8168-4464-8016-db54073102cc,39 +1834-150319-3,0,100,0.05,3322123c-d978-44e2-9203-88c6f87537b5,75 +1834-220319-4,0,100,0.05,de526724-e1b1-4836-950a-d62e6beb25fe,0 +1834-220319-2,0,100,0.05,de526724-e1b1-4836-950a-d62e6beb25fe,1 +1834-220319-3,0,100,0.05,de526724-e1b1-4836-950a-d62e6beb25fe,1 +1834-220319-1,0,100,0.05,de526724-e1b1-4836-950a-d62e6beb25fe,81 +1834-220319-1,0,100,0.05,938a7ac8-2210-4a2c-bf76-b69180f6d577,87 +1834-010319-1,1,100,0.05,690b8817-fea7-46fe-9e07-356cd4dc3e14,48 +1834-010319-3,1,100,0.05,fcc053f1-bfa4-4d3f-a84f-215ff857b5a9,18 +1834-010319-4,1,100,0.05,d30b325b-259d-4aaf-b7a9-016bd34e4a93,10 +1834-060319-2,1,100,0.05,8326a63c-797a-48d8-a597-8c03f2a7d819,104 +1834-120319-1,1,100,0.05,88f4ca9e-f444-44ba-be53-32ed89d07498,3 +1834-120319-3,1,100,0.05,2a65b1c8-1818-4ced-b072-90f228c2dbf3,38 +1834-120319-2,1,100,0.05,2a65b1c8-1818-4ced-b072-90f228c2dbf3,41 +1834-110319-6,2,100,0.05,fcf3f7b1-c2c4-472c-908f-342a5abb406c,104 +1834-110319-5,2,100,0.05,fcf3f7b1-c2c4-472c-908f-342a5abb406c,18 +1834-110319-3,2,100,0.05,fcf3f7b1-c2c4-472c-908f-342a5abb406c,47 +1834-060319-2,2,100,0.05,fcf3f7b1-c2c4-472c-908f-342a5abb406c,113 +1834-120319-2,2,100,0.05,2208bcf0-b6eb-4a38-9b75-3c9e20a58c03,43 +1834-120319-2,2,100,0.05,5facd2b5-08de-46d8-ba87-555300d49e6a,51 +1834-120319-3,2,100,0.05,f4f30ef6-81aa-4f0c-84dd-0439e0ad0c86,70 +1834-120319-4,2,100,0.05,a58dbd1d-080c-4198-b069-181a575f1a00,75 +1834-220319-2,2,100,0.05,a58dbd1d-080c-4198-b069-181a575f1a00,49 +1834-220319-3,2,100,0.05,a58dbd1d-080c-4198-b069-181a575f1a00,46 +1834-220319-1,2,100,0.05,a58dbd1d-080c-4198-b069-181a575f1a00,83 +1834-220319-2,2,100,0.05,3f81f644-7def-4aaf-8667-c4ba2d841153,7 +1834-220319-1,2,100,0.05,3f81f644-7def-4aaf-8667-c4ba2d841153,73 +1834-220319-3,2,100,0.05,3f81f644-7def-4aaf-8667-c4ba2d841153,29 +1834-220319-1,2,100,0.05,2908c638-e02a-489c-8cb4-ff4b33f02f9e,79 +1834-220319-4,2,100,0.05,c9990b3a-f350-4dae-a59b-62e3de85a992,60 +1834-010319-1,3,100,0.05,bf4e3373-1bc6-414b-8694-9c97d4bc8c4f,52 +1834-010319-3,3,100,0.05,bf4e3373-1bc6-414b-8694-9c97d4bc8c4f,76 +1834-010319-1,3,100,0.05,40f09c39-62dd-407a-943e-e2367d3bb0be,7 +1834-010319-1,3,100,0.05,abb92bcc-5559-4071-8c68-144a0fc376fb,8 +1834-010319-3,3,100,0.05,32b61362-ae34-4834-aa33-56acb9cb7700,87 +1834-010319-4,3,100,0.05,3756d79b-0ea6-4593-b2da-e66cb4ae5ef0,21 +1834-010319-4,3,100,0.05,3cf953a4-371a-4efb-87c2-a478cf6e1abe,22 +1834-010319-5,3,100,0.05,5a02519f-dd23-4ff9-b77e-6df2ccf47d28,11 +1834-010319-5,3,100,0.05,293e799d-4de6-4ab3-a293-f9c044461fd3,28 +1834-060319-1,3,100,0.05,5ff341ca-c42a-4238-937f-4f932bf2485e,33 +1834-060319-1,3,100,0.05,c64f1d18-0873-4c2a-8f2d-47188f78fe77,85 +1834-060319-1,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,95 +1834-060319-3,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,13 +1834-060319-2,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,24 +1834-110319-3,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,41 +1834-060319-4,3,100,0.05,ce23c655-a6b4-4561-b912-e20a7dba6900,8 +1834-060319-2,3,100,0.05,f12d9d14-8d5d-4799-ab14-10ac47b77542,25 +1834-060319-4,3,100,0.05,845fbe49-4f67-4d07-8e65-63536f0117ac,10 +1834-110319-2,3,100,0.05,56d85532-29f2-4ecb-b105-b006301a7cbb,16 +1834-110319-5,3,100,0.05,33b57fa7-3f6a-418c-a642-99e38d252219,24 +1834-120319-2,3,100,0.05,847e4a86-4051-453b-a16e-60307e568fcb,15 +1834-120319-3,3,100,0.05,847e4a86-4051-453b-a16e-60307e568fcb,62 +1834-120319-1,3,100,0.05,847e4a86-4051-453b-a16e-60307e568fcb,8 +1834-120319-2,3,100,0.05,9eb07444-bdde-4258-b85e-02f076d95bb1,6 +1834-120319-4,3,100,0.05,35f11f0d-a0a9-4735-8129-9de2a8c12737,59 +1834-150319-1,3,100,0.05,bcf217f7-450a-48a3-9d66-1fcce7126c68,95 +1834-150319-2,3,100,0.05,92121c42-435f-4a0d-9e9d-6939cd7ae701,13 +1834-150319-3,3,100,0.05,2b1bbdcd-3a24-43ba-997a-48813da4e27e,61 +1834-150319-4,3,100,0.05,2b1bbdcd-3a24-43ba-997a-48813da4e27e,5 +1834-150319-2,3,100,0.05,2b1bbdcd-3a24-43ba-997a-48813da4e27e,46 +1834-150319-3,3,100,0.05,2b2f5d20-b737-4c7c-b49d-45a2ee36012e,8 +1834-150319-4,3,100,0.05,4b615d65-5228-4c85-9550-904c42782586,6 +1834-220319-3,3,100,0.05,ba0d7e24-4986-4ea9-b9c9-6d566e97f667,10 +1834-220319-4,3,100,0.05,ba0d7e24-4986-4ea9-b9c9-6d566e97f667,10 +1834-220319-2,3,100,0.05,ba0d7e24-4986-4ea9-b9c9-6d566e97f667,8 +1834-220319-1,3,100,0.05,ba0d7e24-4986-4ea9-b9c9-6d566e97f667,11 +1834-010319-1,4,100,0.05,3d62d9ee-b4f0-4936-9c92-52dcefeb81a0,13 +1834-010319-1,4,100,0.05,fd336b63-d868-4123-b744-af6b30e0931e,62 +1834-010319-3,4,100,0.05,54ed976d-5bcd-4c5e-9274-bbabbcc8a1a3,34 +1834-010319-3,4,100,0.05,c6b6d61b-742b-43fc-b758-a66e29bafe1f,36 +1834-010319-3,4,100,0.05,410cf677-7b47-4b8e-a5e9-2cc11d039270,66 +1834-010319-3,4,100,0.05,a9991fd3-13b9-4a6f-8574-78c11a43bdb9,90 +1834-010319-4,4,100,0.05,86cfc374-07ab-4b6b-8c0d-d5b1baa18210,29 +1834-010319-4,4,100,0.05,93df498d-cbc2-4159-afe0-a9ca2c5c9625,35 +1834-010319-4,4,100,0.05,2d6a070e-cd37-4cea-8eb9-1aec38b0364e,53 +1834-060319-2,4,100,0.05,5bd60c79-54d0-4863-b587-46ddcbba8ba5,115 +1834-060319-3,4,100,0.05,1b8c01ca-e9d3-4d57-b51e-5c36f9e19879,19 +1834-060319-4,4,100,0.05,c4589c86-3665-49a5-b11a-871ba9b80c44,13 +1834-110319-1,4,100,0.05,68df2d07-45eb-47b8-95c3-5731e45d9d5d,11 +1834-110319-2,4,100,0.05,68df2d07-45eb-47b8-95c3-5731e45d9d5d,19 +1834-110319-5,4,100,0.05,d936fe73-8a55-41d7-a68d-c87776550eb6,76 +1834-120319-3,4,100,0.05,4f5e6b43-7550-45f4-b233-c31e24a14ce4,40 +1834-120319-3,4,100,0.05,6d10b1f8-64b5-44cd-8f88-92b5f28dd326,95 +1834-150319-2,4,100,0.05,8a07c4f1-35ff-4815-b231-780bce803904,54 +1834-220319-1,4,100,0.05,cb76286e-88b6-4042-8c31-a06a73432f59,65 +1834-220319-2,4,100,0.05,cb76286e-88b6-4042-8c31-a06a73432f59,34 +1834-220319-2,4,100,0.05,f1091174-7e16-45ea-b0ac-9496388df0ac,47 +1834-220319-3,4,100,0.05,71dfbf61-981c-4b19-8f93-997652d902c7,15 +1834-220319-4,4,100,0.05,71dfbf61-981c-4b19-8f93-997652d902c7,51 +1834-220319-4,4,100,0.05,d6a5a781-f794-4e86-a233-e82ca99a833f,36 +1834-220319-4,4,100,0.05,43238212-283c-490c-bfb9-1e44063b8c43,63 +1834-220319-4,4,100,0.05,4a12ae02-b9e3-48a9-8b1c-e32a78c87d4b,65 +1834-010319-1,5,100,0.05,d967b66d-e3e8-4d44-aa4b-578c23ad2d99,16 +1834-010319-1,5,100,0.05,48bbae81-2938-4725-b2e9-84e04f341833,18 +1834-010319-3,5,100,0.05,224d04d4-c718-4abb-a546-b9d9b4c1dc09,41 +1834-010319-4,5,100,0.05,65ff8309-2cc1-4ce2-8776-742f123b4e45,37 +1834-010319-3,5,100,0.05,65ff8309-2cc1-4ce2-8776-742f123b4e45,42 +1834-010319-4,5,100,0.05,434e9092-e483-46f3-a133-64865e9f2bb3,36 +1834-010319-5,5,100,0.05,52c45f64-86f0-44c6-abca-a481f806e86c,14 +1834-010319-5,5,100,0.05,a5eec966-c449-44c2-8275-1849b10bc0c8,15 +1834-060319-1,5,100,0.05,fee656cf-79eb-41bc-9f2d-b97aa2a11f59,87 +1834-060319-2,5,100,0.05,ab9b538a-6636-4af6-93e8-7cab124ab7dc,34 +1834-060319-4,5,100,0.05,1eae3282-a23b-4c0c-9e43-c910073817d6,15 +1834-060319-2,5,100,0.05,1eae3282-a23b-4c0c-9e43-c910073817d6,35 +1834-060319-3,5,100,0.05,1eae3282-a23b-4c0c-9e43-c910073817d6,25 +1834-060319-3,5,100,0.05,187166f1-96aa-47bf-b672-d49e55ef1441,24 +1834-060319-3,5,100,0.05,c3c759db-386c-4230-abf9-7ccbcb77336c,26 +1834-060319-4,5,100,0.05,615976b1-72d8-440f-9248-44798dbbca10,16 +1834-110319-1,5,100,0.05,615976b1-72d8-440f-9248-44798dbbca10,14 +1834-060319-4,5,100,0.05,eef3483e-10f6-47e9-9a45-c3acc88f0c0f,17 +1834-110319-1,5,100,0.05,7a27534a-1ff7-4d35-922b-36f09e75341d,16 +1834-110319-2,5,100,0.05,b75a0079-84d0-4410-a1e0-595f243b2560,28 +1834-110319-1,5,100,0.05,b75a0079-84d0-4410-a1e0-595f243b2560,28 +1834-110319-2,5,100,0.05,4410e299-eed8-49e2-ac4a-85d0f2d653f1,29 +1834-110319-2,5,100,0.05,155118c5-5411-4df6-a3fe-8774d795a2c5,31 +1834-110319-5,5,100,0.05,86aefe11-b2c1-4cc3-9631-826c21078349,27 +1834-110319-6,5,100,0.05,c446186c-5d6b-4d7e-b69b-98761ca66231,90 +1834-120319-3,5,100,0.05,75281a58-de5e-4e64-9fa1-276551f4d9dd,23 +1834-120319-4,5,100,0.05,75281a58-de5e-4e64-9fa1-276551f4d9dd,69 +1834-120319-1,5,100,0.05,75281a58-de5e-4e64-9fa1-276551f4d9dd,11 +1834-120319-2,5,100,0.05,75281a58-de5e-4e64-9fa1-276551f4d9dd,21 +1834-120319-3,5,100,0.05,d8755b95-f8de-40fe-b06f-0c15351e0466,68 +1834-120319-4,5,100,0.05,70002885-d06a-4bf6-8773-84c206bca972,73 +1834-120319-4,5,100,0.05,8f806a25-06af-439d-addc-15ce62345ff8,83 +1834-150319-1,5,100,0.05,e5981420-29ea-4fbd-a4c9-d7b98ddb95b6,104 +1834-150319-1,5,100,0.05,e0f41896-a341-4047-8a99-186c0f340523,121 +1834-150319-1,5,100,0.05,365d89ab-d4f3-4e48-bebb-4ec7fdc45d38,25 +1834-150319-1,5,100,0.05,01470427-57ea-42e7-af3e-d99fd42bbad8,51 +1834-150319-2,5,100,0.05,a2be271f-e8fb-47c1-9e76-a9d1f16923ea,48 +1834-150319-3,5,100,0.05,ba56190b-19f5-4f99-b93f-a9f97350d961,47 +1834-150319-4,5,100,0.05,ba56190b-19f5-4f99-b93f-a9f97350d961,13 +1834-150319-3,5,100,0.05,a4fc59d7-7858-4476-9dab-7af2965f38a6,67 +1834-150319-4,5,100,0.05,dace6fba-4276-49b2-8c51-048d1f79bbee,11 +1834-150319-4,5,100,0.05,97430ff0-c8ed-462c-83c6-3f5acf172c4d,12 +1834-150319-4,5,100,0.05,b12cdef6-cde4-4040-bcb2-c0a88d094435,15 +1834-150319-4,5,100,0.05,04e7025c-e706-4a22-9cf5-07482d7b75a4,16 +1834-150319-4,5,100,0.05,fcd05d3e-491e-4c53-b5a4-5a46bb9436cc,36 +1834-220319-1,5,100,0.05,f4f67b5f-9ff4-4c71-99db-bda1845a11c0,77 +1834-060319-1,6,100,0.05,4f577056-0fdd-4e4c-ac42-42c7bf2054b6,55 +1834-010319-1,6,100,0.05,4f577056-0fdd-4e4c-ac42-42c7bf2054b6,21 +1834-010319-3,6,100,0.05,ff3ab24a-0755-4a47-83ea-993259f8aef8,55 +1834-010319-1,6,100,0.05,ff3ab24a-0755-4a47-83ea-993259f8aef8,22 +1834-010319-3,6,100,0.05,4cec7e7f-4120-4f59-877c-2912ee5624b3,53 +1834-010319-3,6,100,0.05,e49d3f2d-c6f6-4a43-8f65-577f4f8bf374,91 +1834-010319-4,6,100,0.05,b2ba2bc0-f4a9-47f6-9d75-21dbdcc46507,44 +1834-010319-5,6,100,0.05,b2ba2bc0-f4a9-47f6-9d75-21dbdcc46507,35 +1834-010319-4,6,100,0.05,2ff284a3-8f4c-4fc3-8e65-7df4a5c6d530,46 +1834-010319-5,6,100,0.05,2ff284a3-8f4c-4fc3-8e65-7df4a5c6d530,20 +1834-010319-5,6,100,0.05,6534ec1d-4996-43c3-bf0c-f15f8b01df21,33 +1834-060319-1,6,100,0.05,63f88367-c8be-48c6-8287-283759154419,58 +1834-060319-3,6,100,0.05,63f88367-c8be-48c6-8287-283759154419,32 +1834-060319-2,6,100,0.05,63f88367-c8be-48c6-8287-283759154419,39 +1834-060319-3,6,100,0.05,40c56e09-f78d-4f55-a93d-367dbedddb26,43 +1834-060319-2,6,100,0.05,40c56e09-f78d-4f55-a93d-367dbedddb26,122 +1834-060319-2,6,100,0.05,88b274b8-4335-449a-8e58-2c10ad6fbf8c,40 +1834-060319-2,6,100,0.05,4f073dde-7bbb-4161-8e6a-76d2608a49bf,45 +1834-060319-3,6,100,0.05,4f073dde-7bbb-4161-8e6a-76d2608a49bf,30 +1834-060319-4,6,100,0.05,4f073dde-7bbb-4161-8e6a-76d2608a49bf,19 +1834-060319-3,6,100,0.05,63143254-5c49-4bab-860a-fe43c93c5201,28 +1834-060319-4,6,100,0.05,c2823285-29da-4da4-9b7a-6f456966f18c,21 +1834-060319-4,6,100,0.05,1af18034-921e-4096-bd33-6f48672a7a1c,22 +1834-110319-1,6,100,0.05,a9693ee8-7e85-41fe-8b94-aa7f209a5e0f,20 +1834-110319-1,6,100,0.05,4f357cdb-02ce-41a6-a68d-5b0908d654c6,44 +1834-110319-2,6,100,0.05,0dd69813-7d4b-444b-a2d5-7e8ed22c1fb9,34 +1834-110319-2,6,100,0.05,6b545036-c6e9-4888-83c7-f7338d7d479b,38 +1834-110319-2,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,39 +1834-120319-4,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,55 +1834-120319-2,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,55 +1834-150319-2,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,26 +1834-150319-3,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,23 +1834-150319-1,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,29 +1834-150319-4,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,21 +1834-120319-1,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,33 +1834-120319-3,6,100,0.05,448d57db-ca57-41f9-ac73-15610dbfab25,56 +1834-110319-2,6,100,0.05,b3e4daba-8b77-44dd-afdf-a511ba9016bf,77 +1834-110319-2,6,100,0.05,dc66702a-c1d9-47a6-8983-4a35a7c4cfe4,87 +1834-110319-3,6,100,0.05,09c5a6cf-223a-4457-adac-89692fbe4bf1,70 +1834-110319-3,6,100,0.05,b625409f-75af-4353-a55a-f3a44db2bf74,83 +1834-110319-5,6,100,0.05,3fdee238-cd1c-4af0-8210-9cb8035bab08,30 +1834-110319-5,6,100,0.05,fc29229b-3670-4266-ab59-292bffc0878b,31 +1834-110319-6,6,100,0.05,4e3e88ee-81d3-4015-b46a-79212cc5bd96,114 +1834-110319-6,6,100,0.05,1c8ba769-ecb4-48d1-a695-d28e5ffdf5a7,116 +1834-120319-4,6,100,0.05,e472d3b7-c90e-48f0-ad02-f9b30e2d1ca2,71 +1834-120319-1,6,100,0.05,e472d3b7-c90e-48f0-ad02-f9b30e2d1ca2,31 +1834-120319-2,6,100,0.05,e472d3b7-c90e-48f0-ad02-f9b30e2d1ca2,23 +1834-120319-3,6,100,0.05,e472d3b7-c90e-48f0-ad02-f9b30e2d1ca2,66 +1834-220319-1,6,100,0.05,4885e4a6-4f45-4873-8aef-21a29f9c75dc,24 +1834-150319-3,6,100,0.05,4885e4a6-4f45-4873-8aef-21a29f9c75dc,65 +1834-150319-4,6,100,0.05,4885e4a6-4f45-4873-8aef-21a29f9c75dc,20 +1834-150319-2,6,100,0.05,4885e4a6-4f45-4873-8aef-21a29f9c75dc,27 +1834-150319-2,6,100,0.05,101a5b4d-65ec-435e-bd90-39b0916584e8,28 +1834-150319-3,6,100,0.05,03fd7c9e-1c44-4083-a3e3-f4da15643c02,59 +1834-150319-3,6,100,0.05,08973b47-4968-4d74-8292-b1436a7d3be5,63 +1834-150319-4,6,100,0.05,a7342215-10c0-4e32-acbf-8d1ecb9dfc05,22 +1834-220319-1,6,100,0.05,660035f1-f3d8-4143-a06f-328f64f31bc6,26 +1834-220319-1,6,100,0.05,fb4cd291-3824-446b-9ed0-925298dc6c71,41 +1834-220319-1,6,100,0.05,cc245705-5215-4809-86e4-c84cf9636b2d,69 +1834-220319-1,6,100,0.05,a44b7bd8-3622-442a-98a7-520d4768e03e,75 +1834-220319-2,6,100,0.05,6f8f632b-59e3-4603-8b53-23412a225fe2,17 +1834-220319-2,6,100,0.05,c6b1f0e7-f1b0-4545-b856-0f16c9cb222d,18 +1834-220319-2,6,100,0.05,4965c371-7fdd-4244-91bd-fb3e0a5109cc,19 +1834-220319-2,6,100,0.05,998465d2-3d19-4e8d-960b-2d4300254edd,43 +1834-220319-2,6,100,0.05,6662dedd-4186-427e-afe8-a6d8d43349b2,45 +1834-220319-3,6,100,0.05,0dbbe8f1-99c7-4f76-b9b8-73b91df7dc27,22 +1834-220319-4,6,100,0.05,0dbbe8f1-99c7-4f76-b9b8-73b91df7dc27,39 +1834-220319-4,6,100,0.05,afcb59de-3dd8-4320-b30f-2743cdb9ad12,29 +1834-220319-3,6,100,0.05,afcb59de-3dd8-4320-b30f-2743cdb9ad12,30 +1834-220319-4,6,100,0.05,c3a82b70-b806-4a2e-b8db-f92eb8310139,30 +1834-220319-3,6,100,0.05,c3a82b70-b806-4a2e-b8db-f92eb8310139,37 +1834-010319-1,7,100,0.05,1a7e2a95-450c-4257-86c2-044127d60c3e,24 +1834-010319-1,7,100,0.05,bbda5d40-711d-45fc-8ac4-7772dfbed754,25 +1834-010319-3,7,100,0.05,cdd578a8-4481-4a77-95cc-dde5643a05a7,57 +1834-010319-3,7,100,0.05,62e05a1a-dca2-4c40-a451-9b76ca6c9c7a,58 +1834-010319-3,7,100,0.05,0dfd63ef-40b4-46ac-9d22-1df32ec0c66c,60 +1834-010319-3,7,100,0.05,100dfda6-f79e-4a45-b2fc-f6cd0848cced,61 +1834-010319-3,7,100,0.05,855c6e8e-921b-40b5-96c5-9638e4c0707d,63 +1834-010319-5,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,19 +1834-220319-2,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,20 +1834-220319-3,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,25 +1834-220319-4,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,31 +1834-010319-4,7,100,0.05,228f9b5e-e3b0-4f7b-b49f-1db7d9d5c44c,45 +1834-010319-4,7,100,0.05,5f18ec34-e08a-4033-a136-33499deafb05,48 +1834-010319-5,7,100,0.05,47246698-32f8-42f6-ad9e-b2aac36fd361,23 +1834-010319-4,7,100,0.05,47246698-32f8-42f6-ad9e-b2aac36fd361,49 +1834-010319-5,7,100,0.05,4c47ce43-9ac5-4e57-a815-517b244640c7,21 +1834-010319-5,7,100,0.05,3c386ec2-c22d-43b3-a687-c8ac42eed150,39 +1834-060319-1,7,100,0.05,4f3d1acf-4438-4103-ad83-44612bdef481,59 +1834-060319-1,7,100,0.05,0c71d421-5b30-4497-9711-2adcf5968f33,91 +1834-060319-2,7,100,0.05,8f5433e0-7be4-499d-97fd-d4a2a6d711d5,41 +1834-060319-2,7,100,0.05,5aa52ec4-d7e5-460e-849b-a021c469e2eb,42 +1834-060319-3,7,100,0.05,5aa52ec4-d7e5-460e-849b-a021c469e2eb,33 +1834-060319-3,7,100,0.05,9f6eb181-321a-4ef7-8e2d-870bac6ceb37,35 +1834-060319-2,7,100,0.05,9f6eb181-321a-4ef7-8e2d-870bac6ceb37,43 +1834-060319-4,7,100,0.05,9f6eb181-321a-4ef7-8e2d-870bac6ceb37,24 +1834-060319-3,7,100,0.05,e1bf7e66-4fad-4125-8185-9842c1e3f79c,37 +1834-060319-4,7,100,0.05,e1bf7e66-4fad-4125-8185-9842c1e3f79c,26 +1834-060319-2,7,100,0.05,e1bf7e66-4fad-4125-8185-9842c1e3f79c,44 +1834-060319-3,7,100,0.05,14b4753a-3b46-445d-9260-9cdbf5ce4898,41 +1834-060319-2,7,100,0.05,14b4753a-3b46-445d-9260-9cdbf5ce4898,46 +1834-060319-4,7,100,0.05,14b4753a-3b46-445d-9260-9cdbf5ce4898,28 +1834-060319-3,7,100,0.05,ca559370-a8d8-4ddf-a266-7d210a2570a8,40 +1834-060319-4,7,100,0.05,9f612818-789a-494c-87e6-5b114e1ad939,23 +1834-060319-4,7,100,0.05,ae9ea3e4-8fff-410f-b045-bb3a682ca8b2,29 +1834-110319-1,7,100,0.05,ae9ea3e4-8fff-410f-b045-bb3a682ca8b2,30 +1834-110319-2,7,100,0.05,523af64d-491c-4a3d-956e-9226f8491442,41 +1834-110319-1,7,100,0.05,523af64d-491c-4a3d-956e-9226f8491442,23 +1834-110319-1,7,100,0.05,1b75d4ae-81f6-4699-ac42-351a7858a51f,24 +1834-110319-1,7,100,0.05,d99e8653-4124-4283-a54f-20368732e416,25 +1834-110319-2,7,100,0.05,d99e8653-4124-4283-a54f-20368732e416,45 +1834-110319-1,7,100,0.05,df990a64-ce40-4ed0-b5ac-f6e8902de6bb,26 +1834-110319-2,7,100,0.05,e1260923-321b-41a1-8177-eedd11a940a2,104 +1834-110319-2,7,100,0.05,e31905d6-49d9-46d2-a0fc-9b65990cc5ee,40 +1834-110319-2,7,100,0.05,05b102a5-726f-4ac6-a88b-9e59c63e60bd,47 +1834-110319-2,7,100,0.05,06de7e5e-5c87-404c-8b56-180fd2620c66,86 +1834-110319-2,7,100,0.05,d94d4c5c-878e-49a7-9655-3d680f797c35,96 +1834-110319-3,7,100,0.05,cf6869da-1ab3-4122-b195-ef5b7a382e53,27 +1834-110319-3,7,100,0.05,22d2f141-8350-4ce5-812b-f406ee913f73,28 +1834-110319-3,7,100,0.05,2ab525e7-e1e7-49d7-8090-c64050e5a811,29 +1834-110319-3,7,100,0.05,067f320e-2baf-4fe5-91f6-b4d1b27d7800,30 +1834-110319-5,7,100,0.05,06b66419-682e-40db-8e41-0f0c53cb2e38,78 +1834-110319-5,7,100,0.05,3cef4b91-94b3-4dba-94d4-0f64b1967dab,90 +1834-120319-3,7,100,0.05,23008245-ab98-4d2f-8d52-521556d09fb8,28 +1834-120319-4,7,100,0.05,23008245-ab98-4d2f-8d52-521556d09fb8,22 +1834-120319-2,7,100,0.05,23008245-ab98-4d2f-8d52-521556d09fb8,26 +1834-120319-1,7,100,0.05,23008245-ab98-4d2f-8d52-521556d09fb8,16 +1834-120319-1,7,100,0.05,8fef5055-116a-4389-a67c-886a2fc57842,17 +1834-120319-3,7,100,0.05,ebf94cb1-255c-408f-9bdc-dfb9b2416066,52 +1834-120319-2,7,100,0.05,ebf94cb1-255c-408f-9bdc-dfb9b2416066,61 +1834-120319-4,7,100,0.05,ebf94cb1-255c-408f-9bdc-dfb9b2416066,52 +1834-120319-2,7,100,0.05,8a4dc8a1-6520-4b20-8ffe-809726dd8a24,78 +1834-150319-1,7,100,0.05,5f8c3b2b-5e5f-4a9c-9ba1-c4a8d229ff79,106 +1834-150319-1,7,100,0.05,738bb033-f65b-40ca-9993-6cf2a062d584,114 +1834-150319-3,7,100,0.05,f6758adc-51c1-4898-94b5-96bc0aa52050,45 +1834-150319-1,7,100,0.05,f6758adc-51c1-4898-94b5-96bc0aa52050,116 +1834-150319-1,7,100,0.05,31beac31-763d-4e21-b0a4-5c4f1ccd52c3,117 +1834-150319-3,7,100,0.05,31beac31-763d-4e21-b0a4-5c4f1ccd52c3,53 +1834-150319-1,7,100,0.05,c1145d48-5f85-45f1-8d76-4a44fc665ee4,47 +1834-150319-1,7,100,0.05,7f92f005-59cf-430e-967c-bd49013f2a76,76 +1834-150319-2,7,100,0.05,ec7a8aa1-1e06-4791-bd99-1258cf36c710,29 +1834-150319-2,7,100,0.05,69a099c1-9dd3-45ce-a8a9-0c2eabf87922,30 +1834-150319-2,7,100,0.05,627b751c-55d4-4df2-b9c6-640cf6bf07fd,31 +1834-150319-2,7,100,0.05,beaca059-4368-4b20-8589-6d84b3b59c42,32 +1834-150319-2,7,100,0.05,22bf3833-4e3d-468a-89af-2965d2a51002,37 +1834-150319-2,7,100,0.05,c96ed8da-3951-4eeb-9248-177c5ce04032,42 +1834-150319-3,7,100,0.05,edcf06b2-9d17-4059-83cf-3f74a9f354de,27 +1834-150319-3,7,100,0.05,8ab38247-89ac-4d90-9550-2ed1cf161338,28 +1834-150319-3,7,100,0.05,46599ffa-444f-4673-8e52-c92afc83c9bf,30 +1834-150319-3,7,100,0.05,d2647864-247d-4942-9a6c-173ac37fe090,44 +1834-150319-3,7,100,0.05,de9c01f8-8168-4dfb-8ace-24fbf7f27040,49 +1834-150319-3,7,100,0.05,3f936b1e-bdca-4f80-82b9-d2685edfc0fa,55 +1834-150319-3,7,100,0.05,a0b6a381-ab2b-432d-93f4-4ea1e7c6bd13,57 +1834-150319-4,7,100,0.05,44782215-da18-4cd4-b71f-1085bf379aa4,23 +1834-150319-4,7,100,0.05,61afe5e7-43a8-469b-954e-4e0e2b80fb78,24 +1834-150319-4,7,100,0.05,f1857fe5-6bd8-47d3-ad55-e20fcbb4fea3,25 +1834-150319-4,7,100,0.05,15d43d29-f621-450a-b40b-cd9955f82271,26 +1834-150319-4,7,100,0.05,5a97800d-6787-455b-bda1-7103715d72f5,33 +1834-220319-1,7,100,0.05,b4c67054-eef7-4677-b513-8129cf5f5b22,29 +1834-220319-1,7,100,0.05,4a727f7e-b015-4b00-9f28-e18605eb7f48,36 +1834-220319-1,7,100,0.05,53d79670-e857-46ba-ac17-f908cf2298d8,37 +1834-220319-1,7,100,0.05,f9929c67-0c93-44f0-b2c5-f4b4ff7cb390,49 +1834-220319-1,7,100,0.05,9e21c4bd-05cf-472e-9bc1-dd58e9d7606e,67 +1834-220319-2,7,100,0.05,aea56a70-7844-478c-be62-fe3838c37cd8,21 +1834-220319-3,7,100,0.05,c9b7d4e9-e312-49b3-bcc6-9976b428d4e6,28 +1834-220319-2,7,100,0.05,c9b7d4e9-e312-49b3-bcc6-9976b428d4e6,29 +1834-220319-4,7,100,0.05,c9b7d4e9-e312-49b3-bcc6-9976b428d4e6,45 +1834-220319-2,7,100,0.05,57137c66-f012-45df-926e-02263653b304,39 +1834-220319-3,7,100,0.05,57137c66-f012-45df-926e-02263653b304,26 +1834-220319-2,7,100,0.05,dff1dd59-2802-4a78-8ede-e7e1d4dc61a2,41 +1834-220319-3,7,100,0.05,e094778a-1148-4369-b07b-b5c88a2123b8,23 +1834-220319-3,7,100,0.05,54015f95-d46a-4503-a7d4-8c098acc9445,31 +1834-220319-4,7,100,0.05,c4c42dfa-ca31-4bde-80c8-0ebd096ea781,32 +1834-220319-4,7,100,0.05,53328a33-9f74-4230-b6d3-0f6869d42807,33 +1834-220319-4,7,100,0.05,8eff42ab-1fd2-4d04-abc9-c1945e4e92b3,46 +1849-010319-5,0,100,0.05,c647a9dd-29fb-42a3-acc7-796a3ae4c147,117 +1849-060319-1,0,100,0.05,5e5df3e9-34e8-4862-b8d3-b84f89db4a15,85 +1849-110319-1,0,100,0.05,5ff23df9-f274-4382-ac81-c7c96b53c885,52 +1849-110319-2,0,100,0.05,8259f314-d021-42af-a98f-c539ee543473,56 +1849-150319-4,0,100,0.05,5c0cd33d-0382-4b78-b574-f5d442ab6d3f,85 +1849-150319-1,0,100,0.05,5c0cd33d-0382-4b78-b574-f5d442ab6d3f,39 +1849-150319-2,0,100,0.05,5c0cd33d-0382-4b78-b574-f5d442ab6d3f,60 +1849-150319-3,0,100,0.05,5c0cd33d-0382-4b78-b574-f5d442ab6d3f,6 +1849-150319-1,0,100,0.05,4a6b6ec9-c06a-4b84-a318-558a0095b01b,74 +1849-150319-2,0,100,0.05,7da8953a-dcbe-487e-bf4d-8a81b1728b50,40 +1849-150319-3,0,100,0.05,d67b2c2a-c1c5-436c-a877-0d57834d606e,69 +1849-150319-4,0,100,0.05,622c5f9f-7289-483b-b268-2a2634e1994d,70 +1849-150319-4,0,100,0.05,586c281c-8f34-4362-a0f4-ac7aacffcce3,76 +1849-220319-4,0,100,0.05,12e4de49-9ecf-4952-a983-eed259e029b0,100 +1849-220319-5,0,100,0.05,12e4de49-9ecf-4952-a983-eed259e029b0,79 +1849-220319-2,0,100,0.05,12e4de49-9ecf-4952-a983-eed259e029b0,93 +1849-220319-3,0,100,0.05,52b1ebc4-fefd-4dd9-aeb8-aeabbc39c6ea,0 +1849-280219-1,0,100,0.05,dbfe7b3f-a084-4c17-af00-7f6a2bb1eb27,90 +1849-280219-2,0,100,0.05,38515cfe-b829-4594-9f10-4b639f7f6aef,88 +1849-280219-3,0,100,0.05,a162ba66-e66e-422b-87da-c6792ae23868,153 +1849-280219-3,0,100,0.05,f7d5527c-4a45-425d-a970-618df8834204,160 +1849-280219-4,0,100,0.05,dc0a4927-3e38-45eb-963b-b7507c955407,62 +1849-280219-4,0,100,0.05,78313383-f119-4c17-b674-4563006070a5,64 +1849-010319-2,1,100,0.05,224fa7fc-2b0e-48d6-b043-b93c91e9d215,115 +1849-220319-5,1,100,0.05,224fa7fc-2b0e-48d6-b043-b93c91e9d215,117 +1849-010319-4,1,100,0.05,a737a794-e25c-4698-b370-58f048ac572b,109 +1849-010319-4,1,100,0.05,2956abfd-ca40-46d3-9daa-88b3c70935c0,87 +1849-010319-4,1,100,0.05,db2cb676-800b-48e8-b572-874549add363,97 +1849-010319-4,1,100,0.05,fa716a75-ff9e-43f4-8b81-85412994868f,99 +1849-010319-5,1,100,0.05,86fcc415-bec7-49f6-8698-b5cc83771ecc,127 +1849-010319-5,1,100,0.05,5c52f552-65d5-4d13-9bfe-93c40f3d4212,137 +1849-010319-5,1,100,0.05,5c5385ea-ca6b-4279-9c29-08d0cff747cf,159 +1849-060319-1,1,100,0.05,54f5f201-732b-4ec6-8508-8db88e7f3cb3,106 +1849-060319-1,1,100,0.05,11bb4101-c18e-4ee8-ad3d-0e977bbbbcb0,108 +1849-060319-1,1,100,0.05,c19df5e1-2944-4612-84dd-d60e75b784e8,71 +1849-060319-1,1,100,0.05,cb655143-f396-47a0-9b5a-e83ca0e36dfc,73 +1849-060319-3,1,100,0.05,06215522-8928-4d20-ade7-dfdc71ac629d,104 +1849-060319-3,1,100,0.05,dff4a56b-bcf5-410f-a7da-f6214083c599,108 +1849-060319-3,1,100,0.05,345c2f16-18d5-49ee-a934-0bae7c3700a0,85 +1849-060319-3,1,100,0.05,e93133f2-4b68-4032-8b81-f7ee139169a7,94 +1849-060319-3,1,100,0.05,2f373e70-f8a4-49a2-b219-55b15b32b752,98 +1849-060319-4,1,100,0.05,87cf4fb2-848b-42cb-abf4-486faa568bf3,76 +1849-110319-1,1,100,0.05,d65c7e82-0a61-4dde-9be7-bad79c4feadf,31 +1849-110319-1,1,100,0.05,2ebe3571-22cb-439f-baed-9c117a49f9ed,41 +1849-110319-1,1,100,0.05,29fa76fc-b1d2-48c8-82a2-e119a2793290,54 +1849-110319-1,1,100,0.05,7050bffb-e235-4de9-a10e-12a53b406452,59 +1849-110319-1,1,100,0.05,5b6b402c-4072-483b-a89e-4da6c49b4323,60 +1849-110319-2,1,100,0.05,d3169083-e30b-4845-b28e-1cfc7a95d341,66 +1849-110319-1,1,100,0.05,d3169083-e30b-4845-b28e-1cfc7a95d341,64 +1849-110319-2,1,100,0.05,21790ef8-9afb-4700-9819-eebe0e7a824e,68 +1849-110319-1,1,100,0.05,21790ef8-9afb-4700-9819-eebe0e7a824e,66 +1849-110319-2,1,100,0.05,1f7c75f5-615e-4e41-956c-3390af52665b,50 +1849-110319-2,1,100,0.05,b3b22124-40e3-4627-af8f-7eb64357573f,58 +1849-110319-2,1,100,0.05,064d5801-fb23-4dfd-8c03-394024e09500,62 +1849-110319-3,1,100,0.05,513ce397-2834-4471-b591-acb73523f8df,177 +1849-150319-2,1,100,0.05,2a00cbdb-d72a-43a2-aff8-d83f4c76d993,48 +1849-280219-4,1,100,0.05,2a00cbdb-d72a-43a2-aff8-d83f4c76d993,84 +1849-150319-3,1,100,0.05,2a00cbdb-d72a-43a2-aff8-d83f4c76d993,8 +1849-150319-1,1,100,0.05,2a00cbdb-d72a-43a2-aff8-d83f4c76d993,105 +1849-150319-1,1,100,0.05,0280fccd-c5a5-4de6-9f10-776dc1869e7f,121 +1849-150319-3,1,100,0.05,0280fccd-c5a5-4de6-9f10-776dc1869e7f,98 +1849-150319-2,1,100,0.05,0280fccd-c5a5-4de6-9f10-776dc1869e7f,64 +1849-150319-1,1,100,0.05,2a5c4c39-034f-45de-a829-f4ffc5ca8d1f,93 +1849-150319-2,1,100,0.05,2a5c4c39-034f-45de-a829-f4ffc5ca8d1f,44 +1849-150319-3,1,100,0.05,2a5c4c39-034f-45de-a829-f4ffc5ca8d1f,7 +1849-150319-3,1,100,0.05,acac48d3-250f-4265-b3aa-e3574fcd5c7e,11 +1849-150319-4,1,100,0.05,bf9b35f7-836c-411b-86a6-0b8e02a16c59,100 +1849-280219-4,1,100,0.05,bf9b35f7-836c-411b-86a6-0b8e02a16c59,105 +1849-280219-2,1,100,0.05,bf9b35f7-836c-411b-86a6-0b8e02a16c59,102 +1849-150319-4,1,100,0.05,96ce29de-9616-4e5a-9089-ae70052bc686,78 +1849-150319-4,1,100,0.05,fad89edb-23cb-4955-a51c-d863b9ed5086,99 +1849-220319-2,1,100,0.05,8427249d-3085-4531-8eeb-917c46448768,99 +1849-220319-3,1,100,0.05,e6b48787-c7d2-48f4-8428-62a632db1160,59 +1849-220319-3,1,100,0.05,bcf9fb53-032f-4ab5-9baa-0bb74e2d3e0f,63 +1849-220319-3,1,100,0.05,e1afa22c-a5a6-4bc9-80d2-556a8192a5cf,67 +1849-220319-4,1,100,0.05,e1afa22c-a5a6-4bc9-80d2-556a8192a5cf,118 +1849-220319-4,1,100,0.05,ae491eb3-0dff-42e6-9e9b-e559cea763ab,108 +1849-220319-4,1,100,0.05,b7617172-bc9c-4cc8-a82a-9690654fe766,117 +1849-220319-4,1,100,0.05,f661d6df-b2b5-4fc7-b40f-02fde9e6c181,90 +1849-280219-1,1,100,0.05,a64527ef-4cf3-408a-a2ca-89b59e3f59f0,102 +1849-280219-1,1,100,0.05,2a54da2b-f5bd-4c26-ae01-edd6fb85ff17,104 +1849-280219-1,1,100,0.05,83fda535-7506-42eb-97cb-71676c9a06ed,112 +1849-280219-1,1,100,0.05,3e01a168-05a9-4461-87e0-5c6e2918c5ab,114 +1849-280219-1,1,100,0.05,935f9859-1d55-4af6-ba32-411783900426,116 +1849-280219-4,1,100,0.05,d4272bd3-8ca4-4cbd-97ac-f7b6640d9370,101 +1849-280219-2,1,100,0.05,d4272bd3-8ca4-4cbd-97ac-f7b6640d9370,110 +1849-280219-2,1,100,0.05,b5053b15-b9d3-4fcc-8c65-14b1bd6f10b1,78 +1849-280219-3,1,100,0.05,14143efc-72ec-4801-99f0-e426d19b0794,180 +1849-280219-3,1,100,0.05,53d03210-67a3-4335-857c-a6e31103bf51,182 +1849-280219-4,1,100,0.05,98a5bbe7-e677-4750-ba91-fa20edd66cd1,32 +1849-280219-4,1,100,0.05,2b18a790-4ee2-4f6f-a47c-2d93af9889e5,81 +1849-010319-2,2,100,0.05,a9467287-99d9-4a92-aafa-5244db21ae71,103 +1849-010319-2,2,100,0.05,2d2fbb31-29c2-4932-a85c-5584299cf818,119 +1849-010319-4,2,100,0.05,2d2fbb31-29c2-4932-a85c-5584299cf818,103 +1849-010319-2,2,100,0.05,62d409ab-845c-4bb8-a809-7b6666f88e4d,83 +1849-010319-5,2,100,0.05,d6c66348-ecf1-4d6a-b75f-9db2db830059,103 +1849-010319-4,2,100,0.05,d6c66348-ecf1-4d6a-b75f-9db2db830059,61 +1849-010319-5,2,100,0.05,0779b599-834e-45ef-a6bc-fecbefcc440f,93 +1849-010319-4,2,100,0.05,0779b599-834e-45ef-a6bc-fecbefcc440f,67 +1849-220319-4,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,99 +1849-010319-5,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,121 +1849-220319-2,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,95 +1849-150319-1,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,91 +1849-220319-3,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,61 +1849-150319-3,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,76 +1849-110319-1,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,50 +1849-220319-5,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,104 +1849-110319-2,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,60 +1849-150319-4,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,81 +1849-150319-2,2,100,0.05,a8d6a2df-528d-4dda-9d80-1f2a1647e51e,9 +1849-010319-5,2,100,0.05,10b0b374-d1ec-4bbe-976d-037e5d46bdcb,78 +1849-060319-4,2,100,0.05,ed9331d1-5a45-48b1-aed1-5efbcc57c2fa,72 +1849-060319-2,2,100,0.05,ed9331d1-5a45-48b1-aed1-5efbcc57c2fa,81 +1849-060319-3,2,100,0.05,344637cf-ee74-4aee-8bc7-669e15c84706,114 +1849-060319-3,2,100,0.05,d8fcec78-89f8-47a3-92c5-d9499e1623dd,130 +1849-060319-4,2,100,0.05,6db71b75-e928-4d37-bdfa-224a736128fa,82 +1849-110319-2,2,100,0.05,197184a7-dae3-47ae-bf82-ef5fa4f4a1c9,52 +1849-110319-1,2,100,0.05,197184a7-dae3-47ae-bf82-ef5fa4f4a1c9,46 +1849-110319-1,2,100,0.05,9ee0aa53-5e63-41d2-b497-2292252b2acc,62 +1849-110319-2,2,100,0.05,9ee0aa53-5e63-41d2-b497-2292252b2acc,64 +1849-150319-2,2,100,0.05,52cc5d39-4c20-48df-980e-e3c476e5082f,34 +1849-150319-1,2,100,0.05,52cc5d39-4c20-48df-980e-e3c476e5082f,62 +1849-150319-3,2,100,0.05,474822fb-cc18-4acf-bea5-4b5ea7dba54c,25 +1849-150319-1,2,100,0.05,474822fb-cc18-4acf-bea5-4b5ea7dba54c,72 +1849-150319-4,2,100,0.05,474822fb-cc18-4acf-bea5-4b5ea7dba54c,62 +1849-150319-2,2,100,0.05,474822fb-cc18-4acf-bea5-4b5ea7dba54c,36 +1849-150319-4,2,100,0.05,26e0b870-0a3b-405f-b908-86c1b125730e,90 +1849-150319-2,2,100,0.05,26e0b870-0a3b-405f-b908-86c1b125730e,62 +1849-150319-3,2,100,0.05,26e0b870-0a3b-405f-b908-86c1b125730e,21 +1849-150319-4,2,100,0.05,dcbe6b45-284e-4d3b-ac00-e4dd6bf3dfbe,87 +1849-220319-2,2,100,0.05,e018992d-3542-4f5f-97c9-ec24b8edf41f,91 +1849-220319-5,2,100,0.05,e018992d-3542-4f5f-97c9-ec24b8edf41f,83 +1849-220319-3,2,100,0.05,f46e213d-5b77-4d83-8c43-131ad6f49dc7,65 +1849-280219-1,2,100,0.05,c2104375-fd13-48f9-a7b0-13eaba601079,100 +1849-280219-1,2,100,0.05,cf39ffac-3e31-4015-90fa-ae7759d85d03,16 +1849-280219-1,2,100,0.05,a7e0417b-091a-43fa-b978-afbb2828768e,18 +1849-280219-1,2,100,0.05,8346bbc4-23a5-47b6-81f8-d2eb93aadbf7,84 +1849-280219-1,2,100,0.05,5990a30e-67b8-47bf-bae4-3fc011ce928b,86 +1849-280219-2,2,100,0.05,f2af289c-3207-496a-9dc5-2d4d95074634,119 +1849-280219-2,2,100,0.05,3c969c1b-36d3-4eb3-bce3-61ff8446f583,72 +1849-280219-3,2,100,0.05,b092da07-f413-4568-b5c9-322a7a5d147f,141 +1849-280219-4,2,100,0.05,5c782264-06ef-4999-9f5f-f04117e1bd09,70 +1849-280219-4,2,100,0.05,6fc50b13-e626-44fa-8f8f-2c89a56e73b2,74 +1849-010319-2,3,100,0.05,102465e9-343f-40ed-b933-c12d9ada2956,107 +1849-010319-2,3,100,0.05,f28d19f0-1d29-4077-84f9-f838314abbd6,111 +1849-010319-2,3,100,0.05,04413898-2706-4a05-a973-4e4ccf03fff0,40 +1849-010319-4,3,100,0.05,6cb8ebac-73fa-4d2c-8d01-2cee978c0704,115 +1849-010319-5,3,100,0.05,6cb8ebac-73fa-4d2c-8d01-2cee978c0704,148 +1849-010319-4,3,100,0.05,26f20291-2b7a-4f2c-9a42-1fe8ba0c941d,65 +1849-010319-5,3,100,0.05,26f20291-2b7a-4f2c-9a42-1fe8ba0c941d,99 +1849-010319-5,3,100,0.05,3b4a5c02-74fc-46f6-8e31-e393ef9cec42,113 +1849-010319-4,3,100,0.05,3b4a5c02-74fc-46f6-8e31-e393ef9cec42,73 +1849-060319-1,3,100,0.05,57eef88b-2b1e-435e-83fa-ccc0f8ed4bb8,102 +1849-060319-1,3,100,0.05,8f6a97cb-9471-43f3-b533-b3b9ed6ea4e2,77 +1849-060319-1,3,100,0.05,50ed52a4-2fd0-45a1-8b77-c068391cb123,83 +1849-060319-3,3,100,0.05,2a277179-8d8e-4ffd-893b-4733c6c0f67f,110 +1849-060319-2,3,100,0.05,2a277179-8d8e-4ffd-893b-4733c6c0f67f,99 +1849-060319-1,3,100,0.05,2a277179-8d8e-4ffd-893b-4733c6c0f67f,98 +1849-060319-4,3,100,0.05,2a277179-8d8e-4ffd-893b-4733c6c0f67f,74 +1849-060319-2,3,100,0.05,35c973e5-6ae0-4368-8af0-2225c3212f78,67 +1849-060319-2,3,100,0.05,9ac324da-f3cc-488d-876b-ce73f50f2433,94 +1849-060319-3,3,100,0.05,9ac324da-f3cc-488d-876b-ce73f50f2433,100 +1849-060319-4,3,100,0.05,9ac324da-f3cc-488d-876b-ce73f50f2433,68 +1849-110319-1,3,100,0.05,d1067617-850b-4015-b45d-7dd17f8bea3d,35 +1849-110319-2,3,100,0.05,139951c8-caac-432f-8445-cd60ebe0455d,40 +1849-150319-1,3,100,0.05,03fd2337-a9ba-4a41-8cc6-590f744c16b1,58 +1849-150319-1,3,100,0.05,edd320e0-1c96-4869-9659-ab0da2b1d64b,64 +1849-150319-2,3,100,0.05,6a849592-588d-4a7d-98d5-627f05f045ea,32 +1849-150319-2,3,100,0.05,fb5510ae-fe46-4c11-93d1-5a8b09dac3cc,38 +1849-150319-3,3,100,0.05,8178055e-0ae6-4d9a-a40c-82fb2e2c777e,60 +1849-150319-4,3,100,0.05,1790f083-5b74-4c76-ba83-23603e2b2959,58 +1849-220319-2,3,100,0.05,057730fe-42c9-4041-b13b-a6253c6586b5,57 +1849-220319-2,3,100,0.05,57408c62-be9c-411d-aa35-d045a47732c1,59 +1849-220319-2,3,100,0.05,aedc5356-a38c-4394-aa7e-7e15a671b641,68 +1849-220319-2,3,100,0.05,4d2bc6ba-3c1d-415a-a2ab-dcbb0111a25a,86 +1849-220319-3,3,100,0.05,5ab6ee70-385e-49a5-83c5-997f49a10f25,53 +1849-220319-3,3,100,0.05,82204e41-3415-4bda-82c2-a74e48792a34,55 +1849-220319-4,3,100,0.05,b1f18ce6-5ddd-4f14-8bce-b30224421e95,122 +1849-220319-4,3,100,0.05,eef44d5f-c7a7-4da1-8e2c-3d7955646b4c,79 +1849-220319-4,3,100,0.05,8c32cba6-955b-47ab-84a0-e31ec5b5120e,87 +1849-220319-5,3,100,0.05,8e431236-ddb7-4ed4-8db4-40d0d0b9079b,27 +1849-220319-5,3,100,0.05,322d3c50-29ba-43c3-9549-81f09d6c1dcf,71 +1849-220319-5,3,100,0.05,b15b6ad5-a52d-464f-a016-917c3a569522,98 +1849-280219-1,3,100,0.05,6ccf9d76-4b2c-49bd-a67a-b45a0302dd07,110 +1849-280219-1,3,100,0.05,39102f5e-ede0-4281-8fda-e4bf10dcc30c,27 +1849-280219-1,3,100,0.05,a41c4a50-4934-4caf-936b-9f270a633c95,28 +1849-280219-1,3,100,0.05,108a4994-de1d-4824-be90-cc0243ec8f53,64 +1849-280219-2,3,100,0.05,ab3ac212-fcd5-4f62-88b5-caa936fcb889,51 +1849-280219-2,3,100,0.05,96ab99cc-e2d8-4464-85a9-2df33f37eaac,76 +1849-280219-2,3,100,0.05,b7f08bb0-9f1e-4bb8-9ff4-c18d668601c9,96 +1849-280219-4,3,100,0.05,299badc0-ed40-407c-b5de-1a1ee2ee6a6c,125 +1849-280219-2,3,100,0.05,299badc0-ed40-407c-b5de-1a1ee2ee6a6c,98 +1849-280219-3,3,100,0.05,88b005b1-db68-4b8a-87b8-ccb7a53b7b17,166 +1849-280219-3,3,100,0.05,064850e2-5c83-4f94-891a-fefffe52bcf7,170 +1849-280219-4,3,100,0.05,23b7a1cd-b768-454f-96de-708fa3dcb382,121 +1849-280219-4,3,100,0.05,75042a6c-386a-483a-8e88-7039317f04f6,60 +1849-280219-4,3,100,0.05,fe1586a7-b9cd-4baf-a773-cc73f648c58a,72 +1849-060319-1,4,100,0.05,6897efc1-a8d1-4002-bc43-3dec26f09262,104 +1849-060319-4,4,100,0.05,6897efc1-a8d1-4002-bc43-3dec26f09262,80 +1849-060319-1,4,100,0.05,2dd03c91-510e-4a18-a71f-fffe7f652b4e,88 +1849-060319-2,4,100,0.05,fc9e4323-f830-49da-841b-a492bc574a68,122 +1849-060319-2,4,100,0.05,fa038b70-2764-4db6-9804-1419c3e235ee,95 +1849-060319-3,4,100,0.05,0c91deae-ca38-4368-ab78-748e815fc6f2,120 +1849-060319-4,4,100,0.05,1fadce33-eafe-4e60-b08c-36ec8b5194c7,64 +1849-110319-2,4,100,0.05,53f2d04d-f5c9-42ee-8db3-14742190bd3c,23 +1849-110319-3,4,100,0.05,ab45e9ca-9226-40d3-9685-d69f21460af3,104 +1849-110319-3,4,100,0.05,7e45cdb1-b034-49ee-9dd3-46fe89090d40,163 +1849-150319-1,4,100,0.05,f7bf8b9f-ed1e-47d9-975e-d85b5a70c5e4,79 +1849-150319-1,4,100,0.05,fc820d05-b990-4d5c-a871-47c4ce11b8c2,85 +1849-150319-1,4,100,0.05,eb86b501-d568-4a09-a54a-ed042f1d742f,89 +1849-150319-3,4,100,0.05,33a8a3e3-d9c4-476d-95c7-edcb25f23acb,74 +1849-150319-2,4,100,0.05,33a8a3e3-d9c4-476d-95c7-edcb25f23acb,17 +1849-150319-2,4,100,0.05,e874ac5a-019e-4749-94c2-51b0818266cc,46 +1849-150319-3,4,100,0.05,a4a489c3-52b6-472d-9687-ba6c8e6f0635,97 +1849-150319-4,4,100,0.05,06258155-b326-4072-9148-6a9b41f93638,34 +1849-220319-4,4,100,0.05,06258155-b326-4072-9148-6a9b41f93638,112 +1849-220319-5,4,100,0.05,06258155-b326-4072-9148-6a9b41f93638,112 +1849-150319-4,4,100,0.05,1287be74-b7f9-4644-a2bb-c12f7be1842e,60 +1849-220319-2,4,100,0.05,974a4422-28c6-4146-96c1-4da873336428,101 +1849-220319-2,4,100,0.05,6900cf67-2acf-4b31-8b8e-41013c41af9d,107 +1849-220319-2,4,100,0.05,c5e5297e-f3a0-41a3-87bf-ecb999986f47,109 +1849-220319-2,4,100,0.05,2bd93d5c-7f0e-4fa6-81ad-a2b4807b4a1e,43 +1849-220319-3,4,100,0.05,b3b216dc-74f1-4373-9ecd-cd3b146514b9,69 +1849-220319-3,4,100,0.05,d79c94db-364e-48b5-87fe-4a8dae62d557,71 +1849-280219-1,4,100,0.05,3b129274-e2e7-4c35-917e-58f8a9df768c,66 +1849-280219-2,4,100,0.05,fea403f0-e10f-4aaf-8a4b-076712fb984d,80 +1849-280219-2,4,100,0.05,1ccc7c39-a349-4bce-8662-bd740d717290,86 +1849-280219-3,4,100,0.05,e4d3264c-0b97-4e34-b625-17e420306870,133 +1849-280219-3,4,100,0.05,54c9ec68-a5fe-4a74-aed8-babae78c9746,151 +1849-280219-4,4,100,0.05,6b3df4ed-9784-4762-aa13-20e7abb3d7b7,55 +1849-010319-2,5,100,0.05,c584ed6c-bedf-4746-9f81-a8995d4fbbf7,91 +1849-010319-2,5,100,0.05,1d475957-1314-4b2a-8a38-a4710ef7ee8b,93 +1849-010319-4,5,100,0.05,addec98e-ef4e-4c2d-98f0-50a5c31aa281,58 +1849-010319-5,5,100,0.05,addec98e-ef4e-4c2d-98f0-50a5c31aa281,87 +1849-060319-1,5,100,0.05,b331cfab-08a7-4c2d-ba5d-0303fd76c930,100 +1849-060319-1,5,100,0.05,3452d998-02cd-476b-881f-afaa9166d1ef,75 +1849-060319-1,5,100,0.05,2f962b5f-306c-47f3-b7a0-d8bf561f5648,92 +1849-060319-2,5,100,0.05,61fd0e03-5868-4a26-bf12-a00461ad0d1d,114 +1849-060319-3,5,100,0.05,61fd0e03-5868-4a26-bf12-a00461ad0d1d,112 +1849-060319-2,5,100,0.05,8da9212f-5b6b-41f5-a0ab-8ca9c73315d8,118 +1849-060319-4,5,100,0.05,ec179019-8071-4826-99d0-68efd183a0c6,78 +1849-110319-1,5,100,0.05,16fefcda-42be-400b-8330-d32808bc316d,16 +1849-110319-1,5,100,0.05,d88ad2f8-1987-42dd-8c84-500ca71b589d,17 +1849-110319-1,5,100,0.05,83c429f0-8853-45ad-a61e-710a436cb83a,29 +1849-110319-2,5,100,0.05,7947f076-c400-42ee-ae64-d12a5e1ec498,24 +1849-110319-2,5,100,0.05,bc332bce-d32a-4927-b2d1-4d20370418a9,48 +1849-110319-3,5,100,0.05,37a87c3f-bcd9-4940-8d10-9f64e7726313,165 +1849-150319-1,5,100,0.05,7d016051-3ad5-4468-b25b-906a7e245c0b,107 +1849-150319-1,5,100,0.05,48c19e2d-990e-4ca8-8c8a-ebc2dbc25cb1,60 +1849-150319-1,5,100,0.05,47cade87-03fa-472b-a0fc-13fc19bbf336,80 +1849-150319-1,5,100,0.05,fc8d286e-21e8-430b-8c81-0548d337084c,95 +1849-150319-2,5,100,0.05,e37b5d40-e10e-4a99-b301-69ca4971e4a0,18 +1849-150319-3,5,100,0.05,6d67f715-2515-419b-b392-fec9f0da0682,38 +1849-150319-4,5,100,0.05,6d67f715-2515-419b-b392-fec9f0da0682,64 +1849-150319-2,5,100,0.05,6d67f715-2515-419b-b392-fec9f0da0682,19 +1849-150319-2,5,100,0.05,ec89d0dd-4fa0-473a-a190-b94c1c2ec940,22 +1849-150319-2,5,100,0.05,68594b45-f026-490a-a52b-8caa68877a64,67 +1849-150319-3,5,100,0.05,676baa00-42e7-47fb-b385-d3a086da4656,64 +1849-150319-3,5,100,0.05,e955c07b-301d-4e41-be02-7d4a883d2ed9,78 +1849-150319-4,5,100,0.05,3bcc2bf8-7460-4b59-8a5d-a4855bedbe76,37 +1849-220319-2,5,100,0.05,57a31d6d-fd34-49da-a9f6-81c05a593673,32 +1849-220319-2,5,100,0.05,91b94352-443a-48a6-a992-517fee9ecaae,45 +1849-220319-2,5,100,0.05,7bda8f16-c918-4bcf-b515-fdc210115e35,46 +1849-220319-3,5,100,0.05,f6a0a207-5075-4627-a34a-643b6e1f4f12,28 +1849-220319-3,5,100,0.05,103b1022-49dd-4bb6-a9cc-9563e7cf629b,73 +1849-220319-3,5,100,0.05,302f83ba-d90c-44f7-a208-96c382d0957a,75 +1849-220319-4,5,100,0.05,aa2bdfc8-ac91-4d44-b0c5-2452c77fa55d,102 +1849-220319-4,5,100,0.05,8b69cac9-1365-4200-8e71-c7355f6cf2fc,110 +1849-220319-4,5,100,0.05,234e44e8-eb09-4f8c-ae5e-e51057f00c50,84 +1849-220319-5,5,100,0.05,24aa6024-105a-4911-9f3c-60e286d431fa,34 +1849-220319-5,5,100,0.05,5ff04c08-22c3-4971-ae0a-663fe3d0ef53,35 +1849-220319-5,5,100,0.05,f5388f03-ca85-4743-9589-26687a72b818,38 +1849-220319-5,5,100,0.05,22f6bc21-941c-4c40-9273-8163690f751b,39 +1849-280219-1,5,100,0.05,c47b29ae-8295-4da3-8cc8-e61d18be7d6d,40 +1849-280219-2,5,100,0.05,84a52e84-1b4a-479e-8c20-29a3cb871ebd,115 +1849-280219-3,5,100,0.05,6a4ef2de-1630-4cac-8186-bc77c70aec38,129 +1849-280219-3,5,100,0.05,4cd5541a-af86-47df-867a-025fdf5fb769,137 +1849-280219-4,5,100,0.05,04cbe5a5-04e9-4d21-b8cd-332b732f9954,44 +1849-010319-2,6,100,0.05,f886dcca-fbaa-45cb-9022-d203431f9288,85 +1849-010319-2,6,100,0.05,cd07f442-639c-447c-b36a-e1bddd95dcd4,97 +1849-010319-2,6,100,0.05,3a7bdcc3-3991-49f7-a375-3d86271eef05,99 +1849-010319-4,6,100,0.05,c0bfc261-07f7-4bb7-95c8-2615b4732801,79 +1849-010319-5,6,100,0.05,ccb304b2-35c4-4f13-8c85-a211b455f966,105 +1849-010319-5,6,100,0.05,b55eb441-dc25-4350-b630-4ce36301f137,107 +1849-010319-5,6,100,0.05,f0a2bdd5-0715-4bb9-9eb6-d84adc38b7f1,109 +1849-060319-1,6,100,0.05,f6c731fd-8137-443b-b42c-8f4e26d41e46,44 +1849-060319-1,6,100,0.05,4604f1f9-ac27-4c75-9e89-881ddb545817,81 +1849-060319-4,6,100,0.05,89d11a5d-48c2-4670-bcbd-eb453f10d7db,62 +1849-060319-4,6,100,0.05,cd3f6cb7-c345-40d0-a467-a1efee05f133,66 +1849-280219-1,6,100,0.05,e44dd8cb-8faf-4cdd-9cfe-0d06b648217f,106 +1849-280219-1,6,100,0.05,cb396e71-1db2-4851-b6ab-f3701fc2122a,108 +1849-280219-1,6,100,0.05,9beb9805-9811-445e-baf5-7ece818069b5,44 +1849-280219-1,6,100,0.05,8e44aff2-17ab-44d5-b808-e03415688462,45 +1849-280219-1,6,100,0.05,df2c90b7-757d-42ca-92e2-95609ad4075c,96 +1849-280219-1,6,100,0.05,954c6998-2a77-46c0-aaa2-2ff9321036a5,98 +1849-280219-2,6,100,0.05,2cf74818-4530-46a2-aace-da590b80ee5b,38 +1849-280219-2,6,100,0.05,3ba988c4-22eb-4172-920a-7a497229fb00,90 +1849-280219-2,6,100,0.05,bc952b05-918b-4aa5-8834-badd4c11d898,94 +1849-280219-3,6,100,0.05,38104c2a-576c-4e9e-accb-e5b41b10928e,127 +1849-280219-3,6,100,0.05,cdee4df0-a75a-4379-b6cb-bac4149cebec,131 +1849-280219-3,6,100,0.05,19767b25-08bd-4a05-90b7-ac62ca81e42c,135 +1849-280219-3,6,100,0.05,1fa0e9bf-9afc-4d7f-82d1-62e2d2f97e54,139 +1849-280219-4,6,100,0.05,fde0ec07-c949-4728-9afe-20a9901aad1c,66 +1849-280219-4,6,100,0.05,52d62395-d6f1-447a-89ab-223ad7f67b25,68 +1849-280219-4,7,100,0.05,9cd659bc-0168-452e-ba3d-30b48e7f7294,58 +1849-010319-2,7,100,0.05,9cd659bc-0168-452e-ba3d-30b48e7f7294,101 +1849-280219-4,7,100,0.05,89452b09-bd0c-4b7b-a577-fb7fb0554af5,56 +1849-280219-2,7,100,0.05,89452b09-bd0c-4b7b-a577-fb7fb0554af5,42 +1849-010319-2,7,100,0.05,89452b09-bd0c-4b7b-a577-fb7fb0554af5,70 +1849-280219-3,7,100,0.05,89452b09-bd0c-4b7b-a577-fb7fb0554af5,158 +1849-010319-4,7,100,0.05,63028c14-d683-44b8-a74f-f4b35b8717f9,59 +1849-010319-5,7,100,0.05,63028c14-d683-44b8-a74f-f4b35b8717f9,57 +1849-010319-5,7,100,0.05,02a45a2d-7724-4360-8001-1e5094f57972,54 +1849-060319-1,7,100,0.05,b55d9133-3dd4-439e-afeb-fb03ee7aa2d6,49 +1849-060319-1,7,100,0.05,9cb6dbbc-0024-48b2-892f-e4972967b363,90 +1849-060319-2,7,100,0.05,7e6254ef-1520-4de2-9613-0897de002688,50 +1849-060319-2,7,100,0.05,f0732bcf-478b-4f19-b022-f5ae663ebb6c,71 +1849-060319-2,7,100,0.05,705fdc5a-24dc-4553-912f-c5bf2119c9ce,92 +1849-060319-3,7,100,0.05,a6850f6a-f3bc-4e31-a33c-cdd8d59c7f50,118 +1849-060319-3,7,100,0.05,e51de77d-de1e-46cd-b3fa-4c5fd4eaa9b4,92 +1849-060319-4,7,100,0.05,3e9502fd-17f2-4a00-9732-464a9ae0be43,60 +1849-150319-1,7,100,0.05,97eff7e5-d500-4bdb-9fe6-f86d770ffd25,56 +1849-280219-1,7,100,0.05,7bd48471-0e14-4a7b-ac56-cce8d907b60d,52 +1849-280219-1,7,100,0.05,5a9ecbb9-2af6-439d-8bf4-e8b456a8c4f1,53 +1849-280219-1,7,100,0.05,a3f07bb0-ef6f-458b-90b4-1ca72dfb7d9c,62 +1849-280219-2,7,100,0.05,e4a39463-4e12-4a9f-8a71-cc3428c4b9ae,113 +1849-280219-2,7,100,0.05,9d244fe9-10f6-4921-aaeb-e71f356cf084,117 +1849-280219-2,7,100,0.05,dd9ee6ab-3382-4fd3-98b2-65b5f656f735,43 +1849-280219-2,7,100,0.05,02f2ad3f-16d3-4463-982e-3bc5acbfa8ab,92 +1849-280219-3,7,100,0.05,28752b83-604d-4f78-a776-728d49b81aa6,149 +1849-280219-3,7,100,0.05,9ecb717e-8bd4-49a1-a0d2-39d49ea89dd0,164 +1849-280219-4,7,100,0.05,ba30b5fb-7f97-450a-8548-da0096b1e545,86 +1833-020719-4,0,100,0.05,a5b7cc81-fd4f-4c6d-9aa6-e106a9132eab,302 +1833-020719-3,0,100,0.05,a5b7cc81-fd4f-4c6d-9aa6-e106a9132eab,143 +1833-010719-1,0,100,0.05,a5b7cc81-fd4f-4c6d-9aa6-e106a9132eab,127 +1833-020719-1,0,100,0.05,a5b7cc81-fd4f-4c6d-9aa6-e106a9132eab,123 +1833-260619-3,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,196 +1833-260619-1,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,120 +1833-010719-2,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,239 +1833-260619-4,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,202 +1833-010719-1,0,100,0.05,14eb6276-11b4-40db-b2e7-567af8448ebb,161 +1833-010719-1,0,100,0.05,3f18fd01-69e4-472f-bd69-f996396171fe,191 +1833-010719-2,0,100,0.05,aaeeb9ea-1221-48c2-927d-3645b72591ed,261 +1833-010719-1,0,100,0.05,aaeeb9ea-1221-48c2-927d-3645b72591ed,223 +1833-010719-2,0,100,0.05,6e163be6-bcde-4225-adde-e53110e81493,267 +1833-010719-1,0,100,0.05,6e163be6-bcde-4225-adde-e53110e81493,225 +1833-010719-1,0,100,0.05,c084a07f-e324-48fc-8513-e3750b5b8e17,235 +1833-010719-2,0,100,0.05,c084a07f-e324-48fc-8513-e3750b5b8e17,4 +1833-010719-2,0,100,0.05,36c8d8f9-aec3-40fe-85be-fedffe22fd58,254 +1833-010719-2,0,100,0.05,5d1d3fc4-c3a9-41b8-8598-4bc666fbafc9,265 +1833-020719-1,0,100,0.05,90b37b07-a85e-4e62-bada-174d552cd574,119 +1833-020719-1,0,100,0.05,16120ea5-2fb1-4700-b181-2ea5fd20c137,121 +1833-020719-3,0,100,0.05,c8511fac-ec38-4eff-b3ee-bf61d0341bec,156 +1833-020719-1,0,100,0.05,c8511fac-ec38-4eff-b3ee-bf61d0341bec,145 +1833-020719-2,0,100,0.05,c8511fac-ec38-4eff-b3ee-bf61d0341bec,142 +1833-020719-4,0,100,0.05,c8511fac-ec38-4eff-b3ee-bf61d0341bec,308 +1833-020719-3,0,100,0.05,6bbc5ac4-f3c4-4734-8e48-8c2e6f107b6b,162 +1833-020719-2,0,100,0.05,6bbc5ac4-f3c4-4734-8e48-8c2e6f107b6b,8 +1833-020719-1,0,100,0.05,6bbc5ac4-f3c4-4734-8e48-8c2e6f107b6b,158 +1833-020719-4,0,100,0.05,6bbc5ac4-f3c4-4734-8e48-8c2e6f107b6b,320 +1833-020719-2,0,100,0.05,1fde12b5-9418-4013-8a49-7591ee9e8611,105 +1833-020719-4,0,100,0.05,40981aa5-6f1d-4adb-ba9d-9604ce97e9e9,306 +1833-020719-3,0,100,0.05,40981aa5-6f1d-4adb-ba9d-9604ce97e9e9,141 +1833-020719-2,0,100,0.05,40981aa5-6f1d-4adb-ba9d-9604ce97e9e9,129 +1833-020719-3,0,100,0.05,49de8dbd-3f9b-4cbe-bf1a-0c80e26ea4e7,116 +1833-020719-2,0,100,0.05,49de8dbd-3f9b-4cbe-bf1a-0c80e26ea4e7,95 +1833-020719-3,0,100,0.05,15b94104-eb1e-469e-848a-9bcc37d4421b,104 +1833-020719-3,0,100,0.05,fe55cb66-81c1-4ff3-87cd-9b8467ce4260,105 +1833-020719-3,0,100,0.05,e48acfab-b01f-4efa-8c2f-3d22172a899b,150 +1833-020719-4,0,100,0.05,7dfb3154-cbf5-42bb-9727-c943bec482f5,258 +1833-060619-2,0,100,0.05,a625fc09-a53e-4f7f-89f9-6cc2749dd3ca,76 +1833-060619-2,0,100,0.05,98b84ab4-bc04-4f87-9159-4c3caeb847bf,90 +1833-120619-2,0,100,0.05,8a276f5e-3854-4b69-b4ee-54df31778af7,175 +1833-120619-3,0,100,0.05,8a276f5e-3854-4b69-b4ee-54df31778af7,153 +1833-120619-1,0,100,0.05,8a276f5e-3854-4b69-b4ee-54df31778af7,139 +1833-120619-2,0,100,0.05,ea5dd90d-2500-4384-b382-f61468c25bd8,89 +1833-200619-1,0,100,0.05,adc0e384-5eef-48b4-a8fb-0028a7ff0fbc,147 +1833-200619-2,0,100,0.05,130faa63-e023-4f15-bdde-2f89a3bc8af8,268 +1833-200619-4,0,100,0.05,a05eefed-9cc7-4c57-92eb-940dd627fd1a,1 +1833-200619-2,0,100,0.05,a05eefed-9cc7-4c57-92eb-940dd627fd1a,283 +1833-200619-3,0,100,0.05,a05eefed-9cc7-4c57-92eb-940dd627fd1a,0 +1833-200619-3,0,100,0.05,8fe1435e-507b-4a44-9af7-e9a0f14fa871,91 +1833-200619-4,0,100,0.05,8fe1435e-507b-4a44-9af7-e9a0f14fa871,90 +1833-200619-4,0,100,0.05,76de6df5-d05b-40f8-8950-75041a5c22fa,92 +1833-200619-3,0,100,0.05,76de6df5-d05b-40f8-8950-75041a5c22fa,93 +1833-200619-4,0,100,0.05,0ddffa3d-8bac-4c42-9f41-4b3b65d91204,78 +1833-200619-4,0,100,0.05,ae1b75b4-f32f-4686-a13b-6b642121ad91,96 +1833-260619-1,0,100,0.05,556edb6c-9137-44de-84bb-27f9a74b0a58,118 +1833-260619-3,0,100,0.05,556edb6c-9137-44de-84bb-27f9a74b0a58,182 +1833-260619-4,0,100,0.05,8dc00967-740d-40b2-a425-77641d55f04d,115 +1833-260619-1,0,100,0.05,8dc00967-740d-40b2-a425-77641d55f04d,130 +1833-260619-3,0,100,0.05,8dc00967-740d-40b2-a425-77641d55f04d,141 +1833-260619-1,0,100,0.05,fe3dd17c-c6d7-4b5f-ac50-68db35953edf,132 +1833-260619-2,0,100,0.05,fe3dd17c-c6d7-4b5f-ac50-68db35953edf,174 +1833-260619-4,0,100,0.05,fe3dd17c-c6d7-4b5f-ac50-68db35953edf,233 +1833-260619-3,0,100,0.05,fe3dd17c-c6d7-4b5f-ac50-68db35953edf,209 +1833-260619-2,0,100,0.05,531ea300-819c-4ee0-abee-4afb85e07305,2 +1833-260619-1,0,100,0.05,531ea300-819c-4ee0-abee-4afb85e07305,2 +1833-260619-4,0,100,0.05,531ea300-819c-4ee0-abee-4afb85e07305,235 +1833-260619-3,0,100,0.05,531ea300-819c-4ee0-abee-4afb85e07305,1 +1833-260619-2,0,100,0.05,b6a0a407-f3de-482e-9ffe-13682e729515,152 +1833-260619-4,0,100,0.05,b6a0a407-f3de-482e-9ffe-13682e729515,208 +1833-260619-3,0,100,0.05,b6a0a407-f3de-482e-9ffe-13682e729515,180 +1833-260619-4,0,100,0.05,c81e361f-1f8a-4342-af24-8aa0fab03ec3,222 +1833-260619-3,0,100,0.05,c81e361f-1f8a-4342-af24-8aa0fab03ec3,194 +1833-260619-2,0,100,0.05,c81e361f-1f8a-4342-af24-8aa0fab03ec3,164 +1833-260619-3,0,100,0.05,0da21faa-dd7e-443a-9122-84b1993a3001,0 +1833-260619-3,0,100,0.05,7abe1f71-ad54-4431-a61f-79debb8a9858,140 +1833-290519-1,0,100,0.05,e626ef20-00ad-487f-b024-602e42cb4605,112 +1833-290519-3,0,100,0.05,68cdc520-0db0-4c3a-896d-2c4993843c36,97 +1833-290519-4,0,100,0.05,68cdc520-0db0-4c3a-896d-2c4993843c36,88 +1833-290519-1,0,100,0.05,68cdc520-0db0-4c3a-896d-2c4993843c36,120 +1833-290519-1,0,100,0.05,f6623ab7-0d92-4d3f-986b-de6f437263bc,146 +1833-290519-4,0,100,0.05,f6623ab7-0d92-4d3f-986b-de6f437263bc,117 +1833-290519-3,0,100,0.05,f6623ab7-0d92-4d3f-986b-de6f437263bc,125 +1833-290519-2,0,100,0.05,630df003-e99f-42fb-a11a-88f366ee07b8,78 +1833-290519-2,0,100,0.05,a9b50c7c-1b55-4d9e-8893-477456036b43,82 +1833-290519-3,0,100,0.05,aa47991f-ff1b-4f0b-9b62-17a1b4bae636,101 +1833-260619-2,1,100,0.05,930fee36-abb1-4af4-b0c4-b281a12f75ef,123 +1833-260619-1,1,100,0.05,930fee36-abb1-4af4-b0c4-b281a12f75ef,104 +1833-010719-1,1,100,0.05,930fee36-abb1-4af4-b0c4-b281a12f75ef,146 +1833-010719-1,1,100,0.05,4f693a3e-e47d-4759-b1ef-bdb59686d815,219 +1833-010719-1,1,100,0.05,5fa9ec78-5ab3-4aa5-ae52-6a2817550240,221 +1833-010719-1,1,100,0.05,10f44aa3-d89b-4db3-ba15-5d1a69d204df,229 +1833-010719-2,1,100,0.05,10f44aa3-d89b-4db3-ba15-5d1a69d204df,273 +1833-010719-1,1,100,0.05,672fccd0-4ea4-4f8e-8af2-7d6959836548,6 +1833-010719-1,1,100,0.05,f8c22124-8aa4-4434-9b5b-5771ecb7d864,8 +1833-020719-2,1,100,0.05,8c0e3d96-aa67-47bc-b052-a1eef0d86c15,131 +1833-010719-2,1,100,0.05,8c0e3d96-aa67-47bc-b052-a1eef0d86c15,135 +1833-200619-3,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,97 +1833-200619-1,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,159 +1833-200619-4,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,76 +1833-010719-2,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,18 +1833-020719-2,1,100,0.05,7e21a16f-1cb6-4f44-917a-9465df0251c5,15 +1833-020719-2,1,100,0.05,3dfa34ef-c5b2-49e3-8303-65d94f055648,14 +1833-010719-2,1,100,0.05,3dfa34ef-c5b2-49e3-8303-65d94f055648,227 +1833-020719-3,1,100,0.05,3dfa34ef-c5b2-49e3-8303-65d94f055648,123 +1833-010719-2,1,100,0.05,e201cf1a-03bf-41d3-967a-567d3928e980,229 +1833-010719-2,1,100,0.05,550088b9-77c9-4048-a75b-1a7b8a165a76,233 +1833-010719-2,1,100,0.05,93cdc42a-949c-4965-9eda-018467d92b7b,269 +1833-020719-1,1,100,0.05,ebcb863f-31ed-4230-aea3-5f1a5d0a8ab3,115 +1833-020719-1,1,100,0.05,1fe2cb03-120f-455e-bdae-5db9515f4901,147 +1833-020719-3,1,100,0.05,1fe2cb03-120f-455e-bdae-5db9515f4901,154 +1833-020719-2,1,100,0.05,cbd115ff-3fa5-4f52-b3fa-16632e387705,87 +1833-020719-3,1,100,0.05,cbd115ff-3fa5-4f52-b3fa-16632e387705,166 +1833-020719-1,1,100,0.05,cbd115ff-3fa5-4f52-b3fa-16632e387705,155 +1833-020719-2,1,100,0.05,fb713534-028e-4428-bf44-e934ea9c3fed,152 +1833-020719-3,1,100,0.05,58c58e5b-a6c5-4ac3-9a93-2d093dae510a,139 +1833-020719-4,1,100,0.05,7be14d4d-45d0-446c-9530-b472003f2c66,256 +1833-020719-4,1,100,0.05,24c4f1f2-7988-4cfa-9c79-0c4ed4af8905,278 +1833-020719-4,1,100,0.05,90534e51-10a0-47a3-8c0e-6db2e7851a22,300 +1833-050619-1,1,100,0.05,4a13a5c0-981f-48cb-9511-35bb733c4e04,75 +1833-050619-3,1,100,0.05,2c40ff00-9bc7-4332-97b5-7dff53d8ddb6,125 +1833-050619-2,1,100,0.05,2c40ff00-9bc7-4332-97b5-7dff53d8ddb6,129 +1833-050619-4,1,100,0.05,3dbc6cbb-7fdd-4c28-9418-31de28999e80,68 +1833-050619-4,1,100,0.05,10ef8756-7fb4-4179-9eac-9333e6b9aad5,84 +1833-050619-4,1,100,0.05,084428ff-09a8-4805-8a6b-6d82b5ded5bb,86 +1833-060619-1,1,100,0.05,6ded4010-fdf5-491e-bbe4-dc2dd646fdcb,137 +1833-060619-2,1,100,0.05,11a75435-039d-4ea3-8586-7c22c03fdfa5,64 +1833-060619-2,1,100,0.05,e46cc4b4-bf85-4279-8a53-d041406377e5,78 +1833-120619-1,1,100,0.05,1b5eab6a-226b-4635-81ed-8109c4f89322,114 +1833-120619-2,1,100,0.05,0cb1a116-8047-4be3-920a-fdf976e95878,104 +1833-200619-1,1,100,0.05,0e360480-bfd4-4b8e-911b-9f1cb09f6944,155 +1833-200619-2,1,100,0.05,9f1a6bce-bb32-4843-b7ef-4cccb1036c23,278 +1833-200619-4,1,100,0.05,2e8e5ad2-2f38-4024-8b7c-45184727c15a,70 +1833-200619-3,1,100,0.05,2e8e5ad2-2f38-4024-8b7c-45184727c15a,89 +1833-260619-1,1,100,0.05,08244769-6123-412f-91ae-761144cddb9d,10 +1833-260619-1,1,100,0.05,d64f31cd-f47b-411d-bd49-5be69e263fd2,116 +1833-260619-2,1,100,0.05,4487d5ad-ac07-4d6d-9649-92b0a5db2b45,166 +1833-260619-1,1,100,0.05,4487d5ad-ac07-4d6d-9649-92b0a5db2b45,126 +1833-260619-2,1,100,0.05,ffcfe108-97f6-49ef-939c-5130764e7b29,130 +1833-260619-3,1,100,0.05,48d0e744-56f8-482d-92ce-ccfcd6c386c7,119 +1833-260619-4,1,100,0.05,28f86aad-df9a-4071-bead-609a1d307066,198 +1833-260619-3,1,100,0.05,28f86aad-df9a-4071-bead-609a1d307066,170 +1833-260619-3,1,100,0.05,daeeaaac-b3c1-48e0-89f3-1da8517aa6a1,207 +1833-260619-4,1,100,0.05,62b1e22d-ad43-4663-a128-b0f506012a10,178 +1833-260619-4,1,100,0.05,c86a8521-9ab1-4918-88f5-2fa9ed9106dc,204 +1833-260619-4,1,100,0.05,a0281718-ba73-4ee5-8f1a-e811e65df269,226 +1833-290519-1,1,100,0.05,4cd83da2-e650-4885-b559-ff42b799fc0e,138 +1833-290519-1,1,100,0.05,7e93cf9e-e0b6-4046-bf3c-038069947b7d,92 +1833-290519-2,1,100,0.05,95d5b3c8-40b2-4507-a38f-eff30e412c75,102 +1833-290519-2,1,100,0.05,046926b9-9247-43b5-9e1e-857ad3e80773,104 +1833-290519-2,1,100,0.05,6e6cc524-a9c1-4337-acda-07bce235888d,116 +1833-290519-2,1,100,0.05,8ef3bf2a-65db-4a73-af32-74dbfa509015,120 +1833-290519-3,1,100,0.05,93b8d9e8-9af1-464d-9404-63d5dd5d4244,111 +1833-290519-3,1,100,0.05,f0a0f5fc-36ea-4892-aeed-1c62daab1354,70 +1833-290519-4,1,100,0.05,f0a0f5fc-36ea-4892-aeed-1c62daab1354,85 +1833-290519-4,1,100,0.05,efd7f5c1-1e31-467e-88f8-7c0ff119df21,96 +1833-010719-2,2,100,0.05,8452b748-b39c-4dc1-be7d-602eb3ef0ec3,249 +1833-020719-1,2,100,0.05,8452b748-b39c-4dc1-be7d-602eb3ef0ec3,143 +1833-010719-1,2,100,0.05,8452b748-b39c-4dc1-be7d-602eb3ef0ec3,202 +1833-010719-2,2,100,0.05,b1401e0c-5be8-4b1c-9670-8777da1e6c23,29 +1833-010719-1,2,100,0.05,b1401e0c-5be8-4b1c-9670-8777da1e6c23,231 +1833-010719-2,2,100,0.05,445c4b19-bef2-4fec-ad3c-86250c5823ee,271 +1833-020719-1,2,100,0.05,b2efc6a8-14ce-438b-b062-14e256c30838,149 +1833-020719-2,2,100,0.05,03c2cdd2-124b-4869-9e4e-2fca5df9b7d1,119 +1833-020719-2,2,100,0.05,cacb172e-3ff8-4fc7-8b25-fb3277d2c518,120 +1833-020719-2,2,100,0.05,45c6d3f5-f167-44d0-86ff-6f6bcaf7202a,93 +1833-020719-3,2,100,0.05,919d7480-c07f-4bc8-a1d1-578439151ea5,147 +1833-020719-3,2,100,0.05,8bf33018-a46d-4aad-9e26-f34f812e3fd6,168 +1833-020719-4,2,100,0.05,c2cc38f6-5eb3-44e4-93a5-49586b035342,260 +1833-050619-3,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,133 +1833-050619-2,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,135 +1833-060619-2,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,106 +1833-060619-1,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,168 +1833-050619-1,2,100,0.05,089b75a6-18c5-4182-84e4-4a384f06a186,99 +1833-050619-2,2,100,0.05,b49831f6-873b-4b54-80e0-5f5fe06977c3,111 +1833-050619-3,2,100,0.05,1bf2af33-3c32-4e03-a72b-65a39758dafb,111 +1833-050619-2,2,100,0.05,1bf2af33-3c32-4e03-a72b-65a39758dafb,89 +1833-120619-1,2,100,0.05,cafe20c1-c557-45f4-87eb-cfca239b1645,120 +1833-120619-3,2,100,0.05,cafe20c1-c557-45f4-87eb-cfca239b1645,104 +1833-120619-2,2,100,0.05,cafe20c1-c557-45f4-87eb-cfca239b1645,142 +1833-120619-2,2,100,0.05,496d7c88-e0a7-4597-8304-f0b748c00d0f,118 +1833-200619-1,2,100,0.05,8f1b14ec-eee4-4d42-8402-a9ca055f2d51,228 +1833-200619-4,2,100,0.05,8f1b14ec-eee4-4d42-8402-a9ca055f2d51,115 +1833-200619-1,2,100,0.05,6885bb12-deba-47d0-b4a0-72fa655d3689,239 +1833-200619-3,2,100,0.05,6885bb12-deba-47d0-b4a0-72fa655d3689,142 +1833-200619-2,2,100,0.05,6885bb12-deba-47d0-b4a0-72fa655d3689,325 +1833-200619-4,2,100,0.05,6885bb12-deba-47d0-b4a0-72fa655d3689,117 +1833-260619-2,2,100,0.05,7d88b80a-d19b-411e-8f3a-cc6f46a0092b,168 +1833-260619-1,2,100,0.05,7d88b80a-d19b-411e-8f3a-cc6f46a0092b,128 +1833-260619-4,2,100,0.05,7d88b80a-d19b-411e-8f3a-cc6f46a0092b,216 +1833-260619-3,2,100,0.05,7d88b80a-d19b-411e-8f3a-cc6f46a0092b,198 +1833-260619-2,2,100,0.05,e6153a28-94c5-4e0c-b01e-ea21cf1031e3,148 +1833-290519-2,2,100,0.05,3386c99f-25ba-418a-ba69-88a9beab843e,100 +1833-290519-2,2,100,0.05,b8e938a1-118c-478c-b483-c55f53aef559,112 +1833-290519-2,2,100,0.05,79ad7ed4-b3d9-4cf0-9071-6a9bee05975f,132 +1833-010719-1,3,100,0.05,15007634-7719-4690-a921-5f72aa5addfc,171 +1833-010719-1,3,100,0.05,268b3407-9455-41c5-a0a0-b2203e13b2db,198 +1833-010719-1,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,216 +1833-020719-2,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,136 +1833-020719-1,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,151 +1833-020719-3,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,17 +1833-010719-2,3,100,0.05,105cbde2-9d01-4817-82f5-08cf714a8d84,243 +1833-010719-1,3,100,0.05,64de457d-d23b-4a2d-af8a-549a759c58d9,240 +1833-010719-2,3,100,0.05,64de457d-d23b-4a2d-af8a-549a759c58d9,133 +1833-010719-2,3,100,0.05,4c7306e9-3b4e-4ec5-82f6-909f38f6cf09,157 +1833-010719-2,3,100,0.05,770c4350-92de-4d64-b44e-c49ffdcaf7a2,173 +1833-010719-2,3,100,0.05,4a7a1ccb-1305-4174-afb1-613de95ee266,174 +1833-010719-2,3,100,0.05,f5be9fa1-5247-48e3-999f-510472269ae2,187 +1833-010719-2,3,100,0.05,7db2bd18-4061-4393-8c2a-d602a6067026,188 +1833-010719-2,3,100,0.05,7a84f067-e93e-4cb8-9f51-8d07c9200ace,241 +1833-010719-2,3,100,0.05,cd957f7d-47c1-443f-9f8b-8de7bc6f8b33,259 +1833-020719-1,3,100,0.05,a294ee97-fc67-4a93-af52-0e8bbd685f88,135 +1833-020719-2,3,100,0.05,f831974d-c88c-42a9-8b87-b1485f528ef3,140 +1833-020719-1,3,100,0.05,f831974d-c88c-42a9-8b87-b1485f528ef3,140 +1833-020719-3,3,100,0.05,f831974d-c88c-42a9-8b87-b1485f528ef3,23 +1833-020719-1,3,100,0.05,7be2e44a-c00d-4dab-86ab-542feb742c4c,153 +1833-020719-3,3,100,0.05,7be2e44a-c00d-4dab-86ab-542feb742c4c,164 +1833-020719-1,3,100,0.05,98fbaadd-68d3-4f10-b073-5856806684d2,164 +1833-020719-3,3,100,0.05,98fbaadd-68d3-4f10-b073-5856806684d2,170 +1833-020719-2,3,100,0.05,e687bb5a-a361-40e6-a7d7-a48e5bc572a5,107 +1833-020719-2,3,100,0.05,bd94fa33-d1f1-493a-85fb-b0f3aa7cd451,139 +1833-020719-2,3,100,0.05,b6d94d51-c4b1-414c-a473-7772545214c3,146 +1833-020719-3,3,100,0.05,225c6728-3ee9-418d-8d10-22097aeee740,152 +1833-020719-4,3,100,0.05,4f9030f8-546b-416c-95d6-66bb67d3578a,289 +1833-020719-4,3,100,0.05,73b23d01-75a8-45f7-8c36-ce7de9d135e8,290 +1833-020719-4,3,100,0.05,cf5e6f1c-ce3f-44a7-9e1c-7795d97c447e,298 +1833-020719-4,3,100,0.05,f217ea67-00a5-4a26-b6ae-e229bebe13f9,318 +1833-050619-3,3,100,0.05,5dcaada9-b918-433f-800f-3f539551ec93,147 +1833-050619-1,3,100,0.05,5dcaada9-b918-433f-800f-3f539551ec93,107 +1833-050619-4,3,100,0.05,5dcaada9-b918-433f-800f-3f539551ec93,148 +1833-050619-2,3,100,0.05,5dcaada9-b918-433f-800f-3f539551ec93,143 +1833-060619-1,3,100,0.05,107ee989-09cf-4d29-b87f-015ce3e3c900,174 +1833-120619-2,3,100,0.05,d923b961-973d-4605-8889-f0db9811a4bf,143 +1833-120619-2,3,100,0.05,830eb10d-0820-4019-b189-230946fef839,69 +1833-200619-1,3,100,0.05,efffbc16-7bcc-44e8-a954-85a5dd34abf6,151 +1833-200619-4,3,100,0.05,7d0bb84c-59e4-45ec-bd8c-a33ca668a339,102 +1833-200619-1,3,100,0.05,7d0bb84c-59e4-45ec-bd8c-a33ca668a339,184 +1833-200619-3,3,100,0.05,7d0bb84c-59e4-45ec-bd8c-a33ca668a339,128 +1833-200619-2,3,100,0.05,16f54929-694a-41c3-a566-9be0f65d3c50,257 +1833-200619-2,3,100,0.05,9fec8a2f-537d-4b4c-a52f-3de0a3751690,264 +1833-200619-3,3,100,0.05,11fb17ec-1548-4729-9dd8-74e5e3d736a9,82 +1833-200619-4,3,100,0.05,11fb17ec-1548-4729-9dd8-74e5e3d736a9,74 +1833-260619-2,3,100,0.05,49685d94-f1f6-4991-9098-8b92c902f4f7,146 +1833-260619-1,3,100,0.05,49685d94-f1f6-4991-9098-8b92c902f4f7,114 +1833-260619-3,3,100,0.05,49040d3e-4999-427d-974c-b0bc0f432e89,160 +1833-260619-4,3,100,0.05,bca5d2ac-fef8-46ae-9616-e87b90d72be2,206 +1833-260619-3,3,100,0.05,bca5d2ac-fef8-46ae-9616-e87b90d72be2,176 +1833-260619-4,3,100,0.05,f684b875-cda6-4e41-9014-33a029b01104,196 +1833-290519-1,3,100,0.05,c06d51ed-6452-4e23-9878-0632df2cda4d,101 +1833-290519-1,3,100,0.05,34773e3c-a51e-49ec-9d46-eee33cf2ebdf,102 +1833-290519-4,3,100,0.05,34773e3c-a51e-49ec-9d46-eee33cf2ebdf,92 +1833-290519-3,3,100,0.05,34773e3c-a51e-49ec-9d46-eee33cf2ebdf,96 +1833-290519-1,3,100,0.05,b2e55b29-7888-4da2-ac9b-10f477c68212,162 +1833-290519-3,3,100,0.05,cd58c729-51a8-4453-92bf-67684931a001,138 +1833-290519-4,3,100,0.05,cd58c729-51a8-4453-92bf-67684931a001,130 +1833-290519-1,3,100,0.05,cd58c729-51a8-4453-92bf-67684931a001,176 +1833-290519-2,3,100,0.05,581e4a84-911d-4987-b5c0-aac5345d26eb,108 +1833-290519-2,3,100,0.05,4c4d6958-e580-4a99-965b-eb692487b8a9,72 +1833-290519-2,3,100,0.05,45f3862d-f9f8-4adb-b32d-88c999afea6d,74 +1833-290519-4,3,100,0.05,acd052c7-a424-4df5-9477-316b25ef96b4,129 +1833-010719-2,4,100,0.05,9fc6302a-0560-4d05-8bdc-0b54b05d1f2f,223 +1833-010719-2,4,100,0.05,a004ce12-2a6c-451b-b2f3-6a9d9f6d6908,231 +1833-020719-3,4,100,0.05,79edbe70-2821-4e4f-94d3-5b9ddb672f20,45 +1833-020719-3,4,100,0.05,2774de87-e4f9-4ae5-9e73-ea760fd49028,94 +1833-020719-3,4,100,0.05,fd7f3517-3c95-4209-adc3-45948ecd246b,95 +1833-020719-4,4,100,0.05,30e8b7d2-66e2-4b19-895e-997effc40efd,250 +1833-050619-2,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,137 +1833-120619-1,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,137 +1833-120619-4,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,119 +1833-120619-2,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,170 +1833-060619-1,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,172 +1833-120619-3,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,147 +1833-050619-3,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,145 +1833-050619-1,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,25 +1833-060619-2,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,108 +1833-050619-4,4,100,0.05,f7fe9236-db75-43fe-8579-a6986a4f09c4,151 +1833-050619-4,4,100,0.05,76464823-3eae-43c4-9d94-fb058480e9d2,80 +1833-050619-3,4,100,0.05,76464823-3eae-43c4-9d94-fb058480e9d2,123 +1833-050619-2,4,100,0.05,76464823-3eae-43c4-9d94-fb058480e9d2,97 +1833-060619-1,4,100,0.05,6dda9016-18c6-4c05-8632-e116ea10b201,144 +1833-120619-2,4,100,0.05,85afcb73-32f9-4fb6-b7b2-058953e9b4d2,81 +1833-120619-3,4,100,0.05,c2dda493-d42f-4ef8-ab25-f336f510ad50,100 +1833-120619-3,4,100,0.05,6001f04e-fc86-4cbe-86d8-7b0384b2d074,101 +1833-200619-1,4,100,0.05,9288047a-1bce-460c-bcdd-7a41b1aa7be1,165 +1833-200619-2,4,100,0.05,dbf3d469-c696-4dfe-b8b3-e6164be3ab10,254 +1833-200619-3,4,100,0.05,4724f71b-004c-418c-aada-9c078e5bb119,113 +1833-200619-4,4,100,0.05,576ce457-b883-488c-99d6-59e30b5b82b9,124 +1833-290519-1,4,100,0.05,eb509735-4c15-4ce9-b22c-55839122a6bc,118 +1833-290519-1,4,100,0.05,bc89eb86-fb53-4ec0-93ad-13139a93fc06,80 +1833-290519-2,4,100,0.05,024eb764-1493-4b23-963e-b2807bdd2196,114 +1833-290519-2,4,100,0.05,faf67f93-bb7e-41fb-b38c-a3c60a94ed29,122 +1833-290519-2,4,100,0.05,485fdcbc-cc6b-4cb3-83e5-26bdda866eba,124 +1833-290519-3,4,100,0.05,73d73fbb-f7c4-4b14-8db9-6f9e28e244ba,80 +1833-290519-4,4,100,0.05,7bb998da-7a9d-414e-bcf7-ed49c3cc578a,71 +1833-010719-1,5,100,0.05,454c6a9f-1c6f-4730-ab6b-4633c3ed7f59,134 +1833-010719-1,5,100,0.05,bb940f86-aa89-4e13-a8e5-734dff500580,144 +1833-010719-1,5,100,0.05,2cce7922-a8f8-4b19-b416-4bd132a0a9d9,150 +1833-010719-2,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,235 +1833-260619-3,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,184 +1833-260619-1,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,110 +1833-260619-2,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,154 +1833-260619-4,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,212 +1833-010719-1,5,100,0.05,28825be1-2a89-486a-a378-c7d660d1965d,166 +1833-010719-2,5,100,0.05,d7a8d655-59f0-4ee9-b745-436ddeca1fd8,221 +1833-020719-1,5,100,0.05,6d15084b-8fe5-43d9-8577-b7dea935a71f,109 +1833-020719-2,5,100,0.05,8c3b41b5-fbce-4d21-b11d-ead8312d3dd6,103 +1833-020719-2,5,100,0.05,a4e35d2d-931a-41d3-9094-e4c7d9986da7,126 +1833-020719-3,5,100,0.05,b6941c23-dd45-492f-911b-fdb3430a605b,117 +1833-020719-4,5,100,0.05,0d424a24-1f13-4121-afcd-1386b5f46b70,266 +1833-020719-3,5,100,0.05,0d424a24-1f13-4121-afcd-1386b5f46b70,121 +1833-020719-3,5,100,0.05,5937cd8c-a9a3-4c51-bc5b-19c65cdb844a,135 +1833-020719-4,5,100,0.05,5937cd8c-a9a3-4c51-bc5b-19c65cdb844a,294 +1833-060619-1,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,156 +1833-050619-3,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,127 +1833-120619-4,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,122 +1833-290519-4,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,115 +1833-200619-4,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,94 +1833-050619-2,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,123 +1833-050619-4,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,82 +1833-200619-2,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,270 +1833-200619-3,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,122 +1833-290519-3,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,109 +1833-120619-3,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,136 +1833-120619-2,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,145 +1833-050619-1,5,100,0.05,751d2de8-faf1-4048-82db-34cbd64a7c1d,73 +1833-050619-4,5,100,0.05,cf90afbe-4f26-4fdd-b738-26ce2eda8b62,79 +1833-060619-2,5,100,0.05,cf90afbe-4f26-4fdd-b738-26ce2eda8b62,68 +1833-060619-1,5,100,0.05,ae1d8018-4dab-4176-b736-71c600b26893,164 +1833-060619-2,5,100,0.05,a7e7fa66-c087-4de3-8ddd-d472a60cbc3a,98 +1833-120619-1,5,100,0.05,62349103-a14e-43fa-be7b-a4b02cf527fd,133 +1833-120619-2,5,100,0.05,b5861814-fda4-41f2-850a-4482cbe709d1,100 +1833-120619-2,5,100,0.05,779eb86e-256b-4ad0-9b25-1200ee968b4c,123 +1833-120619-2,5,100,0.05,1d995810-bd21-4ca9-86b3-6f67cad232cb,133 +1833-200619-3,5,100,0.05,47aaf7e5-0bbf-42a1-895c-f388a025aef8,59 +1833-260619-1,5,100,0.05,ec6472d8-95b9-4925-8117-d5354b73f5b3,100 +1833-260619-3,5,100,0.05,a32b790b-a2c9-4ca6-aa6f-eec7fecd2eb8,111 +1833-260619-2,5,100,0.05,a32b790b-a2c9-4ca6-aa6f-eec7fecd2eb8,115 +1833-260619-3,5,100,0.05,e6243c3f-b9ec-4247-89e8-e0482b62d180,109 +1833-260619-3,5,100,0.05,489d43e8-dbef-4b43-9672-91bca68c1715,113 +1833-260619-4,5,100,0.05,29ef8b68-279a-46b8-b184-b701b1f7949f,162 +1833-260619-4,5,100,0.05,de39085d-3202-4213-94e2-8324e09a4afc,188 +1833-290519-1,5,100,0.05,99d86a7a-6412-454a-8a35-e1012710e502,134 +1833-290519-1,5,100,0.05,47fce860-09ba-47d0-ac6c-1214dda6d690,158 +1833-290519-1,5,100,0.05,e856d06c-11d7-40e7-8119-d17f143562d8,172 +1833-290519-1,5,100,0.05,8e2fa98c-875a-407c-8e9c-7fc1f1dcc65d,94 +1833-290519-2,5,100,0.05,8cd49f3f-9d8a-411a-862e-f0b23fc204b0,80 +1833-290519-3,5,100,0.05,ad234a38-ce45-4f2d-b5a2-41ec0c920d08,113 +1833-290519-4,5,100,0.05,ad234a38-ce45-4f2d-b5a2-41ec0c920d08,98 +1833-290519-3,5,100,0.05,3e244f8e-ab62-4383-9393-73b79b9f71fb,130 +1833-290519-4,5,100,0.05,550acce7-c60f-48db-80fe-bb12bccaee0b,121 +1833-010719-1,6,100,0.05,ba30b6e6-9195-4905-8d2a-d9b254973dce,152 +1833-010719-1,6,100,0.05,42540c68-0553-4000-8b5a-e5d30d126f52,183 +1833-010719-1,6,100,0.05,a8d670be-525d-4474-9a9c-bd0b685a90df,200 +1833-010719-1,6,100,0.05,c133eebf-bf8f-4f6f-90e8-0c2c1233a460,227 +1833-010719-2,6,100,0.05,abcf6680-c133-4c6c-b757-36442ae276d6,225 +1833-020719-1,6,100,0.05,ed78195a-0810-453d-8ce1-0fb0d4a13f5b,107 +1833-020719-2,6,100,0.05,326b025d-7174-4a9f-8712-7ac5a1739ffb,99 +1833-020719-3,6,100,0.05,d4649cf6-b5fd-4794-a5cb-617e08892136,64 +1833-020719-4,6,100,0.05,b5139f7d-6357-4b1b-83f2-c7e8d93659f0,254 +1833-020719-3,6,100,0.05,b5139f7d-6357-4b1b-83f2-c7e8d93659f0,96 +1833-020719-4,6,100,0.05,48e79b9d-2a8b-49d4-8ed0-429c921f86a6,248 +1833-020719-4,6,100,0.05,9ece482f-28d1-4913-b5ca-c61c137e7b40,310 +1833-060619-1,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,176 +1833-050619-4,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,157 +1833-050619-2,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,152 +1833-050619-3,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,149 +1833-050619-1,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,111 +1833-060619-2,6,100,0.05,3f57754f-e89f-4298-aaf8-ac2e414405c3,112 +1833-260619-1,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,106 +1833-050619-4,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,133 +1833-050619-2,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,119 +1833-050619-1,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,60 +1833-050619-3,6,100,0.05,44a5c803-22cb-4e31-8721-14511fe94d45,117 +1833-050619-2,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,125 +1833-060619-1,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,162 +1833-290519-4,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,108 +1833-120619-3,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,118 +1833-120619-4,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,80 +1833-050619-1,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,64 +1833-060619-2,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,82 +1833-050619-4,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,92 +1833-050619-3,6,100,0.05,aec8d986-fbb2-4bd0-8790-03658e250937,129 +1833-120619-1,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,129 +1833-050619-1,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,91 +1833-060619-1,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,170 +1833-120619-2,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,151 +1833-060619-2,6,100,0.05,3e76a62f-bc4d-4196-9830-e91805147660,105 +1833-120619-4,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,127 +1833-050619-3,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,143 +1833-050619-2,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,146 +1833-120619-3,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,94 +1833-050619-4,6,100,0.05,08352554-deb7-4320-8b57-7eb10933650f,135 +1833-050619-2,6,100,0.05,a7381d74-0100-4e68-9560-900f3a48cd22,74 +1833-050619-2,6,100,0.05,47bef660-a0a3-40a8-bf75-b0ba95cd748b,81 +1833-050619-3,6,100,0.05,d19b8c1b-8912-4516-97f8-53d76709dd7d,109 +1833-050619-4,6,100,0.05,c11d2488-5be6-4848-b7c9-fc6d0970c7ec,117 +1833-060619-1,6,100,0.05,b3b265ee-a58a-4ff3-bf06-9639ac7e3a44,158 +1833-060619-1,6,100,0.05,0dec64de-be08-432a-83a6-aa58c862d4ec,160 +1833-200619-3,6,100,0.05,0dec64de-be08-432a-83a6-aa58c862d4ec,126 +1833-120619-3,6,100,0.05,0dec64de-be08-432a-83a6-aa58c862d4ec,143 +1833-120619-4,6,100,0.05,0dec64de-be08-432a-83a6-aa58c862d4ec,120 +1833-060619-2,6,100,0.05,471e06bd-4859-4073-9c16-75789aad484d,116 +1833-060619-2,6,100,0.05,d2464334-07ae-4148-9055-b045239d99b8,74 +1833-260619-1,6,100,0.05,fee6bdb7-389b-4f56-b4c4-35e6e9812b95,124 +1833-260619-2,6,100,0.05,fee6bdb7-389b-4f56-b4c4-35e6e9812b95,160 +1833-120619-1,6,100,0.05,fee6bdb7-389b-4f56-b4c4-35e6e9812b95,127 +1833-260619-3,6,100,0.05,fee6bdb7-389b-4f56-b4c4-35e6e9812b95,192 +1833-120619-3,6,100,0.05,a1dd98c7-c599-47a6-a3d0-a7a6979c5107,141 +1833-200619-2,6,100,0.05,a1dd98c7-c599-47a6-a3d0-a7a6979c5107,287 +1833-200619-3,6,100,0.05,a1dd98c7-c599-47a6-a3d0-a7a6979c5107,132 +1833-120619-2,6,100,0.05,a1dd98c7-c599-47a6-a3d0-a7a6979c5107,169 +1833-120619-3,6,100,0.05,51e701cf-f68b-4f6f-af66-39c0684a95be,122 +1833-120619-3,6,100,0.05,14d7e477-1bd9-46d5-a949-986f07acf3c1,145 +1833-120619-4,6,100,0.05,5cbb6860-4eae-4fec-a843-47a8e8382971,124 +1833-120619-4,6,100,0.05,4c1e2463-f9f6-4dab-b9e0-b9378df5ace0,85 +1833-120619-4,6,100,0.05,af9363c1-5d00-4763-8c1f-09a172bf0b94,95 +1833-200619-1,6,100,0.05,8fb1a1c7-1a11-44ae-81b2-06bf61a76256,163 +1833-260619-3,6,100,0.05,8fb1a1c7-1a11-44ae-81b2-06bf61a76256,168 +1833-200619-3,6,100,0.05,8fb1a1c7-1a11-44ae-81b2-06bf61a76256,120 +1833-200619-1,6,100,0.05,fadc1045-8c82-47ec-bfbb-7d70c7a50ebf,171 +1833-200619-1,6,100,0.05,c8ca3337-4ca1-4ca5-a75c-8ee1d1b9baa2,206 +1833-200619-3,6,100,0.05,e0b40572-01ac-4903-b1e9-ce520b9c7fc2,150 +1833-200619-2,6,100,0.05,e0b40572-01ac-4903-b1e9-ce520b9c7fc2,327 +1833-200619-4,6,100,0.05,e0b40572-01ac-4903-b1e9-ce520b9c7fc2,121 +1833-200619-1,6,100,0.05,e0b40572-01ac-4903-b1e9-ce520b9c7fc2,240 +1833-200619-2,6,100,0.05,701a1fd0-2f3a-46a1-883b-39b5555bee85,28 +1833-200619-2,6,100,0.05,a6671db9-b5f9-4691-b5a6-965e03d65b60,281 +1833-200619-2,6,100,0.05,768f7e2a-2020-42e9-9459-f8f2467e25d8,308 +1833-200619-2,6,100,0.05,08db4688-80b4-47a2-b72c-b6bf662f3339,321 +1833-200619-3,6,100,0.05,e73efb48-f537-4126-82aa-41e0f60f0163,75 +1833-200619-4,6,100,0.05,1ceaa126-bfe7-475a-9be0-241972372387,101 +1833-200619-4,6,100,0.05,273119b7-f646-4c81-8253-b017ffe6dd0f,109 +1833-200619-4,6,100,0.05,5988405c-8553-47ea-8891-7aced9399023,80 +1833-200619-4,6,100,0.05,90f14ad8-d619-49b6-9d28-b036cf83b2d7,89 +1833-260619-4,6,100,0.05,8b6af255-04e8-4a7d-b5b0-81c29cafee65,182 +1833-260619-1,6,100,0.05,8b6af255-04e8-4a7d-b5b0-81c29cafee65,102 +1833-260619-1,6,100,0.05,1dcb0956-d715-4444-ad3a-04c83897aff7,108 +1833-260619-1,6,100,0.05,57683688-354c-4720-808a-f0c3d29e0509,112 +1833-260619-2,6,100,0.05,62e326d7-e0d4-4f39-944c-efc1b729386a,140 +1833-260619-2,6,100,0.05,9b323d4c-4865-4dc1-adfe-6d2fc240d83f,144 +1833-260619-2,6,100,0.05,5dd9a9b5-ff86-43b7-89c5-227cb14be55d,156 +1833-260619-2,6,100,0.05,ed2d1491-6a33-4c00-817e-a05f23bbe734,170 +1833-260619-3,6,100,0.05,c7382e7d-ff95-42ee-ac53-54e0df6d8737,142 +1833-260619-4,6,100,0.05,e290f24a-e465-44ff-a607-5f7717cf113b,184 +1833-260619-4,6,100,0.05,beb9e917-6f26-42b1-8939-62b2990f717d,200 +1833-260619-4,6,100,0.05,e1d3d737-d8dd-431d-99d2-da8ce1144845,214 +1833-260619-4,6,100,0.05,2c72422f-acab-4068-ab2a-84b8d581a32e,218 +1833-260619-4,6,100,0.05,5defd353-aaea-49f0-be5a-291a41487d85,80 +1833-290519-1,6,100,0.05,856d02a5-0ec3-4d00-9710-f400e26ee04e,124 +1833-290519-1,6,100,0.05,6912c2be-4a49-45e5-9bd2-c1f689e1ae5e,132 +1833-290519-1,6,100,0.05,1ae94207-ffdd-4234-b394-4a4046b73a1f,142 +1833-290519-1,6,100,0.05,f34356c9-f8b6-4723-b219-8ebcc3a390a6,150 +1833-290519-1,6,100,0.05,6352234c-4b88-42aa-94d2-fe8b1aa2cdcc,154 +1833-290519-1,6,100,0.05,fa41374b-4a1e-4d63-a074-0b1c2c2abe07,166 +1833-290519-1,6,100,0.05,37221be7-5431-4faa-8859-d6db5db7c8aa,89 +1833-290519-2,6,100,0.05,8caf567c-da89-427d-9eae-3fdaf851ad03,76 +1833-290519-3,6,100,0.05,fd3e7dc6-10c9-4fe1-a438-5df7f6fa23fb,117 +1833-290519-3,6,100,0.05,883343b0-50f9-4b62-96c0-4faac0cf307f,123 +1833-290519-3,6,100,0.05,33a55fd7-62c6-4e00-8010-366c7c0a012c,134 +1833-290519-3,6,100,0.05,99650afb-b2b8-471a-b1b4-05aeacf571d5,136 +1833-290519-3,6,100,0.05,8b7e4058-a6ad-4da3-9df6-ccfbb4e06ce6,140 +1833-290519-3,6,100,0.05,2b0a3410-e52a-43a0-ab1d-a015620ea384,144 +1833-290519-4,6,100,0.05,476272bd-e42a-4855-a4e9-b40605ff7b25,65 +1833-290519-4,6,100,0.05,bcf432ca-b3d7-429d-b7c6-e6894543ef25,79 +1833-290519-4,6,100,0.05,1b0bc8ba-8a28-4278-98bc-efc0c62e4bc4,90 +1833-010719-1,7,100,0.05,81a042b6-eb75-46e2-845d-728029180a02,114 +1833-010719-2,7,100,0.05,c24d04bb-41cd-46ff-ad5e-30ba5b54628d,217 +1833-010719-1,7,100,0.05,c24d04bb-41cd-46ff-ad5e-30ba5b54628d,132 +1833-010719-1,7,100,0.05,64117f01-9739-4935-9c5e-27008d218010,54 +1833-010719-2,7,100,0.05,38a8761f-af3d-46e1-bd3d-6768a357a7cf,211 +1833-010719-2,7,100,0.05,e9c5b7ef-eb33-4259-8af0-078dff660617,213 +1833-050619-2,7,100,0.05,c8eed481-6f86-49eb-8873-19438532a60b,66 +1833-050619-3,7,100,0.05,c8eed481-6f86-49eb-8873-19438532a60b,105 +1833-060619-1,7,100,0.05,f674b24d-c6aa-41f6-97d9-7c18c604b189,139 +1833-060619-2,7,100,0.05,2fdcd7a4-b2bd-40f4-bdb5-0b507b517576,58 +1833-120619-2,7,100,0.05,5e2b1eb8-19a4-498f-b04a-b7ad75fd26d9,85 +1833-120619-3,7,100,0.05,0fe01680-7805-4336-8ab4-8227534bc769,120 +1833-120619-4,7,100,0.05,72a9a2e5-aaa1-48af-95ba-99ff4001abf9,65 +1833-200619-2,7,100,0.05,ad1c84b9-c993-45d5-9ddd-adbe0ba3835a,261 +1833-200619-1,7,100,0.05,ad1c84b9-c993-45d5-9ddd-adbe0ba3835a,143 +1833-200619-4,7,100,0.05,ad1c84b9-c993-45d5-9ddd-adbe0ba3835a,68 +1833-200619-3,7,100,0.05,ad1c84b9-c993-45d5-9ddd-adbe0ba3835a,65 +1833-200619-2,7,100,0.05,57ab6144-722c-4cda-9ff7-9abc28614960,203 +1833-200619-2,7,100,0.05,ffa972af-d5fb-4933-bf31-51cb2ed303b0,204 +1833-200619-3,7,100,0.05,68a4f6cc-dc27-4968-b504-c3f769c3592d,53 +1833-260619-1,7,100,0.05,79c7ee61-958b-4d2c-9d28-3dc6b36033fd,98 +1833-260619-3,7,100,0.05,cedce2cf-4d8b-4bcf-a464-f3d156edb8ea,103 +1833-260619-3,7,100,0.05,fa34e311-73f7-41f6-8045-52cdf2e3947f,105 +1833-260619-4,7,100,0.05,dea074a5-0fad-48f6-b3d3-70effdcea4d2,177 +1833-290519-1,7,100,0.05,bce741f6-677f-450d-acf2-2dc039f4e989,106 +1833-290519-1,7,100,0.05,5909725d-7d36-4512-962b-a4bcba635a62,116 +1833-290519-1,7,100,0.05,b6d5646e-aa0b-4660-981e-8e73dfd8db3f,129 +1833-290519-1,7,100,0.05,6a4b7644-cb36-4b87-9ddc-625ecf513399,136 +1833-290519-1,7,100,0.05,7cb62460-3317-4050-b2fb-81fff42ba1fa,74 +1833-290519-3,7,100,0.05,3f4d6207-4485-4c1a-80fa-cab877be4f08,74 +1833-290519-1,7,100,0.05,3f4d6207-4485-4c1a-80fa-cab877be4f08,82 +1833-290519-2,7,100,0.05,b86470fd-018b-46ed-ae50-ddd223e98e52,126 +1833-290519-2,7,100,0.05,2c57511e-7080-4c99-8213-134f033b06d7,130 +1833-290519-2,7,100,0.05,23c52697-d8ea-4f9c-beea-e59b675bc216,97 +1833-290519-2,7,100,0.05,e06eb161-5528-4f97-9478-07b990e629e5,98 +1833-290519-3,7,100,0.05,672e89a0-22b1-4e86-9e0f-e5f993576cb2,99 +1833-290519-4,7,100,0.05,633fb248-48ea-47dc-9729-e34f508f8a24,67 +1833-290519-4,7,100,0.05,352cb718-3543-4ca5-97cd-704d44410e3a,75 +1833-290519-4,7,100,0.05,edf97beb-f31a-494e-b5f2-cd7e673ce826,77 +1833-290519-4,7,100,0.05,88baa61a-ce5e-4c27-91f1-eb71bcb43b8e,94 +1839-120619-2,0,100,0.05,ca331977-9a55-4d1c-b9d3-d55c7bf5c196,76 +1839-200619-2,0,100,0.05,e84c86db-0fa0-4396-97f6-9785881f266b,104 +1839-200619-2,0,100,0.05,9d93eed1-acfe-4cdf-bfaa-54e3a454f42f,98 +1839-290519-1,0,100,0.05,f9b14958-1fda-4dae-853f-b59fc1fe4a49,120 +1839-290519-2,0,100,0.05,4253ec20-a568-452f-9e24-ad9ceed7211f,107 +1839-290519-2,0,100,0.05,e6b04268-adfc-42b2-a9f4-2bcd7b985b20,117 +1839-290519-3,0,100,0.05,37ff5ee5-6b33-4560-a941-bfef77149617,111 +1839-120619-4,1,100,0.05,ff766d6f-39e0-4224-a96c-1ab20bb70324,86 +1839-120619-3,1,100,0.05,ff766d6f-39e0-4224-a96c-1ab20bb70324,113 +1839-120619-4,1,100,0.05,a593c8c5-e25b-4798-ab78-8f3be4a16306,104 +1839-120619-4,1,100,0.05,0e675b17-87df-4f2d-b7cf-14714f744fc0,84 +1839-200619-2,1,100,0.05,5901b53c-9f18-4d75-9484-b265b34babea,7 +1839-290519-1,1,100,0.05,59c15752-40ec-46b3-a43f-2ece2b45e13e,110 +1839-120619-3,2,100,0.05,ef37562e-f987-4014-9a93-68bdfa5fefea,129 +1839-120619-3,3,100,0.05,7526f8a7-66c5-4d15-86a6-70d6909887b7,137 +1839-120619-4,3,100,0.05,c6789ade-6639-4010-a79e-c5296891a0c7,112 +1839-200619-1,3,100,0.05,10d3bcff-4315-4a7a-97a5-59e3cc9be929,153 +1839-200619-2,3,100,0.05,e19246d0-babf-496a-a70f-424efc0b7385,118 +1839-060619-1,4,100,0.05,aaae4b91-94d9-49c8-9e2f-83b5fbe11823,240 +1839-060619-3,4,100,0.05,b109e080-3efe-4935-8f47-ef03b3329dfa,101 +1839-060619-4,4,100,0.05,7c165f6f-dacc-41e6-94e9-cd38d9b1b9e8,230 +1839-060619-5,4,100,0.05,08551f6a-98f2-4b92-8e4e-4dacc56367d3,164 +1839-120619-2,4,100,0.05,918ea70b-e595-46f9-a0b8-a24fb7492d48,78 +1839-120619-3,4,100,0.05,f3a5c55a-d1d9-4565-8753-09589e5f908a,115 +1839-120619-3,4,100,0.05,836f3b57-688e-422a-9cbb-76a5e7eaf366,121 +1839-120619-4,4,100,0.05,cb20d7d6-b546-4a54-8ea8-0de64a628579,102 +1839-120619-4,4,100,0.05,3c7b11d4-2177-49af-98b3-9d7c8ac429c5,110 +1839-120619-4,4,100,0.05,1d91961e-5790-4368-89f7-9578161310be,120 +1839-120619-4,4,100,0.05,d3e4f55e-aa93-4e7d-bf2d-2ddef4390907,82 +1839-200619-1,4,100,0.05,25472319-8dd8-4c98-ba14-82ba7552dc4c,141 +1839-200619-2,4,100,0.05,64b7662d-b31f-4cfe-8f38-9b7794aa672c,100 +1839-200619-2,4,100,0.05,f0b26722-0823-49d7-a9ff-b13699126177,106 +1839-200619-2,4,100,0.05,50e6f787-d7b8-46bf-bc32-86ffc6330cc5,108 +1839-290519-1,4,100,0.05,2286c1e7-68cd-430b-88e3-052b9304ea39,122 +1839-290519-2,4,100,0.05,2dadd4c2-862a-44cf-86b9-67884876757f,39 +1839-290519-1,4,100,0.05,2dadd4c2-862a-44cf-86b9-67884876757f,127 +1839-290519-2,4,100,0.05,4863a330-27ed-432e-bafb-8cfc399fb5d7,119 +1839-290519-3,4,100,0.05,95763de3-aa05-4835-9c4d-68d4c4428d34,117 +1839-290519-3,4,100,0.05,f113a996-9af4-472d-a46d-1737ccdaad57,72 +1839-060619-5,5,100,0.05,ada87343-dde7-4b6a-9da9-71f33232dd1e,138 +1839-060619-3,5,100,0.05,ada87343-dde7-4b6a-9da9-71f33232dd1e,87 +1839-060619-4,5,100,0.05,221d7a6d-cb87-4257-90d6-2a4d2cc305d2,228 +1839-060619-5,5,100,0.05,0b7bda86-9ee0-4f7d-8c13-6e8c97e21853,170 +1839-120619-1,5,100,0.05,b2d9553e-5ae9-4ced-ae14-1d84d03fdeae,158 +1839-120619-2,5,100,0.05,cf6431e3-f043-4d42-882f-38bfd52fe7f9,104 +1839-120619-2,5,100,0.05,ac5176e1-076c-4f2c-b883-f204a679bad0,47 +1839-120619-3,5,100,0.05,7d008957-c5a2-487b-8170-a926c2e7fbec,131 +1839-200619-1,5,100,0.05,9a6e25f6-6440-4a0f-af91-55ae045af923,145 +1839-200619-2,5,100,0.05,0de7af2c-4697-4a20-9d69-7df742f22298,96 +1839-290519-1,5,100,0.05,08ea46b1-5e62-4dc7-904e-702417ac49c3,133 +1839-290519-1,5,100,0.05,e161c25b-1468-4087-aa15-7663a4601161,137 +1839-290519-2,5,100,0.05,47adb54c-dbad-424f-91fe-485431d4034c,125 +1839-290519-2,5,100,0.05,2b337163-cf9a-47bb-b0ba-a24609cc7159,146 +1839-290519-2,5,100,0.05,aeb2ff8b-9176-4bd3-81a8-7c3d8781fe30,148 +1839-290519-2,5,100,0.05,1bbaaf0b-f912-461d-9bca-bde011a0fe09,95 +1839-290519-3,5,100,0.05,21172d8f-9475-424d-b368-d3fba3bff3a0,115 +1839-290519-3,5,100,0.05,c09b5fe8-c804-4d27-8d9a-1e7a9c4e41bd,119 +1839-060619-3,6,100,0.05,06454272-4b3d-4a95-87b6-c4a92c73c1c4,91 +1839-060619-5,6,100,0.05,c5e3dade-b6aa-4a10-a5c3-3dadd9a84dbf,142 +1839-060619-5,6,100,0.05,ad50cce4-b1cd-48d8-abc9-6a97eccc802a,162 +1839-060619-5,6,100,0.05,67462fa6-19d0-4f20-8139-4c8cf8b00162,166 +1839-060619-5,6,100,0.05,f5f3117e-a807-4bd0-a15b-b140192c342c,168 +1839-120619-1,6,100,0.05,11d92b4f-7130-4f0d-b22b-6f35cf281503,143 +1839-120619-4,6,100,0.05,196d2eff-b4fa-4784-8bf3-b25a1fd48bca,140 +1839-120619-2,6,100,0.05,196d2eff-b4fa-4784-8bf3-b25a1fd48bca,106 +1839-120619-3,6,100,0.05,196d2eff-b4fa-4784-8bf3-b25a1fd48bca,133 +1839-120619-2,6,100,0.05,9cf18a4b-6d60-4435-b9a8-faac6c875924,51 +1839-120619-2,6,100,0.05,9e6cf9a9-9e96-4fe5-ac5a-f18ef73b2381,86 +1839-120619-2,6,100,0.05,870e4b4d-6462-4ef4-b530-bc32c1754817,88 +1839-120619-4,6,100,0.05,02713495-67d9-4001-aaf4-1569c2c6db68,124 +1839-120619-3,6,100,0.05,02713495-67d9-4001-aaf4-1569c2c6db68,123 +1839-120619-3,6,100,0.05,8cb76110-819a-42cf-9992-abeac18b9580,125 +1839-120619-3,6,100,0.05,48f340ef-fa49-44b0-8b75-84ba4c67d5eb,71 +1839-120619-4,6,100,0.05,89992508-eb0a-4f84-bf16-8284ea6d3201,106 +1839-120619-4,6,100,0.05,f410f6b9-edd2-401f-a8af-6ee6ed211dd0,116 +1839-120619-4,6,100,0.05,9e6f6f41-a7e2-40c2-b241-da44406b063d,122 +1839-120619-4,6,100,0.05,2c4b46a4-5dab-4ffa-9a24-1050644e1dec,132 +1839-120619-4,6,100,0.05,f97b4682-d18a-40ab-978e-f3e9f7185ee6,90 +1839-120619-4,6,100,0.05,716262a9-4c0c-4800-b854-a6f1d67eaf86,92 +1839-200619-1,6,100,0.05,ac19afdc-4be6-4456-8221-9b0408cc513e,139 +1839-200619-2,6,100,0.05,89f66916-75e1-4b76-a3be-ab8197a69008,112 +1839-200619-2,6,100,0.05,a1181734-8053-4ba7-95fc-3782bcd91b19,114 +1839-200619-2,6,100,0.05,7c281c91-d39f-4f13-b3d0-da1a45244cf4,48 +1839-200619-2,6,100,0.05,c065b76d-c6cd-4969-878c-3ede77b10a16,54 +1839-200619-2,6,100,0.05,647dba69-4878-4bf8-983a-180896674e47,78 +1839-200619-2,6,100,0.05,5cca0543-f83b-43ad-9abc-d23c1217afde,89 +1839-200619-2,6,100,0.05,1838f1c4-4b53-4030-82ac-a9563f885908,92 +1839-200619-2,6,100,0.05,db8ed4c2-8b2d-47c0-895b-a5da9bc64e09,94 +1839-290519-1,6,100,0.05,8327cb68-e1e5-415e-b3f4-bdab99a517ec,116 +1839-290519-1,6,100,0.05,fbf3001e-f949-4c7d-85af-aa2581168e11,131 +1839-290519-2,6,100,0.05,c1ba389b-827c-49d2-9521-0f73272e2a2f,113 +1839-290519-2,6,100,0.05,8930a428-ae29-47fd-94a7-506c68b02973,115 +1839-290519-3,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,113 +1839-120619-2,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,71 +1839-120619-3,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,119 +1839-060619-1,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,234 +1839-060619-5,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,183 +1839-060619-3,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,93 +1839-120619-4,7,100,0.05,064c26d5-6710-4f4a-946e-6c7828c2e8f8,108 +1839-120619-2,7,100,0.05,a3628e66-3256-4752-909f-89a105f865e2,90 +1839-060619-4,7,100,0.05,a3628e66-3256-4752-909f-89a105f865e2,200 +1839-060619-5,7,100,0.05,a3628e66-3256-4752-909f-89a105f865e2,136 +1839-060619-4,7,100,0.05,0aadccef-bfd0-416c-bd4d-886da3b7f147,227 +1839-290519-2,7,100,0.05,0aadccef-bfd0-416c-bd4d-886da3b7f147,144 +1839-120619-1,7,100,0.05,ad3f30ac-24cd-457b-b769-5a493a5784e3,152 +1839-120619-3,7,100,0.05,4263567c-54e0-4e01-889f-fa7a0bb737c2,127 +1839-120619-4,7,100,0.05,4263567c-54e0-4e01-889f-fa7a0bb737c2,128 +1839-120619-4,7,100,0.05,4fde4913-073f-431a-8bf6-c07c517357c3,138 +1839-200619-1,7,100,0.05,f9d0bf84-91c8-4722-8918-d20a9f509f49,135 +1839-200619-2,7,100,0.05,180945f1-5f36-4733-be07-7dda4afb2a86,116 +1839-200619-2,7,100,0.05,f2b4f466-2939-4fed-811f-bb055fbb9f1e,74 +1839-200619-2,7,100,0.05,f76f70d7-7008-42af-a7d0-c0be97a2d165,90 +1839-290519-1,7,100,0.05,5e38025f-6365-47df-ae13-518914a41f06,114 +1839-290519-1,7,100,0.05,705c61f1-70e6-4557-a675-affe7938b7c0,129 +1839-290519-1,7,100,0.05,85889925-bd75-475d-93b8-9eab6b7c964a,139 +1839-290519-1,7,100,0.05,07dd543f-e670-4b2a-a3ab-f3d4604ffb94,87 +1839-290519-2,7,100,0.05,dc0b766d-f854-4c10-8849-0c31f66f62dd,109 +1839-290519-2,7,100,0.05,f8a078f5-3051-4457-8824-f5cdd2304c80,111 +1839-290519-2,7,100,0.05,08c4b329-3b0d-4bd4-b2e2-4cda7d724207,135 +1839-290519-2,7,100,0.05,edcb7e6b-10f4-422d-8f4d-1b29f663fcb5,142