actions/cell-count/

This commit is contained in:
Mikkel Elle Lepperød 2021-03-10 13:57:46 +01:00
parent 4479f4e44d
commit 1652ab405e
5 changed files with 14293 additions and 0 deletions

View File

@ -0,0 +1,4 @@
registered: '2020-08-26T13:39:33'
data:
notebook: 20_cell_count.ipynb
html: 20_cell_count.html

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,517 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"13:30:10 [I] klustakwik KlustaKwik2 version 0.2.6\n"
]
}
],
"source": [
"import os\n",
"import expipe\n",
"import pathlib\n",
"import numpy as np\n",
"import spatial_maps.stats as stats\n",
"import septum_mec\n",
"import septum_mec.analysis.data_processing as dp\n",
"import septum_mec.analysis.registration\n",
"import head_direction.head as head\n",
"import spatial_maps as sp\n",
"import speed_cells.speed as spd\n",
"import re\n",
"import joblib\n",
"import multiprocessing\n",
"import shutil\n",
"import psutil\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"# import seaborn as sns\n",
"from distutils.dir_util import copy_tree\n",
"from neo import SpikeTrain\n",
"import scipy\n",
"\n",
"from tqdm.notebook import tqdm_notebook as tqdm\n",
"tqdm.pandas()\n",
"\n",
"from spike_statistics.core import permutation_resampling\n",
"\n",
"from spikewaveform.core import calculate_waveform_features_from_template, cluster_waveform_features\n",
"\n",
"from septum_mec.analysis.plotting import violinplot, despine"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"plt.rc('axes', titlesize=12)\n",
"plt.rcParams.update({\n",
" 'font.size': 12, \n",
" 'figure.figsize': (6, 4), \n",
" 'figure.dpi': 150\n",
"})\n",
"\n",
"output_path = pathlib.Path(\"output\") / \"cell-count\"\n",
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)\n",
"output_path.mkdir(exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"data_loader = dp.Data()\n",
"actions = data_loader.actions\n",
"project = data_loader.project"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"identification_action = actions['identify-neurons']\n",
"sessions = pd.read_csv(identification_action.data_path('sessions'))\n",
"units = pd.read_csv(identification_action.data_path('units'))\n",
"session_units = pd.merge(sessions, units, on='action')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"stim_action = actions['stimulus-response']\n",
"stim_results = pd.read_csv(stim_action.data_path('results'))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"statistics_action = actions['calculate-statistics']\n",
"shuffling = actions['shuffling']\n",
"\n",
"statistics_results = pd.read_csv(statistics_action.data_path('results'))\n",
"statistics_results = session_units.merge(statistics_results, how='left')\n",
"quantiles_95 = pd.read_csv(shuffling.data_path('quantiles_95'))\n",
"action_columns = ['action', 'channel_group', 'unit_name']\n",
"data = pd.merge(statistics_results, quantiles_95, on=action_columns, suffixes=(\"\", \"_threshold\"))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"data['unit_day'] = data.apply(lambda x: str(x.unit_idnum) + '_' + x.action.split('-')[1], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"data = data.merge(stim_results, how='left')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"waveform_action = actions['waveform-analysis']\n",
"waveform_results = pd.read_csv(waveform_action.data_path('results')).drop('template', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"data = data.merge(waveform_results, how='left')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"colors = ['#d95f02','#e7298a']\n",
"labels = ['11 Hz', '30 HZ']\n",
"queries = ['frequency==11', 'frequency==30']"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"data.bs = data.bs.astype(bool)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"data.loc[data.eval('t_i_peak == t_i_peak and not bs'), 'ns_inhibited'] = True\n",
"data.ns_inhibited.fillna(False, inplace=True)\n",
"\n",
"data.loc[data.eval('t_i_peak != t_i_peak and not bs'), 'ns_not_inhibited'] = True\n",
"data.ns_not_inhibited.fillna(False, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of sessions above threshold 194\n",
"Number of animals 4\n"
]
}
],
"source": [
"query = (\n",
" 'gridness > gridness_threshold and '\n",
" 'information_rate > information_rate_threshold and '\n",
" 'gridness > .2 and '\n",
" 'average_rate < 25'\n",
")\n",
"sessions_above_threshold = data.query(query)\n",
"print(\"Number of sessions above threshold\", len(sessions_above_threshold))\n",
"print(\"Number of animals\", len(sessions_above_threshold.groupby(['entity'])))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of gridcells 139\n",
"Number of gridcell recordings 231\n",
"Number of animals 4\n"
]
}
],
"source": [
"gridcell_sessions = data[data.unit_day.isin(sessions_above_threshold.unit_day.values)]\n",
"print(\"Number of gridcells\", gridcell_sessions.unit_idnum.nunique())\n",
"print(\"Number of gridcell recordings\", len(gridcell_sessions))\n",
"print(\"Number of animals\", len(gridcell_sessions.groupby(['entity'])))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"data.loc[:,'gridcell'] = np.nan\n",
"data['gridcell'] = data.isin(gridcell_sessions)\n",
"\n",
"data.loc[data.eval('not gridcell and bs'), 'bs_not_gridcell'] = True\n",
"data.bs_not_gridcell.fillna(False, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Gridcell</th>\n",
" <th>BS not gridcell</th>\n",
" <th>NSi</th>\n",
" <th>NSni</th>\n",
" </tr>\n",
" <tr>\n",
" <th>entity</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1833</th>\n",
" <td>94</td>\n",
" <td>165</td>\n",
" <td>16</td>\n",
" <td>52</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1834</th>\n",
" <td>14</td>\n",
" <td>216</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1839</th>\n",
" <td>19</td>\n",
" <td>70</td>\n",
" <td>11</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1849</th>\n",
" <td>8</td>\n",
" <td>229</td>\n",
" <td>8</td>\n",
" <td>23</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Gridcell BS not gridcell NSi NSni\n",
"entity \n",
"1833 94 165 16 52\n",
"1834 14 216 4 7\n",
"1839 19 70 11 5\n",
"1849 8 229 8 23"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"table = pd.DataFrame()\n",
"table['Gridcell'] = data.drop_duplicates('unit_idnum').query('gridcell').groupby('entity')['action'].count()\n",
"table['BS not gridcell'] = data.drop_duplicates('unit_idnum').query('bs_not_gridcell').groupby('entity')['action'].count()\n",
"table['NSi'] = data.drop_duplicates('unit_idnum').query('ns_inhibited').groupby('entity')['action'].count()\n",
"table['NSni'] = data.drop_duplicates('unit_idnum').query('ns_not_inhibited').groupby('entity')['action'].count()\n",
"table"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Store results in Expipe action"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"action = project.require_action(\"cell-count\")"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['/media/storage/expipe/septum-mec/actions/stimulus-response/data/data/times.feather',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/data/psth.feather',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-bs_not_gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_not_inhibited.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-bs_not_gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-nsi-ns.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-nsi-ns-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_not_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_not_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_inhibited.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_not_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_not_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_not_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-bs_not_gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-bs_not_gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-bs_not_gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-bs_not_gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_not_inhibited.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-nsi-ns-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_inhibited.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-bs_not_gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-bs_not_gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-gc-ns.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-bs_not_gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_not_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_not_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-nsi-ns.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-gc-ns-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-gc-ns.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_not_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_not_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-bs_not_gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-bs_not_gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-bs_not_gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-bs_not_gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-gc-ns-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-bs_not_gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_inhibited.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_not_inhibited.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_not_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-bs_not_gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_not_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_not_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-bs_not_gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_not_inhibited.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_inhibited.png']"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"copy_tree(output_path, str(action.data_path()))"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"septum_mec.analysis.registration.store_notebook(action, \"20_cell_count.ipynb\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,5 @@
entity,Gridcell,BS not gridcell,NSi,NSni
1833,94,165,16,52
1834,14,216,4,7
1839,19,70,11,5
1849,8,229,8,23
1 entity Gridcell BS not gridcell NSi NSni
2 1833 94 165 16 52
3 1834 14 216 4 7
4 1839 19 70 11 5
5 1849 8 229 8 23

View File

@ -0,0 +1,11 @@
\begin{tabular}{lrrrr}
\toprule
{} & Gridcell & BS not gridcell & NSi & NSni \\
entity & & & & \\
\midrule
1833 & 94 & 165 & 16 & 52 \\
1834 & 14 & 216 & 4 & 7 \\
1839 & 19 & 70 & 11 & 5 \\
1849 & 8 & 229 & 8 & 23 \\
\bottomrule
\end{tabular}