statistics update
This commit is contained in:
parent
7d031e1444
commit
7d57faf12a
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
BIN
actions/comparisons-gridcells/data/figures/average_rate.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/average_rate.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/average_rate_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/average_rate_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/average_rate_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/average_rate_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/burst_event_ratio.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/burst_event_ratio.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/burst_event_ratio_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/burst_event_ratio_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/burst_event_ratio_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/burst_event_ratio_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/bursty_spike_ratio.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/bursty_spike_ratio.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/bursty_spike_ratio_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/bursty_spike_ratio_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/bursty_spike_ratio_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/bursty_spike_ratio_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/gridness.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/gridness.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/gridness_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/gridness_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/gridness_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/gridness_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/in_field_mean_rate.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/in_field_mean_rate.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/in_field_mean_rate_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/in_field_mean_rate_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/in_field_mean_rate_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/in_field_mean_rate_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/information_specificity.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/information_specificity.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/information_specificity_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/information_specificity_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/information_specificity_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/information_specificity_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/isi_cv.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/isi_cv.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/isi_cv_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/isi_cv_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/isi_cv_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/isi_cv_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/max_field_mean_rate.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/max_field_mean_rate.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/max_field_mean_rate_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/max_field_mean_rate_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/max_field_mean_rate_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/max_field_mean_rate_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/max_rate.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/max_rate.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/max_rate_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/max_rate_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/max_rate_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/max_rate_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/out_field_mean_rate.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/out_field_mean_rate.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/out_field_mean_rate_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/out_field_mean_rate_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/out_field_mean_rate_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/out_field_mean_rate_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/spatial_information.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/spatial_information.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/spatial_information_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/spatial_information_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/spatial_information_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/spatial_information_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/specificity.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/specificity.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/specificity_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/specificity_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/specificity_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/specificity_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/speed_score.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/speed_score.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/speed_score_11.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/speed_score_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/speed_score_30.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/speed_score_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/comparisons-gridcells/data/figures/speed_score_ns_inhibited.svg (Stored with Git LFS)
BIN
actions/comparisons-gridcells/data/figures/speed_score_ns_inhibited.svg (Stored with Git LFS)
Binary file not shown.
|
@ -1,19 +1,14 @@
|
|||
\begin{tabular}{lllll}
|
||||
\toprule
|
||||
{} & Baseline I & Stimulated & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.61 ± 0.75 (71) & 8.39 ± 0.60 (102) & 3599.00, 0.947 & 0.55, 0.764 \\
|
||||
Gridness & 0.51 ± 0.04 (71) & 0.44 ± 0.04 (102) & 3208.00, 0.203 & 0.13, 0.141 \\
|
||||
Sparsity & 0.61 ± 0.02 (71) & 0.66 ± 0.02 (102) & 4170.00, 0.091 & 0.06, 0.179 \\
|
||||
Selectivity & 5.91 ± 0.37 (71) & 5.98 ± 0.37 (102) & 3460.00, 0.620 & 0.10, 0.869 \\
|
||||
Information specificity & 0.25 ± 0.03 (71) & 0.22 ± 0.02 (102) & 2944.00, 0.037 & 0.05, 0.033 \\
|
||||
Max rate & 36.55 ± 1.78 (71) & 33.72 ± 1.31 (102) & 3291.00, 0.309 & 3.19, 0.195 \\
|
||||
Information rate & 1.30 ± 0.07 (71) & 0.96 ± 0.06 (102) & 2385.00, 0.000 & 0.32, 0.000 \\
|
||||
Interspike interval cv & 2.42 ± 0.10 (71) & 2.22 ± 0.08 (102) & 3034.00, 0.070 & 0.12, 0.392 \\
|
||||
In-field mean rate & 14.43 ± 1.00 (71) & 12.94 ± 0.71 (102) & 3368.00, 0.436 & 0.39, 0.812 \\
|
||||
Out-field mean rate & 6.05 ± 0.62 (71) & 6.12 ± 0.53 (102) & 3600.00, 0.950 & 0.08, 0.946 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (71) & 0.20 ± 0.01 (102) & 3090.00, 0.102 & 0.02, 0.124 \\
|
||||
Specificity & 0.48 ± 0.03 (71) & 0.46 ± 0.02 (102) & 3268.00, 0.277 & 0.06, 0.356 \\
|
||||
Speed score & 0.14 ± 0.01 (71) & 0.10 ± 0.01 (102) & 2546.00, 0.001 & 0.05, 0.000 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
,Baseline I,Stimulated,MWU,PRS
|
||||
Average rate,8.61 ± 0.75 (71),8.39 ± 0.60 (102),"3599.00, 0.947","0.55, 0.757"
|
||||
Gridness,0.51 ± 0.04 (71),0.44 ± 0.04 (102),"3208.00, 0.203","0.13, 0.145"
|
||||
Sparsity,0.61 ± 0.02 (71),0.66 ± 0.02 (102),"4170.00, 0.091","0.06, 0.179"
|
||||
Selectivity,5.91 ± 0.37 (71),5.98 ± 0.37 (102),"3460.00, 0.620","0.10, 0.874"
|
||||
Information specificity,0.25 ± 0.03 (71),0.22 ± 0.02 (102),"2944.00, 0.037","0.05, 0.034"
|
||||
Max rate,36.55 ± 1.78 (71),33.72 ± 1.31 (102),"3291.00, 0.309","3.19, 0.194"
|
||||
Information rate,1.30 ± 0.07 (71),0.96 ± 0.06 (102),"2385.00, 0.000","0.32, 0.001"
|
||||
Interspike interval cv,2.42 ± 0.10 (71),2.22 ± 0.08 (102),"3034.00, 0.070","0.12, 0.398"
|
||||
In-field mean rate,14.43 ± 1.00 (71),12.94 ± 0.71 (102),"3368.00, 0.436","0.39, 0.817"
|
||||
Out-field mean rate,6.05 ± 0.62 (71),6.12 ± 0.53 (102),"3600.00, 0.950","0.08, 0.944"
|
||||
Burst event ratio,0.22 ± 0.01 (71),0.20 ± 0.01 (102),"3090.00, 0.102","0.02, 0.129"
|
||||
Specificity,0.48 ± 0.03 (71),0.46 ± 0.02 (102),"3268.00, 0.277","0.06, 0.360"
|
||||
Speed score,0.14 ± 0.01 (71),0.10 ± 0.01 (102),"2546.00, 0.001","0.05, 0.000"
|
||||
|
|
|
|
@ -2,18 +2,18 @@
|
|||
\toprule
|
||||
{} & Baseline I & Stimulated & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.61 ± 0.75 (71) & 8.39 ± 0.60 (102) & 3599.00, 0.947 & 0.55, 0.764 \\
|
||||
Gridness & 0.51 ± 0.04 (71) & 0.44 ± 0.04 (102) & 3208.00, 0.203 & 0.13, 0.141 \\
|
||||
Average rate & 8.61 ± 0.75 (71) & 8.39 ± 0.60 (102) & 3599.00, 0.947 & 0.55, 0.757 \\
|
||||
Gridness & 0.51 ± 0.04 (71) & 0.44 ± 0.04 (102) & 3208.00, 0.203 & 0.13, 0.145 \\
|
||||
Sparsity & 0.61 ± 0.02 (71) & 0.66 ± 0.02 (102) & 4170.00, 0.091 & 0.06, 0.179 \\
|
||||
Selectivity & 5.91 ± 0.37 (71) & 5.98 ± 0.37 (102) & 3460.00, 0.620 & 0.10, 0.869 \\
|
||||
Information specificity & 0.25 ± 0.03 (71) & 0.22 ± 0.02 (102) & 2944.00, 0.037 & 0.05, 0.033 \\
|
||||
Max rate & 36.55 ± 1.78 (71) & 33.72 ± 1.31 (102) & 3291.00, 0.309 & 3.19, 0.195 \\
|
||||
Information rate & 1.30 ± 0.07 (71) & 0.96 ± 0.06 (102) & 2385.00, 0.000 & 0.32, 0.000 \\
|
||||
Interspike interval cv & 2.42 ± 0.10 (71) & 2.22 ± 0.08 (102) & 3034.00, 0.070 & 0.12, 0.392 \\
|
||||
In-field mean rate & 14.43 ± 1.00 (71) & 12.94 ± 0.71 (102) & 3368.00, 0.436 & 0.39, 0.812 \\
|
||||
Out-field mean rate & 6.05 ± 0.62 (71) & 6.12 ± 0.53 (102) & 3600.00, 0.950 & 0.08, 0.946 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (71) & 0.20 ± 0.01 (102) & 3090.00, 0.102 & 0.02, 0.124 \\
|
||||
Specificity & 0.48 ± 0.03 (71) & 0.46 ± 0.02 (102) & 3268.00, 0.277 & 0.06, 0.356 \\
|
||||
Selectivity & 5.91 ± 0.37 (71) & 5.98 ± 0.37 (102) & 3460.00, 0.620 & 0.10, 0.874 \\
|
||||
Information specificity & 0.25 ± 0.03 (71) & 0.22 ± 0.02 (102) & 2944.00, 0.037 & 0.05, 0.034 \\
|
||||
Max rate & 36.55 ± 1.78 (71) & 33.72 ± 1.31 (102) & 3291.00, 0.309 & 3.19, 0.194 \\
|
||||
Information rate & 1.30 ± 0.07 (71) & 0.96 ± 0.06 (102) & 2385.00, 0.000 & 0.32, 0.001 \\
|
||||
Interspike interval cv & 2.42 ± 0.10 (71) & 2.22 ± 0.08 (102) & 3034.00, 0.070 & 0.12, 0.398 \\
|
||||
In-field mean rate & 14.43 ± 1.00 (71) & 12.94 ± 0.71 (102) & 3368.00, 0.436 & 0.39, 0.817 \\
|
||||
Out-field mean rate & 6.05 ± 0.62 (71) & 6.12 ± 0.53 (102) & 3600.00, 0.950 & 0.08, 0.944 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (71) & 0.20 ± 0.01 (102) & 3090.00, 0.102 & 0.02, 0.129 \\
|
||||
Specificity & 0.48 ± 0.03 (71) & 0.46 ± 0.02 (102) & 3268.00, 0.277 & 0.06, 0.360 \\
|
||||
Speed score & 0.14 ± 0.01 (71) & 0.10 ± 0.01 (102) & 2546.00, 0.001 & 0.05, 0.000 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
|
|
@ -1,19 +1,14 @@
|
|||
\begin{tabular}{lllll}
|
||||
\toprule
|
||||
{} & Baseline I & 11 Hz & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.96 ± 0.80 (63) & 8.80 ± 0.85 (58) & 1781.00, 0.813 & 0.04, 0.972 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.41 ± 0.05 (58) & 1459.00, 0.057 & 0.21, 0.043 \\
|
||||
Sparsity & 0.63 ± 0.02 (63) & 0.67 ± 0.03 (58) & 2138.00, 0.107 & 0.07, 0.119 \\
|
||||
Selectivity & 5.76 ± 0.40 (63) & 5.69 ± 0.50 (58) & 1687.00, 0.469 & 0.00, 0.982 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.21 ± 0.03 (58) & 1452.00, 0.052 & 0.06, 0.032 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 33.11 ± 1.85 (58) & 1538.00, 0.134 & 4.06, 0.122 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 0.94 ± 0.08 (58) & 1143.00, 0.000 & 0.32, 0.003 \\
|
||||
Interspike interval cv & 2.39 ± 0.10 (63) & 2.19 ± 0.12 (58) & 1462.00, 0.059 & 0.18, 0.135 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 13.27 ± 1.04 (58) & 1633.00, 0.315 & 0.77, 0.688 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 6.57 ± 0.77 (58) & 1795.00, 0.870 & 0.47, 0.724 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (63) & 0.22 ± 0.01 (58) & 1897.00, 0.718 & 0.00, 0.824 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.44 ± 0.03 (58) & 1605.00, 0.250 & 0.06, 0.398 \\
|
||||
Speed score & 0.14 ± 0.01 (63) & 0.11 ± 0.01 (58) & 1378.00, 0.020 & 0.04, 0.023 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
,Baseline I,11 Hz,MWU,PRS
|
||||
Average rate,8.96 ± 0.80 (63),8.80 ± 0.85 (58),"1781.00, 0.813","0.04, 0.968"
|
||||
Gridness,0.53 ± 0.05 (63),0.41 ± 0.05 (58),"1459.00, 0.057","0.21, 0.041"
|
||||
Sparsity,0.63 ± 0.02 (63),0.67 ± 0.03 (58),"2138.00, 0.107","0.07, 0.128"
|
||||
Selectivity,5.76 ± 0.40 (63),5.69 ± 0.50 (58),"1687.00, 0.469","0.00, 0.983"
|
||||
Information specificity,0.24 ± 0.03 (63),0.21 ± 0.03 (58),"1452.00, 0.052","0.06, 0.030"
|
||||
Max rate,37.39 ± 1.91 (63),33.11 ± 1.85 (58),"1538.00, 0.134","4.06, 0.125"
|
||||
Information rate,1.31 ± 0.08 (63),0.94 ± 0.08 (58),"1143.00, 0.000","0.32, 0.004"
|
||||
Interspike interval cv,2.39 ± 0.10 (63),2.19 ± 0.12 (58),"1462.00, 0.059","0.18, 0.139"
|
||||
In-field mean rate,14.88 ± 1.05 (63),13.27 ± 1.04 (58),"1633.00, 0.315","0.77, 0.690"
|
||||
Out-field mean rate,6.37 ± 0.67 (63),6.57 ± 0.77 (58),"1795.00, 0.870","0.47, 0.719"
|
||||
Burst event ratio,0.22 ± 0.01 (63),0.22 ± 0.01 (58),"1897.00, 0.718","0.00, 0.824"
|
||||
Specificity,0.47 ± 0.03 (63),0.44 ± 0.03 (58),"1605.00, 0.250","0.06, 0.414"
|
||||
Speed score,0.14 ± 0.01 (63),0.11 ± 0.01 (58),"1378.00, 0.020","0.04, 0.022"
|
||||
|
|
|
|
@ -2,18 +2,18 @@
|
|||
\toprule
|
||||
{} & Baseline I & 11 Hz & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.96 ± 0.80 (63) & 8.80 ± 0.85 (58) & 1781.00, 0.813 & 0.04, 0.972 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.41 ± 0.05 (58) & 1459.00, 0.057 & 0.21, 0.043 \\
|
||||
Sparsity & 0.63 ± 0.02 (63) & 0.67 ± 0.03 (58) & 2138.00, 0.107 & 0.07, 0.119 \\
|
||||
Selectivity & 5.76 ± 0.40 (63) & 5.69 ± 0.50 (58) & 1687.00, 0.469 & 0.00, 0.982 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.21 ± 0.03 (58) & 1452.00, 0.052 & 0.06, 0.032 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 33.11 ± 1.85 (58) & 1538.00, 0.134 & 4.06, 0.122 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 0.94 ± 0.08 (58) & 1143.00, 0.000 & 0.32, 0.003 \\
|
||||
Interspike interval cv & 2.39 ± 0.10 (63) & 2.19 ± 0.12 (58) & 1462.00, 0.059 & 0.18, 0.135 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 13.27 ± 1.04 (58) & 1633.00, 0.315 & 0.77, 0.688 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 6.57 ± 0.77 (58) & 1795.00, 0.870 & 0.47, 0.724 \\
|
||||
Average rate & 8.96 ± 0.80 (63) & 8.80 ± 0.85 (58) & 1781.00, 0.813 & 0.04, 0.968 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.41 ± 0.05 (58) & 1459.00, 0.057 & 0.21, 0.041 \\
|
||||
Sparsity & 0.63 ± 0.02 (63) & 0.67 ± 0.03 (58) & 2138.00, 0.107 & 0.07, 0.128 \\
|
||||
Selectivity & 5.76 ± 0.40 (63) & 5.69 ± 0.50 (58) & 1687.00, 0.469 & 0.00, 0.983 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.21 ± 0.03 (58) & 1452.00, 0.052 & 0.06, 0.030 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 33.11 ± 1.85 (58) & 1538.00, 0.134 & 4.06, 0.125 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 0.94 ± 0.08 (58) & 1143.00, 0.000 & 0.32, 0.004 \\
|
||||
Interspike interval cv & 2.39 ± 0.10 (63) & 2.19 ± 0.12 (58) & 1462.00, 0.059 & 0.18, 0.139 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 13.27 ± 1.04 (58) & 1633.00, 0.315 & 0.77, 0.690 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 6.57 ± 0.77 (58) & 1795.00, 0.870 & 0.47, 0.719 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (63) & 0.22 ± 0.01 (58) & 1897.00, 0.718 & 0.00, 0.824 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.44 ± 0.03 (58) & 1605.00, 0.250 & 0.06, 0.398 \\
|
||||
Speed score & 0.14 ± 0.01 (63) & 0.11 ± 0.01 (58) & 1378.00, 0.020 & 0.04, 0.023 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.44 ± 0.03 (58) & 1605.00, 0.250 & 0.06, 0.414 \\
|
||||
Speed score & 0.14 ± 0.01 (63) & 0.11 ± 0.01 (58) & 1378.00, 0.020 & 0.04, 0.022 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
|
|
@ -1,19 +1,14 @@
|
|||
\begin{tabular}{lllll}
|
||||
\toprule
|
||||
{} & 11 Hz & 30 Hz & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.80 ± 0.85 (58) & 7.61 ± 0.87 (38) & 1010.00, 0.493 & 0.23, 0.893 \\
|
||||
Gridness & 0.41 ± 0.05 (58) & 0.48 ± 0.06 (38) & 1259.00, 0.241 & 0.13, 0.094 \\
|
||||
Sparsity & 0.67 ± 0.03 (58) & 0.64 ± 0.03 (38) & 1002.00, 0.456 & 0.04, 0.561 \\
|
||||
Selectivity & 5.69 ± 0.50 (58) & 6.42 ± 0.60 (38) & 1260.00, 0.238 & 0.85, 0.335 \\
|
||||
Information specificity & 0.21 ± 0.03 (58) & 0.22 ± 0.03 (38) & 1231.00, 0.336 & 0.01, 0.732 \\
|
||||
Max rate & 33.11 ± 1.85 (58) & 33.49 ± 1.89 (38) & 1136.00, 0.802 & 0.07, 0.993 \\
|
||||
Information rate & 0.94 ± 0.08 (58) & 0.98 ± 0.09 (38) & 1171.00, 0.608 & 0.01, 0.789 \\
|
||||
Interspike interval cv & 2.19 ± 0.12 (58) & 2.23 ± 0.11 (38) & 1228.00, 0.347 & 0.17, 0.328 \\
|
||||
In-field mean rate & 13.27 ± 1.04 (58) & 12.21 ± 0.98 (38) & 1058.00, 0.744 & 0.97, 0.637 \\
|
||||
Out-field mean rate & 6.57 ± 0.77 (58) & 5.36 ± 0.73 (38) & 1019.00, 0.537 & 0.04, 0.958 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (58) & 0.16 ± 0.01 (38) & 552.00, 0.000 & 0.06, 0.000 \\
|
||||
Specificity & 0.44 ± 0.03 (58) & 0.48 ± 0.04 (38) & 1233.00, 0.328 & 0.07, 0.380 \\
|
||||
Speed score & 0.11 ± 0.01 (58) & 0.11 ± 0.01 (38) & 1022.00, 0.551 & 0.02, 0.144 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
,11 Hz,30 Hz,MWU,PRS
|
||||
Average rate,8.80 ± 0.85 (58),7.61 ± 0.87 (38),"1010.00, 0.493","0.23, 0.892"
|
||||
Gridness,0.41 ± 0.05 (58),0.48 ± 0.06 (38),"1259.00, 0.241","0.13, 0.099"
|
||||
Sparsity,0.67 ± 0.03 (58),0.64 ± 0.03 (38),"1002.00, 0.456","0.04, 0.557"
|
||||
Selectivity,5.69 ± 0.50 (58),6.42 ± 0.60 (38),"1260.00, 0.238","0.85, 0.340"
|
||||
Information specificity,0.21 ± 0.03 (58),0.22 ± 0.03 (38),"1231.00, 0.336","0.01, 0.727"
|
||||
Max rate,33.11 ± 1.85 (58),33.49 ± 1.89 (38),"1136.00, 0.802","0.07, 0.994"
|
||||
Information rate,0.94 ± 0.08 (58),0.98 ± 0.09 (38),"1171.00, 0.608","0.01, 0.784"
|
||||
Interspike interval cv,2.19 ± 0.12 (58),2.23 ± 0.11 (38),"1228.00, 0.347","0.17, 0.338"
|
||||
In-field mean rate,13.27 ± 1.04 (58),12.21 ± 0.98 (38),"1058.00, 0.744","0.97, 0.634"
|
||||
Out-field mean rate,6.57 ± 0.77 (58),5.36 ± 0.73 (38),"1019.00, 0.537","0.04, 0.959"
|
||||
Burst event ratio,0.22 ± 0.01 (58),0.16 ± 0.01 (38),"552.00, 0.000","0.06, 0.000"
|
||||
Specificity,0.44 ± 0.03 (58),0.48 ± 0.04 (38),"1233.00, 0.328","0.07, 0.371"
|
||||
Speed score,0.11 ± 0.01 (58),0.11 ± 0.01 (38),"1022.00, 0.551","0.02, 0.144"
|
||||
|
|
|
|
@ -2,18 +2,18 @@
|
|||
\toprule
|
||||
{} & 11 Hz & 30 Hz & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.80 ± 0.85 (58) & 7.61 ± 0.87 (38) & 1010.00, 0.493 & 0.23, 0.893 \\
|
||||
Gridness & 0.41 ± 0.05 (58) & 0.48 ± 0.06 (38) & 1259.00, 0.241 & 0.13, 0.094 \\
|
||||
Sparsity & 0.67 ± 0.03 (58) & 0.64 ± 0.03 (38) & 1002.00, 0.456 & 0.04, 0.561 \\
|
||||
Selectivity & 5.69 ± 0.50 (58) & 6.42 ± 0.60 (38) & 1260.00, 0.238 & 0.85, 0.335 \\
|
||||
Information specificity & 0.21 ± 0.03 (58) & 0.22 ± 0.03 (38) & 1231.00, 0.336 & 0.01, 0.732 \\
|
||||
Max rate & 33.11 ± 1.85 (58) & 33.49 ± 1.89 (38) & 1136.00, 0.802 & 0.07, 0.993 \\
|
||||
Information rate & 0.94 ± 0.08 (58) & 0.98 ± 0.09 (38) & 1171.00, 0.608 & 0.01, 0.789 \\
|
||||
Interspike interval cv & 2.19 ± 0.12 (58) & 2.23 ± 0.11 (38) & 1228.00, 0.347 & 0.17, 0.328 \\
|
||||
In-field mean rate & 13.27 ± 1.04 (58) & 12.21 ± 0.98 (38) & 1058.00, 0.744 & 0.97, 0.637 \\
|
||||
Out-field mean rate & 6.57 ± 0.77 (58) & 5.36 ± 0.73 (38) & 1019.00, 0.537 & 0.04, 0.958 \\
|
||||
Average rate & 8.80 ± 0.85 (58) & 7.61 ± 0.87 (38) & 1010.00, 0.493 & 0.23, 0.892 \\
|
||||
Gridness & 0.41 ± 0.05 (58) & 0.48 ± 0.06 (38) & 1259.00, 0.241 & 0.13, 0.099 \\
|
||||
Sparsity & 0.67 ± 0.03 (58) & 0.64 ± 0.03 (38) & 1002.00, 0.456 & 0.04, 0.557 \\
|
||||
Selectivity & 5.69 ± 0.50 (58) & 6.42 ± 0.60 (38) & 1260.00, 0.238 & 0.85, 0.340 \\
|
||||
Information specificity & 0.21 ± 0.03 (58) & 0.22 ± 0.03 (38) & 1231.00, 0.336 & 0.01, 0.727 \\
|
||||
Max rate & 33.11 ± 1.85 (58) & 33.49 ± 1.89 (38) & 1136.00, 0.802 & 0.07, 0.994 \\
|
||||
Information rate & 0.94 ± 0.08 (58) & 0.98 ± 0.09 (38) & 1171.00, 0.608 & 0.01, 0.784 \\
|
||||
Interspike interval cv & 2.19 ± 0.12 (58) & 2.23 ± 0.11 (38) & 1228.00, 0.347 & 0.17, 0.338 \\
|
||||
In-field mean rate & 13.27 ± 1.04 (58) & 12.21 ± 0.98 (38) & 1058.00, 0.744 & 0.97, 0.634 \\
|
||||
Out-field mean rate & 6.57 ± 0.77 (58) & 5.36 ± 0.73 (38) & 1019.00, 0.537 & 0.04, 0.959 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (58) & 0.16 ± 0.01 (38) & 552.00, 0.000 & 0.06, 0.000 \\
|
||||
Specificity & 0.44 ± 0.03 (58) & 0.48 ± 0.04 (38) & 1233.00, 0.328 & 0.07, 0.380 \\
|
||||
Specificity & 0.44 ± 0.03 (58) & 0.48 ± 0.04 (38) & 1233.00, 0.328 & 0.07, 0.371 \\
|
||||
Speed score & 0.11 ± 0.01 (58) & 0.11 ± 0.01 (38) & 1022.00, 0.551 & 0.02, 0.144 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
|
|
@ -1,19 +1,14 @@
|
|||
\begin{tabular}{lllll}
|
||||
\toprule
|
||||
{} & Baseline II & 30 Hz & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.29 ± 0.87 (52) & 7.61 ± 0.87 (38) & 958.00, 0.810 & 0.27, 0.800 \\
|
||||
Gridness & 0.54 ± 0.04 (52) & 0.48 ± 0.06 (38) & 914.00, 0.548 & 0.04, 0.601 \\
|
||||
Sparsity & 0.63 ± 0.03 (52) & 0.64 ± 0.03 (38) & 1040.00, 0.674 & 0.06, 0.393 \\
|
||||
Selectivity & 5.96 ± 0.46 (52) & 6.42 ± 0.60 (38) & 1019.00, 0.803 & 0.20, 0.847 \\
|
||||
Information specificity & 0.21 ± 0.02 (52) & 0.22 ± 0.03 (38) & 950.00, 0.759 & 0.04, 0.502 \\
|
||||
Max rate & 36.27 ± 2.34 (52) & 33.49 ± 1.89 (38) & 943.00, 0.716 & 2.90, 0.555 \\
|
||||
Information rate & 1.13 ± 0.08 (52) & 0.98 ± 0.09 (38) & 827.00, 0.190 & 0.07, 0.334 \\
|
||||
Interspike interval cv & 2.37 ± 0.09 (52) & 2.23 ± 0.11 (38) & 869.00, 0.333 & 0.17, 0.476 \\
|
||||
In-field mean rate & 13.79 ± 1.12 (52) & 12.21 ± 0.98 (38) & 912.00, 0.537 & 1.06, 0.455 \\
|
||||
Out-field mean rate & 5.80 ± 0.72 (52) & 5.36 ± 0.73 (38) & 959.00, 0.816 & 0.13, 0.912 \\
|
||||
Burst event ratio & 0.20 ± 0.01 (52) & 0.16 ± 0.01 (38) & 676.00, 0.011 & 0.05, 0.006 \\
|
||||
Specificity & 0.47 ± 0.03 (52) & 0.48 ± 0.04 (38) & 976.00, 0.925 & 0.00, 0.987 \\
|
||||
Speed score & 0.12 ± 0.01 (52) & 0.11 ± 0.01 (38) & 784.00, 0.096 & 0.01, 0.230 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
,Baseline II,30 Hz,MWU,PRS
|
||||
Average rate,8.29 ± 0.87 (52),7.61 ± 0.87 (38),"958.00, 0.810","0.27, 0.808"
|
||||
Gridness,0.54 ± 0.04 (52),0.48 ± 0.06 (38),"914.00, 0.548","0.04, 0.598"
|
||||
Sparsity,0.63 ± 0.03 (52),0.64 ± 0.03 (38),"1040.00, 0.674","0.06, 0.398"
|
||||
Selectivity,5.96 ± 0.46 (52),6.42 ± 0.60 (38),"1019.00, 0.803","0.20, 0.845"
|
||||
Information specificity,0.21 ± 0.02 (52),0.22 ± 0.03 (38),"950.00, 0.759","0.04, 0.506"
|
||||
Max rate,36.27 ± 2.34 (52),33.49 ± 1.89 (38),"943.00, 0.716","2.90, 0.565"
|
||||
Information rate,1.13 ± 0.08 (52),0.98 ± 0.09 (38),"827.00, 0.190","0.07, 0.335"
|
||||
Interspike interval cv,2.37 ± 0.09 (52),2.23 ± 0.11 (38),"869.00, 0.333","0.17, 0.482"
|
||||
In-field mean rate,13.79 ± 1.12 (52),12.21 ± 0.98 (38),"912.00, 0.537","1.06, 0.444"
|
||||
Out-field mean rate,5.80 ± 0.72 (52),5.36 ± 0.73 (38),"959.00, 0.816","0.13, 0.912"
|
||||
Burst event ratio,0.20 ± 0.01 (52),0.16 ± 0.01 (38),"676.00, 0.011","0.05, 0.009"
|
||||
Specificity,0.47 ± 0.03 (52),0.48 ± 0.04 (38),"976.00, 0.925","0.00, 0.988"
|
||||
Speed score,0.12 ± 0.01 (52),0.11 ± 0.01 (38),"784.00, 0.096","0.01, 0.242"
|
||||
|
|
|
|
@ -2,18 +2,18 @@
|
|||
\toprule
|
||||
{} & Baseline II & 30 Hz & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.29 ± 0.87 (52) & 7.61 ± 0.87 (38) & 958.00, 0.810 & 0.27, 0.800 \\
|
||||
Gridness & 0.54 ± 0.04 (52) & 0.48 ± 0.06 (38) & 914.00, 0.548 & 0.04, 0.601 \\
|
||||
Sparsity & 0.63 ± 0.03 (52) & 0.64 ± 0.03 (38) & 1040.00, 0.674 & 0.06, 0.393 \\
|
||||
Selectivity & 5.96 ± 0.46 (52) & 6.42 ± 0.60 (38) & 1019.00, 0.803 & 0.20, 0.847 \\
|
||||
Information specificity & 0.21 ± 0.02 (52) & 0.22 ± 0.03 (38) & 950.00, 0.759 & 0.04, 0.502 \\
|
||||
Max rate & 36.27 ± 2.34 (52) & 33.49 ± 1.89 (38) & 943.00, 0.716 & 2.90, 0.555 \\
|
||||
Information rate & 1.13 ± 0.08 (52) & 0.98 ± 0.09 (38) & 827.00, 0.190 & 0.07, 0.334 \\
|
||||
Interspike interval cv & 2.37 ± 0.09 (52) & 2.23 ± 0.11 (38) & 869.00, 0.333 & 0.17, 0.476 \\
|
||||
In-field mean rate & 13.79 ± 1.12 (52) & 12.21 ± 0.98 (38) & 912.00, 0.537 & 1.06, 0.455 \\
|
||||
Average rate & 8.29 ± 0.87 (52) & 7.61 ± 0.87 (38) & 958.00, 0.810 & 0.27, 0.808 \\
|
||||
Gridness & 0.54 ± 0.04 (52) & 0.48 ± 0.06 (38) & 914.00, 0.548 & 0.04, 0.598 \\
|
||||
Sparsity & 0.63 ± 0.03 (52) & 0.64 ± 0.03 (38) & 1040.00, 0.674 & 0.06, 0.398 \\
|
||||
Selectivity & 5.96 ± 0.46 (52) & 6.42 ± 0.60 (38) & 1019.00, 0.803 & 0.20, 0.845 \\
|
||||
Information specificity & 0.21 ± 0.02 (52) & 0.22 ± 0.03 (38) & 950.00, 0.759 & 0.04, 0.506 \\
|
||||
Max rate & 36.27 ± 2.34 (52) & 33.49 ± 1.89 (38) & 943.00, 0.716 & 2.90, 0.565 \\
|
||||
Information rate & 1.13 ± 0.08 (52) & 0.98 ± 0.09 (38) & 827.00, 0.190 & 0.07, 0.335 \\
|
||||
Interspike interval cv & 2.37 ± 0.09 (52) & 2.23 ± 0.11 (38) & 869.00, 0.333 & 0.17, 0.482 \\
|
||||
In-field mean rate & 13.79 ± 1.12 (52) & 12.21 ± 0.98 (38) & 912.00, 0.537 & 1.06, 0.444 \\
|
||||
Out-field mean rate & 5.80 ± 0.72 (52) & 5.36 ± 0.73 (38) & 959.00, 0.816 & 0.13, 0.912 \\
|
||||
Burst event ratio & 0.20 ± 0.01 (52) & 0.16 ± 0.01 (38) & 676.00, 0.011 & 0.05, 0.006 \\
|
||||
Specificity & 0.47 ± 0.03 (52) & 0.48 ± 0.04 (38) & 976.00, 0.925 & 0.00, 0.987 \\
|
||||
Speed score & 0.12 ± 0.01 (52) & 0.11 ± 0.01 (38) & 784.00, 0.096 & 0.01, 0.230 \\
|
||||
Burst event ratio & 0.20 ± 0.01 (52) & 0.16 ± 0.01 (38) & 676.00, 0.011 & 0.05, 0.009 \\
|
||||
Specificity & 0.47 ± 0.03 (52) & 0.48 ± 0.04 (38) & 976.00, 0.925 & 0.00, 0.988 \\
|
||||
Speed score & 0.12 ± 0.01 (52) & 0.11 ± 0.01 (38) & 784.00, 0.096 & 0.01, 0.242 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
|
|
@ -1,19 +1,14 @@
|
|||
\begin{tabular}{lllll}
|
||||
\toprule
|
||||
{} & Baseline I & 30 Hz & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.96 ± 0.80 (63) & 7.61 ± 0.87 (38) & 1081.00, 0.418 & 0.27, 0.806 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.48 ± 0.06 (38) & 1094.00, 0.472 & 0.08, 0.361 \\
|
||||
Sparsity & 0.63 ± 0.02 (63) & 0.64 ± 0.03 (38) & 1261.00, 0.656 & 0.03, 0.638 \\
|
||||
Selectivity & 5.76 ± 0.40 (63) & 6.42 ± 0.60 (38) & 1276.00, 0.582 & 0.86, 0.293 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.22 ± 0.03 (38) & 1076.00, 0.398 & 0.05, 0.165 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 33.49 ± 1.89 (38) & 1027.00, 0.235 & 3.99, 0.188 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 0.98 ± 0.09 (38) & 797.00, 0.005 & 0.32, 0.047 \\
|
||||
Interspike interval cv & 2.39 ± 0.10 (63) & 2.23 ± 0.11 (38) & 1100.00, 0.499 & 0.01, 0.993 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 12.21 ± 0.98 (38) & 1018.00, 0.211 & 1.74, 0.276 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 5.36 ± 0.73 (38) & 1079.00, 0.410 & 0.51, 0.631 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (63) & 0.16 ± 0.01 (38) & 675.00, 0.000 & 0.05, 0.003 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.48 ± 0.04 (38) & 1206.00, 0.952 & 0.01, 0.873 \\
|
||||
Speed score & 0.14 ± 0.01 (63) & 0.11 ± 0.01 (38) & 835.00, 0.011 & 0.06, 0.004 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
,Baseline I,30 Hz,MWU,PRS
|
||||
Average rate,8.96 ± 0.80 (63),7.61 ± 0.87 (38),"1081.00, 0.418","0.27, 0.804"
|
||||
Gridness,0.53 ± 0.05 (63),0.48 ± 0.06 (38),"1094.00, 0.472","0.08, 0.354"
|
||||
Sparsity,0.63 ± 0.02 (63),0.64 ± 0.03 (38),"1261.00, 0.656","0.03, 0.648"
|
||||
Selectivity,5.76 ± 0.40 (63),6.42 ± 0.60 (38),"1276.00, 0.582","0.86, 0.292"
|
||||
Information specificity,0.24 ± 0.03 (63),0.22 ± 0.03 (38),"1076.00, 0.398","0.05, 0.159"
|
||||
Max rate,37.39 ± 1.91 (63),33.49 ± 1.89 (38),"1027.00, 0.235","3.99, 0.191"
|
||||
Information rate,1.31 ± 0.08 (63),0.98 ± 0.09 (38),"797.00, 0.005","0.32, 0.049"
|
||||
Interspike interval cv,2.39 ± 0.10 (63),2.23 ± 0.11 (38),"1100.00, 0.499","0.01, 0.991"
|
||||
In-field mean rate,14.88 ± 1.05 (63),12.21 ± 0.98 (38),"1018.00, 0.211","1.74, 0.273"
|
||||
Out-field mean rate,6.37 ± 0.67 (63),5.36 ± 0.73 (38),"1079.00, 0.410","0.51, 0.641"
|
||||
Burst event ratio,0.22 ± 0.01 (63),0.16 ± 0.01 (38),"675.00, 0.000","0.05, 0.004"
|
||||
Specificity,0.47 ± 0.03 (63),0.48 ± 0.04 (38),"1206.00, 0.952","0.01, 0.875"
|
||||
Speed score,0.14 ± 0.01 (63),0.11 ± 0.01 (38),"835.00, 0.011","0.06, 0.004"
|
||||
|
|
|
|
@ -2,18 +2,18 @@
|
|||
\toprule
|
||||
{} & Baseline I & 30 Hz & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.96 ± 0.80 (63) & 7.61 ± 0.87 (38) & 1081.00, 0.418 & 0.27, 0.806 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.48 ± 0.06 (38) & 1094.00, 0.472 & 0.08, 0.361 \\
|
||||
Sparsity & 0.63 ± 0.02 (63) & 0.64 ± 0.03 (38) & 1261.00, 0.656 & 0.03, 0.638 \\
|
||||
Selectivity & 5.76 ± 0.40 (63) & 6.42 ± 0.60 (38) & 1276.00, 0.582 & 0.86, 0.293 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.22 ± 0.03 (38) & 1076.00, 0.398 & 0.05, 0.165 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 33.49 ± 1.89 (38) & 1027.00, 0.235 & 3.99, 0.188 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 0.98 ± 0.09 (38) & 797.00, 0.005 & 0.32, 0.047 \\
|
||||
Interspike interval cv & 2.39 ± 0.10 (63) & 2.23 ± 0.11 (38) & 1100.00, 0.499 & 0.01, 0.993 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 12.21 ± 0.98 (38) & 1018.00, 0.211 & 1.74, 0.276 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 5.36 ± 0.73 (38) & 1079.00, 0.410 & 0.51, 0.631 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (63) & 0.16 ± 0.01 (38) & 675.00, 0.000 & 0.05, 0.003 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.48 ± 0.04 (38) & 1206.00, 0.952 & 0.01, 0.873 \\
|
||||
Average rate & 8.96 ± 0.80 (63) & 7.61 ± 0.87 (38) & 1081.00, 0.418 & 0.27, 0.804 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.48 ± 0.06 (38) & 1094.00, 0.472 & 0.08, 0.354 \\
|
||||
Sparsity & 0.63 ± 0.02 (63) & 0.64 ± 0.03 (38) & 1261.00, 0.656 & 0.03, 0.648 \\
|
||||
Selectivity & 5.76 ± 0.40 (63) & 6.42 ± 0.60 (38) & 1276.00, 0.582 & 0.86, 0.292 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.22 ± 0.03 (38) & 1076.00, 0.398 & 0.05, 0.159 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 33.49 ± 1.89 (38) & 1027.00, 0.235 & 3.99, 0.191 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 0.98 ± 0.09 (38) & 797.00, 0.005 & 0.32, 0.049 \\
|
||||
Interspike interval cv & 2.39 ± 0.10 (63) & 2.23 ± 0.11 (38) & 1100.00, 0.499 & 0.01, 0.991 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 12.21 ± 0.98 (38) & 1018.00, 0.211 & 1.74, 0.273 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 5.36 ± 0.73 (38) & 1079.00, 0.410 & 0.51, 0.641 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (63) & 0.16 ± 0.01 (38) & 675.00, 0.000 & 0.05, 0.004 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.48 ± 0.04 (38) & 1206.00, 0.952 & 0.01, 0.875 \\
|
||||
Speed score & 0.14 ± 0.01 (63) & 0.11 ± 0.01 (38) & 835.00, 0.011 & 0.06, 0.004 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
|
|
@ -1,19 +1,14 @@
|
|||
\begin{tabular}{lllll}
|
||||
\toprule
|
||||
{} & Baseline I & Baseline II & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.96 ± 0.80 (63) & 8.29 ± 0.87 (52) & 1756.00, 0.509 & 0.55, 0.674 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.54 ± 0.04 (52) & 1664.00, 0.886 & 0.04, 0.550 \\
|
||||
Sparsity & 0.63 ± 0.02 (63) & 0.63 ± 0.03 (52) & 1652.00, 0.940 & 0.03, 0.648 \\
|
||||
Selectivity & 5.76 ± 0.40 (63) & 5.96 ± 0.46 (52) & 1542.00, 0.592 & 0.66, 0.360 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.21 ± 0.02 (52) & 1718.00, 0.655 & 0.01, 0.812 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 36.27 ± 2.34 (52) & 1757.00, 0.505 & 1.09, 0.610 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 1.13 ± 0.08 (52) & 1929.00, 0.103 & 0.25, 0.140 \\
|
||||
Interspike interval cv & 2.39 ± 0.10 (63) & 2.37 ± 0.09 (52) & 1572.00, 0.713 & 0.16, 0.479 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 13.79 ± 1.12 (52) & 1763.00, 0.484 & 0.68, 0.690 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 5.80 ± 0.72 (52) & 1737.00, 0.580 & 0.38, 0.586 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (63) & 0.20 ± 0.01 (52) & 1834.00, 0.272 & 0.01, 0.681 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.47 ± 0.03 (52) & 1588.00, 0.781 & 0.01, 0.765 \\
|
||||
Speed score & 0.14 ± 0.01 (63) & 0.12 ± 0.01 (52) & 1943.00, 0.087 & 0.04, 0.017 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
,Baseline I,Baseline II,MWU,PRS
|
||||
Average rate,8.96 ± 0.80 (63),8.29 ± 0.87 (52),"1756.00, 0.509","0.55, 0.678"
|
||||
Gridness,0.53 ± 0.05 (63),0.54 ± 0.04 (52),"1664.00, 0.886","0.04, 0.545"
|
||||
Sparsity,0.63 ± 0.02 (63),0.63 ± 0.03 (52),"1652.00, 0.940","0.03, 0.648"
|
||||
Selectivity,5.76 ± 0.40 (63),5.96 ± 0.46 (52),"1542.00, 0.592","0.66, 0.360"
|
||||
Information specificity,0.24 ± 0.03 (63),0.21 ± 0.02 (52),"1718.00, 0.655","0.01, 0.814"
|
||||
Max rate,37.39 ± 1.91 (63),36.27 ± 2.34 (52),"1757.00, 0.505","1.09, 0.612"
|
||||
Information rate,1.31 ± 0.08 (63),1.13 ± 0.08 (52),"1929.00, 0.103","0.25, 0.142"
|
||||
Interspike interval cv,2.39 ± 0.10 (63),2.37 ± 0.09 (52),"1572.00, 0.713","0.16, 0.479"
|
||||
In-field mean rate,14.88 ± 1.05 (63),13.79 ± 1.12 (52),"1763.00, 0.484","0.68, 0.685"
|
||||
Out-field mean rate,6.37 ± 0.67 (63),5.80 ± 0.72 (52),"1737.00, 0.580","0.38, 0.577"
|
||||
Burst event ratio,0.22 ± 0.01 (63),0.20 ± 0.01 (52),"1834.00, 0.272","0.01, 0.670"
|
||||
Specificity,0.47 ± 0.03 (63),0.47 ± 0.03 (52),"1588.00, 0.781","0.01, 0.766"
|
||||
Speed score,0.14 ± 0.01 (63),0.12 ± 0.01 (52),"1943.00, 0.087","0.04, 0.015"
|
||||
|
|
|
|
@ -2,18 +2,18 @@
|
|||
\toprule
|
||||
{} & Baseline I & Baseline II & MWU & PRS \\
|
||||
\midrule
|
||||
Average rate & 8.96 ± 0.80 (63) & 8.29 ± 0.87 (52) & 1756.00, 0.509 & 0.55, 0.674 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.54 ± 0.04 (52) & 1664.00, 0.886 & 0.04, 0.550 \\
|
||||
Average rate & 8.96 ± 0.80 (63) & 8.29 ± 0.87 (52) & 1756.00, 0.509 & 0.55, 0.678 \\
|
||||
Gridness & 0.53 ± 0.05 (63) & 0.54 ± 0.04 (52) & 1664.00, 0.886 & 0.04, 0.545 \\
|
||||
Sparsity & 0.63 ± 0.02 (63) & 0.63 ± 0.03 (52) & 1652.00, 0.940 & 0.03, 0.648 \\
|
||||
Selectivity & 5.76 ± 0.40 (63) & 5.96 ± 0.46 (52) & 1542.00, 0.592 & 0.66, 0.360 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.21 ± 0.02 (52) & 1718.00, 0.655 & 0.01, 0.812 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 36.27 ± 2.34 (52) & 1757.00, 0.505 & 1.09, 0.610 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 1.13 ± 0.08 (52) & 1929.00, 0.103 & 0.25, 0.140 \\
|
||||
Information specificity & 0.24 ± 0.03 (63) & 0.21 ± 0.02 (52) & 1718.00, 0.655 & 0.01, 0.814 \\
|
||||
Max rate & 37.39 ± 1.91 (63) & 36.27 ± 2.34 (52) & 1757.00, 0.505 & 1.09, 0.612 \\
|
||||
Information rate & 1.31 ± 0.08 (63) & 1.13 ± 0.08 (52) & 1929.00, 0.103 & 0.25, 0.142 \\
|
||||
Interspike interval cv & 2.39 ± 0.10 (63) & 2.37 ± 0.09 (52) & 1572.00, 0.713 & 0.16, 0.479 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 13.79 ± 1.12 (52) & 1763.00, 0.484 & 0.68, 0.690 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 5.80 ± 0.72 (52) & 1737.00, 0.580 & 0.38, 0.586 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (63) & 0.20 ± 0.01 (52) & 1834.00, 0.272 & 0.01, 0.681 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.47 ± 0.03 (52) & 1588.00, 0.781 & 0.01, 0.765 \\
|
||||
Speed score & 0.14 ± 0.01 (63) & 0.12 ± 0.01 (52) & 1943.00, 0.087 & 0.04, 0.017 \\
|
||||
In-field mean rate & 14.88 ± 1.05 (63) & 13.79 ± 1.12 (52) & 1763.00, 0.484 & 0.68, 0.685 \\
|
||||
Out-field mean rate & 6.37 ± 0.67 (63) & 5.80 ± 0.72 (52) & 1737.00, 0.580 & 0.38, 0.577 \\
|
||||
Burst event ratio & 0.22 ± 0.01 (63) & 0.20 ± 0.01 (52) & 1834.00, 0.272 & 0.01, 0.670 \\
|
||||
Specificity & 0.47 ± 0.03 (63) & 0.47 ± 0.03 (52) & 1588.00, 0.781 & 0.01, 0.766 \\
|
||||
Speed score & 0.14 ± 0.01 (63) & 0.12 ± 0.01 (52) & 1943.00, 0.087 & 0.04, 0.015 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Binary file not shown.
Before Width: | Height: | Size: 112 KiB After Width: | Height: | Size: 113 KiB |
BIN
actions/longitudinal-comparisons-gridcells/data/figures/violins_swarm.svg (Stored with Git LFS)
BIN
actions/longitudinal-comparisons-gridcells/data/figures/violins_swarm.svg (Stored with Git LFS)
Binary file not shown.
|
@ -0,0 +1,5 @@
|
|||
,Baseline I vs baseline II,Baseline I vs stim I,Baseline II vs stim II,Baseline I vs stim II
|
||||
Spatial shift,"526.00, 0.099","688.00, 0.718","689.00, 0.725","276.00, 0.098"
|
||||
Difference in gridness,"819.00, 0.213","841.00, 0.270","757.00, 0.769","495.00, 0.173"
|
||||
Relative change in max rate,"777.00, 0.345","833.00, 0.251","786.00, 0.491","543.00, 0.032"
|
||||
Relative change in mean rate,"691.00, 0.936","887.00, 0.094","649.00, 0.522","347.00, 0.551"
|
|
|
@ -0,0 +1,10 @@
|
|||
\begin{tabular}{lllll}
|
||||
\toprule
|
||||
{} & Baseline I vs baseline II & Baseline I vs stim I & Baseline II vs stim II & Baseline I vs stim II \\
|
||||
\midrule
|
||||
Spatial shift & 526.00, 0.099 & 688.00, 0.718 & 689.00, 0.725 & 276.00, 0.098 \\
|
||||
Difference in gridness & 819.00, 0.213 & 841.00, 0.270 & 757.00, 0.769 & 495.00, 0.173 \\
|
||||
Relative change in max rate & 777.00, 0.345 & 833.00, 0.251 & 786.00, 0.491 & 543.00, 0.032 \\
|
||||
Relative change in mean rate & 691.00, 0.936 & 887.00, 0.094 & 649.00, 0.522 & 347.00, 0.551 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
|
@ -0,0 +1,5 @@
|
|||
,Baseline I vs baseline II,Baseline I vs stim I,Baseline II vs stim II,Baseline I vs stim II
|
||||
Spatial shift,"0.00, 0.186","0.00, 0.887","0.00, 0.572","0.00, 0.240"
|
||||
Difference in gridness,"0.07, 0.220","0.20, 0.003","0.05, 0.474","0.31, 0.001"
|
||||
Relative change in max rate,"0.12, 0.138","0.03, 0.726","0.05, 0.579","0.20, 0.038"
|
||||
Relative change in mean rate,"0.04, 0.417","0.13, 0.005","0.01, 0.689","0.02, 0.711"
|
|
|
@ -0,0 +1,10 @@
|
|||
\begin{tabular}{lllll}
|
||||
\toprule
|
||||
{} & Baseline I vs baseline II & Baseline I vs stim I & Baseline II vs stim II & Baseline I vs stim II \\
|
||||
\midrule
|
||||
Spatial shift & 0.00, 0.186 & 0.00, 0.887 & 0.00, 0.572 & 0.00, 0.240 \\
|
||||
Difference in gridness & 0.07, 0.220 & 0.20, 0.003 & 0.05, 0.474 & 0.31, 0.001 \\
|
||||
Relative change in max rate & 0.12, 0.138 & 0.03, 0.726 & 0.05, 0.579 & 0.20, 0.038 \\
|
||||
Relative change in mean rate & 0.04, 0.417 & 0.13, 0.005 & 0.01, 0.689 & 0.02, 0.711 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
|
@ -0,0 +1,5 @@
|
|||
,Baseline I vs baseline I,Baseline I vs baseline II,Baseline I vs stim I,Baseline II vs stim II,Baseline I vs stim II
|
||||
Spatial shift,0.03 ± 0.01 (66),0.03 ± 0.00 (21),0.02 ± 0.00 (22),0.02 ± 0.00 (22),0.03 ± 0.00 (12)
|
||||
Difference in gridness,-0.02 ± 0.03 (66),-0.05 ± 0.08 (21),-0.09 ± 0.11 (22),-0.03 ± 0.09 (22),-0.20 ± 0.14 (12)
|
||||
Relative change in max rate,0.05 ± 0.03 (65),0.00 ± 0.07 (21),-0.04 ± 0.07 (22),0.03 ± 0.07 (22),-0.12 ± 0.09 (12)
|
||||
Relative change in mean rate,0.02 ± 0.03 (65),0.09 ± 0.11 (21),-0.03 ± 0.08 (22),0.10 ± 0.08 (22),0.20 ± 0.16 (12)
|
|
|
@ -0,0 +1,10 @@
|
|||
\begin{tabular}{llllll}
|
||||
\toprule
|
||||
{} & Baseline I vs baseline I & Baseline I vs baseline II & Baseline I vs stim I & Baseline II vs stim II & Baseline I vs stim II \\
|
||||
\midrule
|
||||
Spatial shift & 0.03 ± 0.01 (66) & 0.03 ± 0.00 (21) & 0.02 ± 0.00 (22) & 0.02 ± 0.00 (22) & 0.03 ± 0.00 (12) \\
|
||||
Difference in gridness & -0.02 ± 0.03 (66) & -0.05 ± 0.08 (21) & -0.09 ± 0.11 (22) & -0.03 ± 0.09 (22) & -0.20 ± 0.14 (12) \\
|
||||
Relative change in max rate & 0.05 ± 0.03 (65) & 0.00 ± 0.07 (21) & -0.04 ± 0.07 (22) & 0.03 ± 0.07 (22) & -0.12 ± 0.09 (12) \\
|
||||
Relative change in mean rate & 0.02 ± 0.03 (65) & 0.09 ± 0.11 (21) & -0.03 ± 0.08 (22) & 0.10 ± 0.08 (22) & 0.20 ± 0.16 (12) \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
|
@ -13115,7 +13115,7 @@ div#notebook {
|
|||
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [1]:</div>
|
||||
<div class="prompt input_prompt">In [2]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="o">%</span><span class="k">load_ext</span> autoreload
|
||||
|
@ -13129,7 +13129,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [167]:</div>
|
||||
<div class="prompt input_prompt">In [3]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
|
||||
|
@ -13173,6 +13173,30 @@ div#notebook {
|
|||
</div>
|
||||
</div>
|
||||
|
||||
<div class="output_wrapper">
|
||||
<div class="output">
|
||||
|
||||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt"></div>
|
||||
|
||||
|
||||
<div class="output_subarea output_stream output_stderr output_text">
|
||||
<pre>13:18:46 [I] klustakwik KlustaKwik2 version 0.2.6
|
||||
/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject
|
||||
return f(*args, **kwds)
|
||||
/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject
|
||||
return f(*args, **kwds)
|
||||
/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject
|
||||
return f(*args, **kwds)
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
|
@ -13189,7 +13213,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [3]:</div>
|
||||
<div class="prompt input_prompt">In [4]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># %matplotlib notebook</span>
|
||||
|
@ -13203,7 +13227,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [4]:</div>
|
||||
<div class="prompt input_prompt">In [5]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">project_path</span> <span class="o">=</span> <span class="n">dp</span><span class="o">.</span><span class="n">project_path</span><span class="p">()</span>
|
||||
|
@ -13229,7 +13253,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [5]:</div>
|
||||
<div class="prompt input_prompt">In [6]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">statistics_action</span> <span class="o">=</span> <span class="n">actions</span><span class="p">[</span><span class="s1">'calculate-statistics'</span><span class="p">]</span>
|
||||
|
@ -13252,7 +13276,7 @@ div#notebook {
|
|||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[5]:</div>
|
||||
<div class="prompt output_prompt">Out[6]:</div>
|
||||
|
||||
|
||||
|
||||
|
@ -13433,7 +13457,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [6]:</div>
|
||||
<div class="prompt input_prompt">In [7]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">statistics</span><span class="p">[</span><span class="s1">'unit_day'</span><span class="p">]</span> <span class="o">=</span> <span class="n">statistics</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">unit_idnum</span><span class="p">)</span> <span class="o">+</span> <span class="s1">'_'</span> <span class="o">+</span> <span class="n">x</span><span class="o">.</span><span class="n">action</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'-'</span><span class="p">)[</span><span class="mi">1</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
|
||||
|
@ -13446,7 +13470,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [7]:</div>
|
||||
<div class="prompt input_prompt">In [8]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">stim_response_action</span> <span class="o">=</span> <span class="n">actions</span><span class="p">[</span><span class="s1">'stimulus-response'</span><span class="p">]</span>
|
||||
|
@ -13460,7 +13484,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [8]:</div>
|
||||
<div class="prompt input_prompt">In [9]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">statistics</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">merge</span><span class="p">(</span><span class="n">statistics</span><span class="p">,</span> <span class="n">stim_response_results</span><span class="p">,</span> <span class="n">how</span><span class="o">=</span><span class="s1">'left'</span><span class="p">)</span>
|
||||
|
@ -13473,7 +13497,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [9]:</div>
|
||||
<div class="prompt input_prompt">In [10]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s1">'N cells:'</span><span class="p">,</span><span class="n">statistics</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
||||
|
@ -13504,7 +13528,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [10]:</div>
|
||||
<div class="prompt input_prompt">In [11]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">shuffling</span> <span class="o">=</span> <span class="n">actions</span><span class="p">[</span><span class="s1">'shuffling'</span><span class="p">]</span>
|
||||
|
@ -13522,7 +13546,7 @@ div#notebook {
|
|||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[10]:</div>
|
||||
<div class="prompt output_prompt">Out[11]:</div>
|
||||
|
||||
|
||||
|
||||
|
@ -13630,7 +13654,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [11]:</div>
|
||||
<div class="prompt input_prompt">In [12]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">action_columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'action'</span><span class="p">,</span> <span class="s1">'channel_group'</span><span class="p">,</span> <span class="s1">'unit_name'</span><span class="p">]</span>
|
||||
|
@ -13651,7 +13675,7 @@ div#notebook {
|
|||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[11]:</div>
|
||||
<div class="prompt output_prompt">Out[12]:</div>
|
||||
|
||||
|
||||
|
||||
|
@ -13839,7 +13863,7 @@ div#notebook {
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [12]:</div>
|
||||
<div class="prompt input_prompt">In [13]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">data</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">'stimulated'</span><span class="p">)</span><span class="o">.</span><span class="n">count</span><span class="p">()[</span><span class="s1">'action'</span><span class="p">]</span>
|
||||
|
@ -13855,7 +13879,7 @@ div#notebook {
|
|||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[12]:</div>
|
||||
<div class="prompt output_prompt">Out[13]:</div>
|
||||
|
||||
|
||||
|
||||
|
@ -13882,7 +13906,7 @@ Name: action, dtype: int64</pre>
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [13]:</div>
|
||||
<div class="prompt input_prompt">In [14]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">query</span> <span class="o">=</span> <span class="p">(</span>
|
||||
|
@ -13929,7 +13953,7 @@ Number of animals 4
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [193]:</div>
|
||||
<div class="prompt input_prompt">In [17]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">once_a_gridcell</span> <span class="o">=</span> <span class="n">statistics</span><span class="p">[</span><span class="n">statistics</span><span class="o">.</span><span class="n">unit_day</span><span class="o">.</span><span class="n">isin</span><span class="p">(</span><span class="n">sessions_above_threshold</span><span class="o">.</span><span class="n">unit_day</span><span class="o">.</span><span class="n">values</span><span class="p">)]</span>
|
||||
|
@ -13942,21 +13966,7 @@ Number of animals 4
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [172]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">once_a_gridcell</span> <span class="o">=</span> <span class="n">statistics</span><span class="p">[</span><span class="n">statistics</span><span class="o">.</span><span class="n">unit_day</span><span class="o">.</span><span class="n">isin</span><span class="p">(</span>
|
||||
<span class="n">sessions_above_threshold</span><span class="o">.</span><span class="n">query</span><span class="p">(</span><span class="s1">'baseline and Hz11'</span><span class="p">)</span><span class="o">.</span><span class="n">unit_day</span><span class="o">.</span><span class="n">values</span><span class="p">)]</span>
|
||||
</pre></div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [194]:</div>
|
||||
<div class="prompt input_prompt">In [18]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"Number of gridcells"</span><span class="p">,</span> <span class="n">once_a_gridcell</span><span class="o">.</span><span class="n">unit_idnum</span><span class="o">.</span><span class="n">nunique</span><span class="p">())</span>
|
||||
|
@ -13998,7 +14008,7 @@ Number of animals 4
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [195]:</div>
|
||||
<div class="prompt input_prompt">In [19]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">baseline_i</span> <span class="o">=</span> <span class="n">once_a_gridcell</span><span class="o">.</span><span class="n">query</span><span class="p">(</span><span class="s1">'baseline and Hz11'</span><span class="p">)</span>
|
||||
|
@ -14042,7 +14052,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [196]:</div>
|
||||
<div class="prompt input_prompt">In [20]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">baseline_ids</span> <span class="o">=</span> <span class="n">baseline_i</span><span class="o">.</span><span class="n">unit_day</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span>
|
||||
|
@ -14055,7 +14065,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [197]:</div>
|
||||
<div class="prompt input_prompt">In [21]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">baseline_ids</span>
|
||||
|
@ -14071,7 +14081,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[197]:</div>
|
||||
<div class="prompt output_prompt">Out[21]:</div>
|
||||
|
||||
|
||||
|
||||
|
@ -14103,7 +14113,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [198]:</div>
|
||||
<div class="prompt input_prompt">In [22]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">stimulated_11_sub</span> <span class="o">=</span> <span class="n">stimulated_11</span><span class="p">[</span><span class="n">stimulated_11</span><span class="o">.</span><span class="n">unit_day</span><span class="o">.</span><span class="n">isin</span><span class="p">(</span><span class="n">baseline_ids</span><span class="p">)]</span>
|
||||
|
@ -14116,7 +14126,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [199]:</div>
|
||||
<div class="prompt input_prompt">In [23]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">baseline_ids_11</span> <span class="o">=</span> <span class="n">stimulated_11_sub</span><span class="o">.</span><span class="n">unit_day</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span>
|
||||
|
@ -14129,7 +14139,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [200]:</div>
|
||||
<div class="prompt input_prompt">In [24]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">baseline_i_sub</span> <span class="o">=</span> <span class="n">baseline_i</span><span class="p">[</span><span class="n">baseline_i</span><span class="o">.</span><span class="n">unit_day</span><span class="o">.</span><span class="n">isin</span><span class="p">(</span><span class="n">baseline_ids_11</span><span class="p">)]</span>
|
||||
|
@ -14149,7 +14159,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [201]:</div>
|
||||
<div class="prompt input_prompt">In [25]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">max_speed</span> <span class="o">=</span> <span class="o">.</span><span class="mi">5</span> <span class="c1"># m/s only used for speed score</span>
|
||||
|
@ -14175,7 +14185,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [202]:</div>
|
||||
<div class="prompt input_prompt">In [26]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">data_loader</span> <span class="o">=</span> <span class="n">dp</span><span class="o">.</span><span class="n">Data</span><span class="p">(</span>
|
||||
|
@ -14193,7 +14203,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [203]:</div>
|
||||
<div class="prompt input_prompt">In [27]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">find_grid_fields</span><span class="p">(</span><span class="n">rate_map</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mf">2.5</span><span class="p">):</span>
|
||||
|
@ -14229,7 +14239,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [204]:</div>
|
||||
<div class="prompt input_prompt">In [28]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">get_data</span><span class="p">(</span><span class="n">row</span><span class="p">):</span>
|
||||
|
@ -14262,7 +14272,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [205]:</div>
|
||||
<div class="prompt input_prompt">In [29]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">compute_field_spikes</span><span class="p">(</span><span class="n">row</span><span class="p">,</span> <span class="n">plot</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">z1</span><span class="o">=</span><span class="mf">5e-3</span><span class="p">,</span> <span class="n">z2</span><span class="o">=</span><span class="mf">11e-3</span><span class="p">,</span> <span class="n">surrogate_fields</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
||||
|
@ -14348,7 +14358,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [342]:</div>
|
||||
<div class="prompt input_prompt">In [30]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">plot_stim_field_spikes</span><span class="p">(</span><span class="n">row</span><span class="p">,</span> <span class="n">t1</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">t2</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">z1_base</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">z2_base</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">z1_stim</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">z2_stim</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span> <span class="n">colors</span><span class="o">=</span><span class="p">[</span><span class="s1">'k'</span><span class="p">,</span><span class="s1">'r'</span><span class="p">]):</span>
|
||||
|
@ -15661,7 +15671,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [343]:</div>
|
||||
<div class="prompt input_prompt">In [31]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">rc</span><span class="p">(</span><span class="s1">'axes'</span><span class="p">,</span> <span class="n">titlesize</span><span class="o">=</span><span class="mi">12</span><span class="p">)</span>
|
||||
|
@ -15714,7 +15724,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [254]:</div>
|
||||
<div class="prompt input_prompt">In [32]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">results_stim_stim_11</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
|
@ -15742,7 +15752,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [257]:</div>
|
||||
<div class="prompt input_prompt">In [33]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">results_stim_stim_11</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">results_stim_stim_11</span><span class="p">)</span>
|
||||
|
@ -15759,7 +15769,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[257]:</div>
|
||||
<div class="prompt output_prompt">Out[33]:</div>
|
||||
|
||||
|
||||
|
||||
|
@ -15856,7 +15866,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [255]:</div>
|
||||
<div class="prompt input_prompt">In [34]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">results_stim_stim_30</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
|
@ -15884,7 +15894,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [258]:</div>
|
||||
<div class="prompt input_prompt">In [35]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">results_stim_stim_30</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">results_stim_stim_30</span><span class="p">)</span>
|
||||
|
@ -15901,7 +15911,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[258]:</div>
|
||||
<div class="prompt output_prompt">Out[35]:</div>
|
||||
|
||||
|
||||
|
||||
|
@ -16142,7 +16152,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [336]:</div>
|
||||
<div class="prompt input_prompt">In [36]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">results_stim_stim_all</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">results_stim_stim_11</span><span class="p">,</span> <span class="n">results_stim_stim_30</span><span class="p">])</span>
|
||||
|
@ -16155,7 +16165,7 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [339]:</div>
|
||||
<div class="prompt input_prompt">In [37]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">rc</span><span class="p">(</span><span class="s1">'axes'</span><span class="p">,</span> <span class="n">titlesize</span><span class="o">=</span><span class="mi">12</span><span class="p">)</span>
|
||||
|
@ -16273,16 +16283,147 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [115]:</div>
|
||||
<div class="prompt input_prompt">In [38]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span>
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">summarize</span><span class="p">(</span><span class="n">data</span><span class="p">):</span>
|
||||
<span class="k">return</span> <span class="s2">"</span><span class="si">{:.2f}</span><span class="s2"> ± </span><span class="si">{:.2f}</span><span class="s2"> (</span><span class="si">{}</span><span class="s2">)"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">mean</span><span class="p">(),</span> <span class="n">data</span><span class="o">.</span><span class="n">sem</span><span class="p">(),</span> <span class="nb">sum</span><span class="p">(</span><span class="o">~</span><span class="n">np</span><span class="o">.</span><span class="n">isnan</span><span class="p">(</span><span class="n">data</span><span class="p">)))</span>
|
||||
|
||||
|
||||
<span class="k">def</span> <span class="nf">Wilcoxon</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">keys</span><span class="p">):</span>
|
||||
<span class="sd">'''</span>
|
||||
<span class="sd"> Wilcoxon</span>
|
||||
<span class="sd"> '''</span>
|
||||
<span class="n">Uvalue</span><span class="p">,</span> <span class="n">pvalue</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">stats</span><span class="o">.</span><span class="n">wilcoxon</span><span class="p">(</span>
|
||||
<span class="n">df</span><span class="p">[</span><span class="n">keys</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span><span class="o">.</span><span class="n">dropna</span><span class="p">(),</span>
|
||||
<span class="n">df</span><span class="p">[</span><span class="n">keys</span><span class="p">[</span><span class="mi">1</span><span class="p">]]</span><span class="o">.</span><span class="n">dropna</span><span class="p">(),</span>
|
||||
<span class="n">alternative</span><span class="o">=</span><span class="s1">'two-sided'</span><span class="p">)</span>
|
||||
|
||||
<span class="k">return</span> <span class="s2">"</span><span class="si">{:.2f}</span><span class="s2">, </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">Uvalue</span><span class="p">,</span> <span class="n">pvalue</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [40]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">results_stim_stim_all</span><span class="o">.</span><span class="n">base_in_field</span><span class="o">.</span><span class="n">agg</span><span class="p">(</span><span class="n">summarize</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="output_wrapper">
|
||||
<div class="output">
|
||||
|
||||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[40]:</div>
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="output_text output_subarea output_execute_result">
|
||||
<pre>'0.48 ± 0.02 (101)'</pre>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [49]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">stat</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">()</span>
|
||||
|
||||
<span class="n">stat</span><span class="p">[</span><span class="s1">'Combined'</span><span class="p">]</span> <span class="o">=</span> <span class="n">results_stim_stim_all</span><span class="o">.</span><span class="n">agg</span><span class="p">(</span><span class="n">summarize</span><span class="p">)</span>
|
||||
<span class="n">stat</span><span class="p">[</span><span class="s1">'11 Hz'</span><span class="p">]</span> <span class="o">=</span> <span class="n">results_stim_stim_11</span><span class="o">.</span><span class="n">agg</span><span class="p">(</span><span class="n">summarize</span><span class="p">)</span>
|
||||
<span class="n">stat</span><span class="p">[</span><span class="s1">'30 Hz'</span><span class="p">]</span> <span class="o">=</span> <span class="n">results_stim_stim_30</span><span class="o">.</span><span class="n">agg</span><span class="p">(</span><span class="n">summarize</span><span class="p">)</span>
|
||||
|
||||
<span class="n">stat</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="s1">'W'</span><span class="p">,</span> <span class="s1">'Combined'</span><span class="p">]</span> <span class="o">=</span> <span class="n">Wilcoxon</span><span class="p">(</span><span class="n">results_stim_stim_all</span><span class="p">,</span> <span class="p">[</span><span class="s1">'base_in_field'</span><span class="p">,</span> <span class="s1">'stim_in_field'</span><span class="p">])</span>
|
||||
|
||||
<span class="n">stat</span>
|
||||
|
||||
</pre></div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="output_wrapper">
|
||||
<div class="output">
|
||||
|
||||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[49]:</div>
|
||||
|
||||
|
||||
|
||||
<div class="output_html rendered_html output_subarea output_execute_result">
|
||||
<div>
|
||||
<style scoped>
|
||||
.dataframe tbody tr th:only-of-type {
|
||||
vertical-align: middle;
|
||||
}
|
||||
|
||||
.dataframe tbody tr th {
|
||||
vertical-align: top;
|
||||
}
|
||||
|
||||
.dataframe thead th {
|
||||
text-align: right;
|
||||
}
|
||||
</style>
|
||||
<table border="1" class="dataframe">
|
||||
<thead>
|
||||
<tr style="text-align: right;">
|
||||
<th></th>
|
||||
<th>Combined</th>
|
||||
<th>11 Hz</th>
|
||||
<th>30 Hz</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>base_in_field</th>
|
||||
<td>0.48 ± 0.02 (101)</td>
|
||||
<td>0.47 ± 0.02 (61)</td>
|
||||
<td>0.48 ± 0.02 (40)</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>stim_in_field</th>
|
||||
<td>0.54 ± 0.01 (101)</td>
|
||||
<td>0.54 ± 0.02 (61)</td>
|
||||
<td>0.52 ± 0.02 (40)</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>MWU</th>
|
||||
<td>380.00, 0.000</td>
|
||||
<td>NaN</td>
|
||||
<td>NaN</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
|
||||
</div><div class="inner_cell">
|
||||
|
@ -17820,6 +17961,79 @@ Number of gridcells in stimulated 30Hz ms sessions 40
|
|||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
|
||||
</div><div class="inner_cell">
|
||||
<div class="text_cell_render border-box-sizing rendered_html">
|
||||
<h1 id="save-to-expipe">save to expipe<a class="anchor-link" href="#save-to-expipe">¶</a></h1>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [344]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">action</span> <span class="o">=</span> <span class="n">project</span><span class="o">.</span><span class="n">require_action</span><span class="p">(</span><span class="s2">"spikes-in-field"</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [345]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">copy_tree</span><span class="p">(</span><span class="n">output_path</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">action</span><span class="o">.</span><span class="n">data_path</span><span class="p">()))</span>
|
||||
</pre></div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="output_wrapper">
|
||||
<div class="output">
|
||||
|
||||
|
||||
<div class="output_area">
|
||||
|
||||
<div class="prompt output_prompt">Out[345]:</div>
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="output_text output_subarea output_execute_result">
|
||||
<pre>['/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_30.svg',
|
||||
'/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_example.svg',
|
||||
'/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_11.svg',
|
||||
'/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_example.png',
|
||||
'/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_combined.svg',
|
||||
'/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_combined.png',
|
||||
'/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_30.png',
|
||||
'/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_11.png']</pre>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
<div class="prompt input_prompt">In [346]:</div>
|
||||
<div class="inner_cell">
|
||||
<div class="input_area">
|
||||
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">septum_mec</span><span class="o">.</span><span class="n">analysis</span><span class="o">.</span><span class="n">registration</span><span class="o">.</span><span class="n">store_notebook</span><span class="p">(</span><span class="n">action</span><span class="p">,</span> <span class="s2">"20_spikes_in_field.ipynb"</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="cell border-box-sizing code_cell rendered">
|
||||
<div class="input">
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -12,9 +12,23 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 167,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"13:18:46 [I] klustakwik KlustaKwik2 version 0.2.6\n",
|
||||
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
|
||||
" return f(*args, **kwds)\n",
|
||||
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
|
||||
" return f(*args, **kwds)\n",
|
||||
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
|
||||
" return f(*args, **kwds)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import pathlib\n",
|
||||
|
@ -62,7 +76,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -72,7 +86,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -94,7 +108,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -306,7 +320,7 @@
|
|||
"[5 rows x 39 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -324,7 +338,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -333,7 +347,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -343,7 +357,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -352,7 +366,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -369,7 +383,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -485,7 +499,7 @@
|
|||
"4 0.094041 1833-010719-1 0.0 225.0 "
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -498,7 +512,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -710,7 +724,7 @@
|
|||
"[5 rows x 51 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -733,7 +747,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -745,7 +759,7 @@
|
|||
"Name: action, dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -763,7 +777,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -796,7 +810,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 193,
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -805,17 +819,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 172,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"once_a_gridcell = statistics[statistics.unit_day.isin(\n",
|
||||
" sessions_above_threshold.query('baseline and Hz11').unit_day.values)]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 194,
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -843,7 +847,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 195,
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -873,7 +877,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 196,
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -882,7 +886,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 197,
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -906,7 +910,7 @@
|
|||
" '253_200619', '304_200619', '932_280219'], dtype=object)"
|
||||
]
|
||||
},
|
||||
"execution_count": 197,
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -917,7 +921,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 198,
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -926,7 +930,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 199,
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -935,7 +939,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 200,
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -951,7 +955,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 201,
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -973,7 +977,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 202,
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -987,7 +991,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 203,
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1019,7 +1023,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 204,
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1048,7 +1052,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 205,
|
||||
"execution_count": 29,
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
|
@ -1132,7 +1136,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 342,
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -2041,7 +2045,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 343,
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -2081,7 +2085,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 254,
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -2105,7 +2109,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 257,
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -2211,7 +2215,7 @@
|
|||
"[61 rows x 2 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 257,
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -2223,7 +2227,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 255,
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -2247,7 +2251,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 258,
|
||||
"execution_count": 35,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
|
@ -2526,7 +2530,7 @@
|
|||
"39 0.526316 0.660650"
|
||||
]
|
||||
},
|
||||
"execution_count": 258,
|
||||
"execution_count": 35,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -2538,7 +2542,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 336,
|
||||
"execution_count": 36,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -2547,7 +2551,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 339,
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -2646,10 +2650,124 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 115,
|
||||
"execution_count": 38,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"source": [
|
||||
"def summarize(data):\n",
|
||||
" return \"{:.2f} ± {:.2f} ({})\".format(data.mean(), data.sem(), sum(~np.isnan(data)))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def Wilcoxon(df, keys):\n",
|
||||
" '''\n",
|
||||
" Wilcoxon\n",
|
||||
" '''\n",
|
||||
" Uvalue, pvalue = scipy.stats.wilcoxon(\n",
|
||||
" df[keys[0]].dropna(), \n",
|
||||
" df[keys[1]].dropna(),\n",
|
||||
" alternative='two-sided')\n",
|
||||
"\n",
|
||||
" return \"{:.2f}, {:.3f}\".format(Uvalue, pvalue)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'0.48 ± 0.02 (101)'"
|
||||
]
|
||||
},
|
||||
"execution_count": 40,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"results_stim_stim_all.base_in_field.agg(summarize)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Combined</th>\n",
|
||||
" <th>11 Hz</th>\n",
|
||||
" <th>30 Hz</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>base_in_field</th>\n",
|
||||
" <td>0.48 ± 0.02 (101)</td>\n",
|
||||
" <td>0.47 ± 0.02 (61)</td>\n",
|
||||
" <td>0.48 ± 0.02 (40)</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>stim_in_field</th>\n",
|
||||
" <td>0.54 ± 0.01 (101)</td>\n",
|
||||
" <td>0.54 ± 0.02 (61)</td>\n",
|
||||
" <td>0.52 ± 0.02 (40)</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>MWU</th>\n",
|
||||
" <td>380.00, 0.000</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Combined 11 Hz 30 Hz\n",
|
||||
"base_in_field 0.48 ± 0.02 (101) 0.47 ± 0.02 (61) 0.48 ± 0.02 (40)\n",
|
||||
"stim_in_field 0.54 ± 0.01 (101) 0.54 ± 0.02 (61) 0.52 ± 0.02 (40)\n",
|
||||
"MWU 380.00, 0.000 NaN NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 49,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"stat = pd.DataFrame()\n",
|
||||
"\n",
|
||||
"stat['Combined'] = results_stim_stim_all.agg(summarize)\n",
|
||||
"stat['11 Hz'] = results_stim_stim_11.agg(summarize)\n",
|
||||
"stat['30 Hz'] = results_stim_stim_30.agg(summarize)\n",
|
||||
"\n",
|
||||
"stat.loc['W', 'Combined'] = Wilcoxon(results_stim_stim_all, ['base_in_field', 'stim_in_field'])\n",
|
||||
"\n",
|
||||
"stat\n",
|
||||
" \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
|
@ -4101,6 +4219,58 @@
|
|||
"baseline_i.merge(stimulated_11, on='unit_day', suffixes=['_base', '_stim'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# save to expipe"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 344,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"action = project.require_action(\"spikes-in-field\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 345,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_30.svg',\n",
|
||||
" '/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_example.svg',\n",
|
||||
" '/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_11.svg',\n",
|
||||
" '/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_example.png',\n",
|
||||
" '/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_combined.svg',\n",
|
||||
" '/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_combined.png',\n",
|
||||
" '/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_30.png',\n",
|
||||
" '/media/storage/expipe/septum-mec/actions/spikes-in-field/data/figures/stim_field_spikes_11.png']"
|
||||
]
|
||||
},
|
||||
"execution_count": 345,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"copy_tree(output_path, str(action.data_path()))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 346,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"septum_mec.analysis.registration.store_notebook(action, \"20_spikes_in_field.ipynb\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
|
BIN
actions/spikes-in-field/data/figures/stim_field_spikes_11.svg (Stored with Git LFS)
BIN
actions/spikes-in-field/data/figures/stim_field_spikes_11.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/spikes-in-field/data/figures/stim_field_spikes_30.svg (Stored with Git LFS)
BIN
actions/spikes-in-field/data/figures/stim_field_spikes_30.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/spikes-in-field/data/figures/stim_field_spikes_combined.svg (Stored with Git LFS)
BIN
actions/spikes-in-field/data/figures/stim_field_spikes_combined.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/spikes-in-field/data/figures/stim_field_spikes_example.svg (Stored with Git LFS)
BIN
actions/spikes-in-field/data/figures/stim_field_spikes_example.svg (Stored with Git LFS)
Binary file not shown.
|
@ -0,0 +1,4 @@
|
|||
,Combined,11 Hz,30 Hz
|
||||
base_in_field,0.48 ± 0.02 (101),0.47 ± 0.02 (61),0.48 ± 0.02 (40)
|
||||
stim_in_field,0.54 ± 0.01 (101),0.54 ± 0.02 (61),0.52 ± 0.02 (40)
|
||||
Wilcoxon,"380.00, 0.000","35.00, 0.000","143.00, 0.000"
|
|
|
@ -0,0 +1,9 @@
|
|||
\begin{tabular}{llll}
|
||||
\toprule
|
||||
{} & Combined & 11 Hz & 30 Hz \\
|
||||
\midrule
|
||||
base\_in\_field & 0.48 ± 0.02 (101) & 0.47 ± 0.02 (61) & 0.48 ± 0.02 (40) \\
|
||||
stim\_in\_field & 0.54 ± 0.01 (101) & 0.54 ± 0.02 (61) & 0.52 ± 0.02 (40) \\
|
||||
Wilcoxon & 380.00, 0.000 & 35.00, 0.000 & 143.00, 0.000 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-stim_energy.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-stim_energy.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-stim_half_width.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-stim_half_width.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-stim_p_max.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-stim_p_max.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-stim_strength.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-stim_strength.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-theta_energy.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-theta_energy.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-theta_freq.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-theta_freq.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-theta_half_width.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-theta_half_width.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-theta_peak.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd-histogram-theta_peak.svg (Stored with Git LFS)
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 47 KiB After Width: | Height: | Size: 47 KiB |
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd.svg (Stored with Git LFS)
BIN
actions/stimulus-lfp-response/data/figures/lfp-psd.svg (Stored with Git LFS)
Binary file not shown.
|
@ -1,22 +1,17 @@
|
|||
\begin{tabular}{lllllllll}
|
||||
\toprule
|
||||
{} & Theta energy & Theta peak & Theta freq & Theta half width & Stim energy & Stim half width & Stim p max & Stim strength \\
|
||||
\midrule
|
||||
Baseline I & 0.25 ± 0.02 (48) & 0.18 ± 0.02 (48) & 7.78 ± 0.09 (48) & 1.79 ± 0.33 (46) & NaN & NaN & NaN & NaN \\
|
||||
11 Hz & 0.08 ± 0.00 (44) & 0.03 ± 0.00 (44) & 7.55 ± 0.12 (44) & 5.80 ± 0.50 (43) & 0.05 ± 0.00 (44) & 0.16 ± 0.00 (44) & 0.51 ± 0.04 (44) & 7.14 ± 0.81 (44) \\
|
||||
Baseline II & 0.24 ± 0.02 (34) & 0.17 ± 0.02 (34) & 7.96 ± 0.09 (34) & 1.23 ± 0.22 (33) & NaN & NaN & NaN & NaN \\
|
||||
30 Hz & 0.04 ± 0.00 (34) & 0.02 ± 0.00 (34) & 7.74 ± 0.19 (34) & 5.88 ± 0.64 (31) & 0.16 ± 0.02 (34) & 0.14 ± 0.00 (34) & 1.54 ± 0.16 (34) & 45.30 ± 6.54 (34) \\
|
||||
MWU Baseline I 11 Hz & 2075.00, 0.000 & 2102.00, 0.000 & 1201.50, 0.256 & 253.00, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline I 11 Hz & 0.15, 0.000 & 0.12, 0.000 & 0.05, 0.679 & 4.74, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
MWU Baseline I Baseline II & 860.00, 0.682 & 850.00, 0.753 & 645.50, 0.108 & 805.00, 0.651 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline I Baseline II & 0.00, 0.954 & 0.01, 0.612 & 0.30, 0.008 & 0.05, 0.582 & NaN & NaN & NaN & NaN \\
|
||||
MWU Baseline I 30 Hz & 1629.00, 0.000 & 1629.00, 0.000 & 781.50, 0.749 & 225.00, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline I 30 Hz & 0.19, 0.000 & 0.13, 0.000 & 0.20, 0.416 & 4.84, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
MWU 11 Hz Baseline II & 22.00, 0.000 & 10.00, 0.000 & 524.50, 0.024 & 1328.00, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS 11 Hz Baseline II & 0.15, 0.000 & 0.12, 0.000 & 0.35, 0.019 & 4.79, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
MWU 11 Hz 30 Hz & 1299.00, 0.000 & 1275.00, 0.000 & 657.00, 0.361 & 664.00, 0.983 & 248.00, 0.000 & 1408.00, 0.000 & 236.00, 0.000 & 202.00, 0.000 \\
|
||||
PRS 11 Hz 30 Hz & 0.04, 0.000 & 0.01, 0.000 & 0.25, 0.523 & 0.10, 0.912 & 0.11, 0.000 & 0.02, 0.000 & 1.09, 0.000 & 31.00, 0.000 \\
|
||||
MWU Baseline II 30 Hz & 1154.00, 0.000 & 1154.00, 0.000 & 604.00, 0.754 & 108.00, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline II 30 Hz & 0.19, 0.000 & 0.13, 0.000 & 0.10, 0.582 & 4.89, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
,Theta energy,Theta peak,Theta freq,Theta half width,Stim energy,Stim half width,Stim p max,Stim strength
|
||||
Baseline I,0.25 ± 0.02 (48),0.18 ± 0.02 (48),7.78 ± 0.09 (48),1.79 ± 0.33 (46),,,,
|
||||
11 Hz,0.08 ± 0.00 (44),0.03 ± 0.00 (44),7.55 ± 0.12 (44),5.80 ± 0.50 (43),0.05 ± 0.00 (44),0.16 ± 0.00 (44),0.51 ± 0.04 (44),7.14 ± 0.81 (44)
|
||||
Baseline II,0.24 ± 0.02 (34),0.17 ± 0.02 (34),7.96 ± 0.09 (34),1.23 ± 0.22 (33),,,,
|
||||
30 Hz,0.04 ± 0.00 (34),0.02 ± 0.00 (34),7.74 ± 0.19 (34),5.88 ± 0.64 (31),0.16 ± 0.02 (34),0.14 ± 0.00 (34),1.54 ± 0.16 (34),45.30 ± 6.54 (34)
|
||||
MWU Baseline I 11 Hz,"2075.00, 0.000","2102.00, 0.000","1201.50, 0.256","253.00, 0.000",,,,
|
||||
PRS Baseline I 11 Hz,"0.15, 0.000","0.12, 0.000","0.05, 0.686","4.74, 0.000",,,,
|
||||
MWU Baseline I Baseline II,"860.00, 0.682","850.00, 0.753","645.50, 0.108","805.00, 0.651",,,,
|
||||
PRS Baseline I Baseline II,"0.00, 0.955","0.01, 0.597","0.30, 0.009","0.05, 0.584",,,,
|
||||
MWU Baseline I 30 Hz,"1629.00, 0.000","1629.00, 0.000","781.50, 0.749","225.00, 0.000",,,,
|
||||
PRS Baseline I 30 Hz,"0.19, 0.000","0.13, 0.000","0.20, 0.416","4.84, 0.000",,,,
|
||||
MWU 11 Hz Baseline II,"22.00, 0.000","10.00, 0.000","524.50, 0.024","1328.00, 0.000",,,,
|
||||
PRS 11 Hz Baseline II,"0.15, 0.000","0.12, 0.000","0.35, 0.020","4.79, 0.000",,,,
|
||||
MWU 11 Hz 30 Hz,"1299.00, 0.000","1275.00, 0.000","657.00, 0.361","664.00, 0.983","248.00, 0.000","1408.00, 0.000","236.00, 0.000","202.00, 0.000"
|
||||
PRS 11 Hz 30 Hz,"0.04, 0.000","0.01, 0.000","0.25, 0.510","0.10, 0.909","0.11, 0.000","0.02, 0.000","1.09, 0.000","31.00, 0.000"
|
||||
MWU Baseline II 30 Hz,"1154.00, 0.000","1154.00, 0.000","604.00, 0.754","108.00, 0.000",,,,
|
||||
PRS Baseline II 30 Hz,"0.19, 0.000","0.13, 0.000","0.10, 0.577","4.89, 0.000",,,,
|
||||
|
|
|
|
@ -7,16 +7,16 @@ Baseline I & 0.25 ± 0.02 (48) & 0.18 ± 0.02 (48) & 7.78 ±
|
|||
Baseline II & 0.24 ± 0.02 (34) & 0.17 ± 0.02 (34) & 7.96 ± 0.09 (34) & 1.23 ± 0.22 (33) & NaN & NaN & NaN & NaN \\
|
||||
30 Hz & 0.04 ± 0.00 (34) & 0.02 ± 0.00 (34) & 7.74 ± 0.19 (34) & 5.88 ± 0.64 (31) & 0.16 ± 0.02 (34) & 0.14 ± 0.00 (34) & 1.54 ± 0.16 (34) & 45.30 ± 6.54 (34) \\
|
||||
MWU Baseline I 11 Hz & 2075.00, 0.000 & 2102.00, 0.000 & 1201.50, 0.256 & 253.00, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline I 11 Hz & 0.15, 0.000 & 0.12, 0.000 & 0.05, 0.679 & 4.74, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline I 11 Hz & 0.15, 0.000 & 0.12, 0.000 & 0.05, 0.686 & 4.74, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
MWU Baseline I Baseline II & 860.00, 0.682 & 850.00, 0.753 & 645.50, 0.108 & 805.00, 0.651 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline I Baseline II & 0.00, 0.954 & 0.01, 0.612 & 0.30, 0.008 & 0.05, 0.582 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline I Baseline II & 0.00, 0.955 & 0.01, 0.597 & 0.30, 0.009 & 0.05, 0.584 & NaN & NaN & NaN & NaN \\
|
||||
MWU Baseline I 30 Hz & 1629.00, 0.000 & 1629.00, 0.000 & 781.50, 0.749 & 225.00, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline I 30 Hz & 0.19, 0.000 & 0.13, 0.000 & 0.20, 0.416 & 4.84, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
MWU 11 Hz Baseline II & 22.00, 0.000 & 10.00, 0.000 & 524.50, 0.024 & 1328.00, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS 11 Hz Baseline II & 0.15, 0.000 & 0.12, 0.000 & 0.35, 0.019 & 4.79, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS 11 Hz Baseline II & 0.15, 0.000 & 0.12, 0.000 & 0.35, 0.020 & 4.79, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
MWU 11 Hz 30 Hz & 1299.00, 0.000 & 1275.00, 0.000 & 657.00, 0.361 & 664.00, 0.983 & 248.00, 0.000 & 1408.00, 0.000 & 236.00, 0.000 & 202.00, 0.000 \\
|
||||
PRS 11 Hz 30 Hz & 0.04, 0.000 & 0.01, 0.000 & 0.25, 0.523 & 0.10, 0.912 & 0.11, 0.000 & 0.02, 0.000 & 1.09, 0.000 & 31.00, 0.000 \\
|
||||
PRS 11 Hz 30 Hz & 0.04, 0.000 & 0.01, 0.000 & 0.25, 0.510 & 0.10, 0.909 & 0.11, 0.000 & 0.02, 0.000 & 1.09, 0.000 & 31.00, 0.000 \\
|
||||
MWU Baseline II 30 Hz & 1154.00, 0.000 & 1154.00, 0.000 & 604.00, 0.754 & 108.00, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline II 30 Hz & 0.19, 0.000 & 0.13, 0.000 & 0.10, 0.582 & 4.89, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
PRS Baseline II 30 Hz & 0.19, 0.000 & 0.13, 0.000 & 0.10, 0.577 & 4.89, 0.000 & NaN & NaN & NaN & NaN \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Binary file not shown.
Before Width: | Height: | Size: 61 KiB After Width: | Height: | Size: 61 KiB |
BIN
actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-gridcell.svg (Stored with Git LFS)
BIN
actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-gridcell.svg (Stored with Git LFS)
Binary file not shown.
BIN
actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-gridcell.svg (Stored with Git LFS)
BIN
actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-gridcell.svg (Stored with Git LFS)
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-gridcell.svg (Stored with Git LFS)
BIN
actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-gridcell.svg (Stored with Git LFS)
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue