3005 lines
7.9 MiB
Plaintext
3005 lines
7.9 MiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 1,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"%load_ext autoreload\n",
|
|||
|
"%autoreload 2"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"14:38:14 [I] klustakwik KlustaKwik2 version 0.2.6\n",
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
|
|||
|
" return f(*args, **kwds)\n",
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
|
|||
|
" return f(*args, **kwds)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import os\n",
|
|||
|
"import pathlib\n",
|
|||
|
"import numpy as np\n",
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"from matplotlib import colors\n",
|
|||
|
"import seaborn as sns\n",
|
|||
|
"import re\n",
|
|||
|
"import shutil\n",
|
|||
|
"import pandas as pd\n",
|
|||
|
"import scipy.stats\n",
|
|||
|
"\n",
|
|||
|
"import exdir\n",
|
|||
|
"import expipe\n",
|
|||
|
"from distutils.dir_util import copy_tree\n",
|
|||
|
"import septum_mec\n",
|
|||
|
"import spatial_maps as sp\n",
|
|||
|
"import head_direction.head as head\n",
|
|||
|
"import septum_mec.analysis.data_processing as dp\n",
|
|||
|
"import septum_mec.analysis.registration\n",
|
|||
|
"from septum_mec.analysis.plotting import violinplot, despine\n",
|
|||
|
"from spatial_maps.fields import find_peaks, calculate_field_centers, separate_fields_by_laplace\n",
|
|||
|
"from spike_statistics.core import permutation_resampling\n",
|
|||
|
"\n",
|
|||
|
"import speed_cells.speed as spd\n",
|
|||
|
"from septum_mec.analysis.plotting import plot_bootstrap_timeseries\n",
|
|||
|
"\n",
|
|||
|
"from tqdm.notebook import tqdm_notebook as tqdm\n",
|
|||
|
"tqdm.pandas()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"project_path = dp.project_path()\n",
|
|||
|
"project = expipe.get_project(project_path)\n",
|
|||
|
"actions = project.actions\n",
|
|||
|
"\n",
|
|||
|
"output_path = pathlib.Path(\"output\") / \"longitudinal-comparisons-speed\"\n",
|
|||
|
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
|
|||
|
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Load cell statistics and shuffling quantiles"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>action</th>\n",
|
|||
|
" <th>baseline</th>\n",
|
|||
|
" <th>entity</th>\n",
|
|||
|
" <th>frequency</th>\n",
|
|||
|
" <th>i</th>\n",
|
|||
|
" <th>ii</th>\n",
|
|||
|
" <th>session</th>\n",
|
|||
|
" <th>stim_location</th>\n",
|
|||
|
" <th>stimulated</th>\n",
|
|||
|
" <th>tag</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>burst_event_ratio</th>\n",
|
|||
|
" <th>bursty_spike_ratio</th>\n",
|
|||
|
" <th>gridness</th>\n",
|
|||
|
" <th>border_score</th>\n",
|
|||
|
" <th>information_rate</th>\n",
|
|||
|
" <th>information_specificity</th>\n",
|
|||
|
" <th>head_mean_ang</th>\n",
|
|||
|
" <th>head_mean_vec_len</th>\n",
|
|||
|
" <th>spacing</th>\n",
|
|||
|
" <th>orientation</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.398230</td>\n",
|
|||
|
" <td>0.678064</td>\n",
|
|||
|
" <td>-0.466923</td>\n",
|
|||
|
" <td>0.029328</td>\n",
|
|||
|
" <td>1.009215</td>\n",
|
|||
|
" <td>0.317256</td>\n",
|
|||
|
" <td>5.438033</td>\n",
|
|||
|
" <td>0.040874</td>\n",
|
|||
|
" <td>0.628784</td>\n",
|
|||
|
" <td>20.224859</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.138014</td>\n",
|
|||
|
" <td>0.263173</td>\n",
|
|||
|
" <td>-0.666792</td>\n",
|
|||
|
" <td>0.308146</td>\n",
|
|||
|
" <td>0.192524</td>\n",
|
|||
|
" <td>0.033447</td>\n",
|
|||
|
" <td>1.951740</td>\n",
|
|||
|
" <td>0.017289</td>\n",
|
|||
|
" <td>0.789388</td>\n",
|
|||
|
" <td>27.897271</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.373986</td>\n",
|
|||
|
" <td>0.659259</td>\n",
|
|||
|
" <td>-0.572566</td>\n",
|
|||
|
" <td>0.143252</td>\n",
|
|||
|
" <td>4.745836</td>\n",
|
|||
|
" <td>0.393704</td>\n",
|
|||
|
" <td>4.439721</td>\n",
|
|||
|
" <td>0.124731</td>\n",
|
|||
|
" <td>0.555402</td>\n",
|
|||
|
" <td>28.810794</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.087413</td>\n",
|
|||
|
" <td>0.179245</td>\n",
|
|||
|
" <td>-0.437492</td>\n",
|
|||
|
" <td>0.268948</td>\n",
|
|||
|
" <td>0.157394</td>\n",
|
|||
|
" <td>0.073553</td>\n",
|
|||
|
" <td>6.215195</td>\n",
|
|||
|
" <td>0.101911</td>\n",
|
|||
|
" <td>0.492250</td>\n",
|
|||
|
" <td>9.462322</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.248771</td>\n",
|
|||
|
" <td>0.463596</td>\n",
|
|||
|
" <td>-0.085938</td>\n",
|
|||
|
" <td>0.218744</td>\n",
|
|||
|
" <td>0.519153</td>\n",
|
|||
|
" <td>0.032683</td>\n",
|
|||
|
" <td>1.531481</td>\n",
|
|||
|
" <td>0.053810</td>\n",
|
|||
|
" <td>0.559905</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>5 rows × 39 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" action baseline entity frequency i ii session \\\n",
|
|||
|
"0 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"1 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"2 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"3 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"4 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"\n",
|
|||
|
" stim_location stimulated tag ... burst_event_ratio \\\n",
|
|||
|
"0 NaN False baseline ii ... 0.398230 \n",
|
|||
|
"1 NaN False baseline ii ... 0.138014 \n",
|
|||
|
"2 NaN False baseline ii ... 0.373986 \n",
|
|||
|
"3 NaN False baseline ii ... 0.087413 \n",
|
|||
|
"4 NaN False baseline ii ... 0.248771 \n",
|
|||
|
"\n",
|
|||
|
" bursty_spike_ratio gridness border_score information_rate \\\n",
|
|||
|
"0 0.678064 -0.466923 0.029328 1.009215 \n",
|
|||
|
"1 0.263173 -0.666792 0.308146 0.192524 \n",
|
|||
|
"2 0.659259 -0.572566 0.143252 4.745836 \n",
|
|||
|
"3 0.179245 -0.437492 0.268948 0.157394 \n",
|
|||
|
"4 0.463596 -0.085938 0.218744 0.519153 \n",
|
|||
|
"\n",
|
|||
|
" information_specificity head_mean_ang head_mean_vec_len spacing \\\n",
|
|||
|
"0 0.317256 5.438033 0.040874 0.628784 \n",
|
|||
|
"1 0.033447 1.951740 0.017289 0.789388 \n",
|
|||
|
"2 0.393704 4.439721 0.124731 0.555402 \n",
|
|||
|
"3 0.073553 6.215195 0.101911 0.492250 \n",
|
|||
|
"4 0.032683 1.531481 0.053810 0.559905 \n",
|
|||
|
"\n",
|
|||
|
" orientation \n",
|
|||
|
"0 20.224859 \n",
|
|||
|
"1 27.897271 \n",
|
|||
|
"2 28.810794 \n",
|
|||
|
"3 9.462322 \n",
|
|||
|
"4 0.000000 \n",
|
|||
|
"\n",
|
|||
|
"[5 rows x 39 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"statistics_action = actions['calculate-statistics']\n",
|
|||
|
"identification_action = actions['identify-neurons']\n",
|
|||
|
"sessions = pd.read_csv(identification_action.data_path('sessions'))\n",
|
|||
|
"units = pd.read_csv(identification_action.data_path('units'))\n",
|
|||
|
"session_units = pd.merge(sessions, units, on='action')\n",
|
|||
|
"statistics_results = pd.read_csv(statistics_action.data_path('results'))\n",
|
|||
|
"statistics = pd.merge(session_units, statistics_results, how='left')\n",
|
|||
|
"statistics.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 5,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"statistics['unit_day'] = statistics.apply(lambda x: str(x.unit_idnum) + '_' + x.action.split('-')[1], axis=1)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## stim response"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"stim_response_action = actions['stimulus-response']\n",
|
|||
|
"stim_response_results = pd.read_csv(stim_response_action.data_path('results'))\n",
|
|||
|
"stim_response_results = stim_response_results.drop('unit_id', axis=1)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"statistics = pd.merge(statistics, stim_response_results, how='left')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"N cells: 1284\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print('N cells:',statistics.shape[0])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>border_score</th>\n",
|
|||
|
" <th>gridness</th>\n",
|
|||
|
" <th>head_mean_ang</th>\n",
|
|||
|
" <th>head_mean_vec_len</th>\n",
|
|||
|
" <th>information_rate</th>\n",
|
|||
|
" <th>speed_score</th>\n",
|
|||
|
" <th>action</th>\n",
|
|||
|
" <th>channel_group</th>\n",
|
|||
|
" <th>unit_name</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>0.348023</td>\n",
|
|||
|
" <td>0.275109</td>\n",
|
|||
|
" <td>3.012689</td>\n",
|
|||
|
" <td>0.086792</td>\n",
|
|||
|
" <td>0.707197</td>\n",
|
|||
|
" <td>0.149071</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>127.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>0.362380</td>\n",
|
|||
|
" <td>0.166475</td>\n",
|
|||
|
" <td>3.133138</td>\n",
|
|||
|
" <td>0.037271</td>\n",
|
|||
|
" <td>0.482486</td>\n",
|
|||
|
" <td>0.132212</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>161.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>0.367498</td>\n",
|
|||
|
" <td>0.266865</td>\n",
|
|||
|
" <td>5.586395</td>\n",
|
|||
|
" <td>0.182843</td>\n",
|
|||
|
" <td>0.271188</td>\n",
|
|||
|
" <td>0.062821</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>191.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>0.331942</td>\n",
|
|||
|
" <td>0.312155</td>\n",
|
|||
|
" <td>5.955767</td>\n",
|
|||
|
" <td>0.090786</td>\n",
|
|||
|
" <td>0.354018</td>\n",
|
|||
|
" <td>0.052009</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>223.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>0.325842</td>\n",
|
|||
|
" <td>0.180495</td>\n",
|
|||
|
" <td>5.262721</td>\n",
|
|||
|
" <td>0.103584</td>\n",
|
|||
|
" <td>0.210427</td>\n",
|
|||
|
" <td>0.094041</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>225.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" border_score gridness head_mean_ang head_mean_vec_len information_rate \\\n",
|
|||
|
"0 0.348023 0.275109 3.012689 0.086792 0.707197 \n",
|
|||
|
"1 0.362380 0.166475 3.133138 0.037271 0.482486 \n",
|
|||
|
"2 0.367498 0.266865 5.586395 0.182843 0.271188 \n",
|
|||
|
"3 0.331942 0.312155 5.955767 0.090786 0.354018 \n",
|
|||
|
"4 0.325842 0.180495 5.262721 0.103584 0.210427 \n",
|
|||
|
"\n",
|
|||
|
" speed_score action channel_group unit_name \n",
|
|||
|
"0 0.149071 1833-010719-1 0.0 127.0 \n",
|
|||
|
"1 0.132212 1833-010719-1 0.0 161.0 \n",
|
|||
|
"2 0.062821 1833-010719-1 0.0 191.0 \n",
|
|||
|
"3 0.052009 1833-010719-1 0.0 223.0 \n",
|
|||
|
"4 0.094041 1833-010719-1 0.0 225.0 "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"shuffling = actions['shuffling']\n",
|
|||
|
"quantiles_95 = pd.read_csv(shuffling.data_path('quantiles_95'))\n",
|
|||
|
"quantiles_95.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>action</th>\n",
|
|||
|
" <th>baseline</th>\n",
|
|||
|
" <th>entity</th>\n",
|
|||
|
" <th>frequency</th>\n",
|
|||
|
" <th>i</th>\n",
|
|||
|
" <th>ii</th>\n",
|
|||
|
" <th>session</th>\n",
|
|||
|
" <th>stim_location</th>\n",
|
|||
|
" <th>stimulated</th>\n",
|
|||
|
" <th>tag</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>p_e_peak</th>\n",
|
|||
|
" <th>t_i_peak</th>\n",
|
|||
|
" <th>p_i_peak</th>\n",
|
|||
|
" <th>border_score_threshold</th>\n",
|
|||
|
" <th>gridness_threshold</th>\n",
|
|||
|
" <th>head_mean_ang_threshold</th>\n",
|
|||
|
" <th>head_mean_vec_len_threshold</th>\n",
|
|||
|
" <th>information_rate_threshold</th>\n",
|
|||
|
" <th>speed_score_threshold</th>\n",
|
|||
|
" <th>specificity</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.332548</td>\n",
|
|||
|
" <td>0.229073</td>\n",
|
|||
|
" <td>6.029431</td>\n",
|
|||
|
" <td>0.205362</td>\n",
|
|||
|
" <td>1.115825</td>\n",
|
|||
|
" <td>0.066736</td>\n",
|
|||
|
" <td>0.451741</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.354830</td>\n",
|
|||
|
" <td>0.089333</td>\n",
|
|||
|
" <td>6.120055</td>\n",
|
|||
|
" <td>0.073566</td>\n",
|
|||
|
" <td>0.223237</td>\n",
|
|||
|
" <td>0.052594</td>\n",
|
|||
|
" <td>0.098517</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.264610</td>\n",
|
|||
|
" <td>-0.121081</td>\n",
|
|||
|
" <td>5.759406</td>\n",
|
|||
|
" <td>0.150827</td>\n",
|
|||
|
" <td>4.964984</td>\n",
|
|||
|
" <td>0.027120</td>\n",
|
|||
|
" <td>0.400770</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.344280</td>\n",
|
|||
|
" <td>0.215829</td>\n",
|
|||
|
" <td>6.033364</td>\n",
|
|||
|
" <td>0.110495</td>\n",
|
|||
|
" <td>0.239996</td>\n",
|
|||
|
" <td>0.054074</td>\n",
|
|||
|
" <td>0.269461</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.342799</td>\n",
|
|||
|
" <td>0.218967</td>\n",
|
|||
|
" <td>5.768170</td>\n",
|
|||
|
" <td>0.054762</td>\n",
|
|||
|
" <td>0.524990</td>\n",
|
|||
|
" <td>0.144702</td>\n",
|
|||
|
" <td>0.133410</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>5 rows × 51 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" action baseline entity frequency i ii session \\\n",
|
|||
|
"0 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"1 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"2 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"3 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"4 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"\n",
|
|||
|
" stim_location stimulated tag ... p_e_peak t_i_peak p_i_peak \\\n",
|
|||
|
"0 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"1 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"2 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"3 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"4 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"\n",
|
|||
|
" border_score_threshold gridness_threshold head_mean_ang_threshold \\\n",
|
|||
|
"0 0.332548 0.229073 6.029431 \n",
|
|||
|
"1 0.354830 0.089333 6.120055 \n",
|
|||
|
"2 0.264610 -0.121081 5.759406 \n",
|
|||
|
"3 0.344280 0.215829 6.033364 \n",
|
|||
|
"4 0.342799 0.218967 5.768170 \n",
|
|||
|
"\n",
|
|||
|
" head_mean_vec_len_threshold information_rate_threshold \\\n",
|
|||
|
"0 0.205362 1.115825 \n",
|
|||
|
"1 0.073566 0.223237 \n",
|
|||
|
"2 0.150827 4.964984 \n",
|
|||
|
"3 0.110495 0.239996 \n",
|
|||
|
"4 0.054762 0.524990 \n",
|
|||
|
"\n",
|
|||
|
" speed_score_threshold specificity \n",
|
|||
|
"0 0.066736 0.451741 \n",
|
|||
|
"1 0.052594 0.098517 \n",
|
|||
|
"2 0.027120 0.400770 \n",
|
|||
|
"3 0.054074 0.269461 \n",
|
|||
|
"4 0.144702 0.133410 \n",
|
|||
|
"\n",
|
|||
|
"[5 rows x 51 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"action_columns = ['action', 'channel_group', 'unit_name']\n",
|
|||
|
"data = pd.merge(statistics, quantiles_95, on=action_columns, suffixes=(\"\", \"_threshold\"))\n",
|
|||
|
"\n",
|
|||
|
"data['specificity'] = np.log10(data['in_field_mean_rate'] / data['out_field_mean_rate'])\n",
|
|||
|
"\n",
|
|||
|
"data.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## waveform"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 11,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"waveform_action = actions['waveform-analysis']\n",
|
|||
|
"waveform_results = pd.read_csv(waveform_action.data_path('results')).drop('template', axis=1)\n",
|
|||
|
"waveform_results = waveform_results.drop('unit_id', axis=1)\n",
|
|||
|
"\n",
|
|||
|
"data = data.merge(waveform_results, how='left')\n",
|
|||
|
"data.bs = data.bs.astype(bool)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Statistics about all cell-sessions"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"stimulated\n",
|
|||
|
"False 624\n",
|
|||
|
"True 660\n",
|
|||
|
"Name: action, dtype: int64"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"data.groupby('stimulated').count()['action']"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Find interneurons"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"data.loc[data.eval('t_i_peak == t_i_peak and not bs'), 'ns_inhibited'] = True\n",
|
|||
|
"data.ns_inhibited.fillna(False, inplace=True)\n",
|
|||
|
"\n",
|
|||
|
"data.loc[data.eval('t_i_peak != t_i_peak and not bs'), 'ns_not_inhibited'] = True\n",
|
|||
|
"data.ns_not_inhibited.fillna(False, inplace=True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# make baseline for inhibited vs not inhibited\n",
|
|||
|
"data.loc[data.unit_id.isin(data.query('ns_inhibited').unit_id.values), 'ns_inhibited'] = True\n",
|
|||
|
"data.loc[data.unit_id.isin(data.query('ns_not_inhibited').unit_id.values), 'ns_not_inhibited'] = True"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Find all cells with gridness above threshold"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Number of sessions above threshold 194\n",
|
|||
|
"Number of animals 4\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"query = (\n",
|
|||
|
" 'gridness > gridness_threshold and '\n",
|
|||
|
" 'information_rate > information_rate_threshold and '\n",
|
|||
|
" 'gridness > .2 and '\n",
|
|||
|
" 'average_rate < 25'\n",
|
|||
|
")\n",
|
|||
|
"sessions_above_threshold = data.query(query)\n",
|
|||
|
"print(\"Number of sessions above threshold\", len(sessions_above_threshold))\n",
|
|||
|
"print(\"Number of animals\", len(sessions_above_threshold.groupby(['entity'])))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## select neurons that have been characterized as a grid cell on the same day"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 16,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"once_a_gridcell = statistics[statistics.unit_day.isin(sessions_above_threshold.unit_day.values)]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 17,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Number of gridcells 139\n",
|
|||
|
"Number of gridcell recordings 231\n",
|
|||
|
"Number of animals 4\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(\"Number of gridcells\", once_a_gridcell.unit_idnum.nunique())\n",
|
|||
|
"print(\"Number of gridcell recordings\", len(once_a_gridcell))\n",
|
|||
|
"print(\"Number of animals\", len(once_a_gridcell.groupby(['entity'])))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 18,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"data.loc[:,'gridcell'] = np.nan\n",
|
|||
|
"data['gridcell'] = data.isin(once_a_gridcell)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# divide into stim not stim"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 19,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"109"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 19,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"data.ns_inhibited.sum()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 20,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Number of gridcells in baseline i sessions 66\n",
|
|||
|
"Number of gridcells in stimulated 11Hz ms sessions 61\n",
|
|||
|
"Number of gridcells in baseline ii sessions 56\n",
|
|||
|
"Number of gridcells in stimulated 30Hz ms sessions 40\n",
|
|||
|
"\n",
|
|||
|
"Number of NSi in baseline i sessions 17\n",
|
|||
|
"Number of NSi in stimulated 11Hz ms sessions 31\n",
|
|||
|
"Number of NSi in baseline ii sessions 21\n",
|
|||
|
"Number of NSi in stimulated 30Hz ms sessions 36\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"query_baseline_i = 'baseline and Hz11'\n",
|
|||
|
"query_stimulated_11 = 'stimulated and frequency==11 and stim_location==\"ms\"'\n",
|
|||
|
"\n",
|
|||
|
"query_baseline_ii = 'baseline and Hz30'\n",
|
|||
|
"query_stimulated_30 = 'stimulated and frequency==30 and stim_location==\"ms\"'\n",
|
|||
|
"\n",
|
|||
|
"print(\"Number of gridcells in baseline i sessions\", \n",
|
|||
|
" len(data.query('gridcell and ' + f'{query_baseline_i}')))\n",
|
|||
|
"print(\"Number of gridcells in stimulated 11Hz ms sessions\", \n",
|
|||
|
" len(data.query('gridcell and ' + f'{query_stimulated_11}')))\n",
|
|||
|
"\n",
|
|||
|
"print(\"Number of gridcells in baseline ii sessions\", \n",
|
|||
|
" len(data.query('gridcell and ' + f'{query_baseline_ii}')))\n",
|
|||
|
"print(\"Number of gridcells in stimulated 30Hz ms sessions\", \n",
|
|||
|
" len(data.query('gridcell and ' + f'{query_stimulated_30}')))\n",
|
|||
|
"print()\n",
|
|||
|
"print(\"Number of NSi in baseline i sessions\", \n",
|
|||
|
" len(data.query('ns_inhibited and ' + f'{query_baseline_i}')))\n",
|
|||
|
"print(\"Number of NSi in stimulated 11Hz ms sessions\", \n",
|
|||
|
" len(data.query('ns_inhibited and ' + f'{query_stimulated_11}')))\n",
|
|||
|
"\n",
|
|||
|
"print(\"Number of NSi in baseline ii sessions\", \n",
|
|||
|
" len(data.query('ns_inhibited and ' + f'{query_baseline_ii}')))\n",
|
|||
|
"print(\"Number of NSi in stimulated 30Hz ms sessions\", \n",
|
|||
|
" len(data.query('ns_inhibited and ' + f'{query_stimulated_30}')))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Plotting"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 21,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"max_speed = .5 # m/s only used for speed score\n",
|
|||
|
"min_speed = 0.02 # m/s only used for speed score\n",
|
|||
|
"position_sampling_rate = 100 # for interpolation\n",
|
|||
|
"position_low_pass_frequency = 6 # for low pass filtering of position\n",
|
|||
|
"\n",
|
|||
|
"box_size = [1.0, 1.0]\n",
|
|||
|
"bin_size = 0.02\n",
|
|||
|
"smoothing_low = 0.03\n",
|
|||
|
"smoothing_high = 0.06\n",
|
|||
|
"\n",
|
|||
|
"speed_binsize = 0.02\n",
|
|||
|
"\n",
|
|||
|
"stim_mask = True\n",
|
|||
|
"# baseline_duration = 600\n",
|
|||
|
"baseline_duration = None"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 22,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"data_loader = dp.Data(\n",
|
|||
|
" position_sampling_rate=position_sampling_rate, \n",
|
|||
|
" position_low_pass_frequency=position_low_pass_frequency,\n",
|
|||
|
" box_size=box_size, bin_size=bin_size, \n",
|
|||
|
" stim_mask=stim_mask, baseline_duration=baseline_duration\n",
|
|||
|
")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 38,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def compute_mask(search, t1, t2, z1, z2, z3):\n",
|
|||
|
" idxs = []\n",
|
|||
|
" idx = np.searchsorted(search, [t1 + z1, t1 + z2], side='right')\n",
|
|||
|
" idxs.extend(np.arange(idx[0], idx[1]).tolist())\n",
|
|||
|
"\n",
|
|||
|
" idx = np.searchsorted(search, [t1 + z3, t2], side='right')\n",
|
|||
|
" idxs.extend(np.arange(idx[0], idx[1]).tolist())\n",
|
|||
|
" return idxs\n",
|
|||
|
"\n",
|
|||
|
" \n",
|
|||
|
"def load_speed(action_id, channel_id, unit_name, z1, z2, z3, split=False, stim_action=None):\n",
|
|||
|
" x, y, t, speed = map(data_loader.tracking(action_id).get, ['x', 'y', 't', 'v'])\n",
|
|||
|
"\n",
|
|||
|
" spike_times = data_loader.spike_train(action_id, channel_id, unit_name)\n",
|
|||
|
" spike_times = spike_times[(spike_times > min(t)) & (spike_times < max(t))]\n",
|
|||
|
" \n",
|
|||
|
" stim_action = stim_action if stim_action is not None else action_id\n",
|
|||
|
" stim_times = data_loader.stim_times(stim_action)\n",
|
|||
|
" \n",
|
|||
|
" if stim_times is not None:\n",
|
|||
|
" idxs = []\n",
|
|||
|
" stim_times = np.array(stim_times)\n",
|
|||
|
" for t1, t2 in zip(stim_times, stim_times[1:]):\n",
|
|||
|
" idx = compute_mask(np.array(t), t1, t2, z1, z2, z3)\n",
|
|||
|
" idxs.extend(idx)\n",
|
|||
|
" \n",
|
|||
|
" idxs = np.sort(np.unique(idxs))\n",
|
|||
|
" mask = ~np.in1d(np.arange(len(t)), idxs)\n",
|
|||
|
" else:\n",
|
|||
|
" mask = np.zeros_like(t).astype(bool)\n",
|
|||
|
" \n",
|
|||
|
" if split:\n",
|
|||
|
" t_split = t[-1] / 2\n",
|
|||
|
" mask_speed = t < t_split\n",
|
|||
|
" speed1 = speed[mask_speed]\n",
|
|||
|
" speed2 = speed[~mask_speed]\n",
|
|||
|
" t1 = t[mask_speed]\n",
|
|||
|
" t2 = t[~mask_speed]\n",
|
|||
|
" mask1 = mask[mask_speed]\n",
|
|||
|
" mask2 = mask[~mask_speed]\n",
|
|||
|
" \n",
|
|||
|
" spike_mask = spike_times < t_split\n",
|
|||
|
" spike_times1 = spike_times[spike_mask]\n",
|
|||
|
" spike_times2 = spike_times[~spike_mask]\n",
|
|||
|
" \n",
|
|||
|
" return speed1, speed2, t1, t2, spike_times1, spike_times2, mask1, mask2\n",
|
|||
|
" \n",
|
|||
|
" return speed, t, spike_times, mask"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 45,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "c4e5c309c03c46e3b5203c1a3f28c7d9",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(IntProgress(value=0, max=190), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"z1, zg2, zi2, z3 = 0, 5e-3, 3e-3, 15e-3\n",
|
|||
|
"gridcell_id_map = {}\n",
|
|||
|
"gridcell_speed = [[], [], [], [], []]\n",
|
|||
|
"gridcell_data = data.query('gridcell')\n",
|
|||
|
"\n",
|
|||
|
"nsi_id_map = {}\n",
|
|||
|
"nsi_speed = [[], [], [], [], []]\n",
|
|||
|
"nsi_data = data.query('ns_inhibited')\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"n_iter = gridcell_data.unit_id.unique().shape[0] + nsi_data.unit_id.unique().shape[0]\n",
|
|||
|
"pbar = tqdm(total=n_iter)\n",
|
|||
|
"\n",
|
|||
|
"for nid, unit_sessions in gridcell_data.groupby('unit_id'):\n",
|
|||
|
" base_i = unit_sessions.query(\"baseline and Hz11\")\n",
|
|||
|
" base_ii = unit_sessions.query(\"baseline and Hz30\")\n",
|
|||
|
" stim_i = unit_sessions.query(\"frequency==11\")\n",
|
|||
|
" stim_ii = unit_sessions.query(\"frequency==30\")\n",
|
|||
|
" dfs = [(base_i, base_i), (base_i, base_ii), (base_i, stim_i), (base_ii, stim_ii), (base_i, stim_ii)]\n",
|
|||
|
" sample = [False, False, True, True, True]\n",
|
|||
|
" for i, pair in enumerate(dfs):\n",
|
|||
|
" same_frame = pair[0].equals(pair[1])\n",
|
|||
|
" for (_, row_1), (_, row_2) in zip(pair[0].iterrows(), pair[1].iterrows()):\n",
|
|||
|
" if same_frame:\n",
|
|||
|
" assert row_1.equals(row_2)\n",
|
|||
|
" speed1, speed2, t1, t2, spike_times1, spike_times2, mask1, mask2 = load_speed(\n",
|
|||
|
" row_1['action'], row_1['channel_group'], row_1['unit_name'], \n",
|
|||
|
" z1, zg2, z3, split=True)\n",
|
|||
|
" else:\n",
|
|||
|
" assert not row_1.equals(row_2)\n",
|
|||
|
" stim_action = row_2['action'] if sample[i] else None\n",
|
|||
|
" speed1, t1, spike_times1, mask1 = load_speed(\n",
|
|||
|
" row_1['action'], row_1['channel_group'], row_1['unit_name'], \n",
|
|||
|
" z1, zg2, z3, split=False, stim_action=stim_action)\n",
|
|||
|
" speed2, t2, spike_times2, mask2 = load_speed(\n",
|
|||
|
" row_2['action'], row_2['channel_group'], row_2['unit_name'], \n",
|
|||
|
" z1, zg2, z3, split=False)\n",
|
|||
|
"\n",
|
|||
|
" speed_score1 = spd.speed_correlation(\n",
|
|||
|
" speed1, t1, spike_times1, return_data=False, mask=mask1)\n",
|
|||
|
" speed_score2 = spd.speed_correlation(\n",
|
|||
|
" speed2, t2, spike_times2, return_data=False, mask=mask2)\n",
|
|||
|
" \n",
|
|||
|
" gridcell_speed[i].append((speed_score1, speed_score2))\n",
|
|||
|
"\n",
|
|||
|
" assert row_1.unit_id == row_2.unit_id\n",
|
|||
|
" uid = row_2.unit_id\n",
|
|||
|
" idnum = row_1.unit_idnum\n",
|
|||
|
" gridcell_id_map[uid] = idnum\n",
|
|||
|
" pbar.update()\n",
|
|||
|
"\n",
|
|||
|
"for nid, unit_sessions in nsi_data.groupby('unit_id'):\n",
|
|||
|
" base_i = unit_sessions.query(\"baseline and Hz11\")\n",
|
|||
|
" base_ii = unit_sessions.query(\"baseline and Hz30\")\n",
|
|||
|
" stim_i = unit_sessions.query(\"frequency==11\")\n",
|
|||
|
" stim_ii = unit_sessions.query(\"frequency==30\")\n",
|
|||
|
" dfs = [(base_i, base_i), (base_i, base_ii), (base_i, stim_i), (base_ii, stim_ii), (base_i, stim_ii)]\n",
|
|||
|
" sample = [False, False, True, True, True]\n",
|
|||
|
" for i, pair in enumerate(dfs):\n",
|
|||
|
" same_frame = pair[0].equals(pair[1])\n",
|
|||
|
" for (_, row_1), (_, row_2) in zip(pair[0].iterrows(), pair[1].iterrows()):\n",
|
|||
|
" if same_frame:\n",
|
|||
|
" assert row_1.equals(row_2)\n",
|
|||
|
" speed1, speed2, t1, t2, spike_times1, spike_times2, mask1, mask2 = load_speed(\n",
|
|||
|
" row_1['action'], row_1['channel_group'], row_1['unit_name'], \n",
|
|||
|
" z1, zi2, z3, split=True)\n",
|
|||
|
" else:\n",
|
|||
|
" assert not row_1.equals(row_2)\n",
|
|||
|
" stim_action = row_2['action'] if sample[i] else None\n",
|
|||
|
" speed1, t1, spike_times1, mask1 = load_speed(\n",
|
|||
|
" row_1['action'], row_1['channel_group'], row_1['unit_name'], \n",
|
|||
|
" z1, zi2, z3, split=False, stim_action=stim_action)\n",
|
|||
|
" speed2, t2, spike_times2, mask2 = load_speed(\n",
|
|||
|
" row_2['action'], row_2['channel_group'], row_2['unit_name'], \n",
|
|||
|
" z1, zi2, z3, split=False)\n",
|
|||
|
" \n",
|
|||
|
" speed_score1 = spd.speed_correlation(\n",
|
|||
|
" speed1, t1, spike_times1, return_data=False, mask=mask1)\n",
|
|||
|
" speed_score2 = spd.speed_correlation(\n",
|
|||
|
" speed2, t2, spike_times2, return_data=False, mask=mask2)\n",
|
|||
|
" \n",
|
|||
|
" nsi_speed[i].append((speed_score1, speed_score2))\n",
|
|||
|
"\n",
|
|||
|
" assert row_1.unit_id == row_2.unit_id\n",
|
|||
|
" uid = row_2.unit_id\n",
|
|||
|
" idnum = row_1.unit_idnum\n",
|
|||
|
" nsi_id_map[uid] = idnum\n",
|
|||
|
" pbar.update()\n",
|
|||
|
"\n",
|
|||
|
"pbar.close()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 52,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def session_id(row):\n",
|
|||
|
" if row.baseline and row.i:\n",
|
|||
|
" n = 0\n",
|
|||
|
" elif row.stimulated and row.i:\n",
|
|||
|
" n = 1\n",
|
|||
|
" elif row.baseline and row.ii:\n",
|
|||
|
" n = 2\n",
|
|||
|
" elif row.stimulated and row.ii:\n",
|
|||
|
" n = 3\n",
|
|||
|
" else:\n",
|
|||
|
" raise ValueError('what')\n",
|
|||
|
" return n\n",
|
|||
|
" \n",
|
|||
|
"data['session_id'] = data.apply(session_id, axis=1)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 53,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"plt.rc('axes', titlesize=12)\n",
|
|||
|
"plt.rcParams.update({\n",
|
|||
|
" 'font.size': 12, \n",
|
|||
|
" 'figure.figsize': (4, 3), \n",
|
|||
|
" 'figure.dpi': 150\n",
|
|||
|
"})"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 66,
|
|||
|
"metadata": {
|
|||
|
"scrolled": false
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/elephant/statistics.py:835: UserWarning: Instantaneous firing rate approximation contains negative values, possibly caused due to machine precision errors.\n",
|
|||
|
" warnings.warn(\"Instantaneous firing rate approximation contains \"\n",
|
|||
|
"/home/mikkel/apps/expipe-project/septum-mec/septum_mec/analysis/plotting.py:86: UserWarning: Warning: converting a masked element to nan.\n",
|
|||
|
" values = np.array([statistic(signal) for signal in signals])\n",
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/fromnumeric.py:3257: RuntimeWarning: Mean of empty slice.\n",
|
|||
|
" out=out, **kwargs)\n",
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:154: RuntimeWarning: invalid value encountered in true_divide\n",
|
|||
|
" ret, rcount, out=ret, casting='unsafe', subok=False)\n",
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:6: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
|
|||
|
" \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhtaVnf/e8eazrz0PPcyAPdIGKcUCIt+ppEIsbEJM5BggGjUZT3EhJFQKPG6XUKg4miCYhBcEyiQVFBxUAiNiIN/UALPdN95lPjntZa7x9rVdWuqr3r1LBq2uf7ua669rCGvfbpPvuc/Tv3fT+VLMuQJEmSJEmSBqnu9QVIkiRJkiRp/zI8kiRJkiRJ0lCGR5IkSZIkSRrK8EiSJEmSJElDGR5JkiRJkiRpKMMjSZIkSZIkDWV4JEmSJEmSpKEMjyRJkiRJkjSU4ZEkSZIkSZKGMjySJEmSJEnSUIZHkiRJkiRJGsrwSJIkSZIkSUMZHkmSJEmSJGkowyNJkiRJkiQNVd/rC5AkSftPCOE9wPOKh98fY/zhDR73H4FvLx7eHmN8sPyr00aFEJ4N/B/yv/N9S4zxV9bZ9xeBf7nBU/vfVpKkq4iVR5Ik6UpeHUJ4+l5fhDYnhNAAfpmN/2Phs3fwciRJ0gFm5ZEkSbqSMeCXQgjPjTGme30x2rB/BzxrIzuGEOrA3cXDXwRef4VDHt/GdUmSpAPG8EiSJG3Ec4DvBH5mry9EVxZC+Ezg+zZxyNPJQ0KAd8cYP1T+VUmSpIPKtjVJkrSeFOgV9384hHDHXl6MrqyoIvploAGc2+Bhn9V33+BIkiStYHgkSZLW0wV+org/CfznPbwWbcz3Ap8NXABeu8FjFucdzQGf2IFrkiRJB5hta5Ik6UpeB3w18DTg+SGEb40xbitEKgZwfwfwpcBNQAV4BPgT4OdjjB8dctx7yFeBa8cYx9c5/0fIZ/g8FGO8bdW2rLj73cD/BP4j8FzyoOwB4FUxxnf37X8EeAnwVcAzgMPAeeBe4B3AW2KMPVYJIdwGfKp4+NXA7wIvAr65uLbDwGPAu4CfijH+7bD3s1EhhLuAHygefg95GLQRi5VHf+1cK0mStJqVR5IkaV0xxjZ5eLIYKvxECOHGrZ4vhPBq4G+Afw0EYIq8qikALwP+JoTw2hBCZVsXfmU3A+8Dvrx4/aPkFTsP9F3rlwD3Az8FfDFwgrwd7DrgHwBvBu4NIdx5hdeaBN4N/BJ5+HWKfMbQHcC3AfeFEL5iO28mhFAjb1cbA94VY/wvmzh8cbD2h0IILwwh/HYI4YkQQieE8HgI4R3Fr4UkSboKGR5JkqQrijG+j+UVuI4Cb9rKeUIIrwV+EKgBHyYPi76QvPLnu4C/Jf/7yWuKn530cvIQ58eBvwv8U+BHYowPFtf6HPLKpOuBDHgr8ELg84GvBf6gOM8zgD8LIVy/zmv9FPAlwPuBbyrO8Y+APyy2jwG/EkI4tI338z3A5wGzwL/a6EEhhFvIQzGAbwR+h7zK6lryoOx64GuAPw4h/EIxU0mSJF1F/MNfkiRt1L8FvhK4DfiHIYSvjzG+baMHhxA+G3h18fAtwItXtXu9L4TwS8D/AO4BfiCE8OvDWthKUCUPi/pXJXtnca018qqiCfKKq38eY3xn337/B3h7COEHyNv6rgd+gTxcGuQ68vf8ov62sBDC75K/368ATgMvAN6+2TcSQgjkoRzkbXcPb+LwZ/fdPwL8NfAG4CPkodY9wL8BjpOHUhl56CdJkq4SVh5JkqQNiTHOsbKi5WdDCKc3cYpXkP/d4zzwskFzgorXeDF5QFEhDy120huHPP+V5DOeAN64KjhaEmP8QeA9i8cUM4cGaQEvXz1PKMaYsXII+bPYpBBClTzoGgf+nDz42Yz+ldZ+CficGON/ijH+RYzxT2KMryEPmB4q9nlpCOGezV6nJEk6uAyPJEnShsUY/5B8rg7kLV8/v5HjivlF/6B4+L4Y4/w6r/Ep4GPFwy/d4qVuxGMxxkeHbPt7ffd/4Qrn6Q9r/v6QfT4YY7wwZFv/oOzDV3itQb6TvPWvBbykCKQ24yfIQ6uvZHio9xD53KtFL9/CdUqSpAPKtjVJkrRZ30MeklwP/PMQwq/FGH/nCsfcRt72BPDCvhXPruT2rV3ihjyyzrZnFLez5O1b63l/3/1nDtnnwXWOn+27v6m/mxWDun+4ePi6GGPczPEARZD34eJnvf3eHUL4FPl/k+eHECpbCKokSdIBZOWRJEnalBjjJeDb+556Ywjh2BUOO7XFl6uHELZSjbMR0+tsO1ncnttAQPJk3/0TQ/aZHfI85C16iza8wlxRzfVL5Cu53Qv85EaP3Ya/Lm4PsxwGSpKkEWflkSRJ2rQY42+FEN5BvkLZ9eSrif3LdQ7p/zvHm9lgu1thaIvbOjbyD2TrhUIbDnHIV45blA7dq3wvBZ5X3P854Bn53OwVbuu7f0sIYXG+0QMxxvUCrWH6/1s0t3C8JEk6gAyPNHJCCJPA95Ivo3w7MAN8EPiZGOPvl/Qav1ac/zNijA+s2nYb8KlNnO51McbXrvNaVeBPgS8CGoNmUUjSHvkO4PnkVTovDiH8t3X27Z/3k8QYP7TF11wMfK4U7hzd4vkXLV7vqQ20Z1074Ljd8AV993956F7LXlf8AHwJ8J7iz5jnk6/01oox/tYVznFNcZuwu+9VkiTtIdvWNFJCCFPAHwOvAe4A7gPmgC8Hfi+E8JoSXuNl5MHRMC3gfVf4ebBv/09c4SV/hDw4kqR9JcZ4Bvjuvqf+EzA1ZPdPsly18gVD9lkSQnhlCOGlIYQvW7VpMUBvhhBqq48rjp0gD0O2Y3H+zyHg7ivs2/9+7t/m6+6qYvW3dwJvA95QtMINFEIYAz63ePjhGGNnFy5RkiTtA1YeadS8Hvh84EPAC2OMjwCEEL6JvE3itSGE98UY372Vk4cQXg78f+vtE2N8AnjuOuc4TD6bAvLln391yH414D8A/+9WrlWSdkOM8S0hhK8jX0ntNuAbhuzXDSH8CfAC4JkhhOfGGP980L4hhOeTf/4B/AnQ/5l9qe/+baxcqWzRlwGNTbyNQf4AeFlx/6XAv1ln35f13f/Dbb7uhsUYXwS8aL19QghfA7yjePgtMcZfGbDbn5KvtHYd+T+2vGvI6V7MckXXelVmkiRpxFh5pJFRrDjzjeTzJr5hMTiC/MsNy19EXruFc18fQngn8NNsbg7GIG8C7iQPuL570A4hhM8A/giDI0kHw0vJW4Rh/dCmP3z/lRDCzat3CCFcQ17BtOjnVu3SvyLYmkAnhHAt+dLz2/W7wGJb8r8OIXz1oJ1CCK9mee7QH22jHW8vvaHv/s+FENYMNw8hfD7w48XDJ1j530iSJI04K480Sr6JfGjp+2KMHx2w/U3A9wNfFEK4Jcb48EZOWnxheAt5K8bF4hyv38oFhhD+IfD15G0X3xJjbA/Y59vJQ6oG+TLSP8/yX9glad+JMT4SQnglK0OIQfv9cQjhjcC3kYfofx1C+BngvcUunwN8D3BD8fi3Yoy/veo0vwb8APnfYb6rqOb8b+Qtw18AvLw4/m+L19jqe0qKqtX3kg+GfmcI4a3kVTxngFvJB4T/veKQc8C/2Orr7aUY4/8KIbyN/M+npwL3hhB+HPi/5H/2vYB8db0m0AVeVKy4J0mSrhJWHmmUPKe4HdgGEWN8DHioePi8QfsM8SzyZZB/FbgL+L2tXFwIoUG+GhHAz63zr9OL8yR+HngG+V/eJWm/exN5+9OV/BvygDwjX+r9dcB7ip+fZDk4+k0GtMAVixS8nOVVzV5M3mL2p+RB+3XAvwNWh06bFmN8P/D3gbPkf2f6ZuC/Ax8Afp3l4OivgOcUf84cVC8G3lrcv4m84ut/k7cMfjd5cHQB+JoY47C2NkmSNKIMjzRKnlLcDpp/sejB4vapmzjvnwLPijF+YzHPaKu+vXjdC8APrrPfbwAhxvidMcbpbbyeJO2aYjWylwALV9gviTF+D/Bs8sDpfmCWvKLlMfLPwBfEGP9JjHHguWK
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkd13v/3dt3dXrdGcm+zZZ4AsENHBBCKJEULksIqJX8LLIjQi4AuJPuAgCioiiAio3cQGXIMqOXH+A7GETgkhAsnxDQiaZzGQyW++1nPX+cU51nao+p5buqu6Z6tfz8ehHLWepb4dHipl3Pp/PNxeGoQAAAAAAAIA0+Z1eAAAAAAAAAE5dhEcAAAAAAADIRHgEAAAAAACATIRHAAAAAAAAyER4BAAAAAAAgEyERwAAAAAAAMhEeAQAAAAAAIBMhEcAAAAAAADIRHgEAAAAAACATIRHAAAAAAAAyER4BAAAAAAAgEyERwAAAAAAAMhEeAQAAAAAAIBMhEcAAAAAAADIVNzpBQAAgO1ljPm8pMfHL19jrf39Hq/7C0m/Er+8xFp7YPCrQxpjzOWSXibpxyRdJKkm6S5JH5L0V9baoz3coyDpBZKeJelhkvZKOinpRknXWms/3uX6kqRnxz8Pl7RPUlXS9yR9QtKfWWvv28SvBwAATnG5MAx3eg0AAGAbtYVHdUkPt9be2sN1hEc7wBjzAknXSipnnHJc0s9baz/W4R4XSPq/kq7s8FHvlPQia22Qcv2Fkj4s6b91uH41XseHOpwDAABOQ7StAQCwu41Leqcxhj8TnIKMMU+W9C5FwVFV0hsl/bikJ0n6A0Xh3z5JHzDGPCLjHnOSblAzOPq4pGdKukrSSyQdjN//BUmvTbl+QlFlUSM4+rSkn5P06Hgtb5fkSJqW9F5jzNWb/X0BAMCpibY1AABwlaRfl/S2nV4ImuJA7y8k5RSFMz9krf1G4pRPGmM+IelzkiYkvVlRmNPuzZIujZ//kbX2lYljXzXGfETSTZLOkfQqY8yfWWsXEue8VNJD4udvtdb+Rtv9P2WM+bCkT0oak3StMeaKtAomAABweuK/MgIAsHsFkrz4+e8bYy7tdDK23RPUDH3+oi04kiRZa78g6f+PX/6YMWY+eTxuV/vF+OUX2oKjxj3ul/Sm+GVZ0tPaTrkmfjwkacP18T1ukPSX8csHSfqBjN8JAACchgiPAADYvVxJb4mfT0r66x1cC9L9q6R7JP1Lh3OS86oubDv2LDX/vPe/O9zjg5Kul/RWSfc23jTGnC3pAfHLj1tr3Q73+FTi+fd3OA8AAJxmaFsDAGB3e4Okn1JULfIEY8wvWmu3FCIZYx4s6VclPVHSBYrarg4qaq/6c2vtLRnXfV7RIO+6tTZrOLSMMd+RdIWku621+9uONXYCebmiipy/kPQ4RUHZHZJeZa39dOL8WUkvlPSTkh4qaUbSCUnflPR+Sddbaz21McbsV7TbmRT98/uoop3Mnh+vbUZRpc6/SfoTa+2dWb9Plnidn+56onRx4nn7bmdPjh8PWmu/0uGzDitae7tA0Ryk8yR9vss6connmf/7AQCA0w/hEQAAu5i1tm6MeaGkLyiqUHmLMeZj1tpDm7mfMea1kl4nqdB+KP55kTHm9yS9wVo7zC1fL5T0ZUlnJt57hKIAqbHWH5H0j5LObbv2HEWhy5Ml/YYx5hldwp9JRSHPj7S9f6mkX5J0jTHmmZ12Q9ssY8yjJD0jfvk5a+2xtlMeFj/+R9t1M4oCoZU4OEoV3++NPS7n6sTzu3u8BgAAnAZoWwMAYJez1n5Z0jvil3skXbeZ+xhjXi/pdxUFR99WtJPXYxVV/rxU0p2K/uzxuvhnmF6maBeyP5L0Q5L+h6Q3WWsPxGu9SlFl0rmSQknvlvR0RTuIPVvR8Gcpqkb6ojGmPWBK+hNFwdFXJT0vvscz1GzjGpf0d8aY6a3+UsaYnDFmxhjzCGPMWxVVA41LWlBU7ZU8d6+ks+KXd8fvPdMY82VJy5Juk3TIGHOPMeZVxpjxLazrLDVnI7mKqswAAMCIoPIIAABI0Tycn5C0X9LTjDH/01r7nl4vjreJb2zzfr2ka9ravb5sjHmnohk+V0v6HWPM+7Ja2AYgrygs+u3Eex+I11qQ9C5FO5QFkp5lrf1A4rwbFW05/zuK2vrOVTQM+ukZn3WOot/5BckdxowxH1X0+z5FUQXUUyW9d4u/13Piz0r6sqQXWmtva3t/X+L5ojHmOkkvTrnnhZL+QNJPGGOe1rbTWlfGmJykv1EUPErS31hrl/q5BwAAOLVReQQAAGStXZP0osRbbzfGnJl1fopXKPpzxQlJL0mbExR/xjWKKn1ykn5t8yvuybUZ7/+EohlPknRtW3C0zlr7u2rO+fkJY8xD0s6TVJP0svat6eO2vOT8qEEMkb445b2HSfq19p3WJCUrna5RFBx9T9EQ7XlJU4rmUn01Puexiiqw+vWniv6ZStJhDb+qDAAAbDPCIwAAIEmy1n5K0t/GL/dJ+vNerosrTxqDmb9sra10+Iy71Nwd7ImbXGovDllr78049qTE87/MOKfh/ySe//eMc75hrT2ZcSw5K2mmy2f14gZJP6aoNe55ioKfWUm/LOkLcftYw2Ti+UXxWn7AWvs+a+2itbZirf2sokqwL8XnPcUY85ReF2OMeYuiFkFJciQ9O2XuEgAAOM3RtgYAAJJ+Q1FIcq6kZxlj/sla22mbeClqdWtUvTw9seNZN5dsbok9Odjh2EPjx1VJ3+lyn68mnj8s45wDHa5fTTzf8p+7rLVfSry80RjzHkXVTdco+r3+WM1d06ptl7/cWnsi5Z51Y8yvKdphTpKeK6njcG9jTFFRZdcL47c8Sc+x1n6xj18HAACcJqg8AgAA66y1i5J+JfHWtcaYuS6X7etyPEsx3vVrGJY7HNsbPx7vYce3+xPPz8g4ZzXjfSlq0WvIZZ61SXGr3C9LauyO9yxjTKPiaCVxalXSJzrc5yZJjUqtR3f6zPh/s/+rZnDUqDhKbf8DAACnP8IjAADQwlr7YUnvj1+eq2g3sU6SFTXvkvTwPn4yW9w66OXPL51CoX5CnELieZB51g6y1tYV7RwnSWNqznM6kjjtmLXW7XKrRrVWZhhojDlf0hfVbOFbk/R0a+0H+1o0AAA4rdC2hpET/xfX31K01fIliv7L6zckvc1a+/EBfcY/xfd/gLX2jj6ue7+kn5F0SWO76MSxyyV9t49lvNZa+8Y+zgeAfvyqpCcoqtK5xhjzzx3OTc778eMqls1oBD7dwp09XY5301jvPmNMrkv10dkp122LeAD2ZZLOsdb+a5fTk+1oY5JkrV0yxtyjaN5R+zDtNOPxY+pua8aYB0r6VHw/SToq6WnW2q/3cG8AAHAao/III8UYMyXps4p2erlU0s2K/qvoj0v6mDFmyzvAGGNeoig46ve6X1UUHGWpKtpuudPP3Ynz+wmaAKAv1tqjkl6eeOuvFO3OleZ7alYQPabbvY0xrzTGvNgY86Nthxo7tI0ZYwrt18XXTija9n4rvh0/Tku6osu5yd/nti1+br+ul/R1SR/tYee7yxLPk4PCGzObZjrsFteYYWTilwdSjl8q6XNqBkd3SLqK4AgAgN2B8Aij5h2KZjXcJOkya+0jrLUXKxoe6kl6fcpfVnpmjHmZWnfe6fW6V0j6s07nWGsPWWsfl/Uj6alqtkz8ubX2vX3/AgDQB2vt9ZIaFZv7JT0n4zxXUbAgSQ8zxjwu657GmCdIerOk6yS9uu3wYuL5/oxb/KikUqd19+CTiecv7nLuSxLPP7XFz+1XY/h0TtFA7FTGmHMU/X+EJN3WtstcsmLslzt81jPVDAc/0nb/SUVtcefFb31T0mOttd/ruHoAADAyCI8wMowxlynaISZQtOPL+k478V+A3hy/fP0m7n2uMeYDkt6qPmZlGGPON8Z8SNHuN1sdlPqXitrw/lPSb27xXgDQqxerOXi5U2jzp4nnf2eMubD9hHgb+b9KvNUeqn878fzXUq4/W9JbOq62Nx9VVDk
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZwsd1no/8/JOdlIQgLBQEISssnDIusVIosSFhVEVEREEBDCKrLqdfnJEsSLiIjKHq6AyBIBFYGr4AKCbEZAAsj2hQSyJ2Q/S84s3VX1++NbfaZPn96nZ7pm5vN+vebVW1V1zUmmuvqpZ9lWVRWSJEmSJEnSNA6a9w5IkiRJkiRp4zK4JEmSJEmSpKkZXJIkSZIkSdLUDC5JkiRJkiRpagaXJEmSJEmSNDWDS5IkSZIkSZqawSVJkiRJkiRNzeCSJEmSJEmSpmZwSZIkSZIkSVMzuCRJkiRJkqSpGVySJEmSJEnS1AwuSZIkSZIkaWoGlyRJkiRJkjQ1g0uSJEmSJEma2o5574AkSVp/EfEp4EH1w5eklF455npvBH6jfnhqSuni2e+d+omIE4DnAD8NnAEcAdwAXAC8D3hvSqk9ZP23AU8b8+36/reNiMOAZwCPA34EOAy4Avg08Jcppc+P+/tIkqTNw8wlSZL00oi487x3QoNFxC8DCXgx8KPAMcDBwG2BhwPvBD4fEbcfspl7rXIfTgW+DLweeABwNHAocBrwFOBzEfGmiPD8UpKkLcYPf0mSdCjwdoMCzRQRDwXOA44EFoE/A34KOBN4PDlrCOA+wEcj4hZ9trEDuGv98G3kQNOwnyt71j8C+FegE4T8J+CXgQeSM5m+Wz//HOCPVvP7SpKkjceyOEmSBHA/4PnAX8x7R7QiIrYBbwS2kwNLD04pnd+1yBci4v3Am4FnA3cHXsiBAZ47k4OIAB9PKX1lwl35bXIpHsBrU0r/u+u1z0XEe4AvAHcDfisi3pxSunTC95AkSRuUVyglSdraSqDTp+eVEXHaPHdGB7gfcKf6/ut7AksApJQq4EXANfVTT+6znXt23Z80sAQrvZquBn6/zz4sAi+vH+4AfnGK95AkSRuUwSVJkra2FvCa+v4tgL+c477oQD/edf8jgxaqgzufrR9GRBzas0in39LNrJSwjSUijgQ+SQ5KfSiltDxg0W913T95kveQJEkbm2VxkiTpD4BHkzNkHhIRz0gprSrIVDcIfy7wUOBEYBtwGTlI8YaU0jcHrPcp8hS7pZTSYUO2/3VyD6FLUkqn9LxW1XdfRO4N9EZyb6AWcCHweymlj3ctf0vg6cDPkyegHQVcT57C9rfAu/tNYYuIU4Dv1w8fTQ7+PIWcOXTXejtXAP9CLiW7aNDvM8QXgFcBJ9T7Psy2rvuHAUtdjzuZS19NKZWT7EBKaQ/9s6F63aHr/lWTvIckSdrYDC5JkrTFpZSWIuLp5MbQBwGviYiPppSumGZ7EfFS4Bxyn6D9Xqp/nhkRfwj8QV3StVZOAj4H/FDXc/emK0gTEQ8G3gsc37Pu7YBH1D+/GRG/MCI4dAvg48CDe54/Dfh14OyI+MWU0kcn+QVSSp8kB+SGioiDyRPcAHamlHb2LHKP+vYrEfFzwNnAjwG3Bq4j/zu9uX6/iUXE4cBL64cF8PfTbEeSJG1MlsVJkiRSSp8D3lQ/PBo4d5rtRMTLgVeQA0tfIzeZvj85c+gFwEXk849z6p+19ELgNsCfkMvLHgv8UUrp4npf70fObDoeqID3AD9HnsL2K+TpaJCzmT4TEb0BqG6vJQeWzgeeVG/jF4B/q18/FHhnXWK2Fs4Gjqvv/0v3CxFxMjmIBPBE4MPkLK3bAgeTf/9fAv49It5aT5YbKSIOjojTIuIZ5JK5+9cvvSSl9L3V/DKSJGljMXNJkiR1/H/Ao4BTgJ+NiCeklM4bd+WIuDcr2SvvBs7uKSf7XES8HfhH4CzgZRHxgUElcjNwEDmY9OKu5/6u3tftwDuAw8lNzR+XUvq7ruW+ALw/Il5GLhs8HngrOfjUz+3Iv/NTusvOIuIj5N/3Z8gZVI8E3r/6X21FRJwB/HHXU6/tWeReXfdvCXyVPF3u6+Sg11nA84BbAc8kB9qePeI9DyL3bzq46+kbgRemlN418S8hSZI2NDOXJEkSACmlm8nBhY7XRcQPDVq+j98in1tcDzy7X5+i+j3OJgcwtpGDGmvpLQOefxQrU9je0hNY2iel9ArgU511IuIuA7a3SA6s7NfPqC776+5fdQ9mKCKOIwevjqmfeltK6Qs9i3VPins78KMppf+bUvp8SumTKaVzyAGoS+plnhURZ4146+PZP7BEvQ9PjogHTvp7SJKkjc3gkiRJ2iel9G/AX9UPbwO8YZz1ImIbuT8RwOdSSnuHvMf3WZks9tApd3UcV6SULh/w2k933X/riO28uev+wwcs898ppRsGvNbdq+moEe81toi4HfAJch8ryA3In99n0deQg1qPYnDQ7xJyU/OOF454+xa5zPBM8n/3c8m9lh4KfCIifmH830SSJG10lsVJkqRev0kOohwPPC4i/ial9OER65xCLqsC+LmuiW2jnDrdLo7lsiGv/Uh9u4dcHjbM+V337zZgmYuHrL+n6/5Mzr0i4nRyb6XT66cS8IiU0kLvsnWg72v1z0AppY9HxPfJ/00eEhHbBjVcTyldQ11iWPvniPgHchbVIeT+UqemlG6c8FeTJEkbkJlLkiRpPymlm4Df6HrqLRFxzKDla7eZ8u12RMTMsnl67Bry2rH17XVjTKz7Qdf9Ww9YZs+A5yGXAHZsG/FeI9WNyP+TlcDSN4AHp5R+MHitsX21vj2KlWDhWFJK/wq8rn54NPCYGeyPJEnaAAwuSZKkA6SU/gH42/rh8RzYJLpXd0bOO8g9fMb9GVhCN8Q45zDDgkaTBHm2d90vBy61DiLiscC/k5uDA/wX8KCU0lUzeovu/xaHTLH+B7vu332V+yJJkjYIy+KkCUXELYDfIY+pPhXYDfw38BcppY9Nuc2TgZeRy1COA64l99F4VUrpW0PWexTwXOA+5C8B3yN/GXzjoFKEui/Kk8i9NTqNZb8LvIvcCHaaL3mShmjYceOXgF8HOk2XD4mIPwP+NKV0Zc/izwUeQs7yOTsizu55/fsRnXY/dE8IK1JKX5n8twJWAkKjgj9HT7n9jk5/pNsMK/+q3bbPeusuIp4DvJGVf5t/An552HG7nur2EHIwarEOGg5zXH1bUP+uEXEI+f/b04ELRgSyru+6P01wSrW1OG70eY+/qbf/wymlCydY72+BXwJOTSldPGS57eQG/k8ml6Legtw4/h/Ix6qbpt97Sb0aer7xv8iTSS8jl073O9/oXu+W5AEhjwZOI3/mfQt4J3kARzHN76G1Z+aSNIGIOIJ8xfgc8sHuG+RRzD8FfDQizplimwF8GXgacCS5JOEwcgDoyxHx0wPWexPwkfq9K/JB90TgFcDXIuJH+qxzMPmE7q+BHydfof4OeWLS64DzI+LESX8HSYM17LjxNnIA+iHk4AHkk7YXAd+IiAd0L1/31XlR11Nt4Jqux18CPlf/XMBK1suPjfE7/G5EPCsiHtbzUqfZ9CH1F9N+6x7OSubOtDr9h44E7jpi2e7f59urfN+pRMSvA29iJbD0l8DPj7ogUE+v+zvgPODN9QWGQe9xKPliBcDXUkrL9f2fI//e/wT86ohdPb3r/qBm6hphLY4bfd7j2eQvoJOu91xyYGnUckcBHwf+LzmYfQ25N9np5C+//x0Rt5/0/SX11+DzjQXyZ8gJDDjf6FrvjuQ+iC8jD6u4CLiJHKB6A/CP9fcZNZDBJWkybyJPxvkKcHpK6d4ppTuQr8i1gZf3+aI0UETsIEfwjwXeDRyfUroPuQTljeSD9/si4tie9Z4HPKd++Argdl3r/QU5yPTxPj1S/hj4+Xpffx04oV7vBOD95Ea1H6v3S9JsNOW48TTyyWEbeCK5Zw/AEvnv/xjgg/VVz31SSu9mJRtlB/v34XlsSumB9c9fAJ+sn7/bsHH0EfEQ8vHoXOD
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkd1n3/3dP9yyZ7CQkJCQkJJGb9XkQQUFAAigKKIsbKIIYkU1BEAV+yBI2BUHZJcj2QMRHkEXQB0QCBAQEFQEByTcEScgCmSRkkumtqs7y++Ocmq7uqequ7j5d1dP9fl1XX7Wdc+rbM6GY/vR939+JsiyRJEmSJEmS+tkx7gVIkiRJkiRp8zI8kiRJkiRJ0kCGR5IkSZIkSRrI8EiSJEmSJEkDGR5JkiRJkiRpIMMjSZIkSZIkDWR4JEmSJEmSpIEMjyRJkiRJkjSQ4ZEkSZIkSZIGMjySJEmSJEnSQIZHkiRJkiRJGsjwSJIkSZIkSQMZHkmSJEmSJGkgwyNJkiRJkiQNNDXuBUiSpNGLiIuB+9UPn59SevmQ570R+N364W1TSpc3vzr1ExHnAM8Afga4DTAPfBf4IPBXKaV9K5x/EfDAYd4rpTQx4Bq7gScBvwrcETgKuAr4NPD6lNLXhvpmJEnSYcXKI0mS9IKIuMO4F6HBIuLxwNepgrvbAXuA44AfBV4KfDMiHrLCZe66zjXcDvgv4HXAvYHjgZ3AbYHzgP+MiD9ez3tIkqTNyfBIkiTtBt4eEf67YBOKiAcD76AKjOaAlwEPAn4W+FOgBZwIvD8i7jbgGqcDJ9QPX0IVOi33tfT8k6mqi25XP/U14LeAewK/CPwT1b8rXxYRf7aub1iSJG06tq1JkiSAewFPB1477oVoQR3ovRGYANrAfVNKX+455J8j4p+ogp0jgFdQBUtL9VYdfTSl9NVVLuXPgVPr+x8CHpVS6vS8/qE6NPoj4A8j4v0ppX9b5XtIkqRNyt8wSpK0vRVAVt9/eUScNc7F6BAPALp/J29cEhwBkFL6LPD/6oc/ExHH97lONzwqqNrfhhYRtwQeXT+8GnjckuCo67nAN6mCrleu5j0kSdLmZngkSdL21gFeVd/fC7x1jGtRf/8IfA/48DLHfKvn/ul9Xu+2oqWU0uwq3/9+wGR9/20ppel+B6WUCuDd3XMi4larfB9JkrRJ2bYmSZJeDDwSuD3wgIj4nZTSukKkegD371Ht7nUaVTXKlVTtVW9IKf33gPMupgorWimlPctc/xvAnYArUkpnLnmtrO8+k6oi543AfaiCssuA56aULuo5/hjgCcDDgTsDRwM3AF8B/g64MKWUsUREnEm12xlUf34fAR4PPK5e29FUlTofB/48pfSdQd/PIPU6L1rxQDij5/73+7zerTz6ymrXsOTaX1rh2O7f6wTwEywfeEmSpMOElUeSJG1zKaUWVXhS1E+9KiJuvdbrRcQLqFqjngoEcCRVVVMATwa+HhHnR0Tf7eAbdDrweaoZQHuBY4G7UQVI3bXeH7iEaqbPTwG3oNpB7FZAd1D1VyLi7BXeay9VyPN2qvDrRKpB5GcBT2G43dDWJCLuATyifvjplNJ1S14/BjizfvhfEfEbEfHxiLg+IloR8b2IeFdEHDIou7ar5/6BFZbT2852u4FHSZKkw4rhkSRJIqX0eeBN9cNjgQvWcp2IOJ9qN69Jqm3dnwz8JFXlz+8D36H698eL6q+N9AyqEOfPgPsCvwL8SUrp8nqt96KqTDoFKIG/Bh5GVTHzaOCf6+vcGfiXiDhlmff6c+D+wBeBx9bXeATwifr13cD/iYij1vtNRcRERBwdEXeLiNcAF9fXv5Gq2mupu1JVAgE8D7iQKlA7gSoYOp2qWurLEdHv7+T6nvunrbC83pY529YkSdoibFuTJEld/x/wC1RVKj8fEb+eUvqbYU+ut4l/Qf3wQuC8Je1en4+It1PN8DkXeGFEvG9QC1sDdlCFRX/c89z767VOUlUVHUFVcfWolNL7e477N+C9EfFCqra+U4C3UIVL/dyK6nt+fD37h/p9PkL1/T4EuCXwUOC96/y+HlO/V6/PA09IKV3S5/jeiqJjgM8CbwO+XT/+WarqqCOA8yOilVJ6Rc85va1qjwT+dpm1/ULP/SOX+yYkSdLhw8ojSZIEQEppBnhiz1Ovq3faGtazqP5tcQPw5H5zgur3OI+q0mcCeNraVzyUNw94/heoZjwBvHlJcHRQSuklVJU9AL8QEXcccL154Bm9wVF9fsniIeT/e5hFr+CMPs/dBXjaCjutAZyfUrpfSunClNIXU0r/nFJ6FlV12P76mJdFxDndE1JK/wV8rX74KxHRGxAdFBE/z+LwaOeQ348kSdrkDI8kSdJBKaVPAO+sH54IvGGY8+r5RQ+uH35+uR29UkrfZWF3sAeucanDuDqldNWA13625/5bVrjOX/bc/7kBx3w5pfTDAa/1Dso+eoX3GsZngJ+hao17LFWr3DFUM6Y+GxEnLTn+94EfAx6cUnpxvwumlL4K/FH9cJJD29/+gKpCawL4QES8NCLOioidEXFGRDwf+ACwD8jrc9rr+B4lSdImYtuaJEla6g+oQpJTgEdFxP9NKa20a9aZQLfq5WE9O56t5LZrW+JQrlzmtTvXt9PAN1a4zhd77t9lwDGXL3N+79b26/63V0rpcz0P/y0i/oaquuk8qu/r1VQzjLrH3wz85xCXvpAqLNwD/PSS9/xURDyRahbWTuD59Vev66h2rPtC/XhmyG9JkiRtclYeSZKkRVJK+4Hf7XnqzRFx3AqnnbjGt5uKiCaqcfq5eZnXTqhvr69by5Zzbc/9Www4ZnrA81C16HU1vsNc3Sr3VODq+qlHRcTeNVynRbXzHMBt+rz+dqr2tn9i8a5qN1G1B94FSCz8+/JaJEnSlmDlkSRJOkRK6UMR8XdUO5SdQrWb2G8vc0rvvynewZDtbrWBLW7LGOYXYMuFQqsJcSZ77hcDjxqjlFIrIv4f1cyqXVTznIapNlqq+3exa8D7/Dvw4Ig4Erg11aynq1NKOUBE3LPn8O+u4f0lSdImZHikLS8iHke1i8xdqH6QSFTzPN68dLDpkNfbCzybahvn2wIHgC8Dr00pfWyZ825PNUz2AVT/4O5Q7XTzQeB1KaUDQ77/0cDXqQam3j+ldPFqvwdJGtLvUX1mnQCcFxHL7bLVO+8nr2forEU38Fkp3Dl2jdfv6q73xIiYWKH66OQ+541EPQD7bOBWKaV/XOHwG3ru76rPPwK4L3AS8IOU0kUrXKM7L2nfcgfVg88v7fNSb3i01v8GJEnSJmPbmra0iHgD8C6qf8xeCVxBNTT0jcDHImJVO8HUv2n9FPAi4Czgm1QzHR4EfDQiXjTgvF+h+kf0E4DTgMuo/pF/V+ClwH9ExGlDLuO19N9pR5IalVLaBzyz56m/YvD26//DQtXKPQccc1BEPCcinhQRP73kpe4ObbsiYnLpefW5R1Bte78e/1XfHgXcaYVje7+fSwYetTEuBP4d+MgQO9+d3XO/Oyh8D/Dx+jovX+7kiLhVzzX+o+f53RHxwoh4U0T82gpreGR9e3lK6bIVjpUkSYcJwyNtWRHxeKrfmt8E3DeldIeU0p2BuwPfpwp8XrjKy76JanebrwJnp5TullI6g2owaQacv/QHoYg4i+of7buBdwMnpZTunFI6E7gb1Y5DtwPeN8T39FCqgaiSNBIppQuBblXlmcBjBhzXAT5dP7xLRNxn0DUj4gHAK6iGLz9vycv7e+6fOeASP836t4H/5577T1rh2Cf33P/EOt93tf6lvp1gmc//Ovh5aP3wku4ucymlG6mqVQHuUVfBDvJMFiq+DlaZ1bOQnkY1V+npy6zhnsBP1Q8vXOZ9JEnSYcbwSFtS/dvq7i4wz+ndmSal9GWqrY0BnhkRQ7U+RMTZwG9Qzbt4TErp4C4+9Q9Xr6gfnr/k1KdTBUdfBc5LKd3Uc95XgV+k2tb4Xiv8sHULqt101jIbRJLW40lULbqwfGjzFz33/09EnL70gHob+b/qeer1Sw7
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkaVnn/W9sGZFrZe3V1Qu90U83a6OA9oCC4KjooPLOKI6iMKiI24g6IzouoJe4L7gwMoiOCCIIA8ooDLK4IjSCrE33A73TVV1dS1ZWrrHH+8c5mRmZGZEZmRVZudT3c111xXbOiSezqaDyl/d9P5lWq4UkSZIkSZLUSXa7FyBJkiRJkqSdy/BIkiRJkiRJXRkeSZIkSZIkqSvDI0mSJEmSJHVleCRJkiRJkqSuDI8kSZIkSZLUleGRJEmSJEmSujI8kiRJkiRJUleGR5IkSZIkSerK8EiSJEmSJEldGR5JkiRJkiSpK8MjSZIkSZIkdWV4JEmSJEmSpK4MjyRJkiRJktRVfrsXIEmSLq0Qwt8Dz0gf/kyM8VU9nvf7wA+mD6+LMd7f/9WpkxDCceAHgK8FbgSGgQngE8BbgD+LMdY7nHc/8KiNvl+MMdNlHf8B+B7gqcAhYBb4LPB24HUxxvmNvpckSdr5rDySJOny9rMhhFu2exHqLoTwrUAEfhp4MjAOFICjwNcBfwL8Swjhyj69Za3DGvIhhDcD/xf4JuCKdA3jwNOBVwMfCyFc16c1SJKkHcTwSJKky1sR+KMQgv8m2IFCCM8G3gyMAGXgt4CvAb4M+M/AP6aHPgV4dwhhaMUlvh54Ug9//qXtnJd2WMpvpO8HcIKkAu0rgecD70uffwzwnhDC4Ca+VEmStIPZtiZJkm4D/itJ9Yh2iBBCBvh9IEcSHH1VjPEjbYd8NITwVuB/kgQ+TwBeBvzSwgExxs/18D7fB/y79OEfxhj/eMXrVwM/lD78InBrjHGi7ZC/CCG8HvhuIADfTxJySZKkPcLfMkqSdPlqAgtzcl4VQrh+OxejVW4Dbk7v/+6K4AiAGGML+FHgdPrUd23kDdL/5r+ZPvwCSfi00teQBFgAv7wiOFrw4yT/ewJ47kbWIEmSdj7DI0mSLl814NfT+0PAH27jWrTaV7Tdf1e3g2KMZeCf04chhFDcwHu8hmT4NsBLYoxzHY450nb/813WcIGkKgmSeUiSJGkPsW1NkqTL288DzyOpcHlWCOF7Y4wXFSKlA7h/CHg2cBWQIQkW/g74vW6tVG27wFVijKU1rv9Z4LHAAzHGa1e81krv/ijwNyRtX08nCcruBn4yxvj+tuPHSHYP+ybgccAocI5kF7O3AW/ssovZtcB96cPnkYQ7LyKp/Hlsep0TwHuB34wx3tPt61nDR4FfBo6na19L++5oJaCy3sVDCM8lGbgNyW5tf9/l0JNt928GPtDhWoPpOlceL0mS9gArjyRJuozFGCsk4clCy9GvX8yuXSGEnwU+Q7KtfCCpahlK778U+EwI4ZXpPJ+tdDXwIZKWqyFgH/AltIUwIYSvAu4iadv6SuAAyQ5ix4DnAH8MfCKEcMM67zUEvB/4I5Lw6xDJIPLrSeb/3BFC+PqNfgExxr+LMf6PGOOLYoyPdDsuhFAAnpY+vJBWAa0pHZD+y+nDeeAn1zj8b1kKo34ihLCvwzG/QPK9gyR0kyRJe4jhkSRJl7kY44dI2pcgCVleu5nrhBBeSRIi5IBPk4RF/46k8udHgHtI/u3xivTPVnoZSYjzayTtX98C/FKM8f50rbeRVCZdAbSANwHfSLKL2beRBCaQVCP9UwhhrVas3wS+CvgI8J3pNb6ZpV3IisCfhBBG+vS1rfRillrL3tvjOf+JpEIK4HUxxoe6HRhjfBh4efrwGuDTIYSXhhCeHkJ4XgjhHcB/S19/D0mIJkmS9hDb1iRJEsBPkQw6vhb4DyGEb48xvrnXk0MIXwL8bPrwjcCLV7R7fSiE8EfAXwPPBH4uhPAXvewGtklZkrDop9uee3u61hxJVdEgScXV82OMb2877qPAW0MIP0fS1ncF8L9IwqVOjpF8zS+KMS5UcBFCeBfJ1/v1wGHgG4C3XvyXtiSEcCPwK21P/Wa3Y1f40fS2Rg87o8UYfyeEcC9JtdJjgT9Yccgc8DPAa2KM1R7XIEmSdgkrjyRJEjHGWeAlbU/9Tgjh8AYu8eMk/644B7y005yg9D1eTFLpkwF+ePMr7snKgGPBc1naxewPVgRHi2KMvwD8/cI5IYTHdLleGXhZe3CUnt9i+RDyJ/ay6F6FEI6QhFPj6VOvjzF+tIfzngp8efrwz2OMD/Zwzj6SCq7jXQ4ZIqlmesp615IkSbuP4ZEkSQIgxvg+4H+nDw8Bv9fLeen8ouekDz/UZceuhfe4D7gzffjsTS61FyfWaMX62rb7/2ud6/zPtvtf1+WYj3fZvh6SVr0Fo+u8V89CCMdIBleH9KlPAP+1x9N/pO3+r/XwXkdIQrT/TtLW+Bsk4VuRJEz6fuAMSYviB0IIz+l8JUmStFvZtiZJktr9GElIcgXw/BDCn8cY/2qdc64F9qf3v7Ftx7P1XLe5Jfbki2u89rj0dgb47DrX+Ujb/cd3Oeb+Nc6fabvfl393pQO83wssDPKOwHNijPM9nDtIMo8J4F9jjHf08JavBW5N778wxvimttceBl4bQngv8GHgKPCWEMKjY4yne7i2JEnaBaw8kiRJi2KMk8APtj31ByGE8W7Hpw5t8u3yIYS+VeOsMLXGawfT27Npa9la2nc5O9DlmJkuz0PSorfgoneYSwd9f5il4OgO4KvW2o1tha8maTGDHuYvhRCOsxQ2vX9FcLQorSj7qfThGPBdPa5HkiTtAlYeSZKkZWKM7wwhvI1kh7IrSIYwf/cap7T/e+KP6bHdLdW1xW0Nvfzya61QaCMhTq7tfrPrUZdACOFbgD8FSulTtwPfEGM8t4HLLARBLeBtPRz/ZJa+X3+9zrHvJPnvD8mOc5IkaY8wPNKeEkIYAn6CZJvl64Bp4OPAq2OM79nkNZ9KMh/iK0h21JkHPgf8OfDabrvKXMR5WeC/AC8kaa0YBh4A/opk56Dzm/k6JGmDfgh4FkmVzotDCG9Z49j2eT+NGOMnN/meC4HPeuHOvk1ef8HCeg+FEDLrVB8d7XDeJRdC+AHg91n63vwN8K1rzZfq4hvS29t7GZQNjLTdn1zrwBjjZAihBhS4+P9GkiRpB7FtTXtGCGEY+CDwCuB6klL+WeBrgHeHEF6xiWv+CEl7wLeTtGXcSdKe8OXA7wD/GEIY6+N5w8D7gNeThE5nSGZp3AD8N+DfQghXbfTrkKSNSufV/GjbU68jCbM7uZelCqIv73LMohDCy0MI3xdC+OoVLy3s0DYQQsitPC89d5Bk2/uL8en0doRk2/m1tH89d13k+25KCOH7gdewFBz9IfBNGw2OQgiBpTDsH3s87Uzb/Ru6HpVc/zBJcATgvCNJkvYQwyPtJa8hKZP/JHBDjPFLYoyPIpm7UAde2eEHla5CCE8Dfpvk78mvAftjjE+MMV5J8tv4k+n7/a9+nJf6g/ZjYowhxhhIBpV+gWQo7Xo7A0lSX8QY3wgsVG1eC3xHl+NqwN+lDx8fQnh6t2uGEJ4F/ArJEOb/seLl9sqWa7tc4qtZCig262/b7n/fOse+tO3++y7yfTcs/f+t32976lUxxpfEGBubuNxT2+5/rMdzbgdq6f1vCyGs9b3/9rb7/7SRhUmSpJ3N8Eh7QrrzzAtI5lF8R4xxcZed9IefX0kfvnIDl/3vJL/l/b8xxpfHGCtt1/w7krYySP4xffXFnpe2uX0n0AC+Lsb40bbzPsPSDzjPCSFcuYGvQ5IuxveRtADD2qHNb7Xd/5MVn4vA4pbvr2t76ndXHPLptvs/3OH8o8Cvr7na3rwLuDu9/wMhhOd1OiiE8LPAM9KHH7iIdrxNCSHsA97A0r/XfjvG+DMXcckntN3vKTyKMU4Bb0wfPhr4rbS9euVanwL8YvrwLEmLtiRJ2iOceaS94jtJhpp+KMb
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5gkV3nv8d+k3Z3NK63SaiWEJHMAkQ2WhbhG4ATmAsaPMcEGgxzIycY214CFg+xrY18QJsgmmWxkjAETjAGLJBBgLITSHsWVtHl3Zid0rnT/OFXd1T1VPT0zPdM93d8Pzz6dKpxe1LVVb73ve0aiKBIAAAAAAACQZbTXAwAAAAAAAED/IngEAAAAAACAXASPAAAAAAAAkIvgEQAAAAAAAHIRPAIAAAAAAEAugkcAAAAAAADIRfAIAAAAAAAAuQgeAQAAAAAAIBfBIwAAAAAAAOQieAQAAAAAAIBcBI8AAAAAAACQi+ARAAAAAAAAchE8AgAAAAAAQC6CRwAAAAAAAMg13usBAACAtWWM+bqkJ8Yv32StvbLD9d4p6RXxywdaa/d3f3TIYozZI+nlkn5R0oWStkialnSDpH+W9DFrrb/INi6Lt/F4SadJOinpVkmfkPQha21tGeN6o6S/kPQP1tqXLnV9AACwPpB5BADAcHuzMeYhvR4E8hljfk2SlfRGSY+VtFPShKQzJD1F0j9J+o4x5uyc9UeNMe+SdK2kZ0s6W9KGeP0nSfpHST8wxvzEEsf1OElvXsZXAgAA6wzBIwAAhttGSe83xnBO0IeMMT8r6eOStkqqSPp/kn5B0sWSnifpm/Gij5P0RWPM5ozNXCmXcSRJByS9UtLPSPoVuawjSXqEpM8bY7Z3OK6HSfqS3H8/AABgwFG2BgAALpH0aklv7/VA0GCMGZH0TkljcoGjJ1lrr08t8n1jzCclvVvSS+UCQK+V9JepbVwg6Q/il3dLeoy1dja1jX8zxtwiV3r2ILnA0l+qDWPM0yV9RNKO5X87AACwnnCXEQCA4RVKSvrkXGmMOb+Xg8ECl0h6cPz8HS2BI0mStTaS9DpJx+K3XtiyyIvlgk+S9NqWwFHiryTNxM9/LW8wxphdxpirJH1WLnAUdPIlAADA+kfwCACA4eVJemv8fLOk9/ZwLFjof6Wefy5vIWttRdK345fGGJMuJTsi1+vofklfyVk/lHR7/PLcrGWMMY+XdKdchtqIpMOSnr/4VwAAAIOAsjUAAIbbn0p6llyGy5ONMb9jrV1RECluwP1KST8raa9csOF+uSDG31trb81Z7+tys8BVrbWb2mz/ZkkXSbrXWntey2dR/PR1kr4gV/b1BLlA2Z2S3mCt/Wpq+e2SflvSMyU9TNI2SVNys5j9i6SPZM1iZow5T9I98ctnyQV3XiSX+XNRvJ2Dkr4s6e+stXflfZ82vi+XFbQnHns7I6nnmyRVJcla+065v4NccXlcEjQ6nLPYgySdIimS9GG5v1/K1gAAGBJkHgEAMMSstVW54EkYv/XWvFm7OmGMebOkm+QaNBu5KeU3x89fKukmY8xb4oDFajpH0nVyzaU3ywU6HqNUEMYY8yRJ+yT9nVwD6VPkZjE7U9JTJX1A0g1x36B2Nkv6qqT3ywW/dss1kj5f0ssk3WKM+aWlfgFr7bXW2j+21r7IWns0bzljzISkS+OXszmlae28Su47S9Inc5YJJX1R0sXxeE4ucR8AAGAdI/MIAIAhZ629Lp7K/VVyQZarJT19qdsxxrxF0hXxyx/LNXL+sdzNqp+UK3m6ILXMW1Yy7kW8Vi4b528k/btccORR1tr98VgvkctMmpTLpvmYpGskHZX0QEmXywWeHibpW8aYn7TW5mXl/F28/eslvUuuBOwsSa+Q9PNygaR/Msacb60tdP2burGeHj//8mILx4G73ZIeHo/xV+KPfig3m1uWj1prP7zCcQIAgHWK4BEAAJCk/yMXMDpP0v82xjzfWvvxTlc2xjxG0pvjlx+RdHlLudd1xpj3S/q8pMsk/Ykx5pq8ErYuGJX0l9baN6be+1Q81jG5rKJJuYya51hrP5Va7vuSPmmM+RO5sr6zJP2DpGfk7OtMue/8orh/kOL9fE7u+/6SpNMkPU35mT3LYoy5UNL/Tb31dx2s9l5Jv9Xy3vslvT4vuJX+XgAAYPhQtgYAAGStLUr63dRbVxljTlvCJn5f7rxiStJLs/oExfu4XC7TZ0Qu02k1vSfn/aerMYvZe1oCR3XW2j+T9PVkHWPMQ3O2V5GbyawpwBLPhJbuH/XITgbdKWPM6XLBqZ3xW++z1n6/g1UfkPHez0n6HWMM54YAAGABThAAAIAkyVr7FUkfjF/ulvT3nawXl0E9NX55nbW21GYf90i6LX75s8scaicOWmsP5Hz2i6nn/7DIdt6dev6UnGV+aK2dzvks3Sh72yL76pgx5kxJX5PrJSW5Bt+v7nD1d8vN5HappN+Ta2b+ALkSv48RQAIAAK0oWwMAAGm/JxckOUvSc4wxn7DWfnaRdc6TtCt+/ozUjGeLeeDyhtiR+9t89rD4sSDp5kW2c33q+cNzltnfZv10GVhXzrviBt5flusfJUlW0lOtteVO1rfW/lvq5XeMMR+Sa/j9aEnPlfQVubI+AAAASWQeAQCAFGvtjFwT5cR7jDE785aP7V7m7saNMV3Lxmkx1+azU+PHE3FpWTvpWc5OyVmmXRPs9PZXPMNc3Oj7u2oEjm6R9KR2s7EtJs6aemHqrcuXP0IAADCICB4BAIAmcWbKv8Qvz9LiTZjTGTUfkMtg6fRPbolbG52cv7QLCi0liDOWet7TptHGmGdL+i+55tuS9D1JT2wzC1zHrLU3y80SJ0mPWOn2AADAYKFsDQPFGLNZ0h/Kpd0/UNK83NTDb7fWfmmZ2/wpSa+R6w9xpqSypFslfULS1dbaWs56o5JeLOk35Uoktki6V9Jn5WYAOtnh/j8Rf5+fsNbeuZzvAGD5VuO4krGP3N+5MeY8SfcsYXN/aq19S8s2fkHSyyVdLJd1kwRPRo0xIznZN6+U9OR4+cuNMf/cZp/pfj+BtfZHSxhvWjKOxYI7O5a5/UQy3t1tvn/ijIz11pwx5uWS3qnG380XJP1au/5S8Xp75LKUAmvtdxbZzVT8uGElY0V7/XKu0uGx5UZr7aNa1rtM0rWLrPdZa+0vdzR4AMC6QOYRBoYxZovcHdkrJJ0vl8pflPQLkr5ojLliGdt8jVx5wPPlyjJukytP+GlJV0n6pjFme85YviLpfXIncsflemJcIOn1kv7HGLO3g/2/VO7kEkAPrMZxJWMfi/3OK5KuW+TP/tTyd7Rs/+/k+uM8Uy6IfYsaQZoJSZ8xxky07tRae0zS61Jv/WO8fpa71cgg+uk23yUZ0x8ZY15ijPm5lo+SGdo2GGPGWteL151UI/NmuX4cP26VdNEiy6a/z74V7ndZjDEvk/QuNQJH75X0zA4CRyNyY/6m3P9/iy17fvwyr9E4VqifzlXUmP1vWvnHlhvarHe4zXq3LvV7AAD6G5lHGCTvkrur/iNJz7DW3i9JxpgXyJVRvMUYc5219qudbMwYc6mkt8mdrP+NpD+x1lbjz54k6aPx/v5B0vNaVn+P3B37Q5KelUydbIx5uKR/lfQT8XpPa7P/10r6f52MFcCq6epxpVUnv3Nr7RFJT2izjW1qXOC9x1r7sdRnvy7XADuQ9AeSrrLWhsaYr0t6YrzYMyT9maT/k7Hvjxhjnic3k9p5kn49Z4yeMeZauWPaw40xT7DWfjtnvE+W9H/jl9fKNWpOzKSen6fmmcoSPycX9FqJ/5T00vj5SyS9qs2yL009/8oK97tkcYDtnam3rrTWvqmTda21kTHmOrkG6BcZYy621n4vZ/GnqZFltebfc4j007lKEgS6xlr7siV8h2S9q6y1f72E9QAA6xiZRxgI8cwzvyHXj+LXk5MxyV38qHGh8pYlbPYP5E7G/t1a+0fJyVi8zWvlytEk6bnGmHNSY/kpSS+Qu1h7ShI4ite7Se5CRZKeaow5O+O7nGWM+ZQaJ4M
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZylZ13n/e9Zal+6q7uT7k66O53ukCsQNhkWgygRHUdhdFzHnWEiCu5RnhEcwYCOLG64IRkVdIwbi4o8PvKIICAEWQ0CWa6kO+mk9669zn6v88d9nzr3qTr3WarO6eqq/rxfr36d5V7OVe3LQ+rbv9/vyoRhKAAAAAAAAKCV7FYvAAAAAAAAAFcuwiMAAAAAAACkIjwCAAAAAABAKsIjAAAAAAAApCI8AgAAAAAAQCrCIwAAAAAAAKQiPAIAAAAAAEAqwiMAAAAAAACkIjwCAAAAAABAKsIjAAAAAAAApCI8AgAAAAAAQCrCIwAAAAAAAKQiPAIAAAAAAEAqwiMAAAAAAACkym/1AgAAwOVljPmopBfGL19rrf2VLq/7PUk/Hr+80Vp7qv+rQzeMMcOS/k3SrZJus9Z+KuW8U5Ju6PX+1tpMl+vISfqkpOdK+pi19vZePwsAAFz5qDwCAODq9jpjzJO3ehHo2ZsUBUeD4PZw7qsUBUcAAGAHo/IIAICr24ikdxhjXmCtDbZ6MejMGPPzkn62y9NfLGm4i/PeJun58fNXdrkOI+kNXa4DAABsY4RHAADgNkk/Jem3tnohSBe3qv22ugx3JMla+0AX932FGsHRH1pr39nFNVlJ75Q02u1aAADA9kXbGgAAV69Akhc//xVjzLGtXAzSGWOeK+leNYIjv0/3PSbpN+KXj0i6s8tLf1pR4LSs3trcAADANkR4BADA1cuV9Gvx83FJf7iFa0EKY8ybJX1K0rPjt/5O/asSe5ukifj5j1hry12s5yZJ9SHr/0OS06e1AACAKxRtawAAXN3eIOnbJN0i6UXGmB+21m4qRIoHcP+EpK+TdEhSRtJpSR+R9LtprVSJXeBq1trUdihjzJcVDYt+3Fp7dM2xMH76M5L+P0m/J+kFioKyE5JeY639UOL8aUkvl/RfJD1V0pSkeUn3SXqPpHustZ7WMMYclfRY/PLbJL1f0sskvTRe25Sks5L+UdJvWGtPpv08XfhKRX+HC5J+zlr7DmPM6zdxP0mSMeabJX1j/PLPrbUf7eKajKR3SBqT9BFr7R8aY9662bUAAIArG5VHAABcxay1NUXhSX1Y9q8ZY67f6P2MMa+T9CVJPybJKKpqGY+fv1LSl4wxr49DiEE6rKjN6xviz98l6VmKAqT6Wr9W0kOK2ra+RtIeSUOSDkj6JkUzfe4zxhzv8Fnjkj6kKFR5oaR9igaRH5P0o5LuN8a8eBM/y6Kkt0i6yVr7jk3cZ1U8s+hN8cuKpNd0eemPK/q7Kkv64X6sBQAAXPkIjwAAuMpZa+9V1L4kRSHL3Ru5T1wN80uScpK+qCgser6iyp+flnRS0X973BX/GaQ7FYU4vyrpqyV9l6Q3WmtPxWu9TVFl0kFJoaQ/k/Qtkp4n6XskfTC+z1MlfdwYc7DNZ/2GpK9V1Fr2g/E9vlXSP8XHRyT9iTFmcoM/y3dYa19jrV3c4PWtfKeiCilJ+gNr7ZlOFxhjbpT05vjl6zZZTQUAALYR2tYAAIAk/bykb5Z0VNJ/NsZ8n7X2L7q92BjzLEmvi1/eI+mONe1e9xpj3iHp7yXdLukXjTHv7mY3sA3KKgqLfiHx3nvjteYUVRWNKaq4+m5r7XsT531G0ruMMb+oqK3voKT/rShcauWAop/5ZdbaegWXjDHvV/TzvljSNZJeIuldvf4gyXv20c/Ej66k3+x0clwp9keKKsk+LXbmAwDgqkLlEQAAkLW2JOlHEm/9tjHmmh5u8SpF/10xL+mVreYExZ9xh6JKn4ykn9z4irvy9pT3v1nRjCdJevua4GiVtfaXJH20fo0x5ikp96tKunNtyGOtDdU8hPwZ3Sx60OKd274yfvmX1tonurjsRyS9SNFw7B8aUKAFAACuUIRHAABAkmSt/SdJfxy/3Cfpd7u5Lq5K+ab45b3tduyy1j4m6cH45ddtcKndONumFes/JZ7/7w73+f3E829MOefz1tqFlGPJ1q6pDp91ufx04vmvdjrZGHNYjV353mitvX8gqwIAAFcs2tYAAEDSzyoKSQ5K+m5jzF9aa/+uwzVHJc3Ez78lseNZJzdubIldOd3m2FPjx6KkL3e4z6cSz5+Wcs6pNtcXE8+3/L+7jDFjiuYxSdJnuwyC/lBR8PUlSW8c1NoAAMCVi8ojAACwylq7pGhHrbq3G2N2d7hs3wY/Lm+MGVQ1zkqbY3vjx7m4taydi4nne1LOKaa8L0UtenWD3mGuG1+vaHc4qYv5S8aYOxRVavmK2tXcAa4NAABcobb8X8AAAMCVxVr7t8aY9yjaoeygot3EfqjNJcn/nninumx3i6W2uLXRzT9+tQuFeglxconnO2HOT73qKJT0nnYnGmMOqDFM+/2SXGPMM1ucWv+/x2Ti+EKXs5QAAMA2QHiEHccYMy7p5xRttXyjpIKkz0v6LWvtB/r0GX8Z3/9J1toTPVz3HkXbI99Y3y465bz/qGgmxVdKmpR0XtI/SvoNa+0jm1g6AHTrJxQNSN4r6Q5jzF+1OTc578e31n5hg59ZD3w6hTu7Nnj/uvp69xljMh2qj/a3uG47e0n8+Okuwp1b1Pi7/rb4Tzv/QdJ98fP/I+llG1kgAAC48tC2hh3FGDMh6Z8l3SXpmKT7JZUkfYOkfzDG3NWHz3ilouCo1+t+QlFw1Om8X5L0QTX+A/8BRa0Sr5D078aYb027FgD6xVp7SY3t3CXpDxRt097Ko2pUEH1lyjmrjDGvNsa8whjz9WsO1XdoGzbG5NZeF187pmjb+834Yvw4KenWDucmf56HNvm5W8oYY9QIw/5lK9cCAAC2F8Ij7DRvk/Q8SV+QdNxa+yxr7Q2SXqrol5LXt/hlpWvGmDvVvPNOt9e9StLvdHHef5L0uvjlz0q61lr7LEX/sf+7ksYk/bkx5mCvawCAXllr75FUr9g8Kun7U85zJX0kfvk0Y8wL0u5pjHmRpDdLulvS/1xzeCnx/GjKLb5e0lC7dXfhg4nnr+hw7isTz/9pk5+71Z6beP65Tidbaz9qrc10+qPoH2kk6WOJ9182iB8AAABsDcIj7BjGmOOSfkDRTIrvt9au7rQT/wL05vjl6zdw74PGmPdKeqt6mJVhjLneGPM3kn69y+v+R/x4j7X2rdbaQJKstVVJd0p6WNGg05f2sn4A2IRXKGr/ldqHNr+ZeP4n8fbuTYwx1yqqYKpbG6p/MfH8J1tcv1+NLeM34/2S6i3HP2aMadmOZYx5naQXxi8/vIl2vCvF0xPPO4ZHAAAAdcw8wk7yg4oGm95rrX2gxfG7Jb1W0lcZY450O8gz/qXiHkXtGovxPd7WxXXfqWjmw7iiORm/KOn3Olz2cUWtH3+89oC1NjDGfFnSzZJu6GbtALBZ1trTxphXq0PVpbX2n40xb5f0o5KOK2qz/S1JH4tPebaiisrr4td/a61935rb/KWi78q8pJ+Od2L7K0lVRe1jd8bXn4w/Y6M/k2+M+cF4bcOS3muM+TNFA6QvKfqO/SFFu4xJ0pyk/7bRz7uC3Jx4fm7LVgEAALYdwiPsJLfFj59oddBae9YY87iiXwpeqCgQ6sYzFAVAfy7p/5E02uV1z1TUZnaPooqijttRW2vfkHbMGJOP7ylJDM0GcDndrWjW29d0OO8nFQU9d0qakZT2nfY3iipFm1hrT8Ttwb+jqDr6jvhPXaCo1W2vpFf1sP51rLWfMsZ8o6Lt6q9RVNHZqqrz3yR9t7X27GY+7wpxKH6sWmtrW7oSAACwrdC2hp3kpvjxZJtzTsWPN7c5Z61/kfQMa+0PWGsv9HDdRyQ93Vr7UmvtxR6uW8cYc5OiX3COKfrX4j/ZzP0AoBfxbmQvl1TpcJ5vrf1ZSV+hKHB6SFJ
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXhk51nn/V9Vad/Vrd677W677cd27Oyb2eIkwAAJgbCFYcmbCYGEAUKAgWEGEgK8hCUwbMPgCYQ9MEkgkDAEQnZCQnabeH1sd7d7l1p77VVnmz/OKelUqapUkkqqaun7uS5fVaWz1CO1+7TOXfeSCIJAAAAAAAAAQD3JTi8AAAAAAAAA3YvgEQAAAAAAABoieAQAAAAAAICGCB4BAAAAAACgIYJHAAAAAAAAaIjgEQAAAAAAABoieAQAAAAAAICGCB4BAAAAAACgIYJHAAAAAAAAaIjgEQAAAAAAABoieAQAAAAAAICGCB4BAAAAAACgIYJHAAAAAAAAaIjgEQAAAAAAABrq6fQCAADAzjLGfEzSC6KXP2ut/aUWj/ufkn4oennKWvtk+1eHVhhj+iR9UdJTJN1trf30Js/zI5J+J3q57p+pMeabJL1a0vMk7ZO0IOkzkv7QWvv3m1kDAADofmQeAQCwt73RGHN7pxeBDftlhYGjTTPGnIrO08q+I8aY90n6O0kvk3RIUm/0+DJJ7zPG/K0xZnArawIAAN2J4BEAAHtbv6S3G2P4neA6YYz5b5J+fIvnSEh6u6ThFvZNSnqPpG+MvjQr6ackfbmkr5H0+5I8Sd8s6UPGmN6trA0AAHQfytYAAMDdkl4v6bc6vRA0FpWq/bak17XhdK+V9MIW9321wiCRJD0m6YXW2iux7R8yxvyjwqykL5P0o5J+vQ1rBAAAXYJPGQEA2Lt8SW70/JeMMTd1cjFozBjzXEmf1GrgyNvCuW6Q9GvRy7kWDnl99BhI+s6awJEkKep39Lbo5ZuMMSObXR8AAOg+BI8AANi7HElvjZ4PSfqDDq4FDRhjfkXSpyU9O/rSe7W1LLE/kDQq6V8lvWud9z4g6a7o5b9Ya+9rsvsfR4+jkr5hC+sDAABdhrI1AAD2tp+X9HJJt0l6kTHm+621WwoiRQ24f1jSiyUdl5SQdFHSRyX9rrX24QbHfUzhFLiStXagyfkfVNgs+ry19mTNtiB6+mOS/kHS/5T0FQoDZU9I+mlr7Ydi+49Jeo2kb5J0p8LAx7yk+yS9W9KfW2td1TDGnJR0Lnr5cknvk/QqSa+M1jYq6bKkD0j6DWvtmUbfTwuer/BnuCDpp6y1bzfGvHkzJzLGfJ+kr5VUVPh9/8g6h9wQe/6ZdfaN/7nerXUCUwAA4PpB5hEAAHuYtbakMIjgR196qzHm2GbPZ4x5o6QHJP1nSUZhQ+ah6PnrJD1gjHlz1LB5O51QWOb1tdH7j0t6psIAUmWtL5T0qKTfkPRVCkfP90o6LOnrJf2RpPuMMTev815Dkj6ksAH1CyRNKWxEfpOkH5T0kDFmK5k4i5J+VdJpa+3bN3uS6M/1N6KXP2+ttS0c1hd7nllnXyf2/NaNrA0AAHQ3gkcAAOxx1tpPSvq96OW4pHs3c54oG+YXJKUkfUlhsOjLFGb+/KikMwp/9/i56L/t9AaFQZxfk/SVkr5d0lustU9Ga71bYWbSEYW9fP5C4cj550n6Tkn/HJ3nTkmfMMYcafJev6Gw+fSnJX1vdI5vlvTBaHu/pD/ZQh+gb7XW/rS1dnGTx1e8TeGf731qvaF1vCfS8XX2PRF7fngD6wIAAF2OsjUAACBJ/03hKPaTkl5qjPkua+1ftnqwMeaZkt4YvfxzSa+uKff6pDHm7ZL+r6R7FDZVflejErY2SCoMFv1M7Gt/Ha01pTCraFBhxtUrrLV/Hdvvs5LeaYx5k8KyviOS/rfC4FI9hxV+z6+y1lYyuGSMeZ/C7/cbJB2Q9BJJ79zoNxI/52YZY14ZrcPV2j+bZp5QWMa3X9JLjDG91lqnwb7fGHs+vOnFAgCArkPmEQAAkLU2J+kHYl/67ahZcqt+QuHvFfOSXlcvOBG9x6sVZvoktH6/na36/QZf/0aFPZ4k6fdrAkcrrLW/IOljlWOMMXc0OF9R0htqgzzW2kDVTcif1sqi280Yc1irDbZ/zVp7f6vHRt/DO6KXxyW9pcF73Cjpv8e+1LuJpQIAgC5F8AgAAEiSrLUf1OrErClJv9vKcVH/oq+PXn7SWptv8h7nJD0SvXzxJpfaisvW2ksNtv2H2PP/vc55/lfs+dc12OcL1tqFBtvijbJH13mv7XKvpEmF/Z1+YRPHv0XSdPT8vxhj3mmMeZYxpt8Ysz/KavpU9B6V/cpbXTQAAOgelK0BAIC4H1cYJDki6RXGmL+y1r53nWNOKgwcSNLLYhPP1nNqc0tsycUm2+6MHrOSHlznPJ+OPb+rwT5PNjk+G3u+4793GWP+o8JJcr6k74sapG+ItXbGGPMyhT2iDkj6jui/OEdhc/DvUljGl9vKugEAQHch8wgAAKyw1i5J+qHYl37fGDOxzmFTm3y7HmPMdmXjpJts2x89zkVlWc3MxJ7va7BPtsHXpbBEr2K7J8xVMcYclPQ70cvfs9Z+arPnstZ+TtLTFZbhxX+2rqT3Snq+tfYPtBpEnBEAANg1yDwCAABVrLV/a4x5t8IJZUcUThP7viaHxH+f+CO1WO4WaVji1kQrH341CwptJIiTij3fcuPqHfY7CgN7y5LeZYx5ep194oG/OyqBwnp9kay1VyT9gDHmhxT2P0pJuljJZjLGJCXdEu1+rm3fBQAA6DiCRwAAoJ4flvQihVk6rzbG/J8m+8b7/XgbachcoxLwWS+4M77J81dU1jtljEmsk310qM5x14vnR4/jkj7Rwv7/EHve8M8gmrZWLzj0VElD0fPN/j+w6xljhiT9lKTvVFi6mZH0BUm/Za39xza9x19F57/FWvtEk/1eLOkNku5W2JPriqR/lvQ/rLW2xfdKSvoXSV8uqXcDk/wAbFE3XU/qHPduSd8m6ZS19skNHHdS0pcUXpNONOlfiB1G2RoAAFjDWntN0o/FvvQ2NR6/flarGUTPb7DPCmPMfzXGvNYY89U1myo3nX3GmFTtcdGxgwr77mzFl6LHEUlPWWff+Pfz6Bbf97pkjHmNMeY3jTE/v86uL489/9B2rul6ZYwZlvQRST8n6SZJDynsD/W1kt5vjPm5NrzH6xTe6K2335sU/jm9NPrSQwrLDn9A0v3GmG9t8S3fojBwBGAHddP1pM5xP6wwcLTR4xIKB3d0asAEmiB4BAAA6rLW/rmkyieXJyV9d4P9HEkfjV7eZYz5ikbnNMa8SNKvKJwA9t9rNi/Fnp9scIqv1tbHwP9z7Plr19n3dbHnH9zi++4oa+1Ja22i2X+Sfi92yKnY1+P+g8LslJ9u1KMq+voPRi8/sZFPmfeY35P0PIWZWTdba59prb1R0isVBk/fXCeo2jJjzBtUPSGw0X4vllQJBv6kpEPW2mcqzLT7LUkDkv7CGHO8yTlSxpi3Svqvm10vgC3piutJneN+Qqv99jbq9ZLu2eSx2GYEjwAAQDOvVZgGLzUP2vyP2PM/McacqN0hauD8ttiXan+5/FLs+Y/UOf6QpLc2XW1r3iepknr/n40xL6+3kzHmjZJeEL388BbK8a53fxM99kn6xdqNxpgBSe/QakbYm3dmWdcXY8zNkr5HYe+s77bWrkwEjAK1vxK9fPMmzn3EGPPXkn5TrfX0+sno8a+stb9urfWidZQUTlx8RGEA6f9r8H63SPqwpP+y0bUC2Louu55UjjtmjHmPpF/fyHGx42+V9MvaXC9E7ACCRwAAoKHoF9J1MwustR+R9PvRy5sl/bsx5k3GmBdE//2EpPuibZL0t9bav6s5zV9ptXTtR40xbzfGfI0x5iuNMT8p6YuSjKQzW/yePEnfK6ms8HehvzbG/Kkx5qXGmOcaY77dGPNPkn4hOmRODW6i94h3a7WH0Y8aY95pjHmZMeZuY8xrJH1e0jdG2383+n8
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxjeV3v/3f2pPbqqt6qu6d7pmfmC7OwKAIjcGfABQFFuV4RFZQfF1BcUR8XcAX8CT9xBa/IuOECgghX0CuDyo6MMCwiy/TMdxbonu6uXmqvVGU7yTm/P85JcpJKUklVqrqq+vV8POqRnJwlJzN0mHr35/P5RjzPEwAAAAAAANBK9ErfAAAAAAAAAHYuwiMAAAAAAAC0RXgEAAAAAACAtgiPAAAAAAAA0BbhEQAAAAAAANoiPAIAAAAAAEBbhEcAAAAAAABoi/AIAAAAAAAAbREeAQAAAAAAoC3CIwAAAAAAALRFeAQAAAAAAIC2CI8AAAAAAADQFuERAAAAAAAA2iI8AgAAAAAAQFvxK30DAABgexljPiHp9mDzV621b+jyvD+S9FPB5rXW2tP9vzu0YoyZkvSTkp4p6XpJg5LmJX1J0t9J+ltrbbmL6/wPSS+U9ARJ+yVlg2v8paR3W2u9Duc+JOlkF7d7xlp7oovjAADALkHlEQAAV7dfM8Y8+krfBNozxjxfkpX0K/JDnzFJCUkHJX2XpL+S9B/GmCMdrjFqjPmIpPdK+l5JRyQlJU1I+nZJfyvpg8aYdJvzRyRd16ePBAAAdhnCIwAArm4pSX9hjOG/CXYgY8y3SXqXpCFJBUm/L+k7JT1J0g9J+lRw6LdIussYM9DiGglJ/yrp24KXPivphyU9WdKLJN0bvP4sSW9rcyuPlRQJnv+EpMd3+Hl2758UAADsZLStAQCA2yT9rKQ3X+kbQZ0xJiLpjyTF5AdHT7fWfjZ0yOeMMe+R9MfyA53HSHqlpDc2XeoX5YdNkvRuSS+y1laC7XuMMe+X9BlJt0p6sTHmd6y1p5qu8bjQ8w9Yay9t7tMBAIDdhL9lBADg6uVKqs7JeYMxhrakneU2SY8Knv9hU3AkSQpmFP28pMvBSz8a3h+0of1SsPmwpB8LBUfVa6zKb4mr+v4W91INjy4SHAEAcPUhPAIA4OrlSPqd4PmApD+7gveCtZ4Wev5P7Q6y1hYkfTrYNMaYVGj3cySNBM9/3VrrtLnMv0n6G0lvkfS1FvsfHzx+ab2bBgAAew9tawAAXN1eL+l58itcnmGMeZm1dlMhUjCA+6flz9g5Kn9WzllJH5f0v1u0RFXP+4T8VeCK1tqWg5uD474m6Wa1WNXLGFNdLeznJX1QftvXU+UHZQ9Jeo219iOh40ckvVT+EOlbJA1LmpMfkrxX0jtarWJmjDkh6RvB5vPkhzsvll/5c3NwnfPyZw39nrX24Xafp4PPSfr/JE0F995JJPQ8LakYPH9W8FiS9P52J1tri5J+rNW+YGbSTcEm4REAAFchwiMAAK5i1tqiMeal8gcvRyX9jjHmLmvt+Y1czxjza5JeK39OT8Ou4Oflxpj/V9LrOy0L3wfHJN0tfzn6qm9SKIQxxjxd/ipjh5vOPSQ/dHmWpF8wxnzfOuHPgKSPSHp60+vXSXqFpJcYY/67tfauXj6Atfbj8gO3joJw5ynB5pK1dim0+9bg8V5rbT50zoD8YK8g6Zy11u3wFo+WP1hdku4zxvykpBfIn7GUlnRO0ocl/e4GQzIAALDD0bYGAMBVzlp7t6S3Bpujku7cyHWMMa+T9Bvyg6OvyB/i/K3yK39+Tv7Mnaj8cOm1m7rp9b1S0qSk35bf/vUDkt5orT0d3Ott8iuTDkvyJL1T0nPlD5Z+gfw2LsmvRvp3Y0xzwBT2e/KDo8/KX73sSZK+T36gIvnBy18ZY4b69NmavUTSgeD5vzbtq1YMnZEkY8ztxph/k7QsyQavXzTGvCmowmolPCz7rcHP0+T/byUl6aT8f9engiASAADsMVQeAQAAyR+q/D2STkj6bmPMD1tr39XtycaYb5L0a8HmOyS9pKnd625jzF9I+mdJd0j6dWPM37drYeuDqPywKDwI+n3BvcYkvV1SRv7Q8B+01r4vdNznJL3HGPPr8tv6Dkv6E/nhUiuH5H/mF4creIwx/yT/8z5bfgXUcyS9Z/Mfrc4Yc72k3wq99HuhfSlJ1cBq0Rjzy5J+U40tbgru7VWSnmuMeaa19pGm/Y8PPR+R9H/lf95HgnO/T37LW1LSnxljVqy1f7epDwYAAHYUKo8AAEB1xa2Xh156izFmf7vjW/hF+f9dMSfpJ1rNCQre4yXyK30ikn5m43fclbe1ef17VF/F7G1NwVGNtfY3JH2ieo4x5qZWx8lv/Xplc+tX0JYXnh/12G5uulvGmAPyw6mx4KU/t9Z+LnRIuNLpGZLeIGlG0svkVyql5VdJfSg45lGSPtA0cFuqVx558kPB51pr32utvcda+8/W2pfKD8iqw7jvNMaMCQAA7BmERwAAQJJkrf2wpL8MNicl/e9uzjPGRFQfzHy3tTbX4T2+Iem+YPPbNnir3ThvrT3XZt8zQ8//ZJ3r/HHo+Xe1OeaL1tr5NvvCM4CG13mvrhljDkn6qPw5UpI/yPpnmw4bCD2/Rn6w963W2j+31s5Ya4tB2BSuiHq8pP/ZdJ3vlx8yPcNa+5dqIfjfzm8Hm6Pyh4cDAIA9grY1AAAQ9gvyQ5LDkn7QGPNua+0/rnPOCUnjwfPnhlY8W8+1G7vFrpztsO+W4HFFrZelD/ts6PmtbY453eH8ldDzvvx3lzHmpPzZRieDl6ykZ4UHYgeat1/faqC1tdYzxvyc/FXjkpJeqFBoFgRjn2s+r4U/lVRtE/x2SW/u4hwAALALUHkEAABqrLWLkn4q9NLbumhBmtzg28WNMX2rxmmy3GHfRPA428WKb5dCz/e1OWalzeuS3+pV1TxrqGfBoO/PqB4c3Svp6dbaSy0OzzZtv7/ddYPzqwHRtwTVZD0JZiUtBpvX9Ho+AADYuQiPAABAA2vt+yW9N9g8rNAQ5jbCFTVvl9/61O1P2xa3Drr575dOoVAvwUgs9LzTcvZbzhjzA5I+Jn9ItSTdI+l2a+2FVsdba4uSFkIvTa/zFtVqrbjqc5R6Vf33mdzg+QAAYAeibQ17ijFmQP6KMS+Q3w6RlfRFSW+21n6o07kdrvlE+UtMP03+ijp5SackvVvSndbaUp/Pu1nSa+QPN90vaUn+Lwh/YK396EY+AwBswE/L/x6akPQSY0yn1bPC834q1tr/2uB7VgOf9cKd0Q1ev6p6v5PGmMg61UcHW5y37YwxPynpj1T/Z/NBSc/vNF8q8FVJ/y14PqbOn6E6KLuioHLLGDMu6cnyB2zfb629p8M9xlSv6rq8zn0BAIBdhMoj7BnGmEH5fyP7WknXyS/lX5X0nZLuMsa8dgPX/Dn57QE/LL8t4z757QlPlvQWSZ8yxoz08bxnSfqC/HkTY/LDpoj8YaYfMcb8Uq+fAQA2wlp7WdLPh176U0mDbQ7/uuoVJ09e79rGmFcbY37cGPPtTbuqK7QlgyCi1bkZ1StvNuorweOQpJvXOTb8ee7f5PtuiDHmFZLeqnpw9GeSvreL4EhqnNm03r+b6j+Lc9baSvD8hKS7JP2V/HlYnTxB9QDqC13cGwAA2CUIj7CXvFX+ajD/JemktfabrLXHJf2o/F9IXtfiF5W2jDFPkfQH8v+c/LakcWvtY621R+T/bfx08H5/0qfzxiS9U/7Sye+TNGWtfZz8v/X+jeCwNxpjntrtZwCAzbDWvkP1ZdxPSPqRNsc5kj4ebN7a6XvKGPMMSb8l6U5Jv9y0ezH0/ESbS3y7pESn++7Cv4We//g6x/5E6PmHN/m+PQv+f+uPQi+9wVr78lC4s55wxdhPdnifJ6q+ctsHQru+Jn+VNkl6jjFmQu2Fw6VOlWoAAGCXITzCnhCsPPNC+fMofsRaW1tlJ/jl57eCzdf1cNn/Jf9vef+vtfbVweyI6jU/LunHgs0XGGOO9eG875Y/jHV
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebxtc/3H8ddxTZcKmVK4l4uPsUGDpDL1q1SkkTIkzbOGH/3SLxQiDVSiQonKUCRF/cxCVFJx8THkGitD5tl1f3981+5u29777HPWuuc657yej8d+rL3W97u+67vvfdjOfZ/vMDRnzhwkSZIkSZKk0VpgfndAkiRJkiRJ45sBkyRJkiRJkmoxYJIkSZIkSVItBkySJEmSJEmqxYBJkiRJkiRJtRgwSZIkSZIkqRYDJkmSJEmSJNViwCRJkiRJkqRaDJgkSZIkSZJUiwGTJEmSJEmSajFgkiRJkiRJUi0GTJIkSZIkSarFgEmSJEmSJEm1GDBJkiRJkiSplgXndwckSdLYioizgY2r089n5j4D3vdt4CPV6SqZOav53qmbiFge+CTwemAVyi8JrwF+BRyUmf8aoI1NgA8DLwOWBe4ELgd+ChyZmY8Mc/9CwLbV6wXAMsCDwN+B3wDfzMx/jOLjSZKkCWBozpw587sPkiRpDHUETA8DL8jMKwa4z4BpPoiILYEfA0/vUeUe4O2Z+dse9y8AfIsSLvXyN+CtmXl1jzZWAk4EXtinjfuAd2XmCX3qSJKkCcopcpIkTW6LAIdXIYSeYqpRRycyN1w6CdgaeCnwHuBK4BnAryLijT2a2Ye54dJNwEeBVwJvpoxeAnhu1cYzuvRhKmWEUitcOh14B7AB8GrgIOAR4GnAsVWfJUnSJOMUOUmStCHwceDA+d0RzRURCwI/AKZUl/47M7/aVuWiiDgGOIUyIu2QiDgzM+9ta2MG8N/V6d+B9TPz7rY2ToyImcDewBqU8Gnfjq58Ali7ev+NzPxUR/lpEXEi8H/AwlU/1snMx0f+qSVJ0njlbyslSZq8Hgceq97vExGrzs/O6Em2AqZX70/qCJcAyMwHgB2AR4EVgM7w593MDah26QiXWr4M3FW9f3uX8p2r483Abt06mpnnAN+tTtcEXtKtniRJmrgMmCRJmrweBQ6o3i8GfH8+9kVPtlnb+56jyzLzRsq0NYBtOor/CZwF3Aic1uP+x4GrqtOV28uqxcVXr05PzcxH+/S3vf3n9aknSZImIKfISZI0ue0FvIky6mSziHhfZtYKmiJiLcpUq82BFYEhSsBxFvCtzLy8x31nU6Z6PZyZi/Zp/zJgHeD6zJzeUdbaveSTwK+BbwMvp4Rp1wCfzczT2+o/A3gv8EZgXcpaR3cAlwDHA0dl5mN0iIjpwHXV6ZuAXwI7ATtWfXs6ZcTPb4GvZea1vT5PH9Pa3l80TN3LgS2ANSNiycy8CyAzv035M+gpIoaYGyx17gL3OPC/wLOBs4fpw1Db+55/f5IkaWJyBJMkSZNYZj5MCVha6+UcEBHPGW17EfG/wKWURaUDWJwyOiqADwKXRsSeVagxL60EnE9ZhHoxYAlgfUrI1OrrppRFsr9GWfT6mcBCwLMoYc0RwCXVOkb9LEYZQXQ4JSBbhrJ4+qrAh4CZEfG6UXyGhavj7Mx8cJi6rZFFQ8wdcTSoj1E+M8Cx7QWZeVtm7p2ZH87M44ZpZ5O299ePsA+SJGmcM2CSJGmSy8zzgYOr0yWAQ0fTTkTsCXyRsubP3yiB0ssoI4g+AVxL+dljj+o1L+1CCXq+ArwCeBuwb2bOqvq6IWWE0wrAHOBoyppHGwDbUhashjKq6XcRsUKfZ30N2BS4kLIe0gaUnd5aU8YWAX4YEU8b4We4vTpOiYhn9a1ZArWWvnUjYigilo2IzSLi55Rd4AAuBr4+wj622lyOuWs1PUoZrSZJkiYRp8hJkiSA/wG2pCwq/YaIeGdm/mTQmyNifcpUKoCjgJ07ppadHxGHA7+ijHT5QkQc12u6XAMWoARKu7dd+1nV1ymU0UlTKSO3tsnMn7XV+wNwbER8gTKFcAXKAtZb9XjWsyifeaf2ndMi4peUz/s6YFng9XSMEBrGRcA7q/dvAg7pVikiFqGM1GpZfJh2vw+8p+Pa4cBnMvO+EfSv9fwh4DBKOAlwWI/FxCVJ0gTmCCZJkkRm3g+8v+3SQRGx7Aia+DTl54o7gA92W7eoesbOlBFDQ5SpWfNS10CGEqSt2arTES79R2Z+kbnrDm0ZEWv3aO8hyg5tj7dfzMw5PHHh9JEufH088HD1fq+IWKVHvS9RAqyWhYZpd1qXa68C3hcRo/nZ8OuUP1OAW5j3o9MkSdJTkAGTJEkCIDNPA35QnS4DfGuQ+6oRLFtUp+dn5gN9nnEdcEV1uvkouzqImzPzph5lr2l7/91h2vlO2/vX9qhzcWb+u0dZ++LeTx/mWU+Qmf8AvlydLgv8PiLeGxHLRcTCEfG8iDgK+G/KguItjwzT9Hco0wY3Aj5FWYB9GmU64Y9HEjJFxAGU6Yit526bmbcNer8kSZo4nCInSZLafYoSpKwAbBMRP83Mk4a5ZzqwVPV+q7ad3IbTa0ROE27sU7ZudbwPuGyYdi5se79ejzqz+tzfPuVsND93fYmyvtJ7gOUpI6I6d/n7M7A3cEJ1fn+/BjPzxLbTCyLiSMoi5S+grD91GmUKYU8RsSBlhNh7q0uPAdtl5u+G+TySJGmCcgSTJEn6j2p7+4+0XTokIpYc5rZlRvm4BSNiRKN6RuCePmVLV8fbq2ls/fyr7f0ze9Tpt25Re/sj3jkvMx/PzPcC7wAu6SieRVk7a8OO5/yLEahGX+3YdmnnXnUBqr+zk5kbLrVGLnWdaihJkiYHRzBJkqQnyMwTI+J4ys5rK1B2SetcFLpd+88TRzDg1LpKz+l0fQzyC7J+wdFIgp4pbe8f71lrHsvMY4BjImJpYDngjsy8tVUeEWu2Vb9uFO1fFhFXAWsAz+1VLyKeQ9l9r7We1P3AWzLztyN9piRJmlgMmDSpRcSOwIco0x7mAElZf+SQzsVaB2xvMWBXyhSDVYB7Kds+H5iZp/a4Z2HKb7/7Lcp6d2Y+aQRBRLyEsvX3Kyi7GD0IXA78FDg0M4dbh0OSevkosBlltM/OEXFMn7rt6w/Nzsy/jPKZrVBouABoiWHKh9Pq7zIRMTTMKKblu9w332TmHZSF1Du9tDrenJm3ty5GxLOBGZS/lwuGab7V7sLdCiNiDcr0uZWrS7cCb8jMPw7YfUmSNIE5RU6TVkR8CziS8kP5jcD1wAuBbwOnRsRwu/B0trc4cCZl95xVgZmU3+y+GjglInrtqrMWJVx6ADi/x+v3XZ73ier6OynTU66gBFUvBQ4Czo2IZ4zkM0hSSzU65pNtl74HLN6j+t+ZOxLppT3q/EdE7BYRH4iIV3UUtXaeWzgipnTeV907lSfumDYaf6uOTwPWGaZu++e5suZzRyQiVouIvSPi+xHx/D71Fgf+qzo9re36EKXP51L+/vo9a4jy/y6AJy2OHhGrAmcxN1y6BtjQcEmSJLUYMGlSioidKL+dvxt4RWaulZnrAi8C/kEJhb4wwmYPBjYA/gLMyMz1M3MaZV2Lx4A9u/xjCuZOMzg3M1/e47VF+w0RsRHwDcp/w18BlsrM52XmcygjDm6p+jLc7kiS1FNmHgW0Rl9OB7brUe9RSvgAsF5EvLxXmxGxGbAfcCjwuY7iu9reT+/RxKvoP+JzEP/X9v4Dw9T9YNv703rWmjcWAXanrHW0TZ96HwMWq94f1bpYjcw6vzpdJyI26NPG65k7WusJn7Manftr4NnVpUuAl2Xm3wf4DJIkaZIwYNKkU/1W/PPV6W6ZeV6rLDMvBnaoTj8ZEQNNw4iIGcD2lPU5tsvM/+xeVP0Dbb/qdM8ut7cCpksH/QyULamHgJMzc7fMfLjteWcB76pOt42IlUbQriR1+gBlui/0D3a+3vb+h92+eyJiOZ44kuabHVX+1vb+Y13uXx44oG9vB/NLyggcgA9HxJu6VYqI/wU2rk7
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhld13g/3dVV+979kA2ksCXsAgEkAFFcEFERmec0VFBFBFERRTGURwFYVBGHfQnCAg6iLKogzqoiICKwyIIohISEpJvCEk6S+/VXevdzrnn/P4451bdqq66dbfaut6v5+nnbuec+63u5NQ9n/tZRvI8R5IkSZIkSerH6HovQJIkSZIkSZuXwSVJkiRJkiT1zeCSJEmSJEmS+mZwSZIkSZIkSX0zuCRJkiRJkqS+GVySJEmSJElS3wwuSZIkSZIkqW8GlyRJkiRJktQ3g0uSJEmSJEnqm8ElSZIkSZIk9c3gkiRJkiRJkvpmcEmSJEmSJEl9M7gkSZIkSZKkvhlckiRJkiRJUt/G1nsBkiRpbYUQPgE8o3z46hjjG7rc763Ay8qHD4sx3jv81WkpIYTrgVcAzwKuAmrAPcAHgN+LMZ7s4hhfA/wU8I3AQ4BmeYwPA2+OMR7tY12/CPwK8Lsxxh/rdX9JknR+MHNJkqSt7TUhhBvWexFaXgjhhcCXKAJ7jwB2AYeAJwC/DNwWQvj2FY7x08AXgB8Bri2PsRd4DPBz5TGe3eO6ngy8ppd9JEnS+cngkiRJW9tO4PdDCH4m2IBCCM8B3kURDKpSZAl9K/Bs4FeBOnAR8OchhBuXOcZ3AW8CtlFkPP0K8C3Ac4G3AxlFsOoDIYTHdLmuxwAfofjvR5IkbXGWxUmSpKdSlEu9ab0XonllwO+twAjQAJ4eY/y3tk3+LoTwUeDjwG7g1ygCT4v9WnmbAt8UY/xs22sfDiF8FngPsAf4n8B3rrCu7wDeCxzs+YeSJEnnJb+llCRp68ooAg4AbwghXLuei9E5vomihA3grYsCSwDEGD8F/E358FkhhMPtr4cQrqMopQP4wKLAUusY7wVax352CGH7UosJIRwOIbwZ+CuKwFKzx59HkiSdpwwuSZK0dSXAG8v7e4D/vY5r0dI+BNxHEdBZzu1t969c9Nolbffv7HCMW8vbHcCFi18MITwNuIsiw20EOAY8r8PxJEnSFmJZnCRJW9v/AL4LeCTwTSGEl8QYBwoylQ3CfxL4ZuAKimDE/RTlW2+JMX55mf0+QTHFrh5j3NXh+LcCjwaOxBivWfRaXt59JUVGz1uBr6cIpN0F/HyM8WNt2x8AXgz8B4rm1vuBceAm4M+A98YYUxYJIVxDMWkNir+/DwIvBH6wXNt+4EHgb4HfjDF+dbmfZznlOj+24oZwddv9Y4tea58A98gOx7i+vE2AU0u8/gjgAiCnKKF7JZbFSZKkkplLkiRtYTHGOkVwJSufemMI4aH9Hi+E8BqKyWY/AQSKiWR7yvs/BnwphPC6EMLIQAtf2ZXAZyh6EO2hCITcSBFgaq31G4E7gN8EvoEieLIduAxoNdK+qSwt62QPRRDo9ymCYxdRNLq+Fvhxupjm1q9yYtt/LB9+PMa4IDAUYzwC3Fw+/I/l9ouP8Vzg68qHfxFjXKrcLQM+DDwlxvjCGOPZofwAkiTpvGDmkiRJW1yM8TMhhLcBL6cIwrwD+I5ejxNCeB3w2vLhLcDvlLejwBMpSqqua9vmdYOsewWvoMiY+l/AX1MEjB4fY7y3XOtTKTKbdlNk4/wR8KfACeBhwIsoAlOPAf4xhPDEGOPirKCW3yyP/zngbRTlZ5cDLwOeRRFo+sMQwrUxxplBfqgyKLcPeDjwAuBHy+OfpcgWW8rLgI+W+30ihPBG4B8ppsc9C/jpcrt7gJ9d5hjvizG+Z5C1S5Kk85fBJUmSBPDfKQJK1wD/PoTwvBjjH3e7cwjhRuA15cP3Ai9aVE72mRDC71P0EHom8EshhD9drkRuCEaB/xlj/MW25/68XOs2iqyk3RQZOd8bY/zztu0+D7w/hPBLFGWDlwO/y/JT1C6j+JlfGGNsZYARQvggxc/77cDFwHOB9w/4cz2/fK92nwFeHGO8Y6kdyuDh0yimxn0788G9du8AXhtjPLnMMbKlnpckSQLL4iRJEhBjnKXIgml5cwjh4h4O8TMUnyvGgR9bqk9R+R4vosgUGqHIlFpNb1/m+e9gvv/Q2xcFlubEGF8PfKK1TwjhUcscrwa8YnEAJsaYs7BJ+uO6WfQKrl7iuccCL188Ka6lzHb6Buanxi3l2ygCT5IkST0zuCRJkgCIMf498Aflw4uAt3SzXxm8eE758DMxxkqH97iH+elm39znUrvxYIzxgWVee3bb/d9d4Ti/03b/25bZ5t9ijGeWea29kff+Fd6rG5+kKGV7CkVZ3OeAAxQ9rj4VQmifDtfK0no3RWPz6ykyqZ5GkbV1iKKR+c0UGWt/EEJ4/RDWKEmSthjL4iRJUrv/ShFEuRz43hDCn8QY/2qFfa4BWlkz39k2sW0lD+tviV25v8NrjylvZ4BbVzjO59ruP3aZbe7tsH97j6WBP3fFGD/d9vDzIYQ/psiOehHFz/UbFBPrWl5GEYQCeGeM8SVtr9WAD4YQ/p6iJ9M3AK8JIfxTjPGjg65VkiRtHWYuSZKkOTHGCYqARMvbQwiHVtjtoj7fbiyEMIxsnqVMdXjtwvL2dFm61smJtvsXLLNNpybd7ccf+oS8shTvJ4AHy6e+N4Swp22T1r/lWeCVyxyjShGcapX1LdcYXJIkaUkGlyRJ0gIxxr8A/qx8eDnFNLRO2jNy3gU8oYc/y5bQddDN55dOQaNegjzb2u5vyKbWMcY6xeQ7gB2U/aRCCAeY77P0yU6T6mKMXwW+VD58yiotVZIknacsi5MkachCCD8I/DhFGVUORIpeRm8fxtStEMJLKaZ7vSTG+M4O211B0Wj725hvBH0PK/T+Kfc7AzQpgisvCiF8M0Wz7qW09xtqxhi/2M3PsYRWQGil4M/BPo/f0lrvRSGEkRWyly5dYr81UTbovg64LMb4oRU2b/+32VHe7mt7bqKLt2xNihv071c9KrPNfg74Popy0Wng34A3xRg/0ucxrwJ+ieL//0uAU8A/AL8aY7y9w37fSpEN9xSKLL8Zir5cfwC8d7n/X0II301x3nsisJOiNPVDwG/EGI/28zNI6s55cg75DorM2SdT/B67m+KLrrfGGM/28zNobZm5JEnSEIUQ3kLRQPnfUVxcHaG42Hor8JEQwvYBj/9k4I1dbPd0ikyUVwAPB+6jKJ0KwJXlZucEcdr2e+mi168Gblzm7e5mPgPp33WxtleFEF4aQviWRS+1JsztKBtRL7XvbqCXKXZLuaW83Qc8eoVt23+eOwZ83169F/gXir5IK/3M17XdbzUyH2c+2+o6VvbQ8vZkx600VCGEvcD/A14LXAvcBswC3wp8OITw2j6OGYAvAD9C8d/5zcAuiv5bXwghPHuZ/X4T+FuKRu97y7WkwDMpzmt/udQ5LITwToqLwG8CqhT/rzyEohTzthDC1/X6M0jqznlyDnkb8MFyzTnF4I8rgNcDt4QQHrN4H208BpckSRqSEMILKb51mwSeHmO8Icb4GOBJwDGKD02/NMDxn0nxoW2lzKNDwP+lmAb2UeDKGOMjY4wPpyiTavUj2h5C2NVhvyuA9m88279t3Nm6E2NMgI+XDx8bQvj6Dmv7JuDXKDKvfmHRy+3ZNdcsc4hvAQYK0AF/13b/pSts+2Nt9/9+wPft1T+WtyMUPZGWFEK4DHhu+fCO1pS8slzuX8rnvy6EcG2HYzwOeNSi99XaeBvFN/xfBK6LMd4YY7yaojF7CrxuiUDsskIIYxQZQxdSBCgvjzE+maLE9a0UF4j/J4Rw4aL9nk/R0L9Z3h6KMT4hxngJ8D0UmRDfSXGx177fj1BcgKbAD8QYL48xPoEiuPR+ivPJBxb1ApM0PJv9HPJyikwnytcua3u/N1F8FvlYF/0ftc4MLkmSNARlps2ry4evap/qFWP8N+Y
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAbwCAYAAADnAAF4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkWV3n/3fkXllZWXvX0lXd1QucpruBZhNbUFpUXJhxwZ+KG+Ogo7iD/EadEQdwBtcBEUUYFXREUZYR5Bnwp7KILDYINNjroavprr1ryS0yM/bl98e9mRmZFRkZkRlZS+b79Tz13LgR5957MrHD7k+d7/dk6vU6kiRJkiRJ2tx6LvcEJEmSJEmSdPkZEkmSJEmSJMmQSJIkSZIkSYZEkiRJkiRJwpBIkiRJkiRJGBJJkiRJkiQJQyJJkiRJkiRhSCRJkiRJkiQMiSRJkiRJkoQhkSRJkiRJkjAkkiRJkiRJEoZEkiRJkiRJwpBIkiRJkiRJGBJJkiRJkiQJ6LvcE5C6JYQwDPwi8GLgBmAa+Dzwxhjj33XpGX+V3v8JMcajSz47Ajzawe1eG2N8TcP1dwEfW+Gav40xfmcHz5AkSZIkqS2GRNoQQghbgY8AzwbKwH3AbuAFwAtCCK+JMb52jc94GUlAtJwC8KkVbnMtcCR9/fCSz56aHs8AX1nm+gdWuL8kSZIkSatiSKSN4s0kAdEXgW+PMZ4ACCH8MPB24DUhhE/FGD+8mpuHEF4OvKHVmBjj48BzW9xjG3BPevqWGONfLhkyFxL9Xozxt1YzT0mSJEmSVsueRLrqhRBuAn4IqAE/OBcQAcQY3wH8Znr6mlXc+0AI4b3A7wKZNU71rcBNJEHWK5p8PhcS3bvG50iSJEmS1DFDIm0EPwz0Av8SY2xWjvXW9PicEMJ17d40hPBdJCVh3w1MAD+92gmGEP4d8ANABfiPMcbiks/7gNvS0/tW+xxJkiRJklbLkEgbwZ3p8ZPNPowxngKOpafP6+C+TwWGgb8EbgU+tJrJhRD6gdenp2+KMX6x2TBgEJiKMR5fzXMkSZIkSVoLexJpI7g5PT7SYsxjwPXAEzu47z8DT40x3gvzu5etxk+nzx0Hfm2ZMXOlZveHEJ5OUj53O1AF7gf+99w8JEmSJElaD4ZE2giuSY/nW4wZS4972r1pjPGjq55RKl1F9J/T0zfGGKeWGToXEj0F+PySz74FeEUI4TdijK9a65wkSZIkSWrGcjNtBMPpsdBiTH7J2EvlxcBBIAv8fotxcyHREPA64EaS8rMnAG8kaZr9KyGEX1y/qUqSJEmSNjNXEmkjqNJ+4Flfz4k08fPp8Q9jjJMtxv1f4DTwwRjj/2l4/yjJKqILwP8AXh1CeHuM8cL6TFfS1SaE8E8s9Ft7VYzxdW1e9wcsNOS/Icb4WPdnp2ZCCAeBnwK+maRkeitJSfI9wF8DfxljrKzivj8LvCk9XfF/0xDC7cArga8HDpD8hcaDwJ8DfxpjrHY6B0mSdHVzJZE2gpn0ONRizJb0mFvnucwLIdwEPCM9/bNWY2OMfxBjfOmSgKjR/yT5OYeBF3RtkpI2ml8NITzpck9CywshfC8QgV8BngnsAPqBfSTlxX8GfDqEcG2H970B+I0Oxv8o8AXgR0h69g2QlGR/LfDHwD+HEHZ2MgdJknT1MyTSRjC3qmZ3izFzvYjOrfNcGn1XevxCjDGu5UYxxiLwQHp6w5pmJWkjGwTeFkLw/79fgUII3wC8ExghKZF+A0nw/2zg+0k2TAB4FvChEEJbJdIhhAzwNpIVSe2MfwFJENQPnAV+lmSn0O8A/j4d9jXAe9J7S5KkTcJyM20ED5L07jnSYszcZ19e78k0+I70+M52BocQhmKMrfoqzf1HX3lNs5K00d0J/BxJPzNdIdKw5Q+AXpKA6OtjjHc3DPlsCOFdwB8CLyPZyODlwK+3cfufICkZa2ce/ekzMiR/yfLsGOOxhiEfCCG8maQc7huA7wHe3c69JUnS1c+/adRG8Jn0eGezD0MIh4Dr0tNPX4oJhRAGgK9KTz+8wtinhBCmgHwI4enLjBkCbk1PH2g2RtKmVwPm+ti8LoRw4+WcjC5yJ3BL+vpNSwIiAGKMdeAVLKx6fclKNw0hXAf8dnraTr+6bwduSl//xpKAaM4vkPTJg4UdOiVJ0iZgSKSN4D3p8a4QQmjy+cvS48cvYWPWp5D0d8gD968wNpL8xx0kvSGa+RmSfkQXgI90YX6SNp4y8Dvp62GSciJdOb624fUHlhuUrij9ZHoaQgiDK9z3j4Ft6TXtrPh5UXqsA+9YZg5F4C/T02eGEI60cV9JkrQBWG6mq16M8eEQwjuBHwD+JoTwHTHGowAhhB8Cfikd+j+WXps2l+4HpmKMZ7o4rbkVQQ+ttENNjLEYQngD8GvAz4QQjgJ/EGOspX1FXsZCM9JfjjHmuzhPSRvLa0n6od0CPD+E8J9ijGsKi9JG2D9DUnp0iKRM6QTwMeD3Y4xNVzc27LpWjDEuu7FACOE+4DbgWIzxyJLP5nakfAXwQZJyreeSBGJHSb4TP9wwfhT4MZJy39tJwpMxkl3D3gO8o9l3chqCPJqefhdJiPMjJCt5bkvvc4qkX8/rY4yPLPfztPBZku/yg+ncW2nsAzQEFJsNSptPv4CkfO3HSHoLreQ56fGBGOP5FuP+mYVVRM8H3t7GvSVJ0lXOlUTaKH4OuJekJOuhEMI9IYTHSP6WtA/4lcb/kGjwEZKeRm3vCNOmuV1pxtsc/+sk2x5ngN8DzocQ/pWkoeibSXpYvCbG+LYuz1PSBpKuAPkxFlYn/k6nu2Q1CiH8Ksl3608BgaQx8nD6+mXAvSGE11yC5saHgU+RBCLDwHaSMH4+bAkhfD3wEPB64OuAXSR/CbAf+FaSkOOe9C8HWhkmKRN+G0nItYekIfiNwE8C94cQvq3THyDG+LEY43+NMf5IjPHscuPSnkFzQc5UjHFqmXHXkvysAK9tZ4OEtBH2XPn1wysMbwzC3DFPkqRNwpBIG0KMcYyk38NrSZpTP4lkt7OPA98dY2yn8Wc37U2Pk+0MjjFWY4zfD3wv8A/p208l+dvydwPPjTG+tuuzlLThxBg/RRIuQxKmvHU19wkhvIZkhWMv8G8kodDXkKzk+XmSEKEHeHX6Zz29nCSs+W2Ssq3vAX59roQ4hHAnyUqjAyRlVH9B0nvn2cCLWfhevR34RAjhQItnvZ6kCfTdwA+n9/hO4B/TzweBPwshjHTpZ1vqpcA16eu/bzHuj0j+970H+J9t3vsgC6uUjq8w9kTD61UHjZIk6epiuZk2jBjjLPCa9E+71xzpYOxjLC4BaDX2p0j+5r0jMcb3sNBjSZJW678A/55kZ8d/F0L4gRhjWzstAqRN9H81PX0H8NIlZVqfCiG8Dfi/wF3AfwshvHu50rMu6CEJhX6l4b33pnPtJVkltIVkBdX3xRjf2zDus8C7Qgj/jeQvEg4A/4skRGpmP8nP/CMxxrkVWYQQPkDy834byV8EvBB419p/tAUhhJuB32x46/XLjHtJOo8KF/9v08quhtfTK4ydbXi9o837S5Kkq5wriSRJ2mDS0PzHG976vRDC3uXGN/FKkn9HGANe1iyESJ/xUpKVOxna64ezFm9Z5v1/z8KuYW9ZEhDNizH+GvBPc9eEEG5tNo6kv8/LGwOi9Po6i5uBP7WdSbcrhHANSQg1F8j8SYzxs03G7QfemJ7+dozxix08prEJdqHVwPTnneuFtFLzbEmStEEYEkmStAHFGP8R+NP0dA/w++1cl/YX+tb09FMxxlyLZzxK0tcNksbW6+VUjPHkMp99c8Pr/7XCff6w4fW3LDPm8zHG5frJNfbp2bbCs9qWBj8fIen1BEkJ2c8tM/ytwE6S/ku/1uGjqg2v68uOulgnYyVJ0lXMcjNJkjauXyAJQw4A3xdC+KsY49+ucM0RkhAC4NsbdhhbyQ2rm2JbTrT47Pb0OAPct8J97m54/eRlxjzW4vqZhtdd+XeotJH23wNzDbUj8K3NdrIMIXw/yc5tNeB
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKwAAAbwCAYAAABOdMnsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xsd13/8ffe3b29ptz0kAbfFCCEH8UgShcQQSMqFopSBJEqPxULgvhDRCygIqgIaOhIVUSUKr0mhNwk3+Sm3Ny6vczszJw57ffH98zO2dmZ2ZnZM2339Xw8bqadc+bszZ2z53zmU0biOBYAAAAAAAAwKLb0ewcAAAAAAACANAJWAAAAAAAAGCgErAAAAAAAADBQCFgBAAAAAABgoBCwAgAAAAAAwEAhYAUAAAAAAICBQsAKAAAAAAAAA4WAFQAAAAAAAAYKASsAAAAAAAAMFAJWAAAAAAAAGCgErAAAAAAAADBQCFgBAAAAAABgoBCwAgAAAAAAwEAhYAUAAAAAAICBMtbvHQCGnTFmp6TfkfSLki6WlJP0PUlvsdZ+JqP3+ECy/ftaaw83WW6LpF+T9BxJ95e0S9IRSZ+U9KfW2rk661wk6e41duEH1toHdbb3ANoxSMeUOut9RNLPSbrYWntPk+WeIOnlkn5E0m5JJyV9VtJfWmvvWMeuA2jTsB9TjDGXSVrruPE9a+1DWn1fAMBwIMMKWAdjzC5JX5D0WkmXSDokaUnST0j6T2PMazN4jxfJnQS2si//I+mdkn5M0pSkeyRdKun/Svq+Meb8OqtendzOSvpagz83rOuHANCSQTqm1FnvJXIXlmst93pJ/y3pKclTt0g6TdILJf3AGPMz7b43gM5shGOKqucpM2p8nnJju+8PABh8ZFgB6/M2SQ+XO1F6mrX2qCQZY54l6V2SXmeM+Zq19nOdbNwY8wpJf9Xi4m+X9FhJJyRdZ639drKNB0j6qKT7SvoHVS8iKyongh+21v5GJ/sJIDODdExJr/cqSW9uYbknSnpN8vC3JL3VWhsZY7ZL+nNJL5X0PmPMZdbak+3uB4C2DfUxJVE5T/mAtfal7b4XAGB4kWEFdMgYc6mkZ0qKJP1K5SRQkqy110v6s+Th6zrY9jnGmH+T9NeSRlpY/mGSniUplPSkSrAq2ZcfymU2SNKTjTHn1axeORH8Ybv7CSA7g3RMSa13njHmY5L+osX1fju5vd5a+9fW2kiSrLUlSa+QdLuknZKe3c7+A2jfBjmmSJynAMCmRcAK6NyzJI1K+oa19pY6r78juf1RY8yFrW7UGHOdXK+Gp0uak/SbLaz2nOT2X5IAVa0vSfpDSS+TC2qlVU4Eb251HwF0xSAdU2SM+Tm5ANN1ciXDL2lhta9I+ndJ7659IQleVY4z92llHwCsy0Y4pkicpwDApkVJINC5a5Pbr9Z70Vp73BhzRO7C7FGSrm9xu1fLZSC8T6731PYW1nlCcvuxBvsSS3pD7fPGmN1yPS0kvrkE+m2QjimS9CBJO5L3+W1Je9ZawVr7x41eM8aMJduU1m6gDGD9hv6YYozZr2qAm4AVAGwyBKyAzl2W3N7ZZJl75E607tfGdv9X0tWVTKlkil9DyfSfS5OHh4wxe+RKAB4r6YDclMAPW2s/W2f1B8ql5J+QdKYx5v9Kukbu2HC7XL+Ir7Wx7wA6NxDHlJQvSvqgtfbmZL01Ly4bSaZ8vUkuQH5C0ns63RaAlm2EY8oDk9t7JZ1rjHm13HnKFrnzlPdba7/Rxr4DAIYIASugcweT26kmy8wkt2e0ulFr7Rfa3I8LVC3vPV/SlyXVpvY/1xjzIUnPsdZ6qecrafYH5CZ5jaZee4Kk3zTGvEvSi6y1fpv7BaA9g3JMqaz3+U7WSzPGvEnJyHq54PjXJD3XWju33m0DWNNGOKZUzlPOkJtwmG5n8hOSXmKM+SdJL7bWBp3sFwBgcNHDCujczuS21GSZYs2y3ZD+hvJjkmJJPyNpl9wJ3kuS/XiGpLfUrFs5Edwu6Z8kXSVpm9y3rX8oyZf0XElv7dK+A6galGNKlh4vl1VVaa58gVZPKgXQHRvhmFI5T9khNw35ClXPU/5I7jzlBepgUiEAYPCRYQV0LlTrQd+4i/uxI3V/m6SHWmuPJI8Lkt5mjCnIja/+dWPMW6y1Nnn9K3I/ww3W2rentnOvpDcYY+6R9F5JLzLGvM1ae6iLPwew2Q3KMSVLPy/puFzW5+eS278yxvystfbHWtmAMebvVG3qfLG19p5u7CjWZozZKun7cl9uXGut/WaL6/2cXKn6QySdKSkn6Qa55vwfSPosNlv/kXL/Bn5U0llyAZjbJX1S0tvI2GtoIxxTviw35fC71tp/TD1/r6Q/McbcK1di/JvGmL+31t7Wh30EAHQJGVZA5/LJbbNmo5VgUqGL+5He9rtTwaq098j1stoi6amVJ62177PW/npNsErp1+WaI49I+unM9hhAPYNyTMmMtfYua61nrb1D0t2plx5pjHlcv/YLHXujXLCqJcaYfcaYz0n6iNzvkPMkbZV0ulz23fskfdoY0/DfvDHmzXJfrvyiXIbeVkl75YJffyLph8aYB3f002x8Q39MsdZen5yn/GODRf5V0l1y5zdP692eAQB6gYAV0Lnp5Pb0JstUekJMdnE/5lP3b6y3QPLtdSU76pJ6yzRxQ3J7cZvrAWjPoBxTeuXtxhjOQ4aEMeb3JP1WG8uPS/qspEpg8puSflnSj0h6lqq/k54sV+pVbxuvkJtCJ7nfdb8r6dGSrpP0weT58yR9xhhzdqv7tols+GNKcn5TOffhPAUANhhKAoHO3SrpvpIuarJM5bXbu7gf98iVR2yXKwlspNKMNN10vXJREVlrwwbrVS4oaboOdNegHFM6YowZkXSu3D5+fa0yL7mf9WVa3VsPAyQpA3yrpBe1ueqrJD08uf8BSc9K/Z75ljHm45K+IekBkn7VGPNma+0tqffdIemPk4eLkh5irU1Pu/uEMeYWSa+Xay7++3L/nlA11MeUiuTfYGCtjRoswnkKAGxQfLMJdO5bye219V40xpyv6rS+r3drJ5ILgO8kDx/eZNHLk9s7JckYc8AYMyuprOblftckt7c0WQbA+g3EMWUdLpJ0TNJXVT1urOUNxph2sz7RI8aYh8lNdqwEqxp9sVG73nZJv5c8vFNuQu2Kda21S5L+IPXU02s28wi50j9JekdNsKriT1XNDHpqndc3u6E+phhjzkzOUzxJP9VgmRFxngIAGxYBK6BzH0luH22MMXVer5zgf7kHTYLfl9z+vDHmgtoXjTFPlnQ/ucalH5ekpEntqWSRX6230aRR7qVyQa2PZbvLAGoM0jGlbdbauyUdTh7+xhqLVzI+d8pNKMWAMcb8mVwZ30OSpz6p1rPhnqJqsOmPrLWNMl/+W64H0Vsl3Vzz2sHU/brZP0kQ7Nbk4Tkt7ttmMuzHlClVyxp/tcFiz5CbGOgpOb8BAGwclAQCHbLW3mGMeb9cT46PGWN+2lp7WJKMMc+U67UhSf+vdl1jzKWSxiUtWGtPZrA775b0UrlmuJ8xxvxCpbTCGPN/JFWalf6jtfZ4ar03yl0sPNUY80ZJr7PWesl6P5dsV5L+3Fp7IoP9BNDAgB1TOvV6uWPK84wxhyX9pbU2SLIg0gGIP5X0C3KZn481xrzAWruuwJUx5gpJL5HrmXS+3LCIo5K+KOlv0+VmNet9SdKjJHnW2mbNv2+WO8YesdZeVPNapfzxlZI+LenvJD1SrkTpsKRXW2s/l1p+r6Tny2W33l/SHkkzcj0DPyLpemttoBrGmItUbV5/naRPyV3IPzvZtz1yUxk/K/d3Xy8rqVU/Ivd3OCvpd6y1/2yMeV2L6z45uS2rSRAh+X3znAYvp3/nXN5gGcl9qVK7PLRhjilvlJtyfJ0x5v9Jer21tpzs4zMkvbOynLV2ok/7CADoEjKsgPV5maQfSrpS0m3GmBuMMfdIul4uIPwH6YuUlM/LfSv8xix2Ijl5e6rchdFVkm42xtxijDkk6btyF2+fV7V5bWW96yX
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxsd1ng/0/vd01ys++EJPCFBAQBgShCBAdQlIFxFHBBZRjFZRR0fsqMIgEF9xFwWMYRdEBREB1xHFwAWSTDIsiakC+ELGS7+7291naW3x/nVHdVdVV19XZ7qc/79erXqVNn+3Ynffqep57n+Y7keY4kSZIkSZLUzehWD0CSJEmSJEnbl8EjSZIkSZIk9WTwSJIkSZIkST0ZPJIkSZIkSVJPBo8kSZIkSZLUk8EjSZIkSZIk9WTwSJIkSZIkST0ZPJIkSZIkSVJPBo8kSZIkSZLUk8EjSZIkSZIk9WTwSJIkSZIkST0ZPJIkSZIkSVJPBo8kSZIkSZLUk8EjSZIkSZIk9TS+1QOQJElnVgjhw8BTytVfjjG+ZsDj/jvwU+Xqg2OMd2386DSIEMIk8K/A9cANMcZPDHDMo4GfAb4NuASoAl8E/hz4wxhjbYXjbweuGWB4d8cYrxpgP0mStEOYeSRJ0nB7RQjh4Vs9CK3ar1MEjgYSQriJItj0o8BVwBRwNvAk4L8DnwshPLjP8WcBV699uJIkaScz80iSpOE2Bbw1hPCkGGO21YPRykII/wX4uVXs/wrgleVqA3gT8H8oMo+eDPx/wMOAj4cQvjnGeEeX0zwKGClfvwT4ZJ9L1gcdmyRJ2hkMHkmSpBsoyplet9UDUW9lqdrrKYI3gx4TgJvK1QrwzBjjR1t2uTmE8G7gY8DFwBuA7+pyqke3vP7rGOORVQxdkiTtcJatSZI0vDIgKV+/JoRgWdI2FUJ4PHAzS4GjdMBDf4qlf+/9147AEQAxxq8BLy1XnxVCeErnPiwFjw4bOJIkafgYPJIkaXg1gN8uX+8D/ucWjkU9hBB+A/gE8LjyrfcyeJbYU8tlFfgfffZ7DzBXvn5el+3fWC4/O+B1JUnSLmLZmiRJw+1VwHMpet48NYTwH2OM6woilQ24fxp4GnA5Ra+ce4APAb8fY7y1x3EfppgFrhZj3NPn/F+iaBa9bFavEEJevnwZ8H8pmkE/iSJQdjvw8hjjB1r2Pwt4MfBvgUcAB4ETFEGSvwDeEWNM6BBCuAq4s1x9LvA3wI8ALyzHdhC4D/gH4HfL7J61eiLFz/Ak8AsxxreWDbAH8aBy+YUYY6XXTjHGNIQQgcdSlDEuCiFMANeVqwaPJEkaQmYeSZI0xMrp2V9MUcIG8NshhMvWer6yOfMXgZ8EArCfIqspUJRcfTGEcFMIYaT3WTbEFRRlXk8vr3828BiKAFJzrN8G3Ab8LkXj6HOBCYreP98BvA34bAhhpenp9wEfAN5KEfw6n6IR+dXATwC3hBC+cx3fyyngN4FrY4xvXeWxk+VydoB9G+XyIR3vP5zi+wH4cgjhJ0MIHw0hnA4hVEMIt4cQ3jzAz0mSJO1QBo8kSRpyMcabgTeWq2cDb1nLecpsmFcDY8AXKIJF30yR+fOzwNco/u3xSpZm/9osL6UI4vwW8K3A9wKvjTHeVY71BorMpEuAHPgT4NnAE4DnA/9YnucRwD+HEC7pc63fBb6NorTsh8pzPAd4f7l9CvjjEMKBNX4v3xNjfHmM8dQajj1eLi8fYN8ryuX+EMLBlvdbm2W/sfz6Vor/V6aAayj+W98aQnjxGsYoSZK2OcvWJEkSwH8Bvhu4CviuEML3xxjfOejBIYTHAK8oV98BvKij3OvmEMJbgb8FbgR+JYTw7l4lbBtglCJY9Est772nHOsYRVbRXoqMq+fFGN/Tst+ngHeFEH6FoqzvEop+Qc/uca2LKb7nH4kxNjO4CCH8DcX3+53ABcCzgHet9htpPecafJKirC6EEK7rUzL4jUBrxtl+lrKVvrHl/bOA/0Px/X6d4vt6DvDDFFlO/zOEMBdj/PN1jFmSJG0zZh5JkiRijPPAj7W89foQwgWrOMXPU/y74gTwkm59gsprvIgi02cE+E9rH/FA3tzj/e+m6PEE8OaOwNGiGOOrgQ83jwkhXNdtP4pm1C/tDPLEGHPam5A/apBBb7B3tLz+HyGEZb2kQghTwBs63p5oed3MPMopgoLPjjH+RYzxkzHGv40xvpgiQNYse3tLCOGcDRq/JEnaBgweSZIkAGKM7wf+qFw9H/j9QY4r+xd9R7l6c4xxoc817gS+XK4+bY1DHcR9McZ7e2x7RsvrfjOQAbyp5fUze+zzmRjjyR7bWhtlH+yxz2b6a+CfytdPosgA+44QwoEQwr4QwrcDHym33ddyXL3l9fdQlOI9Ncb4R3RR/r/zW+Xq2RTNwyVJ0i5h2ZokSWr1cxRBkkuA54UQ/izG+N4VjrkKOFS+fnbLjGcrefDahjiQe/pse0S5nAO+tMJ5PtHy+pE99rmrz/FzLa/P+L+7Yox5COF5wPuAb6JoGv6+Lrv+EUUZWrMX1XzLOU5SlPKt5A+AZpngtwOvW+OwJUnSNmPmkSRJWhRjPA38VMtbbx6gBOn8NV5uvKMx80aa6bPtvHJ5vCwt6+dIy+tze+wz1+N9KEq9mjZ7hrmuYozHKWaT+2WWB9U+BXxfjPFFQPO/83yMsd/31Os6XwdOl6tXrnG4kiRpGzLzSJIktYkx/u8Qwl9QzFB2CcVsYv+hzyGt/554GwOWu5V6lrj1MciHX/2CQqsJ4oy1vF5P4+otFWOsAq8BXhNCuIyihO7+GGNrkK3ZB+qudVxqgSIINbmOc0iSpG3G4JEkSermp4GnUmTpvCiE0G/2rNZ+P2mM8XNrvGYz4LNScOfsNZ6/qTne80MIIytkH13U5bgdLcZ4X+d75Qx0jytXP9fy/iHgicCFwG0xxk/2Om95jmZW19ENG/AuE0LYB/wC8HyK0s1Z4DPA62KMf7dB1/iz8vwPiTHe3rHtKuDOVZzuVTHGm1qOvxH40ArHvDfG+JxVXEPSGm3GPSWEcCXwKxRl7BcCx4APAr8eY/xyn+OmKP798DwgUHyQ8DXgz4HfjTFWBrz+YynKxsdjjFuStavlDB5JkqRlYoxHQwgvA95evvUHLM081ukOioyTfRSBhr5CCL9IUd70tRjjB1o2NWdomwwhjMUY0y7H7qWYHn49vgB8M3AAuJ7+fY9av5/b1nndMy6E8DTg6RT/+H9JjLHWY9cnsxT4eX/L+1ex1CPp3RQPBL08DpgqX396LePd7UII+ykewJ5AMTvdlyh+7k8Hnh5CuCnG+Kp1XuMlFA+RvVSBm1c4zWUU/+0BvtqxrTlr4AMUv/vd3LrC+SVtgM24p4QQAsU94jxgGvg8cDXwQ8D3hhCeE2P8hy7HXQT8I/ANQErxN3M/xd/ZXwWeG0J4aoxxeoXrT1H828NYxTbjfxBJktRVjPEdIYQXUMykdhXwAz32a4QQPgQ8C3hkCOFJMcaPdds3hPBU4DfK1Q8BrcGj0y2vr6J9prKmb6d9Gvm1+EfgJeXrHwf+U599X9Ly+v0999q+HkbxiTQUn/wu+wd/6RfL5RzFDG1NXwJOUDxEPCuEcF6M8USPc/xcy+t+mWrD7I0UD3mfA54dY7wHIITwQxQlnzeFEG7uCKoOLITwUuC/9dsnxniYYna9Xuc4CHy2XH1zjPFPO3ZpBo9eH2P8zbWMU9KG2dB7SghhHPhbinv+O4AfjzFWQgiTFCXsPw38eQjh2ta/BeWsq++mCBzdCjw3xviVctuTgb+gmLDhtbT3Vezm14DrBhmvziwbZkuSpH5+nCIFHvoHbVofWP84hHBF5w4hhAspMpia3tCxyxdaXi8L6JSfav5239EO5m+AZinPT4YQntttpxDCK4CnlKsfXEc53lZ6L8UnwAC/FkJY9t8whPBfgWeUq7/X+qlwjLEB/GG5up+igfpYxykIIfwU8H3l6t/HGAeZnW2ohBCuAX6QonfWDzQf8qAI1LIUVL1pDee+JITwHuD
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAASbCAYAAAAfsp+PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkWV3n/3dmZOS+1L51VXdVV3Wfppt9UGhAm8URFREdFXAB+YEbzqigIzoKAs7oiAsiiqAio6ggyIgwI4zK0ii7IFs39Om1uvYls7JyjT3i98e9mRmZlRG5RVZWZb1fz1NPxL333HtPZHdFZXzinO9pq9VqSJIkSZIkSYtp3+gOSJIkSZIk6cpleCRJkiRJkqSGDI8kSZIkSZLUkOGRJEmSJEmSGjI8kiRJkiRJUkOGR5IkSZIkSWrI8EiSJEmSJEkNGR5JkiRJkiSpIcMjSZIkSZIkNWR4JEmSJEmSpIYMjyRJkiRJktSQ4ZEkSZIkSZIaMjySJEmSJElSQ4ZHkiRJkiRJaqhjozsgSZIurxDCncAd6earYoy/vszz/hD4z+nmoRjj0db3TosJIewDfgp4FnAE6AMuAF8E/gb46xhjeRXX/WngTelm0/+mIYQM8MPAC4HHAgPAGeBzwNtjjB9a6f0lSdLVwZFHkiRd214dQnjERndCjYUQngdE4FeAJwBbgCywG/g24M+BT4UQrlvhdQ8B/3OZbbcB/5Le65nAdqATuB74PuCDIYT3hhB6V9IHSZJ0dTA8kiTp2tYF/FkIwd8JrkAhhGcC7wT6gTzwBuBbgScCP0AS6AB8A0mAs6zwJoTQBvwZyQimpdq2Ax8Anpzu+jTJCKSnkoxC+ny6/3uBty/n/pIk6eritDVtOukvzq8EXgAcAiaALwBvXO2Q+hDCNwI/C3wTsAfIAV8D3gW8NcZYbHDeM4GXA7eTDO8/BfwT8IYYY2xyvycD/5XkF/MtwAjJB4TfijF+YTWvQZKauB34GeCNG90RzUkDnj8EMiTB0dNjjJ+pa/K5EMK7gT8CfhJ4NMm/Ob+xjMv/BPD0ZXblRcBT0ud/Czw/xlhLtz8ZQngn8EGSKXXPDyG8Kcb4qWVeW5IkXQX8llGbSgihD/go8BrgRuBuYIrkW9oPhhBes4pr/izJt6w/COwAvg5MAk8Cfh/4lxDC4CLn/SrwYeA70113A1uBHwe+FEL43gb3eynwr8D3kEwJuBvoBZ4HfCaE8MKVvgZJaqAKzNTJ+fUQwo0b2Rld4nbglvT5mxYERwCkIc4rgHPprhctddEQwvXAb6Wbw8vox4+mjyXgZXXB0UwfqsAv1+163jKuKUmSriKGR9ps3kwylP9LwOEY4+NjjDeQ/DJdBl4bQviW5V4shPAU4PdI/q78FrA1xviYGON1wDNIRhI9EfjjBec9E3hduvkLwO4Y4+NJ6lO8EegG/iqEsH/BeYeBt6T3+4P0vMeRjHZ6G8lowbf5AU9Si5SA306f9wJ/uoF90aW+qe75Bxo1ijHmgU+kmyGE0LXEdf+UZDTsJ4D3LKMfXwX+DfinGONIgzZfr3t+/TKuKUmSriJOW9OmkQYvP0zyTfoPxRiPzxyLMf5lCOFm4FXAa0lGBC3HLwBtwP+JMf5i/YEY48dCCD8C/DPwghDCK+vu+Qvp47tijL9Td04hhPBzJEP7HwH8CFC/ytEPkBRBvQd4efptLjHGXAjhZSSB1Y3p6/y1Zb4GSWrmdSQjHW8BnhFC+LEY45pCpLQA938hKay8n+R99DjwMeAPYoxfa3DenSSrwBVijN1Nrn8XcBvwcIzx4IJjM6NiXgH8A8m0r6eSBGX3A78UY/xwXftBkpE1zwUeSRKqjJCsYva3wF8utopZCOEg8FC6+T0k4c6LSb6suC29zkngH4HfjTE+0Oj1NPE5koLW+9K+N9NW97wbKCzWKB3d+q0k0+B+FPjppToRY3zZMvp6Q93z08toL0mSriKOPNJm8kKSuhCfbvDB5K3p41PSIfvLMVMP4l0Njn+EpKYSJCvgzPgkyQeJSwqHpsP9v5pu3rDg8IH08a6Z4KjuvDLJhxnwW11JLRJjLJCECDPvOb+90lW76oUQXk3yHvdTQCApyNybPv9J4KshhNem9XzW0wGS9+JvTe8/BDyeuhAmhPB0krD+d4FvBraRBPh7gG8neQ//YvrlRDO9JF9K/BlJ+LWDpBD5jcDLgLtDCN+x0hcQY/xYjPGXY4wvjjGebdQuhJBlribRWIxxrEG760heK8DrmtXeW4kQQgb473W73t2K60qSpCuH4ZE2k9vTx08sdjDGeBJ4ON28Y6mLpavLPJ+kRtG/NmhW/+EnU3ev/x5jfG79t9t1180Aj0s371tw+Fj6+OiFKx+l27elm0eX6r8kLVeM8ZMk034hCVne2qR5QyGE15KMiswAXyEJi55MMvLnZ4EHSH73eE36Zz29nCTE+S2S6V/fD/xGjPFo2tfbSUYm7QVqwF8B30UyFfkFJIsbQDIa6V9DCHub3Ot3Sb5s+AzJFxlPBL6bZGQqJEHSn4cQ+lv02hZ6CbArff6PTdr9Ccl/3y8Cv9Ok3ZJCCJkQwoEQwguAzwLflx764xjjvzQ5VZIkXYWctqbN5Ej62GxqwFGS0T43L3WxdOTP/1ui2beRTE2ApLB1U+m3178J3ASc4dKRSX8B/Le0f29Ip8IVQwidwOtJppWMLXKeJK3VfwOeAxwEvjOE8IMxxncu9+QQwuOBV6ebfwm8ZMF0r0+GEP4M+L/A04BfDSG8p9EUthZoJwmLfqVu33vTvmZI3kd7SEZcPT/G+N66dp8D3p0ufPA6koDpj0nCpcXsIXnNL64fNRpC+ADJ6/0OYCfwbFo8KieEcITk35UZv9ug3YvSfpS59L/NakSgfkRWnmRq+O+t8bqSJOkK5MgjbSYz37qeb9JmptDnjrXeLP0G+Q3p5udjjF9v0vY3QggPAPeSfDv7aZIll+cVHo0xniCZYnEvybf050II/w6cJfkW/d/T806ttf+SVC/GOEUy0nLG74cQdq7gEj9P8nvFCPCTi4UT6T1eQjLSp41l1NtZo7c02P8c5lYxe8uC4GhWjPHXgDtnzgkh3Nrgennq6tTVnV9jfhHyxyyn08sVQthFEk5tSXe9Lcb4uUXa7SFZrAHgt2KMX1rjfduYm2Y9o5tklbXvvPQMSZJ0tTM80mbSmz7mm7TJLWi7KulIoPeQ1PCokAQ7zTyTpPbFzN+5AzT+BXsc+Hz6fIhkitvMBwOLkEpaNzHGfwb+V7q5g2TVxyWlYcK3p5ufjDFON7nHQ8ytzPXMVXZ1OU6mgfxinlX3/I8btJnxR3XPv61Bmy/EGC80OFY/GnagQZsVSwOhj5D8OwTJVLSfadD8rcBWkvpOrVhsoYskBHwS8C0kUwOngW8E/j6E8J9bcA9JknQFcdqaNpMKyw9Ea0s3WVwIoYdk6sPMB6VXpvVCmnkBcIokNHoR8EukRWljjK+ou/YzgfeTFJj9A5Jvik8Ah4BXkvyy/vQQwrNjjHeu9jVIUhM/RxKS7AWeH0J4V4zx/Uucc5AknAD4rroVz5ZyaHVdXJbjTY49Mn2cBO5a4jqfqXv+qAZtjjY5f7LueUt+70qnQP8jc9PGIvDtMcbcIm1/gGQluSrw0rRA+prEGPPAX9ft+kgI4V0ko7SGgDeGED7cqoLckiRp4znySJvJzC/oDZd3JqlvAck3pCuWThH4KEndCIBfizG+ockpQPJNe4yxEGO8P8b4qyQrGwH89MwqPulqOX9KEhz9UYzxZ2KMD8YYizHxUpJAqRd4WwjB8FdSy8UYLwL1I0feEkLY0qh9arVTgTtCCC0bjbPAeJNj29PH4XRqWTP1q5xta9BmssF+mP9lxZpXmEsLfX+aueDobpLpzJesxpb+m/WmdPPNMcZPrfX+jaRT4WbqS3WQFA6XJEmbhB8+tZkMk3zzvb1Jm5kPOOdWevEQwiOAD5J8w14Dfj7GuKrCoDHGd4QQ/iewj2QVoAeA/8Dct/Cva3Dq60iWvz5MMj1g3T4ISLp2xRj
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkZ1no8V/v090zmZnMZCWQkAReFrksHxCieIlwvV5EccPtgl6MCIgbiFdxQXC/gHBBBOKCesGNRQT0ol7DpiDgwiaQvEkI2SaZTKanp7faTp1T949zqvt0T1X1VtU9y+/7+fSn6tR5zzlvzSRnup56nucdarVaSJIkSZIkSZ0M7/YEJEmSJEmSdPoyeCRJkiRJkqSuDB5JkiRJkiSpK4NHkiRJkiRJ6srgkSRJkiRJkroyeCRJkiRJkqSuDB5JkiRJkiSpK4NHkiRJkiRJ6srgkSRJkiRJkroyeCRJkiRJkqSuDB5JkiRJkiSpK4NHkiRJkiRJ6srgkSRJkiRJkroyeCRJkiRJkqSuRnd7ApIkaWeFED4CPKXY/MUY469v8LjfAX602HxwjPH2/s9O3YQQngC8APh64BKgCUTgL4HfiTEu9jj2D4Af2uClOv7dhhBGgOcAzwYeC+wHjgH/BLwlxviPG34zkiTpjGLmkSRJ57aXhxAevtuTUHchhKEQwm8BnyIPAF0JTAL7gMcDvwl8JoRwVY/TPHabc7gI+Bjwx8A3AIeBMeABwPcCHw0hvLkIMEmSpLOMwSNJks5tE8BbQwj+TnD6ei3wUmAIuAv4ceDJwLcAf1OMuRr4mxDCxNqDQwijwCOLzT8gDyT1+rlnzfFTwD8AType+grwIuAa4BnAnxev/0jpuSRJOotYtiZJkq4BfgJ4/W5PRKuFEK4BXlxsfgF4aozx/tKQvwkh/CHwg8DDgOuAt6w5zcPJg4QAN8QYP7vJafw88Kji+SeA/xZjnC/t/0AI4ePA7wDfFUJ4Vozx3Zu8hiRJOo35LaMkSeeujLxvDsCvhxCu3M3JqKNXkmccNYHvXBM4avtpICmeP6vD/seUnm8qcFSUob2o2KwAz1oTOAIgxvgm4O+KzVeHEIY2cx1JknR6M3gkSdK5KwFeUzyfAn5/F+eiNYo+Q08rNv8oxnhzp3ExxhPkfY/eDHygw5B2v6Ml4JZNTuOxwMHi+btijPf0GPtHxeODgSds8jqSJOk0ZtmaJEnntl8Gvp285OmpIYQfjjFuK4hUNOD+MfLAx2Ws9Or5MPDGGOOXuhz3EfJV4Ooxxj09zv8F8h4+d8QYr1izr1U8fQnwf8lLqZ5MHii7FXhZjPGG0vjzgOcB3wp8FXkT6hngM8C7gLfHGJusEUK4grz3D+R/fu8Hngv8QDG3fcAR4O+B18YYv9zt/fTwDUC7AfU7eg2MMb6ix+525tHnYozZJudween5p9YZW/57vQb4l01eS5IknaYMHkmSdA6LMdZDCM8D/pE8I/k1IYQPxBiPbOV8IYSXA69gJeixvKv4eX4I4VeBX44xttYe30cPBD4OXFB67XHkAaT2XL8e+FPyZe/LLgaeXvz8VAjh29YJ/kwBNwBfv+b1K8mbSF8XQviOGGOnrKBeHlV6/m+leY+SB+VGgbtijPV1zvPo4vGzIYRnkvdFehJwPnCc/M/pzTHGD3c4drz0fGGd6ySl5w9dZ6wkSTqDWLYmSdI5Lsb4ceBNxeZ+4PqtnCeE8ErgV8gDR58HXgh8DXnmz08CXyb/3eMVxc8gvZh8OflXA18HfBfwGzHG24u5XkOemXQJ0AL+BHgm8ETypef/X3GerwL+KYSwNsBU9lrywNEnge8vzvFt5CuUQd6s+o9DCHs3+R4eUTyejDHOhRCuCCG8DThJnvV0CzAbQviLEMJVnU4QQngQeZAI4DnA+8izrC4Cxsjf/7OAD4UQfrcITJUdLz2/bJ35PrD0/OJ1xkqSpDOImUeSJAng58iXfr8C+OYQwn+PMf7ZRg8OITwOeHmx+XbgujXlXh8PIbyVfGn5a4FfCiG8s1sJWx8MkweLfqH02ruLuY4AfwhMkjcN/541q4P9C/COEMIvkZf1XQL8LnlwqZOLyd/zc8tlYSGE95O/328iz4B6BuuUn61xuHg8GUL4BuA9wNoA1CTwPcA3FdlNN6zZ/9jS8/OAz5H3RvoCeVDrWuDHyfsaPZ88kPbC0jH/Rv5nNExenve/esz3W0rPp3u9MUmSdGYx80iSJBFjXCIPHrS9IYRwQbfxHbyU/PeKGeCFnfoEFde4jjxAMUQetBiktUvWt30LeY8ngLd0W1Y+xvgrwEfax4QQHtFpHFADXry2n1BRllfuH/VoNqcdKDoA/CWwB/g14CrywM9DybOeWuQ9lv4yhHD1mnOUV1p7K/D4GOPvxRj/Ocb44aJX0mOBO4oxLwghXFt6D7PkATCArw4h/FiniRbBw/J/P2ObeaOSJOn0ZvBIkiQBEGP8B1ZWzDoMvHEjxxXLsj+92Px4jLHS4xpfAW4sNp/WbVwfHIkx3t1l3zeWnv/uOud5c+n5f+sy5t+LFc86KfdK2rfOtdaaKh4PkAeSvjvG+PIY420xxkaM8ZYY40+TNyeHPLPoN9ac4zXkQatvoXtQ7w7ypuFtL14z5OeA9t/pG0MIbwohPCKEMBZCuLgIKH0ISMlL6gAam3yvkiTpNGbZmiRJKvsp8iDJJcD3hBD+PMb4vnWOuYKV5dyfWVrxbD0P3toUN+SuHvu+qnhcJC/f6uWTpeeP6jLm9h7HL5aeb/b3rmrp+V/FGP+q06AY45tDCM8nDxJ9Wwhhusjyogjkfb746SrGeEMI4SvkfydPDSEMtRuaxxi/FEL4LuCd5OVoLyp+ypbIe0W9kTzYtbS5typJkk5nZh5JkqRlMcaTwI+WXnpLCOHAOocdXmd/N6MhhM1m42zUfI99h4rH4xtY8e2+0vPzu4xZ7PI65CVlbUPrXGut8upmHQNHJX9dPI6Rryq3FZ8rHvexEgwEoFgp7nHkAaRyUKtK3mz8MTHGvykdV/5zkyRJZzgzjyRJ0ioxxr8KIbyLfIWyS8j76vxQj0PKv0/8IRssdyt0LXHrYSNffvUKCm0miDNSep51HTUY95aeH1lnbDnTaqvBvPLfxfjanTHGm8mz0faQr7yWAnfHGBOAEMLF5Kv1Qb4anCRJOksYPJIkSZ38GPBU8iyd60IIf9FjbLnfTxpj/OwWr9kO+KwX3Nm/zv71tOd7uFye1cVFHY7bKf9BvsIZrMkE6mCi9HwWIIQwTP53eAFQ61b2VnJh8ZjS473GGGvArR12Pan0fKv/DZz1QghTwM+Ql/k9mDzD7N+B18cY/3aL53wQ8EvkJacXAvcDHwR+M8Z4Y4/jvoX8//UnkAcMbwPeBfxO0Sx9o9f/VuC9wB0xxiu28h4kbc0g7ikdrvHnxfkfEmPsdP9vj9vVe5EGy7I1SZJ0ihjjMeAlpZd+j+7Lr9/GStbKk7qMWRZC+NkQwgtCCP9lza52M+fxEMLI2uOKYyfJgyHb0e7/sxd45Dpjy+/npm1ed7PK/ZbW+3Mtv4/bAYrV394N/Bnw5qKxeUchhAnyX9oBPh9jbJT2/XQI4bdDCOutjtcOdFWBj68z9pwUQpgmby7+CuBK4Ivk/aH+K/CBEMIrtnDOAHyaPDtwL3n54R7g+4FPhxC+sctxbwLeX1y7Rd7I/jLgV4DPhxC+qtNxHc5zmPUbz0sagEHcUzpc44XkgaP1xu3qvUiDZ/BIkiR1FGN8O9D+1vIK4NldxiXAh4vNR4UQntztnCGEpwL/C7ge+Pk1u0+Wnl/R5RT/he0vA///Ss9fsM7YF5ae/8M2r7tZNwDHi+fP6dYfqvjw8J3F5udijLeXdv9j8Xgx+S/m3VzHSkbX2iyz7wF+HPi5bgGoEMLlrHy4eHeMsdppnHgT8ETyzKyrYoyPizFeDvwAefD0lR2Cql2FEEaBvyHPEHw7cEmM8Qnk5aa/Q/7B7S9CCIfWHPfjrDQ9/xXg4tJxryf/4HbDBvqdQb4i4UXrjpI0CH29p6w
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAASbCAYAAAAfsp+PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZwsZ13v8e/sM2c/WchCAoEgDxD2RWRRwnIFLotyL5uKgCgIXJVFUa+AIApeQQFRIVeBKyoiuLCIILILyCJIEhLgyR6SnCRnnbW7a79/PFXT1T1V3dU9PTPdPZ/365XXzHRXVdck5zyp+tVvmUiSRAAAAAAAAECRyZ0+AQAAAAAAAAwvgkcAAAAAAAAoRfAIAAAAAAAApQgeAQAAAAAAoBTBIwAAAAAAAJQieAQAAAAAAIBSBI8AAAAAAABQiuARAAAAAAAAShE8AgAAAAAAQCmCRwAAAAAAAChF8AgAAAAAAAClCB4BAAAAAACgFMEjAAAAAAAAlCJ4BAAAAAAAgFLTO30CAABgexljviDpUemPr7HWvrHifn8q6X+lP97FWnvD4M8ORYwx50p6qaTHS7qbpL2STkr6tqS/k/R+a23Y5RgXp8d4uKQzJZ2S9F1JH5D0Pmut32X/GUnPTv95gKQzJNUlXSfpXyW9w1p7a3+/IQAAGGYTSZLs9DkAAIBt1BY88iQ9wFr7vQr7ETzaAcaYZ0p6j6R9HTb7T0lPs9beUrD/pKQ/kQsclblc0tOttVeXnMP5kj4s6UEdjrEq6XnW2n/qsA0AABhBlK0BALC7zUl6TxpgwJAxxjxW0t/KBY4akt4q6cclPVTST0n693TTh0j6hDFmT8Fh3qhm4OhmSb8k6cck/Q+5rCNJuq+kjxtjDhScw4JcZlEWOPpM+tkPTc/ljyX56Tl+MM1wAgAAY4SyNYyd9ML51+XS6u8iaUXStyS93Vr7yT6P+cOSXibpRyWdLZemn6X6X9It1T93nPMlXSHpgEqe2htjLpB0fZdDXWatvX/V8wfQv61YUwo+4wPp8X/IWntNh+0eKelXJT1C0n5JN0j6F0lvK8o46aA9g+Vhkn5F0tt7OAa2mDFmQtKfSpqSCxw92lr7tdwm3zDGfFDSOyW9WC4A9HJJb8od40JJr0p/vE7SA621S7ljfNgYc6Wk35N0d7nA0pvU6mWS7pV+/zZr7Svb3v+0MebDkv5N0qykdxljLrLWxn382mNvmK5TNrHfY+X+rD1Mbi06Ivff/63WWtvP7wAAGG48ZcRYMcbslfQ5Sa+TdFdJV0pak3sy+gljzOv6OObLJH1V0k/L9Xf4nlxq/o/IPW3996IntQXHmZD0XrnAUSf3S7+elPSVkn++3evvAaB3W7GmFHzGi+VuIrtt9xtyWSY/KWlBLhB9WC6YdEXVbA9jzJyke+ZeyvrkvNEYc9fqZ45t8DBJ90i/f0db4EiSZK1NJL1C0tH0pee2bfJzcsEnSXp5W+Ao8/uSFtPvn1nw/gvSr7dI+o2iE7XWflHS/01/vIekHy7abrcbpuuUTez323LZZ09OX7pSbi16kaRLjTH/s9ffAQAw/AgeYdz8mVwa/aWSLrTWPtBae2e5i+lQ0uuNMY+rejBjzCMkvU3u78qbJR221t7PWntHSY+Re9L2UDUvmDt5qaQqn50Fjz5krX1kyT8/V/V3ALApA11T2hljXi6XNdJtu6dI+j+SJiT9haSzrbUPkXSuXFbJIbkbz7tU+Njfk5QvbXpL+nVPemwMjx/Nff+xso2stQ1JX05/NGmAMHObpM9LuknSp0v2jyVdlf54p/x7xpizJP1Q+uMnrbVBh/PNH/9+pVvtbkNxnbKJ/R4r6XfSH18l6Sxr7QMlnSWXuTgv6W+MMedV/R0AAKOBsjWMjTQ1/zmSYkk/Y629KXvPWvvXxpi7S3qNpNfLPTGr4lVyN2v/bK1tedpqrf28MeZ5chfLzzbG/Hr+MwvO7Q8k1dR601Yku+D+TsVzBLAFtmhNyY59jlwD46pP6LObtX+z1r4odx6xpD80xjxILnvprZKe1uFzHyHplXK/U/YA6XfSfe4h6THGmBdaazcVRDLG3FOu/Omxks6TW0dvkgti/Im19rsl+31BrpG3Z62d73D8KyRdJOlGa+0Fbe9lk0BeIVfS96eSHikpkHSNpN+01n4mt/0BSb8g6Sck3VuuBOeEXIbn30v666IpZm0lxk+TC+48Xy4IcFF6nFskfUrSH1lrry37fTr4hlxW0LnpuXcykft+Xq4Ruqy1fyr376BUmhmbBY3ap6XFkl6bnsMXejwH5AzZdcpm9pOkD1hr/zC3j2eMeaXcNMB7SnqeXK8tAMCYIPMI4+Rn5VLzv1pyY3JJ+vURxpg7Fbxf5NHp1w+UvP9ZuV4FkvTgog3SJrTvkxur/FsVPjMLHl1R8RwBbI2tWFNkjHmapKvlAken1JxeVrb92XJj0SWXIVAk61X0FGPMaSXH2SvpL+VuXNf7qllrPbngSdaf5i3GmDt2/UXKz/e1csHvl0oycmvfnvT7F0v6jjHm9WnAYiudL1fm++Pp5x+U9EDlgjDGmEdL+r6kP5JrIH2apBm53i9PlCs1/nZ609/JHrmb/ffIBb/OkGtEfldJL5F0pTHmv/f6C1hrP2+t/S1r7fOttbeXbWeMmZHrgyVJSyWlaZ38stzvLEkfbDuHY9ba37PWvtRa+6Eux7k49/2NPZ7DbjBM1yn97vcVuUDpe9t3SEsoswdfdy4/ZQDAKCJ4hHHysPTrl4veTJvJZhezjyraJi8N+jxLrob/SyWb5W9+pkq2yZrb/o2kj3b5zH1yNxsSmUfAThvompJzP7lgw/vlmhB/osv2+Zuwb5VskzWonVJJIFsu8HQ3ufK31Zadrf2KXDmN5IIsl6gPxpjXS3pDeh6XywWLHi6X+fMySdfKXXu8Lv1nK71cLojzZrnyr2dIelM2qMAY8zC5zKRzJCVya/RT5Up1ni3X/Fdy2UhfSrPFyvyR3M341+QCBA+V602VlXHNSfrLdI3fCi+QdIf0+09129gYM2GMOdMY8xhjzD/K9beR3J+vt/ZzAsaYO6jZGymQyzJDq6G4TtnM9Y219nettT+Rz97Lnc+UmoHuq7udPwBgtFC2hnFyt/Rrp9KAG+RuxO7e7WBpOci/dtnsCXKlCZJrGNnCGHMvSb8rVwbwK3I3ZZ3cV+6C7YikM40xvyZ3ITYt14/iA+lNHoCtN9A1JeffJd3PWvsdab38qZMk931Zv5mZ3Pcbjpf2KXmJXEDnDZKeUnCM/52+foGkJxtjftpa+7ddzi3/GQ+UK2+SpL+W9IK2cq+vGGPeI+njchkqv22M+VBZCdsATMoFi16de+0f0nOdksucWJDLuHqWtfYfctt9Q27k/G/LlfWdI9f75akln3W23O/8/PyEMWPMx+R+3/8u6UxJT1JbZs9mGWOygGDmjyrs9heSfr7ttfdI+jVr7WrB9t3OYULSu9X8f9y7+8h+2g2G4jplENc37dLsvP8j1x/rNhVkJgEARhuZRxgn2VPXYx22OZF+PWOzH5Y+Qc6e0H7TWvu9tvenJf2V3BPnF1lrT1U4bFaydlhuVO5vyZVO/De50pYvG2Pek5YoANhaW7KmWGs/lwWOKro+9/39S7a5KPf94fwbaU+f98o1431+WcNja+2aXCZC5o+NMWf2cJ6/KnddcULSi4v6BKWf8QK5gNiEXLnUVnpXyetPUXOK2bvaAkfrrLVvULPPz1PSBwJFGnKTzFpG06dlPPn+UQNtIp1m+3xcrmG65II236iwa1FJ0eMkvTDNSunVW9UMSB7R1meVjaqhuk4ZxH7GmDcZY66Ve8D1dLnpbY+21p4o2wcAMJoIHmGcZI2oGx22qbdt2xdjzKykD8n18IjkyiPavVrSgyS9z1r78YqHzm4s5uVuOC6SCz7dWa6JZiB34/XHhXsDGKRtW1M6sdYek7shk6TXlPQKymfXzLa998dyzZDfZK39dpfP+rSk/5f+eIZcU++u0nN6YvrjV6y1tQ6fcb3cSHDJNdTeKrd
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZzkV13v/3fte+/d07MvmckhCQkkhiUCBkSQxeVyuQJXBblcRVBRwJ/gFVnkClf0qqAgEUVFEIiCKFdBZF9CICyBhGRyMjPJZLbel+ra998f3293V3VXVVd313RPz7yej0ceVd/v93xPneqhi+5Pfz6f46nVagIAAAAAAACa8W73AgAAAAAAAHDpIngEAAAAAACAlggeAQAAAAAAoCWCRwAAAAAAAGiJ4BEAAAAAAABaIngEAAAAAACAlggeAQAAAAAAoCWCRwAAAAAAAGiJ4BEAAAAAAABaIngEAAAAAACAlggeAQAAAAAAoCWCRwAAAAAAAGiJ4BEAAAAAAABaIngEAAAAAACAlvzbvQAAAHDpMcZ8SdKt7uHvWmvf1uF975b0q+7hYWvt6e6vDs0YY/ZI+hVJPy7pqKSYpFlJd0v6qKR/sNaW15jjqe4cPyxpWNKcpPslfUTSB6y1xYu1fgAAcOki8wgAAKzljcaYa7Z7EWjNGPMCSVbSGyTdLKlPUkDSLknPkvR3kr5ujNnb4n6vMeY9kr4o6Wck7ZUUdO9/mqT3SfqWMebYxX0nAADgUkTwCAAArCUk6f3GGH5uuAQZY54u6cOS4pLykv5E0jMlPUHSf5f0FXfo4yR9yhgTbTLN2+RkHEnSOUm/JulHJP1XOVlHknSDpH8zxvRchLcBAAAuYZStAQCATtwi6dclvXO7F4JlxhiPpHdL8skJHD3NWvuNuiF3GWNul/QXkl4hJwD0aklvr5vjKkm/5R4+JOkma22ybo5PGGPuk/T7kq6WE1h6uwAAwBWDvyACAIB2qpIW++S8zRhzZDsXg1VukfQo9/mfrQgcSZKstTVJr5E06Z56yYoh/0NO8EmSXr0icLTo/0iad5+/YFMrBgAAOw7BIwAA0E5J0h+5z6OS/mob14LVnlL3/JOtBllr85K+5h4aY0yo7vK4nF5HZyV9tsX9VUkPuocHNrxaAACwI1G2BgAA1vJ7kp4nJ8PlR40xv2St3VQQyW3A/WuSni5pnySPnODFFyX9ubX2/hb3fUnOLnAFa224zfw/kHSdpEestYdWXKu5T18j6d/llH09WU6g7KSk37bWfq5ufI+kX5T005IeLSkhaUbOLmb/JOmDzXYxM8YckvSwe/g8OcGdl8rJ/LnOnee8pM9I+mNr7alW76eNu+RkBe1x196Op+55WFJBkqy175bzNWjJLY9bDBqNbWCdAABgByPzCAAAtGWtLcgJnlTdU3/UateuThhj3ijpXjkNmo2cLeWj7vNXSLrXGPMWN2BxMe2XdIec5tJRSb2SblJdEMYY8zRJD0j6YzkNpAfk7GI2KunZkv5G0t1u36B2opI+J+n9coJfQ3IakR+R9EpJ9xljnrPeN2Ct/aK19nestS+11k60GmeMCUh6knuYbFGa1s6r5LxnSbp9vesEAAA7G8EjAACwJmvtHZLe4x72SrptI/MYY94i6a1yeuzcIydY9MNyMn9+Q9IpOT+fvNn972J6tZwgzh/KKf/6GUlvt9aedtd6i5zMpN2SapI+JOmn5Oxi9iJJ/+nO82hJXzXG7G7zWn8sZ8v7b0h6sTvHf9FymVhI0t8ZY+Jdem8rvUzSiPv8M2sNNsZ4jDHDxpgfNcZ8XNK73EvfkbObGwAAuIJQtgYAADr1vyT9pKRDkn7CGPOz1toPd3qzMeYmSW90Dz8o6WUryr3uMMa8X9K/SXqqpDcZY/6xVQlbF3jlBIveUHfuY+5afXKyiiJyMq5eaK39WN24uyTdbox5k5yyvt2S/lJOcKmZUTnv+aVu/yC5r/NJOe/3OZKGJT1XXc7sMcYclfQHdaf+uIPb/krS/1xx7v2S/j9rbbpbawMAADsDmUcAAKAj1tqMpJfXnXqXMWZ4HVP8ppyfPWYkvaJZnyD3NV4mJ9PHI6dc6mJ6b4vzP6nlXczeuyJwtMRa+1ZJX1q8xxhzbYv58nJ2MqvWn3R3QqvvH/WYThbdKWPMiJzgVJ976q+ttXd1cOvBJud+TNIvGWP4+REAgCsM/+cPAAA6Zq39rKS/dQ+HJP15J/e5/Yue7R7eYa3NtnmNhyUddw+fvsGlduK8tfZci2s/Xvf8L9eY5y/qnj+rxZjvWGtnW1yrb5SdWOO1OmaMGZX0eTm9pCSnwfevd3j7X8gp5XuSpNfKaWZ+UE6J3z8QQAIA4MpC2RoAAFiv18oJkuyW9EJjzEestf+6xj2HJPW7z3+qbseztRze2BI7crbNtUe7j2lJP1hjnm/UPb++xZjTbe6vLwPrys9mbgPvz0habORtJT3bWpvr5H5r7SfqDr9ujPmAnIbfN8rp9/RZOWV9AADgCsBfjQAAwLpYa+cl/WrdqfcaY/pajXcNbfDl/MaYrmXjrLDQ5tqg+zjtlpa1U7/L2UCLMe36BNXPv+kd5txG33dqOXB0n6SntduNbS1u1tRL6k69bOMrBAAAOw3BIwAAsG5uZso/uYe7tXYT5vqMmr+Rk8HS6X8tS9za6ORnnHZBofUEcXx1z6stR20BY8zPSPqCnObbkvRNSbdaa8c2O7e19geSHnQPb9jsfAAAYOegbA2XFWNMVNLr5KTUH5aUkrOt8DuttZ/e4JyPl7N99FPk7JaTk3S/pI9Ius1aW2xx39PlbAN9i5weFhfkbOv8J9Za2+b1flLSr0l6nKSgpIfk/IL2bmvt3EbeAwBcJL8m6UflZOm8zBjz0TZj6/v9VKy139vgay4GfNYK7vRucP5Fi+sdMsZ41sg+2tXkvi1njPkVSe/W8tfm3yW9oF1/Kfe+PXKylCrW2q+v8TIz7mNwM2sFAAA7C5lHuGwYY2Jy/tr6ZklH5KTpZyQ9U9KnjDFv3sCcvyEn9f9n5ZRcHJdTevBESe+S9BVjTE+T+94kpzfET7in7pPT6+Plkr5njHl+i9d7j6RPumuuua+3T9JbJd1jjHl0s/sAYDtYayclvabu1PskxVoMf0jLGURPXGtuY8zrjTG/bIz5sRWXFndoCxpjfCvvc++NaDnzZqPucR/jkq5bY2z9+3lgk6+7IcaYV0p6j5YDR38l6ac7CBx55Kz5K3L+/dYae8Q9bNVoHAAAXIYIHuFy8h5JT5D0PUlXWWtvstYelNOjoSzpLU1+CWnJGPMkSX8q5/vkDyX1W2sfY63dK+cv7Rfc1/vLFfc9XdLvuYe/JWmXtfYmOX+ZfqeksKQPGWP2rbjvVZJ+xT18q6RRa+3j5JSDvFNOEOlzHfQVAYAtY639oKTFzM5Dkn6uxbiSpC+6h9cbY57cak5jzI9K+gNJt0n6nRWX5+ueH2oxxY9JCrRbdwf+s+75L68x9hV1zz+7ydddN/f/295dd+pt1tqXW2sra93rZlTd4R5eZ4x5Qpvhz9VyltWWv08AALB9CB7hsuDuKvPzcnpN/Jy1dmkHHfcXmz9wD9+yjml/S85fcP+ftfb11tpC3ZxflPQL7uGLjDH7V9wnSR+x1v7fxR/e3ftfKyebKFx3v4wxfklvdA/fZ619s/uLlqy1BWvta+RkQO2Sk1kFAJeSX5ZTJiy1D9r8Sd3zv1vx2SlJMsaMqDED5s9WDLmn7vmrmty/S9IftV1tZz4p6aT7/FeMMc9rNsgY80ZJt7qHn99EOd6GGGN6JX1Ayz/T/am19nfXOc1f1D2/zZ1z5esYSX/tHpbU+G8JAAAuc/Q8wuXixXIalt5hrb2/yfXbJP2upCcZYw5Ya890MOfT3MePtLj+eTm/LCUk3azlLZ/vkFRQky2MrbU1Y8y9kq6RdLDu0s1aLrH4wxav9y45/ZNebIx5bQe7/wDAlrDWnjXGvF6NQYhm475gjHmvpFfK6bHzfWPMOyV92R1ys5wg+x73+BPW2n9ZMc1HJL1
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZzsWV3f/1d1V+/b7bvfmXtn7qxnFmaYISCOoKzighLNT0XjEiQkYjSKS5AoCvgTjTuYqCRRXCAqiERQQWSP7EuYAWY5s9997X2pqu5a8se3qru6u6q7urv6dt+6r+fjcR9V3/pup3q4Rdf7fs7npEqlEpIkSZIkSVItbds9AEmSJEmSJO1chkeSJEmSJEmqy/BIkiRJkiRJdRkeSZIkSZIkqS7DI0mSJEmSJNVleCRJkiRJkqS6DI8kSZIkSZJUl+GRJEmSJEmS6jI8kiRJkiRJUl2GR5IkSZIkSarL8EiSJEmSJEl1GR5JkiRJkiSpLsMjSZIkSZIk1WV4JEmSJEmSpLrS2z0ASZK084QQPgY8p7z52hjjGxs8778BP1bevC7G+GTzR6dGhRDuBj5H8jvfD8cY/3SN4+8CfgJ4HnAIyAJfAf4K+KMYY25LByxJknYkK48kSdJafjGEcOt2D0LrE0LoAP6EBv+xMITweuD/Aj8MHAW6gCHg2cB/A+4NIVy3FWOVJEk7m+GRJElaSxfwxyEEf2+4vPw88NRGDgwh/CLwOiAFzANvBl5IEhz9PDAG3AJ8OoRw/ZaMVpIk7VhOW5MkSY24h2Q605u2eyBaWwjhTuAXGjw2AK8vb2aAb44x/p+qQz4ZQngn8AngIPB7wLc1b7SSJGmn818QJUnSaopAvvz8jVad7HwhhDTJdLUO4GIDp/wYi78T/vyy4AiAGONjwKvKmy8OITxn+TGSJKl1GR5JkqTVzAO/WX7eC/zPbRyLGvNq4GnAKIsVRat5fvkxC/z3VY57FzBdfv7SjQ5OkiRdfpy2JkmS1vIG4DtJet48P4Tw72KMmwqRyg24fxx4AXCYpNfOCeCjwH+NMT5Q57yPkawCl4sxdq9y/a8CtwPHYoxHl+0rlZ/+FPAPJM2gn00SlD0KvCbG+KGq4weBVwD/EngKMACMAF8C/hp4W4wxzzIhhKPAE+XN7wTeC7wM+KHy2AaAU8AHgN8uV/dsSgjhNuCXyps/Dcw0cNq15ccvxxgz9Q6KMRZCCBH4FyTTGCVJ0hXCyiNJkrSq8vLsryCZwgbwmyGEqzd6vXJz5q8A/wEIQB9JVVMAXgl8JYTw+hBCalMDX9sR4JPAi8r3HyKp2Hm0aqzPAx4Cfhv4BmA3yXSwg8C3AG8FvhRCuGGNe/UCHwL+mCT82kvSiPx64EeB+0MI37qZNxNCaCeZrtYFfCDG+GcNntpZfpxq4Nj58uNN6xyeJEm6jBkeSZKkNcUYPwn8fnlzCHjLRq5TXg7+l4F24MskYdHXkVT+/CTwGMnvJ68r/9lKryIJcX4D+Hrgu4FfjTE+WR7rPSSVSYeAEvB24CXAM4HvBf6pfJ2nAP8cQji0yr1+G3ge8BngB8vX+A7gg+X9XcCfhhD6N/F+fhr4GpKpZf9+HedV+iIdbuDYI+XHvhDCwDruIUmSLmNOW5MkSY36z8C3A0eBbwsh/OsY4180enII4WnAL5Y33wa8fNl0r0+GEP4Y+HvgucAvhRDeWW8KWxO0kYRF1auSvas81naSqqIekoqrl8YY31V13OeAd4QQfolkWt8hkn5BL6lzr4Mk7/llMcZKBRchhPeSvN9vBfYBLwbesd43Ul4x7ZfLm6+JMR5fx+mfJZlWF0IIt60yZfBuoLrirI/GqpUkSdJlzsojSZLUkBjjDEsrWt4cQti3jkv8DMnvHiPAK2v1CSrf4+UklT4p4D9ufMQN+cM6r387SY8ngD9cFhwtiDH+MvCxyjnlnkO1ZIFXVQdH5fNLLG1C/tRGBl0thNBGEnR1A58A/mCdl3hb1fP/HkJY0UsqhNAF/N6ylzvWeR9JknSZMjySJEkNizF+kKSvDiRTvv5rI+eV+xd9S3nzkzHG2VXu8QTwYHnzBRscaiNOxRhP1tn3TVXPV1uBDJaGNd9c55gvxhhH6+yrbpS9kalgP0Ey9S8LvKIcSK3H3wIfKT9/NkkF2LeEEPpDCL0hhBcCHy/vO1V13twGxipJki5DTluTJEnr9dMkIckh4KUhhL+MMb5njXOOAsPl5y+pWvFsLddtbIgNObHKvqeUH6eBr65xnc9UPb+jzjFPrnL+dNXzdf1uVm7U/cby5htijHE950NS/RRCeCnwPuAZJE3D31fj0D8BjrPYi6qRldwkSVILsPJIkiStS4xxHPixqpf+MISwa43T9m7wduktbMw8ucq+PeXHiw1U8pyrer67zjHTdV6HZIpeRcMrzJWruf6YZCW3LwG/1ei5y8UYL5KsJvdaVoZqnwO+J8b4cqDy33kmxrjae5IkSS3EyiNJkrRuMcb/HUL4a5IVyg6RrCb2b1c5pfp3jrfS4HS3srpT3FbRyD+QrRYKNRzikKwcV1Gse1Tz/QjwnPLz3wOekvTNXuJo1fNrQgh3lZ8/ujz8iTFmSaqY3hhCuJpkCt3pGGN1yFbpA/XkpkcvSZIuG4ZHajkhhF7g1STLKF9HshLMF4E3xRjfv8Frfg3JEtJfT7JiTgZ4APhL4C0xxhV9H0IIR4En1rj0fTHGu6pfCCE8F/joGue9J8b4HQ0NXpK2zo8Dzyep0nl5COGvVjm2ut9PIcZ47wbvWQl81gp3hjZ4/YrKePeGEFJrVB8dqHHepfC1Vc//pO5Ri95Q/gPwPBYbfa8QYzy1/LXyCnRPL29u9L+fJEm6DBkeqaWEEPqADwPPBOZJ+lTsAV4EvCiE8PoY4xtWuUSta/4k8Dsk/4qdIWniupfkl/avBf51COFFy/5lFhZXzBllsfHrco/UeK1y3hng8TrnbdWy1ZLUsBjj+RDCTwF/Xn7pf1A/kHicpIKol6WhR00hhJ8DxoHHYowfqtpVWaGtM4TQHmMs1Di3h2TZ+834MkkT6n7gdlbve1T9fh7a5H0vuRDCC0j+f3I/ySp4uTqHfgOL0/k+eCnGJkmSdgbDI7Wa3ycJju4FXhJjPAEQQvhBkmkSrw8hfHLZF5G6QgjPAn6X5F+4fwP4pcov1SGE5wFvL9/vvwPft+z0Sgj0zhjjj67jPVTOe3OM8dfXcZ4kXXIxxreFEL6PZCW1o8D31zluPoTwUeDFwB0hhGfHGD9R69gQwvOB/1Le/ChQ/Zk9XvX8KEtXKqt4IZtfRv6fgFeWn/8I8B9XOfaVVc8vWagSY3wZ8LLVjgkhfBfw1+XNH44x/mmNw24hqdgF+CvgA3Uu93Plx2mSFdokSdIVwobZahnlFWd+gKTfxPdXgiNIvtyw+EXk9eu47H8iCY7+Lsb4c9X/Ghtj/Cjwb8qb3xtCOLLs3EoI9JV13G8z50nSdvkRkinCsHpo8ztVz/+0xucmIYT9JBVMFb+37JAvVz1fEeiEEA4Av7nqaBvzXuDR8vP/EEL4zloHhRB+kcW+Qx/exHS87fQeoFLB9SshhBX/DUMIPw98U3nzd2OME5dqcJIkaftZeaRW8oMkTUs/GWOsNa3rLSSryDwrhHBNjPF4A9d8XvnxL+vs/zDJF6YBkj4Q1SvUVEKgtZZ4XhBCSJNMj1jXeZK0nWKMJ8rTzP5gjeM+EkL4Q+BHgRuA+0IIbwI+Xj7k6cBPA1eVt/93jHF5hctfAr9E8jvMT5ZXYvsrIEsyfexV5fMfK99jo++pUK5a/TjQCbwrhPB2kiqe88C1JA3CK4HKRRb/QeGyEmM8GUL4A5Iw7unAp0MIv0My1fBqkvf5LeXDPwf86rYMVJIkbRvDI7WSe8qPNadBxBhPhRCOkfzC/xzgbatdLITQBrwUOAL8c53Dqhu2Lqy2E0LoB64vb66ngigAXcBEg+GWJO0UbyFZqOAb1jjuP5IEPa8Chlls4Lzcu0mqSZeIMT4aQngVSUVSG/Dy8p+KIvDzJL15fmYd418
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3hk6Vnn/W8FSaWcutW5p2e6Z57pCTbOHmx2xjbrgBdj77sEkxa87JLBsAHel2DDrmGB3QUMGLMLLMkGg3ECGxvbOOCxPQ6Tg5+Z6e7pIKmVVaoczjnvH+dU6ZRUVSqlVpX697muviqdVD22+tF97hDxPA8REREREREREZF6ont9ASIiIiIiIiIi0r4UPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYYUPBIRERERERERkYbie30BIiIicu0ZYz4N3B28/Hlr7dta3O93gR8NXt5orX1m569O6jHGHAV+BHgVcAboBxaBB4C/At5lrS032f8PgX/X4uka/rc1xnw98GbgJcBBYAF4CPgja+3ftHh8ERER6SDKPBIREZFfMMac3euLkMaMMd8GWODngOcDI0AXcAh4NfAnwOeNMceaHOY5O3AdbwE+B3wrcDS4hsP4Aa2/Nsa83xjTs93ziIiISHtR8EhERER6gD8yxmhd0IaMMa8A3g0MAHngfwGvBF4EvBH4bLDpC4CPGGP66hwjDtwevPxD/EBSsz9TdY7xA8BbgQjwNPAm4MXAtwP3BZu9HnjHNr6uiIiItCGVrYmIiAjAXcBPAL+11xciq4wxEeB3gRh+4Ohl1tovhjb5kjHmPfgBmx8CnoVfUvYraw51Fj9ICPAJa+2Dm7yOMeA3gpdPAS+y1i4Fr+8zxrwP+FvgdcCbjDF/YK390mbOISIiIu1LdxhFRESuby5Q6ZPzNmPMTXt5MbLOXcCtwfO3rwkcAWCt9YCfAmaDt763znG+LvR8U4GjwPfjl8oB/GwocFS5hjLwH4Bs8NZ/3sI5REREpE0peCQiInJ9K7GaUdIH/J89vBZZ7xtCzz/UaCNrbR6/FxGAqdN3qNLvKIOfObRZ/zp4TAIfbHANM8CHg5ffVK98TkRERDqTytZERETkl4A34Ge4vNwY8++ttdsKIgUNuH8MeAVwHL9PzmXgU8DvWGsfb7Dfp/GnwBWstYkmx38Uv4fPRWvtqTWfecHTn8IPZvwu8FL8QNnT+JkznwhtPwT8APAtwB3AIP4EsQeAvwH+vN4UM2PMKeBC8PIN+MGd78PP/Lk9OM4k8DHgf1przzX6Pk18CfhV/ObUT2+wbST0PAEUQq8rmUcPWWvdzVyAMaYLv58SwOestU6TzT+L30y7D78f0j9t5lwiIiLSnhQ8EhERuc5ZawtBM+TP4mcl/4Yx5iPW2smtHM8Y8wvAW/D79NR8FPz5D8aY/wr8UlBytVtOAPfij5OveC6hIIwx5mXAu4Aja/Y9DLwm+PPTxpjXbxD86QM+Abxszfs3AT+M3wfoX1trP7KZL2Ct/RR+wK2pIMDzkuBl0lqbXLPJs4PHB40xr2O12fUYMI//9/SO4HxrncGfqgYbZy2F/47OouCRiIjIvqCyNREREcFaey/we8HLYeCdWzmOMeatwC/jB44exm/i/PX4mT8/iR9ciOIHl96yrYve2JuBA8Cv45d/fSvwK9baZ4JrvQs/M+kI4AF/gd/w+UXAdwD/GBznDuCfjTFrA0xh/xM/cPRF4HuCY7we+HjweQ/wJ8aYgR36bmu9CZgInn8s/IEx5iR+kAjgu/HLzr4FOIQfFDoC/Bvgn4wxfxBMZgs7Fnp+aYPruNxgPxEREelgyjwSERGRiv8X+GbgFPCvjDHfaa19d6s7G2OeC/xC8PLPgTetKfe61xjzR8DfA/cAv2iM+etGJWw7IIofLPq50HvvDa41Bvwx0IvfNPzbrbXvDW33JeA9xphfxC/rOwL8AX5wqZ7D+N/5+8JlYcaYD+F/32/Cz4B6LfCe7X+1VcaYM8B/D731P9ds8pzQ8yHgIfzpbI/iB7XuAX4cGMVveu3hB/0qxkLPUxtcTib0fKThViIiItJRlHkkIiIiAFhrM/jBg4rfNsYcbLR9Hf8Rf22xAPxQvT5BwTnehB+giOAHLXbT7zd4/5tZnWL2+2sCR1XW2l8GPl3ZxxhzW4Pj5YE3r+0nFJTlhftHPZsdZIyZwA9OVQI1f2it/dKazcKT1v4IeL619n9baz9vrf2UtfYt+AGmi8E2P2iMuSe0T7j5dn6DS8o12E9EREQ6mIJHIiIiUmWt/Tjwf4OXB4DfaWU/Y0wEvz8QwL3W2myjba21F4Angpev2OKltmLSWnulwWevCj3/gw2O847Q81c32Oar1trFBp+F+wANbnCulhljDgOfxO8jBX6D75+os+lv4AetvpnGQb2L+E3DK94ceh5ukL2ZHlW72c9KREREriGVrYmIiMhaP40fJDkCfLsx5i+ttXXHs4ecwi97AnhdaOLZRm7c2iW25HKTz+4IHtP45VvNfDH0/M4G2zzTZP906PmOrL2MMafxexudDt6ywGustbm12waBvIeDPw1Zaz9hjLmA/9/k5caYSJA5Fb7+hhPwAr2h5xtlKYmIiEiHUOaRiIiI1LDWLgM/Gnrr940xG/WvObDF08WNMTuWjbPGSpPPxoPH+RYmvs2Eno812Cbd4H2ozcCJbHCuDQWNvr/AauDoMeBl1tqZxnu17KHgcZDVYGC4z1H/BvuHP2+UiSUiIiIdRplHIiIiso619v3GmL/Bn1B2BL8J879rskt4TfHHtFjuFmhY4tZEKzfAmgWFNhPEiYWeuw23ugaMMd8K/BmrGUD3Aa+11i7s0CnC/y26g8eLofdObLB/+POpHbkiERER2XMKHsm+YozpA/4L/ojlG/Hvln4V+C1r7T9s8ZgvxB8v/Q3403RywOPAXwLvtNYWG+x3EvhF/NKPCWAOvzfFr1prn2iwzz3Apza4pA9aa1+/+W8iIrJpPwa8HD9L503GmL9qsm04y8Sx1j64xXNWAj4bBXeGt3j8isr1HgiVZzVyqM5+15wx5keA32X17+bDwLc16y9ljIni/zc8COStte/f4DQTwaPD6ne9gB9U6mM126mR8Oe7NUWvY+31OsUYcwr/v2erfsla+9Ym544CnwVeAnTV66clIiL7g8rWZN8wxvQD/wS8BbgJP40/A7wS+Igx5i1bOOZP4pcGfCd+ScYT+KUJLwZ+G/isMWaozn4GuB//Lv0AfhlAAvge4H5jzKvW7hOoTOGZBu5t8EeLcRG5Jqy1s8BPhd763zQuWzrPatbKizc6tjHmZ4wxP2iM+cY1H1V++ew2xsTW7hfs24sfDNmOSv+fAeD2DbYNf5+vbfO8W2KM+WHg91gNHP0f4FuaBY4Agulv7wXeDbwjaGze6Bw9wAuClw9Xgg5BYK0ywe2lzY4B/IvgsQB8udm1XW/aZJ2Sp/H6ovLnmdD2T21wCb+CHzgSEZF9TplHsp/8HvAi4EHgddbaywDGmO/BL6F4qzHmXmvtJ1o5mDHmJcBv4i/Ufx34RWttIfjsZcBfBOf7A+CNof3i+GOTx4E/B37QWpszxnTjl338GPBXxpgzdcoMKsGj37bW/tpm/wJERHaatfbPjTFvxJ+kdgr4rgbblYwxnwJeC9xpjHmptfZz9bY1xrwc+O/By08B4Z/Ly6Hnp6idVFbxjUDXJr5GPf8I/FDw/AeBH2+y7Q+Fnn98m+fdtCDA9ruht95mrf35TRzis/iT1g7jByo+1mC7N7Ga0bU2y+y9wD34QbvX4v87t/Y6DwWfAXy0XvPu69yer1OstVeBlzY55iD+1D6A37fWvqvBdjH8/w//p1auVUREOp8yj2RfCKbOfDd+L4rvqizIwP/
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkaVnn/W8sWZm1dvVG0yxNQzc8rI4yMkwrQoPb6y6DgzqyiTi4jIqDr+AomyO4oK8oKu0MKgKDooLLODgqKDjigIogCPTD3kCzdPVSW2ZGxNneP86JzBNZkRGRkZGZlZHfz3XVFcs554mT3VTQ9av7vp9GURRIkiRJkiRJ02ju9Q1IkiRJkiRp/zJckiRJkiRJ0tQMlyRJkiRJkjQ1wyVJkiRJkiRNzXBJkiRJkiRJUzNckiRJkiRJ0tQMlyRJkiRJkjQ1wyVJkiRJkiRNzXBJkiRJkiRJUzNckiRJkiRJ0tQMlyRJkiRJkjQ1wyVJkiRJkiRNzXBJkiRJkiRJUzNckiRJkiRJ0tTae30DkiRpd4UQ3go8pnr5EzHGF0943a8A31+9vG+M8ROzvzttJoTwCOCZwGOBq4EUiMAbgF+JMZ6fYI1vAZ4EfDFwJXAOeDfwW8DvxBiLDedfC3x8itt9W4zxximukyRJ+5CVS5IkHWzPCyE8aK9vQpsLITRCCD8PvBP4LuB+wGHgOGVI9NPAu0MI141Y45IQwpuB3we+CbgncAi4HPgK4H8A/yuEsDSj2+7NaB1JkrQPGC5JknSwLQK/EULwvwkuXr8APBtoAJ8CfgB4FPANwJ9W51wP/GkIYXHjxSGEBeDPgS+v3noH8B+Afws8GXh/9f7XAK/YcPlngC+a4NejgTuqa84DPzLtDytJkvYf2+IkSdINwA8CL9vrG9GgEMINwLOql/8CPC7GeKp2yp+GEH4T+E7ggcDTuTAgejbwyOr57wBPjjFm1et3hhD+EPi/wMOAp4UQXhpj/ABAjLEHvGeC+/wdyioogO+JMb53Cz+mJEna5/xbSkmSDq6ccm4PwItDCPfby5vRUC+krFhKgSdsCJb6fgRIquffUj9Qtbn9WPXyo8BTa8ESADHGZeDHa289YSs3GEJ4IvBt1cvXxRj/x1aulyRJ+5/hkiRJB1cCvLR6fgT473t4L9oghHAV661svxVj/NCw82KMd1LOXfo14E0bDn8dcKJ6/vwYY8JwfwG8GvglygqpSe/xEuCXq5e3Az806bWSJGl+2BYnSdLB9iLg8ZQtVY8LIXx3jHFbIVM1IPw/UQYj92J9VtBfAy/vt1wNue6tlLvYdWOMmw6WDiH8C/AQ4JYY47UbjvV3O/th4H8Bv0I5nygBPgI8N8b45tr5J4BnUA65fijlkOw7KHdQ+33gNTHGlA027KL2eOBPgKcBT6nu7ThwK+Wso1+IMX50s59nhK8EWtXz1486Mcb4gk0OfU312AP+cMT1XeCpW71B4PnAVdXzH4sx3j7FGpIkaZ+zckmSpAOsChWeQdkiB/DSEMI9p10vhPA84H3A9wEBOEpZFRWA7wHeF0J4YQihsa0bH+/ewNuBr6o+/xLg4ZQBU/9eHwvcTDkw+9HAZcACcHfKUOY3GbMLW+UI8GbgNyjDsSsoB6XfD/he4P0hhK+d4md4WO35P9buux1CuDaEcP2wAd6brPH+GONqbY0jIYQHhBCumXaYewjhGuD7q5f/TPnPS5IkHUCGS5IkHXAxxrcDv1q9vAS4aZp1QggvBH6SstrmvZRh0pdQVg79EOXMnybwgurXTnoWZcjzc8CXAf8eeEmM8RPVvd5AWdl0NVAArwW+kXLw9bdRtolBWc30f0IIV4/4rF8AHku5C9uTqzW+GfjL6vgi8KoQwrEt/gwPrh5PxxjPVIHSq4HTlFVTHwbuCiH87ogArL/GLQAhhMeEEP4COAvE6v3PhRB+tqri2ornUv5sAC+MMeajTpYkSfPLtjhJkgTl0OdvAK4Fvj6E8B9ijK+b9OIQwsOB51UvXwM8fUM72dtDCL8B/ClwI/D8EMLvbdYiNwNNyjCpPqj6D6p7bVFW2RymrNj61hjjH9TO+3vg9SGE51O2DV4N/Dpl+DTM3Sl/5qfVA5YQwp9Q/rxfC1xJOf9oZHvbBldUj6dDCF8JvBHYGFAdBr4V+NoQwr/b0PK3WDv/dAjhvwA/RdmmWHcl8KPAN4YQvjrG+MlxNxZCuJT1NrqbgT+e/MeSJEnzxsolSZLU3zHsP9be+qUQwpVbWOLZlP9dcQflVvQXzCmqPuPplJVCDeAHpr/jibxik/e/gXLGFMArNgRLa2KMPwm8tX9NCOHBw84DOsCzNlbuxBgLBoek/6tJbrqmHwydBN4ALFGGQ9dRVgw9gLJqqqCc8fSGEML1Q64HeBzwYuAU8N3A3ar1Hgn8WXXOA4E/mqDVDsr/rRypnv9c9bNKkqQDynBJkiQBEGP8S+C3qpdXAC+f5LpqflJ/cPTbY4wrIz7j48AHq5dfvtl5M3BrjPHTmxz76trzXx+zzq/Vnv8/m5zzrmrHtmHqg7yPj/msjfrhzUnKoOiJMcbnxRg/FmPsxRg/HGP8Ecrh6VDuCveSIdcDXEMZ/H1JjPGVMcZTMcZujPHvGayo+iLgu0bdVFX51Z+1dCtlS6EkSTrADJckSVLdfwY+Wz3/1hDCN01wzbXApdXzbwwhFKN+sT4H6L6zvfUBnxpx7KHV43ngX8as847a84dtcs4nRlx/vvZ8q+MIVmvP/zDGOHS3txjjr1EO1Ab45hDC0SHXA7xo2K51VdXRD1HuKAfwpDH39aWUA9MBXhdjTMacL0mS5pzhkiRJWhNjPM16VQrAK0IIJ8dcdsWY45tphxC2Ws0zqbMjjl1ePd4+QTvX52vPL9vknPObvA9ly1rfVnfIO1d7PjRYqvmf1eMC5a54G68fuUaM8fOUs6YAHjFmN7964LiVGVKSJGlOGS5JkqQBVYXM71cvr6ac6zNKvSLnNylbqyb9tWkL3QiT/PfLqNBoKyFPq/Z8t3dD+2zt+a1jzq1Xal0BEGPsAnfV3v/MhGu0KVvxNtMPlz4aY3zXmDUlSdIB4G5xOvBCCEcod8n5NsoWjXPAu4CXxRj/bNS1I9a8Bng+5XyOu1EOUH0L8NMxxg+OunbDOv+asiWjHWOc6A9DIYQm8DeUbQsLw4bqStIE/hPlEOjLgaeHEH53xLn1eUNZjPE9U35mPxAa9313yZTr9/Xv94oQQmNM9dJVQ67bLe8DHl89v3TUiZQDvvvqgdL7gEdXz08y+mfor5GxSeVXCOFBlAPFYT2AlCRJB5yVSzrQqrkUfwW8ALgf8H5gGfgq4E0hhBdMsWYA/olyIOoxyjkYS8CTgX8KIXz1iMvr6ywCr2brIfBLKIMlSZpajPE24Idrb/034Ogmp3+M9Qqkfztu7RDCc0IIzwwhfMWGQ/0w/FA1NHrYtYeBrexiN8x7q8djwEPGnFv/eW7e5uduVX3e07h/rvWf4xPbXOPTMcZsk3MeXXv+N2PWkyRJB4Thkg66X6Xchvk9wHUxxofHGO8DPIXyDzkvHPKHn02FENrAn1L+Tf9rgKtjjI+gbCv5FcqQ6XdDCJdvvsqan2J96O0kn90KIbwUeM6k10jSKDHG17C+Tf21wHdscl4C/HX18mEhhEdttmYI4XHAzwA3Af9lw+HTtefXbrLEV1DOFdqOv6g9f+aYc7+n9vwvt/m5W/Vm4Pbq+ZM2m09V/UXJE6qX/xxj/ETtcL3i7Ps2+6AQwr8BQvXyj0bc07+pPf/HEedJkqQDxHBJB1YI4TrKHXFy4DtijGvzKqo/UP1M9fKFW1j2ScD1wCeBZ8QYV6v1esAPAv+Hsi3hhzddoby3L6XcsWmiWSQhhPtTtt39yBbuVZIm8UzWB0OPCnX+v9rzV4UQ7r3xhBDC3SgroPp+ecMp7609/4Eh118FvHTk3U7mT4CPVM+/L4Tw+GEnhRCeBzymevmWbbT7TaUK7X6xenk18MoQwsC/g6oV+ibWh6q/YsMa72Y9FPu6EMIPbfycEMJ
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAASbCAYAAAASrO/IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkd13v/3cvs6/JZF+HJORLQBT8ERGXS4gXUfkBoggu6MUoIlxBvO5XQPRe9AouCApRARW4CKio6A9EAwlgMIhCQhKTb/aZSWYmM9N713L23x/fc6pOVZ+qOlVdvVTX6/l45FFdXXWW7uk6qe+nPstEkiQCAAAAAADAeJvc6BMAAAAAAADAxiNIBAAAAAAAAIJEAAAAAAAAIEgEAAAAAAAAESQCAAAAAACACBIBAAAAAABABIkAAAAAAAAggkQAAAAAAAAQQSIAAAAAAACIIBEAAAAAAABEkAgAAAAAAAAiSAQAAAAAAAARJAIAAAAAAIAIEgEAAAAAAEDS9EafAAAAGJwx5hZJz07vvsFa+5aS2/2BpP+e3n2CtfaR4Z8dOjHGXCvpVZKeI+lCSaEkK+mvJf2BtXa5y7bvkfRjJQ/V8d/WGHOW3N/ACyVdKWmvpOOSPiPpd621d5c8BgAA2CLIJAIAYOt4ozHmmo0+CXRmjJkwxvy2pC/KBXqukLRL0j5Jz5D0m5K+Yoy5sstunj6E87he0r2S/pekayWdLWm7pMOSbkjP4cdXexwAADBaCBIBALB17JD0XmMM/3/fvH5H0s9KmpB0TNJrJX2LpBdI+of0OVdJ+gdjzI72jY0x05Kekt59j1zAqNt/xwv28cz0WOdJCiT9oaTvSM/j1yVVJW2T9EfGmOes9gcGAACjg3IzAAC2lmdJep2kt2/0iaCVMeZZkl6f3r1L0vXW2tO5p/yDMeZ9kn5U0pPkMnre3baba+SCgZJ0k7X29j7PYVouuLRLLkD0Emvtx3NPudUYc7NcydmkpP8j6Zn9HAOtjDG7Jf2CpO+X9ARJS5L+Q9LbrbWfHHCfl0l6k1xw7zxJpyV9WtJvWmvv6bLdN0n6ObmA4EFJM5I+J+mt1tr/6LDNKyT9aY9T+n1r7et7PAdASRt93TDGXCfp5j52/6PW2j9r28dL5TJmv17uejMv6UuS3m2t/ftBfgasDz5pBABga4jl+tpI0luMMVds5Mmg0JvlMohCSd/bFiDK/Jxc8EaSXlLw+NNyX/cVIEp9n6SvSb/+zbYAkSTJWnuLpL9J736DMebSAY4DScaYPXIBt1+VKy28W1JF0rdL+oQx5lcH2KeR9GW5xddeSXdI2inphyV92RjzvA7b/Zikz0t6sVxp4d2Sdkt6qaTbjDE/3OGQX5fePizp1g7/PdTvzwGg2Ca5biyo8+s9++9k+txY0oO5Y00ZYz4i6SPpOU/JfTAyLek7JX3cGPOH/f4MWD9kEgEAsDUEkn5X0i/LLfz+RNK3begZocEYc76a/x5/aq29r+h51tpZY8xvSjpHxQvvrB9RRdL9A5zKD6a3s5Le1uV575b71PeM3Bt8DOYP5TKxbpf0QmvtMUlKAzLvk/RmY8yt1tqbyuwszQT7B0mHJH1A0qustTVjzHa5UsafkvRhY8xV1tqZ3HZXyv2bTkp6p6Sft9Z6xphdkt4h6cclvSc9l/a/uyxI9MvW2o8M8DsA0J8Nv25Ya78il3HYaZ+XyAWaJHdt+Hzu4V+SCz5XJL3aWvuBdJsJuYEN75T0GmPMV621f1TmZ8D6IkgEAMDW8WtyWQJPknS9MeaV1to/Wc0O00bYPyUX4LhEzV46N0t6p7X2Pztsd4vc1DXPWruzy/7vkuuxc8Rae7jtsST98mck/X+S/kDuTWsg6QFJv5R/k2yM2S+32H2RXLbMPrlymq9I+ktJH7DWhmpjjDkslyUhud/fxyW9QtKPpOe2T9Jjkj4l6XestQ+276OE56oZbOm60LbWdvuUOMskusNaG/dzAulC4bnp3U90m6CW/l5LLUBQLA3MvFzuU/YfyhZ6kmSt/YAx5mpJb5DLMCv7u365XM+qo5J+3Frrp/vzjTGvkwvofKvca+YNue1+QK7P1L2SXp/97aQLxVdLul4uY+Hlcn2p8rIg0Z0lzxHAgDbZdaPTOU5J+r9yAw8+qdwHDun/Z7LS0zdlAaL0eImkG9MA069I+nlJBIk2IcrNAADYIqy1nlyQJAsevM0Yc/Gg+zPGvFFuYfgaSUbSHrksJSPpJyXdaYx5c/rp4Fq6VC61/dvT4x+Q63HwQO5cnyO3AP4dSf9F7s3rNkkXyKW3v0+9p4Yp3f9Nkt4rF+Q6R64H0BWSXi3pbmPMdw3wMzw19/W/58572hhz2BhzVVGj6gLZgv12Y8wLjTF/a4w5aYzxjTHHjTF/2aXZ9BPV7Gf0pfwDxphzjTHXGGPOLvsDoacflgsM/muHYOqN6e03p71CynhFevuBbKGXSRdg2YLrB9q2y0oG72oPLqaB06+kd1vOI13MnS3Jl1SY/QZgqDbTdaOTV8v9f3ZB0ivTfWSeKvf/TUn6iw7b/216e6Ux5qySx8Q6IkgEAMAWYq29VS5VXXLBlBu7PL0jY8yb5TIKpiR9VS4o9E1ymTw/Ldd/YFKuZ0Lf/RH69Hq5N51vlfu08/sk/Ya19pH0XJ8ll2l0oaRE0gclvVAuXf/7Jf1Tup+vkfR5Y8yFXY71O5KeI+k2uTfrz5T03ZL+OX18h6Q/M8bs7fNneHJ6O2+tXUgDQ++XK+l6WK50bM4Y8+FOgax0QZAFcV4u6e/ksqbOlwuIXSjXx+gzxpg/Sj/RLToHSTqSBqh+3hjzgKRTkv5T0owx5svGmKJ+SOjPs9Lbfyl60Fr7mKQj6d1n99pZOrXwG7rtUy6YKklXtPWSOprefm379MP0fjYx75G2/WVByXuLsvAADN1mum4U7e9suaxlSXpjej55j8j9P/M11toTHXaT/2CJcuZNiHIzAAC2nl+WG6l+WNL/a4z5QWvth8pubIz5eklvTO9+QNINbQvEW40x75XrcXCdpDcZYz7aqfRsCCblgkK/kvveX6XnOiWXJbRLLoPqZdbav8o9798kfcQY8ya5N7YXyn1q+sIOx7pA7md+RT7jwhjzcbmf97sknSvp+epRNtYm+2R13hjzXEkfk2semrdL0sskfZcx5nsK+k08Pff1frl+EO+Sawi6Q+7f4rWSzpL0E3IBs58sOAfJ/a6+IOnagnN9uqS/NMa8S9JPtX1KjPKuSm+7lSc+IulySVeX2N/Fcn8j3fZ5TFIkt/C6Or0vSX8ud124WtLvGmN+IS012S7pt+RKVBfkXkt5WZDornTa0UvTfdTlso/eZ619WACGZTNdN4q8Se7DCquV0zdlrZ2T+wCjm+9Lbx+XKwnHJkMmEQAAW4y1tiIXJMj8vjHm3D528bNy7xFmJP1kUQZBeowb5AIRE3LBibW04s1o6gVyC1zJjdX9q6InWWt/XdIt2TbGmCcXPU9u8fv6gpKcRK4ZeObr1J8sIHRQ0l/LTZX535KulAvwXC2XxZTI9UD6a2PMVW37yE82e6+kZ1hr/9ha+wVr7c1pL6Onq/kp86vShX37OUiuv9O1cr2l/otcmd0hueyp4+lzXiPXMwKDOS+9LZpil8kWSOd0eU77/jru01obyQV7WvZprX1UrlzzPrlMwFPGmC/LLdJeLzf16DnW2uOte2z8nb9A7m/l1XL9yZ4v17vkXmPMTwrAsGya60Y7Y8w5ar63eMsg2YXGmK+R9Lr07gf4EGJzIkgEAMAWZK39Z0l/mt49R26aSE9pf6HvTO/eaq2tdjnGw5LuSe+u5SS1x9JFbpH82N5eDTDflfv6Ozo85z+stbMdHst/Cruvx7Ha7U5vD8oFa15qrX2jtfYha61vrb3fWvtzck3CJZcp9Btt+3ib3KL9BeocvDsi15cq8/rc17tzX18mF6x6rrX289bamrV21lr7QblyhzPp897UZ4ARTdnvu97lObW255bZ36D7XFSzH9YBuYDiwfR+p7KQLEg0Kenn5JrX75D
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd7xsd13v/9cuZ5/eQ5KTchKSyJceiASIgAQUpYkgiiDlYsCfiIggXuQn3XtRKVZQghcEDUaCCBdEEASBSA0hCYGU70lO77vNLtPWrHb/+K7Zs/bs6Xt2mZn38/E4j2lrrVk75+xvZn3mU4biOEZERERERERERKQTw2t9AiIiIiIiIiIi0rsUXBIRERERERERkY4puCQiIiIiIiIiIh1TcElERERERERERDqm4JKIiIiIiIiIiHRMwSUREREREREREemYgksiIiIiIiIiItIxBZdERERERERERKRjCi6JiIiIiIiIiEjHFFwSEREREREREZGOKbgkIiIiIiIiIiIdU3BJREREREREREQ6puCSiIiIiIiIiIh0TMElERERERERERHp2Ohan4CIiIisPmPM14EnJw/fYq19V4v7fQD47eThA621R7p/dlKLMeYK4HXA04D9QBE4DHwa+Dtr7XiT/b8C/Ewr72WtHUrt93Lgox2c8jutte/oYD8RERHpMcpcEhERkbcaYx6y1ich9SUBnh/hAnsPAjYBu4BHA/8LuMsY88wmh3nUSp5jDaVVfj8RERFZI8pcEhERkY3AR4wxT7TWRmt9MrKYMeYZwN8DQ0AB+DPg5uTxtcDvAecAn0r+Dm+rcYyLgb3Jwz8CPtPGKXwOF8Rq5kpchtMQcBfw/jbeQ0RERHqYgksiIiICcA3wWuAv1/pEpMIYMwx8ABewKQFPstb+ILXJl40x/wF8DdgM/CnwczUOlc5a+oK19o5Wz8FaOw1MNznPbcC/JOeZA37JWjvf6nuIiIhIb1NZnIiIyGCLgCC5/y5jzGVreTKyxFOB8t/JB6oCSwBYa28G/j15+DRjzO4axykHlyJceV23vQe4Irn/emvtgRV4DxEREVmnFFwSEREZbD7w3uT+FuD/rOG5SG2fB44Bn22wzT2p+xfXeL1c1mattflunRiAMebxwKuSh1+z1urfkIiIyIBRWZyIiIi8E3ge8GDgqcaY31hugCBpEP4a3HSyi3DlUsdx5Vvvt9beXWe/r+Om2HnW2k0Njv9j4GHAUWvtpVWvxcnd1+Myej4APBEXSLsfeJO19iup7XcArwR+EXg4sB2YAm7HlXrdYK0NqGKMuRQ3rQ3cf7/PAS8HXpac23bgJPAl4M+stQfr/Tz1JOf5laYbwiWp+6drvF7OXLq93XNoxBgzRKVsLwBe3c3ji4iISG9Q5pKIiMiAs9Z6uOBKuZn3e40xF3Z6PGPMW3GlV68GDLAVlxVlcBkuPzLGvCMJTKyki4Fv4XoQbQF2AlfhAkzlc30KcC+uSfZPA3uADcD5QLmR9u3GmMubvNcWXBDoI7jg2Dm4RumXAb9Fa9PcOmKMuRp4bvLwa9baiarXdwCXJg/vNMa8xBjzJWPMpDHGM8YcM8b8gzGmlabd1V4A/GRy/4PW2ns7+RlERESktym4JCIiIlhrvwX8TfJwJ3B9J8cxxrwDN41sBLgTF0z6KVzm0O8CB3GfP96e/FlJr8MFed4DPAn4FeCPrbVHknO9BpfZtA+IgY8DzwEeB7wQ+HJynIcD/22M2dfgvf4MeArwXeClyTGeC/xn8vpG4GNJ4+tlMcYMGWO2G2OuMsb8BfD15PgZXLZYtUfhMosA/hC4ARdw2wuM4YJwLwN+YIxp9+/kbcmtB/xxm/uKiIhIn1BZnIiIiJT9/8Av4LJcnm2M+TVr7Y2t7myMuQp4a/LwBuC6qnKybxljPoLrIXQt8DZjzCfrlch1wTAumPTm1HOfSs51BJeVtBmXsfWr1tpPpba7BbjJGPM2XNngPuBDuOBTLefjfuaXW2vLGWAYYz6H+3mfCTwAeBZw0zJ/rhcn75X2LeCVdTKH0hlJO4CbgQ8D9yWPfx6XXbUZeIcxxrPW/mmzkzDG/Dzw0OThP1hrz7T1U4iIiEjfUOaSiIiIAGCtzQH/X+qpvzLGPKCNQ7wB99liCnhVrT5FyXtch8sUGgJ+p/MzbskH6zz/C7geU+DKuT5VayNr7R/hMoMAfsEY89Ba2wFF4HXpwFKyf8ziJulXtnLSTVxS47lHAL/TZFIcwDustU+21t5grf2utfbL1to34LLLZpJt/rcx5oqlh1nidcltSKUpvIiIiAwgBZdERERkgbX2P4GPJg/PAd7fyn5J/6RnJA+/1WgimbX2MJXpZj/T4am24qS19kSd134+df9DTY7zt6n7T6+zzQ+stdN1Xks38t7e5L1a8Q3gabjSu5fiSvF24Hpc3WyMObdq+9/F9UV6hrX2nbUOaK29A/ifycMRapfXLTDGPIjKf8NPW2vvb7S9iIiI9DeVxYmIiEi138MFUfYBv2qM+Wdr7Web7HMpUM6aeU5qYlszD+zsFFtyvMFrD09us8CPmxznu6n7j6izzZEG+2dT95f92cta+83Uw1uMMTfisqOuw/1c78P1UCpvPwfc1sKhb8AFEzcBP9tk2xdS6eP0sZZOXERERPqWMpdERERkEWvtDPDbqac+aIzZ1WS3czp8u1FjTDeyeWqZa/Da3uR2Milda+Rs6v6eOttk6zwPrgSwrOsT8pJSvFcDJ5OnftUYs6WD43i4yXkA+5ts/ovJbYZK03IREREZUAouiYiIyBLW2s8A/5I83IebhtZIOiPn73FNpFv9U7eEroFWPsM0Chq1E+QZSd2P6m61hpLA0L8nD8eo9JNqV/nvYqzeBsaYi4Grkoefsdb6Hb6XiIiI9AmVxYm0Kfk2+I24koAHAvPAD4C/tNZ+scNj7seNc346cC4wAXwV+BNr7T119rkW+FqTQ3/WWvvcZPuXU+mj0oqnWGu/3sb2IlLHelk3kv1+GTcZ7InJU2PGmD8H3metPVW1+WuAp+KyfK4zxlxJpZwM4D3GmDdba+8D0v2GwqSHTyfKAaFmwZ+dHR6/rHy+5xhjhppkL51XY79VkTTovhw431r7+SabT6XujyX7bwaehPs3csZa+5Umxyj3axpvsM2zU/c/2eR40qF1um78JLARV3L6eWqvG+n9XgC8AheM3IVrGv99XBP9f+vkZxARkfVJmUsibTDGbAX+C3g7cBlwF5ADfg74gjHm7R0c0+B6YbwC2Ab8ENfv4qXAbcmo51rKE4dO40ZQ1/qTHu99tsF25T+ZZNsCUK8Jroi0YT2tG8aYD+OykZ6Km/AFLojzeuAuY8wT0ttba8eT18p+suqQvwLcboz5WeAQlayXx7fwM/yBMeY3k33TyhPmxowxI9X7JftuBtqZYlfLncntNuBhTbZN/zz31t1qZdyAuxj/XAuT+y5P3S+v4ZuALyXHeVejnY0x56eOcWuDTX86uY2AbzbYTjq0jteNAu534ALqrBvJPiPGmJuAm5JzHsH1NhvFNf7/nDHmb9r9GUREZP1ScEmkPX+Dm85zB3C5tfYqa+0luMapAfCOGhdKdRljRnHf/O3FffDfZ629GleC8gHch75PGGP21ti9HFz6K2vtE+v8+cPyxtbaLzbY7om4ceDlHh0v1+Qfka5ZF+uGMeYVuIvKAHgJ8J3kJQ93AbgL+HSNXj1Hqh6nPzt8FdgK/DNu/ShnUz7CGPNE6jDGPBX4U+B64A+rXp5J3b+0ziF+FthQ7/gt+nLq/m822fZVqfur3V/ov5PbIVzD7pqSwNCzkof3lqfkWWszwI+S5682xjQql3s9lYyxTzTY7rGp98k12E46ty7XDWvtPmvto3HBpUbrxpuAF+ACYi+z1u5J9tuDy4AKgFcbY5r97omISI9QcEmkRcaYy3EXZBHwYmvtwhQia+0NuAslgHe0cdiXAFcAx4BXWmsLyfFKwGtxFxW7WJw5UFYOLv2oxmttSb4h/QQu1f16a63KHES6YJ2tG+Ux8++11v5T1Wu
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxsd13n/1f1drcs994EkkBIQhL5KosCghhEicswjgvIzDDCoAxmQMBdcQAVBNxFGWGURWdAWUYE0VFG8YcsggqCgmFEIF/WBAiQwL3J7bW66yy/P86p7lN1q6qrq6u7Tt96PR+P+6jt1Klv50EVXe/+fD7fRp7nSJIkSZIkSaOYmfQCJEmSJEmSdHAZLkmSJEmSJGlkhkuSJEmSJEkameGSJEmSJEmSRma4JEmSJEmSpJEZLkmSJEmSJGlkhkuSJEmSJEkameGSJEmSJEmSRma4JEmSJEmSpJEZLkmSJEmSJGlkhkuSJEmSJEkameGSJEmSJEmSRma4JEmSJEmSpJEZLkmSJEmSJGlkc5NegCRJ2l8hhHcCDy9vPjvG+MtDPu93gB8ub94zxnjz+FenYYQQFoB/Bu4DXBdjfO8Qz3kg8FTgm4DLgVngNuA9wO/FGN85wjoeD7wWeEuM8dt3+nxJknRusHJJkqTp9pwQwldNehHasV+lCJa2FUJohBBeALwfeDIQgGPAYeBK4HHA34QQfr8MrYYSQrgn8OKdLlySJJ17DJckSZpuh4BXhBD8neCACCH8DPBTO3jKzwP/DWgAny+vfyPwUOBHgU+Vxz0ReOmQa7g78Hbgoh2sQ5IknaNsi5MkSdcBPwa8aNILUX9lVdGLKVrbhn3OlcDPljc/BjwsxvilyiH/EEJ4NUVQ9CDgv4YQXhljfM+Ac14H/DFw9x3+CJIk6RzlXyklSZpeGZCU1385hHD1JBej/kIIXwe8m61gKR3yqY8H2q1uP9EVLAEQY1wEnlK56wl91nAkhPDzwLsogqVh1yBJks5xhkuSJE2vFvAb5fWjwP+c4FrURwjh14D3UlQWAfw5w1eZfWN5uQa8td9BMcZ/Bk6XN7+mxxquBSLwfGAeWAQeNeQaJEnSOc62OEmSptvzgUcDXwl8SwjhyTHGXYVM5YDwHwG+lWJXsgbwWeBvgN+OMX6kz/PeSbGL3XqM8fCA8/8rxTDrW2KMV3U9lpdXfxL4S+B3gIdRBGmfAJ4VY3xb5fgLgCdRBCX3Bc4HTgE3UrR+vSbGmNAlhHAV8Ony5qOBN1HMLHpCubbzgVuBtwAvjDF+st/PM4Svp/hveBp4RozxFSGE5w353NcDHwbme/0cXRrlZa//9pcD9yiv/yXw1Bjj50IIQy5DkiSdy6xckiRpisUY1ynClay86zfKYc0jCSE8B/gQ8ENs7Up2tLz+VOBDIYTnhRAa/c8yFvegaCN7RPn6FwIPpAiY2mv9ZuAm4IXANwEnKapyLgX+HfBK4MYQwjXbvNZR4G3AKyjCsYspBqVfDTwN+HAI4Tt28bPcAfw6cG2M8RU7eWKM8Q9ijD8dY/zxQceFEL4aOFHevKXHITnlf88Y43fFGD+3k3VIkqRzm+GSJElTLsb4buAl5c0LgZePcp6ymuYXgFngXyjCpIdSVA79OPBJit89nlv+20s/QRHyvICiNewxwK/EGG8u13odRQXOZRTByWuBRwIPAR4L/HV5nvsCfxdCuGzAa70Q+GaK1rXvL8/xPWy1oR0C/iCEcN6IP8t/iDE+K8Z4x4jPH8bPVK6/pcfjfxdjfFiMsW9rnSRJml62xUmSJCjChe8GrgK+K4Twn2OMfzjsk0MIDwSeU958DXBDVxvWu0MIrwD+Arge+PkQwhv6tciNwQxFmPRzlfveWK51lqIq6QhFxdb3xhjfWDnuH4HXl8Orn08RQP0uRfjUy6UUP/MTY4ztCjBCCG+i+Hm/A7gL8J0UbWo7Uj3nXgghPIYiUAO4neJn2dc1SJKkg83KJUmSRIxxBfjByl0vDiHcZQeneDrF7xWnKObxnDXfp3yNGygqhRrAj46+4qG8rM/9300xYwrgZV3B0qYY4y8A72w/J4Rw7z7na1LsxNYRwMQYczqHpJ81KHvSQggPBf6gctdPxRiXJ7QcSZJ0QBkuSZIkAMqWp98vb14M/PYwzyvnJ/278ua7Y4yrA17j08BHy5vfOuJSh3HrgLlA/7Zy/Xe3Oc9LK9e/vc8xH4gxnu7zWHWQ9/nbvNa+CiF8A/BmiplRAC+PMf7vCS5JkiQdULbFSZKkqp+iCFEuA743hPC6GOOfb/Ocq9gaBv3Iyo5t27nnaEscymcHPHbf8nIZ+NdtzvPeyvX79Tnm5gHPr1YB1eb3rnLA+B+zFSz9CcUOf5IkSTtm5ZIkSdoUY7wT+OHKXS8LIRzf5mkXj/hycyGEvarmWRzw2EXl5ZfL1rVBbqtcP9nnmEFtZNXz7/UOeUMJITwVeBNbwdLrgcfGGNPJrUqSJB1ktfkLmiRJqocY4/8JIfwxxQ5rl1HshvZfBzyl+vvEKxmyna7Ut4VugGH+ODYoNNpJyDNbuX6gh1qX7YsvAH66cvfvAU9zYLckSdoNwyVNvRDCUeAZFDvl3BNYAj4AvCjG+FcjnvMK4OcpWkvuCnwJeDvwqzHGj3Ydez3wNzs4/Q/EGP+g6xzfQbHN94OB84AvAm8rX+/jo/wMkoY36c+Rruc9Avgh4CEUFTrLwP+jmKX0ml6VOkN8Dt0QQvhK4MY+j1fnDaUxxg8OONcg7bVtF/5cOOL529rrvTiE0NimeumSHs87cMod8l4FPL5y9/NijM+f0JIkSdI5xLY4TbUQwjHgHcBzgauBDwMrwCOAN4cQnjvCOQPwzxR/5T+P4kvdYeD7gX8OIfzbrqecAd69zb8vlsdmdA6HJYTwfOAvyzWnwEcovlD+AHBjCOHbdvozSBpeTT5H2s97IfAW4FHAsXItCXA9RbDwZyGE+R5Pbe9i9gU6P3s+VjnmPuU5e/kUWxVIXz/Ez/fMEMJTenw+tXeYWyjDkF7PPQLsZBe7Xv6lvDyP4ucapPrz3LTL152IsmLpNWwFSwlwg8GSJEkaF8MlTbuXUPx1/4PANTHGB8YYrwSeQPHL9/N2Es6EEOaAv6AId14DXBZjfDBFW8nvUHw5/KMQQnveBzHGG2OMD+v3j6ISYqE8/GdijH9Xeb1vpKhsAPgZ4JIY4/2By8t1HANeF0LY7V/5JfU38c+R8nmPpxjGnZaXx2OMD4gx3pWivW0JeCTwCz1eth0uvbjrMygA7cqrC+msetkUY2yxVfl0vxDCwwb8fN8C/BrwcuBnux6+s3L9qj6n+DagV0C2E39duf6UbY59auX6W3f5upPyfOBx5fUm8OgY4+8POF6SJGlHDJc0tUII1wDfR1EN9PgY4+bOQjHG11B8+QF43g5O+33AtcBngCfFGNfK820APwb8HXAc+Mkh1zgL/G+KIbJ/BfxG1yH/pbx8a4zx19ozM2KMd1B8CVyiGLT7qB38DJKGVLPPkf9WXr40xvhb1Rk6McY3UgROAD/K2W1n7XDpQz3W8xSKzxIYHOr898r1Pwgh3KP7gBDCXSlm/LT9j65D/qVy/Ud7PP8Szv4cHMWbgE+U138ohPDoXgeFEJ4DPLy8+fZdtPtNTAjh69kK8XKKwd1/McElSZKkc5AzlzTNvp9iUOu7Y4wf6fH4y4FnA98QQrgixviZIc75xPLyNeUXwU0xxjyE8LvAN1L8BfnZQ5zvacA3UbTOPbnHXJD2l7f/1/3EGONiCOFjwNcCVwzxWpJ2rhafIyGEk2wFRK/rc94/A/4nRUXjZntbWSnVbg371+4nxRg/G0J4JvDSQYuOMb4jhPAyis+ta4D/F0J4EfCu8pAHUQRcdytv/58Y4591neZ1FNWYc8CPlzvJ/RFFtc3XAz9RPv+T5WuMJMaYhhC+v1zbAvDGEMJrgT8GbgeupGhJbLcffpmtMP+g+SW2hpL/OXBLCOH+2zxno8//niVJknqycknT7Lry8u97PRhjvBW4pbz58F7HVIUQZoCvG3R
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebwlZ1ng8V/vne50OhvZE7LJm0XABAgGEaIoDuI4g7iBgGETdARBHdSRTUYERFwAA8wALiACoyCKogKyaxRJIGR7syfdnaT3vutZq2r+qDr3nnv67Pfc5fT9fT+f+6lTp+qteu9NTnWdp573eddlWYYkSZIkSZI0jPUr3QFJkiRJkiSNL4NLkiRJkiRJGprBJUmSJEmSJA3N4JIkSZIkSZKGZnBJkiRJkiRJQzO4JEmSJEmSpKEZXJIkSZIkSdLQDC5JkiRJkiRpaAaXJEmSJEmSNDSDS5IkSZIkSRqawSVJkiRJkiQNzeCSJEmSJEmShmZwSZIkSZIkSUMzuCRJkiRJkqShbVzpDkiSpNUnhPBF4KnF6mtjjG/us927gf9RrF4QY7xv9L1TP0IIm4EbgMuBq2OM1/fR5hrgF4AnAY8ADgO3An8J/FmMsbpkHZYkSWPLzCVJktTL60IIl650JzSwt5AHlnoKIawPIfwx8AXgJ4Czgc3A6cD3Af8H+HoI4TuWqK+SJGmMGVySJEm9bAE+EELwvmFMhBB+A/jlAZq8mTxjCWA38IvAU4AfI89aAngM8OkQwgmj6qckSTo2OCxOkiT142rglcAfrnRH1FkxFO6PgJcP0OYi4H8Wq/cAV8YYJ5p2+WQI4Rbgt4FHkQeefmc0PZYkSccCn0BKkqRuUqBevH5zCOHCleyMOgshXAV8jfnAUtJn0xcCG4rXr2oJLDW8BThSvP7JoTspSZKOSQaXJElSNzXg7cXrbcD/XcG+qIMQwluB64HHF299iv6zzB4mr7W0C/hsux1ijClwR7F63vA9lSRJxyKHxUmSpF5+C3gWcAnw/SGEl8YYFxVkKgqE/yLwNOAcYB15cOMLwLtijLd2aPdF8lnsKjHGrV2OfzN5Mev7Y4znt2zLipevBv4eeDfwZPJA2l3Ar8cYP9e0/wnAS4D/BnwnsAM4CNwI/D/gQzHGOi1CCOcD9xarzwL+FrgWeEHRtx3AHuCfgHfEGO/u9Pv04bvJ/4aHgNfEGD8QQnhjPw1jjO8m/xt0FEJYx3xQ6aFF9FOSJB2DzFySJEldxRgr5MGVtHjr7SGEs4c9XgjhdcC3yQtIB2A7eVZUIB/S9e0QwhuLgMZSOpd8GNnTi/PvBK4kDzA1+vp9wO3AO8gLXJ8MbALOAJ4BfBC4sahb1M024HPAB8iDY6eSF0q/EPh54JYQwg8v4nc5DLwNuDjG+IFFHKeTV5D/zgAfW4LjS5KkMWbmkiRJ6inG+LViqvpXkAdh3gv810GPU2TTvKFYvQm4rliuBx5HXjT8oqZ93riYfvfwKvJsn98F/o48ePJdMcb7ir5eTZ7ZdByQAX8BfBzYC1wAvIg8MPWdwFdCCI+LMXbK6nlHcfzrgT8mH2J2JvA/gB8kDzT9aQjhwhjj9BC/y7OLoWsjUQT2TgUeXfTxx4pN3wB+f1TnkSRJxwaDS5IkqV+/QR5QOh/4kRDCc2OMH+m3cQjhSuB1xeqHgBe1DCf7WgjhA8CngWuA14cQPt5piNwIrAd+J8b4m03v/VXR1w3kWUnHkWds/VSM8a+a9vsP4GMhhNeTDxs8E3gf8KMdznUG+e98bXMQKITwt+S/7w8DjwCeyRCZQaMMLBX+L/Dilvc+APzqkMEvSZJ0DHNYnCRJ6kuMcQb4uaa3/iiE8IgBDvEr5PceB4GXt6tTVJzjReSZQuvIM6WW0ns6vP9fyWtMAbynJbA0J8b4JuCLjTYhhMs6HK9MPhPbgiBQjDFjYZH0x/bT6WXwyDbv/QDw0hCC94+SJGkBbw4kSVLfYoyfBf6kWD0VeFc/7YphVs8oVr8WY5ztco57gduK1acN2dV+7Ikx7u6w7YeaXr+vx3Gua3r9Xzrs840Y46EO25oLee/oca7lch3wvcD3AL9MXmz9keRDCP/CAJMkSWrmsDhJkjSoXyYPopwJ/FQI4S9jjJ/q0eZ84KTi9Y82zdjWywXDdbEvu7ps+85iOQ3c3OM41ze9fnSHfe7r0r55mNmquDeLMX6yafVfQwh/Rl6Q/Argp4HPkg8blCRJMnNJkiQNJsZ4hLzIc8N7Qggn9mh26pCn2xhCWKpsnsku204plgeKoWvd7G16fXKHfbrVKWo+/lLPkDeUIuvqBU1vvWil+iJJklYfg0uSJGlgRWbL/ytWzySfDa2b5oycD5JnwPT703EIXRf93ON0CxoNEuTZ0PR61IW1V40Y483ks9wBPGYl+yJJklaXVZF6LUnSWhNCeAHw8+TDqDIgktcyes8wM3+FELYBryEfsnQBMEU+bfwfxhg/M8Bx3gL8OnBTj/1OAQ6RB1PWAy8KIQTgoQ5NmusNJTHGb/bbpxaNgFCv4M/OIY/f0OjvqSGEdT2yl05v025shBDOAi4i/+/yrz12P1gsNy9trzSqz3TLMc8DXk8+rPU0YD/weeAtMcbburTbAvwi8FNAIP/vfzfwUeAdMcZSn+d/HPkw0o0xxlWZpSeNs1V23XgS8KvAk4ETyf/9+DLwuzHGbwzw+9wEbI0xnjNM/7V8zFySJGmZhRDeBfwZ8N3kdX/uBx4HvBv4TAhh04DH2w78C/AG4ELgFmAGeDrwDyGEN/R5nB8hvxHstd/pwL8DLwNqTZu+B3h2h2b3MJ+B9N19nOPXQggvCyH8QMumxgxzm0MIG1rbFW2PAwaZxa6dRnDteODyHvs2/z63L/K8y6ootH47+Q3//+lj3wuL1U6F0DUCo/pMtxwzADcALyb///pbwFbg+cANIYQf6tDudOA/gN8DriS/Zj1M/rn438BXQwg9g7lFgOrP8eG2tCRW2XXjxcBXgGeRB6NvAbYBPwlcH0J4fh/nXk8+m+pFg/ZbK8PgkiRJyyiEcC15BsAE8L0xxktjjN8JPJ486+fp5E8IB/HHwBOBbwIXxRivjDE+krxGTh14Y5sgTWu/fhL4K/r74vcx8pu9z5IPiWt+Gto2GyHGWAO+UKw+OoTw5C59+X7grcB7gf/VsvlI0+vzOxziB4CBAnRt/HPT65f12PflTa8/u8jzLqsiI+trxerlIYQndtn9mcxnaY3V7zmGFv2ZbhZC2Ah8mryW2IeAM2OMTyD//L6b/MviR4uMxOZ264CPkw+DvBW4LMb4nTHGC4CnAvvIA06/00c3fhu4rN8+SxrYarluXAS8hzzW8C7g9BjjFcAZwPvJ7zPeH0K4kA6Kh0QfAp7bb3+18gwuSZK0TIpMm9cWq78WY/xqY1uRIt54kvfqfjIBimNeBDyPfHjaz8QY52ZAizF+iDxIA/DGDu1PDCFcRx4w2tLH+a4h/1I5DTw3xniYPPgy1Ud3f7/p9Z+GEM5tc/zTWJhB886WXZqH672iTfvTgbf30Zde/ha4q3j9CyGEZ7XbKYTwOvK/B8DnFzHcbyVd1/T6ve3+3yueXr+/WK2x8L+lRmixn+kOngdcDDwAvKQxjC3GWAVeSZ5hcCLw6pZ2Pw48hbz4/dNijI2aW8QYv0w+hBbgZ7tlXIYQvod8lslh6qdJ6mGVXTeeQ/6A53bgVTHGStGuRF4O4B7ybKbndfhdHkeeHW1gacwYXJIkafl8L3nGT5X8idwCMcbPkwc0tgM/2ucxn09eUPrfYoy3ttn+3mL5PUXdhDkhhKuL8/08UKK/GcCuLZafijEeKPq9C/i1NvsuCFbFGP+F/Gkm5H+Hb4UQXh9CeGrx8yvAjcynwH8yxvg3Lcf8S+aHxv1SCOEDIYQfDCF8bwjhf5Kn7wfyejBDizEm5H/bKvn90l+FEP4shPAjIYSrQgg/EUL4R+BNRZMDwM8u5pwrJcb4d+TBRYDvAm4NIfxSCOEpIYTvCyH8DvB15rOWfinGeOdK9HWNGPoz3cW1xfJ
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3Rkd3338c+ot1VZrbdJ6931rv1zxdjBxgWwDTmhFwOBhBBCDAmQJwk1Txo9IQmQUJKQmITyhBKHHkhCCRgw2GBMx16vf95db5W0q7KSRhrNjOaW54/fHWlmNDNqI41Wer/O2TNz51atj673fudbYmEYCgAAAAAAACimptoXAAAAAAAAgLWL4BEAAAAAAABKIngEAAAAAACAkggeAQAAAAAAoCSCRwAAAAAAACiJ4BEAAAAAAABKIngEAAAAAACAkggeAQAAAAAAoCSCRwAAAAAAACiJ4BEAAAAAAABKIngEAAAAAACAkggeAQAAAAAAoCSCRwAAAAAAACiJ4BEAAAAAAABKqqv2BQAAgNVljPm2pJuixTdaa9+xwP3+UdL/iRb3WmuPVf7qUIwxZqek35P0ZEn7JbVKOivpp5L+Q9InrbXeAo7zfEkvlvQYSedJmoiO8VFJd1hrwzL71kb7/qakR0vaJOm0pPskfcRa+5Wl/nwAAGBti4VhyX8jAACAdaggeJSWdJW19uAC9iN4VAXGmBdI+rCktjKb/VDSrdbavhLH6JD0OUlPKnOMr0h6rrU2VWT/zZL+S9INZfb/nKSXWGunymwDAADOQZStAQCwsTVK+rAxhn8TrEHGmCdJ+ne5wFFK0nsk/Yqkx0r6dUnfiTa9RtKXjTEtRY5RL+lrmg0c3SvpRZKuk8siOhB9/lRJ/1xk/xpJX9Js4Oj7chlIj4v2/1H0+fMkfWRpPykAAFjL+IciAAC4XtIfVvsikM8YE5P0j5Jq5QJHt1hrX2+t/bq19j5r7X9IulnS7dEuj5L0miKHer1csEmS7pD0OGvtHdbaH1hrPxGtuz9a/1JjzKUF+79E0o3R+89IutFa+0lr7T05+38tWv9CY0y57CQAAHAOIngEAMDGFUjK9sl5hzHmgmpeDOa4XtLF0fu/t9beW7hB1KPotZIGo49ekrveGNMk6U+jxSOSfsta6xccIyHpz3M+el7BaV4evWYkvaqwL5K1NpD0ZzkfvaDMzwQAAM5BBI8AANi4MpLeHb1vkfSvVbwWzPX4nPdfKrVR1KPo7mjRGGMac1Y/XVJ79P7N1tpMicP8r6SPSXq/pAcK1t0v11Ppf621IyX2z+2ZdX6pawUAAOcmpq0BALCxvU3SrXIZLk80xvyOtXZZQSRjzCWSfl+ux06vpJikk5K+JekfrLUPltjv23KNvNPW2qYyx39A0mWSjltr9xSsy2bFvFbS/8iVfT1OLlB2WNKfWGu/kbN9u1xmzbMlXS43QWxEbgLZZyR9vNgUM2PMHklHo8Vb5YI7L5XL/LksOk6fXDnX31lrj5T6ecq4T9JfS9oZXXs5sZz3TXKN0CXXx0iSpiV9odTO1tq0pN8qse5VC7jW3TnvBxawPQAAOIcQPAIAYAOz1qaNMS+Xa7xcI+ndxpgvl5raNR9jzJskvUWuT0/equjP7xpj/kLS28qNha+AXZLukRtHn3W1coIwxphbJH1S0o6CfbfLBV2eKul1xpjnzBP8aZH0DUm3FHx+gaRXSbrNGPNca+2XF/MDWGu/JRdwKytqiJ3tSTRurR3PWX1F9HrAWpvM2adFLrCXknQqKj1bEmNMraS/yPnoU0s9FgAAWJsoWwMAYIOz1t4j6QPRYodmGzAvijHmrZLeLhc4+oWkV8pN6HqcpFfL9dypkQsuvWVZFz2/10jaIuldcuVfvyrpr6y1x6JrvV4uM2mHpFDSJyQ9S67586/JlXFJLhvpu8aYwgBTrr+TCxzdKzd97LGSniPp69H6Rkn/zxjTVqGfrdBtkrZG779WsC7b/Pq4JBljbjLG/K+kuCQbfX7aGPPOKAtrQYwxtcaYXcaYX5P0A0nPj1Z90Fr7nTK7AgCAcxCZRwAAQHJNlZ8paY+kZxhjXmSt/feF7myMuVrSm6LFj0u6raDc6x5jzIcl/bfchLA3G2M+XaqErQJq5IJFuY2gPxtda63cSPlmuabhL7TWfjZnu/skfcoY82a5sr4dkj4oF1wqZrvcz/zS3AweY8yX5H7ep8llQD1dFc7KMcbsl/Q3OR/9Xc66RknZgNWYMebPJP2l8kvcFF3b/5X0LGPMk621JxZwaitpX85yStIbJb13cT8BAAA4F5B5BAAAshO3fjfno/cbY84rtX0Rr5f7d8WIpFcW6xMUneM2uUyfmKQ/WPoVL8g/l/j8mZqdYvbPBYGjGdbat0v6dnafIiPss1KSXlNY+hWV5eX2j7pyIRe9UMaYrXLBqc7oow9Za+/L2SQ30+mJkt4haUjS78hlKjXJZUl9JdrmYkn/WdBwu9h5Y3Jlgbma5KasPWPxPwkAAFjrCB4BAABJkrX265I+Gi1ukfQPC9kvCiZkGzPfY62dKnOOo5qdzPWkJV7qQvRZa0+VWPfknPcfnOc4/5Tz/ikltvmxtfZsiXW5vZI2zXOuBTPGbJd0p1wfKck1+P7Dgs1act6fLxfYu8Fa+yFr7ZC1Nh0Fm3Izoq6S9LJ5Tt8oFwS8TtIvy5UGTkm6Vi749H+W9lMBAIC1irI1AACQ63VyQZIdkl5ojLnDWvvFefbZI6krev+snIln89m7tEtckJNl1l0evU5q7lj6QvfmvL+ixDbHyuw/mfO+Iv/uMsbsk+ttlC0bs5KemtsQO1K4/LZijb+ttaEx5tVyU+MaJL1Y+UGzwu1Tco3Gs+40xtwhl6XVIel9xphvWGvtwn8qAACwlpF5BAAAZlhrxyTlZo78szGms9T2kS1LPF2dMaZi2TgF4mXWdUevwwuY+HYm5/3mEttMlvhcciV6WYW9hhYtavT9fc0Gjg5IusVae6bI5hMFy18oddxo/2zJ2zVRNtmCWWt/JinbX6pOrnE4AABYJwgeAQCAPNbaL0j6TLS4QzlNmEvIzaj5iFzp00L/lCxxK2Mh/34pFxRaTGCkNuf9ksfZV4Ix5lclfVOuwbXkppzdZK0dKLa9tTYtaTTno/55TpHN1qrTbB+lxfh8zvtHLWF/AACwRlG2hnXHGNMiNzXm1+RKIiYk/VjS+6y1Xym3b5ljXis3ZvrxclN1kpIelHSHpNuttdMl9nuS3Ljo6+V6XfTLjX9+T7l0fmPMDZLeIDfeulOuT8V3JL3LWvvjpfwMALBIvy/XZLlb0m3GmP8os21uvx8/ykJZimzAZ77gTscSj5+Vvd4txpjYPNlH24rst+qMMb8n6R81+3fzP5JeUK6/VOR+SU+I3neq/M+QbZTtK8rciibT7ZHLdDpqrT1UZv+RnPcN81wXAKACVuLZp8g57oiOf6G19vAi9vuMpOdL2mutPVZmuyfIlc3fIDfs4ZjcQIj3lvqCBKuPzCOsK8aYVrlvZd8i6QK5dP6EpF+R9GVjzFuWcMxXy5UIvEiuNOOgXInCdZLeL+k7xpj2Ivu9WdI3NDt55oBcT5DflfQzY8zzSpzvZZK+q9neEwfkmp6+QNK9xhhKAQCsOGvtoKTX5nz0L5JaS2z+iGYziK6b79jGmD82xrzCGPPLBauyE9oaoqBFsX2bNZt5s1S/iF7bJF02z7a5P89DyzzvkhhjXiXpA5oNHP2rpGcvIHAk5fdsmu+/Tfbv4pS11o/eXyXpsFyPpVfPs/++nPelmpUDACpkJZ59ipzjlXKBo8Xu9/tygaP5tvszSXdJerbc5M4Dcl9c/ZGkA8aYxy/23FgZBI+w3nxAbuzwzyTts9Zeba3dLeklcg8lby3ysFKSMeZGSe+V+115l6Qua+2V1toeuW/k+6PzfbBgvydJelu0+EeStllrr5b7Bvt9cjfGTxhjegv22yc3WrpGbsrRNmvtVXLZTh+Syxb8kDHmgoX+DACwVNbaj2t2jPseSb9RYruMpG9Fi1cYYx5X6pj
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZzcWV3v/1ctXdVLOp1kkkkya2ZhDrMhIiijKAMosrhcrwt6RfTihjte/SkuCHgvuCuKCNeFq6AoCFzhh3C5goKCzrANAsPMgcHZM0lP1t5rv398v91d1amqru6u6u50Xs/HI49avkudDjNF8p7P53MyjUYDSZIkSZIkqZ3sVi9AkiRJkiRJ25fhkSRJkiRJkjoyPJIkSZIkSVJHhkeSJEmSJEnqyPBIkiRJkiRJHRkeSZIkSZIkqSPDI0mSJEmSJHVkeCRJkiRJkqSODI8kSZIkSZLUkeGRJEmSJEmSOjI8kiRJkiRJUkeGR5IkSZIkSerI8EiSJEmSJEkdGR5JkiRJkiSpo/xWL0CSJG2uEMIHgaemL385xvjKHq/7Q+DH0pdXxRjv6//q1E4I4RLgR4GvB64FxoBTwB3A3wB/FWOstrnuPuDKtX5ejDHT5l454PnAdwNfCkwAk8C/AK+LMf7zWj9HkiSdH6w8kiTpwvbSEML1W70IdRZC+A4gAr8EPBHYAwwBB4FnAX8O/GsI4dI+fWSlzRoOAh9OP+vrgP3pGi4FvhP4UAjhj9KASZIk7TCGR5IkXdiKwJ+FEPwzwTYUQngG8GZgF7AA/C7wTOArgO8CFqt9ngS8J4QwuuIWzyGpElrt1782XfOiFWsYBf4BeHL61r0kVVC3AM8F/jp9/0eankuSpB3EtjVJknQL8JPAq7d6IVoWQsgAfwjkSIKjp8UYb2s65aMhhLcAf0QS+DwOeDHwqsUTYoyf6+Fzfhj4yvTln8QY37DilF8Ebk6f/xvwrBjjVNPx94QQPpKu9dtDCN8WY3xbjz+mJEk6D/hfGSVJunDVgcU5Oa8MIVy9lYvROW4BHps+/4MVwREAMcYG8NMks4cAXrCWD0j/N/+d9OUXSMKn5uM5kiojgDng21YER4vreC3wf9KXv5kGX5IkaYcwPJIk6cJVAX4rfT4K/MkWrkXn+uqm5+/qdFKMcYFkHhFACCEU1/AZryUZvg3wQzHGuRXHvxTYmz7/2xjj0S73+l/p41UkbXSSJGmHsG1NkqQL2yuAbyGpcHl6COEHY4wbCpHSAdw/DjwDuAzIAA8C/wS8plMrVdMucKUY43CX+38WuBG4P8Z4ZMWxRvr0p4G/J2mlegpJUHYP8JIY4/ubzt8N/ADwzcBNwDhwkmQXs78F3tRhF7MjJLN/IPn9exfwfSSVPzem93kYeB/wOzHGL3b6ebr4KPBrwCXp2rtprvQZBkqr3TyE8I0kA7ch2a3tg21Oa96p7fZVbtn8v+stJOuXJEk7gJVHkiRdwGKMJZLwpJ6+9Vsb2bUrhPBS4DMkrU6BpKplNH3+IuAzIYSXb0Jb0+XAR0iGS4+SbCv/BJpCmBDC04C7Sdq2vgbYR7KD2CHg2cAbgDtCCNes8lmjwPuBPyMJv/aTDCK/mmSI9J0hhOes9QeIMf5TjPEXY4zfF2M83um8EMIQ8FXpy7MxxrOr3TsdkP5r6ct54CUdTi00PZ9e5bbNu7Rdt9oaJEnS+cPwSJKkC1yM8SMk7UuQhCyvX899QggvB36VZMDzp0nCoq8kqfz5KeCLJH/2eFn6a5BeTBLi/CZJ+9e3A6+KMd6XrvUWksqkw0AD+Evgm0h2MftO4P+m97kJ+JcQwuEun/U7wNOA24DvSe/xn0h2KIMkSPrzEMKuPv1sK70QuDh9/r4er/k2kgopgD+OMT7U4bwTTc8vW+Welzc9P9TjOiRJ0nnAtjVJkgTwC8A3AkeAbwgh/JcY45t7vTiE8ATgpenLNwEvXNHu9ZEQwp8B7wZuBX4lhPDWXnYDW6csSVj0S03vvS1da46kqmiEpOLqeSt2B/so8JYQwq+QtPUdBv4nSbjUziGSn/n7YoyLFVyEEN5F8vM+BzhAsq39Wzb+oy0LIVwL/HrTW7/T6dwVfjp9rAC/2+W8j5P8HmVJ2vN+vcu539j0fKzjWZIk6bxj5ZEkSSLGOAv8UNNbvx9COLCGW/wMyZ8rTgIvajcnKP2MF5JU+mSAn1j/invyug7vfyPLu5i9rtO28jHGXwU+uHhNCOGGDvdbAF7cHByl1zdoHUL+Jb0sulchhItJwqk96Vt/GmNcdc5QCOHLgSenL/86xvhAp3NjjKfTzwD48hDCj3e45xNo/ednaLV1SJKk84fhkSRJAiDG+A8s75i1H3hNL9el84uenb78SJsdu5o/417grvTlM9a51F483KUV6+ubnv/PVe7zR03Pn9XhnE/EGE91ONY8KHt8lc/qWQjhEPABkllSkAz4/skeL/+ppue/2cP5vwAs/m/6mhDCa0MIN4QQhkIIh9JA6R+BGnAmPa/c41okSdJ5wLY1SZLU7L+RhCSHgeeFEP46xvjOVa45wvJ27t/UtOPZaq5a3xJ78mCXYzeljzPAZ1e5z21Nz2/ucM59Xa6faXrelz93pQO83wcsDvKOwLNjjPM9XDtCMo8J4GMxxjtXuybG+LkQwrcDbyVpR/vR9FezWZJZUa8hqYSa7eFHkSRJ5wkrjyRJ0pIY4xngx5reel0IYU+n81P71/lx+RBC36pxVpjqcuyi9PFE2lrWTfMuZ/s6nDPT4X1IWvQWbXiHuXTQ97+xHBzdCTyt225sK3wtye5wsIb5SzHG95DsVvdWkt3ZFs2TDBt/fIzx3SyHiL2uR5IknQesPJIkSS1ijP87hPC3JDuUHSYZwvz9XS5p/vPEG+ix3S3VscWti17+41e3UGgtIU6u6Xm941mbIK3+eSMwnL51O/DcGOPJNdxmseqoAfztWj4/xvh5kmq0YZKd12rAQzHGSrq+QyS79QHcu5Z7S5Kk7c3wSDtKCGEU+DmS0vmrgGngE8CrY4zv7dNn/HV6/8fEGO9Zw3WXk7RH7AauWtwuelCfJ0kb9OPA00mqdF4YQvibLuc2z/upxRg/tc7PXAx8Vgt3JlY5vprF9e4PIWRWqT462Oa6TRdC+FHgD1n+vfl74Du6zZfq4Lnp4+3dBmV3E2NcANr9/9GTm56v958BSZK0Ddm2ph0jhDBGMrDzZcDVJKX8s8AzgfeEEF7Wh894EUmQs9brMiT/NX73ZnyeJG1UjHGS5e3cAf6Yztuv/wfLFURP7nDOkhDCz4cQfjiE8LUrDi3u0FYIIeRWXpdeO0Ky7f1GfDp93AXcuMq5zT/P3Rv83HUJIfwI8FqWg6M/Ab55rcFRCCGwHIb98xqu+9kQwh+EEFbbHe9b0sd54CNrWZskSdreDI+0k7wW+AqS/9p5TYzxCTHGK4EXkPyF5OVt/qLSsxDCi2nddWctfpRkzsRmfZ4kbViM8U3AYtXmEeC7O5xXAf4pfXlzCOEpne4ZQng68OvA64FfXHH4TNPzIx1u8bVsfBv4/9v0/IdXOfdFTc//YYOfu2bp/2/9YdNbr4wx/lCMsbaO23150/OPr+G65wE/AfxC+h9DzhFCuJLl/9jxtl6Gd0uSpPOH4ZF2hHTnmeeTzKP47hjj0i476V9+fj19+fJ13PtwCOFtwO+xjmGn6dp+gx7nemz08ySpz36YpAUYuoc2v9v0/M/TVt0WIYSLSSqYFv3BilM+3fT8nCqXEMJB4Le6rrY372K57epHQwjf0u6kEMJLgaemLz+wgXa8dQkhTAB/wfKf134vxvjLG7jl45qeryU8env6eBj4qZUH04HqbwUKQAV41XoXKEmStidnHmmn+B6SoaYfiTF+rs3x1wO/DHxVCOGKXuc8pH+heBNJq8bp9B6v7XVRIYQsyR/8x4AXA68e5OdJUr/FGB8MIfw8q1RCxhj/MYTwOuBHSHYC+/cQwquBD6WnPBH4b8Al6ev/HWP8uxW3+WvgV0j+fPJT6U5sfwMskLSPvTi9/oss7za2np+
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkd13v/3ft3dX77DPZJpmEbyZAZJdcQDZXEBe84s7VuAB6VUSv4AUF9IKiPxW9cEGvO6KiiIIYfwqIINGw7wnfJJPMZDKTmem9q7qqTp2l7h/nVNWp7qrq6u7qrfr1fDz6UXXqLHV6kqmZfs/n8/kmarWaAAAAAAAAgHaSO30DAAAAAAAA2L0IjwAAAAAAANAR4REAAAAAAAA6IjwCAAAAAABAR4RHAAAAAAAA6IjwCAAAAAAAAB0RHgEAAAAAAKAjwiMAAAAAAAB0RHgEAAAAAACAjgiPAAAAAAAA0BHhEQAAAAAAADoiPAIAAAAAAEBHhEcAAAAAAADoiPAIAAAAAAAAHaV3+gYAAMD2M8b8m6RnRpuvsda+ocfz3iLpJ6LN6621Z/t/d2jHGHNC0o9L+gZJN0oakTQn6bOS/krSO6213hrXOCTpFZK+RdINkjxJD0p6j6T/ba2d63JuWlJB0lAPt/sRa+2zejgOAADsAVQeAQCAXzTGnN7pm0BnxpgXSbKSXi3pSZImJWUkHZX0jZL+RNJ/GGOu6nKNJ0n6sqRfkPRoScOSxiTdKul1kj5vjHlCl9s4rd6CIwAAMGAIjwAAQE7SHxpj+HvBLmSMea6kv5A0Kqki6bckfb2kr5b0PZI+Gh36ZEl3GGPyba5xXNIdko5Iqkp6k8LKs+dIequkQNLVkv7BGHO0w608Lvb8WyQ9vsvXj2zsuwUAALsRbWsAAECSbpP0U5LevNM3giZjTELSWySlFAZHz7bW3hU75BPGmHdJ+j+SXqqwiujlkt644lK/Julw9PyF1tp/jO37sDHm3yX9paQTkl6rsD1upXp4tCzpH621wYa/MQAAsKfwL4wAAOxvgcK5N5L0BmPMDTt5M1jlNkk3R89/d0VwJEmy1tYk/YykK9FLL47vN8Yck/S90eY/rAiO6td4l6S/izZ/2Bgz1eZe6uHRFwmOAADYXwiPAADY31xJvxE9z0v6vzt4L1jtGbHn7+t0kLW2Iulj0aYxxuRiu1+gZrX5n3V5rz+MHrOSvrXN/np49Nku1wAAAAOItjUAAPB6Sd+usMLlOcaYH7XWbipEigZw/3dJz1U4Sych6bykDytc1evuDuf9m8JZPI61tuNwZmPMlxQOfT5nrT25Yl8tevozkv5RYdvX0xUGZfdLepW19oOx48cVzuj5VkmPUThEelZhSPI3kt7RbhUzY8xJhSuVSeGv3/sk/aDCyp9HR9e5IOmfJf2mtfZMp++ni09I+lWF7WT3r3FsIvZ8SJITPX9a7PV/63L+v0uqRdd5jsIh3JIkY8y1kg5Em4RHAADsM4RHAADsc9ZaxxjzIwoHLycl/YYx5g5r7YWNXM8Y84sK5+akVu6Kvn7MGPMrkl4ftVxtlWsk3anmrB9JeoJiIYwx5tmS3inp+Ipzj0n6pujrFcaYb1sj/MlL+qCkZ694/QZJL5N0uzHmhdbaO9bzDVhrP6wwcOvKGJNRMyRatNYuxnbXV9JbsNbOdHmvgjFmWuFQ7ZWr78WHZT9ojHmVwsDsFoX/nc8qDOp+01p7aa37BQAAewttawAAQNbaOxWuuiVJE5LevpHrGGNeJ+mXFQYKX1A4xPm/KKz8+WlJZxT+/eO10ddWermkQ5J+XWH713dKeqO19mx0r7cpDDyOK6y4+XOFq4h9taTvlvQv0XUeI+nfoxXLOvlNhcHRXZJ+ILrGt0n6QLQ/J+lPjDGjffreVrpdYegjhZVOcVdFjw/1cJ3zK86pi4dHf6uwGuopCleAG1YYNv2cpHuNMc/v8Z4BAMAeQeURAACo+wWF83FOSvpmY8z3Wmv/oteTjTFPkPSL0eY7JN2+ot3rTmPMH0p6v6RnSfolY8xfd2ph64OkwrDo1bHX3h3da0rSHykMPgJJ32WtfXfsuE9Iepcx5pcUtvUdl/R7CsOldo4p/J5/MD5M2hjzPoXf7/MUVkA9X9K7Nv+tNRljblS4mlrdb644pN5uVujhcsvR4+SK1x8fez6q8Hv9W0mXFAZN360wnBuT9PfGmGdbaz8mAAAwEKg8AgAAkiRr7bKkH4u99DvGmMOdjm/jZxX+3WJW0kvbzQmK3uN2NWfr/OTG77gnb+vw+gvUXMXsbSuCowZr7S+rOSfoBcaYWzpcryLp5StXIYva8uLzo76ql5vulTHmiMJwqh72/IG19hMrDqsPz670cMnyinPq6pVHVUnPs9a+2Fr7Xmvtx62177HWvkjSD0XHpBVWWfGPlAAADAjCIwAA0GCt/YCkP442D0n6372cZ4xJKJwPJEl3WmtLXd7jQUn3RJvP3eCt9uKCtfbhDvu+Ifb899a4zv+JPf/GDsd82lo712FffFbS2Brv1TNjzDFJH1I4R0oKB1n/VJtD/ehxPfOlVh77VIUzlb7GWruyLU6SZK39E4XzoyTplKRvXsf7AQCAXYx/EQIAACu9QmFIclzSdxlj/tJa+941zjkpaSp6/i2xFc/Wcv3GbrEn57vse0z0WJT0pTWuc1fs+WM7HHO2y/nF2PO+/N3LGHNK4WyjU9FLVtI3WWvLbQ4vKvxv03H1upjh6LGlSslae1nS5R7O/31J3xc9/1pJf9/DOQAAYJej8ggAALSw1i5I+onYS28zxqycgbPSoQ2+XdoY07dqnBWWuuw7GD3O9LDiWzw0OdDhmGKH16XWKp7EGu+1pmjQ93+qGRx9WdKzo4Cnnfqso5EeLl8/plMV1Vo+H3t+7QavAQAAdhkqjwAAwCrW2r8zxvyNwiHIxxUOYf7hLqfE/07xR+qx3S3SscWti17+AaxbKLSeECcVex50PGobGGO+U9KfqVlF9HFJz7fWznY57ZzCIOeaHt6ifszFDd5i/L9ldoPXAAAAuwzhEQaKMSYv6ecVrvpyvcJ/bf20pDdba/+pT+/xl9H1b7LW3r+O865R2BoxLun6+lLRK445KenBNS71eWvt49Y4BgD64b9Leo7CKp3bjTF/1eXYeKWKb6393Abfsx74rBXuTGzw+nX1+z1kjEmsUX10tM15284Y8+OS3qLmr80/SnpRt/lSkS9LeobC73XCWrvY4fpjCleEk6S7Y68fl/TEaN9d1tp72pxedyT2/Moa9wUAAPYI2tYwMIwxI5L+VdJrJd2g8C/Ly5K+XtIdxpjX9uE9XqowOFrveQmF/xI/vsah9VV45iTd2eHrs+t9fwDYCGvtFUk/E3vp99W59ekBNatOnrrWtY0xrzTGvMQY87UrdtVXaMsaY1Irz4vOHVYz5NioL0SPo5Ievcax8e/nK5t83w0xxrxM0lvVDI7+r6Rv7SE4klpnNj29y3HPiF3/32OvP1XSPyj8c+wH13iv+PU/1cO9AQCAPYDwCIPkrZK+WtLnJJ2y1j7BWnudpBcr/GHkdW1+SOmZMeblal1xZz1+XOHg0LXUw6O/ttY+vcPXD3W9AgD0kbX2HZLqlZsn1RyGvPI4V9KHo83HGmM6hhTGmOdI+jVJb5f0P1fsXog9P9nhEl8rKdPtvnvwL7HnL1nj2JfGnn9gk++7btGfXW+JvfQGa+2PWWv9Tues8F5JbvS8258h9bZEV2FVU92daq7Y9t3GmLbtaMaYpKSXR5uepL/t8f4AAMAuR3iEgRCtOvP9CmdRfJ+1trHCTvSDz69Fm6/bwLWPG2PeLem3tYFBp9G9vUm9zfSoh0dfXO/7AMAWeomaQ5e7hTa/FXv+J1G7bgtjzBGFFUx1v7vikC/Env9km/OPSvqNrnfbm/dJqrce/7gx5tvbHWSM+UVJz4w2P7SJdrwNMcZMSPpTNf/O9tvW2tes5xrRAPR3RpsvNMa8qM37fJek+q/BO6Oqs/r5VyS9O9q8VtKvdnirX1OzSusPrLUX1nO
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xkeV3v/3d1nk6Td8LOzOb9Lruwy7IgLjn4u14jIooRfoB6ERXEa74Kgl4TmCMqYEBFULyCXFDJSRZkYQO7O9/d2TA7oWemc8VTJ94/zqmqUz1V1dXdVd3TVa/n4zGPqlMn1Ld7oerbn/P5fL6ZKIoEAAAAAAAANDKw1QMAAAAAAADApYvgEQAAAAAAAJoieAQAAAAAAICmCB4BAAAAAACgKYJHAAAAAAAAaIrgEQAAAAAAAJoieAQAAAAAAICmCB4BAAAAAACgKYJHAAAAAAAAaIrgEQAAAAAAAJoieAQAAAAAAICmCB4BAAAAAACgKYJHAAAAAAAAaIrgEQAAAAAAAJoa2uoBAACAS48x5pOSnpts/qK19lfbPO+PJP1osnmVtfaxzo8OKxljvl/Su9o8/JXW2r9KnRut4y1PWmuvXMd5AABgGyLzCAAArOYNxpgnbPUg0NKtm/x+7ia/HwAA2EJkHgEAgNWMSnqHMeZZ1tpwqweDhp6cPN4l6ZWrHPv4iu12Ak9Dkt4t6VpJgaQfW9PoAADAtkbwCAAAtON2Sa+T9HtbPRA0dEvyeIe19q61nNjO8caYX1ccOJKkN1pr/2ON4wMAANsYZWsAAKCVUJKfPP9VY8zVWzkYXMwYc1TS3mRzTYGjNq9/u6SfSTY/I+k3Ov0eAADg0kbwCAAAtOJJemvyfFzSX2zhWNBYuuzsK528sDFmSNKfK54zliX9EKWLAAD0H8rWAADAat4s6cWSbpD0AmPMD1lrNxREShpw/5ikF0o6Iikj6ZSkT0j6Q2vt/U3O+6TiVeDK1tqxFtf/qqSb1GBVsNTqYj8h6f9K+iNJz1IcKDsh6eestR9NHT8t6QclvUjSEyVNSZpXHKj5R0nvstb6WsEYc6WkR5PNF0v6gKRXSHp5MrYpSWck/buk37bWPtzs51lFpd9RIOnedV6jmdco/pkl6bestbbD1wcAANsAmUcAAKAla21ZcfCkknHyVmPM5eu9njHmDYqDHD8iyUiaUJzVZCT9sKR7jTFvMsZkNjTw1R2V9DlJ/y15/52SnqI4gFQZ6/MlHZf025KeI2mPpGFJByV9g6R3SvqKMeaaVd5rXNJHJb1DcfBrn+JG5FcrDtDcZ4z5xnX+HJXg0fF4yOYvjDEPG2PKxph5Y8zHjTGvMsYMruWixphJSW9INmdEuRoAAH2L4BEAAFiVtfZzkv442dwp6W3ruY4x5k2SflnSoKR7FAeLnqE48+fHJT2seH7yS8m/bnq94iDOWyQ9W9J3Svo1a+1jyVhvV5yZdEhSJOlvJX2rpKdL+m5JlabRT5T0GWPMoRbv9duSni/pDkkvS67xbZI+kuwflfRXScBmrSrBoyskfVlxoO9qSSOKg13PVxy0+qwx5rI1XPdHJO1Pnr/FWptfx9gAAEAPoGwNAAC06+clfYukKyV9szHme621f9/uycaYp6iWyfIuSa9aUe71OWPMOyR9UNLzJL3RGPPeZiVsHTCgOFj0C6nX/ikZ66DirKIdijOuvsta+0+p474o6T3GmDcqLus7JOnPFAeXGjmo+Gd+RbpnkDHmA4p/3m9UHKj5JknvafcHMMbslHRVsjkp6ZziMrzPS3IUB5Zepzir62sl/Zsx5hnWWmeV6w4pLiuUpAXR6woAgL5G5hEAAGiLtbYg6X+kXvp9Y8z+Zsc38JOK5x7zkn64UZ+g5D1epTjTJyPptesfcVv+tMnr36K4x5Mk/emKwFGVtfaXJX2yco4x5sYm13MkvX5ls2lrbaT6wMwt7Qw65cmp51+SdLO19lettR+31v6ntfZPFDfU/rfkmFsl/Vwb132J4rI+Sfqj5L8LAADoUwSPAABA26y1H5H0l8nmPkl/2M55Sf+ib0g2P2etLbZ4j0clPZBsvnCdQ23HGWvt6Sb7vj71/M9Wuc6fpJ7/9ybH3GmtXWiyL90oe2qV91rpc5KuT973W6y1sysPsNaWJH2fpGzy0mvb6H/0uuSxpDb/GwMAgN5F2RoAAFir/6k4WHFI0ncZY95trX3/KudcKWl38vxbUyuereaq1Q9Zt1Mt9lVWGMtL+uoq17kj9fxJTY55rMX56V5Ca5qbJdlbDyX/Wh23YIx5n6RXKu6DdKviTKWLGGOOKe5DJUkftNbOrWVMAACg95B5BAAA1sRauyTpR1Mv/akxZtcqp+1b59sNGWPWmo3TrmyLfXuTx7mktKyV86nne5oc06rZdPr63Vxh7u7U82MtjntR6nnb/ZcAAEDvIvMIAACsmbX2/xhj/lHxCmWHFK8m9gMtTknPOd6ptZVCNS1xa6GdG2StgkJrCeKkS8DCpkdtvfTvcaTFcd+WPOYlfah7wwEAANsFwSP0HGPMuKSfUbyM8lWScpLulPR71toPd+g93p1c/zpr7YkWx71Q8VLQtyvuY3FW8dLOv2OttSuOfZ6kT6xhGK+01v7V2kYOAB31Y5JeoDhL51XGmH9ocWy6309grb1rne9ZCfisFtzZuc7rV1TGu88Yk1kl++hAg/M2hTHmNsXfdfsk/dkq47ws9fxCk+tNS3pOsvnBpF8SOqgb85Sk1PCNistJL5M0K+ljkn7dWvtAi/OeIemnJD1L0i7Fzew/Lekt1to7Vxz7CtX6nbXj+dbaT67heADAJYyyNfQUY8yEpI9L+iVJV0u6T1JB0n+T9CFjzC914D1+WPGEb7Xj3ijpo5K+OXnpPsX9Pv6HpLuMMS9Zccqy4sanrf6dS44NVd9gFQA2nbX2gqSfSL3055Immhz+iGqZL1+72rWNMT9rjHm1MebrVuyqrNA20qzpszFmh+Jl7zfinuRxUtJNqxyb/nmOb/B91+qNkv5R8apxN6xy7LOSx1DSl5scc7tqNxc/veHRoU435inGGKP4v+cPKP7f692SxiS9TNKXjTFf3+S8H5D0GUkvVpyJdp+kcUkvlXSHMeZlK045r9XnKYvJsSVJzZrRAwC2IYJH6DV/LOnpku6SdI219inW2iskvVzxHxxvavCHSNuMMa9X/ao6zY57oaQ3J5s/LemAtfYpiu9O/57iSd3fGmOOVM6x1n7FWvusZv8UB6wqZQY/b639zHp/DgDoFGvtuyRVsiWuVLyqV6PjPNWyK59kjHlWo+MkyRjzAkm/Ieltkv7Xit1LqedXNrnE10kabjXuNvxH6vmrVzn2h1PPP7LB912rT6Wev7zZQcaYmxQHKCTp35O+VY18Tep5w4ba2JCOzlOMMUOSPqg4++9dkg5Za5+muJT0jxTPN/7BGLN3xXnXKA44DiguIT1grb1V0kFJb1ccQHy7MebqyjnW2g+vMk95reLgkyS9olVmNgBg+yF4hJ6RTIS+X/Ed1e+z1lZX0Un+uPmNZPNN67j2IWPMP0n6XbXXB+Onk8d3W2t/y1obJOMoK16l6AHFE7r/v833H5T0d4obsX5Y0lvX9hMAQFe9WnHpjdQ6aPM7qed/ZYw5uvIAY8xlijOYKv5gxSH3pJ6/tsH5B9SZz8gPSKr88fsjxpgXNzrIGPMGSc9NNj+2gXK89fpb1X73P26MefrKA5Lf6XsUz/tCSb/S4no3J4+e6n/X2KAuzVO+X9K1kh6X9IOVMkNrrSvpdYozi3apPkNQkr5H8f9Xj0t6fTI/UXL+axRnCo4k12/nZ5uQ9A+SRiW9zVr73jX8DACAbYDgEXrJyxQ3Lf28tfb+Bvvfljw+M+kN0JbkD4aHJL1EcTr2j7Y+Q1Kcuv0BxU1h6yT9KO5NNq9ocxivUdyDYlnSD7Wx8g8AbJrkj+CfbeO4jyvOdpCkayTdbYx5ozHmucm/n5T0lWSfJP0fa+2/rLjMu1UrXftxY8w7jDH/nzHm2caYn1ZcvmO0wdLeJOj/Mkmu4vn
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkd13v/3cvM9OzJWFmkhBIQjb4QtiRRRQuEVRQFPSnXncuIgoiq3iVH4LggoLgAoJEBRSjKKio/JQdQQQFlEUgZL6ZJCSThJme6Z7eajv774/vOV2nqms5tXVVdb+ej8c8qqvqnFOnJ1Mn53zOZ5lJkkQAAAAAAABAK7Pj3gEAAAAAAABMLoJHAAAAAAAAaIvgEQAAAAAAANoieAQAAAAAAIC2CB4BAAAAAACgLYJHAAAAAAAAaIvgEQAAAAAAANoieAQAAAAAAIC2CB4BAAAAAACgLYJHAAAAAAAAaIvgEQAAAAAAANoieAQAAAAAAIC2CB4BAAAAAACgLYJHAAAAAAAAaGt+3DsAAAAmjzHmE5KekD59hbX2NQXXe7Okn0+fXmmtvX34e4dWjDHXSHqxpO+QdLmkmqSvS3qvpD+x1p7psv5HJT2pyGdZa2cG21sAADBNyDwCAADdvNIY84Bx7wTaM8Y8U9JX5AJ395O0IOkCSQ+X9BuSbjTGfHeXzTxslPsIAACmF5lHAACgm32S3m6MeZy1Nh73zqCRMea7JL1D0oykqqTflfTJ9Pl1kn5B0jFJf5f+N/xCi21cJulo+vTXJf3D6PccAABMC4JHAACgiMdKeqGkPxj3jqDOGDMr6c1ygSJf0uOttZ/PLfJhY8wHJX1c0n5Jr5X0nS02lc86er+19ksj2mUAADCFKFsDAACdxJLC9OfXGGOuGufOYIsnSsr+m7y5KXAkSbLWflLSv6RPv8MYc48W28mCR7Fc+RsAAMAmgkcAAKCTQNLr058PSPrTMe4LWvtnSScl/VOHZW7K/XxZi/cfnj5aa21lWDsGAAB2BsrWAABAN78m6fsl3V/SE40xP2OtHSiIlDbgfr7cdK9L5cqu7pQrr/pDa+3X2qz3CbkpcJ61dqHD9r8q6YGS7rDWXtH0XpL++BK5jJw3S3qcXKDsFkkvs9Z+NLf8eZKeLenpkh4k6bCkZUlflPS3km6w1oZqYoy5Qm7ameT+/t4n6ZmSnpHu22FJd0v6kKTftdbe2u73aSfdz492XVC6T+7nUy3ezzKPvtjrPgAAgJ2PzCMAANCRtdaTC55kzbJfb4y5d7/bM8a8Uq406nmSjKSDcllNRtJzJX3FGPNqY8yox8FfJunTcj2ADkg6X9Ij5AJI2b5+m6Tjck2o/5ekI5L2SLqnpKxR9ReNMVd3+awDckGet8sFv47JNSK/StLPqdg0tL4YYx4l6fvSpx+31p5tev88SVekT79sjPkJY8yHjDFLxhjPGHPSGPNOY8zDBQAAdiWCRwAAoCtr7aclvSV9er6k6/vZjjHm1XLTvOYkfVkuWPQtcpk/L5J0q9z5yavSP6P0Yrkgzu9IerykH5L0W9ba29N9faxcZtIlkhJJfynpaZIeI+lHJH043c6DJP27MeaSDp/1u5K+TdJnJP1kuo3vk/SR9P19kv7cGHNo0F/KGDNjjDlsjHmEMeb3JX0i3f6KXLZXs4fJZX5J0ssl3SAXUDsqaa9ckO0Zkj5vjBn1fxMAADCBKFsDAABF/b+SvlcuS+V7jDE/Zq19V9GVjTGPkPTK9OkNkp7VVO71aWPM2+V6+Fwn6VeNMe9pV8I2BLNywaJfyb32d+m+zsllFe2Xy7j6YWvt3+WW+5ykdxtjflWurO8SSX8sF1xq5Z5yv/MzrbVZBpeMMe+T+32/W9KFkp4q6d0D/l4/nn5W3qclPdtae7zF8vmMovMkfVLS2ySdSJ8/WS47ar+kVxtjPGvtawfcRwAAMEXIPAIAAIVYa8uSfjb30huNMRf2sImXyp17LEt6bqs+QelnPEsu02dG0gv63+NC3trm9e+V6/EkSW9tChxtstb+ulxmjyR9rzHm2jbbq0l6cT5wlK6fqLEJ+UOL7HQX92nx2oMlvaDLpDVJerW19gnW2hustZ+x1n7YWvtSueyw1XSZ3zTGXDOE/QQAAFOC4BEAACjMWvsRSX+WPj0m6Q+LrJf2L/qu9OmnO030stZ+XfXpYE/qc1eLuNtae1eb956c+/mPu2znj3I/P6XNMp+31p5r816+UfbhLp9VxL9J+g650riflCuVO0+ux9QnjTEXNS3/IknfJOm7rLW/1mqD1tovSfq/6dM5tS5/AwAAOxRlawAAoFe/IBckuUTSDxtj/tpa22lMvORK3bKsl6flJp51c2V/u1jInR3ee1D6WJL01S7b+Uzu5we3Web2DuuXcj8PfG5mrf1U7unnjDHvkstuepbc7/UGuR5G2fLrkr5QYNM3yAULFyR9+6D7CQAApgeZRwAAoCfW2lVJP5976a3GmAu6rHasz4+bN8YMIxunlfUO7x1NH5fS0rJOFnM/H2mzTKnN65Ir0csMfcJcWir3PEl3py/9sDHmQB/b8eQmz0nS5UPaPQAAMAUIHgEAgJ5Za/9B0t+mTy+RmybWST6j5h1yTZqL/mlb4tZBkXOcTkGhXoI4c7mf47ZLjVEa+PmX9Ole1fs59Sr7b7F34J0CAABTg7I1AAA6SDM0fkluNPuVkjYkfV7SH1hrPzCkz/jrdPv3tdbe0sN6fyvpByVdmY2Xb7PcgyW9TG6C2YWS1uRKrX7PWvvx/vdcz5f0RLksnWcZY/6mw7L5fj9R2kOnH1nAp1tw5/w+t5/J9veYMWamS/bRxS3W2xZpA+yrJd3TWvvPXRZfzv28N11/v6THS7pI0mlr7Ue7bCPrl3Smj92FRnNMMcZcLulX5cpJL5J0VtLHJP22tfamDut9r9z3+FFy/yZukwsKv9lau9JmnRm5XlrPVr3B+wlJfyHpbZ36mQEYvkk5phhjrpPU7Zzin6y139flsw9I+rKkBWvtpT3uOkaIzCMAANowxhyU9K+SXiXpKkk3SipL+k5J7zfGvGoIn/FcuRO+Xtd7vlzgqNty3yPpvyT9mFxA5Ua5//9/j6SPGWP+b4fVO7LWnpH0ktxLfyLpYJvFb1M9a+Wbu23bGPPLxpjnGGOae+tkE9r2GmPmmtdL190vFyQbxJfTx0OSHthl2fzvc7ztUqNxg9x/3/cVmHx3de7nrFH4gqQPpdt5TaeVjTH3zG3jv3vfVYzimGKMMXI9q35a7t/r/8j9d/1JSV8wxjy5zXpvkfS+9LMTuSb1l0r6dUlfNsY8qMU6eyT9g6R3ygUdK5Julstke6OkzxhjuNgDtskkHVNUDyafkvTpNn++1uWzZ+V69F3daTmMB8EjAADae4vcxKovSbraWvsIa+195JoNh5Je3SK4UZgx5sVqnNRVdL2XSnpTgeWOyAUF9kl6t6RLrLUPl7uL+Bq57J3XGWO6BnPasdbeICm7s3mFpB9vs1yg+h3JBxtjHtdhv58o6bWSrpf08qa3V3M/X9FmE98uaU+n/S7gw7mfn9Nl2efmfv7IgJ/bq39PH2fkGmK3lAZ+npo+PZ5NmUuzS76Svv4oY0yncraXqJ7x1SnLDO0N9ZhijJmX9M9y2X83yH3HHyVXSvpmuQu+vzHGHG1a7wVyfbAkFyy6Z269P5ALIn20RS+z10p6erqvPyfpXul695I7xjxY0gfS/QIwehNxTEllwaM3Wmsf1+ZP8//T85+9P/3MHyu6v9heBI8AAGjBGHO1pJ+Q62Hz49bazclcacDktenTV/ex7UuMMX8n6ffVQ28dY8y9jTHvlZuWVWS9p0m6QK6U6qestRuSZK2NrLWvkPQf6hJ0KOg5cmnyUuegze/lfv5zY8xlzQukY+T/JPdSc5Dsy7mfX9Bi/Yslvb7j3hbzPklZCeHzjDHf32ohY8wrJT0hffqxAcrx+vVOubvMkvTytESxQdpw/D2qZ4W9tmmRLIA5I+ltrZppG2OeLuml6dOvSnrvgPu964zomPITkq6
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAbwCAYAAADnAAF4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xkaVn3/0/39OQ8szuzeWeDe+8uWUGCKMuiBJEkKihBWEXUx4DgI/xQHkAfDGACkfQgoCA5CAKKLCBKZnFzuHdndntyT+fKp078/XGf6j5dXbmqw3R/36/XvCqcUKdmd06dc93Xdd1DSZIgIiIiIiIiIiLr2/BKH4CIiIiIiIiIiKw8BYlERERERERERERBIhERERERERERUZBIRERERERERERQkEhERERERERERFCQSEREREREREREUJBIRERERERERERQkEhERERERERERFCQSEREREREREREUJBIRERERERERERQkEhERERERERERFCQSEREREREREREUJBIRERERERERERQkEhERERERERERICRlT4AkZVijNkG/AHwfOAyoAD8APhba+2/DegzPpLu/4estYdbrDcMvBT4ZeDBwHbgKPBZ4E+ttTNNtnsQ8BrgeuBcIAd8F/gba+1XBvEdRGTeajpvNNjuE8DPAZdZa0dbrLcBuAF4Me58sw13vvkM8GfW2tnej15ERET6tRTXG8aYS4D/AzwVOABMAF/B/fbf3WK7ZwC/BTwK2ATcD3wCeHuze5R0u58GfjfdbgcwBtyYft59vXwHWR5DSZKs9DGILDtjzHbcSfHRQADcAewHLklXeYO19o19fsavA+9MXza92UuP5XO4QA/Avenjlbhsv1Hgx621J+q2exrwaWALUAbuAy5KvwfAa621f9bPdxCReavpvNFgu98C/i592TRIZIzZiTvfXJe+VX++uR/4CWvtya4PXkRERPq2FNcbxhgDfDPdTw5333A5sA/wgGdba7/UYLu/B34zfTmNu064AtgLnACeZq29o8F2b8QFpAAmgZPAD+EGpkrp593YzXeQ5aNyM1mv/h534r0FuMJa+8PW2ktxI+sh8AZjzE/2unNjzCuAd3S4+jtxAaJTwKOttcZaa4CH407gh4B31+1/D/AhXIDok8AF1tqHAweBP05X+1NjzON7/Q4isshqOm9kt3sV8LYOV383LkB0AnhU5nzzCOAI7oKx62MQERGRgRno9YYxZgT4PC5A9EHgfGvto4Dzgbfj7ic+aozZX7fdbzMfIPpj4LzMdn+LG5y+Mb0vyW7348wHiP4/4GB6n3JRehzbgY8YY3Z3+h1keSlIJOuOMeYK4IVADLzAWnu8tsxa+0Hgz9OXb+hh3+cbYz4J/A0w1MH6Pwq8CIiAp1prv5c5ltuBl6cvn2aMuTCz6c/gIv+zwC9ba3PpNpG19vXAf6Xr3dDtdxCRxVbTeSOz3YXGmE8Df9nJdsaYxwG/iLvAfIq19qbaMmvtbcBvpC+fYYw52MVXEBERkQFYouuNF+Iyho8Bv2qtraT784HfAf4b2AP8XuY4RoDXpS/fY619vbU2SLerWmt/D/g2boD69XWf98vp45ettX9urY3T7WaAF+BK584BntXFd5BlpCCRrEcvAjYA37bW3tVg+bvSxx9La3c7Yox5Di7z57nADPC/OtisdhL9xzQoVO8/gT/CncCjzPsXp4+HrbXlBtt9P33s+PhFpKXVdN7AGPNzuFKx5+DSv3+rg81q55v3NfkOX8FdEP5OJ8cgIiIiA7cU1xsvSR8/mAaG5lhrE+YrFn4xs+iRuH6nAG9ust+31o7ZGJMdrKrdp9xav4G1Ns98qbvuU1YpBYlkPXps+viNRgvTXhxH05dP6GK/D8PV2f4zcC3wxQ62+an08dNNjiWx1r7JWvt2a+1YZtGx9PGH0rrleg9NH0c7OAYRaW81nTfAlaNuxaWNXwss6iPQQLvzTWyt/b/p+eZMh8chIiIigzPQ6410cpwfbbVPXK8igMuNMbUAz6XpY85ae6TJdjZ93I/rN1RTu095RIPj2YbraQS6T1m1NLuZrEdXpo/NTnjgTlqXAld1sd//Ah5WywgyxhxqtXLdSfLOtKHsC3H9ifbifgA+3qiJHPAvuB5GFwDvM8a8zFqbT6P4r8TdDPq4mmYR6d+qOG9kfA34aK1ZZHr+aCpdXtv3ncaYXbjzzROZP9981Fr75S6OXURERAZr0NcbF+IGlVrt8ziuYmFDus/jQG12q6DFvjdmnh9iPkPo3bhZm59kjPl94K+ttbExZgfwXlxp21HgUx0cv6wABYlkPTqQPk60WGcqfTyn051aa7/a5XFczHw230XA11mcdnmDMeZjuL5D1cxnlYwxT8I1r/4F4OnGmPtwQaMDuPKV37DW3tzlMYlIY6vlvFHb7itdbnIJ832LLgE+ynw6eM0NxpgPAy+tT0cXERGRZTHo640DmecN92mtjYwxOVy/09o+7699hjHmovpZllMPyjzfm9nfTcaY5+ImwngL8GpjzAlcAGwHbqDrhlpvJFl9VG4m69G29NFrsU7tpLWtxTr9yo78fxoXsX82ruP/ObgeIxXgebgZBBod43dwkf/tuPKT2g/BOK7hnYgMxmo5b/Qqe775F1zz6mfizh3nAr+L+26/BPzVsh+diIiIwOCvN7LrdLPPm3EzocJ8A+s5aWPrP8i8talulUnmexKdg7tP2YG7PzmFklVWNf3HkfUoovMAadJ+lZ5tzTzfjJuOulZjXAb+3hhTBt4H/Jox5m+ttRbAGPNQ4Ebczd3HgD/BZQ9dAPw68L+BLxtjXmSt/cgSfgeR9WK1nDcWMcb8J+37EmTPNxvT9V8NfC597zLcBeJ7gN80xrzVWnt4wIcqGcaYR+FmsHwibjrhENff4VPA2621xRbbvhf4lQ4/6jJr7Wjd9iO42WW2dLD9162113X4WSIi0p9BX29E7VdZvM80u+i1wD/h7kOGgL/A9Ru6Nn1+GVDCDTjNlaUZY14IfCDd1+uBf8BlMT0INyvbC4AnG2OeaK29s8vjk2WgTCJZj2oX3q0ujms3VI1mDhuU7L7fnwkQZX0AV7M7DDwj8/7f4wJEX7TWPt9ae6e11rfWjlprX4MLEm0A3mmM2bM0hy+yrqyW80YnrmjwXvaY/iE7pW72fdyo4TDwM0txYALGmCFjzF8C38UFei7H/b+zEzebzJ8BN6fTIDezqBlol66hswCRiIgsr0Ffb2QHHLrap7X2g8Af4rJ/XgYcxvU8vQXXDPu5mf3nAYwx+3D3KRuA11pr/9haezK9T7kZVzXxOdx9jHqnrlIKEsl6NJk+7m+xTq0ed3wJj2M28/yWRiuk01LWIuyXAxhjzgMen773xib7fiuuXnk38NN9H6mIrJbzRifenM5mktXJ+SYGatPtXr4UByaAK+d7Fa5H1HHgt3Hn9GcAn0/XuRL4vDFmc/3GaRZQrQ/Ee3EBo1Z/TjU4hodnnj+zzfa/2tvXFBGRHgz6emMy87zhPtPfld2N9mmt/VPcb8HbgC/jAjyvxQ02fBnXxwjgZPr4ZGAXLnj01/Wfld7bvD59+QRjzAUdfAdZZio3k/Xobtw0jYdarFNbdm+Ldfo1iqsN3oIrN2smTB9rjasvzSy7p9EGaYrovbhpNC/r7zBFhNVz3ujEDwO/w8JeZvfjRv820d35RgbIGPNY4BXpyzuA66212UainzfGvA83K8zVwA3AO+t2cw3z/w1vtNY2DPq1UQsSlYAvpAFCERFZeQO93rDWnkqbUu9Ot2s0w9nFuMyfhvu01t6G6124gDHmh3El7CHz9yS1+5T7rLXNSt3uyjy/jMaDGbKClEkk69F308fHNlpojLmI+VnGvrVUB5GeOL+fvnx0i1WvTh9rJ/V8Ztn5LbarNbHOt1hHRDqzKs4bXXiTMWYuG8haGwA/SF92c76RwXoDLoMoBJ5bFyCq+X3mezv8XIPl2SygXgJE2X3crgCRiMiqshTXG99rtU/gcenjUWvtqfRzhowxv2KMea0xpllW07PSx29kZmG
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xcV33w/8/21ao3S7Ild/zFNqYYDDHVAUIKIYEEQieEhx4glOcHPKFD6PAAAYJDAknAIfQAIUDo/TFgwBQbHzfc5CJLlna1fdrvj3tnd3Y1szu7Gmm1O5/367WvO/fec889I1nXO9/5nu/pqFQqSJIkSZIkSfV0LvUAJEmSJEmSdOwyeCRJkiRJkqSGDB5JkiRJkiSpIYNHkiRJkiRJasjgkSRJkiRJkhoyeCRJkiRJkqSGDB5JkiRJkiSpIYNHkiRJkiRJasjgkSRJkiRJkhoyeCRJkiRJkqSGDB5JkiRJkiSpIYNHkiRJkiRJasjgkSRJkiRJkhoyeCRJkiRJkqSGupd6AJIk6eiLiG8DD8p3X5lSemOT170P+Ot895SU0nWtH53qiYjTgRcCvwecCIwDvwU+C3wwpbSnwXWVRdzu+pTSyXX66gOeBfwFcBawBrgJ+Bbw9ymlXyziXpIk6Rhn5pEkSXpVRJy51INQYxHxVOBXZIG7M4B+YANwD+ANwGUR8UctvOVknTGcAfwSeA9wP2Aj0AOcAjwN+FlEvKKFY5AkSccIg0eSJKkP+FBE+HvBMSgi/hD4MFnAaAz4O+BhwO8DbwYmgC3ApyPi3Dpd3KOJn/OAq/P2JeB5s8awjSy76Iz80C+AvwJ+B/gz4Ctkv1f+XUS87XDfsyRJOrY4bU2SJAGcD7wAePdSD0TT8oDe+4AOsmygB6SUflrT5KsR8RWywM4q4C1kgaUpKaVLm7jPm4HT891Xp5S+OqvJO4Hj89f/CTw2pVSoOf+fedDo/wP+d0R8OqX042beoyRJOvb5DaMkSe2tDBTz12+MiFOXcjA6xIOB6t/J+2YFjgBIKX0X+O989/ciYuNCbhAR5wMvzXe/RxaAqj2/FXhcvrsbeMqswFHVy4HLyAJdb13IGCRJ0rHN4JEkSe2tALw9fz0A/NMSjkX1fRG4Afj8HG1+U/N6V7MdR0Q38EGy3wkngGeklMqzmj0I6Mpf/3NKabheX/l1H6leExHbmx2HJEk6tjltTZIkvQ54FHBn4MER8YyU0mEFkfIC3M8DHgLsJMtGuZFsetV7U0qXN7ju22TBiomUUv8c/f8aOJs6q4LVrC72IrKMnPcB9ycLlF0NvDyl9PWa9uuApwN/CtwFWAvsA34OfAr4aEqpyCwRcTLZameQ/fl9AXgq8JR8bGvJMnX+B3hnSumaRu+nkXycX5+3IZxU8/qWBdziOWTvGeAdKaU0T98/mqe/6t9rB3Af5g54SZKkZcLMI0mS2lxKaYIseFLNOHl7RJyw2P4i4lVkK4M9FwhgNVlWUwDPBn4VEa+NiI7DGvj8dgE/IKsBNACsB85lujA0EfG7wBVkNX0eCGwiW0FsO1AtVP3ziDhtnnsNkAV5PkQW/NpCVoj8VLIATatXQ5sSEecBj8x3v5VSur3J69YAr8p3b2HWdLUavTWvD87Tbe10tjMatpIkScuKwSNJkkRK6QfA+/Pd9cCFi+knIl4LvJ5smtMvyYJF9yXL/Pkb4Bqy3z9ek/8cSS8kC+K8DXgA8BjgTSml6/Kxnk+WmbQDqAAXAX9CljHzOKBaNPouwPciYscc93on8LvAxcCT8z4eCXwtP98H/GsesDksEdEREWsj4tyIeBfw7bz//cxaJW0ezwW25q/f1mg6GrC35vXOefqsnTLntDVJklYIp61JkqSq/wM8AjgZ+OOIeEJK6WPNXpwvE1/NZPko8LRZ071+EBEfIqvhcwHw6oj4ZKMpbC3QSRYsekXNsU/nY+0iyypaRZZx9diU0qdr2v0Y+EREvJpsWt8O4B/Jgkv1bCd7z0+trRkUEV8ge79/RBaoeTjwicN8X0/M71XrB8DTU0pXNNNBXuuoGmi6g7lrXdVOVXsU8PE52j6i5vXqZsYiSZKOfWYeSZIkAFJKI8Azaw69J19pq1kvIfvdYh/w7Hp1gvJ7PI0s06cDeP7iR9yUDzQ4/giyGk8AH5gVOJqSUno9WWYPwCMi4qwG/Y0DL5xdbDqlVGFmYOZuzQx6HifVOXYO8PwFrLT250xnCb0v/3upK6X0S+AX+e5jIuIR9dpFxB8zM3jU0+RYJEnSMc7gkSRJmpJS+hrwL/nuFuC9zVyX1y/6w3z3Byml0Tnu8VumVwd7yCKH2ozdKaWbGpz7/ZrX/zhPP/9Q8/oPGrT5aUrpjgbnagtlr53nXs34DvB7ZFPjnkw2VW4d2TS070bEcU308YJ8O0Zzf8cvJsvQ6gA+ExFviIhTI6InIk6KiFcCnwH2AKX8mslm35AkSTq2OW1NkiTN9mKyIMkO4LER8R8ppflWzToZqGa9/EnNimfzOWVxQ2zKjXOcq64wNgz8ep5+Lq55fU6DNtfNcX1tLaHD/t0rpfT9mt0fR8THyLKbnkb2vt5BtuJbXRFxIlkdKoAvppT2Nmpbc89vRsQzyWph9QCvzH9q3U62Yt0P8/2G2UySJGl5MfNIkiTNkFI6APx1zaEPRMSGeS7bssjbdUdEK7Jx6hma49zmfLs3n1o2l9tqXm9q0KZRsWnIpuhVtXyFuXyq3HOB3fmhx0bEwByX/GnN66brL6WUPkQWdPoKM1dVGySbHngOkJj+/fI2JEnSimDmkSRJOkRK6T8j4lNkK5TtIFtN7H/NcUnt7xQfpsnpbrmGU9zm0MwXYHMFhRYSxOmqeV1u2GoJpZQmIuK/yWpW9ZLVc/pZg+aPzLfDwJcWeJ+fAH8YEauBE8hqPe1OKZUAIuJ3apr/diF9S5KkY5fBI604+betLyVbZvkU4CDwU+DdKaUvL7LPE4FXk03jOI4sNf8bwJtTSr+Z47o+stVsHgsE2S/015CtVPPOlNJYnWsuAL41z5A+n1J65DxtJOlwPQ94MFmWztMiYq5Vtmrr/ZRSSpcu8p7VgM98wZ31i+y/qjreLRHRMU/20bY61x0VeQHs04DtKaUvztN8X83r3gb9rQMemO9+sd7/h5qRF9i+ss6p2uDRYv8bkCRJxxinrWlFyb8J/SbwGuBU4DKymgsPA74UEa9ZRJ9B9u3t/wLWkK04009WpPRnEfH7Da7bRrbU8zuAc8lqb9wKnA28Afh+RNT78FNdiecWsqWX6/0cqWWtJWlKSmkP8KKaQx+k8fLr1zKdQfQ7DdpMiYiXRcSzIuKhs05VV2jrjYiu2dfl164iW/b+cPwy364hey7Ppfb9XHGY912ojwI/Ab7QxMp3p9W8blQo/Hymvzz8bjMDiIi+iHh1RLw/Ih4/T/NH5dvrUkpXN9O/JEk69hk80krzfrLVZy4FTkspnZtSOomscGgReG2dDyoNRUQ38EWyb90/CuxIKZ1HNoXjfWRBpI9HxOZZ13UAnwTuShboOSuldJeU0inAg8hWozkXeFOd21aDR+9JKd2/wc/fNvseJOlwpJQ+ClSzNk8GntigXYHprMlzIuL+jfqMiAcDbyErvjz7eXag5vXJDbp4KIe/DPxXa14/a562z655/bXDvO9CfS/fdpAVxK4rIrYDD893r5hjlbl717y+pJkBpJQmgOeT1VV6QaN2+ZS1albTR5vpW5IkLQ8Gj7RiRMRpwJPI6lE8MaU0tcpO/uHnLfnuaxfQ7ZOA04EbgKdX0/tTSpNkv0B/D9jAzG/mAR5N9gv0EPCQlNJUan9K6bvAy/Pdv4yI2R+AqsGjXy1gnJJ0JD2LbAowzB20+b81r/81InbNbpAvI//BmkN/P6vJL2teP7/O9duAt8852uZ8Aahmxjw3Ih5Vr1FEvIos6A/wjcOYjrdY/8b0qmV/GxGHrPaWFxz/JNNZYW+Z3abGXfNtgZl/1vP5TL79nYg4ZNp0ROwE/j3fvYND/14lSdIyZs0jrSRPJitq+oOUUr1pXRe
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkd13v/3f13rPvmckyZOUb1gAKCATZ3EG9/rwKbgiIAtcN3C73pyyiKIpecUevIAIuoIDwQ7hCWCWQiJCQkEy+SUgyk5np6em99lNn+/1xTq1dy6nq6uruqtfz8ZhHVXWdOufbPd2n+3zqs6TCMBQAAAAAAADQzNhWLwAAAAAAAADbF8EjAAAAAAAAtETwCAAAAAAAAC0RPAIAAAAAAEBLBI8AAAAAAADQEsEjAAAAAAAAtETwCAAAAAAAAC0RPAIAAAAAAEBLBI8AAAAAAADQEsEjAAAAAAAAtETwCAAAAAAAAC0RPAIAAAAAAEBLBI8AAAAAAADQEsEjAAAAAAAAtDSx1QsAAACDZ4z5rKRnxQ9/w1r75oSv+zNJPxs/vMpa+1D/V4cyY8y7JP1kDy99jrX2swn2/0xJn5N0r7X2+g7bTkjKSJpJcPzPWWufnWA7AACwA5B5BAAAXmeMedRWLwJ9Veq0gTHmkKR3SEol3OejlCxwBAAAhgyZRwAAYFrSO4wxN1prg61eDOq8XtLbEmz3Ukm/EN9/j7X2i+02Nsbsk/Tvkq7rYi1PqLn/fZIebrNttov9AgCAbY7gEQAAkKSnKQo+JAlUYECstWcknWm3jTHmBkmviB/eKelnOmxvJH1Q0qO7XE45eJST9G8EGgEAGB2UrQEAMNoCSV58/83GmKu3cjHojjFmUtLfKcoeK0n6EWttscW2E8aYn5X0ZVUDR90EgMrBozsJHAEAMFoIHgEAMNpcSW+N7++S9H+2cC3o3i9JuiG+/zvW2ruabWSMOSjpDkl/JmmvJEfSy9W+9KxROXh0W29LBQAAOxVlawAA4Dcl/YCk6yU91xjz09baDQWR4gbcPyfpeZIuV9SU+WFJn5H0p9bau1u87rOKpsA51tqWzZmNMV+X9BhJp621VzY8F8Z3XyPp3xQFTG5UFCi7X9JrrbU31Wy/T1Eg5fslPVZRcGVJUZDknxX1EPLUwBhzpaQH44c/IOkjkl4i6cXx2vZKOqeot9AfWmu/0erz6YUx5oSk18UPH5D0ljab71fU8FqSviTp5dbau40xr2vzmtpjnZR0KH5I8AgAgBFD5hEAACPOWlvOQimXIr3VGHNZr/uLAxJ3Svofkoyk3YqymoykV0q60xjzRmNM0ilfvbpC0s2SviM+/n5JT1IUQCqv9TmS7pH0h5K+VVGAZFLScUnfLemdkm4zxlzT4Vi7JN2kaHrZsyQdUVRKdrWkV0m6yxjzPf36xGKvV/S1laRfjf8f27lD0oustU9vFbxro7ZZ9oPGmNcaY241xmSMMXljzN3GmLcaY453uV8AALADEDwCAACy1t4s6c/jh/slvb2X/Rhj3ijpTZLGFQUrXinp6Yoyf35R0jcU/f3xhvjfZnq1oiDO70t6pqQfUlTa9VC81qcpykw6ISmU9F5FU8SeKulFkj4R7+exkv4jzvRp5Q8lPUfSLZJ+It7Hf5P0yfj5aUnvMsbs6ccnFgf3fip+eLu19oMdXnLGWnuDtfZ9PR6yNnj0AUm/K+kpkvZImlWU1fQrku41xjy/x2MAAIBtirI1AABQ9r8kfa+kKyW9wBjzo9baf0j6YmPMk1Qto3qPpJc1lHvdbIx5h6SPSnq2pNcbY97fQxZMUmOKgkW/XvOxf4nXOq4oq2hWUcbVC621/1Kz3X9Kep8x5vWKyvpOSPorRcGlZo4r+pxfUttM2hjzEUWf7/dIOirp+ZJ6DeDU+jlFGVJSFBxrqw8Nrp9Yc3+Pos/1A5IuSLpMUbDthxSV6v2rMeY51tovbPCYAABgmyDzCAAASJKstTnVj3n/Y2PM0S528cuK/rZYkvTKZn2C4mO8TFGmT0rSz/e+4kT+ssXHv1dRjydJ+suGwFGFtfZNkj5bfo0xptV4+6KkVzcGaay1oeqbkN+gDTLGzKr6//SApPdvdJ8JlDOPSpK+x1r7Ymvth621t1prP2it/WFJL423mVCUZcWblAAADAmCRwAAoMJa+0lJfxs/PCLpT5O8Lu5f9N3xw5uttfk2x3hQ0qn44fN6XGoS56y1Z1s895019/+qw37+oub+d7XY5ivW2uUWz9U2yt7b4VhJ/Liqzav/0Frr92GfnXyLpGdI+lZr7b8328Ba+y5Jfx8/vEbSCwawLgAAMAC8IwQAABr9kqIgyQlJLzTG/KO19sMdXnOlpIPx/e+rmXjWyVW9LTGRdmPoHxvfZiV9vcN+bqm5/7gW2zzU5vXZmvv9+NvrR+LbkqTEZYUbYa2dlzSfYNO/lvRj8f1vk/Svm7YoAAAwMGQeAQCAOtbaVUk/W/OhvzTGHOjwsiM9Hm7CGNOPbJxm0m2eOxzfLsalZe3UBk0Otdgm2+LjUlSiV7ahCXPGmIOKmn9L0ifi/6vt5Gs1909u2SoAAEBfkXkEAADWsdZ+yBjzz4qaIJ9QNE3sp9q8pPZvincqYblbrGWJWxtJ3gBrFxTqJogzXnN/o42nN+oFqn6tB9HrqFu1/5dTW7YKAADQVwSPMHSMMbsk/ZqiyS9XScpI+oqkt1lrP97jPk9Ker2iMo5jkhYkfUrS71prT7V7bcN+vklR+cOEtbblhYsx5rGSfkPR2OcDkuYkfUzSm62153r5HAD0ZjPOKU2O8Y/x/q+z1t7fZrvnKRo//zRFvXPOKxon/7+ttbbN66YVTed6oSSj6KI+SRDk5yQ9V1GWzsuMMf/UZtvafj++tfb2BPtvphzw6RTc2d/j/svK6z1ijEl1yD66pMnrtkq5j1BJUqdSwr4wxpyQ9E2KpsXd0uH33rGa+xc3dWEAAGBgKFvDUDHG7Jb0aUlvkHS1pLsk5SR9h6SPGWPe0MM+jaSvKnrHfY+ilPwZST8h6avGmO9s8/La/UxLerc6BG2NMc+U9GVFF3ljku5UdOH2Kkl3GmOe0OblAPpoM84pTY7xSkWBo07bvV7STaoGD+5S1GPoZyTdboz5wRavu0TR2Pk/kPQkRX2ALkjaFW8yZYxpGoix1l6U9JqaD/21pN0tlviAqlkn35Lg8/mfxphXGGO+reGp8oS2KWPMeOPr4tfOKgpkbMQd8e0eSY/psG3t53PPBo+7UeWStdutte3K8vrpWyT9f4oyyl7SYdsba+7/12YtCAAADBbBIwybP5f0VEm3S7rGWvska+0jJL1Y0QXJG5tcqLQUjxn+qKLgzXsknbDWPllRCcefKQoi/ZMx5nDrvVT8tqRWI57Lxzuk6J3kGUm/Fx/vmyVdKukDii4UP2CMoRQAGIy+nlMaGWNerfpJXq22e56k34wf/qqkS6y1T1KUEfM2ReeM9xpjLm94XUpRadPjJd0t6dHW2sdaa6+KPycpyvD5nVbHtta+R1I5w+pKVZshN27nSvpM/PBxxpgbm20Xr+u5kt4i6e2S/t+Gp2t7+FzZYhffJmmy1f4T+kTN/Vd02PaVNfc/ucHj9swYc4Wi3z/SYAMzN0sqT3R7UavfQcaYMUWZcVL08/GBAawNAAAMAMEjDA1jzDWKxhcHkn7MWluZshNf/LwlfvjGLnb745KulXRG0suttYV4fyVJvyDpPxSVlb2m5R6itT1D0fSiTn09fkFRgOgWa+1rrbVefLyMpB9V9M7+1YouXAFsok06p5T3fcIY8y+S/kjJeu/8anz7j9baPyiPZrfWOorOLacUBZB+suF1/13StypqHP08a+29Nc+t1dz/SWNMu2DMKxSV60ntgzb/u+b+u+JgRx1jzDFFGUxlf9KwyR0193++yesvkfTWNmtI6iOSyiWC/8MY8wPNNjLGvE7Ss+KHn9pAOV4/PL7m/sCCR3EG2r/ED09K+t0Wm75F1Sytv6HMGgCA4UHwCMPkJxQ1Nf2StfbuJs+/Pb59Rtz
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkd13v/1d19b7MviaTZJJM8k0IBGQRcgGJIHJBUXEBryIXuSpw3XC54r2CQX9XvYpeREXivYpXUXBBxA0EAoLsCkSBLF+yTZaZTGamp3t6qeraf3+c092ne6p6reqZ7nk9H495VJ0633PqWyMpp9/9+X6+uUajgSRJkiRJktRM1/megCRJkiRJki5chkeSJEmSJElqyfBIkiRJkiRJLRkeSZIkSZIkqSXDI0mSJEmSJLVkeCRJkiRJkqSWDI8kSZIkSZLUkuGRJEmSJEmSWjI8kiRJkiRJUkuGR5IkSZIkSWrJ8EiSJEmSJEktGR5JkiRJkiSpJcMjSZIkSZIktWR4JEmSJEmSpJa6z/cEJEnSxgohfAx4Tnr4hhjjL63wut8Bfjg9vDLGeLT9s1MrIYSnAa8Gvh44CFSBCPwV8DsxxqlV3u8I8CWgK8bYv4LxeeDlwPcBTwJGgBPAvwDviDF+YDXvL0mSNg8rjyRJuri9MYRw/fmehFoLIeRCCL8OfA74L8BVwABJePNU4FeA20MIV6/inv3AH6X3Wcn4XcA/A/8PeB6wG+gFLge+E3h/COE9IYTBlc5BkiRtHoZHkiRd3PqAPwgh+G+CC9dvAD8F5ICHgR8FngW8GPj7dMwR4O9DCH3L3SyE0AP8JfAfVvLm6f82/jYz/jMkFUjPIqlC+nz6+ncA71jJPSVJ0ubisjVJknQT8GPAb57viWihEMJNwOvSw68Az40xnsoM+fsQwjuA7weuA14FvH2J+x0kCY6euYppvCIz/i+Bl8UYG+nxp0II7wLeD7wAeFkI4bdijJ9exf0lSdIFzt8ySpJ08aqT9M0B+KUQwlXnczJq6k0kFUdV4DsWBUezfhqopM+/s9WNQgjfDXyR+SCotsI5/ED6WAFemwmOAIgx1oH/kXnppSu8ryRJ2iQMjyRJunhVgDenzweB/3se56JFQgj7SfoLAfxhjPGrzcbFGM+Q9D36XZIKoGb3+gzwbuAASWh4C/DJFU7ly8C/Ah+KMY62GHNX5vnlK7yvJEnaJFy2JknSxe0XgJeQLHl6bgjhB2OM6wqR0gbcP0ISfBxivlfPPwG/HWO8s8V1HyPZBa601O5fIYSvADcAD8YYDy86N1sV8xPAPwC/Q9KbpwLcC/xsjPG2zPhtJJU13wo8nqQJ9ShwO8kSrXfGGKssEkI4DDyQHr6EpCfQK0mWeN2Q3ucY8EHgN2KM97X6PEt4PpBPn//5UgNjjLcsc69npI93AT8YY/xUCOG5K5lEjPG1Kxh2Reb5oyu5ryRJ2jysPJIk6SIWYyyRhCf19KU3hxAuXev9QghvJKlU+a9AAIZIqpoC8BrgyyGEN4UQcuua+PIuAz4FfGP6/tuBJ5MESLNz/XrgbpKG1F8H7AJ6SKpzXkjS/Hklu5gNArcBf0ASfu0haUR+FfBa4I4QwovW8BmekHk+25SaEEJ3COFwCOHIShpkp+4n+fu/Mcb4qTXMpaUQQh74/zIvLRl0SZKkzcfwSJKki1waJrwtPdwO3LqW+4QQ3gT8Ikm1zJdIwor/QFL58+PAfST/9rgl/dNJryMJcX4NeDbwXcAvxxiPpnO9iaQy6SDQAP4E+Bbg6cB3Ax9K7/N44BNpo+lWfgP4euCzJLuPPR34NuDD6fk+4P+FEIZX+Rkelz6OxxjPpoHRHwPjJFVP9wBjIYQ/W0HAdU2M8feaVVGtRQghH0K4LO2j9Dnmey39Xozxn9vxHpIk6cLhsjVJkgTw30m2fj8MfHMI4XtijO9a6cUhhCcDb0wP3wm8alFQ8akQwh+QbC1/M/DzIYS/aLWErQ26SMKin8u89p50rnmSqqIBkoqrl8UY35MZ9y/An4cQfp5kWd9B4PdIwqVmDpB85lemzaNJ3+dvST7vi4C9wDexuqqcPenjeAjh+cB7gcUB1ADwMuBFIYRvzy7Jy8rOq00ikA2sZoA3AG9p8/tIkqQLgJVHkiSJGOM08EOZl94aQti7ilv8FMm/K0aB1zSrcEnf41UklT454EfXPuMVabVl/YtJejwBvH1RcDQnxviLwMdmrwkhPK7ZOJLg5HWLA5p0V7Js/6gnrmTSGbNB0Q7gr4B+4H+ShDZ9wLUkVU8Nkh5LfxVCOLLK91i1dMnhZYte7ifZZe2bO/3+kiRp4xkeSZIkAGKMHwb+MD3cA/z2Sq5Lw4QXpoefijEWlniPB5jfmet5rca1wbEY4yMtzr0g8/z3lrnP72ae/8cWY76Q7njWTLZR9sgy77XYYPq4gyRIemmM8Y0xxvtjjOUY4z0xxp8maU4OsA345VW+x1r0kYSAzwC+gWRpYAH4WuB9IYQf3oA5SJKkDeSyNUmSlPWTJCHJQeBlIYR3xxj/ZplrDgM70+ffktnxbDlXrm2KK/LwEucenz5OAV9Z5j6fzTx/QosxR5e4firzfLX/7ipmnv91jPGvmw2KMf5uCOGHSCqbvi2EMJRWeXVEjHEG+NPMSx8JIbybpEprO/CbIYTbYoyxU3OQJEkby8ojSZI0J8Y4DmQrR94eQtixzGV7ljnfSncIYbXVOCs1scS53enj6XRp2VIeyzzf1WLMVIvXIVlSNmu1O8xNZp43DY4y/i597CHZVW5DxRj/DZjtL9VN0jhckiRtEVYeSZKkBWKMfx1C+EuSHcoOkvTV+S9LXJL998Q7WOFyt1TLJW5LWMkvv5YKhVYT4uQzz9vddHo5j2aeH1tmbLbSaq1h3nq9F/id9PmN52kOkiSpAwyPtOWEEAaBnyHZavlKkt/cfgH4zRjjB9r0Hu9O739NjPHeJcZ9Lcn21M8m2Y2nCNwJvBu4NcZYbnLNYZItmJfy7zHGJ61t9pK0Ij8CPJekSudVIYQ/W2Jstt9PLa1CWYvZwGe5cGf7Gu8/a3a+e0IIuWWqj/Y3uW6jfBl4Sfp851IDSfoQzRpr1wTSnekOkzTpfiDGeM8Sw0czz3vbNQdJknT+uWxNW0oIYQj4KHALcBVwBzANfCPw/hDCLW14j9eQBEfLjftx4DPA95D8FvgukqUNzwDeCvxzCGFbk0tnd+M5A3yqxZ/b1/cpJGlpMcaTwE9kXvo/wFCL4fczX0H0jOXuHUJ4fQjh1SGEb1h0anaHtt40tGh27QDJtvfr8aX0cRi4YZmx2c9z9zrfd7Wy/ZaW+3vNfo6jbZzD1wD3Ah8k+WXIUq7OPG/VrFySJG1Chkfaat4GPB34N+DqGOOTY4xXAK8g+aHkTU1+WFmxEMLrWLjzTqtxzwTeQvLf2K8BO2OMT4wxXkrym/zj6Tyb7fIzGx79RYzxWS3+fP9aP4MkrVSM8Z3AbMXmYeB7W4yrAP+UHj4hhPCsVvcMITwX+F/ArcD/WHR6PPP8cItbfANJX5/1+FDm+auXGfuazPMPr/N9V+s24HT6/OWt+kOlvzj5jvTw32OMR9s4hy8DZ9PnL0vfq5Xs0saN/ruSJEkdZHikLSOEcDXwcpKeFN8bY5zr/5D+APS/0sM3reHeB0MI7yEJhFbSK+O/peP+Lsb4+hhjKTOXfwL+c3r43SGEyxZdOxsefXm185SkDng1842blwpt/nfm+f9r8t1GCGEfSQXTrN9aNORLmec/2uT6/cCbl5ztyvwtSTUNwH8NIbyk2aAQwhuB56SHH1nHcrw1SUO5t6SHB4HfDyEs+L9BCKGLJIib7XP09jbPoQT8QXq4B3hr+p4LhBC+A3hdengPSf8jSZK0RdjzSFvJ95E0Nv1UjPHOJudvBd4APDOEcHmM8aGV3DT9oeKdJMs1xtJ7vG2Zy74+fXx3i/MfIflhbAR4Kgsbnc6GR8ttHy1JHRdjfDiE8HqWqbqMMX40hPB24LUky5f+PYTwm8DH0yFPBX4SuCQ9/us
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xseV3n/1fnfPvmNPdOuHeYL5MYHIJEGQQEQVB3l8VF2UXWHDH7U0HEZU3rLiguLLuig66I4gg4EiVIWOLkuTPznRu7b+dQ1ZXjOef3x/dUd1Xfquqq6lTd9/18PK5V1XXOqVM4/e1zPt/P5/PtCIIAERERERERERGRajq3+wRERERERERERKR9KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1KXgkIiIiIiIiIiI1dW/3CYiIiMjWM8Z8AXhR+PK3rLXvaHC/dwM/Hb68wVp7aePPTqoxxtwIvBl4GXAtkAUuAvcA77PWzjVwjOuAXwZeHh4jDZwD/hZ4j7U208J5DQOPAtcBd1tr39jsMURERKS9KfNIRERE3mKMuXm7T0JqM8a8EXgEF7i7CegH9gLfBvwucMYY88o1jvFKXJDnZ4CnAH3APuBZwB8D3zLGXN/C6f0hLnAkIiIiu5SCRyIiItIH/LkxRtcFbcgY893A+3EBowzwX4DvwmUP/R6QAw4CHzbG3FnjGLcDHwaGgQTwG8DzgVcAHww3uwX4J2PMQBPndhfwE01/KREREdlRVLYmIiIiAM8Ffg5453afiKwIA3rvBjqAPPBCa+19ZZt82hjzSeDzwADw+7jA0mrvDt/PAi9edYxPGWMeBP4AuA34WVw20VrnNgj8eXhuIiIisotphlFEROTq5gPF8Pk7jDGntvNk5ArfCZT+f/LuVUEfAKy1XwT+OXz5MmPMvvL3jTHPAL4jfPm/axzjD4HSz3+xwSy03wvPbaGBbUVERGQHU/BIRETk6lYA/ih8Pgj87208F6nuXmAc+GidbR4ve35y1Xv/puz5B+oc4/3h4xFWgk1VGWNegOudBC5jTURERHYxla2JiIjI7wDfDzwV+E5jzI9aa9cVRAobcP8M8BLgBK606TKuvOpPrbWP1djvC7hV4HLW2v46x38UuBUYs9Zev+q9IHz6C7iMnHcDL8AFys4Bv26t/Zey7fcAPwJ8L65sawRYBB4A/h74K2ttkVXC5tIXw5ffD3wMeCPwH8NzGwEmgU8Bf2ytPV/r+9QSnue/rLlhZcPq6VXvPT98TAD31znGF8uefyfwhWobhT2R3o+bhPxL4DMNnJ+IiIjsYMo8EhERucpZa3O44Ikf/uiPjDHXtHo8Y8xbcCuD/RRggCFcVpPBNVd+xBjzNmPMZvfKOQl8BdcDaBAYBe7EBZBK5/pi4AncamPfAewHeoCjQKlR9QPGmNNrfNYgLsjz57jg10FcI/JTwE/SwGporTLGPAv4vvDl562186s2Ka2kd95a61NbeXCr3up7v4tbrW0G+MVmzlVERER2JgWPREREBGvtV4A/C1+OAu9t5TjGmLcBbwe6gIdxwaLn4TJ/fh4XoOgEfjv8t5nejAvi/CHwQuC1wH+11l4Kz/W5uMykY0AA/DXwGuDbgR8APh0e5zbgS8aYY3U+64+BFwNfA94QHuP7WMnK6QP+0hgzvN4vZYzpMMaMGGPuNMb8D1yGUB8QZaWUrLRtD3AofDle77jW2gwu4wqgavDQGPMcXEYXwE9ba6MtfQkRERHZUVS2JiIiIiX/H/Bq4Hrge4wxr7fW/k2jO4fLxL8lfPlXwJtWlXt9xRjz57gePncBbzXG/F2tErYN0IkLFv1m2c8+HJ5rFy6raACXcfU6a+2Hy7b7BvAhY8xbcWV9x4D/hQsuVXMU953fWJ7dY4z5GO77vhIXxHkV8KF1fq8fDD+r3FeAH7HWPrHq5/tYWQ0t0cCxU8ABYO/qN4wxfayUq33YWntPMyctIiIiO5cyj0RERAQAa20K+LGyH73LGHOo1vZV/BLu2mIR+IlqfYLCz3gTLtOnA7cs/GZ6T42fvxrX4wngPasCR8ustW9npffPq40xt9Q4XhZ48+qyMGttQGUT8jsaOek1XFflZ7cDP7t6pTVcRlL5Oa4lU2W/krfhytkirMpwEhERkd1NwSMRERFZZq39DPAX4cuDwJ82sl/Yv+i7w5dfsdam63zGRVZWB3tJi6faiElr7USN915e9vx/rXGc/1n2/BU1trnPWhup8V55L6GRNT6rEf8KvAxXGvcGXKncHlyPqS8aYw6XbeuVPQ9oXMW2xphnAr8SvvxFa+1ssyctIiIiO5fK1kRERGS1X8QFSY4BrzPGfNBaW2+ZeHClbqWsl9eUrXi2lhtaO8WGXK7z3m3hYxJ4dI3jfK3s+e01trlUZ/9k2fN1X3tZa79c9vIbxpi/wWU3vQn3vf4bbsW31Z9dc/W6MgPh43KWkjGmFxdQ7AI+Za29u8VTFxERkR1KmUciIiJSwVq7BPx02Y/eY4y5ogfOKgdb/LhuY8xGZONUE6/z3oHwcSEsLaunPMtmf41tkjV+DpVZPBu+wlxYKvdTwGT4o9cZYwbLzqv0+UMNHK60TXkW1W/hglJJKssaRURE5CqhzCMRERG5grX2H40xf49boewYbjWx/1xnl/JrivfTYLlbqGaJWx2NTIDVCwo1E8TpKnteb6n7bWOtzRlj/hkX3OnF9XO631rrG2MmgJPhv5qMMQOsBNWmwp/dDvx6+LO7gf3GmNUBtPLA4n5jzNPD5zPW2plWv5OIiIi0DwWPZFcJZ1p/FbfE8g24lWXuA95prf1Ei8d8Nm556RfiVtPJAI8BHwTea63Nb/B+1wJvxZWMHAbmgc8Cv2etfbzaPiKyOdppTKlynJO4cqs9wA2l5eerbNcJ/DDwn3DZI0PAGI2VMP0M8J24gMKbjDF/W2fb8kwVz1r7YAPHr6YU8FkruDPa4vFLSud70BjTsUb20ZEq+22JsAH2aeCotfbeNTZfLHveW/b8DC5wdGqN/U+XPS+tgPcMoCd8/tNUZqRV8+rwH7hV6t62xvZXlXYaU+qMDR/FrVIY3cj9RGRzbNK48hLgzcBzcb36poBPA//dWmvr7Pdq3LXDs3B/hy4Afw+8e40x5T/jxpXbcZNDF4B7ws+LtfIdZOOpbE12DWPMEPA54LdxF8hncEsOfxfwcWPMb7dwzJ8Hvgq8HleS8Tgubf85wLtwjUn3bOB+BrgfN4AOAw/hbvDeANxvjHn56n1EZHO005hS5TgduOyeutuG3+EzwP/B3VjO43rznGaNLBQAa+0c8AtlP3oftUufLrCSQfSctY5tjPk1Y8yPG2Neuuqt0gptvcaYrtX7hfsO4Ja9X4+Hw8dh4NY1ti3/Pk+s83Ob9VfAN4GPNbDyXXnwp7xReKln035jTL3v+h1lz7/U+ClKI9ppTFljbPhl3DXHiY3aT0Q2xyaNK28F/gX4nvBHZ3A9DX8MeNAY829r7PdnwMfCzw5w49EJ4O3Aw8aY26rs0wvci7u+eC5uguY88BTcZPoZY8xNzX4H2RwKHslu8me4lWceBE5ba++01l6HaxpaBN5W5SalJmPM84H/gfs9+UNgn7X2DmvtNbiZ+Knw8/7XBu3XjRs8D+BuFo5Za5+FKxd5Ny6I9LfGmAOIyFZoizGlhp8CGvns95Qf21prrLUGeDorS7L31NoZwFr7V0Bp5vJ64AdrbFcAPh++vN0Y84JaxzTGfCfw+8B7gd9Y9fZS2fPraxzipWuddwM+Xfb8x9fY9ifKnn9mnZ/brFIQpwPXELsqY8xR4FXhyydWrTL34bLnP1zns0rHnwe+DGCt/UtrbUe9f1QG8u4ue+9ta3+9q0o7jSn1xoazuN+9jdxPRDbHRo8
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkV1n4/0/PvmaSTBYSkkxIAgdDQEQQIlGCCKLIpiiKghgRcEEB/Sk/BFkUNxQBWaLILiogCIogGiAgS0AWWUJyQgJZSDKTWbqnl1rvvfX9497qrq6uqq6uqpnqnv68X6951XLvPfd0J32r6qnnec5Eo9FAkiRJkiRJGsSGcU9AkiRJkiRJa5fBJUmSJEmSJA3M4JIkSZIkSZIGZnBJkiRJkiRJAzO4JEmSJEmSpIEZXJIkSZIkSdLADC5JkiRJkiRpYAaXJEmSJEmSNDCDS5IkSZIkSRqYwSVJkiRJkiQNzOCSJEmSJEmSBmZwSZIkSZIkSQMzuCRJkiRJkqSBGVySJEmSJEnSwDaNewKSJOn4CiFcDTysePiiGOMr+jzudcBvFA/vEWO8efSzUzchhAcBzwIeDpwFJEAE3ge8LsY4u8zxDwCeDfwwcA6wETgAfBb4uxjj1X3M4fHAFcCDgVOBI8Dngb+PMf77QD+YJEla8yYajca45yBJko6jtuBSFfi+GON1fRxncGkMQggTwCuB5wMTXXa7EXh0jPGmLsf/OfC7PY4HeBvwrBhjrcMYu4B/BB7b4/gPAE+JMZZ77CNJkk5AlsVJkrS+bQXeHELwPcHq9VfA75AHhm4DngNcRh7o+VCxz0XAh0IIWzsc/4fA/1ccf0dx/4eAHyzG+nax39OBN7QfXPy/8X4WAksHgd8DHgo8EngjkAJPAK4KIWwe+CeVJElrkmVxkiTpUuC3gFePeyJaLIRwKfDc4uE3gB+JMR5s2eVDIYS3AL8M3Ju8ZO2NLcfvA15YPLwBuKzt+M+FEN4BfAx4IPArIYS3xBg/27LPFeRBpOYYD48x3tGy/aoQwkfIM5d+EPht4C8H/ZklSdLa47eUkiStXxl53x6AV4QQLhjnZNTRS8kzjhLgp9sCQ02/C9SL+09q2/YLwJbi/nM7HR9jnCbv5dT0tLZdfqu4bQA/1xZYao7x78DfFQ//sCijkyRJ64TBJUmS1q86eS8fgB3Am8Y4F7UJIZwJPKJ4+NYY4w2d9osxHgH+lLyk7cNtm3+ouC0D/93tXDHGL5M35wb43pY5nA7ct3j4qRjjV3pM+a3F7W7gJ3rsJ0mSTjCWxUmStL69DHgieUnVj4QQfjXGOFSQKYTwPcBvkgdGzmGhV9AngL+JMX6zy3FXkzcar8YYt/UY/xvAfYBbYoznt21rrlTyPOA/gNeR9yeqkze9fkGM8aqW/U8CngE8HriEPDByGPgK8F7gnTHGhDYhhPOB7xQPnwj8G3nPoqcVc9sN3A58FPirTo22+/BI8hXdAN7da8cY40u6bHo3cC2wudPP0abZ7Lv1d39ey/3PL3N863/XS4H3LLO/JEk6QRhckiRpHYsxVkMIzwA+RZ7R/MoQwodjjLcPMl4I4cXAS1gIisxvKv49M4TwR8DLYozHcsnac4HPAKe3PPcA8gBTc64PB94FnNV27N2AHy/+PT+E8IRlgkM7gKuAh7c9fwHwa8AVIYSfijG2ZxUt574t97/YMu9N5EG7TcBtMcZqtwFijG/r50QhhPsBpxQPb2nZtKXl/swyw9Rb7t+rn/NKkqQTg2VxkiStczHGzwCvLx7uAa4cZJwQwkuBl5MHlr4GPJu8wfNl5E2ebyJ/7/GS4t+x9FzgNOAvyEvDfgb4kxjjzcVcLyXPbDqLvJfQPwCPAx4M/BzwX8U4lwD/E0JoD0C1+ivywNI1wFOLMZ7AQhnaVuBtA/Qhuri4nYoxHg0hnF80354iz5r6FjAZQvjnEMKFKxy73f/fcv+jLfcPtdw/Z5kxzm25f7ch5yNJktYQM5ckSRLkwYXHAucDPxlCeEqM8R/7PTiE8ADgxcXDdwJXtJVhfSaE8GbgQ8Dl5E2f39OtRG4ENpAHk/6g5bl/Kea6EXgLsJ28qfmTY4z/0rLfF4B3hxD+kLxs8Czgb8mDT53cjfxnfnqMMWs+GUL4N/Kf9yfIM6gewzLlbW1OK26nQgiPBN4PtAeotgNPBn6iyI66ihUKIfwMeUAN4K7iZ2m6kbxMcC/wmBDC5hhjnc4e23J/50rnIUmS1i4zlyRJEjHGOeCZLU+9pmjm3K/fIX9fcRh4dqf+PsU5riDPFJoAnjP4jPvyxi7PP5a8xxTAG9sCS/NijC8Hrm4eE0K4uNN+QIV8Jbas9cmi7K+1f9X3sjLNQNLJwPvIeyH9MXAheTbUvcizphrkPZ7eF0K4aCUnCCH8IPC2lqeeH2OcbT4ofoZ3FQ/PAf6kyzj7gBe2PLV5JfOQJElrm5lLkiQJgBjjf4cQ3gr8MnnWzN+wkNHSVQhhgrw/EcBnYoylHuf4TgjhOvKSr0d0228Ebo8xfrfLth9ruf+3y4zzBvJMK4BHs7hpddOXihXbOmnt1bR7mXO121HcnkweQPrpGOO/tmz/FvC7IYRvk5c1nkQe/PnZfgYPITyUvDSweZ4rY4zv6rBrc8y7Fec7j7zc8BvkAbDHkK9Wdwqwv9iv1ufPKEmSTgAGlyRJUqvnkwdRzgKeHEL4pxjjB5c55nwWmkE/rmXFtuXcY7Ap9uW2HtsuKW5nyQMkvVzTcv++Xfa5ucfxsy33V/q+q9xy/1/bAkvzYoxvCCE8kzwz6gkhhJ1FllhXIYSfIF8NrxlYeh/5Cn+dxj8QQngceSDqdPJAU3sAq07evPwp5MGlnueXJEknFsviJEnSvBjjFPAbLU+9MYRw8jKHnbbM9m42hRBWms3Tr+ke2/YWt4f6WLHuQMv9U7vsM9vlecgzjpomljlXu9bV2ToGllr8e3G7mXxVvK5CCM8G/o2FwNK7gZ+LMabdjokx/i9wf/Iyv9bfbQJ8EHhIjPFNLAQZDyBJktYNM5ckSdIiMcZ/DSG8l3yFtbPI+/r8So9DWt9PvIW8nK5fXUvoeujny7FeQaOVBHk2ttzPuu51bNzZcv/2ZfZtzdTqGOwryhf/Avjdlqf/Dvi19n5RncQY7wCeGUL4DfL+SxuB22KM1WL8DcA9i92/s9x4kiTpxGFwSZKkEQshPI28ROi+5EGOCLyVvHn0igMUIYQdwO+R9z+6B3lGy5eAV8cYP7KCcf4UeAHwtT52/wjwBPJMmCtCCI9h8bL0rVr7DaUxxv/rd05tmgGh5YI/ewYcv6k539NCCBPLZC+d2eG44+XrwBOL+6f02pG8wXfTZPvGYoW8twO/0PL0S2OML1vppIrV4joFj+7HQjbUoP8PrEuj+htvG/M84A/Jy1zPAA4CHwP+NMZ4XZdjLgc+sczQH4wxPqGP8z8e+ABwS4zx/P5nLmmlVss1pDhuK3mZ9ZOBAGwh7z/4z8BfxRjLXY57bHHcg4pjvk1evv26GOOS1zWtPpbFSZI0QiGEvyH/EP8Q8mySW4DvB14HfCSEsKJVtEIIO4GPAy8BLgCuJe9n8yjgwyGEl/Q5zk+yOGOl236bQgj/QJ6B1DrXM4H7dDns2yxkID2kj3P8fgjhWSGEH23b1FxhbksRDOl07Hbyvj/DaAbXdtH9Z2pq/XmuH/K8K9Xa72m532vrz3Fz64YiY+mdLASWEuCKfgNLIYRnhBD+OoSw3P5PbLl/VT9ja3R/421jBuDL5BmHu4Cvkq82+FTgyyGEH+tyaHNFwzuBz3T516mpffv5T2P5ZvmSRmA1XUNCCGcCXwD+krxE+zbyhR7uA/wR8OkQwpIviEIIrycv134U+RdN15FnyL4c+FoI4ZL2Y7T6GFySJGlEQghPJ//W7SjwQzHG74kxXgI8kPzD2qPIvwVcidcDDybPBLkwxviAGOM+4GnkQYKXdgjStM/rZ4F/ob+M5T8kD0JMk68C1vqNZ8cMnyKTpZntcN8QwmU95vIjwJ8BV7J46XqAqZb753c
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkaVnn/W+uVZVZXdXVC003TS/VLQ+L7KC0MIIbo6A4DK+7ojIoODqK8grOKIIzivugIoKjMI4gCIIKOuACCAoICAKydD+9d9ML3bVXZWZkRJxl/jgnMk9ERkRGRkZmRmV9P9eVVyxniRNZXdGVv7zv+5nI8xxJkiRJkiSpm8mdvgBJkiRJkiSNL8MjSZIkSZIk9WR4JEmSJEmSpJ4MjyRJkiRJktST4ZEkSZIkSZJ6MjySJEmSJElST4ZHkiRJkiRJ6snwSJIkSZIkST0ZHkmSJEmSJKknwyNJkiRJkiT1ZHgkSZIkSZKkngyPJEmSJEmS1JPhkSRJkiRJknoyPJIkSZIkSVJP0zt9AZIkaXuFED4APLV8+HMxxl8a8LjfBX60fHh1jPH20V+dBhFCmAX+FXgEcF2M8aMDHHM18CLg6cAVwATwReC9wG/FGG8a4Bz7gBcAzwECcBA4AnwI+J0Y40eGekOSJGmsWXkkSdK57WUhhIft9EVow36ZIjgaSAjh24DPAT8OPBSYA/YBDwH+M/DZEMJz1znHo4DPA68CngJcDMwCDwK+A/hQCOEVG30jkiRp/BkeSZJ0btsDvD6E4L8JzhIhhP8K/NQG9v8K4E8oAqMUeDXwDOAbKEKoBsV/B/87hPANPc5xNfB+4GogB94MfDNwHfDTwHGKSqaXhxC+f6g3JkmSxpZta5Ik6TqKipTf2ukLUW9lq9pvAy/c4KG/CMyU978rxvhnlW3vDSH8LUUwNAn8JvCoLuf4PeDC8v6PxRh/r7LtoyGEv6Zoo9sHvDKE8KYYY7rB65QkSWPK3zJKknTuyoCkvP9LIYTDO3kx6q2sHvowq8HRQMFMCGEP8DXlw493BEcAxBg/CPxF+fCRIYQrO85xHfCN5cM/7giOWue4AXht+fAy4KsGuT5JknR2MDySJOnc1QR+vbw/B/zBDl6Leggh/ArwUeAJ5VPvZPAqsQtYrTS/sc9+n6vcv7Rj23eXtynwc33O8cfAHwG/AZwZ8PokSdJZwLY1SZLObb8APJtiiPLXhhB+KMa4qRCpHMD9Y8DXAZezuqrXPwCvjjF+ocdxH6BYBa4eY9zb5/yfoxgWfUeM8aqObXl59yeB/wv8LsVw5yZwM/AzMcb3VvY/ADwf+Fbgy4HzgGPAp4A/A94YY0zoEEK4CritfPhs4F3ADwDPLa/tPOBu4G+B34wx3tLr/QzgSRTfw+PAS2KMr9/AYOojFNVl0xR/xr1cW7l/T8e2bypv/znG+MVeJ4gxfgb4wQGvS5IknUWsPJIk6RwWY6xThCdZ+dSvhxAeNOz5QggvAz5LsYJXAOYpqpoCRcvVZ0MIrwghTGzqwtf3YIo2r6eXr38QeBxFgNS61q8BbqCY8/PVFFU6M8ADKQKTNwCfCiFcs85rzVEsd/96ivDrIooB1IeBHwE+H0J4xibeywngV4FrY4yv38iBZfD17vLhE0IIz+7cJ4TwWODbyocfjzHeWdk2T/E+AP6l47hDIYSHhhAesJFrkiRJZx8rjyRJOsfFGD8cQngN8F8oQpbXAd+y0fOU1TAvLx/+G8WQ5X+j+GXV4ymGcl9T2ecVm7nudbyIolrn14C/ogiEHhNjvL281usoKpP2Uawe9ifA24D7KFYUex5F8PTlwD+FEB4fY7y3x2v9Znn+jwKvoWgPuxT4UYoVzfYAfxRCOBxjXBjivTwnxpitv1tPPw18RXmNbwshvBr4O6BOUZX1UmCWouLqhzuOfSjF9xHgjjL0+08U/62sDNYOIdxI8X34w01eqyRJGkOGR5IkCeC/UgRGVwHfHEL47hjjmwc9OITwOOBl5cM3As/raPf6cAjh9cBfA08Dfj6E8LZeLWwjMAm8Msb4s5Xn3l5e6xRFVdE+ioqr74gxvr2y38eBt4YQfp6ire9S4PeBZ/V4rQdSvOcfqAYnIYR3UbzfZwAXA88E3rrRN7LZMCbGeGMI4UkUq659D0VL30927PYO4KdjjLd1PH9R5f4iRXveN3d5mYdQfI++KYTwHTHGxmauWZIkjRfb1iRJEjHGRdqrTn47hHDxBk7xYop/VxwDXthtTlD5Gs+jqPSZoKhe2Uqv7fH8t7A6/+e1HcHRihjjfwc+0DomhPDwHudbBl7UGfLEGHPah5A/epCL3iJfRTGLqVe74L8DnhNC6Py34f7K/ZdRBEefogjEzgMOUMyLuqHc5z8w+DBvSZJ0ljA8kiRJAMQY/x743+XDi4BXD3Jc2crUGqr84RjjUp/XuA24vnz4dUNe6iDujjHe1WPbv6/c//11zlNdlv4be+zzyRjj8R7bqoOyz1vntbZECOGVwJuBxwIfoWil219+fR3wQeABFCvvvb4jQJqr3L8C+GfgyTHG98QYF2KMZ2KM7wKuA24q93thCOERW/meJEnS9rJtTZIkVf0URUhyKfAdIYS3xBjfuc4xVwGHyvvPqqx4tp6rh7vEgfRcFYxijhHAAu1L1Hfz0cr9R/bY5/Y+x1dnHG37v7tCCM+iaEkE+BvgWTHGZmWX94cQPgi8CfhOihXjPkYx9wqg1nHKF8QYO58jxngyhPAS4C8oqpu+B/hvo3ofkiRpZ1l5JEmSVsQYT1IMem55bQjh/HUOu2id7b1MhxC2qhrndJ9tF5a3R8vWsn7uq9y/oMc+/YZgV8+/1SvMddP6s8wogp9m5w4xxpRiVbjW9+zHKpvPVO7fEmP8bJ/X+hugdf6vHO5yJUnSODI8kiRJbWKMfwH8WfnwUopVtPqpVtS8gaI9atCvni1ufQzy75d+odBGQpypyv2zcRWxJ5a3/xZjvLPXTmVo+A/lw0eEEFqzjqorzN3d74VijMvA0fLhsIGiJEkaQ7atadcJIcwBL6Eov7+a4remnwR+K8b4nhG9xlvK839ZjPHmPvt9BfATFINIH0hR/v8F4C3A63qtRhNCuAL4eYrWkQcAR4D3Ab8cY7y+2zGSNGI/BnwtRZXO80IIf9pn3+q8nzTG+OkhX7MV+KwX7hwc8vwtreu9KIQwsU710SVdjjubtEKgkwPse3/l/gGKiqobgITi34yHuh3UYU95e2LQC5QkSePPyiPtKiGEeeD9wMuBw8DnKZYWfjrw7hDCy0fwGi+kCI7W2+8nKAaLfjfFb2Cvp/iH+JOA3wb+MYRwoMtxAfhX4D9R/KP/M8Be4PuAfw0h/PvOYyRp1GKM99O+nPv/AuZ77H4rqxVET1rv3CGEl4YQXhBC+PqOTa0V2mZDCFOdx5XH7qNY9n4z/q283U+xAlk/1fdzQ8+9xteR8vbwAPs+qLzNKCuIyl9y/Gv5fOjXwhhCeCCrrX23b/hKJUnS2DI80m7zGoo5C58GrokxPi7GeCXwXIofSl7R5YeVgYUQXkT7yju99nsy8CqKv2O/BhyKMT46xvggit/k31Ne5+93HDcN/DXFb/rfCFwaY3wiRdvI71KESH8aQrgQSdpiMcY3Aq2KzasohiB326/JasvTI0MIT+l1zhDC1wK/QjGQuXOgcrU65qoep/h6YKbfdQ/g7yr3X7DOvi+s3P/7Tb7uTvin8vaKEMJTe+1UBj9fUz78eEdlbKvqbBZ4fp/Xem7l/l9u9EIlSdL4MjzSrhFCuAb4XorfmH5PjHFlpZ3yB6BfKR++YohzXxpCeDtFIDTIrIyfLvf7qxjjS2OM9cq1/APw/eXD7wwhPLhy3PcC1wJ3As9vrWhT/iP+xyl+CDif9moASdpKL2B1aHK/0OZ/Vu7/UcdnGwAhhAdQVDC1/E7HLv9Wuf9fuhx/CcVy8pv1LqDVcvyfQwjP7rZTCOFlQCtwed8m2vF20msq9/8ghPCgzh3Kdu8/AfaVT726Y5c/YrWl7RUhhK/qco7HUbRbQ/H
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd7hkeV3n8U/lcHPqPB2mZ+Y3MwxxCY6iQ1BUUJHFVVcBEQOgq6LuAxgQ8FFWRFfcFUHXDAYkyLoKKkMUEBBEgQm/6e7p7plON6fK6ewf51TVqboV763b9/a979fz9FPpnFO/ujA1c7/9/X5+AcdxBAAAAAAAALQS3OkFAAAAAAAAYPeieAQAAAAAAIC2KB4BAAAAAACgLYpHAAAAAAAAaIviEQAAAAAAANqieAQAAAAAAIC2KB4BAAAAAACgLYpHAAAAAAAAaIviEQAAAAAAANqieAQAAAAAAIC2KB4BAAAAAACgLYpHAAAAAAAAaIviEQAAAAAAANqieAQAAAAAAIC2wju9AAAAcH0ZYz4u6R7v4S9aa3+1x/N+R9KPew9PWWsvDH51aMcY8xRJL5f0TEmHJZUkWUnvk/Q71tpUD9f4LkkvkvRkSTOS1iV9SdIfS/pLa63T55q+X9K7JP2jtfZb+jkXAADcOOg8AgBgf3udMeaOnV4E2jPGBIwxvyHpc5J+SNLNkhKSRuQWgf6HpC8ZY053uMaYMeZeSe+R9HxJRyVFJU1J+kZJfy7p740x8T7WdUrSb2/qQwEAgBsKxSMAAPa3mKQ/NMbw3wS7129K+llJAUmPSvoJSU+X9O2S/s475hZJf2eMiTWfbIyJSPpHSc/2nvqspO+T9DWSXizpPu/5b5X09l4WZIw5KukjcotPAABgj2NsDQAA3C3pJyW9dacXgkbGmLslvcp7+FVJz7LWzvsO+TtjzB9J+kFJt0t6mTYWgH5W0tO8+38p6cXW2rL3+HPGmL+R9C+SHivppcaYt1hr7++ypvfI7V4CAAD7AH/LCADA/lWRm5sjSb9qjLl5JxeDlt4gt+OoJOmFTYWjqv8uqejd/y7/C94Y2s95D89J+gFf4UiSZK1NS/oF31MvbLUQY0zCGPNLkj4ht3BUbnUcAADYeygeAQCwfxUlvcW7n5T0f3ZwLWhijDmo+qjZH1trH2p1nLV2SW7u0e9K+mDTy8+TNOrd/yVrbVGt/ZOkP5ObYfTVFmu5RW449xslRSStyc1OAgAA+wBjawAA7G9vlPQCuSNPzzLG/Ii1dktFJC+A+7/JLXwcUz2r52OS/ne7kSjfLnB5a23b4GZjzFclPUbSRWvtyabXqruF/bSkv5f0O3LzgYqSzkp6rbX2Xt/xo5J+WG4h5C65IdSLcncge4+kd1prS2pijDkp6bz38AWS/lbSSyW9xFvbiKTLcrOGftNae67d5+ngmySFvPvv7nSgtfb1bV76Vu+2IOlvOpyfl/QDHd7imKSbvPt/L+kV1tpLxphOywIAAHsEnUcAAOxjXtHgh+WOsEnSW7ww5E0xxrxO0lck/ZgkI2lIbleTkfQKSV8xxrzBGBPY0sK7u0nSpyU9x3v/MUlPkltAqq71mZIelBtI/Q2SJuV21RySW3T5I3XZxcyTlHSvpD+UW/yalhtEfrOkV0q6zxjz3E18hsf67n/Bt+6wMeakMeaWVgHZba5xn7U267tG0hhzmzHmeI9h6Y68n6e19tustZd6/RAAAODGR/EIAIB9zlr7aUlv8x6OSXrHZq5jjHmDpF+W2y3zZbnFoq+V2/nzU3Izd4KSXu/92U6vklvE+XVJXy/pv0h6k7X2grfWu+V20ByWWxh5l6TvkBss/b1yx7gktxvpn40xhzu8129KeqbcXcxe7F3jOyV92Hs9JulPjDHDfX6GO73bFWvtqlcw+jNJK3K7ns5IWjbG/FWHAlf1GhclyRhzjzHmn+SOnVnv+WvGmDd7XVjt/LO19unW2g93OAYAAOxRjK0BAADJDVX+dkknJX2bMeb7rLV/0evJxpgnSXqd9/Cdkl7WNO71aWPMH8rdWv4Zkn7JGPPXnXb12qKg3GKRPwj6vd5aQ3K7ihJyO66+x1r7Xt9xn5f0bi8c+o1yC0y/J7e41MohuZ/5pdbaageXjDF/K/fzPlfSjNz8oY7jZ02mvdsVY8w3SXq/pOYCVELS90h6rjHmPzeN5MV8x68YY35e0q/IHSP0m5H0aknfYYz5ZmvtI80L8X8uAACw/9B5BAAAqjtu/ajvqd82xsz0cYmflfvfFYty83A25AR57/EyuZ0+AUk/sfkV96R5y/qqb5eb8SRJb28qHNVYa39Z0ser5xhj7mx1nKScpFc1F1istY4aQ8gf38uifaqFn3FJ75MUl1v8OS23m+k2uV1PjtyMpfd5wdbN50vSsyT9qqR5ST8i6YB3vadJ+pB3zO2SPtDDKBwAANhnKB4BAABJkjeS9Mfew2lJ/7uX87z8omow86ettZkO73Fe0gPew2e3O24ALnfI5flm3/3f63Kd3/Xd/5Y2x3zR2/GsFX9Q9kiX92qW9G7H5RaCvtta+zpr7cPW2oK19oy19r/LDSeX3F3V3tTifEk6Lrew97XW2j+w1s5ba/PW2s+rsSPqiZJ+qM91AgCAPY7iEQAA8PsZSVe9+99jjOllO/aTkia8+99hjHE6/VE9h+fUYJfe4NEOr93l3abUYlv6Jp/13X9sm2MudDg/5bvfb1xA1nf/b6y1LXdLs9b+rqT/8B5+pzFmqMX5kvTGVru+eR1SPyV3RzZJelGf6wQAAHscxSMAAFBjrV2R9OO+p95ujBnvctp0l9fbCRtj+u3G6dVah9emvNsFr3DSyazv/mSbY1JtnpfckbKqfneYW/fdb1k48vl/3m1E7q5yzed3vIa1dlZu1pMkPeU67IYHAABuIBSPAABAA6/D5T3ew8Nyc3U68XfU/JHc0ade/7Qdceug163l2+mnMBLy3b/eodFXffcvdznW32k1LUnW2rykZd/zV3q8RljuqBwAAIAkdlvDHmOMScrdMeZ75Y5DrEv6oqS3Wms/1OncPt7jL73r32qtPdvhuMdIeq3ckNIZSauSPifpt6y1H2k69hmSPtbHMn7QWvsn/a0cAPry3+R+f01Jepkx5q86HOvP+ylba/99k+9ZLfh0K+6MbfL6VdX1ThtjAl26jw62OO96+YqkF3j3JzodKDdAu8pfMPqKpG/w7o+r82eoXqOszp1bAABgn6HzCHuGl/HwUUmvl3SzpPskpSU9R9IHjTGvH8B7vEJu4ajbcd8q6QtycyPGJd0v95eh50m61xjzc02nrEr6dJc/17xjK2oMYAWAgbPWzkn6ad9Tvy9pqM3hD6veQfQ13a5tjHmNMeblxphvbHqpukNb1BgTaj7POzchtyC/FV/2boclPabLsf7P8+AW37df/rylbj9X/+e4sMVrXLLWlrscCwAA9hGKR9hL3iZ3y+F/l3TaWvska+0JSS+R+wvJG1r8otIzY8yr1LjrTrvjxiW9S+4WyO+VdMRa+wS5f3v9y95hbzLGPL16jrX2S9bap7f7I7dgFfUO/zlr7T9v9nMAQK+ste9UfRv3k5K+v81xRdW7Jx/r/35rZox5lqRfk/QOST/f9PKK7/7JNpf4Rrm5PlvxT777L+9y7Ct89z+8xfft172SFrz7L2qXD+X95ckLvYf/Ya294HvZ3zH2Y+3eyBjzVEnGe/iBTa0WAADsWRSPsCcYY07L7fKpSPp+a20t+8H75efXvIdv2MS1Dxtj3ivpt9RbTsa3yQ1VXZH0A9baVW8dZWvt6yV90jvuZT2+f0jSn3vX/JCkt/T3CQBgS16uevByp6LN//Td/xNjzE3NBxhjDsjtYKr6X02HfNl3/ydanH9Qg/kO/FtJ1bHjHzPGvKDVQcaY10m6x3v4kS2M422KV5T7Le/hYUl/YIxp+N/AGBOUW4irhpa/vekaX1K96PU8Y8xPNb+PMWZS0h96D0uS/s9APgAAANgzyDzCXvFiuaGmn7bW3t/i9XdI+kVJX2eMOW6tfaSXi3q
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebxkZ13n8W/dunvv3dlJQiDBB1kcQRgmEiWCooKKjKPghhhRUEcGRQWVJcwIKui4ABIXcAFREFCZGdzYJQooiyAkD4uGJSHpdKeXu1TVWeeP55xbp6rOOXXqVNXd6vN+vfKqqlvnPHXqdnel+3t/v9/TiONYAAAAAAAAQB1zO30BAAAAAAAA2LsIlwAAAAAAAFAb4RIAAAAAAABqI1wCAAAAAABAbYRLAAAAAAAAqI1wCQAAAAAAALURLgEAAAAAAKA2wiUAAAAAAADURrgEAAAAAACA2giXAAAAAAAAUBvhEgAAAAAAAGojXAIAAAAAAEBthEsAAAAAAACojXAJAAAAAAAAtc3v9AUAAIDtZ4x5t6RHJQ+fZ619ccXzXiHpx5OH97HW3jb5q0MeY8w1kp4l6RskXSmpLek/JL1F0u9aa09WWOPbJf2QpIdLOi7ppKR/lfTHkt5orY2HnN+U9GRJT5H0EElHJZ2X9BFJfyLpddbaoM77AwAAe1cjjkv/DgEAAPahvnCpI+kh1tpbKpxHuLQDjDFPlfQqScsFh5yS9APW2rcVnL8s6U8lfXvJy7xH0ncVhVTGmEOS/lLSo0vWeJ+kJ1hr7yk5BgAA7DO0xQEAgCVJrzbG8PeCXcgY882SXiMXLLUk/aKkx0r6Rkm/JBcOXiDpTcaYhxYs8wfqBku3yFUvXSfpSZL+Lvn6oyS9xRhTVNn+WnWDpVsl3ZCs8f2SPpR8/bpkjcZo7xIAAOxltMUBAABJulbSMyX9xk5fCLqSwO8VkhqSPElfY639UOaQvzPG/I2kd0lakfTLcsFTdo3r5VrZJOmfJF1vrfUyh7zRGPO7kn5Y0iMlfZek1/et8dWSnpA8/LCkr7bWdpLHNxtj/lTS25LXfpSkJ8q16wEAgBnATygBAJhtkaR0Rs6LjTH33cmLwYBHS0p/TV7RFyxJkqy175X0/5KH32CMOdZ3yNMy95/eFyylnpu5/105z39z5v7zMsFSeg2hpGdnvvStOWsAAIB9inAJAIDZ5kt6WXJ/VdLv7eC1IN//lfR5SX9Vckx2XtYVfc/9u6SbJX3UWvvxvJOTGUnprKUrcw65KHP/UyXXECX3Ly25VgAAsM/QFgcAAF4k18Z0f0mPNsb8sLV2rJDJGPPlkv67pMdIulyuresLcu1bL7fWfrLgvHfLtVV1rLVFw6tljPk3SQ+U9Dlr7VV9z6W7lfykXEXPK+RmAfmSPiPpudbat2eOPyxX3fMESQ+SdEjSabkd0P5c0mvzdkAzxlwlt1ub5L5/b5X0VLmd1B6YrHO7pL+V9GvW2s8WvZ8iyXW+feiB0r0z97/Ut8YLJL2g7OTke5BWPH0p55A7MvfvLynvvdxH3R9c3pHzPAAA2KeoXAIAYMYlLU5PU7fq5GXGmHvVXc8Y83xJH5f0Y5KMpANyVVFG0jMkfdwYc+M2DH2+Qq5i57HJ6x+R9FC5gCm91q+TG079a5K+VtJxSQuSLpFrBXuNpI8YY64e8lqrciHQq+XCsQvkBqXfV9KPSvqEMeZxk3pjWcaYh6s7rPtd1tq7ayxzo9z7lqQ35Dz/f7LHGmMWsk8mv5YvyXzpz2tcAwAA2KOoXAIAALLW3myMeaWkn5ALYW5Sjbk5xpgbJb0wefgxSb+d3M5J+iq5oeFXZ465cZzrHuJZchVTL5ULRy6R9JXW2tuSa71WrrJpRVIs6U8kvVHSXXJVODfIBVMPkvQPxpivstbmVfVILpy6RNL7Jb1SrnXsUkk/Lukb5IKmPzTG3Ndauz7Om0qCnIOS7ie3U9uPJOufkasWq7LGnKSL5X5NflLdXeDepr5h3pJkrf2wMebXk2MfJunDxphfk3ufV8gFaI9KDn+1tfava705AACwJxEuAQCA1M/JBUpXSfoWY8z3WGsHgoYixpiHSnp+8vC1km7oaye72RjzarkZQtdLeoEx5o1FLXITMCfpJdbaX8h87U3JtTblqpJW5Cq2nmStfVPmuA9KeoMx5gVybYOXSvodSd9W8FqXyL3np1pr0wowGWPeKvd+HyfpQkmPV35l0Ci+N3mtrJslPc1ae2vFNf5OrmUxFcmFcC/KawGUJGvtTxljPi4XCD5I0h/0HXJK0s9I+qOK1wAAAPYJ2uIAAIAkyVq7IVcFk/pNY8yFIyzxbLm/W5yW9Iy8kCJ5jRvkKoUacpVS0/Sqgq9/q9zsIEl6VV+wtMVa+z8lvTs9xxjzgIL12pKelQ2WkvNj9Q5J/09VLnqIe+d87cGSfiJnp7iqa8zJBWffU3SCMeYySY+Qa/nLc4Gk75RU9D0CAAD7FOESAADYYq39e3UrUi6Q9PIq5yWtWul29TdbazdLXuM/1N3d7DFFx03A7dbaLxY8942Z+78zZJ3fztz/poJjPpTsuJYnO/z60JDXquI9cq12j5Bri3u/pMNyM67ea4y5qOTc1AslfbVcK9sL5ALBB0h6tTHmpf0HG2PuJ+mfJD1d7u+PvyDXOriU3D5X0oZchdY/GGO+aoz3BwAA9hja4gAAQL+fkgtRLpX0JGPMn1pr/2rIOVepu9vYt2V2bBvmPvUusZIvlDz3oOR2XdK/DVnn/Zn7Dy445raS87Mzlsb+u5e19n2Zhx80xrxerjrqBrn39atyO9aVrZFtd3yvMeaPJP2DpCsl/Ywx5m+ste/MHPOG5LlA0uOste/KPHebpF8xxrxDLvg6JunNxhiTDIsHAAD7HJVLAACgh7X2rNwg6tSrjDFHh5xW1Co1zLwxZhLVPHnOlzx3Irk9lbSulbkrc/94wTFlQ7qz6098h7ykFe/HJN2efOlJxpjVEdf4fLJG6ob0TjL4/CHJwz/sC5aya/yLXLAluba7kQfCAwCAvYlwCQAADLDW/oW628lfKrcbWplsRc5r5MKIqv8VttCVqPJ3mLLQaJSQp5m5HxUetYOSCqH/lzxcVHee1Cj+Rt1fi6/IfP3hmfv/d8gaf5G5/4ga1wAAAPYg2uIw85Kf7v6spCfLtWesSfqQpN+ou5WyMeZKuRkW3yTpIkl3S3qHpF+y1t5Sdm5mjTlJ75X0SEkL/YNxjTHXS8r96XGBH7TW/uEIxwPAf5fbov6EpBuMMX9Wcmx23lBorf1ozddMA6Fh4c+Rmuun0uu9wBjTGFK9dHHOedsiGdB9taRLrLXDgp3TmfuLyfkNSVcka9xjrf3XopOttaEx5pyk1fT8xMHM/bNDruFk5v64v0YAAGCPoHIJM80Yc0DSO+UGm95X0ifkBpI+VtLbjDEvrLGmkfRhST8k9xfyf5W0LDd09cPGmG8sOT3rJXLBUpFzcltPl/13Z3JspN6BsgAwlLX2pKSfzHzpdyUdKDj839Wtevkvw9Y2xjzHGPN0Y8zX9z2VBumLxphm/3nJuSuSRtnFLs/HktuDkh445Njs+7l1zNcd1Wsl/bOkt1bYue/qzP10kPkJSZ+T+3/di8tOTtoT09fIDkK/u+A18twrc/9k4VEAAGBfIVzCrHulXNn+RyVdba19qLX23nKDUANJN+b8w6eQMWZermXghNw/CC611j5crqXkFXIh058ZY06UrNE0xrxM0nPKXsta+xFr7XVF/8lVYqU/ef45a+0/VH0fAJCy1r5WUlrFeZWk7y04zle3mvLBxpjritY0xjxa0i9LuknSz/c9na2Muapgia+XtFB23RX8Xeb+04cc+4zM/b8f83VHlX52N5SZg9TPGHOJpMcnD29Nd8mz1p5SNxB7rDHm8pLX+gF1q9qz7zP7/4/vH3K931NwHgAA2McIlzCzjDFXS/o+uaqe77XWbu0qlPxj6peThzeOsOz3SbpG0uclPc1a20rW8yQ9U+4v2kfVWwmQvab7ybXP/fQo7yVnnaakP5E
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5wkeV3/8ffM7OzO7mwOt7d7OX7vONJJzgcIoqCIWQQkiIAJFEFU8u93KmAABT0VUAFREEHQH6CEA0lngIt7d98Le3sbZncnd+6u+PvjWz1d3dPd0z3TE/v1fDzm0amquma5Kao+9QkDcRwLAAAAAAAAaGZwtXcAAAAAAAAAaxfBIwAAAAAAALRE8AgAAAAAAAAtETwCAAAAAABASwSPAAAAAAAA0BLBIwAAAAAAALRE8AgAAAAAAAAtETwCAAAAAABASwSPAAAAAAAA0BLBIwAAAAAAALRE8AgAAAAAAAAtETwCAAAAAABASwSPAAAAAAAA0BLBIwAAAAAAALS0abV3AAAArD3GmK9Jelry8s3W2us7XO/9kn45eXmJtfZY7/cOjYwxL5L00Q4Xf5m19m9bbOfhkn5N0tMlHZYUSnpA0uclvc9aO7b0vQUAAOsNmUcAAGAhbzHGXL3aO4G2rl3qBowxr5X0PUmvkHSppBFJo5IeKumNko4YY35gqd8DAADWHzKPAADAQrZI+pAx5snW2mi1dwZNPTJ5vEXSyxZY9njjG8aYF0h6b/KyLOkPJX1N7n/750l6laTdkj5tjHmctfaOHuwzAABYJwgeAQCATjxBrpzpvQstiFXxiOTxJmvtLYtY/w+Sx0DSM6y130l99nljzHckfUTSNkm/J+lHFr2nAABg3aFsDQAAtBPJBRQk6XpjzKWruTOYzxhzgaR9ycuuA0fGmMskXZm8/HRD4EiSZK39qKTvJi9/wBgzvJh9BQAA6xPBIwAA0I4v6T3J822S/noV9wXNpfsd3byI9c9JPb+nzXLVUrXNqgWrAABAH6BsDQAALOQdkl4g6SpJzzDGvNJau6QgUtKA+1ckPVPS+ZIGJJ2QdKOkP7PW3tliva/JTYGrWGtH2mz/DknXSHrQWntxw2dx8vTXJf0/Se+X9GS5QNl9kt5krf1yavmdkn5B0vPlmkfvkDQlF6j5J0kftdYGamCMuVhuUpnk/v0+J+mlkl6S7NsOSack/bukP7LW3t/q91lAtd9RKOn2RayfnqB2VZvlLk8efUkTi/geAACwTpF5BAAA2rLWVuSCJ9Vm2e8xxpy32O0ZY94iF+T4JUlGbqLXtuT5qyXdbox5uzFmYEk7vrALJH1L0rOT798l6fvkAkjVfX26pLsl/ZGkp0raK2lY0rmSflDShyXdnJR+tbNN0pclfUgu+LVfrhn1pZJeIzfJ7IcW+XtUg0d3u102f22Mud8YUzHGTBljvmqMebkxZqjZytbaByXdmrz8UWPMYxqXMcY8V9KTkpefsdaGi9xXAACwDhE8AgAAC7LWfkvSB5KXuyTdsJjtGGPeLumdkoYk3SYXLHqiXObPayXdL3d+8rbkZzm9Ti6I825JT5H0k5J+z1p7LNnXJ8hlJh2SFEv6mFyj6MdJ+hlJ/5Fs56GSvmGMOdTmu/5I0tMl3STpxck2flTSl5LPt0j6W2PM9kX8HtXg0UWSvicX6LtUrrxsb/K9H5L0TWPMOU23IP2ypLxcVvrXkuDdM40xzzbGvEfSZ5LlHpD0hkXsIwAAWMcoWwMAAJ36bUk/LOliSc8zxrzQWvvxTlc2xnyfpLckLz8q6eUN5V7fMsZ8SNK/SbpO0luNMZ9sVcLWA4NywaLfTb33qWRfh+SyirbKZVz9tLX2U6nl/lvSJ4wxb5Ur6zsk6S/VegrZuXK/80uttdUMLhljPif3+/6QpAOSnivpE53+AsaYXZIuSV5ul3RGrgzvO5LKcoGlX5PL6nq8pC8aY55orS2nt2Ot/ZYx5olyU9d+SM0DdzdIepu1drzT/QMAABsDmUcAAKAj1tqCpF9MvfU+Y8yBLjbxerlzjylJr27WJyj5jpfLZfoMSPrVxe9xR/6ixfs/rFr/n79oCBzNsda+U9LXqusYYx7SYntlSa9LB46S9WPVNyF/RCc7nfLI1PP/lfRwa+311tqvWmu/ba39c7mG2l9MlrlW0psaN5KUCD5VtalrzTxHLrAEAAD6DMEjAADQMWvtlyT9TfJyv6Q/62S9JDjxg8nLb1lri22+4wFJdyUvn7nIXe3EKWvtyRaf/UDq+V8usJ0/Tz1/TotlvmutnW7xWbpR9o4FvqvRt+QCPs+R9MPW2nmNrK21JUk/JymbvPWr6f5HyfO/k8tYulwuE+qJcllXu+Uahd8ql3H2N8aYd3a5jwAAYJ2jbA0AAHTrN+SCFYck/bQx5h+stZ9dYJ2LJe1Jnv9IauLZQi5ZeJFFO9Hms4cmj3nVRtS3clPq+cNaLHOszfr51POuzs2S7K17k592y00bY/5Z0svk+iBdK5epJLl+Ry9Onn/QWvvK1KplSZ8zxnxJLnvpqZLeYoz5trX2iwIAAH2BzCMAANAVa+2sXMCh6i+MMbsXWG3/Ir9ukzGm22ycTmXbfLYveZxMSsvaOZt6vrfFMvkW70uuRK9qOSfM3Zp6fmHqefV/yxlJv95sxSR76eWqTdz7lZ7vHQAAWLMIHgEAgK5Zaz8j6Z+Sl4fkpom1k86o+bBc5kunPy1L3Nro5BynXVComyDOUOp51HKp1Zf+d9wsScaYnar1Ofq6tbZlkMtae7+k25OXj1uWPQQAAGsSZWvYcIwx2yS9UW6M8iWScpK+K+m91tov9Og7/iHZ/hXW2vvaLPdYudHTT5GbtFOSdKekf5B0g7XWa7HeNXINTZ8hN30nI+m/JP2JtfYrvfgdAHRmOY4pxpgLJb1VrvTrHEkTkr4i6fettXe1We+H5TI+HiN38X9ULoDzfmvtTIt1BuRKkn5BtWbM90r6iFyJ0mICM1W/Inec2ifp5caYf2yzbLrfT2itvWWR31kN+CwU3Nm1yO1XVfd3vzFmYIHso4NN1lsRxphHyf13uV/SXy6wn+eknlcnpm1PvTfbwVdW11vqv2/fWivnKcaYiyU9sMCmbrXWPrLxzWQy329KerJcX6wpSf8p6d3W2u8uYdcBAGsUmUfYUIwxo5K+Kjdi+FJJRyQVJD1b0ueNMc1GD3f7Ha+WOyFbaLnXyo1KfqHcSf1dcmULj5f0Pkn/mdzxbVzvB+X6ULxI7oTsTrmLpOdK+rIx5reX+jsA6MxyHFOMMUbS9yS9Qu7C/VZJI3IBnu8ZY36gxXofkPS55LtjuWPK+ZLeKek2Y8xDm6wzLOkzcs2QnyKXeXKP3BSx90m6yRhzfre/Q1Uysj1d5vRXkkZbLH5UtcyXxy+0bWPMbxljXmWM+f6Gj6oT2janmz43rLtVLvC+FLclj9slXbPAsunf5+4lfm+33ioXQPwL1abDtfLk5DGS+29Qchf91Wypyzr4vvOSx/G2S6GptXSeoloweVqu8Xqzn5ubbP8Vkr4h6QVyQewjkrZJ+im5Y8qLG9cBAKx/BI+w0XxALpX+FkmXWWu/z1p7kaSXyF1wvL3JhUjHjDGvU/1UnVbLPUnSn8j9jb1b0h5r7SOstefJ3aUfS/bzLxvW2y3pY3IXkp+SdDi543dQ7gJRkn7PGPNkAVgJPT2mGGM2yU2y2ifpo5IOWWsfI1f29X65v/1/NMbsa1jvVyX9UvLynZLOTa33Xrkg0peb9B36A7lJWYGk18gdUx4j6bCkT8g1d/5Csl+LYq39qKRqtsTFclO9mi3nS7oxefmwdscxY8wzkn2/QdLvNHyczo65uMUmvl/ScLv97sB/pJ6/aoFlX516/qUlfm+3vp56/pJWCyUZrc9OXv570rdK1tqKpP9J3n+SMebSNtt4hKSHJC+/seg97m9r4jwlUQ0efdJa++QWPy9r2P5lcoHKQblJiwettdfKZVd/UK6q4YPt/jsCAKxPBI+wYSQnNC+Su4P6c9bauSk6ycXNHyQv376IbR8yxnx
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5wsaV3v8U9PPmdO3HPYxO6ySR6CiKCIiygrUeQaEJVLvAgoiJLUi4gSRBERE0mQC4iiKKgoyAWvouQgKMgGdp+z4ZwNJ88JM9Op8v3jqZqu7qnqNKF7z3zfr9e+enq6qqbm7HR11a9+oZIkCSIiIiIiIiIiIsOYGPUOiIiIiIiIiIjIPZeCSyIiIiIiIiIiMjQFl0REREREREREZGgKLomIiIiIiIiIyNAUXBIRERERERERkaEpuCQiIiIiIiIiIkNTcElERERERERERIam4JKIiIiIiIiIiAxNwSURERERERERERmagksiIiIiIiIiIjI0BZdERERERERERGRoCi6JiIiIiIiIiMjQFFwSEREREREREZGhKbgkIiIiIiIiIiJDmxr1DoiIiMj4McZ8BnhU+vQ3rLVv6HO9twO/kD69wlp7aP33TooYY64GXgY8DrgMaAIHgY8A77bWnhhim98PfBY4YK293zruroiIiJxDlLkkIiIivbzaGHP/Ue+ElDPGPAe4HhfYuy8wB+wBHgL8FnCjMeaHB9zmecB7gcq67qyIiIiccxRcEhERkV5mgfcaY3TeMIaMMU8E3ocLKDWA3wYeDzwBeCPgAfuBvzPGPLTPbe4C/h/wbRuxzyIiInJuUVmciIiI9OMa4CXAH496R6QlDfi9HZdd5APfb639r9wi/2KM+Wfg08A24Hdxgadu2zS4UroHbMhOi4iIyDlHdyBFRESkmxgI06/fYIy5cpQ7I6s8Gsj+n7y9I7AEgLX2c8D/TZ8+zhizt2hDxpgpY8wvAF+jFViK13l/RURE5Byk4JKIiIh0EwBvTr/eDvyfEe6LFPs4cCfw0S7L3JT7+tLOF9OA03W4LKiduFK65wN3rd9uioiIyLlKZXEiIiLSy28CTwbuBzzaGPOz1to1BZnSBuG/CDwGuARX1nUXrnzrbdbab5Ws9xncFDvPWjvXZfs3AA8E7rDWXt7xWpJ++XJcRs/bgUfiAmm3Aq+01n4qt/wuXKDlx4BvxwVfTgHfAP4W+IC1NqSDMeZy3LQ2cP9+HwOeAzw73bedwGFcb6M/sNbeVvb7lEn381M9F4T75L4+WvD6biBr2v5l4PnW2m8ZY1496D6JiIjI1qPMJREREenKWptlsWQlUm82xtx72O2lAYvrgRcBBpjHZUUZ4IXA9caY1xljNnpK2aXAF3E9iLbjAiwPxQWYsn39QeBm4A+AHwDOA6aBC4GskfY3jDFX9fhZ23FBoPfigmP7cY3SrwR+niGmufXLGPMw4MfTp5+21p4sWfQ64H9aax9RFtwTERERKaLMJREREenJWvtFY8w7gBfjgjDvAn5k0O0YY14HvDZ9eh3wJ+njBPBduKbhV+WWed1a9ruHl+Eypn4P+CdcwOg7rbWH0n29BpfZtA1IgL8CPgwcB64AnosLTH078HljzHdZa4uygsAFpy4EvgK8AzgAXAT8AvA4XKDp/caYK6211bX8UmlQbgdu0tuzgJ9Lt38Gly1W5E5r7YPX8nNFRERk61JwSURERPr1a7iA0uXA/zDGPN1a+8F+VzbGPBTIyqw+ADy3o5zsi8aY9+J6CF0LvMYY8+ENzKKZAH7HWvvrue/9Xbqvk7ispG24jK2nWmv/LrfcV4EPGWNegysbvAj4U+BHS37Whbjf+TnW2pUm2caYj+F+3x8G7gU8CfjQGn+vZ6Q/K++LuFK3m4tWyO+TiIiIyKBUFiciIiJ9sdbWcFkwmbcYY+41wCZ+GXfucQp4YVGfovRnPBeXKVTBZUptpHeWfP9HcD2mAN7ZEVhaYa19PfCZbB1jzAOKlgOawMs6gzjW2oT2JunrkT10n4LvPQh4cdmkOBEREZG1UHBJRERE+mat/Vfgz9Kn+4G39bNeWqr1xPTpF6219S4/4yCt6WaPGXJX+3HYWnt3yWtPyH39pz228ye5r3+oZJn/staeLnkt38h7Z4+f1Y/P4krtHo4ri/sKsAvX4+pzxpjz1+FniIiIiKxQWZyIiIgM6pdwQZSLgKcaY/7aWvvRHutcDmRZMz+am9jWyxXD7WJf7ury2renj1Xghh7b+Uru6weVLHOoy/r5HktrPjez1n4h9/SrxpgP4rKjnov7vX4fN7FOREREZF0oc0lEREQGYq09i2tEnXmnMWZPj9X2D/njpowx65HNU2Spy2v70seFtHStm+O5r88rWaZbk+789td9Ql5aivci4HD6racaY7av988RERGRrUvBJRERERmYtfYfgL9Nn16Em4bWTT4j533AQwb4r7SErot+znG6BY0GCfJM5r4ey8bY1loPN/kOYIZWPykRERGRNVNZnMiA0ru9rwD+J65cYxn4L+CPrbWfHHKblwGvwZWZnA+cBP4NeKO19qYu6z0C+BXgkcAeXJPczwG/Z639ry7r/TTwPOCh6Xpnga/hmtb+0zC/g4hsSb8IPBqX5fNcY8zfdFk2328ostb+95A/MwsI9Qr+7B5y+5lsf/cbYyo9spcuKFhvU6QNuq8CLrTWfrzH4qdyX89s3F7Jehiz840fwb3fH4b727kdF1x+u7X2TMk6z6HVn63MW6y1Lxvw1xCREmN23PhJ4OeB7wJmcaXoHwd+31p7pMt6u3ADQJ4MXIn7vL8JeD/uWiUa5veQjafMJZEBGGPmgX8HXos72N0I1IDHA58wxrx2iG0a4Ou4YM8O4JvAHK4J69eNMU8oWe95wOdxB96ZdF+2Az8NfMUY86yCdSaNMR/Cjbl+PO5u+w24QPMTgY8ZY94x6O8gIluTtfYE8PLct94NzJcsfjutDKTv7bVtY8yvGmNeYIx5bMdL2YS5GWPMZOd66brbgEGm2BW5Ln3cATywx7L53+fmNf7cQX0Ad3PgY31M7rsq93VZI3MZA2N2vvEO4GPpz05wF3mXAK8HrjPGfHvRerQmHx4Evljy3+2D/h4iUmzMjhvvwQWgHw00cJ+NF+POGW40xnxfyXr3xV2bvAYwuIEXZ3EBqrcBHzfGTA/6e8jmUHBJZDDvwE3f+W/gKmvtQ62198E1Rg2B1xVcCJUyxkzhIvj7cBcIF1lrH4YrMXk77uD9N8aYfR3rXYUbnz2BO9BeYK19CHAh8B5csOg9xpgrO37kK3HBpxrwbGvteel65+HuLITAi4wxL+j3dxCRrc1a+wEguxt6OfCMkuUC4NPp0wcZYx5Ztk1jzKOB3wXeBbyq4+Wzua8vL9nEY4G1nnz+S+7rXsfEF+a+/tc1/txBfT59rOAadhcyxlwIPCl9enOXKXkyHsblfOPFuH5d4IJJF+bW+2NckOlTJT3XsuDSr1lrH1ny31v7/R1EpKdxOW48DxeMCoFnWmsvSq83Lsbd4N4DfKSz958xZi79eZfiKjGutNY+2Fp7b+ApuBtUPwQo23FMKbgk0qc0oPNMXD+NZ1hrV6YMpRdXv5s+fd0Am30mcDVwJ/B8a20j3Z4PvAR30bCH9swAgKfhLpxuBl6W9tIgXf/ncXcCZ9LtZ/s/Retg/Jp0n7P9T6y17wLelH7rfw/wO4iIvACXeg/dgzp/mPv6/caYSzsXMMacj8uAynRefF6X+/rFBetfALy5697252PArenXLzLGPLloIWPMq4FHpU//bQ3lfsP6c9wNA4BXGWNWTatLG6J/mFZW2e92LiPjY1zON9LzhlenT99trX1tGiTGWutZa18OfBlXFlqUEZEFl64fYD9FZAjjctxIZdcRb7bW/lVuP5aAnwHO4MrrOj9XXwx8G2666hOttYdz634EN+kU4PkD/A6yiRRcEunfs3BlZF+21n6r4PV3pY/fl9Ym9+M56eMH0gP1irS/x5+mT5/WsV52QXZDOgUov14IfCN9mt+PB9Ga1vTXJfvzj+n
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZikV133/0/te3f1OkvPTCYzk5yELCYIQh6CCYgLICIu4KOIyqMiKoqoLG4BL0VAeVwR9HH7uSObG0FlDRggmggkZDlJZjJ7z0xvtXXty++P++7qqu6q6mWqu6e736/rmuvezn3uU51MTde3vud7PI1GQwAAAAAAAEAn3q0eAAAAAAAAAK5cBI8AAAAAAADQFcEjAAAAAAAAdEXwCAAAAAAAAF0RPAIAAAAAAEBXBI8AAAAAAADQFcEjAAAAAAAAdEXwCAAAAAAAAF0RPAIAAAAAAEBXBI8AAAAAAADQFcEjAAAAAAAAdEXwCAAAAAAAAF0RPAIAAAAAAEBXBI8AAAAAAADQlX+rBwAAADaXMeYzku5wD3/JWvvrq7zvDyT9hHt4tbX2ZP9Hh26MMc+U9BpJz5O0T1JVkpX0IUl/YK3NrXD/qKQ3SPo2SUfc+5+S9GFJv2+tnV3hfp+kV0r6Pkm3ShqUdEnS5yS911r72XW/OAAAcEXzNBqNrR4DAADYREuCRyVJt1prH13FfQSPtoAxxiPpN+UEfjxdmj0p6Vustce79PEMSR+VNN7l/rOSXmqt/Z8u9++R9I+Snt1jqO+V9Dprba1HGwAAsA0xbQ0AgN0tJOlPjTH8TnDlerekn5UTODoj6XWSbpf0Ekn/6rY5JulfjTGhpTcbY/ZJultO4Kgs6Z1ygofPl/QeSXVJByT9ixskWnp/VNLHtRg4ekrSj0u6TdKLJf2de/61LfsAAGAHYdoaAAC4TdJPSfqdrR4I2hljbpP0evfwq5Keb62damnyr8aYP5P0Q5Kuk/RqORlArd4haczd/w5r7Udbrn3aGPM5OUGf/ZLukhMYavULkm5y978gJ8Mp03L9bmPMvZL+QNJ3G2O+y1r7wTW+VAAAcAXjW0YAAHavupy6N5L068aYI1s5GHT0VjkZR1VJ37kkcLTg5yRV3P3var1gjNkr6Xvdw39ZEjiSJFlr3y/pI+7h/zHGDLXc79NiMCkv6buWBI4W+niPpH9zD9/lTrUDAAA7BMEjAAB2r4qcWjqSFJX0/7ZwLFjCnUL2De7hn1trH+/Uzi10/RuS/lDO9LRWL9Fipvlf9njcn7rboKSXtpy/VdJCMOkD1trzPfr4c3d7taRn9mgHAAC2GaatAQCwu71N0svkTHl6vjHmR6y1lxVEMsZcL+kn5QQ+DmixVs+n5azq9UiX+z4jpxZPyVob7tH/VyXdIOmUtfbwkmsLK4H8jJwC0X8gpz5QRU5R6Tdbaz/R0n5A0g/LCZjcKCkhaUbSlyR9QNJfWWurWsIYc1hO7R/J+fn9s6QflPQqd2wJSeck/bukd3crZL2Cb5Tkc/ff36uhtfauLpee07L/mR5dfE5SQ85/q+dL+gv3/FUtbe7rNQZJrf9db5P0Xyu0BwAA2wSZRwAA7GLW2pKc4EndPfWbxpiJ9fZnjPllSQ/JmepkJMXkZDUZST8m6SFjzFs3YVrTQUn3Svom9/mDkp4uJ4C0MNbnSXpMTkHqr5c0LCkgaa+kF0r6M0lfMsYcXeFZUUmfkJO9c4ekUTmFyI/IKSL9sDHmRet4DTe17N/fMm6/MeawMeZYpwLZS1zvblPW2ulujay1WUkLU+Kub7kUbNnPrvCsSsv+tSu0BQAA2wjBIwAAdjlr7b1yVt2SnCDL+9bTjzHmrZJ+VU62zINygkX/S07mz09LOi7nd4+73D8b6fVygjjvkvRcSd8t6e3W2pPuWG+Tk5m0T07GzV9L+jZJz5L0PZL+w+3nRkmfc1cs6+bdkp4n6YuSvt/t49vlrFAmOYGkvzDGxNf4Gp7mblPW2rQbMPpLSSk5WU9PSJozxvx9jwDXQiDw9Cqed2bJPZLUGnA6sML9B1v2967ieQAAYJtg2hoAAJCkt8ipj3NY0rcaY77XWvu3q73ZGPN0Sb/sHv6VpFcvme51rzHmT+UsLX+npF8xxvxDtylsfeCVEyz6xZZzH3TH6pOTVRSRk3H1iiWrg/2XpPcbY35FzrS+fZL+SE5wqZO9cl7zD1prFzK4ZIz5Zzmv90VyVjt7sVaYfrbEqLtNGWO+UdKHJS0NQEUkvULSi4wx39E6Jc817G5XyhqSpHl3m2w5d7+cn5FXzvS8d/S4/yUt+7FVPA8AAGwTZB4BAABZa+cl/WjLqd81xox1a9/Bz8r5vWJG0o91qhPkPuPVWqyt87r1j3hVli5Zv+Alcmo8SdJ7uy0rb639VS3WCXqJMeZpndpJKkp6fWvgyL2/ofYi5F+zmkG3WAgUJSV9SFJY0q9JOionm+laOVlPDTk1lj5kjDm2pI+FaW3FVTyvsOQeWWvn5ATAJOnrjDE/2elGN3jY+v9PYBXPAwAA2wSZRwAAQJJkrf24MebPJf2QnKyX35czhasnt37RC93De621+R7PeMoY86icKVnf0K1dH5yz1p7tcu2bW/b/aIV+/lBOppQkfYvai0IveMBd8ayT1kLZiRWetVTU3SblBIi+01r7kZbrT0j6OWPMCTnTDgckvV3Sy1va1OQE9RpavaVt3yLpBe54ft8tiP4e9/kjkr5LTlCrJmdKXVJSeQ3PAwAAVzgyjwAAQKs3SJp0919hjHlpr8auw1pczv3bjDGNXn+0WMvn6v4Ovc2ZHtdudLc5SV9doZ8vtuzf1KXNyR7351r21/qlXaFl/yNLAkdN1to/lPQV9/DbjTGtU8YWnt919boWEXfblqXkTi38bi1Oa/txSQ/LCRBNygky+uUEGlNum3kBAIAdg+ARAABostamJP1Ey6n3GmOS3dq7Rle43o3fGLPWbJzVyvS4NuJup92pZb1cbNkf7tIm1+W81J7Fs9YV5lrrFHUMHLX4F3cbkLOq3NI+VlODaKHNsiwqa+3dbr//oPagVkFOsfFbrLX/qsUg4kUBAIAdg2lrAACgjbX2I8aYD8jJNtknp67O/+lxS+vvE38mJxNltbpOcethNV9+9QoKrSWI42vZr3dttTEmW/bPrdC2NdOqNZh3StIhta+E1s1Cm/OdLlprH5eTjRaWs/JaTdJZa21Fkowxe+Ws1ic5q8EBAIAdguARdhRjTFTSG+Wkzl8t5xvXByT9jrX2Y+vs8+vkLDH9XDkr6hTk1Lz4O0nvs9Z2rOtgjLlB0pslPV/OKjtpSfdJ+m1r7SeXtL1T0qfXMKwfstb+xZpeCACszU/Kef8akfRqY8zf92jbmqlSs9Z+eZ3PXAj4rBTcGVzh+koWxjtqjPGskH20p8N9m+UhOSucSYsZPd2EWvbnWvYflvPv16gxZtBam+50s5sBtlAgvecKeNbaoqQnO1x6dsv+ev8fAAAAVyCmrWHHcGs8fErSXZKOyPmFeV7SN0m62xhz1zr6/GlJX5D0vXK+yX1UzvSEZ0v6XUmfNcYMdLjvhXKWN36lnMKhj8j5MPRiSZ8wxrxlyS1pSfeu8OeC27au9gKsANB31tpLkn6m5dQfq/vUpxNazCB6dpc2TcaYNxljXmOMecGSSwsrtAWNMb6l97n3RrQY5FivB91tXNINK7RtfT2PXeZz16q13tJKP9fW13GySx+397j/uVoM2n2u9YIx5ueMMb9njFlpdbyFQFdBzr9bAABghyB4hJ3kPZKeJefbzqPW2qdba6+S9Co5H0je2uGDSlfGmOdI+m05f0/eJWnIWvs11toJOd/Gn3ef90dL7kvKqf8QlvRBSfuttbfI+fb6V91mbzfGNH+Jt9Z+yVp7e7c/cjKpgm7zt1hr236xB4CNYK39K0kLWZuHJX1fl3YVLWZP3tT6/raUMeb5kt4h6X2SfmHJ5VTL/uEuXbxAl78M/H+07L9mhbY/1rL/8ct87lp9QtK0u//KbvWh3C9PvtM9/Iq19mTL5X+
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZgsaVnn/V/uWXvV2Zc+p09vPECzgwKC0iKKgmzXO464gAwioo4KOoqKyjIyiuIroAi+Ki7IoIJsLqggIiPS7QBN03TDQ2+n++xLndpyjYzl/SMiMyOzMrMyq7KWrPP9XFdfuUVERTadScVd9/17EkEQCAAAAAAAAOgkud0nAAAAAAAAgJ2L4hEAAAAAAAC6ongEAAAAAACArigeAQAAAAAAoCuKRwAAAAAAAOiK4hEAAAAAAAC6ongEAAAAAACArigeAQAAAAAAoCuKRwAAAAAAAOiK4hEAAAAAAAC6ongEAAAAAACArigeAQAAAAAAoCuKRwAAAAAAAOiK4hEAAAAAAAC6Sm/3CQAAgJ3HGPNpSc+IHv6ytfbNfe73e5J+Inp4nbX25PDPDp0YYw5Keo2k50q6TuEfCe+V9HeS3m6tvdDncf6LpB+U9CRJ+yWtSLpd0p9Ier+1Nhj+2QMAgJ2MziMAALCWXzHGPGK7TwLdGWOeJ+keSa+V9ChJE5LGJD1a0i9K+rox5tlrHGPGGPNJSR+Q9AJJRyVlJe2V9CxJ75P098aY/Ga9DwAAsDNRPAIAAGvJSfpjYwy/N+xAxphbJH1Y0lT01EclvVDSUyT9sKSvSZqW9HfGmBd0OUZG0j9J+rboqVslfX90jJdIuit6/rskvWvobwIAAOxo/BIIAAD68VRJP7XdJ4FWxpi0wnGyVPTUz1lrX2it/ai19jZr7XskPVHSvymMK3iXMWaqw6F+VtKTo/vvl/R0a+37o2P8RfTandHrLzPGPHKz3hMAANh5KB4BAIBefEludP/Nxpjrt/NksMrzJZ2I7n/UWvvW9g2stSWF3UM1SYcl/Uz89WgM7Rejh/dJ+iFrrdd2jKKk18We+n+GcfIAAGA0UDwCAAC91CT9VnR/XNIfbuO5YLVnxu6/rdtG1tpTkj4ZPfzetpefq3CsTZJ+1Vpb63KYf5b055LeLukrg58qAAAYVay2BgAA1vJGSS+S9HBJzzTG/Ii1dkNFpCiA+78rzNi5RlJC0ilJ/yrpd621d3fZ79MKV4GrWmu7BjcbY74i6WZJD1prT7S9Vl8t7DWS/l7S70l6usJC2b2SfsFa+8nY9tOSXqEwRPpRCrOF5hWuQPYBSe+11rpqY4w5IemB6OGLJH1M0sskvTQ6tylJZxRmDf22tfa+bu+nh2tj929bY9u7FWYWPdwYM2utXYye/67o1lGYndSRtbYq6YfWcY4AAGDE0XkEAAB6iooGr1A4wiZJv2WMObre4xljfkVhfs6PSzIKVwYbj+6/StKdxpg3GGMSGzrxtR2T9FlJ3xH9/BlJT1BYQKqf67cqDJz+bUnfImmPpIykQwqLLu+RdLsx5oY1fta4ws6fP1ZY/NqnMIj8ekk/JukuY8xz1vEestGtZ60tr7FtvaMoIemm2POPjm7vih/DGDNujHmYMeY4YekAAFzd+EUAAACsyVr7WUnvjB7OSHr3eo5jjHmDpDcpDHj+ssJi0Tcp7Pz5aYWZO0lJr4/+2UyvVljE+U1J3yzpeyT9L2vtyehcn6qwM+mwpEDSXyjMGHqypBcrHOOSwm6k/2OMOdzjZ/22pG9VuIrZS6JjvFDSJ6LXc5L+1BgzOeB7uBzdpowxh9bY9ljsfnzbevj1g5JkjHmGMeafJS1LstHz540xb4m6sAAAwFWGsTUAANCvX5T0PIUBzd9tjPl+a+3/7ndnY8wTJP1K9PC9kl7eNu71WWPMH0v6O0m3SPpVY8xfdxthG4KkwmJRPAj6g9G5phR2FY0p7Lj6XmvtB2Pb/aekvzLG/KrCsb7Dkv5AYXGpk0MK3/PLrLX1Di4ZYz6m8P0+R9J+hflDfzXAe7hN0vdH918k6V2dNjLG5BR2WNVNxJ6vF6wWjTG/JOnXFHYnxe2X9POSnm+Meba19qEBzhEAAIw4Oo8AAEBfohW3Xhl76u3GmP0DHOJnFf7uMS/pVZ1ygqKf8XKFnT4JST+5/jPuS8dii8Ii2cPr27QVjhqstW+S9On6Pj2WsK9IenW8cBTtH6g1hPyx/Zx0zAckVaP7bzTGXNdlu/+psABUl4lu451Oz5T0ZkmXJP2IpAOS8gq7pD4ebfNwSR+Jik4AAOAqQfEIAAD0zVr7CUl/Ej3cJ+l3+9kvyi+qBzN/Nlo+vtvPeEDSV6OH37bOU+3HGWvt6S6vPTt2/w/WOM7vx+5/Z5dtvmCtvdLltXhQ9tQaP6uFtfacpF+PHu6X9DljzCuMMQeMMVljzGONMe+V9HMKw7nrnOh2PPbccYWFvW+y1v6RtfaStbZqrf1PtXZEPV7SDw9yngAAYLQxtgYAAAb1MwqLJIclfa8x5v3W2o+usc8JSXPR/efHVjxbS7dOmmE41eO1R0W3Ba29LP2tsfuP7rLNyR77F2L31/O72f9UmGf0w5IOKuxkal8N74sKx9E+FD0uRrftIdtv7LTqm7U2MMb8tMLRuKykH1Rr0QwAAOxidB4BAICBREu8/0TsqXcZY2bX2G3fOn9c2hgzUDfOAJZ7vLY3ur0cjZb1ciF2f0+XbQpdnpfCEb26gVeYs9b61tpXSPo+Sbe3vXxSYVbVU9t+Tv2cV9q2/3CPn3NBYdaTJH3DFqyGBwAAdgg6jwAAwMCstR82xnxA4QplhxWuJtZrlCn+O8d71Oe4W6TriFsP/fyBrFdRaJDCSCp23++61Saz1v6lpL80xuxVmFc0b629WH/dGPPw2OYPRPtUjTELanaFnV3jx9S7tdKSZiUtDOPcAQDAzkbxCLuKMWZc4WowL1Y46rAi6QuS3mat/XivfXsc8xsVLh/9zQpXyylLulvS+yW921rrbHQ/Y8wJRb/I9+mN1to3DPpeAAxuM75XOvyM90fHv8lae2+P7Z6uMHT6aQqzcU4qXEr+d6y1Z3rs9yhJv6xwqfhZSeck/YOkN/farw//XWHI8l5JLzfG/GWPbeN5P5619kvr/Jn1gs9axZ2ZdR6/rn6++4wxiTW6jw522G/bWGvnFWYXtXtKdHvGWns59vydkr4luj+r3u+hHpTtqXfnFgAA2EUYW8OuYYyZkPQpSa+XdL2kuxRmOnyHpH8wxrx+Hcf8aUmfU7gM8j6FAa4Fhb+Av13SZ4wx00PYryLps2v8czK2/T2DvhcAg9uM75UOP+NVCgtHa233WkmfkfRChcvHf0Vht8jPSvqKMeaWLvt9s6T/K+l7Ff7//p0Kiz0/JulOY8zj1nvuUVfLa2JP/X+KloDv4H41O4ie0mWbBmPMa40xP2qMeVbbS/UV2rLGmFT7ftG+Y2pdWWw9vhzdTkq6eY1t4+/naxv8uQMxxtxojPk1Y8wf9vrfMvpv+dujh59oezme2bTW/zb1fxenrbXeYGcLAABGFcUj7CbvVLic8Jck3WCtfYK19lpJL1V4sfGGDhchXRljnibpdxR+Tn5T0py19rHW2qMK/9J+Nvp5f7DR/ay15621T+/2j8IViuq/pL/LWvu+Af/dAFifoX6vtDPGvFp9hA4bY54n6TcUdtv8oaRD1tpvkHRE4SpaswqLWde17bdH0kcVLrf+FkmHrbVPivb7G4XFp78xxmTX+x6ste9Vcxn3E5J+oMt2NUn/Gj18dNRF1ZEx5pkK3++7Jf1S28uLsfsnuhziWWouRb9e/xy7/6NrbPuq2P32wsxmy0l6naRXKCwQdvOTaq6s9t621+IdYz/e7QBRR62JHn5ksNMEAACjjOIRdgVjzA0KV37xJf2Atbaxgk50YfMb0cM3DHDYn1N4ofa31trXWmursWP+q6Qfih6+2BhzbAj79fJuSTcovIB9zRrbAhiCTfpeqR/7sDHmgwoLzf1k67wxuv1na+0rrbXF6Dx8a+1bFV78j0n
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5ysZ13//9eWs6efVEgCSQghcFFFkCJ8UYINEUURyxcFBKSpSP3+kK9IsSACotLBryAapKkoqCgC0pUeCC1XgJBw0svJOdum3O33x33P2dndmd1pu3t29vV8PPZxz8xd5toke2fnvZ/rc00URYEkSZIkSZI0iMmtHoAkSZIkSZK2L8MlSZIkSZIkDcxwSZIkSZIkSQMzXJIkSZIkSdLADJckSZIkSZI0MMMlSZIkSZIkDcxwSZIkSZIkSQMzXJIkSZIkSdLADJckSZIkSZI0MMMlSZIkSZIkDcxwSZIkSZIkSQMzXJIkSZIkSdLADJckSZIkSZI0MMMlSZIkSZIkDWx6qwcgSZJOPCGEjwEPrp7+XozxpT2e9zrgt6qnt48xXjH60alXIYR7AZ+j/J3vCTHGt3U45grgdv1eO8Y4MeTwJEnSmLBySZIkreeFIYS7bPUg1J8Qwi7gr9mYPyYmG3BNSZK0TVm5JEmS1rMbeEsI4UExxnyrB6Oe/S5wzx6O+ylgpofjXg88sHr8tEEHJUmSxo/hkiRJ6sUDgGcAf7HVA9H6QgjfB7ygl2NjjN/o4XpPZSlY+n8xxrcOMTxJkjRmnBYnSZLWkgNp9filIYTzt3IwWl8IYZpyOtwu4KYRXO984FXV028Bzxr2mpIkabwYLkmSpLUkwCurx/uA/7eFY1FvngfcGzgCvGQE13s9sL96/JQY4+IIrilJksaI0+IkSdJ6fh94JHBn4EdCCE+OMQ4VMlUNwp8O/ChwNjABHAY+Cry221SttlXsGjHGPWtc/2vA3YArY4znrdhXVA+fDfwb8DrgQZRB2reB58cYP9x2/CHgScDPAncHDgI3AxcDfw9cFGNMWSGEcB7w3erpI4H3A48HHleN7SBwNfBB4FUxxu90+356FUK4K/Ci6ulzgIUhr/czwE9WT/8uxvixYa4nSZLGk5VLkiRpTTHGBmW40mrm/coQwm0HvV4I4YXAV4HfBAJlVcy+6vHTgK+GEF4SQtjope7PAT4N/ET1/idRVvx8u22sDwEupZwW9sPAqZTTzc4EHga8Fbg4hHCHdd5rH/Bh4C2U4djplI3Szwd+A/h6COGnhvlmQghTlNPhdgMfjDH+zZDXmwReVj2tAc8f5nqSJGl8GS5JkqR1xRg/TTk9CsoQ5k2DXCeE8BLgD4Ap4BLKMOmBlJVDzwS+Q/n7yYurr430LMqQ5xXADwG/CPxxjPGKaqwPoKxsOgsogLcDjwDuD/xv4D+r69wd+GQI4aw13utVwEOAzwCPra7xc8CHqv27gbeFEA4M8f08B7gfMA88ZYjrtPwCZYUVwF/GGK8awTUlSdIYclqcJEnq1f8FfgY4D/jpEMKvxBjf0evJIYR7Ay+snl4EPHHFdLJPhxDeAvwrcCHwohDCe3pZzWxAk5RhUvuqav9QjXWKsippL2XF1i/HGP+h7bjPAe8OIbyIctrgWcCbKcOnTs6k/J4fH2NsVYARQng/5ff7U8CtgIcD7+73GwkhBMrQDsppfd/r9xodPLvaJsCfjeB6kiRpTFm5JEmSehJjXGB5RcyrQwi36uMSz6X83eNm4Gmd+hRV7/FEykqhCeC3Bx9xT97Y5fWfoewxBfDGFcHScTHGPwA+1jqn6nnUSR14VnuwVJ1fsLxJ+j17GXS7avraW4E9wKeAN/R7jQ7XvB/wg9XTd44orJIkSWPKcEmSJPUsxvghyr4+UE4pe20v51X9kx5WPf30WiuOxRi/C3yzevqjAw61F1evMdXroW2P37zOddrDnJ/scswXY4xHuuxrb+R9cJ336uQZlFML68CTqsBqWM9se/yKEVxPkiSNMafFSZKkfj2HMkQ5C/jlEMI7Y4zvW+ec84BTqsePaFuxbT23H2yIPTm8xr67V9t54GvrXOczbY/v0eWYK9Y4f77tcV+/m1WNxF9aPf39GGPs5/wu19xL2Q8K4PMxxq8Pe01JkjTerFySJEl9iTEeBX6r7aU3hhBOXue00wd8u+kQwiDVPL2YXWPfadX2ph4qga5ve3xql2Pmu7wO5RTAlp5XyKuqwd5CuRLdxcCf9nruOn6suiYM0P9JkiTtPFYuSZKkvsUY/ymE8PeUK6ydRbka2q+vcUr77xxvpcfpdJWuU+jW0Msf0NYKjXoOeShXvmvJux41ek8FHlw9fg1w97Kv9zLntT0+N4Tw/dXjb8cYuwVeraqlAvj7EYxTkiSNOcMl7XghhH3A8yiXlb49MAd8EfiLGOO/D3jNc4EXUU4buTVwI/AR4GUxxm+udW7bNSaBTwD/C9jVqfFt27E/AzwduC8wA1xO+YHgdTHGWwb5HiT1ZiPuIR3e453V9e8YY/x2H+f9PeVy8rePMV7Rx3nnAQ/q4dCnAz9CWeXzxBDCu9Y4tr3fUBZj/HKv41mhFQitF/6cNOD1W1rjPT2EMLFO9dIZHc7bDD/Y9vivux615PerL4CHsNSIfKWHV9vP2shbkiT1wmlx2tFCCPuB/wJeDJwPfB1YAH4C+EAI4cUDXDMAX6L8C/4B4CuUK/g8FvhSCOGha5ze7o8pg6X13u/1wPurMReUTXDPplyS+pIQwt3XOF3SEDbiHtLhPZ5GGSz1e97TKYOlfs+boAwqptY7NsZ4A0vL1QP8JbC/y+GXs1SB9INdjmkfx++EEJ4aQvixFbtaQftMCKHjGKueQf2sYtfJJdX2AHC3dY5t/34uHfJ9t1T1/7BWWPaJrRyLJEnaPgyXtNO9Hrg/8GXgDjHGe8cYbwc8jvIDzEs6fLDpKoQwDfwr5V/xLwLOijHel3LKyOsoQ6Z3hRBOW+MaUyGEVwK/08P7/Tbwm9XTPwDObHu/v6AMmT7cQy8USYMZ6T1kpRDCsxhgWfkQwnMpp0kN4hnAhb0eHGO8CGhVaJ0H/GqX4xLgo9XTe4QQulZGhRB+BPgT4E3A767YfbTt8XldLvFjwK61xt2D/2x7/NR1jn1a2+MPDfm+PYsxPj7GOLHWF+W0xZYntO37WJfL3q/t8Rc2bPCSJGmsGC5px6pW2HkMZX+MX40xHl81qPqw9CfV05f0cdnHABcA36NcDrpWXa9J+YHtk8DJLP9Lf/uY7kg5fe7/9DD+aeCF1dO/jDG+uPrwRoyxEWN8NvA/lH+BHrp6QtJyG3QPaV37rBDCPwB/Tn8Nnm8bQngvZWPnfnoGtc6/E/Ay+u9x9FTK6YCwdqjzZ22P3xZCOKfDGG5NWQHVsjIku6Tt8W93OP8M4JVrjrY37wdaUxB/M4TwyE4HhRBeyFLfo48MMd3vRPF9bY8NlyRJUk8Ml7STPZZy2sf/xBi/0WH/m6rt/6p6KPXi8dX2oipQOq7q1/Hm6umjV54YQvgtyik1D6ZcHvt567zXfVia9vGKLse8uto+tprqIml0NuIeQhVifAt4FHALy1dlW+u8XwAuAx5J2ffn6b2+Z3X+FPA3wF5WVwutqQrW1q22jDH+F/DG6ukdgK+EEF4UQnhw9fVcylXP7lAd808xxn9ecZl3sjQ17pkhhLeEEH48hPBDIYT/j3JacgC+08/30GGsGeW/4ybl70v/EEL4mxDCT4cQ7hdC+MUQwn9QVo0C3AT82jDveYK4U9vja7ZsFJIkaVsxXNJO9oBq+6lOO2OMVwNXVk8f3OmYdlUD7tZ0go7XBD5dbc/v8Bf7+1bb1wJ3Bz6/zlvertoeizF2+xAVq+1pwB3XuZ6k/oz0HtLmnpTLwP8dcFfgAz2e9/2UwdBF1Xkf7OM9oQy0fxB4G/BvfZ4LZZjWS4+e36asyCqAUygbTH+s+vpT4DbVce+lwxS7qqH5s1hale2JlFPYPkEZtJ9JGY6tDKX6FmP8DOXCDDdS/s70OOBfgM8C7wFaPfS+BDy
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkd13v/1d1Vy+z75ksQ7ZJ8g3ZiAhCACGAoCwqiAoqAkY2N4ziZbmACSooiz9wQaIXEYGLoOyXC3KBGJSwyBKSEMg36ySZmcxMZunumV5rOb8/zunuqp6q6uruU9PT3a/n4zGPqlPn1KnvTB6ppN/z+Xy+hSRJkCRJkiRJkhrpWuwFSJIkSZIk6eRleCRJkiRJkqSmDI8kSZIkSZLUlOGRJEmSJEmSmjI8kiRJkiRJUlOGR5IkSZIkSWrK8EiSJEmSJElNGR5JkiRJkiSpKcMjSZIkSZIkNWV4JEmSJEmSpKYMjyRJkiRJktSU4ZEkSZIkSZKaMjySJEmSJElSU4ZHkiRJkiRJaqq42AuQJEknVgjhBuBJ2eEbY4xvafN9fwv8TnZ4ToxxV/6rUzMhhEcDrwCeDJwGlIEIfAL42xjjsTne7zzgFqArxtjf5ntWZWt4HhCADcBDwNeAv44xfn0ua5AkSUuDlUeSJK1sbwohPHyxF6HmQgiFEMI7gW8BvwmcC6wC1gGPAv4cuCmEsHMO9+wH/jm7T7vvuQy4DXgX8ARgG9ALnAE8H/haCOHadu8nSZKWDsMjSZJWtj7gH0MI/j/ByesvgVcDBeAB4PdIw5ufBT6XXXMe8LkQQt9sNwsh9AD/Bjyu3QWEEM4BrgfOARLgI8CzgSuA/wEcztZ3TQjhxe3eV5IkLQ22rUmSpCuAVwHvXuyFqF4I4Qrg6uzwB8BTYowP1VzyuRDC+4HfAC4ErgLe2+J+p5EGR4+f41L+DtiSPf/dGOPf1Zz7Zgjhc8D3SCuZ3hpC+HCMsTLHz5AkSScp/5ZRkqSVq0o6NwfgLSGEcxdzMWroWtKKnjLwvBnB0aQ/AkrZ819sdqMQwgtIA57J4KitcCcLsH4mO/zgjOAIgBjj7UyHVqczh6omSZJ08jM8kiRp5SoB78ierwb+1yKuRTOEELYDT80O/ynGeEej62KMh0nnHv0d8Pkm9/oG8C/AqaSh4TWkQ67b8avZYwV4Y4vrPgh8AHgncLTNe0uSpCXAtjVJkla2NwPPJW15ekoI4WUxxgWFSNkA7t8lDT52MD2r5z+Av4kx/rDJ+24g3QVuvNXuXyGEHwAXA/fFGM+ecS7Jnv4B8H+BvyWdD1QC7gJeF2P8cs3164GXAj8PXEI6hPoQcBNpe9eHYoxlZgghnA3cmx0+F/gs8BLgRdna1gF7gC8CfxljvLvZ76eFpwHd2fOPtbowxnjNLPd6bPb4I+BlMcYbQwhPaXMdz8gevxFjfKDFGm4mbZ+TJEnLjJVHkiStYDHGcdLwpJq99I4QwhnzvV8I4U3ArcBvk27lvoa0qikArwRuDSFcG0IoLGjhs3sYcCPw9OzzNwCPJA2QJtf6ZOB20oHUTwQ2Az2k1TnPAN5Pe7uYrQa+DPwjafi1lXQQ+bnAbwG3hRCeOY/fw6U1z79Ts+5iCOHsEMJ57QzIztxD+ud/WYzxxnYXEEJYQ/r7APj2jHObQggXhhBOafd+kiRpaTI8kiRphcvChPdkhxuA6+Zzn2yb9j8hrZa5hTSseBxp5c/vA3eT/r/HNdmvTrqaNMR5O/CTwC8Bb40x7srWegVpZdJppLuHfRj4OeAxwAuA/5fd5xLgv7JB0838JfBk4JvAr2f3eA7wpex8H/CBEMLaOf4eLsoeB2KMg1lg9EFggLTq6U7gSAjho20EXOfHGP++URXVLC4krRwDuC+EUAghvDSEcDPpDms/AvaHEGII4eXu2idJ0vJk25okSQJ4PenW72cDzw4h/GqM8SPtvjmE8EjgTdnhh4CrZgQVN4YQ/pF0a/krgT8OIfxrsxa2HHSRhkVvqHnt49lau0mrilaRVlw9P8b48Zrr/hv4WAjhj0nb+k4D/p40XGrkVNLf80tijJMVXIQQPkv6+30msA14FrO0n82wNXscCCE8DfgkMDOAWgU8H3hmCOEXalvyatWua4621jwfJm3Pe3aD6y4g/TN6Rgjh+THGiXl+niRJOgn5t0OSJIkY4zDw8pqX/iqEsG0Ot3g16f9XHAJe2ajCJfuMq0grfQrA781/xW1ptmX9z5JW1AC8d0ZwNCXG+CfADZPvCSFc1Og6YAy4emZAE2NMqB9C/oh2Fl1jMijaCHwC6Af+DNhJWs10AWnVU0I6Y+kTIYTz5vgZ7a4B0nDw2aTzoJ6ZfeZ60nlRt2fXPAd4d85rkCRJi8zwSJIkARBj/BLwT9nhVuBv2nlfNr9ocqjyjTHGkRafcS9pqxNM7yTWCXtijLubnPvpmud/P8t9arel/5km13w32/GskdpB2etm+ayZVmePG0lDnF+OMb4pxnhPjHEixnhnjPGPSIeTQxrkvHWOn9HuGgDOBL4BPD7G+IUY47EY49EY42eBK0jb6ABeGUK4OOd1SJKkRWR4JEmSav0h8GD2/PkhhJ9v4z1nA5uy5z8XQkha/WJ6ls85+S69TtNdwUjnGAEcA34wy32+WfP80ibX7Grx/mM1z+c6LmC05vmnYoyfanRRjPHvgJuzw+dkQ67zMjrj+BUxxpmvEWMcAF6THRaAX8txDZIkaZEZHkmSpClZCPA7NS+9N4SwcZa3bZ3lfDPFEMJcq3HaNdTi3Jbs8WDWWtbK/prnm5tcc6zJ65C2lE2a6w5zR2ueNwyOavyf7LGHdFe5vNSu4e4Y460trv13oJQ9f0yOa5AkSYvM8EiSJNXJKlz+LTs8jXSuTiu1FTXvB35sDr+atri10M7/v7QKheYS4nTXPJ/v0On5erDm+Z5Zrq2ttJpvmLegNcQYx4CDHViDJElaZO62pmUnhLCatHT+BaQtEUeB7wLvjjF+IafP+Jfs/ufHGO+aw/seRtoisR44Z3LL6AbXXQy8DngK6Q49g8C3gHfFGL+ysNVLUlt+l/Q7aAtwVQjhoy2urZ33U4kxfn+enzkZ+MwW7myY5/0nTa53awihMEv10fYG7ztRbgWemz3f1OpC0gHak47kuIbbgTLp/zPOtobadeS5BkmStMisPNKyks15uB64BjgXuI10a+GnA58PIVyTw2e8kjQ4muv7CqR/I79+luueAXwHeCHpkNQfkv4g9SzgyyGE18/1syVprmKMB4A/qHnpH4Bms3TuYbqC6LGz3TuE8NoQwitCCD8149TkDm29IYTume/L3ruKNFRfiFuyx7XAbIOda38/tze9qjNq5y3N9uda+/vYldcCYowTwPeyw9CqhTGEcCrTrX25rUGSJC0+wyMtN+8hnbPwfWBnjPGRMcazgBeR/lBybYMfVtoWQria+p135uK3gZafnf1P+YdJt2P+OHB6jPFy0r/5/pPssreGEJ4wzzVIUttijB8CJis2z6bJEOQYYwn4j+zw0lbfUSGEpwB/AVwH/M8Zpwdqnp/d5BY/RTrXZyH+X83zV8xy7Strnn9pgZ87V19mug3shc3mQ2V/cfK87PDmZlWtCzBZddYLvLTFdS+qef7pnNcgSZIWkeGRlo0Qwk7Sap0q8Gsxxqn5D9kPQH+RHV47j3ufFkL4OPAu5j7wdHJtb2P22R7PJv1b2wHgxTHGQYAYYyXGeA3wn9l1V811DZI0T69gemhyq9Dm/6t5/oGsTbdOCOEU0gqmSX8945Jbap7/XoP3bwfe0XK17fksMNly/NshhOc2uiiE8CbgSdnhVxbQjjcvWSj3ruzwNOB9IYS6fwYhhC7SIG5yxtB7O7CUDwAHsufXhhAeN/OCEMIjgT/ODu8HPt+BdUiSpEXizCMtJ79OOtj0xhjjDxucvw54I/D4EMKZMcb727lp9kPFh0jbNY5k93hPu4vK/sf+n7P3Xw28u8Xlkz9s3RVjbBQ0fRt4InBmu58vSQsRY3wghPBaZqm6jDFeH0J4L/B
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxsV1nv/2/NVT0PZ55PErIykIEwRlAiokzilZ8CXhkvVxHniF4GJ8CX+FO8KoMRLiLqRUUggvBTZhCQSBiSQCDDykDOmHNOnx6ruubatX9/7F1Vu7urqqu7q6fqz/v1Ouy9a6+9anVDitRznvU8Idd1BQAAAAAAADQT3uwFAAAAAAAAYOsieAQAAAAAAICWCB4BAAAAAACgJYJHAAAAAAAAaIngEQAAAAAAAFoieAQAAAAAAICWCB4BAAAAAACgJYJHAAAAAAAAaIngEQAAAAAAAFoieAQAAAAAAICWCB4BAAAAAACgJYJHAAAAAAAAaIngEQAAAAAAAFoieAQAAAAAAICWopu9AAAAsLGMMV+S9HT/8nettW/t8Lm/lPTL/uVxa+2J7q8OnTDGxCXdKelqSTdaa29vMe6EpKMrnd9aG2oyV0TSSyW9RNLjJA1LmpD0n5Leba39ykrfBwAAbA9kHgEAsLP9njHmys1eBFbs/5UXOFoP5cUvGGP2SvqqpL+T9KOSdkmKSToo6WckfdkY81d+gAkAAPQYMo8AANjZEpL+xhjzNGttdbMXg+UZY94o6bUdDn+upHgH426R9AP++WsWvV+fpM9JusZ/6RFJfyrpLklj8rKR/rukX5QXVHpRh2sDAADbBMEjAABwo6Rfk/T2zV4IWvO3qr1Di4I77Vhr7+1g3l9QI3D019ba9y8a8ttqBI6+JunZ1tp04P4njTG3SfpLSS80xvy0tfbWTtcIAAC2PratAQCwc1UlVfzztxpjLtnMxaA1Y8yTJN2mRuDI6dK8l0j6M//yQUk3L7ofkfRL/mVO0k8vChxJkqy1t0j6tH/5NmPMkppJAABg+yJ4BADAzlWWt/1Ikvok/fUmrgUtGGP+WNLtkp7gv/RxdS9L7BZJ/f75q621uUX3Hydp1D//iLX20TZz/a1/PC7piV1aHwAA2ALYtgYAwM72FkkvkHSFpGcYY37eWrumIJJfgPtXJP2IpEOSQpJOS/oPSe9qtZUq0AWuaK1Ntpn/e/KKRZ+01h5bdM/1T39D0r/L20r1NHmBsockvcFa+/nA+CFJPyfpv0l6rKRBSVPy6vl8RNIHrLUVLWKMOSav9o/k/f4+IemVkl7ur21Q0llJn5H0Z9bah1v9PB14irzf4bSk11lr/8YY8+Y1zCdJMsY8X9Kz/ct/tNZ+qcmwYKe2ry8zZfC/1xslfWP1qwMAAFsJmUcAAOxg1tqivOBJrVj2nxpjDq52PmPM70n6rrytTkZeVkuff/4aSd81xrx5A7Y1HZa3zevH/PcflnSDvABSba0/LOl+edu2fkhe8eeYpH2SniPp/ZLuMsZcusx79Un6vKS/kRf82iWvEPkl8opI32OMee4afpYZSX8i6TJr7d+sYZ46Y0xYXsc2ScpLekOLocFi25llpg12abt8lUsDAABbEMEjAAB2OGvtbfK2L0lekOU9q5nHz4b5A0kRSXfLCxb9gLzMn1+X9LC8f/d4k/9nPd0sL4jzNkk/KOmFkv7IWnvCX+uN8jKT9ktyJf2DpJ+Q9GR5rec/68/zWEn/aYzZ3+a9/kzSD8vbWvYyf46flNehTPICSX9njBlY5c/yU9baN1hrZ1b5fDM/LS9DSpLea60902LcZOD80DJzHg6c71vtwgAAwNbDtjUAACBJb5T0fEnHJP24MeZnrbX/1OnDxpgbJP2ef/kBSa9atN3rNmPM30j6N0k3Sfp9Y8yHO+kGtkphecGi3wm8dqu/1oi8rKKUvIyrFy/qDvYNSR8yxvy+vG19+yX9H3nBpWb2yfuZX2mtrWVwyRjzCXk/73Ml7Zb0PEkfWukPEpyzi37DP5Yl/Xmbcd+S9zsKy9ue98dtxj4/cN7fchQAANh2yDwCAACy1mYlvTrw0juMMbtXMMVvyvv3iilJr2lWJ8h/j1fJy/QJSfrV1a+4I+9u8frz5dV4kqR3t2orb639A0lfqj1jjLmqxXwFSTcvDvJYa10tLEJ+XSeLXm9+57an+JcftNaeajXWz3b6N//yScaYX2kx5w1a+L+fWDfWCgAAtgaCRwAAQJJkrf2cGh2zdkl6VyfP+fWLnuNf3takY1fwPR6RdJ9/+SOrXGonzrbZivWswPn/WWaevwqcP7vFmDustdMt7gULZQ8u814b5dcD52/rYPwbJdX+O32XMeYWY8xVxpiYMWafH1D6oiRH0qw/rtS95QIAgM3GtjUAABD0WnlBkv2SXmyM+aC19uPLPHNMjXbuPxHoeLac46tbYkdOt7n3WP84L+l7y8xze+D8mhZjTrR5fj5wvun/3mWMScmrxyRJ37TW3rPcM9bae40xL5T0YXnb0X7J/xOUlVcr6l2SRvxrAADQI8g8AgAAddbaWUm/HHjp3caYkWUe27XKt4saY9YrGyfd5t64f5z0t5a1cyFwPtZizHyL1yVvi17NeneY68Qz5XWHk1ZQf8la+0l53eo+LK87W01eXrHx6621/6ZGEPGCAABAz9j0vwEDAABbi7X2Y8aYj8jrULZfXjex/9nmkeC/T7xfHW5387Xc4tZGJ3/51S4otJIgTiRwvh6FqzdaLevIlfSRlTxorX1AXjZaUl7nNUfSGWttWZKMMfvkdeuTpEe6s1wAALAVEDxCTzHG9El6nbzU+eOSMpLukPR2a+2nVjnnk+TVh/hBeR118pLulfRBSe+x1nZU18EY80F/XY+x1j7UZlxY0v+Q9Ap5Wyv6JZ2U9HF5nYO62aoZAFr5FUnPkJel8ypjzD+3GRus9+NYa7+9yvesBXyWC+4ML3N/ObX17jLGhJbJPtrb5Lnt7Hn+8evtCmW3Y60tSGr2/2NPCZyv9n8DAABgC2LbGnqGMaZfXsHON0m6RNI98mou/JikTxpj3rSKOX9d0tck/ay8bRn3ydue8BRJ75D0FWPMUAfzvEZe4KiTn+Fzkt4nL1h1UV4tjUsl/ZakO40xh1b6cwDASllrJ9Ro5y5J71Xr9uvfVyOD6CktxtQZY15vjPkFY8wzF92qdWiLG2Mii5/zn03Ja3u/Fnf7xwFJVy8zNvjz3L/G991UxhijRjDsKyt47reMMe80xizXHe8F/jEv6bZVLBEAAGxRBI/QS26R9GR5f9t5qbX2BmvtUUkvl/eF5M1Nvqi0ZIx5qqS/kPfPydskjVprr7PWHpT3t/GP+u/XtlOPMeZmLezW0867g3Nba4211ki6XtKD8orSLtcZCAC6wlr7AUm1rM1jkl7SYlxZ0n/4l9cYY57Wak5jzDMk/bGk90j67UW3ZwPnx1pM8UytvQ38ZwPnv7DM2NcEzj+3xvfdbE8KnH9rBc+9WNKvSnqj31lvCWPMUTX+kuRWa22+2TgAALA9ETxCTzDGXCrppfLqUbzEWlvvsuN/+flj//LNK5j2f8nbOvH/WWtfb60tBub8D3nbyiTpZ4wxh5usab8x5lZ5Aahl62v42+NeJq+GxLOttd8IvN931fiC8xxjzMEV/BwAsBa/IG8LsNQ+aPPngfO/a/G5uEdeBlPNOxcNuTtwviTLxRizV9Kftl1tZz6hxrarXzLGvKDZIGPM70l6un/5hTVsx9sqrg2cryR49C/+cb+8bdwL+AXVPywpLqks6Y9Wu0AAALA1UfMIveJl8oqa3matvbfJ/fdI+l1JTzXGHOmwzsMP+8cPtrj/BXlfqAYlPUGBttD+F5EPyNviMeO/9y3LvF8tGPX3frBosS/588zJCzABwLqz1p42xrxey2RQWmu/aIx5t6RflLfV9jvGmLdL+rI/5AmSXivpgH/9MWvtvy6a5oOSfl/ev5/8ut+J7Z8lFeRtH7vZf/5h/z1W+zM5xpiX+WuLS7rVGPMP8gpIT0g6Kq9A+LP8RybV+Iz
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3xkV3nw8Z+0Rdt78e66rL02x9hLc2im2cRA6JCQ0F9CHIiBAIHwEgidEEiICaEGp9BDKAEDIS+EXoKJKS6AF/vYa3u9ve+qzWj6+8e9kma1mtFImllpZ37fz0efO3fuveceGfuieeY5z9NVqVSQJEmSJEmSxtM90xOQJEmSJEnS7GXwSJIkSZIkSTUZPJIkSZIkSVJNBo8kSZIkSZJUk8EjSZIkSZIk1WTwSJIkSZIkSTUZPJIkSZIkSVJNBo8kSZIkSZJUk8EjSZIkSZIk1WTwSJIkSZIkSTUZPJIkSZIkSVJNBo8kSZIkSZJUk8EjSZIkSZIk1WTwSJIkSZIkSTXNnekJSJKk2SeE8APgsnT3TTHGdzZ43YeAP013z40x7mj+7DQshPAJ4A+ncOmjY4w/GGe8y4CXAo8A1gH9wA3Ap4B/jzGWpzxZSZJ02jLzSJIkTeTNIYR7z/Qk1FT56p0QwrwQwj8DPwCeBWwC5gGrgMcCnwb+J4Sw+hTPU5IkzQIGjyRJ0kR6gI+GEPy7YfZ5C/CABn4+UHXNp2OMPxkzzkeAF6evB4B3kGSeXQ78LZAFHgb8JISwohW/iCRJmr1ctiZJkhpxKfBK4H0zPRGNijHuBHbWOyeEcD/gqnT318CfjDn+GOCP092DJEvaflN1yg9DCNeSZCXdC/hr4OXTnrwkSTpt+A2iJEmqpwwU09fvDCGcN5OT0eSEEOYBnyTJHssDz4kxDo057ZVVr68aEzgCIMb4c+Cv0t2X+O+BJEmdxeCRJEmqpwBcnb5eBPzLDM5Fk/fnwP3S1++KMW6rPhhC6CJZmgawI8b4lTpjfSLdzgF+v4lzlCRJs5zL1iRJ0kTeDvwucCHw2yGEF8cYpxVESgtwvxy4AjgT6AJ2Ad8HPjhe9kt63Q9IavHkYowL6ox/C3AxcE+McfOYY5X05auB/wd8iKS7WAHYDrw+xvidqvOXAS8CngZsBZYCR4CbgP8gqSFUZIwQwmbg7nT3d4H/BF4IvCCd21JgD/BN4O9jjHfW+n2mIoSwAXhzunsXSe2isVal8wD4Wb3xYowHQghHgNUkyxglSVKHMPNIkiTVFWPMkQRPhtu0Xx1C2DTV8UIIbyapvfMyIACLSbKaAvAS4NchhLelWTGtdBZwHfC49P7LgUtIAkjDc300cBvw98CjSIIt84AzgCcAHwNuCiFsmeBei4DvAB8lCX6tIVlKdh7wUmBbCOGJzfrFUm8h+WcL8Nr0f8ex5le97m9gzEK6vdd0JiZJkk4vBo8kSdKEYozXAR9Od5cD10xlnBDC20hq58wBfkUSLHoYSebPnwF3kvx98tb0p5VeRRLE+TvgkcAfkCzt2pHO9VKSzKQNQAX4N+CpwEOAZwPfSsfZStLGfkOde/098GjgeuD/pGM8Hfh2erwH+EQIYUkzfrE0uDdcBPvmGOO1NU49SvK7QZIBVm/MhST/vCAJnkmSpA7hsjVJktSovwSeAmwGnhxCeG6M8d8bvTiEcAmjy6g+DVw5ZrnXdSGEjwL/RVKH5y0hhC/UWsLWBN0kwaI3Vr33xXSuc0iyihaSZFw9K8b4xarzfgZ8PoTwFpJlfRuAfyIJLo3nDJLf+YUxxuEMLkII/0ny+z4RWAs8Cfj89H81Xk6SIQVJcGxcMcZcCOFm4AHAI0MIq2OMR2qc/nhG/3ZcXOMcSZLUhsw8kiRJDYkxDnJim/f3hxDWTmKI15D87XEEeMl4dYLSe1xJkg3TBbxi6jNuyEdqvP8UkhpPAB8ZEzgaEWP8K5IW9gBPCSFcVGO8IeBV1YGj9PoKJxYhvx/TlGYIDf/vdBfwhQku+XS6XQT8YwjhpL8PQwgrgHdXvTVv7DmSJKl9GTySJEkNizF+G/h4ursG+GAj16X1i56Q7l4XY8zUucfdwK3p7hVTnGoj9sQYd9c49jtVr/9pgnH+ser142ucc0OM8WiNY9WFspfWOGcynk9SmwmSQtylCc6/BhjO7nom8K0QwqNCCAtDCMtCCE8nWW53AUmBb4B8E+YpSZJOEy5bkyRJk/XnJEGSDcCzQgifjTF+dYJrNgMr09dPrep4NpFzpzbFhuyqc2xruh0AbplgnOurXt+nxjk76lw/UPW6GX+bPSfd5oEJlxXGGLMhhKeSdH3bQhKwGxu0q5DUqjqbpGPcYBPmKUmSThNmHkmSpEmJMR4H/rTqrY+ky5rqWTPB8VrmhhCakY0znr46x1an28Pp0rJ6DlS9XlXjnIEa78NowWpIlupNWQhhJUnxb4Bvpf9bTSjGeCfwQOA9wKExc/se8NgY41sZDQAeQJIkdQwzjyRJ0qTFGL8cQvgPkg5lG0i6if1xnUuq/+b4GA0ud0vVXOJWRyNfkNULCk0miDOn6nW55lmnxpMZ/Wc9Ua2jE6SBpteGEF5H0nltIbBrzBLD4TpQd093opIk6fRh8EhtJ4SwCPgLkjbK5wL9wA3A+2KM32jSPT6bjn9BjHF7nfMuBl4P/DZJF51e4KfAP8QYv1vjmsuB708wha/GGJ8+halLmqRZ9ky5gqS9/KUktXH2krSLf2+MMTZ4r27gR8DDgXnjFa2ehJeTPN9WA1eGED5X59zqej+lGOPNU7zncMBnouDO8imOP2x4vmtCCF0TZB+tH+e6mfLkdJsHJlpKOK60qPfOse+HEFaR1D0CmOr/fpIk6TTksjW1lRDCYpL0+rcC5wHbSOoyPA74egjhrU24x0tIPuRNdN4TgF+QFC5dQVKMtIukDfN3Qgh/WePS4U47+4Dravy0qm21pCqz7JnyFuA7jAYHtpEsIfoT4OYQwjMavOW7SAJH0xZjPAi8uuqtf6Z2C/e7GM0geuhEY4cQXhdCuCqE8Jgxh4aDXfNDCHPGXpdeu5AkYD8dv0q3S4CLJzi3+ve5bZr3na7hJWs3xxjrLcsbEUJ4RgjhPSGED01w6tMY/dvx21OdoCRJOv0YPFK7+TDwEJJvRLfEGC+JMZ4DvIDkA8fbxvkg0rAQwqs4satOrfNWAP8GLAC+CGyMMd6f5Nvpv0pPe1cI4RHjXD4cPHp/jPERNX7eMNXfQdKkzJZnyhXA29Pd1wLrY4yXkDxT3kfyrPm3EMKZdcaYE0K4GnjdVOc7nhjjp4HhDKzNwPNqnFdgNKvyPjWefwCEEH4b+FuSLmBjn3fVNXw21xjiMUy/lfy3ql5fNcG5L6l6PWNBlRDCWSRLCCH58qJRDwVeA/xpCCHUGHtueg4kxb9/PMVpSpKk05DBI7WNEMIWkiyfMvC8GONIF530w83fprtvm8LYG0IIXwT+gcbqYDyZpGjqceAPY4y96TxKacHRH6XnXTnOtcPBo19Pdp6SmmeWPVNem24/G2N8z3Dr9RhjjqTz2a0kAaQ/rHG/C4DvAv93snNt0FUky/mgftDmvVWvP5EGO04QQlhHksE07ANjTvlV1etXjHP9euDqurNtzH8Cw0sIXxZC+N3xTgohvBm4LN397jSW4zXDfateTyZ49KWq13879mC61PGDjGZgvWP430FJktQZDB6pnfwfkqKl/xtjHG9Z1zXp9uEhhLMbHTT9wHAH8AzgGCd2GKpl+APR9jGFRof9PN2eMI/0m93hP84nag0tqbVm0zPlOpJgxsfGHkhr8QwHm88Z535/SrLE7TKS1vR/0ehcG5UG1ibMaIoxfg/4SLq7BfhlCOEtIYTL0p/XADelxwC+HGP8yphhPsvo0rU/CyF8NITw2BDCI0MIrwVuBAJw5zR/pxLJvwN5kr+XvhhC+GQI4ckhhAeHEP4ghPDfjGaTHqZG8O4UulfV672NXhRjvB74Wrr79BDCt9OlbA8NITyPJMtoOLvqq8DHmzJbSZJ02jB4pHZyabodN5U+xrg
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAASbCAYAAAASrO/IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5yld1n38c/03dnsZlNII40kcBGKIFLMkyhLEREQREVABCGCiAqC+CgP0gUUUZpAggpCQATECIgUaUHpinSSHwRIAgm7m2yZPqc/f9z37Jwze/qczbTP+/Wa12n3/Tv37CYnme9c1/UbqtVqSJIkSZIkaWsbXusLkCRJkiRJ0tozJJIkSZIkSZIhkSRJkiRJkgyJJEmSJEmShCGRJEmSJEmSMCSSJEmSJEkShkSSJEmSJEnCkEiSJEmSJEkYEkmSJEmSJAlDIkmSJEmSJGFIJEmSJEmSJAyJJEmSJEmShCGRJEmSJEmSMCSSJEmSJEkSMLrWFyBJkvoXEVcB980fPi+l9LIuz3s98Hv5w9ullK4b/NWpmYi4AHgm8HPA2cAi8APgSuBvU0r7u1jjl4DfAu4FnAjsB74GXAG8J6VU63D+JPAk4JHATwC7gVkgAR8E3pBSOtzP9ydJkjauoVqt7f9DSJKkdWxFSFQAfjKldHUX5xkSrYGIeCJwGbCtxSG3AL+ZUvpQi/O3Af8E/FKbt/k08GutwqaIuCvwr8D5bdbYD/xKSukzbY6RJEmbjO1mkiRtHhPAmyPC/76vQxHxC8BbyAKiBeClwIOAnwf+nCzkOxl4b0Tco8Uy/8ByQHQ1WTXRJcCjgf/In78vcGVEHFUxHhGn5cctBUT/DPwycG/gYfn6NeAU4EMRcWGf364kSdqAbDeTJGlzuQh4BvCatb4QLcuDu9cDQ0AR+JmU0pfrDvmPiPgI8ClgO/AXZAFS/Rp7gMfkDz8P7EkpFesOeU9E/C3wFOBi4NeAd664lBcBp+X3n5lSeu2K1/89Ij6Wn7cTeO3K61BreRvfH5P9Pd0OmAG+DLwmpfThPtc8G3gB8GCy8O5m4BPAn6+sGsz/GflUD8s/KaX01g7v/wjgfcD1KaVze1hbkrQB+ZtGSZI2hypQzu+/LCLOW8uL0VHuDyz9nbx+RUAEQErpP4F/zx/+XEScsOKQJ9fdf+qKgGjJc+ru/1r9C3mr2q/nD7/UJCBauo5/Av4tf/jAiDij2XFqFBE7gE8CLyT7u/4WMEcWsn0oIl7Yx5oB/C9ZxdhxZHOntgGPB/43In5+xSlTwGc7fO3Nj60C3+vw/icDb+r1uiVJG5chkSRJm0MJeGV+fxL4uzW8FjX3QeAG4P1tjqmvDDlrxWvfJ/sh/6sppW80OzmldJBsnhBkQ7Hr3Y2sOgjgAx2u9WP57RBw1w7HKvMG4D7AV4HzU0r3SCmdAzyBLMB9UUQ8sNvF8nbBDwInAW8HTk8p3Qs4nawqbRvwrog4aemclNJXUkqXtPoiq3Aazw//fyml/+pwGW8ETu32miVJG5/tZpIkbR4vJtut6o7A/SPiKSmlVYVF+Uya3wceAJxJFhr8kKyl5W9SSt9ucd5VZLNxCimlVkOaiYhvAnemSStLRCztrvEssgqb15PN3ykB1wLPSSl9vO74XWTVNo8A7kIWiBwAvkI2e+ftKaUyK0TEuWS7i0H25/cB4IlkP9zfOV/nRuCjwF+nlNpWXzSTX+fHOx4I59Td//GKNV5A1nbUUv5nsFSB9OMVL99C1m52BvC5DtcxVHe/5d+fMhFxPvAbZNU5j0sp/XDptZTS2yPiDsDzyP78u/nngHy9C8iCxScvVY6llIoR8Qyy0O9nyP79eF4X1zgC/CPZbngfZjlUbnX8Y4FHAfNkwbMkaQuwkkiSpE0ipVQgC0mq+VOvjIjb9rteRDwf+Abwu0AAO8h+WAzgd4BvRMSLImKo9SoDcRZZBc2D8vc/HrgHWVC0dK33A64B/hr4WbIfhMfI5u8sDYz+Sv7DfDuTZD/Ev5ks5DqZbCD4ecDTgG9FxEMG9Y3Vi4h7sTyU+lMppZv7WOZFZN83wLvrX0gpfS+l9OKU0lNTSp3m1uypu399H9ex1TweGAE+3yI4vTy/vTifMdSNJ+a3b1/ZWphSqrHcBvbYLtd7Gtm/G1PAU/I1moqIpWqlabL5WJKkLcKQSJKkTSSl9FmythfIwpTL2xzeUkS8CHgJ2Q++XycLhf4PWSXPH5DNMhkmm7/S86yVHj2TLKz5S7LKiUcBL08pXZdf60VklUank+3M9Q7g4WStP49hedevuwD/lf8A3MpfA/cDvkD2g/99yIKbpfarCeCtEXHcar+piBiKiJ0RcY+IeDVwVb7+IbLqrW7WGI6I0yPiYRHxCbKqEoAPcfTQ6m6v605kf36Qza/5Wj/rbDEX5befafZiSulGlsO2+3ZaLB90fu92a5IFpwDnRcTK1sSV651IVmkI8Pz8etr5O7Kg9Q/JKgclSVuE7WaSJG0+/w/4ReBc4GER8esppa4Dg3z79efnD98OXLqiTeuzEfFmsnkpe4AXRMR7WrWeDcAwWSj0p3XPvTe/1hGyKqHtZBVUj04pvbfuuC8B746IF5D9kHw6WQXGw2nuNLLv+YkppaWKLCLiA2Tf70OA2wAPZUWlTh8el79Xvc+StRZd0+Ua/0HWCrikShamvbhZa10n+XDrK8jCQYBXt6s40REX5LftWhGvI2snvEMX692W7J/pdmv+EKiQ/V3dgfZhzgvIQp8EXNbujSPit8j++f5ISunNEfHELq5XkrRJWEkkSdImk1KaA3677qnXRsRtelji2WT/j3AA+J1mYUP+HpeSVe4MAU/v/4q70uoH218km8EEcNmKgOiIlNJLyCp1AH4xr5ZpZpFsa/hq/ZN5UFI/3+lu3Vx0B+c0ee6uwNOb7GzW7RrDZAHYrzc5tq08cHsH8FP5U98AXtfrOlvUKfltuxbBA/ntyT2s13LNlFKFrHWs7Zr5DmVLnwcvaxceRsQ5wKvydZ/c6jhJ0uZlSCRJ0iaUUvoY8A/5w5OBv+nmvHy+0C/kDz+bUppv8x4/YHk3rge0Om4Abkwp/ajFa/VbgHfaqvuNdfcf3OKYL+c7hDVTX9Gxs8Uxvfg08HNkLW2PJ2tx20U2A+o/I+KUNucueSFZG+B9yapFDgB3At4cEX/Z7YVExBhZQPQr+VNTwKNSSovdrrHFLQ12bvfntbDi2G7WG8SaTyOrSvo+bVoQ83/330L2z+Azu2hJkyRtQrabSZK0ef0hWRhyOvDoiPinlFK77dcha1FbqmJ5eN0OY53crr9L7Eq7Npq75LezwDc7rPOFuvuttnW/rs35s3X3V/3/UCml+lkzX4qId5JVK11K9n39FdkOa+3WqP+h/z8j4m3AfwFnA/83Ij6SUvpkuzUiYgdZ69xD86fmgIellFIv388WV6H7X7528+9Upcf3b7pmRIyShY4Af5lXH7Xy+8D9gX9PKb21x/eXJG0SVhJJkrRJpZQOA79X99RlEbG7w2ndtMI0MxoRg6iuaWa6zWsn5be3dDE7Z1/d/RNbHDPb4nlo/EF84Du65S1uvwssVXA8OiJ62no8pXQDy6EAZIFTSxFxGllF01JANA08eEWApc6W/rnZ1uaYpRlDLavzmqy32jXvSzZnaxF4V6tFIuL2ZLuYHaKxVVWStMUYEkmStImllP4V+Of84elku3e1U18h8xbgJ3v46uaH35W6+X+RduFPL2HNSN39asuj1lBKqUC2UxvAOMvzlnrxEZb/Ln6i1UERcWfgiyzPINoP3M+AqC+35LcntTlmKYDd38N6LdfMq4SO77DmI/PbD6WUppodkO+k9jaylrU/SCnd1MX1SZI2KdvNJEna/JbaSE4CLo2IlhUFQP08nkpK6at9vudSsNMpxDm+w+udLF3vyREx1KGa6NQm590q8kHU5wOnpZQ+2OHwA3X3x/Pzh4Cz8jUOppRabkufUqpExBTZD/3jLa7nIrIwaqm18FqyCqJ2u3OptauB25O1a7ay9Np3Oi2WUrop/zs8Pj+
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde5zkWV3f/1d1VVffpue+l5ld9g6HhQUWRMhGVCJKEKNIjNFEUeAnAmoSRAMkXkANXmL8CVGEmEBUVAQRFUWigGIUWRFZ2GV39uzO7M7s7tyn59Ld1XWvyh/fb3dXd1d1V3dX9fR0v56PRz++VfU932+d3mWLqfd8zudkms0mkiRJkiRJUjsDl3sCkiRJkiRJ2rwMjyRJkiRJktSR4ZEkSZIkSZI6MjySJEmSJElSR4ZHkiRJkiRJ6sjwSJIkSZIkSR0ZHkmSJEmSJKkjwyNJkiRJkiR1ZHgkSZIkSZKkjgyPJEmSJEmS1JHhkSRJkiRJkjoyPJIkSZIkSVJHhkeSJEmSJEnqyPBIkiRJkiRJHeUu9wQkSdLGCiF8Gvja9OmPxxjf3uV1vwr8YPr05hjj0d7PTt0IIeSBLwBPB+6KMd69hns8DbgHKMYYd3d5zQuB1wP/FLgaKAEPAn8EvCvGOLnaeUiSpM3PyiNJkra3nwgh3H65J6FV+zmS4GhNQgijwG8A+S7HZ0II/x34K+BfA9en1+4Engf8LHBvCOEZa52TJEnavAyPJEna3oaA94YQ/DPBFSKE8J+AN67j+iGSSqGvXMVlbwb+Xfp4AvhRkuq1bwP+IH39RuDPQwj71zo3SZK0OblsTZIk3QX8e+Adl3si6ixdqvZO4HXruMf1wIeB56/imnHgx9OnF4DnxBgfaxnykRDC24H/DBwA3pT+SJKkLcK/ZZQkaftqALX08dtDCLdczsmosxDC84DPMB8c1Vd5fSaE8AqSPkmzwVG39/gaYCx9/CuLgqNZbwUupo+/eTVzkyRJm5/hkSRJ21cV+MX08SjwPy/jXNRBCOHngbuB56Yv/TGrqBILIeSAzwG/BVxFEhq9Bfh8l7e4uuXxQ+0GxBhrQEyfHuh2bpIk6crgsjVJkra3nwJeDjwV+LoQwmtijOsKkdIG3D8EvIiksXIGeJyk2fKvxBgf6HDdp0n66JRjjMPL3P/LJM2ij8UYb1p0rpk+/GHgY8CvAi8gCcoOA2+JMX6yZfxO4PuAlwF3AOMkPX3uAX4feH8ajCyew03Ao+nTlwMfBV4JfE86t3HgOPDnwC/FGI90+n268E9I/hmeB94UY3xvCOFtq7g+x3zwdB/wfTHGz4UQXt7l9SdaHj+13YAQQgaYrVw70W6MJEm6cll5JEnSNhZjLJOEJ430pV8MIVy31vuFEH6CJKD4ASCQLHcaTR+/DrgvhPC2NGzopyeRLPN6cfr+u4DnkARIs3P9ZyTbzP8SydKsvcAgcC3wjcD7gHtCCLeu8F6jwCeB95KEX/tJGpHfQrKt/f0hhJeu43e5APwCcFuM8b1rvMfDJP+enx1j/Nwqr/0MSXAF8IMd/vfxRpKqJkhCN0mStIVYeSRJ0jYXY/xMCOFdJLtp7QLewxr61qTVMG9Nn94L/Fp6HAC+gqQp960tY962nnmv4A0k1Tr/FfgTkkDozhjj0XSud5FUJo0ATeB3gA8Bp4GbgVeTBE93AH8TQviKGOPJDu/1S+n97wbeRbK06wDwg8A3kARJvxFCuCXGOL2G3+XbYoyNlYe1F2MshRBCjLG58ui210+HEH4IeD+wB/hCCOHnSPon7SLZce170+F3A/9trXOVJEmbk+GRJEkC+E8kgdFNwL8IIfzbGOPvdntxCOE5wE+kT98PvHrRcq/PhBDeC/wp8ELgJ0MIH+q0hK0HBoCfjTH+WMtrH07nmiWpKhohqbj6jhjjh1vGfQ74YAjhJ0mW9R0A/gfwLR3e61qS3/mVrSFPCOGjJL/vS0mqcr4J+OBqf5H1BEct91hTcNRy/QdCCCdJKqCeB/zyoiE14GdIlugV1vNekiRp83HZmiRJIv3C//0tL70zhHBVp/Ft/AjJnysmgNe16xOUvserSSp9MiSVTv307g6vfzPzvXvevSg4mhNj/Gng07PXhBCe1uF+JeANi0OeNLBp7R/1rG4mvRmFEIZJluTd0GFIDviXwFdv2KQkSdKGMTySJEkAxBg/Afzv9Ol+4Fe6uS7tX/SN6dPPxBhnlnmPR4FD6dMXrXGq3TgeY3yiw7l/3vL4f6xwn19refySDmP+McZ4vsO51kbZ4yu816YUQhgH/g/JMsNrSQKxZwLDJDuxfS/wGEk49rEQwisuz0wlSVK/uGxNkiS1eiNJSHIA+I4QwgdijH+8wjU3kfTCAfiWlh3PVnLz2qbYlceXOXdHepwGvrzCfe5uefyMDmOOLnN9a4+jK/XPXb9AUnUE8B9jjK09jc4CvxVC+DjwWZKeVu8NIdwdY3x4g+cpSZL6xMojSZI0J8Z4kaTR86x3hxB2r3DZ/jW+XS6taumHyWXO7UuP57roBXS65fHeDmOWa4Ldev9+7zDXcyGEUeCV6dP7SJqDLxFjPMv8MsRB4LV9n5wkSdowV+rfgEmSpD6JMf5hCOH3gW8nqUD6JeD/W+aS1j9PvI8ul7ulOi5xW0Y3f/m1XCi0mhAn2/J43Y2rr0B3kDQWB/jYCmHbXwAFYAx4fr8nJkmSNo7hkbaU9G9I3wR8J8lyiCngH4F3xBg/3qP3+EB6/yfHGA8vM24AeBVJL4g7SP4wfQz4Y5IdgC60ueYm4NEVpvClGOOda5u9JHXth4CvI6nSeXUI4feWGdva76ceY/ziGt9zNphYKdzZtcb7z5qd7/4QQmaFQOSaNtdtJztaHl9cbmCMsR5COE/y/3fr/XckSZI2EZetacsIIYwBfwm8FbgFuJ/kb0BfDPxZCOGtPXiP15EER93M5RPA/yLZeeYsSU+MW4EfBb4QQri+zaWzO/GcBz7T4eeedf0SktSFGOMZ4IdbXvp1klCgnUeYryD6JyvdO4Tw5hDCa0MIX7/o1OwObfkQQnbxdem1IyTb3q/HvelxB/D0Fca2/j4PrvN9r0RnWx7futzAEEKe+X83Z/o2I0mStOEMj7SVvIukTP6LwK0xxufEGG8EvofkC8nb2nxR6VoI4Q0s3HVnOe8m+Rv7E8DzY4whxhiAO4GHSZrLttvhZzY8+lCM8QUdfl611t9BklYjxvh+YLZq8ybguzqMqwJ/lT59RgjhBZ3uGUL4OuDngfcA/3nR6dbKlps63OLrSXrqrMdftDxeqTfP61oef2Kd73sleoD5iquXhxB2LDP25SQ7sAH8TV9nJUmSNpThkbaEEMKtwHeT9KP4rhjj3C476Zefn0+fvm0N9z4QQvgw8Mt00ScjhPA84BVAHXhJjPFzLXO5j/kvKt8YQrhu0eWz4dF9q52nJPXJa0mWAMPyoc3/3/L4N0IIT1o8IIRwNUkF06z/vmjIvS2P/92ic4QQrgF+cdnZduejwOyy4x8IIby83aAQwk8wv8vYp9axHO+KFWOskwR9kDRG/58hhCX/OwghPIX5f59FkspbSZK0RdjzSFvFK0iamn4mxvhAm/PvAX4c+KoQwg0xxse6uWn6heL9JEs1LqT3eNcKl31vevzNNCxa7NPpfS6RBEytZsOjlbaOlqQNEWN8PITwZlaovIwx/mUI4d3A60mWN30phPAO4K/TIc8F3ggcTJ//YYzxjxbd5gPAT5L8+eQ/pDux/R5QIlk+9ob0+iOssIRqhbnWQwivSOeWBz4cQvht4PdJllvdSNIg/J+nl5xj/rN9O/pZ4JtI/j/qO4GnhRB+jeQvOoaAF5GEfTvT8T8cYzx+OSYqSZL6w/BIW8Vd6fFv252MMR4PIRwj+ULwtSSBUDeeBYwCv0PSq2h4+eEAfEN6/EiHuTSBty9+PV0KcEv61MojSZvJe0hCg69ZYdy/Iwl63gDsAX6qw7iPkFSLLhBjPJwuEf7vJNXRr05/ZjVIlrrtA35kFfNfIsZ4dwjhJcAHSfr0fE/6s9g
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZikZ1nv8W/PviRkhUBMSEiAGwSUJYBRkCCiIoK7KAjGiCAuCOIRjiAiiGwqOwQPIAJ6TFA2OcA57KssYtjDDYFsBLLMJDO9b/XW+eN5a7q6pqp6q5me7vp+ritXLe/7PvX0TLqm+1f3cz8jzWYTSZIkSZIkqZst6z0BSZIkSZIkHbsMjyRJkiRJktST4ZEkSZIkSZJ6MjySJEmSJElST4ZHkiRJkiRJ6snwSJIkSZIkST0ZHkmSJEmSJKknwyNJkiRJkiT1ZHgkSZIkSZKkngyPJEmSJEmS1JPhkSRJkiRJknoyPJIkSZIkSVJPhkeSJEmSJEnqyfBIkiRJkiRJPW1b7wlIkqSjKyI+CjyofviszHz+Mq97FfAH9cM7ZOZVg5+duomIOwJPAR4K3B6YBq4E3g78Q2beuIwxtgIXAo8C7gGcAtwMfA54bWa+bxXzeibw18DrMvP3Vnq9JEnaGKw8kiRpuP1FRNx1vSeh3iLiQuArlODuzsAu4ETgXsDzgK9FxM8uMcYZwH8Br6cEULcFtgOnAY8A3hsRr4+IZf9sGBH3Bf5ipV+PJEnaeAyPJEkabjuBN6wkNNDRExEPA95ICYymKFU+PwX8NPACYAY4Ffi3iLh3jzFOBD4G3LN+6n3ALwHnA78HXFs//zssMwyKiLvX4+xc8RclSZI2HJetSZKk84EnAy9b74loQR3ovQoYAWaBB2bmF9pO+X8R8X7gI8Bu4IWUYKnTC4Fz6vsvzsyntx37TES8E/gipRrpGRHxisy8pc+8HgG8BThhdV+ZJEnaaPyUUZKk4VUB8/X950fEOf1O1lH3EyyEPq/qCI4AyMyPA/+nfvjQiDip/Xi9XO1364cf7wiOWmPcAPxN/XAX8HPdJhMRJ0XEy4F3UYKjxsq+HEmStFEZHkmSNLzmgJfU9/cA/2sd56Lu3gNcQwlserm87f6ZHccexcLPe/+zzxj/Tqkmeinw3c6DEfGjwBWUCrUR4PvAo/tNXJIkbR4uW5Mkabj9FfCLwF2An4iI383MNYVIdQPuPwQeApxBCRuupSyvemVmfr3HdR+l7AI3k5m7+oz/VeBuwNWZeXbHsWZ996mUipxXAQ+gBGVXAM/IzA+2nX8r4PHAzwN3B44H9gOXAW8D3pKZ83SIiLMpu51B+fN7N2Uns8fVczseuA74v8DfZea3e309vdTz/OCSJ8JZbfe/33HsYfXttZn56T6v9T3K3Hu5M3Ay0ATeTPnzddmaJElDwsojSZKGWGbOUMKTqn7qJRHxA6sdLyL+grIz2O8DAeylVDUFpTnzVyLiORExsqaJL+1M4FOUHkB7KEHHvSkBUmuuDwa+Afwd8OOUcGQ7pfdPq1H1ZRFx7hKvtYcS8ryBEn6dSmkkfQ7wJJaxG9pq1Tue/UL98COZeVPHKfeob/+r47rjozh9mS9VAe8F7p+ZF/briSRJkjYfK48kSRpymfmpiHg18EeUkOViyvbtKxIRzwH+sn74ZeA19e0W4D6UJU/ntp3znLXMewlPoVQ8vRj4D0ogdM/MvKqe6/mUyqTdlGqafwYuBW4A7gBcRAme7g58IiLuk5mdVT0tf1eP/xng1cA3gdsBfwA8lBIkvSkizsnM8bV8UXXodhxwJ+CxwBPq8W+hVHu1n3sKcJv64dX1c78EPA340bbzrqX8Xb20DhO7eWtmvnktc5ckSRuX4ZEkSYLSD+cRwNnAz0XEozPzX5Z7cb1NfGub97cAF3Us9/pURLyB0sPnAuDZEXFpryVsA7AF+JvMfGbbc/9Wz3UrpapoN6Wi5lGZ+W9t530OuCQink1Z1nc74HXAI3u81m0pX/OFmdmq4CIi3k35en8WuDXwcOCSNX5dj6lfq92ngMdn5jc6nj+17f6BiLgYeGKXMc8EXgA8IiJ+rltVUfvXJUmSho/L1iRJEpk5QaliaXl5RNx6BUM8jfJzxX7g97r1Capf4yJKpc8IpdLpSHptj+cfQenxBPDajuDokMx8LvDR1jUR8YM9xpsGntIZsGRmk8VNyH94OZNewlldnrsH8EedO61RKpRaLqIER9+hNNE+ibKk8CGUiiko1UhvHcAcJUnSJmN4JEmSAMjMDwD/WD88FXjlcq6rl1K1GjN/KjMn+7zGlSzsDvaQVU51Oa7LzMN2Dav9dNv91y0xzmva7v9Mj3O+kJk39zjW3ij7+CVeazk+RlkKd3/KsrXPALei9Jj6eETcpu3cPW33b1/P5X6ZeWlmHsjMycz8MKUS7JP1eT97pPozSZKkjctla5Ikqd2fUEKS2wGPioj/nZn9tomHstStVfXyyLYdz5Zyh9VNcVmu7XPs7vXtOPDVJcb5TNv9e/Q456o+17f3OFrzz12Z+cm2h5+LiH+hVDddRPm6/paFXdOmOi5/ambu7zLmTET8EWWHOYDfpDTHliRJAqw8kiRJbTLzAKXRc8trI+LEJS47dYnjvWyLiEFU43Qz2ufYKfXtvnppWT83tN0/ucc5/Zpgt48/8B3m6qVyvw9cVz/1qIhoVRyNtZ06Bby/zzhfBFqVWvcf9DwlSdLGZngkSZIWycx3AG+rH96OsptYP+0VNW8E7rWC/3oucetjOT+/9AuFVhLibG27f0w2ja53SPs/9cMdLPRzur7ttJsyc26JoVrVWqsNAyVJ0iblsjVtehHxOOBJlOUGTSApPT1eu5rdY+pPdP8M+HXKkosx4AvAyzLzfX2uuwuloexPAD8AzAHfAt4OvDwzx3pcd5/69X6c8mn5jZQGri/PzM+vdP6SVma13/NLjHl74NmU5WG3AW4CPgS8IDMv73Pd3YFnAQ8GTgS+T1le9PzMvK7HNRey0Meo0856idnLM/MpHcf+kPJ+dQpwUUT8a58vqb3fT6OuYlmNVuCzVLhzwirHb2nN99SIGFmi+ui0LtcdFXUD7HOB22bme5Y4vX052g6AzDwYEddQ+h11NtPuZmd9e9hua5IkabhZeaRNLSJeCfwT8COUT1SvBu4DvAp4X0RsX+F4e4EPA38JnAN8DZgAfgp4b0T8ZY/rfhX4IvB44AzgCsoP+vcEngf8V0Sc0eW63wY+C/wapfHp1yg/3D8G+M+6R4WkI2S13/NLjBnAfwO/Q9kN60vALkrz4/+OiJ/ucd0Dgc9TdsraAnyFEuw8CfhKRNyzx0u2dvi6krKl+6dYWNLVrB9/p/OizLwReGrbU/9A2Z2rm++wUEH0Iz3Oaf9anh4RT4yIn+w41NqhbUdEbO28rr52N2Xb+7X4cn17HHC3Jc5t/3q+scbXXam3UP7O372Mne/Obbvf3ii81bPp+D67xRER24CoH161wnlKkqRNzvBIm1b9afsfAgeBB2bmXTPz7sB5lE/rf4ryyf9KvJrSC+KLwLmZee/MPIvSnHQeeE7nL0MRcQ7lF4CdwJuB22Tm3TPzbODelF2H7gxc2nHdXYGLKUsmXgaclpn3onwK/j9az0fEfVf4NUhavhV/z/dT/4L+Hkro8xbgdpl5X8rSsFdRQqR/jYhTOq47GXhXffxF9XXnAacD/06pKvn3iNjR5WVb4dH/zMwHZOYDWGiMPFs/94pu883MtwCt6qqzKcF1t/PmgI/UD+8REQ/o82fwE8ALKe9vf95x+EDb/bN7DPGTwIqC/y7+X9v9Jy5x7u+13f/AGl93pT5R345QGmJ3FRG3BR5eP/xGxy5z7RVjv9/ntX6JhXDwnSucpyRJ2uQMj7Qp1Z9YP6t++PT23Wky8wuUT/gBnhoRy1r+EBHnUnagqYDHZOahnXzqX7BeWD98TselT6YER18ELsrMg23XfZHyA3sDOL/jF64/piw9+DTwJ5k5XV9TZebfUhqfbgGesJz5S1qZNXzP9/ObwB2Ba4DHZ+Z
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhsd13v+0/N1ePevfdOspPszIFfCDNEJOfAAUE5R/GgXI5HlEHNRQZBRXkO4EUmFRC8XEFkcAC5l0GZFEFBZZD5EKYgU/ILgexk75DsqYfq7prWdP/4rapaVV1VXd29en6/nqefVavWqlWr907q2f3p7/f7y0RRJAAAAAAAAKCf7HbfAAAAAAAAAHYuwiMAAAAAAAAMRHgEAAAAAACAgQiPAAAAAAAAMBDhEQAAAAAAAAYiPAIAAAAAAMBAhEcAAAAAAAAYiPAIAAAAAAAAAxEeAQAAAAAAYCDCIwAAAAAAAAxEeAQAAAAAAICBCI8AAAAAAAAwEOERAAAAAAAABiI8AgAAAAAAwED57b4BAACwtYwxn5H0qHj39621rxrxdX8u6bnx7hXW2uPp3x1GYYwpSvqGpPtKut5a++URXnOFpOdLepykSyVlJJ2Q9ElJb7DWfn+V198m6aoRbu8Oa+3lI5wHAAB2CSqPAADY315qjLnPdt8E1uw1csHRSIwxvyDpO5J+S9I1ksYljUm6t6TfkPRtY8zTh7x+WtKVG7lhAACwe1F5BADA/laS9HZjzCOsteF23wxWZ4z5PUm/u4bzHybpPZIKkgJJb5H0cUmepMdIeoHcfwd/Y4y521r7iT6XeaBcpZIkPVvSjUPesjnqvQEAgN2B8AgAAFwvV5Hyhu2+EQwWt6q9US68WYs/kguOJOmXrLUfSBz7pDHmXyV9Wq4i/fWSHtDnGg9KPP6wtfbUGu8BAADsYrStAQCwf4WS/Pjxq4wxtCXtUHH10BfVCY6CEV9XkvQT8e5XeoIjSZK19rOS/iHevb8x5rI+l2qFR/cQHAEAsP8QHgEAsH95kv4kfjwu6a+28V4wgDHmjyV9WdJ18VP/qNGrxA6pU2l+65DzvpN4fGGf4w+OtzeN+L4AAGAPoW0NAID97ZWSnig3RPkxxphft9ZuKESKB3A/T9JjJR1TZ1Wvf5f0Jmvt9wa87jNyq8A1rLXlIdf/jtyw6BWrehljovjh70j6Z0l/LukRckHZbZJebK39ZOL8aUnPkPRzku4naUrSObmQ5AOS3mWt9dXDGHO5pNvj3SdK+oikX5X09PjepiTdJelfJb3eWvuDQd/PCB4u92c4K+mF1tq3G2NeMeJrz8hVl+Xl/o4HuTrx+EfJA8aYgqRr413CIwAA9iEqjwAA2MestQ258KQ1LPtPjDEXr/d6xpiXSvq23ApeRtKEXFWTkWu5+rYx5hXGmMzgq6TiErk2r8fF739A0kPkAqTWvf6EpFvk5vz8F7kqnYKko5J+WtI7JN1kjFltefpxueXu3y4Xfh2RG0B9paTnSPquMeZnNvC9zEl6raSrrbVvX8sL4+DrY/HudcaYJ/aeY4x5sKRfiHe/Yq29s+eU+8h9P5J0szHmN4wxnzPGzBtj6saY24wxbx3hzwkAAOxSVB4BALDPWWu/aIx5s6TflAtZ3ibpv6/1OnE1zMvj3W/Jrer1LblfVj1Ubij3VYlzXrGR+17F8+WqdV4n6aNygdCDrLXH43u9Xq4yaUxSJLca2fslnZJ0haQb5IKn+0n6vDHmodbauwe81+vj639Z0pvl2sMulPRcST8lF7y80xhzpbV2aR3fy5M2uBLe/5L0sPge32+MeZOkf5PUkKvKepGkolzF1TP7vD45LPvNkqZ7jl8Vf91gjHmutfavN3CvAABgByI8AgAAkvR7coHR5ZJ+1hjzy9ba9476YmPMQyS9NN59l6Qbetq9vmiMebukf5L0aEkvM8a8f1ALWwqykl5trX1J4rkPxveak6sqGpOruPpFa+0HE+d9RdL7jDEvk2vru1DSX0h6woD3Oir3Pf9qMuQxxnxE7vv9GUnnSXq8pPet9RvZYHAka+2txpiHy6269hS5lr7f6TntQ5L+l7X29t7XqzPvSHLB0Uflvt875b6vn5f0K3IB1F8ZY5astX+3kXsGAAA7C21rAABA1tpldVedvNEYc94aLvECuX9XnJP07H5zguL3uEGu0icjV+m0md464Pn/rs78n7f2BEdt1to/kPSZ1muMMdf2O09SXdLze0Mea22k7iHkDxzlpjfJf5KbxTSoXfCRkp5kjOn3b8NW5VEkFwo+wVr7AWvtjdbaf7LWPkMuIPPi895mjDmY5s0DAIDtRXgEAAAkSdbaT0j6m3j3iKQ3jfK6eH7RT8e7X7TWVoe8x+2Sbo53H7vOWx3FXdbakwOO/dfE479Y5TpvSTz+bwPO+bq1dnbAseSg7KlV3mtTGGNeLem9chVEX5JrpZuMvx4r6bOSzpdbee/tfQKkJ0n6cUmPsdb+jfqI/9t5Xbx7QG54OAAA2CNoWwMAAEm/KxeSXCjpF40xf2ut/cdVXnO5pJn48RMSK56t5or13eJITgw5dr94u6TuJer7+XLi8f0HnHN8yOuTM462/N9dxpgnyLUkStK/SHqCtdZLnPJpY8xnJb1b0pPlQp8b5eZeSZLiYOwrI7zdX0pqtQn+pKQ3bOjmAQDAjkHlEQAAaLPWzssNem556wgtSEfW+XZ5Y8xmVeNUhhw7HG/Pxq1lw5xKPD404JxhQ7CT19/sFeb6af1dhpKe1RMcSZKstYHcqnCtP7PnreeN4lXa5uPdS9dzDQAAsDMRHgEAgC7W2n+Q9IF490K51cSGSVbUvEOuPWrUr4EtbkOM8u+XYaHQWkKcXOLxhgZXb5Mfi7ffisOdvuLQ8N/j3fsaYybX+X6tv8/iOl8PAAB2INrWsKcYY8YlvVCu9P4KSYuSvi7pDdbaj6f0Hn8bX/9e1trbeo5dLqnfSjWDvNJa+4qea9xP0u9L+glJByXdLeljkl5lrb1r/XcOAGvyPEmPkavSucEYM2z1rOS8n8Ba+811vmcr8Fkt3Dmwzuu3tO73iDEms0r10QV9XrebtEKg+aFnOacTj6clLRljZiQ9XG4m0i3W2hsHvThexa5V1XV60HkAAGD3ofIIe4YxZkLSpyW9XNKVkr4raVnS4yR9zBjz8hTe49lywdEgdUlfXOXreOL87/dc/5GSvirpF+X+//y23D/EnyPp28aYBwkAtoC19rS6l3P/S0kTA07/oToVJw9f7drGmBcZY55ljPnJnkOtFdqKcRDR77VjcsvDb8S34u2k3ApkwyS/n1s2+L7b4Uy8vXKEcy+Ot6Gks/Hjy+V+gfFOuXlYw1wnqRQ//trIdwgAAHY8wiPsJW+WWw3mm5KustY+xFp7maSny/1A8oo+P6iMzBjzfHWvurOCtfYea+0jBn3JrUYUxKe/1Vr7nsT1D0n6R0llSa+VdKG19jpJF0n6kNww2g8ZY2gFALAlrLXvktSq2rxc0lMGnOep0/J0f2PMIwZd0xjzGEl/LDeQ+f/qOZysjrl8wCV+UlJh2H2P4N8Sj5+1yrnPTjz+xAbfdzt8Pt5eaox51KCTjDFH5SpeJekr1tpm/Pg7ks7Fjx9vjDm84sUdyXBpWKUaAADYZQiPsCcYY66S9FS535Y+xVrbXmUn/uHnj+PdV6zj2hcaYz4o6U+18WGnb5N0lVzA9Ts9x35LLiD6srX2xdZaX5KstYuSflnuN/tXyoVhALBVniXXAiwND23+n8TjdxpjLuk9wRhzvlwFU8uf9ZzyrcTj3+zz+gvklpPfqI9IarUd/4Yx5on9TjLGvFRSK3D51Aba8bbTmxOP/8oYc3HvCXHL93skjcVPval1LA4G/zrenZAboL6iKswY81xJ/zPe/Rdr7SirswEAgF2CmUfYK54mN9T0i9ba7/U5/ja5OUL/2Rhz6bChoUnxDxTvkvsH81x8jTcPfdHga/2sXAjkS/o1a22j55Rfjbdv732ttbZpjHmHpD+S9Evq/EMeADaVtfaEMeZFWr3
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkaVnm/zv2yIhcK2vfOqur6bdXqrsBEYQfiCKbjSyjOCMqMorgNrhc6ogO4Kjj+hMdEWQURFxANkWGRRoEBQRpaHqp7np7rb2yqnKJyMxYT8Q588c5EXkyMyIyItfKrO/nupKIE3HixJtVVHTlXc/zvBHP8wQAAAAAAAC0Et3sBQAAAAAAAODKRXgEAAAAAACAtgiPAAAAAAAA0BbhEQAAAAAAANoiPAIAAAAAAEBbhEcAAAAAAABoi/AIAAAAAAAAbREeAQAAAAAAoC3CIwAAAAAAALRFeAQAAAAAAIC2CI8AAAAAAADQFuERAAAAAAAA2iI8AgAAAAAAQFuERwAAAAAAAGgrvtkLAAAAG8sY83lJzwkOf9Va+5tdvu5PJP1kcHjEWnty7VeHdowxT5P045K+XdI+STVJVtKHJf2JtXaux+tdJ+k+SVFrbbqL8x+VdLSLS5+y1o71shYAAHBlo/IIAICr268ZY27c7EWgPWNMxBjz+5K+Kum/SrpWUp+kAUlPlfS/JN1jjOkm2GlcMy3pvcF1ujl/MHhfAABwFSI8AgDg6paS9BfGGP5OcOX6A0k/Lyki6Yykn5b0LEl3Svp4cM51kj5ujEktdzFjTELSByU9s4c1HAveX5JeL+n2Dl8v7uG6AABgC6BtDQAAPEPSz0h622YvBAsZY54h6Y3B4QOSnmetvRw65ePGmHdL+hFJN0h6raR3dLjePvnB0bf1uJTbQvf/wVp7scfXAwCALYx/ZQQA4Orlyp+bI0m/aYyhLenK8xb5FT81Sa9cFBw1/IIkJ7j/n9pdyBjz/ZK+ofngqN7DOhrh0TjBEQAAVx/CIwAArl6OpN8L7mck/Z9NXAsWMcbskfQdweF7rLUPtzrPWjslf+7Rn0r6RJtr/bukv5O0V35o+GZJX+xhObcHt/f08BoAALBN0LYGAMDV7a2SXi6/5el5xpgfs9auKkQKBnD/lPzg46DmZ/X8i6T/ba19sM3rPi9/F7hKp92/jDEPSLpZLXb1MsZ4wd2flfR/Jf2J/PlAjqRHJf2ytfau0PmDkn5U0vdIukX+EOpJ+SHJByW9z1pb0yLGmDFJTwSHL5f0MUmvkfRDwdoGJJ2T9GlJf2Ctfazd99PB8yXFgvsf6HSitfbNy1zrW4PbhyT9mLX2S8aY53WziGBG0k3BIeERAABXIcIjAACuYtbaijHmRyX9q/yK5N8zxnzCWntuJdczxvya/KqW2OKngq/XGWP+p6S3Wmu9xa9fQ4ckfUnSrtBjd8gPkBpr/XZJfyN/2/uwvZJeFHz9nDHmZcuEPxlJd0n69kWPXyvpDZJea4x5hbW2ZVVQB7eG7t8dWndcfigXl3TGWlvp4lqPS/pdSX/RKgxbxo3yB6tL0kPGmJ+Q9P2SniwpLemspM9I+v0VhmQAAOAKR9saAABXOWvtlyS9PTgckvTOlVzHGPMWSb8uPzi6T/6uXM+UX/nz3yQ9Jv/vHm8OvtbTGyXtlB+YPFvS90r6LWvtyWCtz5BfmbRPkifpryW9VNLT5Qcj/xxc5xZJ/xYMmm7nD+QHR1+R9IPBNV4mP1CR/ODlL40x/T1+D41qn5y1Nm+MGTPG/JWknPyqp0ckTRtj3m+MObrMtZ5krf2zFQRH0sJh2W8Pvp4t//8rKUlH5f9ePxgEkQAAYJuh8ggAAEjSf5e/9fuYpO82xvwXa+3fdvtiY8wdkn4tOHyfpNcuCiq+ZIz5C/lbyz9X0v8wxvx9uxa2NRCVHxa9KfTYh4K1xiS9W1Kf/Pk/r7LWfih03n9I+oAx5n/Ib+vbJ+nP5IdLreyV/z2/xlrrNh40xnxM/vf7YvkVUC/RMu1ni+wMbnPGmOdL+oikxQFUn6RXSXpxUN10l1oIr2sFbg/dH5T0T/K/39Pyv6+XSfphSUlJ/8cYM2etff8q3g8AAFxhqDwCAACy1hYkvS700B8ZY3a1O7+Fn5f/94pJSa9vVeESvMdr5Vf6RCT99MpX3JV2W9bfKX/GkyS9Y1Fw1GSt/XVJn2+8xhhzU6vzJJUlvXFxQBO05YXnRx3rZtEhjaBoWNKH5beI/Yb8Sp+UpOvlVz158mcsfdgYc12P79GNRuWRJz8UfKm19oPW2q9aaz9urf1R+QFZY8e3dxpjhtdhHQAAYJMQHgEAAEmStfYzkt4THO6U9L+7eZ0xJiJ/PpAkfclaW+zwHk/IH9osze8kth7OWWvPtnnuBaH7f7bMdf40dP+Fbc75erDjWSvhGUADy7zXYpngdlh+kPR91tpfs9Y+bq2tWmsfsdb+gvzh5JJfFfRbPb5HN14pvxXvedba97Q6Ifj/zu8Gh0Pyh4cDAIBtgrY1AAAQ9nPyQ5J9kl5ljPk7a+0/LvOaMUkjwf2XhnY8W86RlS2xK2c6PHdLcDsn6YFlrvOV0P1b25xzssPr50L3e/17Vyl0/6PW2o+2Osla+6fGmNfJr2x6mTEmG1R5rYkgGPuPLk59l6RGm+B3SnrbWq0BAABsLiqPAABAk7U2J+knQw+9o4sWpJ3LPN9O3BjTazVOt2Y6PDca3E50sePbxdD9HW3OmWvzuOS3ejVElnmvxWZD91sGRyH/FNwm5O8qt+GstaflD/OWpMObsQYAALA+qDwCAAALWGs/aoz5oPwdyvbJn6vzXzu8JPz3iXery3a3QNsWtw66+cevTqFQLyFOLHR/NUOnV+JC6P65Zc4NV1qtNMxbC0X5bXbJTVwDAABYY4RH2FaMMRlJvyh/m+Uj8v/V9uuS3mat/eQavcffBdd/krX20Q7nRSX9iPwdaG6RlJV0StI/yt8BaLrL9zskv61iUNKRxjbTALDOfkrS8+RX6bzWGNNp96zwvJ+6tfabK3zPRuCzXLgztMLrNzTWu9MYE1mm+mhPi9dtlPslvTy4P9LpRPkDtBu6+u9LN4wxI5K+VdJuSSestV/tcG5M81Vdl9ZqDQAAYPPRtoZtwxiTlfQ5SW+WdK2k45IKkr5L0ieMMW9eg/d4vfzgqJu1fEbSn0t6tqTL8mdiHJX0C5K+YYw52MV1IvL/FX9w5asGgN5Zay9J+tnQQ++SH4K38rjmK4i+dblrG2N+yRjz48aY71z0VGOHtmQQRLR6bZ/87eFX477gtl/SzcucG/5+TqzyfXsVnre03K9r+Ps4uYZrGJP0CUl/KX8eVidP1XyIdfcargEAAGwywiNsJ2+XvxvMNyUdtdbeYa29RtIPyf+B5C0tflDpmjHmjVq4604n75D/L/bnJT3dWmustUb+dsePyP/L+HI7/EjST8gfOgoAG85a+z5JjarNMUk/0OY8R9K/BIe3GmOe1e6axpjnSfptSe+U9CuLns6F7o+1ucR3yp/rsxr/HLr/48uc+/rQ/c+s8n17dZekieD+q9vNhwr+weKVweG9a1yh+oCkyeD+S4wxox3ODYdLnSrVAADAFkN4hG3BGHNU0qvlz6P4AWttc/ZD8MPPbweHb1nBtfcZYz4k6Q/VxZwMY8y3SPpBSXVJL7TWNneosdber/kfVF5kjDnQ4TpHJf2OVjYPBADWyo9rfnBzp9Dm/w/d/8ug5XYBY8xu+RVMDX+86JT7Qvd/usXr90j6vY6r7c7HJDXajn/CGPPyVicZY35N0nOCw8+uoh1vRYJQ7g+Dw32S/twYs+D3IGiRfqfm5xy9Yx3W8OfBYVb+APUlVWHGmJ+U9H3B4afC/+0DAABbHzOPsF38oPyhpl+y1j7Y4vl3SvpVSd9mjDkc7AizrOAHivfJ/wvzdHCNty/zsh8Obt8bhEWLfT64Tl5+wNTqfaOS3hu87xvFdscANom19owx5pe0TOWltfZzxph3SHqD/Bbde40xb5P0heCUp8qvTNkfHH/UWvsPiy7
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xkeV3v/3dV5zR5J22Y2cRXWBaWBQQEBTGDAQzXew1cRf2BGZXf1XsVQb0YwISCrAEMKAgiKiqCgCRBWFh22cDOdwM7eaZ7uqe7K598/zinqk9VV+pcVfN6Ph7zqHTqnNM9j0fVtz/nEzJRFAkAAAAAAABoJrvTJwAAAAAAAIDeRfAIAAAAAAAALRE8AgAAAAAAQEsEjwAAAAAAANASwSMAAAAAAAC0RPAIAAAAAAAALRE8AgAAAAAAQEsEjwAAAAAAANASwSMAAAAAAAC0RPAIAAAAAAAALRE8AgAAAAAAQEsEjwAAAAAAANASwSMAAAAAAAC0RPAIAAAAAAAALQ3v9AkAAIDeY4z5qKTnJg9/yVr72i7f90ZJP548vN5ae3Lzzw7NGGNukvQKSV8n6TpJFUmPSXqPpD+x1s51sY9jkl4p6RuSfZQkPSLpbyW92Vpb3pqzBwAAvYzMIwAA0MmrjDGP3+mTQGvGmB+QdJ/iwN3jJI1L2iPpKZJ+TdIDxpgXdNjHCyTdL+knJN0saUzSXklPl/Q7kj5njDm+NT8BAADoZQSPAABAJ2OS3mKMYd3Qg4wx3yTprYoDRmVJ/1fS1yvOHvoNSY6kA5LebYy5vcU+bpX0bknTkvKS/o+kZ0v6RknvSDZ7gqR/NsZMbNkPAwAAehJlawAAoBvPkvRTkn5/p08EK5KA3hslZSS5kr7SWntXapN/N8a8X9JHJE1I+k3FgaVGb0xer0j66oZ9fMAYc4+k35L0REk/Kel1m/2zAACA3sUVRAAA0E4oyU/uv9YYc8NOngxWeb6k6v/JGxuCPpIka+3HJf1r8vDrjDF7068bY54q6auSh3/aYh+vk1R9/mfJQgMA4MrCFz8AAGjHk/T65P6kpD/dwXNBc/8i6bSkf2qzzYOp+9c2vPbtqft/1WYfb01uD2kl2AQAAK4AlK0BAIBOfkXSiyV9maTnG2N+xFq7oSBS0oD7JyR9jaRrFJddnVFcXvWH1tovtnjfRxVPgXOsteNt9n+/pFsknbLWHm94LUru/ozijJw3SnqO4kDZI5J+wVr7odT2uyT9sKRvU1y2NSNpQdLdkv5O0tustb4aJM2lH0sevljSeyX9gKSXJOc2I+mcpA9I+h1r7aOtfp5WkvP8UMcNpWOp+xcaXnt2cpuX9Pk2+/h46v7zJX20i+MCAIABQOYRAABoy1rrKA6ehMlTrzfGXL3e/RljXqV4MtiPSTKSphRnNRlJL5d0nzHmNcaYzIZOvLNrJX1ScQ+gSUm7Jd2uOIBUPdevlnRC8bSxr5K0T9KIpMOSqo2q7zbG3NjhWJOKgzxvURz8OqC4EfkNkn5UXUxDWy9jzNMlvSh5+BFr7aWGTaqT9B611oZqLR3cYvoeAABXEIJHAACgI2vtJyW9KXm4W9Id69mPMeY1kn5V0pCkexUHi75CcebPTysOUGQlvTr5t5VeoTiI8zpJXynpuyT9urX2ZHKuz1KcmXREUiTpryV9q6RnSPrvkv492c8TJX3CGHOkzbF+R9JXS/q0pO9P9vEiSR9MXh+T9BfGmOmN/lDGmIwxZsYYc7sx5vcUZwiNSVpUnO2V3nZE0lXJw9Pt9mutLSvOuJKkdQcPAQBA/6FsDQAAdOt/S/oWScclfbMx5nustW/v9s3JmPhXJQ/fJumlDeVenzTGvEVxD5/nSfplY8y7WpWwbYKs4mDRL6aee3dyrkOKs4omFGdcfbe19t2p7e6U9E5jzC8rLus7IumPFQeXmjms+Gf+gXR2jzHmvYp/3hcoDuK8UNI7N/hzfW9yrLRPSvpha+2Jhuf3Ki4ZlOKytU6KkvZL2rOhMwQAAH2FzCMAANAVa21R0v+XeuoNxpirWm3fxM8pXnssSHp5sz5ByTFeqjjTJ6N4LPxWenOL579FcY8nSXpzQ+Coxlr7q1rp/fMtxpgntNhfRdIrGsvCrLWR6puQP7mbk+7gWJPnbpX0k42T1hRnJKXPsZNyk/cBAIABR/AIAAB0zVr7QUl/njw8IOkPu3lf0r/om5KHn7TWltoc4zGtTAf7mnWeajfOWWvPtnjtG1L3/7jDfv4odf8bW2xzl7X2covX0r2EZjocqxsfk/R1ikvjvl9xqdwuxT2mPm6MOZjaNkjdj9S9tWwLAAD6HGVrAABgrX5WcZDkiKTvNsa8w1rbbky8FJe6VbNevjU18ayT69d3il050+a1Jya3BUn3d9jPp1P3b22xzck27y+k7m94bWat/c/UwzuNMW9XnN30UsU/128rnvjWeOyW0+tSJpLbbrKUAADAgCDzCAAArIm1dknSj6eeerMxplMPnAPrPNywMWYzsnGaybV5bX9yO5+UlrUzm7q/r8U2hRbPS/VZPJs+YS4plfsxSeeSp77bGDOZOq/q8ae62F11m1ZZVAAAYAARPAIAAGtmrf0HSX+XPDyieJpYO+mMmrdKesoa/rUscWujmzVOu6DQWoI4Q6n77Ubd7xhrraN4cpwkjSrp55QElqqle9e224cxZkIrQbXzW3CaAACgR1G2hoGTXE39X4rHKF+veHrMXZJ+31r7b5t0jHck+7/ZWvtIw2vHJT22ht39irX2NW2OlZX0cUnPljTSrMEsAOyQn5D0fMUBhZcaY/62zbbpTJXAWnvPOo9ZDfh0Cu7sXuf+q6rne8AYk+mQfXSoyfu2RdIA+0ZJh621/9Jh84XU/dHU/QcUB45u6PD+G1P3t2oC3sDb6XVKapvj6rxe+YK19rYOx2KdAgBXADKPMFCMMVOS/kPSqxUvgh9QPFb46yW9zxjz6k04xssVL8haqSgeidzu38nU9g93OOSvK16QAUBPsdbOSfqZ1FN/otalT1/SSgbRMzvt2xjz88aYlxljvrbhpeofpqPGmKHG9yXvnVA89n4j7k1upyXd0mHb9M9zYoPHXau3SfqspPd2MfkuHfxJNwqv9mzaZ4xp97N+Ver+J7o/RVT1yDqlqjrZ77Jar1fu7mI/rFMA4ApA5hEGzZsUT5e5R9K3WmvPSJIx5vsVl0m8xhjzSWvth9azc2PMKyT9brttrLUXJT2nzT5mtLIYe7O19m9abDck6TclvXI95woA28Fa+zZjzP9QPEntuKTvbbGdZ4z5iKQXSrrVGPOchsbONcaY5yv+/JOkj0hKf2Yvpe4fV/2ksqqvlTSyhh+jmX+X9PLk/ssk/WSbbV+euv/BDR53rT6h+HeaUdwQ+7eabWSMOZxsJ0knGqbMvVvSa5L7P6jW3zsvTW4vSWr6f4eOdnydklINHr3LWvuj6zgW6xQAuIKQeYSBYYy5UdL3Ke438b3VBZkU/3GjlT9EXrOOfR8xxrxb0u9p481M71B89fce1V+xTx/vZkkfFgsyAP3hZYpLb6T2QZv0H7V/YYxZ1WMnGSP/J6mn/qBhk3tT91cFdIwxhyS9vu3Zdue9kqrlPj9mjHlxs42MMa+S9Nzk4Yc3UI63Xn+pOHNFkv6PMWbVtLfkosW7tJIV9pvp1621D0j6aPLwJ4wxqy6AGGP+l6SnJg/fZK31Nn7qV5YeXKdUg0f3reN4rFMA4ApD5hEGyfcrblr6SWtts14Md0j6JUnPNsZcZ6093c1Okz8Y3qZ40b2Y7ONN6zlBY8w3S/oexWUXP5g0MG3c5scVL/5GFI+R/kNJr1vP8QBgO1hrzxhjfl7SH3XY7j+MMW+W9KOKg+hfMMb8vqSPJZs8TdLPSjqaPP4Ha+0/NuzmHZJ+WfEa5qeTwMjfKi4ZfqakVyTvf1T1ZVpr/ZmCJBvkY4r7A73bGPPXipuEz0k6JumHJH1D8pZ5Sf9zvcfbwHleNMa8UtKbJe2SdGfyO/2o4mlyT1d8oeJ48pa/lfRXTXb1E4r77oxJ+qA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xsaV3g/8+NcyfPMEMYmMQw60MQCRIWFmUQA7OsgWUNICDiDEEBB9gfJpIoKmIgh11ABCS5klZhVRAJgwjKADIMzzA53nxvd3V3pRN+f5xTt6vrVlVX7FD9eb9e/TpVdc556qme6XP7fPv7/T7b8jxHkiRJkiRJGsX29Z6AJEmSJEmSNi+DS5IkSZIkSRqZwSVJkiRJkiSNzOCSJEmSJEmSRmZwSZIkSZIkSSMzuCRJkiRJkqSRGVySJEmSJEnSyAwuSZIkSZIkaWQGlyRJkiRJkjQyg0uSJEmSJEkamcElSZIkSZIkjczgkiRJkiRJkkZmcEmSJEmSJEkjM7gkSZIkSZKkke1c7wlIkqSNJ4Twz8Bjy6cvizG+ZsDz3gz8Wvn03jHGmyY/O3UTQrgn8KvATwAXAycDh4GrgA8BfxVjTAYY538ATwMeBtwVqJRj/AXwwRhjPpUPIEmSNi0zlyRJ0mpeHkK433pPQr2FEH4OiMDvUASFzgB2AXcHngC8B/hyCOFefcY4PYTwGeCvgZ8G7gXsBs4CfhT4K+DvQgh7pvdJJEnSZmRwSZIkreYE4F0hBH9v2IBCCI8HPgCcAtSAPwN+HHgk8BTgC+WhDwc+FUI4qcsYu4C/Bx5fvvQV4KnAfwaeDlxdvn4p8LapfBBJkrRpWRYnSZIG8SjghcDr13siWhZC2Aa8GdhBEVh6XIzxK22HfDWE8GHgrcBzgR8ArgD+oGOol1AEowA+CDw9xpiWz/81hPAx4F+ABwLPDCG8Lsb4nWl8JkmStPn4F0hJktRPBrT69LwmhHDRek5Gx3kUcN/y8Rs7AksAlD2SXgTsL196Rvv+ssztt8qn1wO/1BZYao2xSFFy1/Lk8acuSZJmhcElSZLUTxN4Xfn4JOB/r+NcdLwfanv8yV4HxRhrwJfKpyGEcELb7icCp5WPXxFjbPYY5h+A9wJvAL492nQlSdIssixOkiSt5neBJ1FkyPxICOHyGONYQaayQfjzKXr8nAtsA24FPge8qVfJVdsqdvUYY8/G0iGEbwMPAG6OMV7Ysa+12tmLgL+jKCt7DEUg7TrgN2OMn2k7/jTgMoom198PnAocolhB7a+B93VbhS2EcCFwY/n0SRTBn2dSZA49oBzndopeR38aY7y+1+fp46vAHwL3LOfez7a2x3uAevn40nLbAD7W6+QYYx34pRHmKEmSZpzBJUmS1FeMsR5CuIyiMfR24HUhhE/FGG8fZbwQwsuBV1L0CVqxq/x6dgjh94DfnfKy9+cBVwJ3bXvtobQFaUIIj6NYJe2cjnPvQRGUuRR4cQjhZ1YJDp0EfAZ4XMfrFwHPA54VQvjvMcZPDfMBYoyfowjI9VU27P4v5dO5GONc2+4HlturY4zVtnNOogj81YDbYozZMHOTJElbh2VxkiRpVTHGK4G3lE9PB94+yjghhFcBr6YILH2Losn0oykyh36doufPdorg0yvHmvTqrgDOBv6YorzsZ4E/iDHeVM71URSZTecAOfB+4KcoGl//AkWZGBTZTF8MIXQGoNr9KUVg6SsUq689EvgZ4B/L/ScA7wkhnDKhz9bpWcDdysd/37Hv/uX2ZoAQwmNDCP8AzAOxfH1vCOG1ZRaXJEnSCmYuSZKkQf0W8JPAhcB/CyE8Ncb4gUFPDiE8FHh5+fR9wLM6ysmuDCG8C/hb4BLgFSGEj0xxVbLtFMGk9kbV/6ec6w7g3cCJFE3Nfz7G+H/ajvsq8OEQwisoygbPAd5BEXzq5h4Un/mZ7RlAIYRPUnze/0qRQfVE4MPjf7RlIYSLgT9qe+lP2/adALQCWkdDCL8N/D4rS+go5/ZS4KdCCD8RY7xlknOUJEmbm5lLkiRpIOWKYc9ue+kNIYS79jq+i5dQ/O5xCHhutz5F5Xs8iyJTaBvwgtFnPJC39Xj9J1lehe1tHYGlY2KMrwb+uXVOCOH+3Y6jKC27orO0rCz7a+9f9aBBJj2oEMLdKIJXZ5QvvTPG+NW2Q9ozpX4EeA1wALicItNpD0WW1afLY+4LfLyjIbgkSdriDC5JkqSBxRj/EfiL8unZwJsGOS+EsI3lxtFXxhiX+rzHjcA15dPHjzjVQdweY7ytx76faHv8jlXGeWvb4yf0OObfY4yHe+xr79V06irvNbAQwj2Az1L0sYKiAfkLOw47qe3x+RSBv0fHGN8ZYzwQY6yXwaj2jKqHAL8yqXlKkqTNz7I4SZI0rBdTBFHOAX4+hPDBGOMnVjnnQuDM8vFPta3Ytpp7jzbFgdzaZ9/3l9sF4NurjPOVtscP7HHMTX3OX2h7PJHfzUII96HorXSf8qUIXNresLvU+fx3uzUmjzHmIYRfp1j1bjfwNFYG1SRJ0hZm5pIkSRpKjPEo8GttL70thHBGr+NLZ4/4djtDCBPL5ukw32ffWeX24AAr1u1re3yXHscs9HgdihLAls5eR0MrG5H/C8uBpauBx8UY93U5vNLx/GO9xi3Pb5XUPbzMRpMkSTK4JEmShhdj/Bjw1+XTc2hrEt1De0bOuylKqwb96llC18cgv+P0CxoNEzjZ0fY463nUGggh/CzwTxQNuAH+FXhsjPHObsfHGOvAkbaX7ljlLVrZXjtZ7uMkSZK2OMviJEnSqJ5P0QT6LOBZIYQP9Tm2vd9QGmP8xojv2QoIrRb8OX3E8Vta8z07hLBtleylu3c5b82FEH4VeDPL35u/A36uX3+r0n8AP1w+PoP+n6HVyDulf+aXhhBCOIliNb5foCgFrQD/Drw+xvjpfuf2GfN84BUUJax3o2jU/lngD2OM13QcewnwuSGG/+UY43s6xjiNomn/k4CLKP4/vAZ4D0VT/HSUzyFpdet9Dek47ycpfj94OEUZ9Q0Uf4x6c4zxSJ/zvIZscmYuSZKkkcQY9wMvanvpfwEn9zj8BpYzkP7zamOHEH4jhPCcEMKPduxqrTC3O4Swo/O88twTWc7cGdW3yu0pwANWObb983x3zPcdSQjhecBbWA4s/W/gpwcILMHKnlGr/bdpfS9u8xf9yQghnEyRbfZKihuqq4FF4MeBT4UQXjnCmAH4OkXj9VOAb1Ks/Pd04OshhJ/oOGUOuHKVr73lsRkrm9ATQvg+it5kr6BoIH89cBT4QYqm/38bQtg17OeQtLoNcg1pnfcW4JPle+cUwaFzgVcD3wohfH+P87yGzACDS5IkaWQxxvexvEz9hcAv9jiuyXJmxANDCI/pNWYI4UeAPwLeDvx2x+6jbY8v7DHEjwLj/hL6D22Pn7PKsc9te/yPY77v0MoA3JvbXnpNjPHZQwR/2jPOfrXP+zyC5ZXnPj7cLNXHW4BHAt8A7hNjfGiM8QLgGRTB1Fd1CbL2FELYCfwtRUbh+4BzYowPpyhffTPFDeKHQgitvmLEGK+KMT6m1xdFNsTu8vDfijF+se399pTvdx7wBeCiGOODYoz3Ap5MEVR+AnDFCN8bSatb92tIed4LWP435NXAPdrOez1FkOkznT0avYbMDoNLkiRpXM9huTF0v6DOn7U9fk8I4bzOA0IId6PIgGp5Y8ch32p7/IIu598deF3f2Q7mk8B15eNfDSE8qdtBIYSXA48tn352jHK/kYQQTgf+kuXf6f48xviyYcaIMV7FclDsieWqcJ3vcxfgXeXThCIzSmMqV/V7GkU20C/GGI+tYFgGbv+ofPqqIYZ9GnAxcAtwWWuFwBhjA3gh8EWK8scX9Rxh5Rx3AH9F0az+0xz/8/UC4D9RrIh4aYzx9rbP8FHgT8qnlw3xGSQNYKNcQ8qA1MvLp/8rxvjK8o9KxBjrMcYXUSw0cXeKDKt2XkNmhD2XJEnSWGKMt4YQfoNVlqaPMf5TCOFtwPMoVjL7Zgjh9cDny0MeBrw
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxdeV3n/9fdaklSlaST7nR6odP08qVbQEAYB8VhcxkXUNwXXAYdwBl1cHTEBQeYnxugiM4g7T4Kogio4zAgAwgoyKIM0E0D317TnV6y11519/P745xbdW7VvbXlVpJKvZ6PRx53+55zTyVwu+pdn8/nW0iSBEmSJEmSJKmX4oW+AEmSJEmSJF28DI8kSZIkSZLUl+GRJEmSJEmS+jI8kiRJkiRJUl+GR5IkSZIkSerL8EiSJEmSJEl9GR5JkiRJkiSpL8MjSZIkSZIk9WV4JEmSJEmSpL4MjyRJkiRJktSX4ZEkSZIkSZL6MjySJEmSJElSX4ZHkiRJkiRJ6svwSJIkSZIkSX2VL/QFSJKk8yuE8CHgmdnDV8QYf3mdx/0P4D9mD6+PMR4d/NWpnxDC04CXAM8GDgNNIALvBP5HjHF2lWP/APjhdb5V33/bEMI3AT8C/CvgIDAHfA54B/B7McaFdb6HJEnaRqw8kiRpZ/vFEMItF/oi1F8IoRBC+HXgE6QB0GOBUWAMeCrwq8CnQwg3rHKaJ5/jNZRDCG8F/jfwzaThVQXYBzwDeAPwLyGE68/lfSRJ0sXJ8EiSpJ1tGPjDEILfE1y8fgP4KaAAHAN+nDSweR7wrmzNjcC7QgjDyw8OIZSBL8ke/gFpkLTan0d6XMOvA9+T3X+YtALt3wDfBbwve/5W4D0hhNFNfp2SJOkiZduaJEl6OvATpNUjuoiEEJ4OvCx7+DngOTHGU7kl7woh/BHw74DHAS8C3rTsNLeQhoQA748xfmaD13At8GPZw2PAk2KMZ3NL/jLXFheAHwVev5H3kCRJFzd/yyhJ0s7VJp2bA/DLIYTHXsiLUU+vIq04agLftiw46vhpoJHd//Yerz8pd39DwVHma4FSdv9XlwVHHT9F+r8nSCuiJEnSJcTwSJKknasBvC67vwv4/Qt4LVomhHAIeG728I9jjHf1WpeFOb8K/A7w7h5LOvOO5oC7N3EpV+Tu97uGKdKqJEjnIUmSpEuIbWuSJO1srwZeQNry9JwQwr+PMZ5TiJQN4P4x0uDjGpZm9XwQ+O8xxs/3Oe5DpLvA1WKMI6uc/3OkM3weiDEeWfZakt39SeD/AP+DdD5QA7gH+NkY4/tz68dJdw/7ZuDxpEOozwCfBt4OvDnG2GSZEMIR4P7s4QuAvwV+CPiB7NrGSGcDvRf4jRjjvf2+nlV8DUsVP29bbWGM8ZWrvNypPPpsjLG9yrp+8jOQHgd8YPmCbM7RVT3WS5KkS4CVR5Ik7WAxxhppeNIJFV4XQrh6s+cLIfwicAfwH0jn3+wmrWoKwEuBO0IIrwohFM7pwtd2LfBR0parXcBe4CmkAVLnWp8NfJF0IPW/AS4j3UHsSuDrgT9i7V3MyM7/fuAPScOvg6Qzhh5LOv/nzhDCN2zia3hC7v6/5K67HEI4EkK4sdeA7B6+NLv9TAjh+SGEvwkhHA8h1EMIj4QQ3p79XfTzf4Fadv9nQgh7e6z5b6R/d5CGbpIk6RJieCRJ0g4XY/wo8Mbs4V7gts2cJ4TwKtIQoQTcThoWfQVp5c9/Au4l/d7jldmfrfQy0hDntcBXAd8B/EqM8Wh2rU8nrUw6DCTAW4DnA18OfDdpYAJpNdI/hhBWa8X6DeDZwMeB78/O8S0s7UI2DPzPEMKeDX4Nt2a3kzHGqSww+lNgkrTq6W5gIoTwF/0CrhDCY0hDMYAXAv+LtMrqEGnYc5h0TtLfhxB+N9uZrUuM8VHg5dnDxwC3hxBeGkJ4RgjhBSGEvyKduwTwHtIQTZIkXUJsW5MkSQA/Rzro+AjwTSGE740xvnW9B4cQngL8YvbwzcCLlrV7fTSE8IekW8s/C/ivIYS/7NfCNgBF0rDoF3LPvSO71hJpVdEoacXVd8UY35Fb90ngbSGE/0ra1ncY+F3ScKmXK0m/5h/Kt4WFEP6W9Ov9BuBy4BtZo/1smYPZ7WQI4WuAvwKWB1CjwHcB3xBC+NZ8S17mybn748BnSWcjfY401HoW8OPAfuDFpEHaS5dfSIzxt0II95HOVvoSVu7oNg+8AnhjjLG+ga9RkiRtA1YeSZIkYoxzpOFBx2+FEC7fwCl+ivT7ijPAS3vNCcre40WkAUWBNLTYSssDjo7nkc7uAXjTsuBoUYzxvwEf6hwTQri11zqgCrxs+TyhGGNC9xDyL2VjOkHRPuCdwAjwS8ANpMHPzaRVTwnpjKV3hhBuXHaO/E5rfwg8Ncb4ezHGf4oxfjCblfRk4IFszUtCCM9afiFZq9pXsTTXaLldpBVMT9vQVyhJkrYFwyNJkgRAjPF9wB9nDw8C/309x2Xzi74+e/jRGOP8Ku9xP/CF7OFz+60bgIdjjA/1ee3rcvd/d43z/E7u/r/ts+ZTfbavh7RVr2Nsjfdabld2u480SPrOGOMvxhjvizHWY4x3xxh/mnQ4OaSVRb+y7ByvIw2tnkf/UO8B0rlXHS/Lvx5CuII0RPsvpG2Nv04avg2Thkk/CpwibVH8QAjh65EkSZcU29YkSVLefyYNSQ4D3xVC+PMY4/9a45gjpG1PAM/P7Xi2lus3d4nrcmyV1x6f3c6Stm+t5uO5+0/os+boKsfP5u5v9Puuhdz9v44x/nWvRTHG3wkhvJg0JPqWEMLurMqLLMi7PfvTV4zx/SGE+0n/TZ4TQihklVOQzsDqVDD9YIzxLblDHwVuCyG8F/gY6Sylvwgh3BRjPLmhr1aSJF20rDySJEmLYoyTwH/MPfWmEMK+NQ47uMbr/ZRDCButxlmv6VVeO5Ddns4FJP2cyN2/rM+a2T7PQ9pS1rHRHeZmcvd7Bkc5/zu7rZDuKrcZn81ux8jCwBDCVaTDvwHevyw4WpRVlP1c9nAc+IFNXoMkSboIWXkkSZK6xBj/OoTwdtIdyg6TztX54VUOyX8/8Uess90t07fFbRXr+eXXaqHQRkKcUu5+u++qrfFo7v7Da6zNV1ptNszL/1sMZbdPZenv611rHP/XpP/+kO44J0mSLhGGR7qkhBB2AT9Dus3y9aS/tf0U8IYY43sG9B5/np3/phjjPausewbpANmvJP0t7lHSbaF/M8bY94eAEMJXkG55/AzSORdngH8AXhtj/NQgvgZJWocfA55DWqXzohDCX6yyNj/vpxVj/Mwm37MT+KwV7uzd5Pk7Otd7cFl7Vi+Hehx3vtwBvCC7v3+1haTzhzomAEIIRdJ/w8uBar+2t5wrstsWS19rfne3ydUOjjFOhhAapNVP5/pvJEmSLiK2remSEULYDfw98ErgscCdwBzwtcC7QwivHMB7vJQ0OFpr3ctJA59vId1G+XOk3/j/FPC5XjvZZMf9MPCPpD8sDGVfwy7gO4GPhxC+/1y/Bklaj2xezU/mnvo9YHef5fexVLXyr9c6dwjh5SGEl4QQvnrZS51hzkMhhNLy47JjR0nDkHPRmf+zh3Tb+dXkv54vnuP7blR+3tJaf6/5r+MoQLb72zuAtwK/kw027ymEMMzSTmm3xxjr2f1TuWU3rHYB2e58leyh844kSbqEGB7pUvJG0jL5zwA3xBifEmO8jnTuQhN4VY8fVNYthPAyunfd6bfuecCvkf7m/PeBK2OMTyPdkea/kFYTvTuEcP2y424g3Va6SNrycSjG+GTgSuAPSCsF/yCE8NjNfg2StBExxjcDnarNI8D39VnXAD6YPXxCVnnZUwjhOaSfkbcBP7/s5Xxly5E+p/hqlgKKzfq/ufsvWWPtS3P333eO77tR7wdOZ/df2G8+VPbLk2/LHn42xng09/I/ZLdXkv4ypZ8XsVQtlK8y+wTQyO5/dwhhtb/7783d/8dV1kmSpG3G8EiXhCx4eSHpPIrvizEuzn7Ifvj5tezhqzZx7sM
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAbwCAYAAADnAAF4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZTkd13v/2f1vs3ak5lkyDLJJHyEiIBXLka4EkW5Ku4bbiBE2RQUl3v1KgjcK278vIKyxAUUwQXcvVe4yqoYBAQTkYR8kplkJvssvU531171++P7re7q7qrq6u7q7uma5+OcPrV81+6cqfS85v1+fzLVahVJkiRJkiRd2np2+gYkSZIkSZK08wyJJEmSJEmSZEgkSZIkSZIkQyJJkiRJkiRhSCRJkiRJkiQMiSRJkiRJkoQhkSRJkiRJkjAkkiRJkiRJEoZEkiRJkiRJwpBIkiRJkiRJGBJJkiRJkiQJQyJJkiRJkiRhSCRJkiRJkiQMiSRJkiRJkgT07fQNSJ0SQhgB/jvwPcC1wAXgs8CbYowf6NA1/iQ9/w0xxhNN9jkG3L/Gqf49xviUdP+bgY+u4zZeFGP8g3XsL0mSJEnSmgyJ1BVCCKPAh4GnA0Xg88A48BzgOSGE18UYX7/Ja7yMJCBay5PTx0ngC032ubfu+Qxw2xrnPA5cDlSAk23cgyRJkiRJ62JIpG7xVpKA6A7gm2OMDwKEEJ4PvBN4XQjhthjjhzZy8hDCq4D/3ebutZDofTHGl6+1c4zxduCZLa59JfDv6cv/EWP8eJv3IUmSJElS25xJpF0vhHAc+AGSKpvvrwVEADHGdwO/kr583QbOfUUI4c+B3wAybR5WC4n+Y73Xa3D9XuCPgIPAB4A3bvackiRJkiQ1YkikbvB8oBf4lxjjXQ2235o+PiOEcHW7Jw0hfBtJW9h3AFPAj7Z5aC0k+ny712rh5cBXkrSkvTjGWO3AOSVJkiRJWsWQSN3gpvTxnxttjDE+DJxOXz5rHed9MjBCUsnzROD9ax0QQhgDrktfbqqSKIRwEKjNUXpN+n1IkiRJkrQlnEmkbnB9+thqoPMp4Brg8es47z8BT44x/gcsrlq2li8haUt7BLgshPDTwFNJ/qzdA/xJjHGtIdU1v0DSZhaBt6/jviVJkiRJWjdDInWDw+njuRb7TKSPh9o9aYzxIxu4l1qr2QHgLpI2uJqvBX40hPBO4GUxxmKzk4QQDgEvSV++IcZY2sC9SJIkSZLUNtvN1A1G0sdci32yK/bdKrWQaAj4XeBGYJCkiunVQBG4BXjzGud5OTAM3Af88ZbcqSRJkiRJdawkUjco037gudWDnz9Oci+3xxjrW8QeAN4QQjgFvAd4WQjhrTHGO1eeIITQB/xI+vLXYozlrb1lSbtZCOFjLM1be3WM8Q1tHvcWlgbyXxtjPNX5u1MjIYSjJJ/z/5WkZXoUmARuB/4U+KO1KkhDCDen5/gK4DKSBRbuAv4EeFeMsbDG8UPAi4HnAV9M8o8bD5O0Wv9ujPETG/z2JEnSLmYlkbrBXPo41GKf4fRxYStvJMb4RzHGl6wIiJZtJ1kxLQN8S5PTPAu4nKQy6k+35EYldavXhBCesNM3oeZCCN9NMmvu54EvA/YD/cAR4OuAPwA+EUJ4XJPje0IIbwU+CnwX8DhgID3+q4DfAf41hHBDi3u4Fvg34DeBZwD7SKperwNeCNwWQnhrCMHfEyVJusT4P391g/Pp43iLfWqziM5u8b204/b08dom278tfXx/jHFmG+5HUvcYBN7hX+4vTiGEZ5O0EI+R/EPA/waeAzwd+F6SKh6ApwHvDyE0apF+A0vVpg8BrwC+Evh2kioiSBZR+L8hhL0N7mEU+AegFib+HfDdwDNJKovuTd//EeCXNvJ9SpKk3ct2M3WDLwA3AMda7FPbds9W30wIoR+otGgTq/3lrdng6lqFkbOIJG3ETcCPAW/a6RvRkhBCBngLyYIGOeCrYoyfrNvl0yGE9wJvA15GEvS8irqgJoRwHPhv6cv7gC9d8Y8JfxVCuBP4RZLVPF/B6qDnv7G0Kuivxxh/um7bbSGE9wCfBp4E/FQI4W0xxgc2+G1LkqRdxn9pVDf4VPp4U6ONIYQrgavTl1s2YyGEcCCEMAkUaN5KBvDU9PGuBue4BriSZHbShzt+k5K6WQWozbF5Qwjhup28Ga1yE/BF6fPfXBEQARBjrAI/wVLV6wtW7PIillbNfFWTatNfBqbT59/dYPsPpY+PAT/X4B5ywOvSl30kFUqSJOkSYUikbvBn6ePNIYTQYPvL0sd/3MrBrDHGKZJfuiGZ6bBKCOE7geMkQdJfNtjlaenjiRjjdIPtktRMEXhj+nyEZIVFXTz+S93zv222UxrS/HP6MoQQBus2P0Yyi+hB4INNjq+wVDV7df22EMJYevwdwF+3GG79hbrnVzfZR5IkdSHbzbTrxRjvDSH8MfB9wF+GEL4lxngCIITwA8DPpLv+4spj09L9fmAmxvhoB27nl4E/BL4phPDLwOtijPn0Wt8J/H6636/FGB9pcPyXpo+f78C9SLr0vJ5krtkXAV8dQnhxjHFTYVE6CPsVwLNJKh0zJCHFR4HfijGuqopMj/sYySD+fIyx6cICIYTPAzcCp2OMx1Zsq61I+RMks3PeQjI7pwicAH42xvihuv33Aj9MUs35xcAeYIJkFtyfAe9utGpYCOEYcH/68ttIQpwXklTy3Jie52Hg70latE42+35a+DTJ/yOOpvfeSqbu+RCQB4gxvoXkZ9BU2tZWC3aW/X8txjjH6uqkRq6pe96J/zdKkqRdwpBI3eLHSOYnPAm4O4TwH8ABln7R/fn6v0jU+XC6z7toUv2zHjHGd4cQvgT4aeBngR8NIdxLsupMbaWa3wNe2+QUtX0mN3svki49McZ8COGHSQYg9wBvDCG8P8b48EbOF0J4DcnnVe/KTenXS0II/wt4fdoqtVWuAm4jWeq95kupC1tCCF8F/BFwxYpjLwe+Pv36yRDCt64R8owAHyJZKazedcDLgVtCCN8eY3z/er6BGONHSYK1ltK5ds9IX85sYAGDV5J8zwDvXeexhBCGgdekL8vAX6z3HJIkafey3UxdIcY4QTLv4fUkZfZPIFnt7B+B74gxbtsKLTHG/wZ8LfA3QJZk+Gg/8H+Bb4wxvjhtB2ik9hcgW80kbUiM8TbgrenLfcCtGzlPCOF1wP8kCYg+R9K6+xUklTw/Dpwk+T3itTQPvjvlVSSrVP4aSdvWdwG/VGshDiHcRFJpdAXJTLf3AN9MsmrY95Cs5gVJddHHQwgrg6R6v04SEH0SeH56jm9lqb1rEPiDtHVrK9wCHE6f//1aO4cQMiGEy0IIXx1C+Avgzemmz5KsnramEEJ/COG6EMKLSVrRviLd9OoY433ru31JkrSbWUmkrhFjnCcZtvm6dRxzbB37nmJ5C0CrfT9E8i/R6xJj/Ib1HiNJDfwP4JtIVnb8xhDC98UY214xMYTwpSxVk7wbuGVFm9ZtIYR3kITfNwO/EEJ4X7PWsw7oIQmFfr7uvT9P77UXeCcwTDK8+3kxxj+v2+/TwHtDCL9A8g8JVwC/TRIiNXI5yff8wvpAP4TwtyTf7zeQBPrPZQOVOq2EEK4HfqXurV9v47DfZWkYdc07gJ9O28vWumYPME/yjxk1UySDsf+wjetLkqQuYiWRJEldJg3NX1L31ptDCJc127+BnyL5HWECeFmjOT7pNW4hqdzJkLQ5baW3N3n/m1haNeztKwKiRTHG/wl8rHZMCOGJTc6XIwlIllV8pu109fOdntzOTbcrhHCYJITan771ezHGT7dx6DUN3vsa4MVpALSWK1geEJHewwtCCM9s43hJktRFDIkkSepCMcYPsjQs/xDwW+0clw4+/vr05W0xxoUW17ifpZWwnr3BW23HwzHGh5ps+691z397jfO8re751zXZ57MxxmZz4epnGe1Z41ptCyFcTjIjr7ZC5+0ks/ba8TaSFrxnAD9JMlT8GpLWvD9qIygqkrTvPZ3kv/utJLOIng18OIT
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebxkV1nv/2/NZ+y5O3PSSUdWABGIBIyiDMoVRAREhKtM5iLgAEbxKl7ABBQUuV5xQKIiswMKqFx+oBIQuCAgIJOBLEigk053kj6nz1Rz7en3x9p1aledms5YlXM+79erXzXtvWtVB6r7fPt5npWKokgAAAAAAABAN+lRLwAAAAAAAADji/AIAAAAAAAAPREeAQAAAAAAoCfCIwAAAAAAAPREeAQAAAAAAICeCI8AAAAAAADQE+ERAAAAAAAAeiI8AgAAAAAAQE+ERwAAAAAAAOiJ8AgAAAAAAAA9ER4BAAAAAACgJ8IjAAAAAAAA9ER4BAAAAAAAgJ4IjwAAAAAAANBTdtQLAAAAO8sY8zFJj4ofvsJa+5ohz/sTSb8QP7zcWnty61eHXowx10h6oaTHSLpAki/JSnqvpD+x1paGuMZPSHqWpIdJOiqpKOmLkt4q6W+stdGA8yfjNTxNkpG0X9KcpE9K+iNr7b9v6MMBAICxloqivn9HAAAAu0xHeFSX9FBr7deHOI/waASMMSlJr5f0K5JSPQ67TdLjrbW397jGfrmQ6Qf7vNWHJP24tbbW4xrfJekfJV3e4/xI0quttTf2eQ8AAHAfRNsaAAB7W0HSXxpj+DvB+Pp9SS+VC45OSXqxpEdKepKkD8THXCnpA8aYQufJxpicpH9RKzj6jKSfkvQ9kp4t6Zb4+SdIelO3BRhjLpf0UbngKJL015J+VNK1kv6npIV4fTcYY5678Y8KAADGEW1rAADgWkkvkfSGUS8E7Ywx10q6Pn74X5Iea62dSxzyAWPMWyT9jKSrJF2ntQHQSyU9Ir7/N5Keba0N4sefNcb8g6RPS3qQpOcZY15vrf1axzX+VNLh+P4vWmv/NPHaZ4wxH5D0n5ImJb3WGPOuxHsAAID7OP6VEQCAvSuUm5sjSa8xxlwxysWgqxvlKnp8SU/rCI6aflWSF9//ieQLxpgJSb8RP7xd0nM7Qx1rbVnSyxNPPa3jGtdKenz88B0dwVHzGreqFVpdKOl7+34qAABwn0LlEQAAe5cn6f/IhQtTkv5C/WfiYAcZY85T67/HW6213+h2nLV2wRjzO5KOSPpWx8tPlLQvvv+b1lpP3f2rpHdIWpSrcEr6qfg2kPSKPkt+h6RDkublBnEDAIBdgvAIAIC97VWSnirX8vRYY8zPWmv/YjMXNMbcX9IvygUfF6s1q+ffJP1xl5ao5nkfkxvkXbfWTvS5/n9JeqCkO6y1xztea+4E8suS/j9JfyI3H8iTGyr9MmvtzYnj90l6vqQnS/pOSbOSzsntQPb3kt5prfXVwRhzXNK344dPlfR+Sc+T9Jx4bbOSTsvNGvr9XoOsB3icpEx8/939DrTW3tDjpSfEtw1J/9Dn/LqkXrOKmtf4tLX2VJ9rfFmufQ4AAOwyhEcAAOxh1tq6Meb5kj4h187+emPMB621pzdyPWPMKyXdoFbosfpS/OsFxpjfkvSqQdvCb9Ilkj4ltx1909VyAVJzrY+R9Fdy294nnS8XmDxB0q8YY54yIPyZknSzpMd0PH+FpJ+TdJ0x5settR9c52d4UOL+5xPrzsqFcllJp+LgZ9A1brHWVhPXmIqvUZN0l7U27HayMWY6/hyS9LmO1w5KOk/SgrX27FCfCAAA3Ccx8wgAgD3OWvspSW+MH+6XdNNGrmOMuVHSq+WCo69IepHc7JtHSvoluZk7ablwqVelzFa5Xq6N6/ckfb+kp0t6rbX2ZLzWa+Uqky6Q2z3sXZJ+TG6w9DPl2rgkV430/4wxnQFT0u/LBUefkdu97BGSniLpw/HrBUlvM8bMrPMzPCC+XbLWLhtjjhtj3iFpSa7q6ZuSFo0xf2uMOTHgGndIkjHmUcaYf5W0IsnGz99jjHldXIXV6Sq5yjFJusMYkzLGPN8Y82W5Hda+LuleY4w1xryAXfsAANidqDwCAACSm3v0JEnHJf2oMeanrLV/PezJxpirJb0yfvhOSdd1tHt9yhjzl3Jbyz9a0m8aY/6uVwvbFkjLhUXJQdDvideakfQWuZ3BQknPsNa+J3Hcf0h6tzHmN+Xa+i6Q9Gdy4VI358t95uclK3iMMe+X+7w/IlcB9UQNaD/rcCS+XTLGPE7S+yR1BlCTkp4h6Ufi6qZkS14hcfySMeZ/SfpttcKgpqOSfk3Sjxljfthae2eXNUhSWa4970e7rPV+cr9HTzDGPMNa2xj2QwIAgPHHvw4BAIDmjlsvSDz1h8aYo72O7+Klcn+vOCfpRd3mBMXvcZ1cpU9K0os3vuKhdG5Z3/QkuYoaSXpTR3C0ylr7akkfa55jjHlAt+PkWr+u72z9itvykvOjHjzMohOawc8BSe+VNCEX/pyQq2a6n1zVUyQ3Y+m9xpgru5wvSY+V9BpJc5J+VtKx+HqPkPSh+JirJP1jHDp1u8Yr5YKjL8oFYrNyw7ifLOnW+JinSHrDOj8nAAAYc4RHAABAkmSt/bCkt8YPj0j642HOM8ak1Bqq/ClrbaXPe3xbrtVJ2t6d3U5ba+/q8doPJ+7/2YDrJLelf3yPY75grV3o8VpyVtLsgPfqNBXfHpALcX7SWvtKa+23rLUNa+03rbW/KjecXHJBzmu7nC9Jl8oFe99rrX2ztXbOWlu31v6H2iuiHirpf/S5xqclfZ+19kPW2pK1tmitfb+ka+Xa6CTpRcaYB67zswIAgDFGeAQAAJJ+RdLd8f1nGGOePMQ5xyUdjO//mDEm6vdLrTk8l2/t0tv03BVMbo6RJJW0dlv6Tp9J3H9Qj2NO9jm/lLi/3nEB1cT9f7DWdt0tzVr7p5K+HD98SjzkuvN8yQ0pXzP4O66Q+iW5Hdkk6Vk91iBJL0wO3k5cY0mu9U1yVWU/3W2tAADgvonwCAAArIpDgF9IPPUmY8yBAacdGfB6L1ljzHqrcYa10ue1w/Ht/BA7vt2buH+oxzGlHs9LrqWsqXPW0CDFxP2uwVHC/41vc3K7ynWe3/ca1tp75WY9SdI1cTVZ5zVut9Z+tc8a/lmSF99/xID1AgCA+xDCIwAA0CaucPn7+OEFcnN1+klW1LxFrvVp2F89W9z6GObvL/1CofWEOJnE/a7b2W+juxP3Tw84NllpdUSSrLV1SYuJ588MeY2sXKvcutZgra1Jmk+uAQAA7A7stoZdxRgzJVc2/0y5doiipC9IeoO19kP9zl3He/xNfP3vsNbe1ue4tKSfkfRcuRaJabktkf9JbgegxV7ndlznErm2in2SLm9uMw0A2+wX5YYsH5Z0nTHmb/scm5z3E1hrv7TB92wGPoPCnf0bvH5Tc71HjDGpAdVH53U5b6d8VdJT4/sH+x0oN0C7Kfnny1cl/UB8/4D6f4bmNQK1KrduleTL/Z1x0BqS1xjqzzgAAHDfQOURdo14xsNHJd0g6QpJt8htK/zfJH3QGHPDFrzHi+SCo2HW8mFJb5b0/XK725yU2yHnVyX9pzHm4iGuk5L7V/x9G181AKyftfaspF9OPPXnciF4N99Sq4LoewZd2xjz68aYFxpjfqjjpeYObXljTKbzvPjcSbmt5TfjK/HtjKRBg52Tn+fWnkdtj+S8pUG/r8nPcXKT17jLWhtIkrW2Iek/4+dNvxZGY8z5arX2nex1HAAAuO8hPMJu8ka5GQtfknTCWnu1tfYySc+R+4Hkxi4/qAzNGHO92nfd6edNcv9if0bSI6y1xlprJD1Ebjea4xq8w48k/bykDa8ZADbDWvtOtbZxP64eQ5CttZ6kf4sfPsgY88he1zTGPFbS70q6SdL/6nh5KXH/eI9L/JDcXJ/N+NfE/RcOOPZFifsf3uT7rtfNarWBPavXfKj4HyyeFj/8ckeFarJi7Od7vZEx5uGSTPzwHztebl4jL+n
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAASbCAYAAAAry16TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebhsV13n//e59+bmJmROzEQmQmAFIh1mOoAaEBWkbUUabRRkEARUENr+qS1j2w2KEzYgoAIik4AKggptyzwok0SGEFYMmQfITW7ueE4Ne/j9sXbds0/dqjo1nanq/XqePHWqaq9d+9zk7Nz1Od/1XQtlWSJJkiRJkiSNY9tGX4AkSZIkSZK2LsMlSZIkSZIkjc1wSZIkSZIkSWMzXJIkSZIkSdLYDJckSZIkSZI0NsMlSZIkSZIkjc1wSZIkSZIkSWMzXJIkSZIkSdLYDJckSZIkSZI0NsMlSZIkSZIkjc1wSZIkSZIkSWMzXJIkSZIkSdLYDJckSZIkSZI0NsMlSZIkSZIkjW3HRl+AJElaXyGETwI/UD19SYzxlUOOez3wS9XTe8QYr5/+1amXEMLZwC8CPwJcBNwN2ANcAbwHeFeMMVvlHJdX53g48D3AXcA3gb8E/iLG2BrjurYD/ww8FPhUjPHyUc8hSZK2PiuXJEmaby8NIdxnoy9C/YUQfgqIwIuBBwMnAUcBZwCPBd4G/HMI4e59xm8LIfwx8AngScDdgZ3V+EcBfwp8KYRwrzEu71dJwZIkSZpjhkuSJM23o4G3hBD8O8EmFEL4QeDdwHFAA/hD4IeBhwFPBj5dHfoQ4MMhhGN7nOaVpIolgJuBXwa+H/hJUtUSwH8A/j6EcMII1xaA/znK9yNJkmaTy+IkSZpANZn/NeC/AvcADgD/CvxRjPEjU/qMv6zOf68Y4zUDjtsGPAN4GvC9pKVTNwAfBF4VY7yrz9DLgC9US6++B9gHfAF4TYzxY9P4HjS6EMIC8HpgOylYelSM8fO1Q74YQngv8AbguaSA6IXAq2rnuCfw/1VPrwUeGGPcVzvHB0IIVwL/G7g3KXh6Fauo/lt7K7BrvO9OdWtxHwkhnAe8jFTddjqwG/gY8Nsxxqu6jr2cVNk2rGfEGN/WdY4TSJVsTwAuBBaAq0iVdW+MMebjfB+SpK3B31JKkjSmEMLdgI8DLydNpq4EDpEqSz4cQnj5FD7juaQJ5zDX8k/Am4HvI00krwfuCfx34CshhHO6hhVAZ8L3YOBkUg+eBeDxwEdDCP9j0u9BY7sMuLj6+rVdwRIAMcYSeBFwe/XSz3Ud8gxSOAXwwq5gqeO3gb3V1z815LX9Cql30z6gPeQY9bAW95GqquwrwM+Tqt6+SgoCn0q6F/xI15B9wOdW+ec71bEF8O2uz7s38A1SmBWq9/cCDwJeR6qKO2rU70OStHUYLkmSNL4/Ji1P+jfgnjHGB8YYzydN8DPgFSGEx4x78hDCC0lVKcN4I/Bo4FbgYTHGEGMMwP2BfwcuAP6ka0wbqDdx/mKM8f6kXjy/Vb32qhDCI8f7DjSh76t9/aF+B8UYG8Bnq6chhHB07e3vkCpSbiKFj73GF8DV1dPzVruoEMJFpKV2kKqiRm4ErhWmeh8JIewA/h44FXgHcFaM8SHAWaRKuF3Ae0IIp3bGxBiviDE+st8/pIB7Z3X4/4gxfqb2ebuqzzuXtEzzwhjjpTHGuwNPBBZJ1VMvHOPPRpK0RbgsTpKkMVTLjZ5C+i3+z8YYb+q8F2N8R/Wb/JcArwA+OuK5zyL9tv+JQx7/UFJFQg48Nsb49dq1fD2E8BxSZcTjupo+byP1XCqqr38ghPDsGOOfAS+vlsp8P/BMlsOLYa7nPqTlVT8InEOqhLqJFHK8Lsb4zT7jPknaxa4ZY+y73CqE8A3gEuCGGOMFXe+V1ZcvAv6BNJl+JClIuwb4jRjjR2vHnwA8C/hx0lLC44E7Sbuw/RXwjl67sIUQLgCuq54+gRT+PJ0UCFxSnecW4B+BP4gxfrv7HEP4Iqmq6Ozq2gdZqH29C2gCxBhfT/oz6KtaftcJlW4b4ti3AMcAn4gx/lkI4TWrXJv6WKP7yFNIOwreCDyrswtgjLEVQngBcCkpuHxRde7VrnE78C7gFOAjwO91HfJ84F6kSsnHxRgXa9/D+0MIl5Iqmp7VY6wkaUZYuSRJ0nieSlpu9C99wpI3VY+PqHqfDCWE8ARSpdETSVvF/9IQw55WPf5FPViq+SRpEvkClpfBwXIgcTVpcgvwe7UA6kvV4yjX/1Lg66QG0oHU9+nY6uvnAl8PIbyiCinW0rmkpTw/XH3+icADqYU0IYRHAd8C/oAUop1C2oXtTOBxpJ5CV1QBwCDHkib+byGFY6eRQrsLgecBV4YQfnTUbyDG+IkY42/GGJ8eY/xuv+Oq5UaPqJ7u67P0bZDnk75ngPeucuwvkf6sFoFnj/g5OtJa3EeeXj2+oxMsdVTLKDsVjE8e8nzPI/073wc8uzpHr897WT1YqnkL8FLgD9bh516StEGsXJIkaTyXVY89K3pijLeEEG4AzicFDu8Y8ryXksKKd5F6JQ3TMPmHqsf397mWkuVlTKR2LAB0JolnkSaczyOFMG8CfozUIBpSRcKqQgivIPWNAfgaaUnf10i/zHoQKdy6Z+2YVwxz3jG9kBSe/S7wd6Tw5P4xxuura72MVNl0DOnP4V3A+4DvkhoqP5MUTH0v8JkQwoNijP2qev6gOv/nSUucrib9mf4S6d/N0cDbQggXxhgPTv07Tdd6evX1P652cDXBPw24X3WNP1m99a+k3ej6jbsH8DvV05eOWY2llaZ6H6karT900DlJoSvAhSGEc+vVUj3OdwrLOwK+NMZ4S9f7ZwP3JYXTf9vne7iR1DBekjTDDJckSRrPRdXjoAn29aRJ4b1HOO+ngUs7FUjV8qu+ql2mOpU1V4YQjicti3k0qUH3DcD7Yoy9QoeC1KPpbFI40ZnE/qcQwjtJwUiLFJgMFEJ4IKk6AdIE+Jldy8k+F0J4C6k3y+XAy0II7+u3RG4KtpF2yHtx7bW/rq51O6kq6RjSn8FPxxj/unbcF4H3hhBeRppYd8K3/9zns84kfc9Pr/oXUX3Oh0jf74+SduF7PKtXBo2k6n/0O7WX/mCIYX9GavRc9xbgv/cLv6pA6s2kSrQvAH80+tWqh2nfR+5O+u960DlvIlUwbq/O2TdcIi1nOwWIpL5u3ToB9E0xxgMhhPNJlUwPIoWqVwJviTFeOcS1S5K2MJfFSZI0nk6lyO4Bx9xZPZ427EljjB/vs7Stn3NZ/v/5OaQdm94A/BdSz6NnAv83hPCerkbPHT9Iqlh5IqmRd8fPkrau/9EY4xVDXMevVtdxJ/DcXn2KYoyHquspSVVFzx/ivJPoNRmGVJXV2YXtjV3B0mExxt8iLSkE+LEQwn37nK9B2omtqL9YVYz9We2lS4e56GGFEE4nhVcnVS+9Ocb4xSGGnt/jtccAz64qX3r5BVJg2QJ+vvt71dimfR85vfZ1z3PGGHPSEreB5wwhnEb69w7wyl4/0yz/t7Q7hPAU0m6TryD9jP0wqa/TV0MI/22Ia5ckbWGGS5IkjefY6rEx4JilrmPXwvG1r99PCm5+glRhchqpsfYS8NP0rjZZIi3nyjlyCd4JLPdi6quqanlc9fRzffquABBjvA64qnr6g6udewK3xBhv7vNefRv27h30utV363tsn2P+Nca4p8979eqR4/scM7IQwpnAx0i9rCA1IH/BkMPfQGro/Ajgv5EqV84nLSF8V3fAFEI4l+VGzK+yCmWqpn0fqR8z6TmfR6qCuhZ4d59jOv9N3xN4G6lP20NJ95ILSVWP20n9ln560IVLkrY2l8VJkjSenOF/SdPdAHeajql9fTTwkBjjDdXzReCPQwiLpGVgvxBCqAdMC6TJ4PeQlmv9L+B2UvXT6aRw6qMhhKfEGP9ywDVcQFqCB/Cfazu2reYeQx43jkFLfb63ejxI+l4H+Xzt6/v1Oeb6AePry8ym8veuqsH4P7K8HDKSdula6j9qWYz
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebxkd13n/3fdqlt37Xt7TdKdTrqz8QUCBJAtBiSiPxdQFMcRNxiMCziOivoQ9acIMj/m5zoiDhBnAB1xGRYRUFkUERCEKJgEEpJvlu50eu+71151tvnjnKo6dbv2qrvVfT0fj37Uds6pc7tzT2697+fz+SaCIBAAAAAAAADQzNhWnwAAAAAAAAC2L8IjAAAAAAAAtER4BAAAAAAAgJYIjwAAAAAAANAS4REAAAAAAABaIjwCAAAAAABAS4RHAAAAAAAAaInwCAAAAAAAAC0RHgEAAAAAAKAlwiMAAAAAAAC0RHgEAAAAAACAlgiPAAAAAAAA0BLhEQAAAAAAAFoiPAIAAAAAAEBLqa0+AQAAsPmMMZ+W9MLo4a9Za9/c5X7/Q9JPRQ+vs9Y+NvyzQzeMMWlJ/y7pZkm3Wmu/2GH7d0r60S4P3/Lf1hjz9ZJeK+k2SYckLUm6V9K7rLXv7/L4AABgB6HyCAAAvN4Y86StPgn07P9XGBx16xmDvqEx5g2SPifpP0o6Imlc0lWSvlXS+4wxf22MmRj0fQAAwPZCeAQAACYkvcsYw88FO4Qx5lck/XwP26dUD5reqTBIavfnXJNj/JikN0pKSHpE0h2Snifp5ZLuijb7bklv7/XrAQAA2xttawAAQJJulfQzkt6y1SeC1qJWtT+Q9Joed32SwpBQkj5prb2nx/fdL+l3oocPS3qutXYlenyXMeaDkv5K0ksl3WGM+SNr7b/2eI4AAGCb4jeMAADsbr4kN7r/ZmPM9Vt5MmjNGPMcSZ9XPTjyetj96bH7PQVHkR+RtDe6/8ux4EiSZK11Jf2EpEL01C/28R4AAGCbIjwCAGB3c1SvKJmW9L+28FzQgjHmNyV9UdKzoqc+rN6qxKrzjvIKK4d69T3R7Vr03pex1l6U9HfRwxcbY6b7eB8AALAN0bYGAAB+Q9LLJD1R0ouMMT9urR0oRIoGcP8XSd8k6ajCOTmnJf2TpD+01n6txX6fVrgKXNlaO9nm+PcpnOFzylp7fN1rQXT35xSGGf9D0vMVBmWPKKyc+WRs+zlJPybpuyQ9RdIehSuI3S3p/ZLeE1XWrD+H45JORg9fJukjkl4l6ZXRue2RdFbSJyT9nrX20VZfTxeep/DvcFnS66y17zLGvLGH/auVR/daa/1e3tgYMy7p2dHDz1lr21U8fVbhMO3p6Jw/1ct7AQCA7YnKIwAAdjlrbVlheFINFX7HGHN1v8czxrxe0lcl/WdJRtKMwjDBKGy5+qox5o3GmMRAJ97ZNQrbvL4lev95Sc9UGCBVz/UbJT0o6fckfYOk/aqvIPbtkt4t6W5jzA0d3mta0iclvUth+HVQ4Yyh6yX9pKT7jTEvHuBrWZH0W5JutNa+q4/9b4lu7zHGvNQY8yFjzAVjTMUYc84Y8/7o76KZGxX+nUidq5biARkr+AEAMCIIjwAAgKy1n5f0tujhvKQ7+zlOVA3zJklJSV9RGBZ9vcLKn59VGC6MSXpD9GcjvVZhiPPbkl6gsCLmv1lrH4vO9VaFlUmHJQWS/kzhwOfnSvp+SX8fHecpkv7ZGHO4zXv9nqRvVNha9oroGN8t6R+i1yck/YkxZrbPr+U/WGsvmzXUDWPMtQpDMUn6YYVtZ98l6UqFodBhSd8r6VPGmD+KVmaLiweJj3d4u9Mt9gMAADsYbWsAAKDqVyR9p6Tjkr7DGPOD1tq/6HZnY8wzJb0+evgeSXesa/f6vDHmXZL+VtLtkn7dGPO+Vi1sQzCmMCz61dhzH4jONamwqmhKYcXVy621H4ht96+S3muM+XWFbX2HJf2RwnCpmasUfs2vireFGWM+ovDrfbGkQ5JeIum9vX4hvbaarfOM2P05SfdKeruk+xSGWrdL+mlJ+xQOvQ7UuJrb/tj9bIf3ysfu7225FQAA2FGoPAIAAJIka21eYXhQ9QfGmEM9HOIXFP5ssSTpNc3mBEXvcYfCgCKhMLTYSO9o8fx3KpzxJEnvWBcc1Vhr3yTp09V9jDFPbnG8kqTXrg95rLWBGoeQ36LNF19p7V2SnmWt/Z/W2n+x1v6TtfYNCgOmU9E2rzbG3B7bZyJ2v9ThvYot9gMAADsY4REAAKix1v6DpD+OHh6U9Ifd7BfNL/r26OHnrbWFVttaa09KeiB6+E19nmo3zlprz7R47Vtj9/+ow3HeHrv/bS22+bK1drnFa/E5QHs6vNdG+B2FodV3qnWod0rh3Kuq18buxwdkB+peL9sCAIBtjLY1AACw3s8rDEkOS3q5MeYvrbVNl2ePOa6w7UmSXhpb8ayT6/o7xa6cbvPaU6LbnML2rXa+GLv/1BbbPNZm/1zs/qb/7BUFeV+J/rTb7pPGmJMK/01eZIxJRJVT8fNvuQJeZCp2v1OVEgAA2CGoPAIAAA2stauSfir21DuMMZ3m1xzs8+1SxpiNqsbJtHntQHS7GAUk7VyM3d/fYptci+elxgqcjV5hblD3Rrd7VA8D43OOZjrsH3+9VSUWAADYYag8AgAAl7HW/rUx5v0KVyg7rHA1sR9ts0v8Z4p3q8t2t0jLFrc2uvkFWLtQqJcQJxm7P8jg6p0g/m+Rjm5PxZ67psP+8dfPDeWMAADAliM8wsgxxkxLep3CZZavU/gb0y9Leou19mN9HvM5CpeYfoHCFXWKkr4m6S8l3WmtrQy6nzHmuKSTPZzWb1hr39jr1wKgNxtxTWnyHn8ZHf8ma+0j6147rgGvDcaYp0j6NYVLye+VdF7hEu2d/BdJL1JYpXOHMeb/tNk2XmXiWWvv6eGc46qBT6dwZ77P41dVz/dgrD2rlSub7LcjGGPGFP4bHpJUstb+dYddrohuPdW/1pMKQ6VpSTd02D/++katogcAADYZbWsYKcaYGUmfkvQGSddLul/hssHfIumjxpg39HHMn5X0BUk/qLAt4wGF7QnPk/QHkj5rjJkbwn4lSZ/v8Oex2PYP9/q1AOjNRlxTmrzHaxQGR60MdG0wxrxA0r9JernC/+9/VWEYdCTapGVIY629JOnnYk/9T7VuWzqhetXK89p8PdXz+iVjzKuNMd+87qXqMOe0MSa5fr9o3ymFYcggqvN/ZiXd3GHb+Nfz4IDvu6mi1d8+IOkvJL09GmzelDFmQtKzo4dfqf6CIwrW/jV6/vntjiHpG6LbssL/7gAAwAggPMKoeZuk50q6R9IN1tpnWmuPSXqlwg8kb2zyQaUlY8xtkn5f4ffKb0vaZ629xVp7tcLf5J6L3u+PBt3PWnvBWvv8Vn8UrmJUXfHmHdbaP+/x7wZA74Z6TVnPGPNaNa7kdZlBrg3GmP2SPqxwyPFvSTpsrX2WwuBoMdps3BiTVgvW2vdIqlZYHZf0Qy22cyT9U/TwqcaY57f5ul8k6Tcl3Snp/1338mrs/vEWh/hmdVc51c7fx+6/usO2r4nd/4cB33crfDa6vUph8NnKHapXdK2vMvtAdHtI0kua7WyMuTL22settcXeTxUAAGxHhEcYGcaYGyT9sMJ5FD9kra2tshN9+PnN6OEbezjsLyr8rfzfWGt/yVpbjh3znyT9p+jh9xtjrhnCfu3cqbAd4B41VgIA2AAbdE2pHvuwMeYDCkPmQQcot7s2/IzCocdftNb+cnWJdmttVvWWooTCMKydV6s+NLldaPPfY/f/pNn1zRhzhcIKpqq3rtskviLYTzfZ/0qFS88P6iOSqi2C/9kY87JmGxljXi/phdHDfxygHW8rxQPKtxpjLhtubox5rsJfdkjSBTX+G0lhu3W1je2t0b9DfP9UtM909NTvD3rSAABg+2DmEUbJKxQONf28tbbZnIU7Fc78uM0Yc6219vEujvmN0e1ftnj9HxV+oNoj6VmqLwvd735NGWO+Q2H7myv
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebwkZ13v8W+ffWbOyWSZTJIhy5AEHkhYI4sRhCAK94oiq4AKQsQLegFBXPAKEvXihhu4EJeoiOhlk8WdXQVN2CHLzENC1tnnrL13rfePqj5d3af30z3dp/rzfr3Oq5eqevo5M5lK9a9+v9+TCcNQAAAAAAAAQDNTo54AAAAAAAAAxhfBIwAAAAAAALRE8AgAAAAAAAAtETwCAAAAAABASwSPAAAAAAAA0BLBIwAAAAAAALRE8AgAAAAAAAAtETwCAAAAAABASwSPAAAAAAAA0BLBIwAAAAAAALRE8AgAAAAAAAAtETwCAAAAAABASwSPAAAAAAAA0BLBIwAAAAAAALQ0M+oJAACAM88Y81lJT41fvtla+7Yuj/tDSf87fvlga+29g58dumGMmZP0FUlXS7rWWntzF8dcJ+knJX2HpPMlrUm6Q9LfSXq3tdbpYozvkPR6SU+Kx1iR9HVJN1lrP9DXLwMAAMYamUcAAOAtxpiHj3oS6NmvKwocdWSMmTLG/JGkz0h6oaQHSZqTdIGkp0n6U0lfNMY8pMM4b5X0uXiMA5JmJV0o6ZmS3m+M+bAxZr6/XwcAAIwrgkcAAGBe0k3GGK4LdghjzC9I+ukeDnmboowjSToi6TWSniLpeYqyjiTpUZL+0RhzVovPfKWkGyRlJN0l6XpJ3y7pRZJuiXd7jqQ/7mFeAABgB6BsDQAASNK1kl4n6fdHPRG0FpeqvUPSq3s45gpJPxu/vFvSNdbajcQuHzbG3C7p/0p6qKLA0q81jHGupLfHL++U9ERr7Vr8+hZjzN9L+pCkZ0u63hjzJ9baL/T0ywEAgLHFHUYAACZbIMmLn7/NGHP5KCeD1owxT5D0edUCR36Xh75C0nT8/PUNgaOqX5e0Hj//wRZjnB0/f1MicCRJstZ6kv6XpGL81s8KAACkBsEjAAAmm6taRsluSX82wrmgBWPMb0i6WdLj4rc+qu6zxE4o6nX0gKRPNNvBWhtI+mb88tImuzwvftyIP7vZGCcl/VP88nuNMbu7nB8AABhzlK0BAIBflvRcSQ+T9F3GmB+31m4riBQ34H6NpKdLulhRn5wHFAUx/sBae0eL4z6raBW4irV2oc34tylqFn2ftfZgw7YwfvoGRcGMP5T0ZEWBsrsUZc58MrH/WZJeKekHJD1C0pKiFcS+KukDkt4TZ9Y0zuGgpHvil8+V9DFJL5f0snhuS5KOSvo3Sb9jrf1Wq9+nC9+u6M9wVdLPWWtvMsbc0M2B1to/VPRn0JIxJqNa0Oh4w7ZZSY+PX37OWtsu4+k/FDXT3h3P+dPdzBEAAIw3Mo8AAJhw1tqKouBJEL/1dmPMg/odzxjzFkm3KmrQbCTtURRMMIpKrm41xtwQByyG6RJFZV7PiD9/r6RrFAWQqnN9mqTDkn5HUQPpc1VbQex/SvoLSV+N+wa1s1vSJyXdpCj4tU9RI/LLJf2EpNuNMd+7jd9lTdJvSrrSWnvTNsZp5bWKfmdJel/DtisV/ZlIUb+jdpIBMlbwAwAgJcg8AgAAstZ+Pl7K/bWKgiw3Svr+XseJs2HeGr/8hqKVt76h6IbVtylqyn1FYp8btjPvDl6vKFvntyT9g6LgyGOstffGc71WUWbSLkmhpPdKer+kk5IerGg1sWcoykb6T2PMt1lrj6u534nHv1nSHykqAbtI0v+W9D2KAkl/ZYy53Fqb7+N3eX5cWjYQceBun6RHxnOslqV9WdLvNuyeDCTe32HoB1ocBwAAdjCCRwAAoOoXFAWMDkr6PmPMD1lr/7bbg40x10h6S/zyPZKubyj3+rwx5iZJ/yjpOkm/ZIx5f6sStgGYkvRr1tpfTLz3wXiu04qyinYpyrh6kbX2g4n9viDpfcaYX1JU1neRpD9RtJpYMxcq+p1fngzyGGM+puj3/V5J50t6lrZm9nQ0yMBR7M8k/VjDezdJ+pkmwa1zE89zHcYtJJ6f3XIvAACwo1C2BgAAJEnW2oKiFbOq3mGMOb+HId6o6NpiRdKrm/UJij/jekWZPhlFmU7D9K4W73+/oh5PkvSuhsDRJmvtr0j6bPUYY8xVLcYrK1rJrC7IY60NVd+E/NHdTPoMuKzJe98t6ceNMY3Xh/OJ5+UO45ZaHAcAAHYwgkcAAGCTtfYTkv4yfrlP0h90c1xcBvU/45eft9YWW+1rrb1H0qH45dP7nGo3jlprj7TY9szE8z/pMM4fJ57/jxb7fNlau9piW7IP0FKHzzpT/ljSd0p6kqSfVlRudpmiEr/3NgSQkg2yQ3Wvl30BAMAYo2wNAAA0+mlFQZKLJL3IGPN31tqmy7MnHJR0Tvz82YkVzzp5cH9T7MoDbbY9In7MS7qtwzg3J54/ssU+97Y5PlkGNhbXXtbaDyde/pcx5t2KGn4/VtKLJX1CUVmfVD//livgxXYlnnfKUgIAADsEmUcAAKCOtXZdURPlqncZYzr1r9nX58fNGGOGlY2TbbPtvPhxOS4ta+dk4vm5LfZp1wQ7Of6wV5jrS5w19bLEW9cnnif7HO3pMFRye6tMLAAAsMMQPAIAAFvEmSkfiF9epGg1sXaSGTV/oSiDpdufliVubXRzDdMuKNRLEGc68XzQjavHhrX2NkWrxEnSoxKb7ks8v6TDMMntxwYxLwAAMHpjkToNDIoxZrekn1OUcv9gRXdLvyzp9621/zKgz/i7ePyHWGvv6uG4D0h6gaQHV5eJ7vK4v5f0XEmXtOndAWBIhnFeMcZcKumXFJWG7Zd0WtKnJP26tfZQm+MeIenNkp6maCWr45L+WdLbrLVHWxwzpWhVrVcoKrmaknS3uuu98xpJ36UoS+d6Y8z/a7NvMsvEt9Z+rYvxm6kGfDoFd/b2OX5Vdb77jDGZDtlHFzQ5bscwxhyQdIWiv5f/6rD7Svw4l3jvHkUBvt3xOO0ktw9rFb0dbZyuVfo5FxljrpP0mQ5T+Ki19jl9TB0AMKbIPEJqGGP2SPq0pLdKulzS7YqWDH6GpH82xrx1AJ/xakUXY70e9xpFgaNej3u9osARgBEYxnnFGGMkfUVRQGdR0tcV9ZF5qaSvGGOe2eK475T0RUkvUvT/71sVBXV+QtKtxpjHNDlmTtEy8X8q6VpFgY9vSXqIaqtttQzSWGtPSXpD4q0/VeuypbtVyyD69lZjJub288aYVxljvrthU3WFtjljzHTjcfGxuxQte78d34gfFyVd3WHf5O9zeJufe0bFjcwPS/oPRX9/nfa9PH65ebMiDqx9IX755Hi/Vp4SP1YU/feKhHG6Vun3XKTaioHHJX2+xQ+BQwBIGYJHSJM/kvRESV+TdIW19hpr7WWKejh4km5o8iWla3Eg54877rj1uDdKemcfx/2cpN/r9TgAAzXQ84oxZkZRMOc8Se+RdJG19vGKysL+UNEXt/9njDmv4bhzJX003v6b8XGPk3RA0ocUNar+UBwsSnqLohXQspKeYa29zFr7KEXNrdfjfWbbBQOste+RVM2GOCjph1vs56qWjfBIY8yT2/w5fJek35B0o6T/07B5PfH8YIshvlvSbKvxu/TxxPNXddj31Ynnn9jm555RceDn8/HLq40xT2yz+7NUy7Jq/D0/GD+eH++3hTHmgsS2f7XWlnqfceqNxbVKv+eiWDV49A5r7ZNb/DT+uwYA7HAEj5AKxpgrJP2Iol4UP2yt3VxhJ/7i8xvxyxv6GPsiY8wHFQVyuu6RYYx5UFxy9ts9HnexMeajir4gAhiRIZ1XfkTSlZLul/TK6pdra60j6XWS/lNROdobGo57naIA0c3W2jdZa734uJykH1KU9XO5Eg2P40DS6+KXP2ut3QwGWGtPSKqWpGQkfUeHeb9KtabJ7YI2v5t4/lfGmC39cYwx+1WfAdM
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXylWV3n8c/NTXKzL5Xau7qqej3ddDe7YCtIg6KCMqPOODgqKozrqCPiDOC4gDo4LuOIziDoKKODy6CI2wgq2CyyNNjQQNN0n15rX1KVpLLdLXeZP56b5CaVm61ukkrq83698nru8zznOfekX9Sl7rfO+Z1UtVpFkiRJkiRJWkrLVg9AkiRJkiRJVy/DI0mSJEmSJDVkeCRJkiRJkqSGDI8kSZIkSZLUkOGRJEmSJEmSGjI8kiRJkiRJUkOGR5IkSZIkSWrI8EiSJEmSJEkNGR5JkiRJkiSpIcMjSZIkSZIkNWR4JEmSJEmSpIYMjyRJkiRJktSQ4ZEkSZIkSZIaMjySJEmSJElSQ61bPQBJknT1CSF8GHhR7fSnY4xvWeVz/xP44drpDTHGY80fnRYLIXwn8K5VNn91jPH3G/STBr4HeCVwFzAEjAKfBt4eY3z/FQ9WkiRtO848kiRJK/mZEMLtWz0ILetZV9pBCOEQcD/wu8BLgf1AG7APeAXwvhDC74YQ/PujJEnXGGceSZKklWSA3wshvCDGWNnqwWhJz6wdPwe8eoW2JxZfCCEMAB8Bbqxdej/wv4CzwDOAnwKuB/4dcBL4uSsfsiRJ2i4MjyRJ0mrcDfwH4K1bPRAt6Rm1430xxs+t4/lfYj44+pUY4xvq7t0XQvhLkmBqP/DGEMJvxhjH1j9cSZK0nTjtWJIkLacClGqv3xJCuHG5xtp8IYTrSWoTQRLwrPX5Q8D31U4/uig4AiDGeB74xdppB/CN6xiqJEnapgyPJEnScmaAX6297iJZyqSrS329owfW8fwrmf874U8u0+7PSYpy/zpwah3vI0mStimXrUmSpJX8HPDNwG3AS0II3xdjvKIQqVaA+0eArwYOASmSWjofAv5HjPFLDZ77MMkucIUYY8cy/X8RuAM4HmM8uuhetfbyx4G/Bf4n8AKSoOxx4I0xxg/Wte8Dvhf4l8CdQC8wQhLU/BnwrhhjiUVCCEeBp2qn3wz8NclOZt9VG1svcBr4e+DXYoxPNPp9VjBb76gMPLiO519WO56MMX6iUaMY4xmSsUuSpGuM4ZEkSVpWjLEQQvhe4KMkM1R+NYTwvhjj6fX0F0L4GeBNQHrxrdrP94cQfgH4uRhjdfHzTXQ98HFgT921Z5MESLNjfTHwR8CBRc/uJwldXga8LoTwTSuEP13AB4EXL7p+I/BDwGtCCN8SY3zfOn6P2fDokWTI4YeBl5CEclPA54E/BP4gxlhe4vm7asf76y+GEHqBg8BkLTiSJEnXKJetSZKkFcUYPw68rXbaD7xjPf2EEN4M/DxJcPQF4AeBryCZ+fNjwBMkfz95U+1nI70W2A38CvBC4FuBX4wxHquN9W6SmUkHgCpJAPMvgOcD3wb8Q62fO4F/CiEsDpjq/RpJcHQf8KpaH98EfKB2PwP8fgihZx2/x2x4dAT4LMksqRuBdmBX7X1/D/hYCGFv/YMhhCFg9trx2rVvCSF8HJggCaROhxBOhBDeGELIrGN8kiRpm3PmkSRJWq2fBF4BHAW+MYTw7THGP17twyGEZwM/Uzt9F/CaRcu9Ph5C+D3g/wH3AD8bQvjTRkvYmqCFJCz6qbpr76mNNQ28E+gkKRr+yhjje+rafRp4dwjhZ0mW9R0AfpskXFrKfpLf+XtijJXZiyGEvyb5fV9OMgPqG4B3r/YXCCH0AzfUTnuAcyTL8D4J5EmCpf9AMqPry4G/CyF8RYwxX3tmd113l0II7wB+YIm3uh74r8ArQgjf6E5rkiRdW5x5JEmSViXGOA18f92l3wgh7GnUfgk/QfJ3jxHgB5eqE1R7j9eQzPRJAT+6/hGvytsbXH8FSY0ngLcvCo7mxBh/Hvjw7DMhhKc16C8PvLY+OKo9X2VhEfJnrGbQdZ5Z9/p+4OkxxrfEGO+NMX4ixvhbJAW1/67W5lnAG+ueqZ/p9BqS4OhJkiLag0A3SV2q+2ptvoJkBpYkSbqGGB5JkqRVizF+APjftdPdwP9YzXMhhBTzhZk/HmPMLvMeTwEP106/ep1DXY3TMcZGu4Z9Xd3r316hn9+qe/31Ddp8JsY42uBefa2k3hXea7GPA7fW3vcVMcYLixvEGHPAd5AsQwP40drMKkhqMc06XBvL82KMfxpjvBRjzMYY7yWZCfaxWruXhxBevsZxSpKkbcxla5Ikaa1eRxJWHABeGUL4kxjjX63wzFGSmSwA/6Jux7OV3LByk3U7ucy9O2vHKeCLK/RzX93ruxq0ObbM81N1r9f0d7Pa7K3Haj/LtRsNIfw58GqSOkjPIpmplFvU9MdjjCNLPF8IIfwoyQ5zAN8JrKe4tyRJ2oaceSRJktYkxngJ+OG6S28PIQys8NjuFe430lrb9WsjTCxzb6h2vLiKHd/O173e1aDNVIPrkCzRm5Va4b2uxOfrXh+uHSfrruWYX952mRjj54DZmVrPb+7QJEnS1cyZR5Ikac1ijH8RQvgzkh3KDpDsJvbvlnmk/u8c72SVy91qGi5xW8Zq/oFsuVBoLSFOuu51pWGrrVf/37G9djxXd+1CjHFmhT5OAodYfxgoSZK2IcMj7SghhC7g9SRbKN9A8i+qnwHeGmN8/zr7fB7J9tEvJNktJwd8CfgT4B0xxmKD51pIlgd8N8nyh26SbZD/imR3nyV3qlnvc5K0BX4EeAnJLJ3XhBD+7zJt6+v9lGuzWNZjNvBZKdzpX2f/s2bHuzuEkFph9tG+JZ7bFCGE55D8/91u4LdXGOfeutfDADHG8RDCCZKZSINLPrVQpnb0/4skSbqGuGxNO0YIoRu4F3gTcCPwEDANfC3wvhDCm9bR54+RbHf87SR/MX+YZOnBlwO/AXw0hNDXYCwfAH6XJHS6QFLv4ibgPwKfDSEcatZzkrQVYozDwI/XXfodksB7KU8yP/Ply1fqO4TwhhDCD4QQvmbRrdkd2trrij4vfraTZNv7K/GF2rEHuGOFtvW/zyNX+L5r9bPAn5HsGnfbCm1fUDtWgM/WXZ+t2dS7zG5xhBBagVA7PbbmkUqSpG3L8Eg7ydtIajB8DrgpxvjsGOMR4LtIvmy8eYkvIQ2FEL4S+HWSPye/AgzGGJ8RY7yO5F/az9Teb6ldeN5e3ybGGGKMgWRL5cdICsc28zlJ2hIxxncBszM7j5Ls6rVUuxngQ7XTu0IIL1iqHUAI4SXALwHvAP7zotuX6l4fbdDF1wBty417Ff6h7vUPrND2B+tef+AK33etPlL3+rsaNQoh3EHyjykAf1+rWzWrfsbYv1/mvb6F+XDwL9cySEmStL0ZHmlHCCHcRLLzSwX4jhjj3A46tS82v1Q7ffMauv1PJMsi/ibG+IYYY6Guzw+RLCsD+LYQwvV1Y3ke8CqgDHx9jPHTdc89yPyXkJeFEK670uck6SrwA8wXXl4utPnvda9/v/6zc1YIYS/JDKZZv7moyRfqXv/oEs/vA3512dGuzl8Dj9de//sQwjcv1SiE8DPAi2qn/3gFy/HW6w+Z/2//YyGEywpZ1/6bvpvk730V4BcWNfl/JMuxAX4ohPAtS/RxFHhr7XQC+OMrHrkkSdo2rHmkneJVJAVLPx5j/NIS998B/DTwlSGEwzHGE6vo88W14580uP+PJH9h7wWey/yWz7Oh0h/UQp/FPlwbyzhJUDRrvc9J0paKMZ4MIbwB+K0V2t0bQng78EMky3E/H0J4K/OzZ54LvA44WDv/ixjj4hkuf0KyVKuVJCzpJZk5kydZPvba2vNP1N5jvb9TOYTwqtrY2oH3hBD+kGSJ2DBwhKRA+NfVHrnI/Of4pokxDocQ/iPJrNRO4EO1/6Z/TzLr9stJ/jFkti7Tf4kxfnJRHzMhhFeT/P9MJ/BnIYR3AX9KUtv
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebxkeV3f/1fd/d7ee/ZhZhgYwpdVECEExTBCQoy4JnEHghMUVFSU/IAEcECjuCvKahQNEBRcIiSBCAi4QEAwgMryhQFmH3qm17vVds6p3x/n1L2nqqvq1q1bt7tv9ev5ePSjtnO+deoOXXS/+/P5fCutVgtJkiRJkiSpl6nzfQGSJEmSJEm6cBkeSZIkSZIkqS/DI0mSJEmSJPVleCRJkiRJkqS+DI8kSZIkSZLUl+GRJEmSJEmS+jI8kiRJkiRJUl+GR5IkSZIkSerL8EiSJEmSJEl9GR5JkiRJkiSpL8MjSZIkSZIk9WV4JEmSJEmSpL4MjyRJkiRJktSX4ZEkSZIkSZL6mjnfFyBJks6tEMIHgScVD18aY/y5Ic97NfCjxcMHxBhvHf/VqZcQwtXAjwD/CngQsA84CXwC+EPgv8cYkwHn/w7wH4Z8u6H/24YQXgL8F+ANMcbnDrm+JEnaY6w8kiTp4vayEMJDz/dFqL8QwncBEXgJ8FjgMDALXAF8I/D7wIdDCPcbsMxX78J1PQ542bjXlSRJFx7DI0mSLm7zwO+GEPwzwQUohPAU4K3AfqAG/BrwVODxwPcCf1Uc+jjgXSGEpR5rzAAPLx7+DnmQNOjX3UNc1yOAd5P/70eSJE0429YkSdITgB8HfuN8X4g2hRAqwKuBafLg6BtijB8pHfK3IYS3Aa8Fngt8FfB84Oe7lnoomyHP+2KMn9zhdX0L8Gbg0E7WkSRJe4f/yihJ0sUrA9pzcn4uhPDA83kxOssTgIcU93+zKzgCIMbYAn4SuLd46pk91nl06f7IwVEI4UgI4VXAO8iDo3TUtSRJ0t5ieCRJ0sWrCfxycX8J+K/n8Vp0tq8v3X9nv4NijDXgb4qHIYTQ3UrWnne0BnxhlAsJIXwtcAt5hVoFuAf4vlHWkiRJe49ta5IkXdxeAXwHeYXLk0MIPxhj3FGIVAzgfh7wFOAa8rDhDuADwG/FGD/T57wPku8CV48xLgxY/x/JZ/jcFmO8vuu1VnH3J4H/Td729UTyoOwW4MUxxveVjj8IPBv4NuARwAHgBPkuZn8EvLnXLmYhhOuBLxcPv4M83HkWeeXPw4t17gL+HPjVGOMX+32eAf4WeCVwdXHtg1RK9xeAeulxu/LoUzHGbITrAHgwcBRoAW8i//natiZJ0kXC8EiSpItYjLEeQng2+eDlKeCXQwjvijHeNcp6IYSXATeTz+npeKn49UMhhJ8FXlG0XO2Wa4EPAZeVnnsMpRAmhPANwH8Hruo690rgXxe/fiqE8O1bhD9LwPuAb+h6/oHADwM3hRD+TYzxXdv5ADHGD5AHbgOFEGaBrysenokxnuk65FHF7SdDCN8K3AT8M/Iw6Dj5z+m1xfv1kwHvAl4eY/xY8b6GR5IkXSRsW5Mk6SIXY/wQ8Jri4SHg9aOsE0J4OfAz5MHR35MPcf5a8sqfnwC+SP5nj5uLX7vp+cClwC+Rt399J/DzMcZbi2t9Anll0lXk1TRvAb6VfBez7wHeU6zzCOCvQwjdAVPZr5IHRx8BnlGs8e3Ae4vX54HfDyHsH9Nn63YTcHlx/8/LL4QQriMPiQCeTj6v6NuAK4BZ8s//74D3hxDeUOzM1stbYoxPawdHkiTp4mLlkSRJAvhPwLcA1wPfHEL4vhjjW4c9OYTwGOBlxcM3Azd1tXt9KITwu8D/Am4EfjqE8PZ+LWxjMEUeFr2k9NwfF9c6DbwRWCSvqPnuGOMfl477W+BtIYSfJm/ruwp4A3m41MuV5J/5WeW2sBDCO8k/7zeRV0A9DXjbzj/aphDCg4BfKD31q12HfHXp/kHgU+S7s/0jeah1I/BjwBHgh8iDtOd2v88O2t0kSdIEsPJIkiQRY1wjDw/aXhVCuKzf8T28gPzPFSeA5/aaE1S8x03kAUWFPLTYTa/r8/y3sLmL2eu6gqMNMcafAT7YPieE8LA+69WA53cHLEVbXnl+1KMYoxDC5eTh1OHiqd+JMf5t12HlndZ+F3hsjPG3Y4wfjjF+IMZ4M3nAdFtxzHNCCDeO8zolSdLeZ3gkSZIAiDG+F/i94uGlwG8Nc14IoUI+HwjgQzHG9QHv8WXgs8XDp4x4qcO4K8Z4Z5/X/lXp/hu2WOe1pfvf2OeYv4sxnuzzWnlW0oEt3mtoIYQrgb8gnyMF+YDvH+9x6C+Th1bfQv9Q7zbyoeFtzx/XdUqSpMlg25okSSr7KfKQ5Crgu0MIfxBjfMcW51xP3vYE8K2lHc+28oDRLnEodwx47RHF7Sp5+9YgHyndf2SfY24dcP5q6f5Y/twVQriBfLbRDcVTEfjXMcZq97FFkPf3xa++YozvCyF8mfy/yZNDCJVdHmguSZL2ECuPJEnShhjjaeBHS0+9LoRwuN/xhUtHfLuZEMLYqnG6LA947ZLi9vgQAcmx0v2jfY5Z7fM85C16bZUt3mtLxaDv/8tmcPRp4BtijMf6nzW0TxW3B9gMAyVJkqw8kiRJnWKM/yOE8EfkO5RdRT6E+T8MOKX854k3MmS7W6Fvi9sAw/zj16BQaDshznTp/nkdGh1C+E7gTcBC8dRHgafFGE+M6S3K/y3mxrSmJEmaAIZHmjghhCXgheRbLT8AWAH+DviNGOO7R1zzOuCnyVs5LgfuI5818coY42f7nHMj8IEtln5HjPHbe5z7TeTbWj8O2A98BXhf8X5fGOUzSNI2PQ94MnmVzk0hhD8ccGx53k8aY/zkiO/ZDny2CncOjbh+W/t6Lx2iPeuKHuedcyGEHwFezebP5n8D3zVovlQIYYr8v+FlQC3G+D+2eJvLi9uU8/hZJUnShce2NU2UEMI+4P3AzcADycv514CnAu8KIdw8wpoB+H/k/+q+n7ysfwF4BvD/Qgj/qs+p7V117gE+1OfXWVtUhxBeQf6XgqeS/wH+M+R/efsB4BMhhH+x3c8gSdsVY7wX+MnSU78N7Otz+JfYrFr5Z1utHUJ4UQjhOT2+z9rDnOdCCNPd5xXnLpKHITvRnv+zH3j4FseWP8/ndvi+Iwkh/DDwGjaDo/8KfNug4Aig2P3tj4G3Aq8tBpv3e4958n+wAPj7GGNjxxcuSZImhuGRJs1rgMcDnwRuiDE+JsZ4f+CZ5H8pefl2wpcQwgz5NsiXAG8GrooxPo68jePV5CHSH4YQLulxejs8elWM8Yl9fv3nrvf7evIKJ4D/BFwRY3w0cE1xHfuAPwgh7PRf3SVpSzHGNwPtis3rge/vc1yTzUrLR4YQnthvzRDCk4FfAF4P/Oeul0+X7l/fZ4l/AcwOuu4hvKd0/zlbHPvc0v337vB9t634/6xXl576uRjjD8UY0yGX+Kvi9kryf5To5yY2K7oGVZlJkqSLkOGRJkax+8zTyWdSfH+McWOnneIvQL9QPHz5NpZ9OvAg4Hbg2e2dbIp/kf1x4K+Bw3T+63xbOzz6h228378vbt8bY/yF4l+NiTGeIv9L2wr5YNpv28aakrQTzyH/7oHBoc2vle7/fgjh2u4DQgiXk1cwtf1m1yHlHcF+rMf5V5BvPb9T7wRuKe7/SAjhO3odFEJ4GfCk4uFf7KAdbyTFPxT8Nzb/vPbrMcaXbnOZ15bu/2YI4azh5iGExwO/VDz8Cp3/jSRJkpx5pInyDPLBph+KMZ7VDkb+r9wvBb4uhHBdjPH2IdZ8VnH75u4S/hhjK4TwBuDrge8t1gY2KpbarRBbbQNd1v7L1qe6X4gxLocQPg98DXDdNtaUpJHFGO8IIbyIzhCi13HvDyG8Dvhh8p3APhVC+A3gL4tDHgv8FHB18fh/xBj/rGuZPyCvvpwBfqLYie0PgRp5+9jzi/O/yOZuY6N8pjSE8Izi2uaAPw4hvAX4I+Be4P7krcrttuTjbIb
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkV13//1dPzz6ZmWwkkz0kkROWAEFQwyIBRFEUEQW/ivJDRBFURPl+cQPBha8LuCAouIACbiDyFVxZZN+XJIRsJwmZZPbeprv2e+tuvz/Ore7q6lpuVd2qrql+Px+PflRX1a1btyepU+d+7ufzOTNJkiAiIiIiIiIiIjKIbZt9ACIiIiIiIiIicuZScElERERERERERAam4JKIiIiIiIiIiAxMwSURERERERERERmYgksiIiIiIiIiIjIwBZdERERERERERGRgCi6JiIiIiIiIiMjAFFwSEREREREREZGBKbgkIiIiIiIiIiIDU3BJREREREREREQGpuCSiIiIiIiIiIgMTMElEREREREREREZmIJLIiIiIiIiIiIyMAWXRERERERERERkYNs3+wBERERk8hhjPgE8Ob37amvt6zO+7i3Az6Z3H2ytvT//o5N2jDHXAK8Ang5cDnjAYeD9wF9aa+cz7ONG4MXADcBF6cPHgU8Bb7HW3pz/kYuIiMiZTplLIiIi0strjDEP3eyDkM6MMS8Evo4L7D0E2A2cDVwP/DZwuzHme7q8fqcx5t3Ax4HnA1cBe9Kfa4AXATcZYzIFGUVERGRrUXBJREREetkFvN0Yo3nDBDLGfDfwDlxAqQb8DvCdwHcBvwv4wPnA+4wxj+mwm78Afiz9/W5ckOrxwJOAXwHm0ud+zRjz6hH8GSIiInIGU1mciIiIZHED8HLgTzb7QGRNGvB7CzAD1IEnWWu/2rTJh40x/43LSNoD/B4u8NS8jxuAF6Z3PwM8w1pbadrkM8aYdwGfA67EZbL9nUoeRUREpEFXIEVERKSbGAjT319vjLlqMw9GNngqroQNXE+kr7ZuYK39FPAf6d2nG2POadnkJ5p+/+mWwFJjHyeBV6Z3dwL/a6ijFhERkami4JKIiIh0EwBvSH/fC/zVJh6LtPfvwBHgA122ubPp98tanntSenuvtfZOOvtI0++Pyn54IiIiMu1UFiciIiK9/CbwA8C1wFONMT9lrR0qyJQ2CP854GnApbiyrqO48q03W2vv6PC6T+BWsfOttbu77P824OHAA9baK1ueS9JffxGX0fMW4Im4QNq9wK9Yaz/atP0B3Apq3w88AtgPLAE3A/8MvNtaG9LCGHMlbrU2cP9+H8SVn70gPbb9uJXYPgT8obX2G53+nk7S4/xozw3hiqbfT7Y89xe4crfTPfYx0/R7x397ERER2XqUuSQiIiJdWWt9XHAlTh96gzHmkkH3Z4x5DW5ls5cBBtiHy4oywM8AXzfGvM4YM9N5L7m4DPgsrgfRXuAg8BhcgKlxrE8B7gL+EPh24FxgB3AIaDTSvtkYc3WP99qLCwK9HRccOx/XKP0q4KX0WM1tGMaYxwHPTu9+3Fq70Py8tfZPrLWvsNb+Vo9d3dj0+wM5HqKIiIic4RRcEhERkZ6stZ8F/iy9exB42yD7Mca8DvgtYBa4FRdMejwuc+gXgG/g5ievTX9G6RW4IM8f4ErDngv830aj6rTR9X8AFwEJ8HfAs4BvxfUc+nC6n0cAnzbGXNTlvf4QeArwBeDH0308m7VSs13A3xpjzhr2jzLGzBhj9htjHmOM+WPgE+n+l3HZYgPtE/jlpoc+NOxxioiIyPRQWZyIiIhk9avA9+FKqL7XGPOj1tp/yPpiY8xjgNekd98NvKilnOyzxpi343oI3Qj8hjHmvZ1K5HKwDRdM+vWmx96XHussLitpDy5j64ette9r2u5LwHuMMb+BKxu8CFde9qwO73UI9ze/0FrbyADDGPNB3N/7PcCDgGcC7xny73p++l7NPgu82Fp714D7fCUuCAhwGwouiYiISBNlLomIiEgm6SpiP9300JuMMQ/qYxevxM09loCfadenKH2PF+EyhWaAnx/8iDN5a4fHvw/XYwrgrS2BpVVpKdknGq8xxjysw/484BXNgaX09Qnrm6Tn0Sj7ijaPXQf8fJuV4noyxjwH+L30bgT8bOvfISIiIlubgksiIiKSmbX2I8DfpHfPB96c5XVpWdV3p3c/a62tdnmPw6ytbva0AQ81i+PW2mMdnvuupt//osd+/rzp92d02Oar1tpODbObG3nv7/FeWXwSeDqu9O7HcaV4B3A9rj5ljLkg647SwNI/4soYAX7dWvupHI5RREREpojK4kRERKRfv4QLolwE/LAx5h+ttR/o8ZorgUbWzLOaVmzr5cGDHWImR7s894j0towrA+vmC02/X9dhm/u7vL7c9PvQczNr7Wea7n7JGPMPuOyoF+H+rjfiVqzryhjzk7jAWiOw9CZr7e8Pe3wiIiIyfZS5JCIiIn2x1q4AP9v00FuNMWf3eNn5A77ddmNMHtk87RS7PHdeeruYlq51M9f0+7kdtil3eBxcCWBD7ivkpSVsLwOOpw/9sDFmb6ft04bgvw38NWuBpT+y1r4i72MTERGR6aDgkoiIiPTNWvv/gH9O716EWw2tm+aMnHcA1/fx07GErossc5xuQaN+gjyzTb9PZC8ia62PW/kOYCdr/aTWMcbswq2K9+qmh19jrX3laI9QREREzmQqi5MtL716+yrcstIPBkrAV4E/sdb+14D7vBz4DVzZyAXAAvA/wO9aa+9s2fZG4ON97P4nrLV/27KP5wE/CTwGOBtYAb6Ma0L7b4P8DSKS3SjGkTbv8Y/p/r/JWntvl+0yjz9Nr7mRzuPQrrSE7QPW2me3PPdzwFNxWT4vMsb8U5c/obnfUGStvaXLtt00AkK9gj8HB9x/Q+N4zzfGzPTIXrqwzevGIm3QfTVwyFr77z02X2r6fWebfe0DPsBan6sQ13j97Xkcq3S22XORltc9HvjfwBNxc4ol4FPAH1hrv9rhNS9krRdbJ29S9pvIaEzKGJLxvKbdfKJ1P3uBW4Hd1tpL+zx02STKXJItLZ1Ifwx4LXAVcDtQAb4T+E9jzGsH2KcBbsIFe84CvgbsxjVVvckY810tLyngloju9nMq3TamqfGrMWbWGPMe3LLV34m7en4bLnD83cAHjTF/1u/fICLZjWIcafMeP4ObMPbart/xp6GxQtlJ1sadRslYkt6/o/VF1tp54BebHvpLYF+H97iPtQykb8vwt/yyMeYlxpjvaHmqscLcTmPMbOvr0tfuAfpZxa6dW9Pbs4CH99i2+e+5a8j37de7cRcTPphh5b6rm35f18jcGLMbl9nUCCxVgGcpsDR6EzIXabzuJ4FPAz+AC0DeDuwFngd8wRjz4x3esjGGHKbzXOa+fv8OEeltksYQ2s8nWn82zCda3nsbrk/g1d22k8mj4JJsdX+GW03nFuBqa+1jrLVX4BqdhsDr2pzYdGSM2Q78O+4q/ruBi6y1j8OVjLwFNyj/kzGm0csDa+3N1tondvrBnVA2rjD/qrX2001v+Su4CV8FeIG19lxr7fW4nh8vTf+GlxljXtL3v4yIZJXrONLKGPMK1q9G1mm7vsefJo3J4Juaxp6b08fq6WO/1u59rbXvBhpXRa8Ent9hu4C1q5nXGWOe2OVveSrwe8DbgNb3XWn6/coOu/gOYEen/Wf04abfe42hP9P0+0eGfN9+Nb4TZnANu9syxhwCnpnevavNKnl/CTw5/f008NS8su6kp02fi6Svuxp4K+784M3Ahemc4hCu/9Z24K+NMVe1edvGGPKrXeY0f5r1bxCRvkzEGJLaMJ9o89N2PpG+9570PX806/HK5FBwSbasdBL1Y7hsoOdba1dXDUpPln4vvfu6Pnb7Y8A1wBHgxdbaWrq/OvBy3EnA2ay/0t/tGGeBv8cFi/4LeEPTc9uBRnr5b6TH3Dj+xFr7NqCxqs//6eNvEJGMRjSONPZ9kTHmfcAfk63/zzDjT2My+PV+jzP1Elw
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXhk113n/3eVSrvUknp3u9vddts+dmLHWQFnwU7gx5YhEAgEhi0kAZJhCzBDGLYEZsIMhCUBAmEIYUkgBDKBMEMYIHvibCRkj328tpfeJbV2qbZbvz/ulVRSq7SW1C31+/U8/VTdutspuV2P6tPf8z25Wq2GJEmSJEmStJT8pR6AJEmSJEmSLl+GR5IkSZIkSWrI8EiSJEmSJEkNGR5JkiRJkiSpIcMjSZIkSZIkNWR4JEmSJEmSpIYMjyRJkiRJktSQ4ZEkSZIkSZIaMjySJEmSJElSQ4ZHkiRJkiRJasjwSJIkSZIkSQ0ZHkmSJEmSJKkhwyNJkiRJkiQ1ZHgkSZIkSZKkhgqXegCSJGlrhRA+ANyRbf5ijPE1qzzv94EfzTavjTGeaP7otJQQwiHgPwFfD1wPdAPDwGeAvwb+MsZYWeM1rwc+D+RjjB0bGNs7gG8HHo4xHlvvdSRJ0uXLyiNJkq5svxRCuPlSD0KNhRC+E4jALwBPBfqBVuAA8A3AnwEfDSFcvYZrdgB/DnQ2YWzfvpFrSJKky5/hkSRJV7Z24E9CCP5OcBkKIXwN8FdADzAD/DbwdcBXAt8NfCg79GnAu0MIXau4Zivwt8DTNzi2vcDvb+QakiRpe3DamiRJuh34CeB1l3ogmhdCyJGGMy2kwdGzY4wfrzvkkyGEtwN/ALwMeALwCuDXlrnmVaTB0TOaMMTfB/Y14TqSJOky578ySpJ05UqA2T45rwkhXHcpB6OL3A7clD3/3UXBEQAxxhrwU8C57KXvb3SxEMJ3Af/OfHBUXe/AQgjPB15I+vdnZL3XkSRJ24PhkSRJV64y8NrseRfwx5dwLLrYs+qe/0Ojg2KMM8BHss0QQmhffEwI4WPA24CDpKHhq+rOWZMQwm7SaieA3wBOruc6kiRp+3DamiRJV7ZfAZ5PWuHynBDCD8UYNxQiZQ24fwz4GuAwkAMeBd4P/F6M8csNzvsA6SpwxeVW/wohfBF4PEus7hVCqGVPfwr4R9KpVc8kDcruB34uxvieuuN3AS8FvgW4BegFhkhXMftb4C1LrWIWQjgGPJRtPp803HkRaeXP47PrnAT+GfitGOMDjd7PMj4J/A/gUDb25eTqnncAxUX7vyp7vBv4oRjjXSGE56xjTACvJw2h7gF+lfRnJ0mSdjArjyRJuoLFGIuk4UmSvfTatazatVgI4ZeAL5AuKx9Il5Tvyp6/DPhCCOHVWT+fzXQEuIu0uXQX0Ac8mboQJoTwbNIA5LeArwZ2k65idhD4RuDNwGdCCMdXuFcX8B7gT0jDr72kjcivA14OfCmE8E1rfQMxxvfHGH8+xviiGOPZRsdlDbBnp6KNxhhHlzjsQbK+SDHGu9Y6lrp7/Qfge0n/vrwk+/sjSZJ2OMMjSZKucFmY8IZssw9443quE0J4NWklSgvwedKw4umklT8/CTxA+rvHq7I/m+kVpCHOb5BO//oO4NdijCeysd5OWpl0FVAD3go8j3QVs+8C/iW7zi3Ah7NG0438FvBs4OPA92XX+FbgX7P97cCfhRB6mvTeFnsxsD97/s8NjrkhxvhHS1VRrVYIoR/4o2zzDTHGj673WpIkaXtx2pokSQL4r8A3A8eA/xBC+I8xxr9a7ckhhCcDv5RtvgV48aKg4q4Qwp8A/xe4E/jlEMLfNJrC1gR50rDoF+pee0c21hbSqqJO0gqaF8YY31F33CeBt4cQfpl0Wt9VpKHJ8xrc6yDpe35RjHG2gosQwj+Qvt9vIl2V7LnA2zf+1uaFEK4H/mfdS7+11HH149qA3yadQneC9O+LJEm6Qlh5JEmSiDFOAj9c99LrQwhrWYb9Z0h/rxgCXrZUhUt2jxeTVvrkgB9f/4hX5Q8bvP7NzK9i9oeLgqM5McZfBT4we04I4XENrjcDvGJxQJOthFbfP+q21Qx6tUII+0nDqf7spTfFGD/ZzHvU3evrgR/MNn84+28pSZKuEIZHkiQJgBjjvwJ/mm3uBX5vNedl/Yu+Mdu8K8Y4tcw9HiJt2gxpQ+3NcjLG+FiDfV9f9/yPGhwz6w/qnn9Dg2M+HWMcbrCvvlF27wr3WrUQwkHgvaS9pCBt8P0Tzbr+onvtYj4E+7Ps74kkSbqCOG1NkiTV+2nSkOQq4IUhhLfFGN+1wjnHgIHs+fPqVjxbybXrG+KqPLrMvluyxwngiytc5+N1z29tcMyJZc6fqHvelN+7sgbe/wzMNvKOwDfGGKebcf0lvJa0AfkZ0r8fkiTpCmPlkSRJmhNjHAF+tO6lP8waJS9n7zpvVwghNK0aZ5GxZfbtyR4Hs6lly6lf5Wx3g2MmGrwO6RS9WRteYS5r9P0x5oOjLwHPXm41tg3e72uYn874ozHGC5txH0mSdHmz8kiSJC0QY/y7EMLfkq5QdhVpE+aXLHNK/e8Tb2aV090yDae4LWM1//i1XCi0lhCnpe55M5pOr1sI4TuAvwA6spc+ATw3xji0SffrBN5Ud68HQwhPXOLQ2fG01e2fiDHevxnjkiRJW8/wSDtOCKEL+FnSpZavBcaBTwOvizH+0zqv+RWky0w/i3RVnWngy8DbgDfGGEtLnHMMeGiFS38uxnjRL+IhhBcALweeQrrE86OkTVF/M8Z4aj3vQZLW6MeA55BW6bw4hPDXyxxb3++nGmP87DrvORv4rBTu9K3z+rNmx7s3hJBbofrowBLnbbkQwn8Cfp/5n80/At+5XH+pJjhAOiUR4CtJ+yot56q6Yz5IuqqeJEnaAZy2ph0lhNANvA94FXAdaTn/JPB1wLtDCK9axzV/knSKwH8knZpxN+kUha8CXg98KGsmutjsqjrDwF0N/lz0i3gI4U3A35J+aZsG7iFdGvmngC+FEJ6x1vcgSWsVYzxH+rkz638B3Q0Of5D5CqKvWunaIYRXhhB+JITwtYt2za7Q1hZCaFl8XnZuJ+my9xvx+eyxB3j8CsfWv597NnjfdQkhvBx4A/PB0R8D37LJwZEkSdIcK4+007yB9F9HPws8L8b4KEAI4ftIp1K8OoRwV4zxPau5WBbU/A7pL+y/AfxyjLGY7Xs28Nbsfn8EfPei02fDo7+JMb58lfd7CenUkArwohjjX2av7yL94vZC4J0hhGv90iBps8UY3xJC+G7SldSOAd/T4LhyCOH9wHOBW0MIz4wxfmSpY0MIzwH+Z7b5fqD+83ik7vkxFq5UNutrgdY1vI2l/Avwsuz5jwA/vsyxL6t7vuWrjGUB2+/XvfSaGOMvbsW9Y4wnWMUUvxDCF0lDuIdjjMc2eViSJOkSsPJIO0a2+sz3kvak+J7Z4AjSL0DMf1l59Rou+19If3H+PzHGV84GR9k13w/8QLb5XSGEI4vOnQ2PvrDG+wG8djY4yu41BvwgcAHYDzx/DdeUpI34EdLpv7B8aPPbdc//bInPREII+0mD8Fm/u+iQz9c9vyjQCSEcIF35a6P+AZjtx/OfQghLfqaGEH4JuCPbfO8GpuOtSwihD/hz5n9f+52tCo4kSZLqWXmkneT7SBub3hVj/PIS+98I/CLwjBDCNTHGR1ZxzWdnj29rsP+9pF+qeoGnsnBp6NnwaKVloAEIIbSRfqG5BfjLxftjjNMhhPuArwCOruaakrRRMcZHQwivBP5ghePeF0L4Q9J+bceBz4UQXkfa+wbSz8ifJp2GC/B3Mca/X3SZtwG/TPr7yU9mK7H9NTBDOn3sFdn5DzC/2th63lM1q0j9INAGvCOE8FbSKcPnSD9jXwJ8fXbKIPP/WLCVfpz5n9cJ4K8aNKxe7MtL9eKTJElaL8Mj7SS3Z49LTpWIMZ4MITxM+qXgDuAty10shJAnnSZ2BPhwg8Pqy/nn+nOEEHpIey7BKiuPsl/0f3aZ8fQ
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhsZ1nu/7um7qqee8/z3mR6ExIwJFHMESWAM4oDqKjgwRyVIA6o5yccQQMewYHjQZRJD+IAogiCooJKAFERUEIEMr0JSfbOHrKnHmuuNf3+WKu6VndXVVd3V3VXd38/19VXDWvVqrc77GL3vZ/neRNBEAgAAAAAAABoJrnZCwAAAAAAAED/IjwCAAAAAABAS4RHAAAAAAAAaInwCAAAAAAAAC0RHgEAAAAAAKAlwiMAAAAAAAC0RHgEAAAAAACAlgiPAAAAAAAA0BLhEQAAAAAAAFoiPAIAAAAAAEBLhEcAAAAAAABoifAIAAAAAAAALREeAQAAAAAAoCXCIwAAAAAAALSU3uwFAACAjWWM+WdJz4wevsZa+/oOX/cWSS+PHj7JWnuy+6tDM8aYQ5J+UtK3SLpK0rCkaUn3SPoLSX9mrXXbvP6dkv5Hh2/X9L+tMSYj6YXR19Mk7ZFUlvSopH+Q9LvW2ic6fA8AALCFUHkEAMDO9svGmOs2exFozRjz/ZKspFdLukXShKSMpP2SvlXSH0v6d2PM4TaXedo613BU0mck/amkb5d0MFrDmKQbJb1K0kPGmO9dz/sAAID+RHgEAMDONijpD40x/J2gDxljniPpvZJGJFUk/V9J3yzp6ZJ+UNK/RKd+taSPGGOGmlwjLen66OE7FQZJ7b7OLXl9TmFl0c3RU3dF7/30aC1vllSL1vg+Y8xt6/uuAQBAv6FtDQAA3CrpZyT9zmYvBA3GmISkt0hKKQyOnmWt/WzslP8wxrxP0tsk3SHpqZJeIekNSy51ncKQUJLustb+1yqX8rOSnhzdf5O19ueXHP+YMeZDkv5J0oCktxtjrrfW+qt8HwAA0Kf4V0YAAHYuX1J9Ts7rjTFXbOZisMytkq6N7v/ukuBIkmStDST9nKSL0VM/0uQ6N8burzY4kqTbo9uzkl7Z7ARr7ack/X708FpJX7OG9wEAAH2K8AgAgJ3LkfTG6P6QpP+3iWvBcl8fu//hVidZayuS/i16aIwxg0tOqc87Kkp6eDULMMbsl3R19PCj1lqnzekfi93/qtW8DwAA6G+0rQEAsLO9TtL3KKwWebYx5settesKkaIB3D8l6TmSjkhKSDot6ZOSfs9ae3+L1/2zwl3gqtbabJvr36twhs8pa+2JJceC6O7PSfp7hW1fz1AYlH1F0qustXfFzh+T9GOSvkvSDZJGJU0p3MXs/ZLe3WwXM2PMCUmPRQ+/R2G48xKFlT/XR9c5K+kfJf22tfaRVt9PG/8h6dclHYrW3k4idj8rqRp7XK88+uIaWsl8Sb8creGfV7kGAACwTRAeAQCwg1lrq8aYH1M4eDkp6Y3GmI9Ya8+u5XrGmF+WdKfCOT2LDkVfP2GM+d+SXhe1XPXKUUmflrQ39txNioUwxphnSfozhTuHxR2Q9G3R188bY757hfBnSOEQ6Wctef4KSS+TdLsx5nuttR9ZzTdgrf2kwsCtLWNMRtLXRQ/nrLVzS06pVwH9lzHmeQrb0L5W0i5JlxX+nN4Wvd/SNVyS9GsdLvm22P1THb4GAABsAbStAQCww1lrPy3prdHDcUnvWMt1jDGvlfSrCoOjLykc4vzfFFb+/KykRxT+3ePO6KuXXiFpj6TfUtj+9X2S3mCtPRmt9VaFlUkHJQWS3iPpeQp3EHuhwuHPUliN9K/GmKUBU9xvKwyOPivpxdE1vluNNq5BSX9sjBnp0ve21O2S9kX3/zF+wBhzTGFIJEkvkvQ3Cqus9kvKKPz+XyDpE8aY3492Zls1Y8w+NWYjOeog9AIAAFsHlUcAAECS/pek75R0QtJ3GGN+yFr73k5fbIy5SWF7kyS9W9LtS9q9Pm2M+UNJf6ewQuVXjDF/2aqFrQuSCsOiV8ee+0C01pSkd0nKKWzL+gFr7Qdi5/2Hwi3nf0VhW99BhcOgn9fivQ4o/J5fEm8LM8Z8WOH3++0KK6CeK+l96//WGowxV0n6jdhTv73klKfF7o9J+qLC3dnuVRhq3SbppyVNSvoJhUHaHatcQ0LSOxUGj5L0zibVTwAAYAuj8ggAAMhaW1QYHtS92Rizt9X5TfyCwr9XTEm6o9mcoOg9blcYUCQUhha99PYWz3+nGruYvX1JcLTAWvurasz5+U5jzJObnSepIukVS+cJRW158flRXR0iHVX7/J2kieipd1pr/2PJafGd1v5Q0i3W2j+w1v67tfaT1to7FQZM9TazlxpjblvlUv6vwp+pJJ1T76vKAADABiM8AgAAkiRr7cck/VH0cI+k3+vkdVHlybdFDz9trS21eY/HJD0QPXzOGpfaibPW2jMtjn1L7P7vtzin7m2x+9/a4py7rbXTLY7FZyWNrvBeHTPGHJD0cYVzpKRwwPfPNDn1jQpDq+9U61DvlMKh4XWvWMU63hg7vybphdGcJAAAsI3QtgYAAOJ+XmFIclDSDxhj/txa+zcrvOaEwrYnSXpebMezlTxpbUvsyOk2x26IbgsK27fa+Wzs/lNanHOyzesLsftd+XuXMeZKhbONroyespK+zVpbXnpuFOR9KfpqyVp7lzHmMYX/TZ5tjEm0G2gezUZ6uxqhkyvph621/7ra7wcAAPQ/Ko8AAMACa+2spJfHnnq7MWai1fmRPWt8u7QxpmvVOEvMtzm2O7q93MGObxdi93e1OKfQ4nkpbNGrS7Q8q0PRoO/PqBEc3SfpWdbaC61f1bEvRrejaoSBzdYwKulv1QiO6hVHTdv/AADA1kflEQAAWMRa+yFjzPsV7lB2UOEQ5v/R5iXxv0+8Sx22u0Vatri10ck/frULhVYT4qRi9/2WZ20AY8z3SfpTSdnoqc9Jeq61dqpLbxH/bzHQYg2HFe5SV5/fVJT0fGvtPzY7HwAAbA+ER9hWjDFDkn5R4TbLT5KUl3S3pN+x1n60S+/x59H1r7bWfqXFOSckPbbCpb5orb2x3QnGmKSkf5H0dZIyzWZVAECP/JSkZyus0rndGPMXbc6Nz/vxrLX/tcb3rAc+K4U74yscX0l9vXtWas9SuKX90tdtOGPMT0p6ixo/m7+X9P3t5ktF/x/ybIU7vVWstR9a4W32RbeemnyvxphrJH1M0rHoqYuSvsNa+5+dfh8AAGBrom0N24YxZljSJxTu8nKFwlL+oqRvlvQRY8y6d38xxtyhMDhaSf1fZKclfbrF1z0dXOcNCoMjANhQ1tqLkn4u9tQfSBpucfqjalStfO1K1zbGvNIY81JjzDcuOVQPyAeMMamlr4tem1MYhqxHff7PiKTrVzg3/v08uM73XRNjzMskvVWN4Oj/SfqudsGRJEW7v31A0nslvS0abN7qPQYlfXX08EvW2tqS41dI+qQawdFXJN1KcAQAwM5A5RG2k7dKerqk/5L0PGvtaUkyxrxYYRvFa40xn7bW3rWWixtjXqFwO+JO1MOjv7TWvmwN75WS9BuS/udqXwsA3WKtfbcx5gcV7qR2QtIPtzjPMcZ8UtJzJT3FGPMMa+2/NTvXGPNshZ9vUhhGxD+TZ2P3T2jxTmV13ygps4pvo5l/knRHdP+lkn66zbl3xO5/bJ3vu2pRwPaW2FOvt9a+ZhWX+BeFO60dUPiPKa3ay25Xo6JrUZVZVNX795IORU/dI+lb2FUNAICdg8ojbAvRzjMvUjiP4ofrwZEU/vKjxi8qr13DtQ8aYz4g6U3qfE5GPTz68hre72qF2y8THAHoBy9V2AIstQ9t4uH6Hxtjji49wRizT2EFU93vLjklviPYskDHGLNf4dbz6/VhhZUzkvSTxpjvaXaSMeaXJT0zevjxdbTjrYkxZlzSn6jx97U3rTI4kqS3xe7/rjFm2XBzY8zTJf1W9PC8Fv83ksKf+bXR/UckPYfgCACAnYX
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZwkeV3n/3dmVmVl3dXd1V3d03P0nF9gYIYBhB0BGfEW8VjXY9V1Ee8b3V1hV1fR/enitequB+tPVHQRRURExAsVWUdhOAZmmJn+zkzP9FHddV95H3HsHxGZGZmVmZVVlVldx+v5eNQjr4jISHqojPp8P0fM930BAAAAAAAArcSv9wkAAAAAAABg/yJ4BAAAAAAAgLYIHgEAAAAAAKAtgkcAAAAAAABoi+ARAAAAAAAA2iJ4BAAAAAAAgLYIHgEAAAAAAKAtgkcAAAAAAABoi+ARAAAAAAAA2iJ4BAAAAAAAgLYIHgEAAAAAAKAtgkcAAAAAAABoi+ARAAAAAAAA2iJ4BAAAAAAAgLYGrvcJAACAvWeM+ZCkV4UPf8xa+9Nd7verkr43fHirtfZi788OrRhj7pD0BklfIOlmSUVJz0p6j6TftNYu7uCYr5T0j5KetNY+p802D0j6hx2c8tutta/bwX4AAGCfIfMIAAD8V2PMc6/3SaA9Y8zrJD2qIHB3l6SUpClJ90n6b5IeM8Z86TaPeVzS2yTFenqydeU+HRcAAOwxMo8AAMCQpLcZY15hrfWu98mgkTHmSyT9toIgT0HSL0r6cPj4AUk/LGla0rvDf8NPdnHMCUl/LenOLk7h4wqCVFs5K+lPFPz3NCfpp7rYBwAAHAAEjwAAgCTdL+kHJP3y9T4R1Blj4pJ+VUGgqCzpldbaT0Q2+RtjzF8pKCsblvQWSV+4xTGNglK353VzDtbarKRPbXHMRHieQ5JcSV9vrZ3t5vgAAGD/o2wNAICjzZPkhPd/2hhz2/U8GWzyaknVf5NfbQocSZKstR+W9Bfhwy8wxhxrdSBjzIAx5nslfUz1wFGvMs3+g6SXh/d/NjwnAABwSBA8AgDgaKtI+vnw/oik//86ngtae7+ky5L+rMM2T0Tu39T8YhhQekRBdtC4pJKkb5N0ZbcnZ4w5J+nN4UMrytUAADh0KFsDAAA/KemrJD1H0quNMd9urd1VEClswP19kj5P0o0Kyq6uKCiv+l/W2sfb7PchBVPgStbaVIfjf0bS3ZIuWWvPNb3mh3d/SEFGzq9KeoWCQNnTkt5krf1gZPsJBYGUr5D0fAXBlRVJD0v6Y0m/b6111CQMmjwbPvwqSe+T9DpJ3xye27ikqwp6C/2itfZCu8/TTnieH9xyQ+mWyP25Fq9PSqo2Rf8XSd9mrX3cGPNft3tOLfyigpI5Sfo+a22pB8cEAAD7CJlHAAAcceEf+9+megnTzxtjzu70eGFA4lFJ3yPJSBpVkNVkJH2XpEeNMW82xvRrylfVTZIeVNADaERBAOVFCgJI1XP9XEnnFQRAPkfScUmDkk5LqjaqftgYc/sW7zWiIMjzNgXBr2kF/X9uk/Td2sE0tG4ZYz5L0leGD//BWrvUZtNHFPQi+ux2wbsdvPfLJP3r8OGfR4NyAADg8CDzCAAAyFr7oDHm1yR9v4Igy1slvXa7xzHGvFnST4QPH5H06+FtXNKLFTTlvj2yzZt3c95beIOCjKefk/TnCgJCL7TWXgzP9X4FmUnDknxJ75D0LkkLkm6V9HoFgafnS/q/xpgXW2tbZfVIQfDptKSPSPo1SU9KOiPpeyV9gYJA0u8aY24LG1DvWBh0G1MwKe3fSfqO8PhrCrK9Wrlsrb13N+/bxk+0uQ8AAA4RgkcAAKDqPysIGJ2T9GXGmG+w1v5BtzsbY14kqVoG9fuSXt9U7vWgMeZtCnr4PCDpx40x7+pVFkwLcUk/Y6390chz7w7PNaEgq2hYQcbV11lr3x3Z7iFJf2SM+XEFZX1nJP1vSV/e5r1OK/jMr7PW1ppQG2Pep+Dzfqmkk5JeI+mPdvm5vjF8r6gHFZSinW+1Q/ScesUY8xxJXxw+/Btr7cO9fg8AALA/ULYGAAAkSdbanIIslqpfMcac3MYh/oOCa4sVSd/Vqk9Q+B6vV5DpE1OQ6dRPv9Hm+dcq6PEkSb/RFDiqsdb+lKQPVfcxxrQbb1+U9IbmII211ldjE/JeZP/c0uK5F0j6/naT1vrkBxX8G0rSW/bwfQEAwB4jeAQAAGqstX8r6XfCh9OS/lc3+4WlVF8SPnzQWpvv8B7Pqj4d7PN2eKrduGqtnW3z2hdF7v/vLY7z65H7X9xmm09Ya1fbvBZtlD2+xXt14x8VlMK9TEHZ2kckTSjoMfVhY8ypHrxHR8aYKQWNwSXpY9baf+j3ewIAgOuHsjUAANDshxUESc5I+jpjzDuttZ3GxEtBqVs16+XLIxPPtnLrzk6xK53G0D8/vM1K+swWx/lI5P4L2mxzscP+0R5Hu772stb+U+ThQ8aYP1CQ3fR6BZ/rF1QP7PTLlytoEi5Jv9vn9wIAANcZmUcAAKCBtXZdQaPnqt8IM006md7h2w0YY3qRjdNKusNrJ8Lb5bC0rJOFyP3jbbbp1AQ7evyeT5gLS+W+R9LV8KmvM8aMdNilF74ivHUV9pECAACHF8EjAACwibX2TyX9cfjwjIJpYp1EM2p+W9J92/hpW+LWQTfXMJ2CQtsJ4iQi93veeLoXrLUlBZPjJCmpej+nnjPGpFQv+/tHa+1iv94LAADsD5St4VAJV1p/RNLXKyiFyEj6hKRfttb+ZY/e453h8e+01j7dYbu7Jb1J0qsVTNjZkPRRSb9krf27Dvv9G0nfrWCk9ZCCsov3S/oFa+21XnwGAOjS9yn4HXZC0uuNMX/YYdtovx/XWvupHb5nNeCzVXBncofHr6qe77QxJrZF9tFMi/32RNgA+3ZJp621799i85XI/WT/zkqfK2k0vP+uPr7PobPPrlNeoaDJ/csV9OK6qCAA+UvW2qsd9vtCBZluL1PwuyEr6dMKeqX9fheZfACAA4jMIxwaxphRSX8v6Sck3SbpMUk5SV8o6QPGmJ/owXt8l4ILsq22+xJJH5f0TZKmJD2u4A+h10j6oDHmP7fZ77cUrPS/WlJB0nlJN0j6IUmPGWNevtvPAADdCjNKfijy1G+qHjRo9ozqGUT/aqtjG2PeaIz5TmPM5ze9VJ3QljTGJJr3C/cdVhCU341HwtsxSXdvsW3085zf5ftu1+9L+pik93Ux+e72yP12jcJ74XMi9z/cx/c5VPbZdcobFfzbfaWkYQV9v44pCCZ9xhjzQJv9flHSXysoWxwNP4Mj6QFJb5f0XmPM4G4/BwBg/yF4hMPk1xSsgn1K0u3W2hdZa29R0DTUkfTmFn+kdM0Y8wY1Ttxpt92UpP8jKaWgD8QN1toXKli5/qlws58JV/yi+32rpG8Nz/WbrLVnrLX3KQge/ZGCINR79qCPBQDUWGt/X1I1I+KcpG9ss11FUnXi1guaf8dFGWNerWC0+1sl/Zeml9cj98+1OcTnS9rtH6h/E7n/nVts+12R+3+7y/fdrv8b3sYUNMRuyRhzWsEChSSd7zBlrhdeGt5mJNk+vs9hs1+uU16r4P9/MQWN1k9baz9LwfXGf1JwvfEBY8ytTft9o4Jm+m54O2Wtvc9ae0rS1yj47+HLVb/WAQAcIgSPcCgYY25XkOXjSfpGa21twk74h89bwodv3sGxzxhj3i3pl9Rdj4wvU9BQdV3Sv7fWboTn4Vprf0L1VdrmPwL+U3j789bad0TOPy3pWyStSTol6au2+xkAYJe+U8EfhlLnoM3/iNz/XWPMTc0bhGPkfzPy1P9s2uSRyP3vb7H/jKSf73i23XmfpGpJz/cYY1r+bjXG/FdJrwof/t0uyvF26u0KslMk6b8YYzZNewsbjr9L9aywtzRv02P3hLcPh826sYV9dp3yk+Ht31hrv8NamwvPw7PW/oKkP1SQjfQ/mvarXqf8urX2l6L/9tbadysIKEnS9xtjhrb7OQAA+xvBIxwW/05
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZylaVnY/d+ps9W+9N49e/fAzQDDFhNFjCAQUFHRJL7uy4sLGk2CGsVEEDRKVDSihhdiXKKgERcwJkEji6Cs6sgyAzM3zD7T+1L7OafO+v7xPKfqVHWdWk91VfX8vp9Pf57tfp5zVw8e67n6uq4702q1kCRJkiRJklbTt9sTkCRJkiRJ0t5l8EiSJEmSJEldGTySJEmSJElSVwaPJEmSJEmS1JXBI0mSJEmSJHVl8EiSJEmSJEldGTySJEmSJElSVwaPJEmSJEmS1JXBI0mSJEmSJHVl8EiSJEmSJEldGTySJEmSJElSVwaPJEmSJEmS1JXBI0mSJEmSJHVl8EiSJEmSJEld5XZ7ApIkae8JIXwAeH56+JoY489u8L7/AvxAenhbjPHh3s9ObSGE/w58xxZu/bIY4wdWed4zgH8DfBlwAmgADwHvBn4lxnhmy5OVJEn7lplHkiRpPa8NIdyx25NQT1VXnggh/FvgH4DvAk4C/cAQ8HTgx4DPhBBeei0nKUmS9gaDR5IkaT1F4DdDCP7esPf8JPDsDfz51Y573hZj/EjnQ0IIXwe8CcgCFeBngBcDLwPeAjSBceCdIYSn7+DPI0mS9iDL1iRJ0kY8l6Sc6U27PREtiTE+Cjy61pgQwjOBV6aHdwPfu8qwn0u3deCFMcaPdlx7dwjho8DvAoPAG4Cv2c68JUnS/uK/IEqSpLU0SQIKAD8bQji5m5PR5oQQ8sDvkGSPVYFvijFWVow5BTw5PXznisARADHGtwF3pYcvTZ8rSZKeIAweSZKktdSAN6b7g8B/28W5aPN+GHhmuv+GGONnVhlzpGP/c2s86550WwAO9mBukiRpn7BsTZIkreengK8DngK8MITwPTHGbQWR0gbcPwi8CLgRyACPAX8F/FqM8bNd7vsAySpwCzHG/jWefw/wNOCRGOOtK6610t0fAv4P8F+ALyEJlN0P/HiM8b0d40eB7wZeTtI8egS4DHwC+COSHkJ1Vggh3EqyUhkkf39/Bnwn8O3p3EaA08D/BX4pxvhAt59nK0IIx4HXpocPslSatlLnCmpPWeORt6fbGnBxe7OTJEn7iZlHkiRpTTHGBZLgSTM99cYQwg1bfV4I4bUkvXf+FRBIVvQaTPe/D7g7hPD6EEJmWxNf303Ah4GXpJ8/BjyHJIDUnuuXAfcBvwR8KXAAyAPHgK8Afgv4RFr6tZZB4L3Ab5IEvw6RlJKdBL6fZCWzr+zVD5b6SZK/W4AfTf87XiXG+AjwqfTwa0MI/3jlmBDCy4DnpYfvijE2ejxXSZK0hxk8kiRJ64oxfhh4c3o4Brx1K88JIbwe+GmSVb0+TRIs+mKSzJ9/CzxA8vvJ69I/O+lVJEGcXwD+KfD1JKVdD6dzfS5JZtJxoAW8naRR9BcC3wj8ZfqcpwN/k2b6dPNLwJcBHwO+LX3G1wLvSa8Xgf8eQhjuxQ+WBve+Kz38ZIzxnevc8gPAHElW+gfS4N2LQggvCSG8EXhXOu4h4Ed7MUdJkrR/WLYmSZI26t8DXw3cCnxVCOGbY4y/v9GbQwjPYamM6m3AK1aUe304hPCbwP8GXgD8ZAjhD7uVsPVAH0mw6Cc6zv1xOtcsSVbRAEnG1TfEGP+4Y9zfAu8IIfwkSVnfceC/0n0VsmMkP/N3xhjbGVyEEP6M5Of9SuAw8DLgHdv/0fhBkgwpSIJja4oxfjiE8MUkpW1fyeqBu7cCr4sxXujB/CRJ0j5i5pEkSdqQGOM8y5d5/5UQwuFNPOJHSH73uAx832p9gtLPeAVJpk8G+Ndbn/GGvKXL+a9mqf/PW1YEjhbFGH8a+ED7nhDCU7s8rwK8qjNwlN7fYnkT8meyTSGEAZb+Oz0I/OEG7smQlOU9eY1hX04SWJIkSU8wBo8kSdKGxRjfA/x2engI+LWN3JcGJ74iPfxwjLG0xmc8BNybHr5oi1PdiNMxxse7XHtpx/5/Xec5/1/H/pd3GXNXjPFKl2udjbJH1vmsjfhWkt5MkDTiXrM/UZpl9TskjcNvJ8mE+mKSrKtxkkbhnyLJOPvtEMJP92COkiRpH7FsTZIkbdYPkwRJjgPfEEL4HzHG/7nOPbcCE+n+13SseLae27Y2xQ15bI1rT0+3cywtUd/Nxzr27+wy5uE17p/r2O/F72bflG6rwEbKCn+ApA8TwG/EGL+n41oF+LMQwnuAvyDJTnptCOEjMca/6MFcJUnSPmDmkSRJ2pQY4xRJwKHtLSGE8XVuO7TFj8uFEHqRjbOamTWuHUy3l9LSsrWc79g/0GXMXJfzkJTotW1rhbkQwgRJ82+Av0z/W62n/d9yEvih1QbEGMsk5YTtsrsf3M48JUnS/mLwSJIkbVqM8V3AH6WHx0lWE1tLZ0bNbwHP3sSfriVua9jI7zhrBYU2E8TJduw3u466Nr6Kpb/rjfQ6GmWpz9EHY4xdg1wxxgeAu9PDL9zOJCVJ0v5i2ZquKyGEQeDHSJZQvg2YBe4C3hRj/PMefcb/SJ//pBjj/WuM+xKS5rDPI+lh8TDJks+/HGM8vcZ9RZJ/0f0GIAAFkn4Yf0DSu6Lci59DknrgB4EXkmTpvCKE8AdrjO3s99OIMX5yi5/ZDvisF9wZ2+Lz29rzPRRCyKyTfXR0lft2y1el2yqwXikhwHDH/kaylNorrW3371eSJO0jZh7puhFCGALeT7K88EngM8A88BLg3SGE1ZYd3uxnfB9J4Gi9ca8G/hr4WpKGo/eQ9Pr4EeCeEMILutx3lGT5518EnkPSj+Mc8DTgPwIfCiH4C7ukPSFdsr2zzOnXgaEuwx9kKYPoi9Z7dgjh1SGEV4YQXrziUnuFtkLa6Hm1ewdIlr3fjk+n22GS7+C1dP48923zc7erXbL2yRjjWmV5bZdZypY6tYHxN6TbC2uOkiRJ1xWDR7qevJkkjf6TwKkY43NijLcA307ysvH6VV5CNiyE8CqWr6jTbdxXAz9H8q/i/w04FmP8x8AJ4EdJVq55dwjhthX3ZUhKDJ4BfBZ4aozx6THG24Dnk/yi/hzgDVv9GSSp12KMbwPamZ23At/SZVwN+Kv08M40O3NVIYQXknyPvhX4Dysud2bH3NrlES8G8mvNewP+smP/leuM/b6O/fds83O3LIRwE0kJIcDfb+SeGOMC8Hfp4fNCCCfXeP4zgaemh3+z1XlKkqT9x+CRrgshhFMkSxM3gW+JMS6uoJO+2Pxcevj6LTz7eAjhj4FfZmM9MH4q3f5ljPF7Y4zz6TyaMcZfJCk/GwD+84r7/iXJKjYzwItijJ/r+Bn+Gvjx9PA7QgjbfSmSpF56JUmZMKwdtOn83vvvabBjmRDCEZIMprZfXTHk0x37/3qV+48Cb1xzthvzZ0C7NPlfhRC+brVBIYTXkgT4Ad63jXK8XnhGx/6GgkepN6fbPuBtq2W4hhAOAW/vOPVrm5+eJEnar+x5pOvFt5E0LP1wjPGzq1x/K/Aakn9VvTnG+OhGHpq+LLyNpAxjMn3Gm9cYf4ykuSvAL3QZ9iaS0revDiEciDG2+2N8Z7r9xRjjuVXu+xPgJuASUARqG/kZJGmnxRgfS8t118zOjDG+P4TwFuD7SUqkPhVCeBPwwXTIFwA/TJKpCfCuGOOfrnjM/wB+kuR3mH+brsT2ByRLyn8R8Kr0/gfYWBlWt7k2Qgjfls6tAPxxCOHtJE3CLwC3AN8FvDS95RLwHVv9vB55csf+mU3c93aSf8D4GuCLSf67/BpJRlIjPdf+e4Wkj+BHtj9dSZK0Xxg80vXiuen2Q6tdjDGeDiE8QvLL/vNJAkIb8UxgEPg94N8B/euMv6Vj/64uY2K6zZK8KP1l2rfjhen5d656U9K74qc3MGdJ2g1vJQmMf+k64/41SaD
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd7xsd13v/9cpSU5CQgIJ1UBCAnwocpUuCJeA0gX1KpfOBSygqIDwU66gIAhSLpYrSvSCIGCJIO1ysdCkiiAgPd8U0klOyz67TV2z1u+PtSZnzj4zs2fvPbvMzOv5eJzHtLXWfOeEs1jzns/3891VFAWSJEmSJElSP7u3ewCSJEmSJEnauQyPJEmSJEmSNJDhkSRJkiRJkgYyPJIkSZIkSdJAhkeSJEmSJEkayPBIkiRJkiRJAxkeSZIkSZIkaSDDI0mSJEmSJA1keCRJkiRJkqSBDI8kSZIkSZI0kOGRJEmSJEmSBjI8kiRJkiRJ0kCGR5IkSZIkSRrI8EiSJEmSJEkD7d3uAUiSpK0XEf8KPKx6+IqU0mtH3O8twAuqh3dKKV05/tGpn4i4M/Ai4JHAHYEGcAXwfuAvUkoHVtn/48CPjfJeKaVdA46xB3gK8Czg3sAZwALwNeCvgfeklLJR3kOSJE0OK48kSdJvR8Tdt3sQGiwing18kzK4uyuwjzK4uTfwGuDbEfG4VQ7zwxscw2nAvwDvAR4F3Ao4ATgT+HHgHcCnIuKWG3kfSZK08xgeSZKkk4C3R4TXBTtQRDwW+EvKwKgO/B5lePNo4PeBJnAW8L6IuM+AY9yBMuQBeDVl6DTsTz/vBh5R3b8YeC7wEOCZwFeq5x8CvD8i+lYuSZKkyeS0NUmSBPAg4NeAP9rugeioKtB7C7ALaAEPTSl9pWeTf4mIfwI+BZwMvJ4yWFqpt+rooyml/1zjOB4M/GT18KvAg1NKzerx5yPib4GPVu/9MOCnKafTSZKkKeAvjJIkzbYc6PaoeW1EnLedg9FxHgF0/5u8ZUVwBEBK6TPA/6sePjIibtHnON3wKKec/rZWj+25/4qe4Kg7hg7wkp6nnrCO95AkSTuU4ZEkSbOtDbypun8K8H+2cSzq7yPA1cCHhmzz3Z77d+jzencqWkop1dYxhlv33L9kyBjy6v7t1vEekiRph3LamiRJ+l3KaUZ3Ax4REb+QUtpQiFQ14P4VytW9zqacdnUN5fSqP0kpfWfAfv9KOe2pmVLaN+T43wLuCVyVUjp3xWtFdffFlBU5b6HsxdMGLgNellL6eM/2Nwd+nnJa1g8CpwGHKVcQey/w7n4riEXEuZSrnUH59/dh4NmUK5HdszrOdcA/A29OKV0+6PMMUo3z46tuCOf03L++z+vdyqOvrXUMle/33L8b0O+z3ImjP0x+v8/rkiRpQll5JEnSjKumIP08R6tG3hQRP7De40XEb1NOjfplIICbUVY1BfB84JsR8aotaKp8B+DzlH14TgFOB+5DGSB1x/pwyubPbwb+K3BLyhXEbks5Vesvga9FxPmrvNcplCHP2ynDr7MoG5GfB/wSo62Gti4RcX/gp6qHn0opHVzx+s2Bc6uH34iIZ0TEP0fEoYhoRsTVEfFXETGoUTbA/+25/6qIOGHFe+wCXtfz1HvX9WEkSdKOZHgkSZJIKX0e+NPq4enAhes5TkS8inI1rz3ANyjDogdTVv68kLJiZTfwyurPZnoRZYjzRuChwJOA16WUrqzG+iDKyqTbAQXlEvRPBB4IPIVyWXooq5E+GxHDpmK9GXg48EXK1cceSBnofKx6/STgnRFx6kY/VETsiojTIuI+EfGHwL9Wx5+jrPZa6YcpK78Afoty1bRHUa6+diJlyPYs4CsR0fe/SUrpq8AfVg/vB3w1Ip4dEQ+OiCdTVpQ9qXr97Smlf9zgx5QkSTuI09YkSVLX/6RsdHwu8BMR8bSU0t+MunO1TPxvVw/fDTx3xXSvz0fE2yl7+FwA/E5E/P2gKWxjsJsyLHp5z3Pvq8a6h7Kq6GTKiqsnp5Te17Pdl4CLIuJ3KKf13Q74c8pwqZ/bUn7mZ6eUuhVcRMSHKT/v44BbAY8HLtrg53p69V69Pg/8fErp4j7b91YU3Rz4DPA24NLq8aMpq6NOpqwqaqaUXr/yICmlX4+IbwKvogzU3rFik0PA/wf81Vo/kCRJ2tmsPJIkSQCklJaBX+x56o8j4lZrOMRLKK8tDgPP79cnqHqP51JW+uwCfnX9Ix7JWwc8/wTK3j0Ab10RHN0kpfRqysoegCdExD0GHK8BvKg3OKr2Lzi2CfkPjTLoVZzT57l7Ab+6ykprAK9KKT0spfTulNIXU0r/klJ6CWV12JFqm9+LiDuvPEhE3J6youqsAeM6i7L6aNDfkSRJmlCGR5Ik6SYppY9xtKLkLOBPRtmv6nnTXc7988NW9EopXcHR1cF+bJ1DHcV1KaVrB7z26J77f77Kcf6s5/5jBmzzlZTSjQNe620ufdoq7zWKTwOPpAxynkk5Ve7mlD2mPhMRt16x/QuB+wKPTSn9br8DppT+k7JqCMoph8dMf4uIuwD/BjyP8vrx5ZQNsk+qbl8GLFNWWH02Iu67sY8oSZJ2EqetSZKklX6dMiS5HfDkiPjblNKwZeKhnOrWrXp5Ys+KZ6u50/qGOJJrhrz2g9XtEvCtVY7zxZ779xqwzZVD9l/qub/ha6+U0ud6Hn4pIv6GsrrpuZSf639R9jDqbr8AfHWEQ7+bMizcB/z4itcuAu4IZMDjUkqf6nntSuANEfEJymDrFsA/RERUzdglSdKEs/JIkiQdI6V0BHhBz1NvjYgzVtlt0FSm1eyNiHFU4/SzMOS1M6vbQ9XUsmH299y/5YBtlgY8D+UUva6xrzBXTZX7ZeC66qknR8Qp6zhOk3LlOSiDIuCmxuLdvknvXBEc9e7/H5TBFZRT656w1jFIkqSdyfBIkiQdJ6X0AY4ut347ytXEhumtqPlLyrBh1D8Dp7gNMco1zLBQaC0hzp6e+/nArbZRFfz8v+rhiRzt57RW3f8WJ/Y8d/+e+x9ZZf8P9Nx/4DrHIEmSdhinrWnqVL+2/gblMst3AhaBrwB/tN6lgyPijsDvUE7juDVwEPgE8Psppe8O2e9nKVewuS9lX4hrKC+8/1dK6fsD9nk2x69gs9Ifp5RetMaPIWkdJv2cUu33o5Q9aR4M3Kza76QRhvorwCMoq3SeGxF/N2Tb3n4/naqHznp0A5/Vwp3T13n8ru54z4qIXatUH92mz35bomqAfT5w25TSasHN4Z77J1b7nww8lPJ/ZzeklD6+yjG6/ZIO9Dx3as/9IwzXu99G/xtNpUk/p0TEbuDngOdQTuPcDXwPeD/wByml+fV8BknSzmblkaZKRNwM+CTwSuA84NuUDTwfBXw0Il65jmMGZa+In6O8gP46ZT+IZwJfjYhHD9jvbZS/2j8CqFNOBbg98GLg29WXuX66K/FcQbn0cr8/31vr55C0dtNwTomI/065NPtPVPt9G7hD9WeolNKB6vhdf0EZPvXzPY5WrfzIaseOiN+MiOdFxMreOt0V2k6MiD0r96v2PZly2fuN+EZ1eypwz1W27f08Fw/canO8G/gy8OERVr47v+d+t1H4PuCfq+O8dtjOEXHbnmP8R89LBwe8Rz8/0HP/wMCtZtSkn1Mi4kTKcOkvgAdRhqmXA3ehDK++HRF3XetnkCTtfIZHmjZ/Slkm/5/A+Sml+6SUzqFsHJoBr+rzRWWgiNhLeZF0JuWF9+1SSvennMLxFsqLs7+LiDNX7PdzlBdxGfCMlNLtUkr3prwouwg4A3j/gJ4U3fDof6aUHjLgz/8e9TNI2pCJPqdUXyrfTfn/978K3CGldF/KfjTd6oDe6UnHSSm9G+hWQ5wLPH3Adm2g2wvnXhHxkCF/D48AXg9cCPzWipd7K1vOHXCIHwdOGDbuEfxLz/3nrbLt83vuf2yD77tWn61ud1E2xO6rCn4eXz28uLvKXEppDvhm9fz9I2LYdLYXc7Tiq7fK7LM995+5ynifNmA/lSb6nAL8NuWqigv
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAASbCAYAAAAry16TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebhkV13v/3cP6e50ZhKTMCSEJPgNRIhwGQyiBtCLyAUvoF5RQOZBAUEUUMaLlx+TE4MMCsgFZPKKAgpXZRKCN4okTIGskEBmMvd0xqrae//+WLv6VJ+uOqdOnTpDVb1fz9NPnVO19651eti996e+67u2VFWFJEmSJEmSNIitGz0ASZIkSZIkjS7DJUmSJEmSJA3McEmSJEmSJEkDM1ySJEmSJEnSwAyXJEmSJEmSNDDDJUmSJEmSJA3McEmSJEmSJEkDM1ySJEmSJEnSwAyXJEmSJEmSNDDDJUmSJEmSJA3McEmSJEmSJEkDM1ySJEmSJEnSwAyXJEmSJEmSNDDDJUmSJEmSJA1s+0YPQJIkra+I+CLwM/W3L08pvbbP/d4G/Fb97d1SSlcNf3TqR0TsAC4GzgXOTyld1Mc+JwG/AzwaOBNoAT8APg68NaV0ex/HOIH8d+DRwFnA0cANwOeBP0kpXTrQDyRJkkaalUuSJE22V0TEPTZ6EFqx15GDpb5ExP2AS4Hfr/c7EjgGuDfwauAbEXHfZY7xUOAy4A+B+wN3AHYAZwBPBS6JiKev8OeQJEljwHBJkqTJthN4T0R4TTAiIuL3yRVI/W5/R+DTwMlAA3gDuXLtocCfAyVwF+BTEXFKj2M8EPiH+hjNer+fBx4MvAaYAY4A3hURDxnoB5MkSSPLaXGaeBGxG3gx8KvA3YADwNeAP0spfWbAY54OvJJ84X0ycAvwOeB1KaXvLrHfo4Dnkj8R3gF8H/gb4G0ppT099nky8FfLDOnNKaUXrPDHkNSHtTiHdHmPD9fHv3tK6Yoe25xBnuK0lG+klH68y/PnA5dFxMnksOlacpDwRymlGwYeuIaqngr3ZuDZK9z19cCP1F8/NqX0jx2vfSEivgx8GLgT8CrgNxe973bg3eRqpybwSymlT3Zs8pWI+AJ5atzW+v0euMIxTrRNdi3yIOB3ycHh8cBtwJeAN6aUvtZjny3AE4GnA+fVT38PeD/w7pTSzCA/gyRpdPgppSZaRBxFvhh+Fbn/xKXANPBfgU9HxKsGOGaQ+2A8jdyL4hvALvJF18UR8fAe+/058Mn6vSvgu+RPkl8DfDMifqzHW7Yv4n4AfKXHr++v9OeQtLy1OId0eY9nk284l9M+F9xO73PBJYv2KcnnG4C7k6taLiOHDC8ELo2In1zN+DUcEfEA8p9hO1gq+tzvVODX6m8/tShYAiCl9FHg7+pvn1b3Ver0y0D7/6DXLQqW2sf4YscxHhARp/UzPm26a5GnAV8GHkP+kOtSYDfwK8BFEfHELvscQf6z/9/AT5Gr2C4HziGHoRdFxF1W+jNIkkaL4ZIm3Z+TP139OnBWSum+KaW7Ak8iNzp9dUT8bL8Hqz/d/QfgROADwB1TSvcH7gi8jXxh95GIOHHRfs9j4ZPi1wCnduz3Z+SQ6bMRcXyXt23fUP5+SunBPX69pd+fQdKKDPUcslhEvAB4e5+bt88FH1viXPCURfuUwJaO77+VUroPOVz6KLlq4eN1VYU2SES8HrgIuF/91CfI/zf041EsVKq/f4nt3lM/7gB+cdFr7XDqduBNSxzjHcB7gTcC2/ocnzbPtchZ5D/DrcBbgVPq88Gp5Mq17cC7I+LMRW/5evLfmRbwHOBO9fu1zyP3Aj5Tj0uSNKY8yWti1RdRTyDfXP16Suna9msppQ9ExI8CLyc3Ov1sn4d9AnA2cA3w9JRSoz5eIyKeT775+ylyRcDL63FsB15R7/8XKaWDn1CmlOaBF9a9Ls4nf6r5wkXv2b6h/FafY5Q0BGt0Dmkf+47km7vHrWC3Qc4F7QDgNvKN6EMj4hkppb+MiKeQKydOJlcx/HW/B60bhD8XeBg5HN9Cnmr3BfKqZN/psd8Xyb2A5lNKu5Y4/rfJTamvTimdsei1diXWC4F/JN9MP5g8nesK4KUppc92bH8seSrPL5Krc44h/35cQp6W/IGUUqvLGM5gYRriY8iVp08mBwLn1se5Hvgn4I9TSlf2+nn68BPk38PbgRenlN4TEa/uc9/OyrMvLrHdl8lVbFvIvZjeBwf/j/q5eptPp5Smeh2g/n1d0d/1SbdZrkVqjyf3zboMeEFKqaz3m42I55D/XpxZH/819fh/hPxvHeCVKaV3dox/f0T8Bjk4+zHyKoNv7vNnkCSNGCuXNMmeSL6x+n89bnTaF0g/Wfct6MeT68cPtC/m2lJKFfCu+tvHd7x0PxZ6Ybyxx3HbF2NPrPsaAFCXmd+BPJXl8j7HKGk41uIcQkQ8htyr5HHAHvINWT/a4dK3+30v8g3tZ4AX1F8DvCki7pxSmq3HAXDXfg8YEa8gB1y/CQRwFHlaTZCndH0rIl7deS5bI6eRp5H91/r9jwPuSw6Y2mN9CPlG+o+BnyafT48gV2o8glyFc0kdACxlN/nG/z3kcOwkcu+qM8mVHJdGxC+s4mfZQ27CfXZK6T3LbbxIeyXAvSmlW3ttlFI6QO7J07kP5OmSO+uvv9q5T0T8SETcIyLusMIxacFmuRaB/G8G4NvtYKljvxYL02o7x/EwcrXbPHBYlXT9IVn7Z/iNPscvSRpBhkuaZOfXjxd2ezGldD1wdf3tzyx3sHqlpQcsdUzyjQ7AmR39KNo3bfuW+GQ71Y8nki/029o3k5d1+2Rd0poa6jmkw3nksOKvgXuSV/laUkQcTQ4yYGWVS62U0i+klD5InpoDOYR5Z0QcQw6EYCFkWm4cryZXNGwDvkkOkx5Erhz6beBK8rXHq+pfa+kF5JDnjeQqjV8G/r+U0lX1WM8nVzbdkVyx80Hg0eQqi18F/rk+zo8BX66ryXr5Y+Ah5KlrT6yP8d+Bf6lf3wm8r/5zGsTjUkov7bWwwzLuXD9e08e27aqZO3c8d8+Or6+OiO0R8XsRcQVwM/Ad4LaIuDgifmmA8U26zXItAgt/R+69ePXI+vtz62+v6nipfQ1zWUppusf7ta9h7h0RRy4xfEnSCHNanCbZ2fXjUlMVriJfOP1oH8e7M3klnaWOeS25Ceu2+pjXstBMt7nEsY/o+PoMFqqUDlYqRMQF5IabPwrMkT9hfG9KabnVoyQNZtjnkLYvAeellL4FB6dfLefe5OlMNwA/EhG/C9yH/P/85cCHU0pfWWJ/gN8n9+c5A/hv5KDkOHJD379fbgARcV8Wpvh+AHjqotD7KxHxHnIvmAuAV0bEx3pNkRuCreQw6WUdz/2feqzbyFVJR5Irtv5HSun/dGz3H8BHI+KVwP8kB1DvIodP3ZxK/pmf3FnxERGfJP+8v0CuUH0kuQfNiiyuIlmhdlXRgT62bYcDnf39Tur4ugT+jbyi6WL3Af4mIt4OPLeukNHyNsu1COSG3L9fP/cnEfHieirdDnLl3DnAPvK/nbaVXMNsI1dHWWktSWPIyiVNspPrx1uW2Oa2+vGkJbZZfLyex0wpFeQLs85jtldyO2mJ1VTO7fi6cxWfdrj0KHIvk+eQS9QfSe6jcFm90pSk4Rv2OQSAlNLn28HSCrTPBSeQK0n+gDyt6+fI0+oujIj31Ks69XrfaQ696bsnearXz6WUlrpxbHsR+briNuDZ3aop6/d4Kgu9fZ7Xx3FX4x09nn8U+UYZ4B2LgqWDUkqvYaFP0aMi4p7dtiMH+i9YHALVActfdjx1HuuvPaVtro9tZxftA3mlsba3kYOlL5CnEe4mV9Q+kRxsQp4O+XuDDnYCbZZrEVJK15GnkV5OrjS8OSIuBm4iVwJeDDwkpXRDx+Ha1zDnRESvPmm9rmEkSWPEcEmTrL360VIX3O0L7X5WSurcZiXHvAS4rv76FYs3rpupvrjjqR0dX7dvVLYCv0tunLuTvDLLB+tt3xERv9LH+CWtzLDPIavRPhf
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkd13v/3ctXVW9z0zPTjIzzEzyTSBhiSxG8QYVcMGNi3pRAZGfiuKG+rvABdn8iYroT1H4gd6LG1wRcUFQucqOoCySYCAk3yQkM5Nk9t671rP9/jinqk93V1Wf2np9PR+PflSdOkudnjymMv3uz+fzTQVBIAAAAAAAAKCZ9GbfAAAAAAAAALYuwiMAAAAAAAC0RHgEAAAAAACAlgiPAAAAAAAA0BLhEQAAAAAAAFoiPAIAAAAAAEBLhEcAAAAAAABoifAIAAAAAAAALREeAQAAAAAAoCXCIwAAAAAAALREeAQAAAAAAICWCI8AAAAAAADQEuERAAAAAAAAWiI8AgAAAAAAQEvZzb4BAACw9RhjPiHptmjzV6y1b0x43lsl/Uy0+Whr7Zn+3x2SMsY8UdLnFf6b78estX+a4Jzvl/R8SU+SdEDSoqQ7JP2JpPdYa4OB3TAAANiSqDwCAADreY0x5sbNvgl0xhgzpDDwSfTLQmPMpDHmI5LeJ+l7JT1KUk7SlKRnSPrfkv7RGFMYzB0DAICtivAIAACsJy/pncYY/t2wvbxK0uOTHBgFTf8s6Vujlz4r6Yclfb2kF0i6K3r9OyS9vb+3CQAAtjr+EQgAAJK4VdLPb/ZNIBljzOMkvbqDU35Z0lOj5++R9DRr7XustZ+z1r472vflaP+LjDGP6d/dAgCArY7wCAAAtONLcqPnbzTGnNzMm8H6jDFZhe1qQ5KuJji+IOl/RJtfk/Sj1lovfoy1tqiVYdRz+3O3AABgOyA8AgAA7TiS3hw9H5H0PzfxXpDMyyXdImlG0usTHP9sSRPR89daa50Wx/2LpD+X9BZJX+nxHgEAwDbCamsAAGA9b5D0HEk3SPoWY8xPWGt7CpGiAdw/q3DGzjWSUpIekvRxSX9grf1qi/M+oXAVuKq1tuXgZmPMVyQ9VtJZa+2JVfvqq4X9oqR/lPRWSU9TGJTdL+mV1tqPxI6fkPTjCodI3yRpXNK0whXI3ifpXdZaV6sYY05IejDafI6kD0h6kaQXRvc2LukRhbOGfsda+7VW309SUTvZa6PNX5JUTHDad0SPNUl/1+oga21V0o/2dIMAAGBbovIIAAC0FYUGP66whU2S3myMeVS31zPGvEbh/JyXSjKSRhVWNRlJPyXpy8aY1xtjUj3d+PqulfQZSc+K3n9SYcXO/bF7/WZJ90j6HUn/RdI+he1ghxWGLn8s6Q5jzKl13mtE0kckvVNh+LVf4SDyk5J+WtJdxpjv7OWbMcZkFLar5SX9s7X2zxKeenP0eJe1thy73ogx5npjzDGGpQMAsLvxDwEAALAua+1nJL0t2pyU9I5urmOMeb2kX5WUkXSnwrDoGxRW/vyCwpk7aUmvi74G6WUKQ5zfkvRNkn5A0q9ba89E93qrwsqkI5ICSe+W9D0Kh0c/T2EblxRWI/2rMeZIm/f6HUnfrHAVsxdE1/g+SR+O9ucl/akxZqyH7+eXJD1F0pKkn+zgvPrw67OSZIy5zRjzL5IWJNno9YvGmDdFVVgAAGCXoW0NAAAk9T8kfbekE5K+yxjzw9bav0h6sjHmFkmviTbfJenFq9q9PmOMeaekf5D0dEmvNcb8VasWtj5IKwyL4oOg/zq614zCqqJhhRVX/81a+9ex4z4v6b3GmNcqbOs7IukPFYZLzRxW+D2/yFpbr+CSMeYDCr/f75R0QOH8ofd2+o0YY4zCUE4K2+7OJTwvL6keWM0ZY14l6dcUthHGHVA4S+l7jDHflvT6AABgZ6DyCAAAJBKtuBWvaHmLMeZAB5f4ZYX/9piW9FPN5gRF7/FihZU+KUk/1/0dJ/L2Fq9/t8IZT5L09lXBUYO19lclfaJ+Tpsl7CuSXhYPjqLzA60cQv74JDcdF7WU/bGkgqRPS/r/Ojg9Xun0LZLeKOmKpJ+QdDC65lMlfSg65gZJ749CJwAAsEsQHgEAgMSstR9WOFdHClu+/iDJedH8ovpg5s9Ya0tt3uNBSXdHm9/a5a0m8Yi19uEW+74t9vwP17lOPKz59hbHfNFaO9NiX3xQ9vg679XMzyts/atI+vEokEpqJPb8mMJg7xustf/LWnvFWlu11n5eKyuinijp/+riPgEAwDZF2xoAAOjULykMSY5I+m/GmPdYa/9+nXNOSNobPf+e2Ipn63l0d7eYyENt9t0UPS5p/WXpPxt7fnOLY860OX8p9ryjf5tFg7rfGG2+wVprOzlfUnnV9huarfpmrQ2MMb+gcNW4nKTnq7MKJwAAsI1ReQQAADpirZ2T9DOxl95ujNmzzmn7u3y7rDGmm2qcJBba7JuKHq8mqOS5FHu+r8UxSy1el8IWvbrEK8xF1VzvVFg9dIek3056bsziqu2/a3WgtfaSwllPkvTkDVgNDwAAbBFUHgEAgI5Za//OGPM+hSuUHVG4mli7Vqb4vzn+WAnb3SItW9zaSPILsnahUCfBSCb23G95VP+9RNJt0fPfl3RTODd7hROx58eMMU+Int9vrV2y1laNMbNargo7v8571qu1spL2SJrt5sYBAMD2QniEHcUYM6JwNZjnKWx1WJT0RUm/Z639ULtz21zzmKTXKmzROKhwkOhHJf2GtfbuNud9t6SflfRkhSX+D0h6n6S3Wmtb/mPbGPODCn8Au0XhP8znJH1B4cDWD3bzPQDAgPyswiHLU5JebIz5yzbHxuf9eNbaL3X5nvXAZ71wZ7LL69fV73e/MSa1TvXRoSbnbYSvjz3/k5ZHLXtD9CVJ36zlQd9flvRfoud71P57qA/K9tS+cgsAAOwgtK1hxzDGjEr6mKTXSTop6S5JRUnPkvRPxpjXdXFNI+l2hWHOmKT/VLjyzAsk3W6M+bYW571N0gei9w4UDn69RuEyyncaY25qck7GGPNehQNJn6XwN9lfURjyfoekD0TXBYAtwVp7WdIvxl76I0mjLQ5/QMsVRF/f4pgGY8wrjDEvMcY8Y9Wu+gptOWNMZvV50bnDCpeW78Wd0eOYpMeuc2z8+7mnx/fdDPGZTev9t6n/WTxsrfUGdD8AAGCLITzCTvI2hcsJf0nSKWvtLdba45JeqPCHjdc3+SGkJWNMVtI/KPyN+rskHbHWPllhe8ZbFYZIf2mMmVp13s9Jemm0+auSDsfO+z2FIdJHmswHeaWkH1QYeL3QWrvPWvtEhfMzfjr6Hl5qjHlJ0u8BAAbNWvsuLS/jfkLSj7Q4zpH08WjzZmPM01pd0xjzLZJ+U9I7JL1q1e652PMTLS7xDElD7e47gX+JPV/vc/enYs8/3OP7JmatfZG1NtXuS2FbYd2PxfZ9IvZ6vGLspWrBGPMUSfW+uPf37RsBAABbHuERdoRotZnnK5w18SPW2sYKOtEPNr8Zbb6+g8s+X9JpSecULn1cjq5XU7gs8r8qLO9v/NY9CpxeE23+kbX2ddEPTIqWO/5FSf+usMXhdavOe1m0+dronuv3H1hr3yHpTdFL/72D7wEANsJLtDx4uV1o8//Gnv+pMeba1QcYYw4qrGCq+/1Vh9wZe/5zTc4/JOnNbe82mQ9Iuj96/lJjzHOaHWSMeY2W5w59tId2vE1jrb1Dy6HXs6NV1VYwxuxTOJxbCn+Z8T836PYAAMAWQHiEneIFCtu8/t1a+9Um+98RPX5jNMMoiRdFj++KAqOGaPbFH0abPxTb9SQtt0r8VovrvqV+z7GVam7W8kpE72lxXv23vKeMMXtbHAMAGy4K7F+R4LiPSXp7tHlK0n8aY15rjLkt+vplhauGnYqO+Ttr7eoKl/douXXtF4wx7zTGPNMY803GmP+usNXYSFqz3HyH35On8P8tNYX/XvprY8yfGWO+yxjzFGPMDxhj/o/CClNJuirpR3t5z032EoXfgyT
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd7xkWVnv/+9J3adznNA9eQZYwww5OoiXQRSvCQWvCqJcHFHRi4jhh3qFC/5+IgqKWUYFE0lQ4YIBJQhIkCAMDNM9syb2dD6nT6y48/79sXed2lVdVafSSbs+79erX5X23rVqeFG1zrOe51ljcRwLAAAAAAAAaGV8owcAAAAAAACAzYvgEQAAAAAAANoieAQAAAAAAIC2CB4BAAAAAACgLYJHAAAAAAAAaIvgEQAAAAAAANoieAQAAAAAAIC2CB4BAAAAAACgLYJHAAAAAAAAaIvgEQAAAAAAANoieAQAAAAAAIC2CB4BAAAAAACgLYJHAAAAAAAAaIvgEQAAAAAAANqa3OgBAACA9WWM+aSkZ6UPX2OtfUOX5/2RpP+VPrzOWnti+KNDN4wx2yR9RdLNkm6x1n6+i3NulfTTkp4h6RJJi5KOS3qPpL+21nqrnD8l6YXpvydKOiypKulBSf8q6Q+stef6/EgAAGATI/MIAIDR9lpjzKM3ehDo2RuVBI5WZYwZN8b8saRPSPp+SVdI2ibpMknPlvRnkr5kjHlkh2tcJek/Jf2NpO+QdETSlKS9kp4g6Zcl3WuMeUG/HwgAAGxeBI8AABht2yW93RjDnGCLMMb8iqSf7+GUNyjJOJKk05JeIem/SXqBkqwjSXqcpH8yxuxt8X47lGQWPTl96mOSXiTp6ZKeK+n3JXmSdkt6b5rhBAAAcoSyNQAAcIukV0r6vY0eCNpLS9V+X9LLezjnBkn/T/rwQUlPstYuZw75gDHmmKRfl/QoJYGl32i6zM9Kuim9/7vW2ubA1UeNMR+Q9BElGU1vNcbcbK2Nuh0nAADY3FhlBABgdEWSgvT+G4wx12/kYNCeMeZpkj6reuAo7PLUH5U0kd5/VVPgqOaNkpbS+z/Q4vXb0tszkn6p1ZtYaz8l6U/ThzdKelqX4wMAAFsAwSMAAEaXL+nN6f2dkv58A8eCNowxvynp85Kekj71QXWfJXZeSa+jU5I+2uqANEPo3vTh1U3vfZmkWi+kD1tr/Q7vlb3+47scHwAA2AIoWwMAYLT9mqTnK8kW+WZjzI9bawcKIqUNuF8h6TmSrpQ0piR48QlJf2itPd7mvE8q2QXOtdZOd7j+XUqaRT9srb226bU4vftzkv5Z0h9JeqaSQNn9kn7ZWvuxzPF7Jb1M0vdIeoykPZLmJd0h6e8kvcNaG6iJMeZaSQ+lD58v6UOSXirpJenY9ijJ1Pk3Sb9jrX2g3efpwjco+W+4IOnV1tq3G2Ne382J1to/UvLfoC1jzJjqQaPm3dIiSa+VdFTSJ1d5u7HM/bb/+wEAgK2HzCMAAEaYtdZVEjyp9ad5szHmin6vZ4x5raSvK2nQbCTtUpLVZJSUXH3dGPP6NGCxlq5SUub13PT990l6kpIAUm2sz5Z0j6TfUdJA+qCSHcQul/Ttkv5C0h1p36BOdippIv12JcGvw0oakV8v6ackHTPGfMcAn2VR0m9JeoS19u0DXKedn1HymSXpvdkXrLUXrLW/bq39aWvt+1a5zq2Z+w8PcXwAAGCDkXkEAMCIs9Z+Nt3K/WeUBFlul/TdvV4nzYZ5XfrwTkl/kt6OK9mp65WSbsgc8/pBxr2KVynJhHmTpH9UEhx5grX2RDrWW5RkJu2QFEt6l6T3SZqRdJ2SPj/PVZKN9GljzJOttc1ZOTW/k17/85L+WEkJ2BFJ/0vStyoJJP2VMeZ6a22pj8/yfcNsPp0G7g5Lemw6xhekL31Z0lv6vOalqvdG8pVkmQEAgJwgeAQAACTpV5QEjK6V9F3GmB+y1r6725ONMU9SUt4kSe+QdFtTuddnjTFvl/RPSjJU/o8x5n3tStiGYFzSb1hrfzXz3N+nY51QklW0Q0nG1Q9aa/8+c9wXlWw5/3+UlPUdUdIM+nlt3utyJZ/5pdkgjzHmQ0o+73dIukTSd6ops6cba7Br2Z9L+rGm594u6Rf7CW6lwai3KQk8StLb2jTmBgAAWxRlawAAQNbasqSfyDz1+8aYS3q4xC8omVfMS3p5qz5B6XvcpiTTZ0xJptNaemub579bSY8nSXprU+BohbX2/1W9z893G2NuanWcJEfJTmYNQR5rbazGJuSbpYn0NS2e+xZJP26M6Wdu+BbVM9XOqp5ZBgAAcoLgEQAAkCRZaz8q6S/Th4cl/WE356WZJ9+ePvystbbS4T0eknR3+vA5fQ61G2estafbvPZtmft/2uaYmj/J3P/vbY75srV2oc1r2UbZe1Z5r/XyJ5K+SdI3Svp5Jc3Mr1FS4veuXgJIxpg3KykRlCRP0guttReGO1wAALDRKFsDAABZP68kSHJE0g8aY95jrf3gKudcK+lAev95mR3PVnNdf0PsyqkOrz0mvS1JumuV63w+c/+xbY450eH8bBnYpph3WWs/kHn4OWPMXytp+P1ESS+U9FElZX1tGWMmlWR2vSx9KpD0Ymvtp4c/YgAAsNHIPAIAACustUtKmijXvNUYs3+V0w73+XaTxpi1ysYpdHjtUHo7l5aWdTKTuX+wzTGd+gRlr7/WO8z1Jc2aeknmqdvaHStJ6f9m/6h64KiWcdSy/A8AAGx9BI8AAECDNDPl79KHR5TsJtZJNqPmL5RksHT7r22JWwfdzF86BYV6CeJMZO4Pu3H1pmGtvUvJLnGS9Lh2xxljrpD0adVL+MqSnmet/Ye1HSEAANhImyJ9GhgmY8xOSa9Wknp/naSiku2Hf89a++E+r3m1pP+jZLJ8qaQLkj4u6Y3W2rs7nPcMSb8o6ZmS9itpJPsfkt5krf1yh/O+Q9LPSnqqpN2SzispKXijtfa+fj4DAPToFZK+WUmWzm3GmL/tcGy2309orf1qn+9ZC/isFtzZt8rrq6mN97AxZmyV7KPLWpy3ZRhjjkq6Qcn/Lp9b5fD59HZbm2s9SklJ29XpU7OSvsta+6VhjHVUrMU8pcV7vCe9/iOttfd3OK7n+Y0x5lZJn1hlCB+01n5vH0MHAGxSZB4hV4wxuyT9u5KdXq6XdEzJquhzJf2LMabnHWCMMUbSV5Rsa7xb0tckTUv6EUlfMcZ8W5vzfkzJ6uzzlUzEj0naKekHJH3eGPMjbc77NUn/nI45lHRcyR9vPyrpDmPMt/T6GQCgV9baWUk/l3nqzyTtanP4g6pnEH3Datc2xvySMeYnW3yf1XZo22aMmWg+Lz13h5Jt7wdxZ3q7W9LNqxyb/Tz3DPi+6yptZH6PkkWLP+vi2OvThxc1GjfGXK8kYFALHN0v6RYCR71Zi3lKi/d4uZLA0WrH9TW/UX3XwHOSPtvm3/EBPgIAYBMieIS8+WNJT5f0VUk3WGufZK29Rkkvh0DS63sJvqQNQf9JSfDmHZKOWGufqqSM44+UTLL+1hhzqOm8G5Q0Eh1XslvRZdbaJ0q6XNLblGT9vS2djGfP+yYlK4CS9CvpeU+QdGU6jl2S3mOMGXTVHQBWZa19h6RaJsS1kl7c5jhf9UyExxpjntnumsaYb5b0m5Jul/S/m15eyty/ts0lvkXSVKdxd+Ejmfs/ucqxL8/c/+iA77uu0oyqz6YPbzbGPL3D4d+pepZVw+dMM2X+WdLR9Kk7JD3DWvvgEIc7KoY6T2lmjHmVGncIbHdcX/ObVC149PvW2me2+df8/20AwBZH8Ai5kQZsflhJT4oXW2tXdtpJ/wD6zfTh63u47A9LeoSkk5JeZq2tptfzJL1SSWbRfjWuzkvSi5T8cXOPpFdZa930vKqkn1KySr8tvX7W/0xvP2qt/U1rbZSet6jkj7aiksa039PDZwCAQfykku8eqXPQ5i2Z+39ljLmq+QBjzKVqzID5g6ZD7szc/5kW518m6c0dR9udDynJnJGknzbGPL/VQcaY10p
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxrWV3v/W/mVFJz1ZnH7tP0ogew6QfkMkkDXmQQuCgKKnCxVUBBxIsKKgj6iLOPgALtBJdBEGgReAQu0kxiIyjQ3TRN9+qBM091Ts2Vedj3j72T2pVKUkkqqSH1eb9e9Up29rRymhNOvvVbvxVwHEcAAAAAAABAPcHNHgAAAAAAAAC2LsIjAAAAAAAANER4BAAAAAAAgIYIjwAAAAAAANAQ4REAAAAAAAAaIjwCAAAAAABAQ4RHAAAAAAAAaIjwCAAAAAAAAA0RHgEAAAAAAKAhwiMAAAAAAAA0RHgEAAAAAACAhgiPAAAAAAAA0BDhEQAAAAAAABoiPAIAAAAAAEBD4c0eAAAA2FjGmC9LerK3+UZr7VtbPO+vJL3K27zCWnui+6NDPcaYYUm/JOn5koykAUmXJH1N0ruttV9a4/y/k/RzLd6u5f+2xpjflvT7kv7aWvvKFq8PAAC2GSqPAADY2d5kjLlmsweBxowx10m6S9IfSvpBSSOSopIOSPoJSV80xvyVMSbQ5DKP6sG4HiPpTd2+LgAA2HqoPAIAYGeLSfp7Y8wTrbXlzR4MVvIqjj4r6ZD30mckvVfSRUk3SPotSXvlVoTNSPqdOtcIS7rO2/w7Se9c47bnWhjX9d64Ymu+CQAAsO0RHgEAgMdJeo2kt232QLDKq7UcHL3TWvtq376vGmM+Ircqaa+k1xtj3m2tPV9zjWu0HPLcZq29cz0DMsY8R9IH5FZAAQCAHYBpawAA7FxlSUXv+VuNMVdu5mBQ1zO9x5KkN9TutNZOSar0rIpKenqda9zge95xcGSMGTPGvF3SJ+UGR6VOrwUAALYXwiMAAHaugqQ/9Z4nJP3tJo4F9e32Hs9ba5caHPNd3/N9dfZX+h2lJD3QySCMMY+X9KDcCrWApPOSfrqTawEAgO2HaWsAAOxsvyt3Ba+HS3qqMeYXrLXrCpG8BtyvlvQ0SQflhg2nJX1J0l9aa7/X4Lwvy10FLmetjTe5/nfl9vA5aa09WrPP8Z7+qqRPS/orSU+UG5Q9KOkN1trbfMcPS/p5Sc+TdL2kIUnTku6Q9DFJH7DWFlXDGHNU0nFv8/mSPiXpZZJe6o1tSNJZSZ+T9OfW2ocavZ81nJN0taT9xpgha+1inWOuqjm+VqXy6K519LW6WtK4JEfS++X++TJtDQCAHYLKIwAAdjBrbU5ueFIJFf7UGHOg0+sZY94k6W65y8obSUm5VU1G0isl3W2MecsaK4N1wyFJt8udxpWQG3TcKDdAqoz1KZLuk/Tnkn5IbjgSkds/6JmS3iPpDmPMsTXulZB0m6S/lxt+TcrtMXSlpF+UdI8x5lkdvo9PeY9BSb9fu9MLv37T20zJbahd6we8xzuNMc81xnzCGHPBGJM3xpwzxnzM+7Nopuxd+7HW2pdZa2fbfysAAGC7IjwCAGCHs9beruUVuEYk3dLJdYwxb5H0e5JCkr4jNyx6vNzKn1+R9JDcf3u82fvppdfKDXH+RNKT5C5p/wfW2hPeWB8ntzJpn9xqmg9Keq6kx0p6kaR/9a5zvdzG1PWmg1X8uaSnSPq6pJd41/gfkj7v7Y9J+t/GmMEO3sdfyw3BJOk1xphPGmN+3BjzBGPMy+U2y75SbrjzKmvtZf/JxpjDckMxSXqx3H5Fz5O0R25Qtk/SCyR90Rjz197KbPV80Fr7bGvtf3XwHgAAwDbHtDUAACC51SvPkXRU0o8aY37aWvuhVk82xtwo6U3e5gck3Vwz3et2Y8zfS/oXSTdJ+h1jzEcbTWHrgqDcsOi3fa/d6o01JLeqaEBu6PJCa+2tvuP+U9JHjDG/I3da3z65Ic5zG9xrr9z3/DL/tDBjzKfkvt9nSdol6dmSPtLOm7DWpo0xPyK3WfavemOoHcedkl5jrf1qnUs8yvd8WG7Y9C65fZJicv9b/LKkMUkvlxukvbLOODqd7gYAAPoAlUcAAEDW2pTc8KDi7caYXW1c4nVy/10xLemV9foEefe4WW5AEZAbWvTSuxu8/hy5PZ4k6d01wVGVtfb3JH25co4x5toG18tKem1twGKtdbSyCfkPqDPXye1bNNBg/zWSXmSMGauzz7/S2t9LerS19m+stV+z1n7JWvtmuQHTSe+YVxhjbupwnAAAoE8RHgEAAEmStfbzkt7rbU5K+stWzvP6F1WWlL/dWptuco/jku71Np/W4VBbcdZae6bBvh/xPf/rNa7zLt/zZzQ45lvW2pkG+/yNsofWuNcqxpjnSvqKpB+V24D7pXKrmOJyw6i/lVtB9EuSvmCMmai5xJ96xz1HjUO9k3L7XlW8tt1xAgCA/sa0NQAA4Pe/5IYk+yS90BjzYWvtJ9c456jcaU+S9FzfimdruaKzIbbkdJN913uPS1q5zH09X/c9f0SDY040OX/J97ytf3cZY/ZL+pDcoOiM3GbV532HfEfSy40xd8rtWfUo7/FFlQO8IO873k9D1trbjDHH5f43eaoxJuBVTgEAAFB5BAAAlllr5yS9yvfSu40xo2ucNtnh7cLGmLarcVq00GRfpTrncgsByUXf8/EGxyw1eF1yp+hVtLvC3P+Uu1qdJL2hJjiqsta+S9K/eZsvMMbsafM+FXd5j0NaDgMBAAAIjwAAwErW2n+W9DFvc5/c1cSa8VfUvEduBUyrPw2nuDXRyr9fmoVC7YQ4Id/zjW4a/Rjf839Z49h/9h5Dkh7d4f38/y2iHV4DAAD0Iaatoe8YYxKSfkNu2f4VkhYlfUvS26y1n+3SPT7sXf9h1toHGxxzVNLxNS51l7X2htoXjTFPl9u/4rFyf0O+JPc3wu+V9AGmEgDYAK+W9FS5n0E3G2P+scmx/n4/JWvtnR3es/LZtla4M9Lh9Ssq451sYXqWv4qnUV+jXhn0Hsty/7+smSnf8xFJMsYE5f433CUp64WCzez2Hkva+PcKAAC2MCqP0FeMMUlJX5T0ZklXSrpHUkrS0yV9xhjz5i7c45Xy9ZNoorKqzoyk2xv83FHn+n8u6XOSnid3usI9kopyl1N+n6RPGGMi63oTALAGa+2U3KXhK/5Gy1Ooan1fy1Ur/22taxtjXm+MeYUx5odrdlWaOUeNMaHa87xzB+SGIetR6f8zKHcls2b87+e+dd63XZe8x6DcvlLNHPA9n5Ikb/W3W+X2TXqX19i8LmNMTMuVTt+x1uY7GTAAAOhPhEfoN++UW61zp6Rj1tobrbVH5K5OU5T0ljpfVlpmjHmtVq6800wlPPqotfaJDX5+tub6PyO3WW3Jexy11j7KWrtb0k/I/c3zcyX9XqfvAQBaZa39gKRKxeZRST/T4LiCpC95m48wxjyx0TWNMU+V9EeSbpH0WzW753zPjza4xA9LWm+A/q++569Y49hX+p5/fp33bddXfc9f0uggLxSq/FIjL+kbvt2VXkh75f4ipZGbtVzR1azKDAAA7ECER+gbxphjkl4st7z/Z6y11ZV2vC9Af+RtvqWDa+8zxtwq6S/Ueq+MSnh0dxu3+nXv8V3W2r/wfmssSbLW3io3UJKkX/Z+SwwAvfYKLU+Zahba/H++5//bGHOo9gBjzG65FUwV76g5xL8i2C/XOX+P3KXn1+tTkipTjn/JGPP8egcZY94k6cne5hfWMR2vUx/W8vSx3zTGPKnBcX8g6Ubv+fustf4pbv5feLzDGLOqubkx5rGS/sTbvKCV/40AAADoeYS+8hK5jUJvt9Z+r87+WyS9UdITjDGHrbWnWrmo96XiA3Kna8x613hnC6dWwqO1loGu3Gfcd86HGxz2CUl/643lWtWZ9gYA3WStPW2Meb3WqLq01n7RGPNuSb8o6Ziku4wxb5P0Fe+QR8sNwPd72/9srf1EzWU+LOl35P775Fe8ldj
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkd1n//XdvmSEhsiSAYEhCAtwKRBBZDKAEF1xQEBXZESIIqCwCP0AFiRsuyAOIQFBBIIjsP0AeeJQdBEHBIBjJDSEkhCRkmSSTzEx6qTrn+eOcnj5VU9Vd3X16qqf6/bquvmo5p751eiYU05++7/s7VZYlkiRJkiRJ0iDT474ASZIkSZIkbV+GR5IkSZIkSRrK8EiSJEmSJElDGR5JkiRJkiRpKMMjSZIkSZIkDWV4JEmSJEmSpKEMjyRJkiRJkjSU4ZEkSZIkSZKGMjySJEmSJEnSUIZHkiRJkiRJGsrwSJIkSZIkSUMZHkmSJEmSJGkowyNJkiRJkiQNZXgkSZIkSZKkoWbHfQGSJOnwiohPAg+sH74oM/90xNf9DfBb9cM7ZOZF7V+dRhERRwH/BdwVOD0zPz/Ca+4JPA34MeAEYAa4Avgc8LeZ+ckR1ngYcCZwX+CWwDXAF4C/z8x/3tA3I0mStj3DI0mSdrYXR8R7M/Nr474QrcufUQVHa4qIKeAvgOcBU32HT6q/Hh0RbwKempmLA9a4KfA24Bf6Dt0GeCjw0Ih4H/CYzLxxHd+HJEk6Ati2JknSzrYLeENE+G+CI0RE/C7wnHW85A+A/0MVHF1W3/9R4H7AM4AL6/OeCLx2wPtNA+9lJTi6Cng+cH/gp4DXAV3gF4GPRsTcur4hSZK07Vl5JEmSTgeeCbxy3Bei4epWtVdRtZ6N+pqTgN+rH34deEBmXtU45d8j4i3Ax4B7Ab8eEW/MzM81zjmTKiRaXuNBmXlZ4/hHI+LDwPuoAqlnAX81+ncmSZK2O3/LKEnSzlUAnfr+n0bEKeO8GA0XEfcBPstKcNQd8aWPBY6q7z+7LzgCIDOvB57aeOoJfac8s74tgUf1BUfLa/wz8Lf1wz+o29wkSdKEMDySJGnnWgJeVt8/Gvi7MV6LhoiIPwc+T1UZBPB+Rq8S+9H69kbgI8NOysz/ohp+DXD3xnvfCjitfvjpzDx3lff6h/r2WODnRrw+SZJ0BLBtTZKkne0PgYcD3w/8eEQ8JTM3FSJFxA8Avw38BNWuXlPAJcAngFdn5v8Oed0nqXaBW8jM3aus/z9Uw6IvzsyT+46V9d3fAf5f4G+AB1AFZRcAL8zMjzbO/x7gycDDgLtRBR97gHOBdwHnZGaHPhFxMvCt+uHDgQ9QzQx6Qn1txwKXAv8CvDwzvzns+xnBj1D9GV4DPD8z3xARZ4342ncA5wFzg76PPsvDtJt/9ic27n9hjdc3/15PB9450hVKkqRtz8ojSZJ2sMxcoApPivqpl0XE9210vYh4MfBV4DeBAI6hqmoKqparr0bEWfUOYFvp9lRtXg+u3/9mwD2pAqTla30QcD7wcqrt628JzAHfC/ws8Ebg3Ig4dY33Ohr4KPAGqvDreKpB5KcATwfOi4jNVOJcS7Vb2h0z8w3reWFmvikzn5eZz1rtvIj4QeAW9cOLG4eOaty/YY23W2rcv/PoVylJkrY7wyNJkna4zPws8Jr64c2AszeyTl0N80fADPAVqrDoflSVP88Cvkn1b4+X1F9b6dlUIc5fUrVuPQJ4aWZeVF/r6VSVSbelmuXzVqot5+8LPAr413qduwGfiYjbrvJeLwceRNVa9vh6jV9kpU1sF/CmTcwB+uXMfGFmXrvB14/idxv3/6Vx/+rG/RPWWOP2jfvfu+krkiRJ24Zta5IkCarw4BeAk4Gfj4jHZObbRn1xRNwTeHH98BzgzL42qc9GxBuADwJnUA1VfuewFrYWTFOFRb/feO7d9bXOUFUV3YSq4uqRmfnuxnn/AbwjIv6Aqq3vtsDrqcKlQb6X6nt+YmYuV3ARER+g+n5/DrgV8BCqNrJ1aa65FSLiEVSBGcCVVN/Lsguo2viOAx4SEXOZucRgv9C4f0zrFypJksbGyiNJkkRm7gd+o/HUq+phyaN6LtW/K/YATxs0X6d+jzOpKn2mgGds/IpH8rohz/8C1YwngNf1BUcHZeYfAZ9cfk1E3GXIevNUO5n1hDyZWdI7hPzubDMRcT/gTY2nnpOZ+5Yf1N/DP9YPTwBeOmSdk4Dfazw11+6VSpKkcTI8kiRJAGTmR1jZMet44NWjvK6eX/Sz9cPPZuaBVd7jW8DX6oc/scFLHcWlmfmdIcd+unH/9Wus89rG/Z8Zcs6XMvOaIceag7KPXeO9DquIuD/wIaqZTQBnZ+Y/Djj1pcB36/vPi4h3RMQPR8SuiDguIp4AfI5qZtLyeYtbee2SJOnwsm1NkiQ1PYcqJLkt8MiI+KfMfP8arzmZlWHLD23seLaWO2zsEkdyySrH7lbf7gP+Z411Pt+4f9qQcy5a5fX7Gve3zb+76gHe72IlOHoP1Q55h8jMKyLioVQzom4F/Gr91bRENRz8MVRtfPu34LIlSdKYWHkkSZIOyszrgN9qPPW6iLj5Gi87foNvNxsRW1WNc/0qx46rb6+u27JWc0Xj/i2HnLNvyPNQtegt2+od5kYSEU8DPsBKcPQO4FGZ2R32msz8T+AeVG14zT/bDvB+4Ecy8+9YCRGvQJIkTYxt8xswSZK0PWTm/42Id1HtUHZbqt3Efn2VlzT/PfFGRmx3qw1tcVvFKL/8Wi0UWk+IM9O4v6WDq7da3V74l8DzGk//LfD0UYZyZ+ZlwG9ExG9RzT+aAS7JzIV6/WngTvXp32rz2iVJ0ngZHmniRMTRwPOpdo65A3AD8CXglZn54Q2ueSLwB1StHLcGrgI+BvxZZn5tldc9GPhNqm2bj6P67fR/U80UOWeE33gv/2P808D9gblBQ2glaQv8NvDjVJ9dZ0bE21c5tznvp5uZX97gey5/Jq4V7txsg+svW77e4yNiao3P4tsMeN0Rp95h7s3AYxtPn5WZf7jeterd1gaFQz/ISjXTRv8bkCRJ25Bta5ooEXEM8HHgJcApwHlUcxceDHwoIl6ygTUD+C+q37rflCr82Q08HviviPjpIa97OfAvwMOotiw+j6q8/wyqf8C/LyJG2Y3mpVTBkSQdNpl5JfA7jaf+luHbr1/ISgXRj6y1dkS8ICKeGhE/2XdoORw/qg47Br32JlRzdzbjK/XtTYG7rnFu8/s5f5PvOxZ1xdE5rARHHeDMUYOjiHhyRLwiItY6/+GN+x9d/5VKkqTtyvBIk+Y1VFU+XwZOzcx7ZuZJwBOo/rF81oAfVoaKiFngg1S/eT8HuG1m3puqjeNvqEKkt0fEcX2veyzV0NlufXvzzPyhzLw1VRvIDcBDgT9a5b1nIuJlwAtGvV5JalNmngMsV2yeTG/VSvO8JeAT9cPTIuIBw9aMiB8H/hw4m96t3QGua9w/ecgSP8nmt4H/18b9p65x7tMa9z+yyfcdlz8EHl3fnwcenpn/sMr5/X4aeDbwwmEzqurnn14//ExmXrTBa5UkSduQ4ZEmRkScCjyOaibFYzPz4E479Q9Af14/PGsdyz4OuCPwbeDJmXljvd4i8EzgM8DN6f3tPMD/qW9fm5mvaM6SyMx3UwVKAM+IiF0Dvpc7UbXFPa//mCQdZk+lCrxh9dDm/2ncf1NE3L7/hIi4NVUF07K/7jvlK437zxjw+tsAL1v1akfzAeCC+v5vRsTDB50UES8GHlg//Ngm2vHGJiJ+hJWQrqQajP3BdS7znvr2KOCPB7zHbuAfWakIO2v9VypJkrYzZx5pkjyeanjnZzPzfwccPxt4EXD/iDgxM789wppPrG/PqQOjgzKzjIjXAz9K9RvdFwFExC2Bu9en/dOQdd9HtWPNMcBdgHOXD9SDSF9B9UPaJVSDZ/9yhGuVpNZl5iUR8QLgtWuc9/GIeB1V9cmpwH9HxCuBT9Wn3IsqOL9d/fj/Zub7+pb5J6r5crPAs+pqlrdTVcv
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZjsaV3f/Xd1VXf1etY558wMwzDMjNxsRkSQEFEQ8phEjYkxiYhCDEHQaBDjcwk+iqBRcH3cAZNIFggRBRUXSAQEFHwgiiAwzNwwAzPCzJw5++ml9uX54/er7l9V19bd1cvpeb+u61y1/Ja6+1xMcc7nfO/vN9dut5EkSZIkSZL6mdrvBUiSJEmSJOngMjySJEmSJEnSQIZHkiRJkiRJGsjwSJIkSZIkSQMZHkmSJEmSJGkgwyNJkiRJkiQNZHgkSZIkSZKkgQyPJEmSJEmSNJDhkSRJkiRJkgYyPJIkSZIkSdJAhkeSJEmSJEkayPBIkiRJkiRJAxkeSZIkSZIkaSDDI0mSJEmSJA1U2O8FSJKka08I4f3AM9OXPxpj/Kkxr/s14HvTl4+OMd47+dWpnxDCEeDfAt8MBGAOOA/8BfD6GOP79nF5kiTpALPySJIk7dQrQwiP2+9FaLAQwhOAvwFeC3wlcBSYAR4B/AvgT0MIvxZCyO3fKiVJ0kFleCRJknaqCPxmCME/VxxAacXRu4Bb0rfeSRIYfQ3wUuBs+v73Aj++1+uTJEkHn3/IkyRJk/B0kiBCB8/3AY9Mn/96jPEbYoxvizH+eYzxV4EvYyNAenkI4YZ9WaUkSTqwDI8kSdJOtIBG+vynQgi37udi1Nc/Sh+bwCt6D8YYzwGdnlUzwNft0bokSdI1wvBIkiTtRB34ufT5PPCf9nEt6u90+vhgjHF1wDmfyjy38kiSJHVx2pokSdqpHyeZ4PVY4NkhhO+KMe4oREobcH8f8BzgJiAHfAF4H/CrMcZPD7ju/SRT4Koxxtkh9/8U8ATgvhjjLT3H2unTHwD+GPg14BkkQdndwCtijO/JnH8EeBHwT4AnAkvAReBjwO8Ab4oxNugRQrgF+Hz68puBPwC+E3hBurYl4H7gfwO/EGO8Z9DPM8IDwGOAG0MISzHGlT7n3N5zviRJ0jorjyRJ0o7EGKsk4UkrfevnQgiP2O79QgivBD5JMlY+AAskVU0B+G7gkyGEV+/BZLBHAh8i2cY1TzKh7MkkAVJnrV8L3AX8AkkD6hPANHA9yXaxNwIfCyHcNuKz5oH3AL9JEn5dR9KI/Fbge4A7Qghfv82f4w/SxyngJ3sPpuHXD6cv10gaakuSJK0zPJIkSTsWY/wQ8Ovpy6PAG7ZznxDCq4GfAPLAJ0jCor9HUvnz/cA9JH9+eVX6aze9jCTE+Vngq0kmlL0mxnhvutank1Qm3QC0gTcD3wQ8DXgu8CfpfZ4I/PmIRtS/AHwt8GHg+ek9/inw7vR4EfivIYTFbfwcv0ESggG8NITwjhDCt4QQviqE8GLgb0hCqhbwvTHGC9v4DEmSdIi5bU2SJE3KDwP/mGQk/DeGEJ4XY3zLuBeHEJ4MvDJ9+SbghT3bvT4UQvhN4I+AZwE/FkL47UFb2CZgiiQs+pHMe29L15onqSqaIwldvjXG+LbMef8HeGsI4cdItvXdQBLifNOAz7qe5Gf+zhhjp4KLEMIfkPy8Xw+cAr4BeOtWfogYYymE8A9ImmX/QLqG3nV8HHhpjPHPt3JvSZL08GDlkSRJmogY4xrw4sxbvxxCOLWFW/wgyZ9NLgLf3a9PUPoZLySp9MkB/277Kx7L6we8/49JejwBvL4nOFoXY/wJ4P2da0IIjx9wvwrwsmxwlF7fprsJ+ZeNs+g+ngA8iSTs6udxwHNDCMe3eX9JknSIGR5JkqSJiTG+G/gv6cvrgF8d57q0f1FnpPyHYoylIZ/xeeDO9OVztrnUcdwfY/zigGP/IPP8N0bc53WZ5/9wwDkfjTFeGnAs2yh7acRnbRJC+CbgA8A3kjTgfgFJFdMsSRj1n0i2xf1b4L0hhJNb/QxJknS4uW1NkiRN2r8nCUluAL41hPA/Y4zvGHHNLUCn6uWbMhPPRnn09pY4li8MOfbE9HGV7jH3/Xw48/xLB5xz75DrVzPPt/RntxDCjcBbSIKiLwJPizE+mDnlE8CLQwgfJ+lZ9eXp43O38jmSJOlws/JIkiRNVIzxCvC9mbdeH0I4NuKy67b5cYUQwparcca0PORYpzrnQrq1bJiHMs9PDDhndcD7kGzR69jqhLl/RTKtDuAVPcHRuhjj64A/S1/+8xDCmS1+jiRJOsQMjyRJ0sTFGH8P+J305Q0k08SGyVbUvJGkAmbcXwO3uA0xzp+BhoVCWwlx8pnnrYFn7Y6nZp7/0Yhzfy99zANP2Z3lSJKka5Hb1nTohBDmgR8iKbl/NLACfBT4pRjju7Z5z5uBHyPZhnEaOA+8F3htjPHOIdcVge8DvhUIwAxJ74rfAn4hxlgecN0TgR8lGdt8DHgQeCfwUzHG+7fzM0jSPvg+4NkkVTovDCH81pBzs/1+mjHGj2/zMzuBz6hw5+g279/RWe91IYTciOqjbBXPoL5Gu2UxfWyR/P/hMOcyz3f6+yNJkg4RK490qIQQFoA/BV4F3ArcAawBXwe8M4Twqm3cMwB/Dfwbkj+E/w1J74jnA3+djj/ud90ZklHNPw88maR3xlmSiTf/AfhgCGHTH85DCF8N/CVJ4DQFfJLkL17fA3wyhPCkrf4MkrQfYoznSEbDd/xHNrZQ9focGxVEf3fUvUMILw8hvCSE8Pd7DnUmtM2EEPK916XXzpE0jN6JT6SPiyTf68Nkf567dvi5W3U+fZwi6Ss1zCMyz88NPEuSJD3sGB7psPl14GnAx4HbYoxPjjE+imSyTAN4dZ+/aAwUQiiQlPmfBN4E3BBjfCrJFoxfIwmRfqt3Mk06Nei3gb8DfBp4fIzxiTHGRwPPJPlD+ZOB1/RcdwJ4R3rfn0k/7ynAjcDbSZrJvj2EMDP+b4kk7Z8Y45uATtXnLcC3DzivDrwvffmlIYRnDLpnCOHZwE8DbwD+n57DVzLPbxlwi78PTA9b9xj+JPP8JSPO/e7M83fv8HO36s8zz58/6KT0/7c6TbJrwEd2c1GSJOnaYnikQyOEcBvwHSSl+d8eY1yfkpP+5eWn05ev3sJtvwO4Hfhb4EWdbWYxxhrwUpI/lB+j+1/WAf458DUkzVafE2P8TGYtfwa8In35r0II2b/AvJQkIPpwjPEVMcZGes0K8DySf5m/lSQMk6RrxUvY2DI1LLT5fzPP/2sI4ZG9J4QQTpNUMHX8Ss8pn8g8/3d9rj8D/NzQ1Y7nD4C70+f/NoTwzf1OCiG8kuQfDQDeu4PteNv1P9nYKvfDaXVrP68h+UcNgP+W/v+OJEkSYM8jHS7PJ2ny+aEY46f7HH8DSR+hrwoh3Bxj/Nsx7vmd6eOb0sBoXYyxHUL4DeCrgW9L79173c/HGM/2ue/bgUcCF4AiUO+57jd7L4gx1kIIbwR+Mv28/zzG+iVp38UYvxBCeDnwuhHn/WkI4fUk23RvA/4mhPBLwAfSU54C/HuSakyA34sx/n7Pbf4nSY+6AvD96SS23wIqJNvHXpZef0/6Gdv9mZohhOena5sB3hZCeDNJk/BzwKNItjt3tjZfIJl8tqdijFdDCC8hqYYtAu9N/7/kD0m2tD0a+C7gOekl9wA/vNfrlCRJB5uVRzpMnp4+frDfwbTR9H3py2f2OycrhDAFfOWwewIfSh9v7fwLedpj49np+787YC3LMcafiDG+Lsa4ml53A8lfNsb5vK/qqViSpIPuDWyMgh/m3wG/SNL4+jjw48D7018/z0Zw9Lv02QIXY7ybJCDqTDV7IckWsz8Dfha4nmSrW2/otGUxxg+TDFI4T/JnqheQhDIfIQlrOsHRXwNP36+BBzHGt5FU0pZIKr9eQrIl+yMkwVonOPprkmrZi/uxTkmSdHAZHukwuT19vGfIOfemj48Z436PAOZG3PMLQLPnnl9C0rOoCdwVQjg
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from septum_mec.analysis.plotting import plot_uncertainty\n",
|
|||
|
"\n",
|
|||
|
"for unit_id, id_num in gridcell_id_map.items():\n",
|
|||
|
" sessions = data.query(f'gridcell and unit_id==\"{unit_id}\"')\n",
|
|||
|
" n_action = sessions.date.nunique()\n",
|
|||
|
" fig, axs = plt.subplots(n_action, 4, sharey=True, sharex=True, figsize=(8, n_action*4))\n",
|
|||
|
" despine()\n",
|
|||
|
" fig.suptitle(f'Neuron {id_num}')\n",
|
|||
|
" if n_action == 1:\n",
|
|||
|
" axs = [axs]\n",
|
|||
|
" waxs = None\n",
|
|||
|
" for ax, (date, rows) in zip(axs, sessions.groupby('date')):\n",
|
|||
|
" entity = rows.iloc[0].entity\n",
|
|||
|
" ax[0].set_ylabel(f'{entity}-{date}')\n",
|
|||
|
" for _, row in rows.iterrows():\n",
|
|||
|
" idx = row.session_id\n",
|
|||
|
" \n",
|
|||
|
" speed, t, spike_times, mask = load_speed(\n",
|
|||
|
" row['action'], row['channel_group'], row['unit_name'], \n",
|
|||
|
" z1, zg2, z3, split=False)\n",
|
|||
|
"\n",
|
|||
|
" speed_score, inst_speed, rate, times = spd.speed_correlation(\n",
|
|||
|
" speed, t, spike_times, return_data=True, mask=mask)\n",
|
|||
|
" \n",
|
|||
|
" inst_speed = inst_speed[~inst_speed.mask]\n",
|
|||
|
" rate = rate[~rate.mask]\n",
|
|||
|
" times = times[~times.mask]\n",
|
|||
|
"\n",
|
|||
|
" speed_bins = np.arange(min_speed, max_speed + speed_binsize, speed_binsize)\n",
|
|||
|
" ia = np.digitize(inst_speed, bins=speed_bins, right=True)\n",
|
|||
|
" rates = []\n",
|
|||
|
"\n",
|
|||
|
" for i in range(len(speed_bins)):\n",
|
|||
|
" rates.append(rate[ia==i])\n",
|
|||
|
" ax[idx].set_title(f'{speed_score:.3f}')\n",
|
|||
|
"# plot_uncertainty(speed_bins, rates, ax=ax[idx], normalize_values=True)\n",
|
|||
|
" plot_bootstrap_timeseries(speed_bins, rates, ax=ax[idx], normalize_values=True)\n",
|
|||
|
"# rr = [rr for r in rates for rr in r]\n",
|
|||
|
"# aspect = (np.nanmax(rr) - np.nanmin(rr)) / (max_speed - min_speed)\n",
|
|||
|
" for a in ax:\n",
|
|||
|
" a.set_aspect('auto')\n",
|
|||
|
"\n",
|
|||
|
" plt.tight_layout()\n",
|
|||
|
" fig.savefig(\n",
|
|||
|
" output_path / 'figures' / f'gridcell_neuron_{id_num}_speed_map.png', \n",
|
|||
|
" bbox_inches='tight', transparent=True)\n",
|
|||
|
" fig.savefig(\n",
|
|||
|
" output_path / 'figures' / f'gridcell_neuron_{id_num}_speed_map.svg', \n",
|
|||
|
" bbox_inches='tight', transparent=True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 67,
|
|||
|
"metadata": {
|
|||
|
"scrolled": true
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5wjeX3n/5eyWp17evLszOzO7n43Y5YcfCSfwcaJM8Y48eNwxBH77rDvwNj4fg444ASGczpnzsZnY+4csE1OC5jdZfOX3Z2dnDoqh1JV3R9VUqt7JLWkVndPz7yfj8c8pJIqaUC1Ux99QsT3fURERERERERERNqJbvcJiIiIiIiIiIjIlUvBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6UjBIxERERERERER6Si+3ScgIiIiVx5jzMeAF4WLb7XW/nyP270L+KFw8Xpr7Ynhn520Y4w5APwg8HLgRmAUWATuA/4X8OfW2nqb7U4AR/o9nrU2soHTFRERkR1EmUciIiKynp82xty63SchnRljXgNY4C3AM4EpIAHsBV4B/BHwGWPMwSEd0hnSfkRERGQHUPBIRERE1pMC/sAYo383XIGMMS8D/gIYAyrAO4GvBp4DfBvwiXDVZwH/YIzJrNnF1wJP7+HPZ1q2+YHN+CwiIiJyZVLZmoiIiPTiecCPAr+x3SciK4wxEeBdQIwgcPQSa+09Lat83hjzl8DvEAR87gLeBPxCYwVr7SM9HOf7geeHi79nrf3D4XwCERER2Qn0C6KIiIh04wGNPjk/b4y5YTtPRi7zPOCW8PlvrQkcAWCt9YEfBy6FL72unwOE/5v/Wrj4OEHwSURERK4hCh6JiIhINw7wK+HzDPB723gucrmvbHn+wU4rWWsrwKfCRWOMSfVxjHcTNN8G+D5rbam/UxQREZGdTmVrIiIisp63A68iyHB5qTHme621GwoihQ24fxh4GXAIiACngY8Cv92plKplClzVWpvusv+HgNuBk9bao2ve88OnPw78PUHZ1wsJAmVPAD9lrf3XlvUngO8BvhG4AxgHFgimmL0f+NMOU8yOAk+Fi68iCO68niDz5/ZwP2eBDwG/Zq19stPn6eLzwC8CB8Jz76Z1OloaqK63c2PM1xM03IZgWtvHBjhHERER2eGUeSQiIiJdWWurBMETL3zpVzYytcsY89PAgwRj5Q1BVksmfP4DwIPGmJ8N+/lspuuATxM0l84Ak8DdtARhjDEvAR4jKNv6d8AMwRSzfcDXAH8I3GeMObbOsTLAvwJ/QBD8miVoRH4D8EbgYWPM1/b7Aay1H7XW/jdr7euttRc7rWeMSQAvCBez1trsevsOG6T/YrhYBn6q3/MTERGRq4OCRyIiIrIua+2nCcqXIAiyvHeQ/Rhjfhb4OYIGzw8QBIueT5D582PAkwT/PvmZ8M9mehNBEOeXCcq/vgX4BWvtifBcn0eQmbQf8IE/A76BYIrZa4F/DvdzB/BJY8z+Lsf6NeAlwD3Ad4X7+CbgX8L3U8AfGWPGhvTZ1noDsCd8/qEet3k1QYYUwO9aa88M/axERERkR1DZmoiIiPTqvwJfDxwFvs4Y8+3W2r/odWNjzN3AT4eLfwq8YU2516eNMX8A/F/gxcDbjDF/1cs0sAFFCYJFb2l57a/Dc40RZBWNEGRcfau19q9b1vs88JfGmLcRlPXtB/4HQXCpnX0En/n11tpGBhfGmA8SfN6vBXYDrwT+cuMfbYUx5kbgl1pe+rVO667x4+GjA7xzmOckIiIiO4syj0RERKQn1toi8H0tL/2mMWZ3H7v4TwT/9lgAfqBdn6DwGG8gyPSJAD8y+Bn35D0dXv96VqaYvWdN4KjJWvtzwMca2xhjbuuwvwrwptbAUbi9z+om5E/r5aR7ZYzZQxCcmgpf+n1r7ed72O7ZwHPDxfdZa08N87xERERkZ1HwSERERHpmrf0X4H+Gi7PAb/eyXdi/6GvCxU93m9hlrX0KeDRcfNmAp9qLs11KsV7e8vx/rLOf32l5/ooO63zRWrvY4b3WRtnj6xyrZ8aYfcCHCXpJQdDg+0d73PzHWp7/8rDOSURERHYmla2JiIhIv36CIEiyH/hWY8z7rLV/t842R4Hp8Pk3tEw8W8/1g51iT053ee+O8LEAPLTOfu5peX5nh3VOdNm+0PJ8KP82Cxt4fwhoNPK2wNdYa8s9bDtC0I8J4AvW2oeHcU4iIiKycynzSERERPpirV0GfqjlpfcYY6Y6rR+aHfBwcWPM0LJx1sh1eW9X+DgflpZ10zrlbKbDOoUOr0NQotew4QlzYaPvz7ISOHoYeEm3aWxrfBXBdDgYcv8lERER2ZmUeSQiIiJ9s9b+rTHm/QQTyvYTNGH+7i6btP6b4w/psdwt1LHErYtefiDrFhTqJ4gTa3nudVxrCxhjvgX4EyAdvvQ54JXW2oU+dtPIOvKB9w/x9ERERGSHUvBIREREBvXDwEsJsnTeYIz5X13Wbe3341pr7x/wmI2Az3rBnckB99/QON9ZY0xkneyjvW2223LGmB8E3sXK383fA6/p1l+qg1eGj59To+zhM8ZkgDcDryUoy8wDXwR+w1r7jwPu89kEfaq+kmCyXxl4BHgf8F5rba1l3aPAU33s/u3W2p9dc7znA/8ZeCFBM/YF4BPAL1trvzjIZxCRwWzSNeVlwJuA5xH04jsH/DPwTmut7bDNi4GPrrPrv7PWftPaF40xryH4AepugmvKMvAFgoEV/2eQzyDDp7I1ERERGYi19hIr49wBfhcY7bD6cVYyiJ7bYZ0mY8xPGmO+3xjzVWveakxoSxpjYmu3C7cdIRh7vxEPhI9jwO3rrNv6eR7b4HEHYox5I/BuVgJHvwd8Y7+BI2OMYSUY9onhnaEAGGNGgY8APwPcQFBSWAS+GvgHY8zPDLDPHyMoU/x2gvLQRwnKJJ8L/CbwCWPMRMsmFeDT6/w50bL+42uO993AJ4FXAcnwM2SA1wD3GGO+q9/PICKD2aRrytuAfwW+LnzpYYKehd8H3G+M+eYOmzamhZ6n87XlkTXHihlj/pKgRPqrCTJ5HyJIcvka4IPGmHf3+xlkcyh4JCIiIgOz1v4p0Phl8yjwHR3Wc1j5RfJOY8wLO+3TGPNS4JeA9wL/bc3byy3Pj3bYxVcBiW7n3YN/bnn+/eus+wMtz/9lg8ftWxhge1fLSz9vrf0+a607wO6e3fL83zZ2ZtLGu4HnAPcDx6y1d1trjwCvIwiM/mybgGlHxpgXAL9O8G/6XwamrbVPs9YeJMgKPBcerzkx0Fp7wVr7wk5/CG7YGv/feY+19s9bjncMeE94vN8G9lprn06Q7fT7BDd8v2+MuWGAvxsR6d+wrykvA94eLv4Xgu/43QQ/KvwGQUn0nxljDrXZvBE8+s0u15i1/03/KYLAcxF4nbV2JrymzABvDD/DDxpj1vvvsGwBBY9ERERko76fIE0eugdt3tny/I+MMdetXcEYs4cgg6nht9as8kDL8x9ps/1e4Fe6nm1vPgg8ET7/QWPMq9qtZIz5aeBF4eKHN1CONxBjzCTwx6z8m+7XrbVv3cAu72p5ruDREIWBl+8k6Iv1Hdba5rS/MAj7S+Hiz/ax2/9CkG32f6y1P2mtrbbs86PA/xcuvrbd962D9xI0W7+f1ZmFAN9G8B1/DHhT43jhFL83EmQYJgk+p4hsok28pgC8z1r7q40fIcLv+k8QZDamWbm2tGoEjx7s8fzjBKVxAG8Lz7lx/r619r3AO9acl2wj9TwSERGRDbHWnjbG/CTwO+us9xFjzHsIbjKPAV8yxvwG8PFwlWcS/OP0QLj8t9baD6zZzfuAtxH8G+bHwkls/4ugFOe5BP8QPQA8ycq0sUE+kxuW33yc4Gb4r40xf0b
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxsZ13g/8/dl+TmZoMkZCGEyAOBiCIoMWCCKIKIjjPjAC6IUQQdUJRR+CmbC47KOAqKxBEYICojAyjqgCyyKRA2EwghPCSEBAhku1vfXqrqbL8/zqnuU9VV1Vt1Vd3qz/v16ldtZ3n69u2nq77n+/0+24qiQJIkSZIkSepl+7gHIEmSJEmSpMll8EiSJEmSJEl9GTySJEmSJElSXwaPJEmSJEmS1JfBI0mSJEmSJPVl8EiSJEmSJEl9GTySJEmSJElSXwaPJEmSJEmS1JfBI0mSJEmSJPVl8EiSJEmSJEl9GTySJEmSJElSXwaPJEmSJEmS1JfBI0mSJEmSJPVl8EiSJEmSJEl97Rz3ACRJ0uiFED4EXFE9fHGM8RWr3O/PgP9aPXxAjPG24Y9ObSGENwI/vY5dHxdj/FDXsd4PPH41O8cYt/UZzx7g2cB/AS4BTga+DnwQeHWM8bPrGKskSZpwZh5JkqSXhBAeMu5BaKhaPZ77to0cMITwIOBzwKuAy4HTgF3AA4CrgH8PIfzmRs4hSZImk5lHkiRpD/D6EMJjYoz5uAejDi8F/mQV2/0M8EvV/WtijB+rvxhCOB84o3r428DfrWUQIYSzKLOL7lc99dlqXDdVz/088ETgd0MIB2OMv76W40uSpMlm8EiSJAFcRhl8WE2gQiMSY/wq8NVB24QQHk5ZSgZwA2Ugp1s96+hdMcbr1ziUP2IpcPR3wFNjjEnt9b8LIfwh8GvAfwshvC3G+Mk1nkOSJE0oy9YkSdraciCt7r8ihHDROAejtQkh7ALeRJk91gKeHmNs9Ni0HTzKKQNMaznHfYCnVQ/vAJ7RFThqexFwI7AN+IO1nEOSJE02g0eSJG1tCfDK6v5+4C/HOBat3a8CD6/u/16M8cY+2317dRtjjPNrPMcVwI7q/utijLO9NqpKHt/c3ieEcPYazyNJkiaUZWuSJOm3gB8FHgx8bwjhWTHGDQWRqgbcz6Vc3es8ymyUr1H2zfnTGOMX+uz3IcpgRTPGuHfA8T8PPBS4PcZ4YddrRXX3V4D/B/wZ8BjKQNktwItijO+vbX8K8HPAjwAPAw4Ah4DrgP9L2UMopUsI4ULgK9XDHwX+AXgm8IxqbAcoM3XeA/xRjPHL/b6f9QghnAO8pHp4K/D7AzZvZx5dt45T3b92/xMrbNv+uW4Dvgt45zrOJ0mSJoyZR5IkbXExxiZl8KTdLPuVIYRz13u8EMJLKEujfhEIwEmUWU0BeA5wQwjh5SGEnsvBD9H5wEeBJ1TnPwg8gjKA1B7r44AvUvb0+R7gdMoVxM4GngS8AbguhPDAFc61H3g/8HrK4NeZlKVkFwG/ANwYQvjBYX1jlZdS/tsC/Fr1c1ymCo5dWD38XAjhJ0MI7wkh3BtCaIYQvhpCeFMI4dt77Q/srt0/vsKY6uVsD1phW0mSdIIweCRJkogxfhR4TfXwIHD1eo4TQng55WpeOyiXdX8O8N2UmT+/DHyZ8v3Hy6qvzfR8yiDOHwKPBX6MsrTrtmqsl1FmJp0DFMBfAT9MmTHzNOC91XEeBvxrlenTzx8BjwOuBX6qOsZ/AN5Xvb4HeGMI4eRhfGNVcO9nq4fXxxjfMWDzb6PMBAL4DeAayoDaGZSBofMps6U+E0Lo9TO5t3b/vBWGdn7tvmVrkiRNCcvWJElS2/8HPIUyS+WHQgg/HmP8m9XuHEJ4BEtlVNcAV3WVe300hPB64J+AK4GXhhDe2q+EbQi2UwaLfrP23Nuqse6gzCraR5lx9dQY49tq230S+NsQwkspy/rOAf6CMrjUy9mU3/Mzq94/VOf5B8rv9weB+wBPBv52498az6XMkIIyODZIPaPoFOAjwOuAm6vHP0CZHbUPeHkIoRljrJfA1UvVfhT4PwPO9ZTa/ZP6biVJkk4oZh5JkiQAYoxzdC7z/qpqpa3VegHle4tDwHN69QmqznEVZabPNuB56x/xqry2z/NPoezxBPDarsDRohjjbwMfau8TQrikz/EawPPrgaNq/4LOJuQPZ4NCCPtY+jndCrx1hV2+rXb/5THGK2KM18QYr40xvjfG+ALK7LCj1Ta/G0K4uL1DjPFzwGerhz8WQqgHiOrj+iE6g0e7em0nSZJOPAaPJEnSohjj+4D/XT08E/jT1exX9S96UvXwo4NW9IoxfgW4qXr4+HUOdTXuiDF+vc9rP1C7/xcrHOfPa/ef2Gebz8QYD/d5rd4o+8AK51qNn6TszQRlI+5she1/GfgO4Ekxxt/qtUGM8Xrg16qHOygzm+p+lTJDaxvw9hDC74QQLgoh7Aoh3D+E8GLg7cDdQHs8rbV8U5IkaXJZtiZJkrr9KmWQ5BzgqSGEt8QYV1o160LgtOr+D9dWPFvJA9Y3xFX52oDXHlbdzgKfX+E419buX9pnm9sG7F9f2n4Y772eXt22gBXLCmOMM8C/r+K411AGC/cC39d1jA+EEH6eshfWLuDF1VfdPZQr1n2sejy3inNKkqQTgJlHkiSpQ4zxKPBfa0+9NoRw6gq7nbnO0+0MIQwjG6eXmQGvnVHd3luVlg1yV+3+6X22me3zPJQlem0bWmEuhHAaZfNvgPdWP6uhqFZr+2L18IIer7+esrztn+lcVe0YZXngpUBk6f3lXUiSpKlg5pEkSVomxvh3IYT/S7lC2TmUq4n97IBd6u8p3sAqy90qfUvcBljNBbBBQaG1BHF21O7nfbcajR9i6d96pV5H69H+Wezu9WKM8VPAk0IIJwHnUvZ6uqNdOhdCeHRt869swvgkSdIYGDzS1Akh7Ad+nXKZ5QcAx4HPAH8SY3z3kM7xlur43xJjvGXAdhcAL6Us/7gvZUr/vwD/PcZ404D9ngD8IuVSz2dQXtH+LGUfkmtWcZVc0pBsxpwy6rmhz36rCZ48F/jeap+rQgiDVtmq9/vJqh4669H+HlYa38F1Hr+tPd4zQwjbVphXz+qx37j8UHXbAlYqJWw3134s5f+zO2OM719hl/tWt3cP2qhqfP6lHi/Vg0fr/T8w1SZpTulxnO+gLNPcGWPs+zsYQngYZdni44BTgW8C7wJeEWO8Yz3fg6S1m7DPPd9J2WPvsZQrkC4AXwDeAlwdY+zZB2+9+2n0LFvTVKmuhH4AeBlwEXAjZc+FJwDvCiG8bAjneA7lBLrSdoGyx8TPAidTfsDbC/wU8O8hhB/os98fAe+h7BtxUvU9pJTLWr8J+PsQgivYSCOwGXPKqOeGAfu1y9B29ZtTYox3A79Se+p/0X/59VtZylp5dJ9t6uN6YQjh2SGE7+t6qb1C2+4Qwo7u/ap991Eue78Rn6tuTwYeusK29e/ni323Go12ydr1VS+jleyl/PlfA7xi0IYhhLOBB1YPP117fk8I4aUhhNeEEJ7ee+9FP1rd3jboQ8ZWNUlzSo/j7AHezAoXl0MIjwU+BTyV8rPEDZQB5l8AbgghfNuA3SUNyYR97vll4OPAj1OWsd9EeaHq0cCrgI+EEE4Z1n4aD4NHmjavobyyfj3wwBjjI2KM9weeQfmB5OU9PqisWgjh+XSuutNvu53AP1G+mboGOCfG+CjK0o8/o3xT939CCGd07fcTlI1qs+r21Bjjt8cY70tZOnIc+GHgt9f7PUhak6HOKaOeG1bY7wvVZtu796uLMV4DtK9eXgj8RJ/tEuCD1cNLQwiPGfDv8L3A71M2X/6NrpfrPXwu7HOI72Pjy8C/t3b/2Sts+5za/fdt8LzrFkI4n/L/CtSCO4PEGI9QfrgHeFQI4cEDNv8VljK+FrPMql5Iz6PMXvulAeN7NPA91cNrVjO+LWgi5pQ+fhe4ZIXznU6Z8bYX+IPqfI8E7ke52t5plKvx9Sx7lDRUk/K553LgjynfT/whcFq
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xkWV3//1fnnp6cdndm02yAw+4CC8susgoCohhR+WEEVEQwYvanqCCgX0TFBIqiXzELggKCiCJpEVaWtLN55szs5OkcK998v3/cW93V3VVdoau7Oryfj8c+qqvq3lune6dPn/s5n/M5XXEcIyIiIiIiIiIi0oruTjdAREREREREREQ2LwWXRERERERERESkZQouiYiIiIiIiIhIyxRcEhERERERERGRlim4JCIiIiIiIiIiLVNwSUREREREREREWqbgkoiIiIiIiIiItEzBJRERERERERERaZmCSyIiIiIiIiIi0jIFl0REREREREREpGUKLomIiIiIiIiISMsUXBIRERERERERkZYpuCQiIiIiIiIiIi1TcElERERERERERFrW2+kGiIiIyPoyxtwDPDd9+jpr7ZsbPO9PgZ9Kn95grT3f/tZJI4wx/cD9wG3A3dba+1q4xq3AcaBkrd3XwPG9wA8BLwNuB3YCY8B9wLustR9vtg0iIiKyNShzSUREZHt7vTHmlk43Qpr2FpLAUkuMMUPA3wL9DR5/BXAv8FfA84EDwABwPfC9wH8bY95tjBlstU0iIiKyeSm4JCIisr0NAO8yxmhMsEkYY34V+IVVnD8A/BtwV4PH9wL/ATwzfemzwEuBZ5NkMj2Qvv79wDtbbZeIiIhsXhpIioiIyN3Az3S6EbIyY0y/MebPgd9exTWuAT4DfEMTp70KuDP9+h+B51pr32Otvdda+/fpe/ek7/+QMeaOVtsnIiIim5OCSyIiIttXBATp1282xtzYycZIbcaYZ5IsS/vx9KWwyfO7jDE/QFKn6auavMar0scS8FPW2rjyTWttCPx6xUvf00zbREREZPNTcElERGT78oG3pl8PAf+3g22RGowxv0NSNLucPfQh4I+bOL8X+CLw98BhkqDSa4EvN3BuN0nR7y8D/2mtzdY49ETF19c12jYRERHZGrRbnIiIyPb2JuDFwJOArzPGvNpau6ogU1og/DXAC4BrgC7gEvBp4E+stY/VOO8ekl3sXGttzcLQxphHSIpZX7DWHlvyXjmr5udJ6gT9KUltIB94HHittfYTFcfvIcnM+Q7gycBuYJokoPIvwD9YawOWMMYcA86lT18MfBh4BfCDadt2A8PAx4A/sNaeqfX9NOBZJD/DGeCXrbXvMsa8sYnze1kITD0MvMpa+0VjzIvrnWitjYBXN/AZ11d8PdpE20RERGQLUOaSiIjINmatdUmCK1H60luNMVe3ej1jzOtJAhg/CRiS7eqH0q9/HHjYGPNGY0zXqhpe37Uky8hemH7+XuAOkgBTua3PB04CfwB8LckOaH3AVcA3A38NHDfG3FTns4aATwDvIgmOHSIplH4j8BPAo8aYb1nF9zIL/C5ws7X2XS1e4zTJ/+enW2u/uIq2LJNmRv1mxUvvbef1RUREZONT5pKIiMg2Z6291xjzDuCnSYIw7wRe1Ox10myaN6RPHwL+LH3sBp5BUjT8popj3riadtfxcyTZPr8H/DtJwOhp1trzaVvvJsls2gHEwD8B7wPGgRuAV5IEpp4MfNYY8wxrba2MnD9Ir38f8A7gFHAE+CmSwtkDwN8aY2601uZb+F5ekmYQtcRa6xhjzNJaSauRBpSOAs8Bfgl4WvrW29odvBIREZGNT8ElERERAfhVkoDSMeDbjDEvtda+u9GT0x3CXp8+/QfglUuWk91rjHkX8BHgecBvGGPeV2uJXBt0A79tra0sNP2vaVt7SLKSdpBkbH2vtfZfK477IvBeY8xvkCwbPAL8BfDtNT7rKpLv+RWVQSBjzIdJvt9vIal19K20kNWzmsBSxTXaFlhKnQcqM9yKJP+G/qTNnyMiIiKbgJbFiYiICNbaAvCjFS+9zRhzuIlL/CLJuGIa+PFqdYrSz3glSaZQF0mm1Fr68xqvv4ikxhTAny8JLM2z1v4mcE/5HGPMrTWu5wA/tzQIlAZ0KutX3d5Iozc6Y0wfScCt0hDwfSTLCUVERGSbUXBJREREALDWfhz4m/TpIRrMQknrJ5WDCvdaa4srfMY5FnYWe0GLTW3EsLX2co33vrHi67+oc50/q/j6m2oc8xVr7UyN9yoLee+u81mbRT/wcpJC499AsiywBNwN/Lsx5lUdbJuIiIh0gJbFiYiISKVfIAmiHAG+1xjzHmvth+qccwzYn3797RU7ttVzQ2tNbMilFd57cvqYBx6pc537Kr5+So1jzq9wfmWNpS0x7koz0N5T8dInjDHvBT4F7ALeYYz5ZBpIFBERkW1AmUsiIiIyz1o7R1KIuuzPjTH76px2qMWP6zXGrFU2T3aF9w6mj1MN1CIar/j6QI1jVirSXXn9td4hr2OstV9ioUB7P/CyzrVGRERE1tuWmEETERGR9rHWftAY8y/Ad5NkMP0B8CMrnFI5nvhrmivqXHMJ3QoamRxbKWjUTJCnp+LrVRfW3uI+APx++vVTO9kQERERWV8KLsm2Z4wZAn6ZpBDpDUAO+Arwx9ba/2zxmtcBv0GytOQKYBL4JPAWa+2JFc57EfAa4C6Smd+zwL8Af2qtnV3hvG8BfjY9bxcwBnwi/bzTrXwPItK4DdaPPBl4HfB8YB8wCnwUeLO1drjGOV3ADwCvYqHo9DmgAOwEXmmM+ecVmltZbyi01j5Q9xusrhwQqhf82dvi9cvK7T1kjOmqk710ZZXztg1jTC/JssebgNPW2rMrHD5d8XX/WrZrq9kofYgx5nnAp+tc+kPW2u+scq7GIiIdshZ9SJXPeE96/SdYax9f4bhWxy8DJPdB3wsYkr8jZ4B/Bv7AWltqx/cha0fL4mRbM8bsJKkR8QbgRuBRkpupFwIfNca8oYVrGuB+kln+XcCDwCDJjdv9xphvrHHeO4APp58dkxS8vQb4TeCh9Iax2nlvAv4jPS8EHiNZ8vHDwHFjzNc3+z2ISOM2WD/yHOBLJAOzbuBhkv7gJ4CHjTFPq3JOH/BB4O+A55BkEp0CbiYJLJX95ZLnlc6ykIH0rAa+v18xxvxYlf6pvMNcvzGmZ+l56bk7gGZ2savmofRxF3BbnWMrv5+Tq/zczehZwGngv4CfrHPsTRVf1yqmLktspD6EheDyKHBvjf8eq/J5GouIdMha9CFVPuPHSQJL9Y5rdfxyJfBFkuzXO0jqJo6R/I3+LeBzxpjVTizJGlNwSba7dwBfBTwA3GStvcNaez3wgyQ3OW9sZkCUzvB+hGRA9Q/AEWvtXSTLSv6UpHP9Z2PMwSXn/TQLg/bfBK6qOO+PSYJMn1ha9yS9kfyN9OmvAldaa5+WHv8RkhvB96gzFllTG6UfOQB8KH3/d9Pz7gSOAu8nKbj9fmPM0oyS3wG+I23rTwBH0887Cry34rhj1KijY631Wch2eIox5tkrfH9fl37mO4FfW/L23JLPq+brgb5a12/Qf1d8/WN1jv3xiq8/vsrP3YzuJ7lJAXipMWZwhWMrl05ux59VqzZEH5IqB5feZq19do3/Fv3eaiwi0nFt7UOWMsb8HIt3Tq11XKvjly7gfSTLqR8DbrXWPtlaewPwXGCCJOD0261+D7I+FFySbcsYcxPJVsoR8DJr7fzOQtbafyC5+YGFAqWNeDnJbP9F4FXl9E1rrQf8DPBZkmUqP1/Rjl7g9enTv7TWviG9UcNa61prfx74PMnSjKUzDz+UPn7cWvs71tooPW+W5CYwR1Jo9zua+B5EpEEbpR9J/QxJAOk+a+1rrbVBel4OeClJdtGNJIPNSq9JH3/DWvvO8hIxa22WpI+p3HVtpaDOH1Z8/bfGmGuXHmCMuYIkA6rs7UsOeaji65+ucv6VwFtXaEOjPgyUU/p/0hjz4moHGWNeTzKwBfjkKpb7bVrW2iJJVhu
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxlZ13g/8+9t9aurl7SnfSSTghJ4AmESNjECIxRlBkBcRsXXFARRX9ugKPgCIIrCjoiLuAMMo4wjoAr47DIrqIBWQIYkif70vtS1bXf/fz+OOdWnaq6VXVrr+r6vF+vet1z7nnOuU915970+d7v9/sUkiRBkiRJkiRJWoniZk9AkiRJkiRJ25fBJUmSJEmSJK2YwSVJkiRJkiStmMElSZIkSZIkrZjBJUmSJEmSJK2YwSVJkiRJkiStmMElSZIkSZIkrZjBJUmSJEmSJK2YwSVJkiRJkiStmMElSZIkSZIkrZjBJUmSJEmSJK2YwSVJkiRJkiStmMElSZIkSZIkrZjBJUmSJEmSJK1Y12ZPQJIkbawQwseBr8l2Xx1j/PUOz/sD4Cey3UfHGB9c+9mpJYTwp8APrODUr40xfrzN9UrADwLfBdwEHACGgE8Db4kxvn+J+XQD3539PAk4CEwB9wMfAN4cYzy1gvlKkqRtzswlSZJ2tteEEB632ZPQmqrOfSKEcAz4DPA24BuAw0A3cAj4JuB9IYS3hRDa/tswhHAV8K/AnwHPBY5k5+8BbgZeBdwdQvi2Nf9tJEnSlmdwSZKkna0X+JOFggraVL9EmiG01M+bc+e8I8b4L/mLhBD2AZ8gDQIBvB/4NuAW4MeAR7Lnfxh4zdxJhBD6STOTnpI99WHghcDTgecAv0ca0NoNvCuEcOsKf19JkrRNWRYnSZJuAX4aeNNmT0QzYowPAw8vNiaE8ETgpdnul4AfbTPsN4Frs+03xBhfmTt2Wwjhb4HbSbOZXhVCeHOMcTg35meAx2fbvxtjfMWc638ohPA3wD8APcBbQgg3xhibi/+GkiTpUuG3lJIk7VxNoJ5t/3oI4drFBmtryXog/S/S7LMq8MIYY3nOmGPAj2S7/zgnsARAjPEM8BvZbh/w/DlDXpw9ngDmnZ9d4xPAH2e7NwBfuaxfRpIkbWsGlyRJ2rlqwBuz7V3A/9jEuWj5XgE8Mdv+jRjjHW3GfBcz/977hUWu9VfAO4DfBY63ngwhHAIek+2+P8ZYW+QaH8ptP3HBUZIk6ZJjWZwkSTvbLwPfSppt8nUhhB+JMa4qyJQ1CP9J4NnAMaBA2tfnY8Dvxxi/vMB5Hyddxa4SY+xb5Pr/DtwIPBRjvGbOsSTbfDnw/4A/AJ5JGki7F3hVjPHDufF7gJcA3ww8ARgELgCfB95D2sOozhwhhGuAB7LdbwXeS7oS24uyuQ2SZvp8EPidGON9C/0+KxFCOMJMf6T7SUvf2vnG7PGRub2Y8mKMJ0nnPlcze52jwMeXmFYht73g358kSbr0GFySJGkHizFWQggvAf6RNMPljSGE98UYT6zkeiGE1wCvBUpzD2U/PxpC+FXgl2OMydzz19BVwCeBy3PPPZk0wNSa69cC/5t05bO8w6RBmW8EXhFC+JYlgkO7SJtcf+2c568Ffhx4cQjh22KM71vJL7KAXwIGsu2fizFWFhh3U/b4mfyTIYRB0oDRWBZYaivGeA74tQ7ndGtu+6EOz5EkSZcAy+IkSdrhYoyfBP4w290LvHUl1wkhvA74FdLA0hdJVyL7atLMoZ8B7iP9t8drs5/19DLgIPAG4FnAd5CWjj2YzfUW0symI0ACvBN4AekKaN9N2pwa0mymf8oyhRbyO6SBpduA78+u8S3MlIn1An8aQti9Fr9YCOFK0pXdAG6PMf71AuMOAFdkuw9lz31bCOGTwChwF3AihPBwCOFVIYTeVczpCmZ6M9VIs9QkSdIOYeaSJEmCtB/PNwHXAM8PIXxPjPHPOz05hPBkZsq03gG8eE452SdDCH8C/D1phssvhRDevVCJ3BookgaTfjH33F9mcy0Bbwf6Scu+vivG+Je5cZ8G3hVC+CXSssEjpM2qX7DAax0m/Z1/ML9CWgjhvaS/73NJM6ieB7xr9b8aPwl0Z9tvWGTcwdz2xRDCW5lZWS7vKuD1wDeFEJ4/Z6W4JYUQCsDbSAOTAG+LMY4s5xqSJGl7M3NJkiQRY5xg9jL2vxdCuHyh8W38LOm/Ky4AP9auT1H2Gi8mzRQqAD+18hl35C0LPP9NpD2mAN4yJ7A0Lcb4K8z0GfqmEMLjF7heGXhZPrCUnZ8wu0n6qptchxD6mfl7uh949yLD85lSLyYNLN1P2uR7P2lZ3bNJM64gzTJ75wqm9d9I/0wBTrL+WWmSJGmLMbgkSZIAiDF+CPif2e5B4Pc7OS/LXGk1jv5kjHFykdd4ALgz2332CqfaiRMxxuMLHPuPue0/XuI6f5Tb/k8LjPlsjHFogWP5Xk2DS7xWJ74PuCzb/p0YY2ORsbty21dnc/nKGOO7Y4wXY4yTMcaPkmaS/XM27rkhhOd2OpkQwhtJSxABqsB3Z32aJEnSDmJZnCRJynsFaRDlCPBdIYT/E2P8uyXOuYY0EwbgBbkV25by6JVNsSOPLHLsCdnjOPDvS1znttz2TQuMeXCR88dz22vx764XZo9VYKmyxak5+y+PMV6YOyhr6v5TpCvkQRrAWrT5eAihizQz7CXZU3Xge2OM/7TEnCRJ0iXIzCVJkjQtxngR+IncU28JIexb4rSDSxxfSFe2atl6GF3k2IHs8XwHK9adyW1ftsCY8QWeh7QEsKWwxGstKoSwn7Q5OcA/ZH9XixnLbU8BH1hoYIzxdqCV6fX0JeYxCPxfZgJLrYyltuWFkiTp0mfmkiRJmiXG+DchhPeQrrB2hHQ1tB9e5JT8vyfeTofldJkFS+gW0cmXY4sFjZYT5CnltpsLjtoYz2fmz3qxXkstp3Pb52KMtSXGPwIcY5FgYbZS3f9jpn/UBPDtMcYPdjAfSZJ0iTK4JLURQngR8OOkJRAJEEn7kLxlbsPWFV7/paRLff9IjPFtyzjvJ4A/AH4oxvini4x7NPAq0r4ih4FTwL8Avx1j/PxC50lSzk8CX0ea5fPiEMJfLDI232+okWXBrEQrILRU8GfvEseX0prvwRBCYYnspUNtztssz88eq8BSpYrEGEdCCA+T9lvav9R4oDd7bLtaXAjhscCHsusBnAWeH2P8tw6uLUlaJyGEXcDPA99NWnI+BnwWeFOM8f0rvObVwC+RlspfAZwDPgK8PsZ45yLnPQF4NfC1wD7S+5D3Ab8eYzyxjN/ni0BfjPHYSuavjWdZnDRHCOH3gf8FfBXpt7gPAU8hDeq8P4TQvcjpnVz/acAbV3De04Hf6mDcc0g/jH8UuJK0cW4D+B7gMyGEn17ua0vaeWKMZ4GX557676Sri7VzPzMZSF+11LVDCK8MIbw0hPD1cw61VpjrCSGU5p6XndsPLGcVu3a+mD3uBm5cYmz+97lrla+7Wq2SuNtjjIuV/eW1ekYNLrLaXauHUsh2H2xz/FrgY8wElu4FbjGwJEmbK4QwAHyUdKXOa4E7SLNKnwO8L4Sw7BU8QwgB+Bxp1vJu4AtAH/D9wOdCCP9xgfOeBfwb6aqkReBLpF9S/TjwpRDCzR28dpF0pdXrljtvbS6DS1JOCOEHSb+tHwGeFWN8XIzxCcBTSaPuzyGN4K/0+rcCH2SZKwaFEJ6dnbfQjV1r3KOA95D+T+CTwLUxxifFGK8nXclpgnR58f+8/NlL2mlijO8AWt94XgN87wLjaqSBB4CbQgjPXOiaIYSvA36TNHvzv845nO8hdM0Cl/h6YFVBfuAfctsvXWLsj+W2P7TK112xEMJVpCWKAJ9Zxqn5jLP/b5Fx38bM/2P+ds5r7yIthTuaPfV54KtjjPcvYx6SpPXxh6S98m4HrosxPjnG+CjgRaRf2ryuzZc5C8q+bPh70qDQO4AjMcankf4/6A9Ig0x/EUI4MOe8y0izavtIvxA/EmN8Kun/O/6KNIP2r0IIPYu
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKwAAAugCAYAAAAjLaDbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZicVZ3w/W9n6ewkENYQFgE5LDqGRRgGFFD0BVHZdBg2RdRR51VGfRx9AAFBBcFnxBHIg74OIlEBBUdHh1lEUUTEoLJIgAMEAlkg3UnvS3VXddX7x31Xp7pT1Xunqzvfz3V53V11n3Pfp7iuHO/61e/8Tk2hUECSJEmSJEmqFtMmegCSJEmSJElSKQNWkiRJkiRJqioGrCRJkiRJklRVDFhJkiRJkiSpqhiwkiRJkiRJUlUxYCVJkiRJkqSqYsBKkiRJkiRJVcWAlSRJkiRJkqqKAStJkiRJkiRVFQNWkiRJkiRJqioGrCRJkiRJklRVDFhJkiRJkiSpqhiwkiRJkiRJUlUxYCVJkiRJkqSqMmOiByBNdiGEucBngb8DXgO0An8Cvh5j/M8RXvOtwCeBY4AFwAbgf4CvxRjjAP3eBXwceCNQC7wA/Ai4KcbYOEC/dwD/mPabD7wK3AdcG2N8biSfQdLIVNOcUuY6RwAPAzNijDUDtHs78A/A0cBioA14HPgOsCLGWBjJ55A0fOMxp5S5x17Ak8AOwGtijGsqtDuK5HnjTcDuQCfwFHAHcEuMsbtCvzGZwyRJk0tNoeAzozRSIYR5wC9JvpRlSR7WFgN7p02+EGO8apjXvAIo9tkMvAzsBywEMsD5McZ7yvS7meQLIkADSbBqf2BHYB1wSozxyTL9rgKuSF9uAtYDrwXmAu3A6THG+4bzGSSNTDXNKWWuMwv4M3AIQKWAVQjhn4FPpy9bgdXAnsAu6Xv/DrwnxpgdzueQNHzjMaeUuUcNSfDopPStsgGrEMI/Al8jWeHRCTwH7AwsSZv8AXh7jLGlX78xmcMkSZOPSwKl0bmZ5CHwMWD/GOPhMcZ9gPcBOeALIYSTBrpAqfQXxOJD2T8Bu8UYDwd2A74OzAa+F0JY2q/fJ9gSrLoa2D3G+EZgj7TfUuC+EMKifv3exJZg1SXp/Zal7X8OzAPuCCEsHOpnkDQqVTGnVPAl0mDVAPc7jyRY1ZMeF8UYD4sx7gq8lySA9W6SeUrS+BvTOaWCf2BLsKqsEMKxwA0k3z2uB3aMMb4hxrgn8BaSjKmjgW/26zeWc5gkaZIxYCWNUAhhf+B8IA+cF2NcWzwXY1wBfCV9+YVhXPaf0uMdMcb/E2PsSa/XRfLl72mSh7P3l4xjBnB5+vJbMcYri5kLMcauGOOngN+TPNxd2e9+xev8Isb4lRhjPu3XCJxH8uVyZ+C0YXwGSSNQLXNKhbEdm7bvGOL9lscYbyjOKek972ZL5tUn0owtSeNknOaUcve4jqHNDTXAz2KMn0vnoOJY7mfLHPR36fLC0n4wyjlMkjQ5GbCSRu4CYDrw+xjjU2XO35Iejw0h7F3mfDm/I1kuc2v/E2nNl7+kL/cpOXUkW5baXF/huv9SHHOaul9UfCh8vMz9WoBn05dDHb+kkauWOaWPdEnRbSRfeq8YoN1OwBvSl3dUaPaT9DiPQbK1JI3aeMwpvUII04Dvkvx7vnSQ5iemx0pzwy9JfiSD5LmmaNRzmCRp8rLoujRyx6THB8udjDGuDyG8RPIQdTywYrALxhi/WOlcCGE6cFj6srQQevEhrTnGuLrSpdPjYpL6VMVA1Mvp8bD+HdIirfunL9cMOHBJY6Fa5pT+rgcOIFkS+KcB2mWAd5EsKd6qXl6qNGA+fYBrSRq9MZ9T+vlfwLHA94CfkizR20oa2Dqb5Eey31a4Vtm5YYzmMEnSJGXAShq5A9JjpSARJIGefYADR3OjNOX+KyTBplfp+0tjceeEgQoYzyz5e1+2BKy+CXwAeGsI4TMku+3kQwjzgW8Di4CXAIuZSuOvWuaU0nZvBT4GPEFSd+rYSteMMXaQ1L4byHvTYxa/YErjbdzmlBDCIcAXgVeAi0kKoJeVLg3+r0EueTLJ7n8Aq4Zw/yHNYZKkyc0lgdLI7Zoe6wdoszk97jySG4QQrgkhrCYJML2HpBbViTHGzSXNXijeY4Cio4eW/L1j8Y8Y4x+Bs0iKnX4V2BhCeJTkAfRs4H7ghBhj50jGL2lYqmVOKbbdgeRLYA64cLS7+oUQ9mBL8eSfxhibR3M9SYMalzklrZ15OzAL+Pu07uWIpT+SfS19+ccY49MDtB3yHCZJmvwMWEkjNzc9ZgZoUwz0zB2gzUDeSrJ1c/Hf6l7AO/u1eRRYl/59eb9zxQfLz5a8VduvySa21LDaGVgGzCepV7MBMzGlbaVa5pSifyGpX3dNjPHREd4PgHSn0Z+TzDFtJLuSShpf4zWnXAYcAXw3xjhYVuWAQgi1wA+BQLK76CcH6TKcOUySNMkZsJJGrmcYbQuDNynr70h2v3ktSer9bsBXQwg3FBukO+YUi53+fQjhWyGE/UMIM0MIbyD5kvgaoD1t05slEUI4H/gN8DaSHQSXkvxienja7zzgoRBCaYaWpPFRFXMKQAjhXcCFwGPAl0d4r+K1dgbuI5lXCsAHYozPj+aakoZkzOeUEMLhJAGr9QweXBrsWnOAfwNOSd/6bIzxd4N0G9IcJkmaGgxYSSPXlh5nD9BmTnocbLvnsmKML8YYu2KMz8cYrwA+lJ76RFq/odhuBckDZB74MPA80E3yZfMokmV/xfG2QO+OXjeTFDe9NMZ4dYxxfYyxO82mOJ1kZ55d0naSxldVzCkhhMXAt0iC26NaChhCOIBkl68jSeenGOPdI72epGEZ0zklhDCLZFfAmST/lptGOrAQwq7Ar4B3pG9dHWP82gBdgKE/F0mSpgYDVtLIbUqPiwdoU6wJUTcWN4wx3k6yTG868KZ+564h2S3nG8AvSIJNlwIHp693SpuuT49vB3YgeaDd6iEx3S76yvTl8SGEJWPxGSRVVC1zynJgd+CLMcbHK/UdTAjhOOBhkmLO3cA5McZ/Hd2IJQ3DWM8pVwOvA26NMf7nSAcVQjgY+APw1ySZXZ+OMV45cK/yBnoukiRNftamkUbuaZKU9H0HaFM89+wAbQAIIdQAe5As3/t9uqtOOS8BS0i+UPYRY3wC+Mcy1z6c5BfRHPBM+vY+6fG5dFlhOU+V/P0akodCSeOjWuaUv02PV4cQrh7g+sUlRB+IMd7W79zZJJkYs4AG4IwY4wODjVnSmBrTOYVkMxaAi0IIFw3Q7sUQAsBVMcYvlJ4IIZxAsgxwEUltrQsqZV2OxXORJGlyM2AljdwfgHcDx5Q7me7Yt3f68qEhXG8p8HL699HAygrtioGm9el9aoCLSOo4fLPCTjmnpccHY4xd6d8t6XH3EEJNmlHV364lf7eUOS9p7FTFnEKyhK+ShSQZFqXtNvYb598B3yfJ4n4ROCXGGIcwXklja6znlEfYsslLf7NIlv4C/BHoYsv8U7zf8cC9JMsQNwPvijH+foD7jXQOkyRNEQaspJH7EUkx4hNCCKHMF7KPpsffxBjXDHaxGOPaEMIzwEHAxyjzYBZC+FuSXxG7gf9J+xVCCJeS7JqziaT2TGmfxcA/pC//peTU/elxD5Iddn5WZljFX1A3AqsG+wySRqVa5pTjKl0zzY64v1K7EMLRJNvdTwP+Arw9xvjqYGOVNC7Gek55b6VzIYR9SQLUAO/tf70QwmuAn5IEq9YBJw0WyB7pHCZJmjqsYSWNUIzxOeAHJHUTfpwWFwZ6d9/7XPryS/37prv4HRRC2KPfqeLymwtDCJeFEGaW9PlboFj/5boYY2lWw3fS45dDCMtK+uxH8mvmziTZVT8pGf8zwB3F/umuYMV+00IIHwMuT9+6coBUfEljoMrmlGELIUwnCVbNJKmHc7LBKmnijNOcMlLfJsnQ7AROHUbW5TabwyRJ1aemUBjpztiS0uyl+4HXk2wf/RdgR7akp1+WFkPv329N2ua7McYL+527mi2
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x3000 with 20 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5hkeV0v/ndVV+c83T057uzud3MmrLDukkQFUZ+fCQOXi6CYAL2CeCX6u6iY4apgAMGAgoiKCCggYVlYYNk8O/PdnZ3YYbq7qiufHO4f31NVp6pPxe6eDvV+Pc88lc45dXp2+8w5n/MJMd/3QUREREREREREFCW+2TtARERERERERERbF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUF4NHRERERERERERUV2Kzd4CIiIi2HiHElwDcHbx8i5TyXS2u9ycAfiF4eUxKeW79946iCCGuBPAGAC8CcBiAAeAsgE8A+Asp5VKH2/0DAL8CAFLK2PrsLREREW0nzDwiIiKiZt4qhLh2s3eC6hNCvBLAY1CBu6sBDACYAHArgP8fwAkhxPd2sN07oQJSRERE1MUYPCIiIqJm+gF8QAjB84YtSAjxPQA+CBUw0gH8HwDfBeDFAH4bgAlgGsDHhRC3tbHd/mC7/O9ORETU5Vi2RkRERK24E8DrAPzxZu8IVQQBvT8BEANgAbhLSvnt0CL/JYT4LIAvAhgE8DtQgaVWvBPANeu4u0RERLRN8U4SERERNeIBcILn7xJCXLGZO0OrPB9A6b/Jn9QEjgAAUsqvAPiP4OWLhBCTzTYqhLgDwK8GL5PrsaNERES0fTF4RERERI3YAH4veD4E4C83cV8o2qcAXADwbw2WORl6fqjRxoQQfQD+GkAPgI8A+MZad5CIiIi2N5atERERUTPvBPCDUCVMzxdCvEZKuaYgUtCA+xcBvADAQaiyq4tQ5VX/V0r5RJ31vgQ1Bc6UUg402P7jAK4HcF5KebTmMz94+stQGTl/AuC5UIGy0wDeLKX8fGj5MQCvBvD9AG4AMAogBeAhAP8E4G+llA5qCCGOQk07A9Tf3ycBvBLAK4J9GwUwB+A/AfyBlPLpej9PPcF+fr7pgsCR0POFJsu+FernXAbwegAfane/iIiIaGdh5hERERE1JKU0oYInXvDW7wkhDnS6PSHEW6Emg/08AAFgGCqrSQB4LYDHhBDvEEJs9Fj4QwDug+oBNARgHMBtUAGk0r4+D8ApAH8A4DsB7ALQC2AvgFKj6oeEEMebfNcQVJDnA1DBr2moRuRXAPg5dDgNrRVCiGcA+IHg5RellMsNlr0VwJuDl6+TUrJkjYiIiBg8IiIiouaklPcB+NPg5TiA93eyHSHEOwD8JlRJ1KNQwaLvgMr8eT2Ap6HOT94e/NlIb4AK4vwugLsA/DCA35JSngv29U6ozKR9AHwAfwfgZQCeBeDHAPxXsJ0bANwrhNjX4Lv+AMDzANwP4KeCbfwAgM8Fn/cD+JAQYmStP5QQIiaEGBVC3CaE+CMAXwq2n4bK9qq3Xi9UuVoCwL9LKf9xrftCREREOwPL1oiIiKhVvw7g+wAcBfBSIcSPSyk/0urKwZj4twYv/xbAq2rKve4TQnwAqofPPQDeJoT4WL0StnUQhwoW/UbovY8H+9oDlVU0CJVx9aNSyo+HlvsmgI8KId4GVda3D8CfQwWXouyF+plfKaUsZXBBCPFJqJ/3ewHMAHgJgI+u8ef6ieC7wu4D8Gop5akG6/06gJsBZKGyoYiIiIgAMPOIiIiIWiSlLAL4mdBb7xFCzLSxif8Fde6RAvDaqD5BwXe8CirTJwbglzrf45a8r87734fKmPr31QSOyqSUvwmV2QMA3yeEuK7O9gwAbwgHjoL1fVQ3Ib+5lZ1u4kjEezcC+KV6k9aEEDcCKAXR3iilnFuH/SAiIqIdgsEjIiIiapmU8nNQpU2AKvn6v62sF/Qv+p7g5X1SSq3Bd5xFZTrYCzrc1VbMSSln63z24tDzP2+ynT8LPf/uOst8W0q5UuezcKPs0Sbf1YovA3gRVGncT0GVyo1B9Zj6ihBid3hhIUQC6r9pH1RPJE7UIyIioiosWyMiIqJ2/QpUkGQfgB8VQvyDlLLRmHhAlbqVsl5eFpp41syxznaxJRcbfHZD8FgA8HiT7dwfen5jnWXONVi/EHq+5nMzKeVXQy+/KYT4CFR206ugfq7fh5r4VvJGALcD0AC8Zq3fT0RERDsPM4+IiIioLVLKDIBfCL31PiHERJPVpjv8uoQQYj2ycaLkGnw2FTwmg9KyRhZDz3fVWaZQ531AleiVrPuEuaBU7ucBlErRflQIMQQAQohrUWlM/lYp5dMRmyAiIqIux8wjIiIiapuU8l+EEP8ENaFsH9Q0sZ9usEr4nOODaLHcLVC3xK2BVm6QNQoKtRPE6Qk99+outYmklKYQ4j+gelb1QfVzehCqXK0fKjPqS0KIWyJWHys9CX1ubWAjcyIiItpiGDwiIiJqIMjQeBPUaPZjAPIAvg3gj6WUn+lwm8+EGkt/F9QULh3AEwD+AcD7pZRWnfWuB/BmAM+HmsyVBfANAH8kpfxCg+/7DgC/CuC5ACagGlZ/BcDvSim/3cnPEPjFYF+mALxKCNFotHu4348rpXy4w+8sBXyaBXfGO9x+SWl/p4UQsSbZR3si1rssggbYxwHslVJ+qsniqdDzvuDxWcHjUaj/r5t5KHg8H6xDbdrsY4oQ4iiAs21s/p1SyneE1r8HwBebrPNvUsofaOM7iKhD2/2YEmzjBgBvAfA8qPOUBQCfBvAuDnDYOli2RkREVIcQYhjAf0OV9VwB4ASAIoDvAvBpIcTbG6xeb5uvB/B1AD8OVcp1Eqqk6dkA3gPV0HgsYr3vAfAAgJ+EOrF6AiqA8hIAnxdC/Hqd7/tpAPcC+EGogMEJAEMAfgTA/UKIn2r3ZyiRUi4B+OXQW38BYLjO4mdQySB6drNtCyF+TQjxs0KIF9Z8VJrQ1ieE6KldL1h3ECq4thaPBo8jAK5vsmz45zm1xu9t198C+BaAT7Yw+e546Hm9RuG0gbbIMcUAcF+TP+dCyz9V85WliYALDdZnVhrRZbATjilCiLug/h37Uaj4xGNQN6V+DsBjdTJiaRMw84iIiKi+P4XKzHgYwMuklBcBIAi4fBDAO4QQ90kpP9/KxoQQzwHwR1BBn98F8DYppRl89jwAfxd8358DeHlovYngswEAHwfwaillNgievC3481tCiHvDzZKFEMehRtHHocrE3hiULw0CeC+AVwP4q+BnONPJX5CU8m+FEC+HmqR2FMBP1FnOFkJ8ESrYdaMQ4rk1jZ3Df0/PB/A7wcsvAgj//WZCz4+ielJZyQsB9LbxY0T5LwCvDZ7/LIBfarDsa0PPP7fG723XvVB/pzGohtjvjlpICLE3WA4ATpWmzEkpm5bnCSE+VVq3leWpoU0/pkgpL0FlIdbb5igqGWbvk1L+fc0ipeDRe6SUkf+/EdFls62PKUKIXQD+Der85t0A3iKldIJ1/hrA/wfgn4UQ19bLyqbLh5lHREREEYLAy09C9bD5idIJGaACJqgEN97RxmbfCHVC9u9Syl8rnZAF2/wigP8RvPwxIcSh0HovhWrEnAHwP6SU2WAdV0r5dqgSNEAFD8JeDhVEOQXgDaXvk1LqUHf0zkBlI/1kGz9DlJ+FSpMHGgdt/jD0/EM1PyMAIBgj/xeht95bs8ijoeerAjpCiD0Afq/h3rbmkwBOB89/Xgjxg1ELCSHeCuDu4OUX1lCO16kPQ91lBoD/LYRYNe0tOAn/GCpZYb9TuwxtvC12TGnk/VBZag+jOrOwpBQ8eqyN/SSidbZDjimvg5rEer+U8s1SSif4rjxU5tMZqIyqV4A
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3xkd33v/9dU9a5VW2+xt3xdMRibcik2vQbIJQESEsKPFCCkkAq5SYAkN7khpP4CwZd7k5uEXHpIgIRebGyDMRiM7bX36+1FK626prdzzv3jHEkjaUYaSbOr4vfz8djHzGjOnDmzuzrSvOfz+XxDnuchIiIiIiIiIiJSSXizD0BERERERERERLYuhUciIiIiIiIiIlKVwiMREREREREREalK4ZGIiIiIiIiIiFSl8EhERERERERERKpSeCQiIiIiIiIiIlUpPBIRERERERERkaoUHomIiIiIiIiISFUKj0REREREREREpCqFRyIiIiIiIiIiUpXCIxERERERERERqUrhkYiIiIiIiIiIVKXwSEREREREREREqlJ4JCIiIiIiIiIiVUU3+wBERETk8jPG3AHcGtz8PWvtH9f4uPcDbwtuXmmtPV3/o5NKjDEHgbcDLwD2AjngFPBp4EPW2rEa9nEr8FbgmUAfkATuB/4Z+Ii11q3wmNuAb6zjkP/JWvvGdTxOREREthhVHomIiMjvG2Ou2eyDkOqMMW8EHsIP7g4DjUAn8CTgj4AjxpiXrvD4mDHmQ8AdwGuB3UAM6MYPoz4M3GWM6anjYRfquC8RERHZRAqPREREpAH4e2OMfi/YgowxLwH+AT8wygL/HXgh8CLgfwB5oBf4lDHmpiq7+SDw88H1FH7gdCtwG/CnwX7/C/AtY0znksd+Dz+kWu3Py4NjARgB/nCdL1lERES2GLWtiYiICMDTgV8B/nqzD0QWBIHe+4EQfiXPs6y195dt8mVjzBfx28qa8IOgFy7Zx/OBnw1ujgHPsdY+UrbJncaYT+NXJR3GD6d+ae5Oa20KeGCV44wEx9kAOMDrrLXn1/RiRUREZMvSJ4wiIiKPby5QCq7/sTHmqs08GFnmucDcv8n7lwRHAFhrvwn8Z3DzBcaYriWb/ErZ9TcvCY7m9vFdFiqF3rKO/we/ATwjuP7e4JhERERkh1B4JCIi8vhWBN4XXG8G/tcmHotU9h/AWeAzK2zzaNn1PXNXjDEh/NY0gNPW2n9fYR//GFxGgB+r9eCMMfuB9wQ3LWpXExER2XHUtiYiIiJ/APwocDXwXGPMz1trNxQiBQO4fwl4HnAFftvVOfz2qr+tVP0SPO4O/Fk8eWtt4wr7fxi4Djhjrd2/5D4vuPpr+BU578dfXawIHAfeaa39atn27cDPAa8ErgfagEngB8AngQ9ba0ssEYQmp4KbPwp8Fngj8Ibg2NqAYeBLwF9Ya09Uez3VBMf51VU3hH1l10fKrncHxwFw3yrPddEYMwn04Lcx1uov8FvmAH7JWptfaWMRERHZflR5JCIi8jgXvNn/OfwWNoD3GWN2r3d/xpjfx18Z7BcBA7TgVzUZ4C3AQ8aY9wRVMZfSHuAe/BlAzUAHcBN+gDR3rM8BjuIHIM/GD1tiwAAwN6j6B8aYA6s8VzN+yPP3+OFXL/78n6uAt7LKamgbYYy5BXhVcPMb1trxsrvjZdeTNeyuGFwervG5nwr81+Dm58pDOREREdk5FB6JiIgI1tp7gA8ENzuA29ezH2PMe/DbliLAg/hh0X/Br/z5VeAE/u8f7w7+XEpvxw9x/gx4FvDjwJ9Ya08Hx/p0/MqkQcAD/gV4BfBU4HXAl4P9XI+/jP3gCs/1F8BzgHuBnw728SrgK8H9DcA/GmNaN/qijDEhY0ybMeYmY8xf4Q+6bgCmKRt0HZjCf23gV4CttN8m/L8v8MOzWry7ynURERHZQdS2JiIiInN+B/gRYD/wcmPMT1prP1Lrg4Nl4n8/uPlh4E1L2r3uMcb8Pf4Mn9uAdxljPlGtha0Owvhh0e+Wfe1TwbFG8KuKmvArrl5rrf1U2Xb3AR83xrwLv61vEPif+OFSJQP4r/mN1tq5Ci6MMZ/Ff70vBXYBLwM+vsHX9frgucrdA/yctfZo+RettXljzAPAk4BnGWN6rLWTVfb7YhZ+N2xZ7SCMMVcHjwH4srX2B7W+ABEREdleVHkkIiIiAFhr08AvlH3pb4wxu9awi9/A/91iEnhLpTlBwXO8Cb8aJgT88vqPuCYfrPL1H8Gf8QTwwSXB0Txr7R/iV/YA/Igx5toq+8sBby8PjoLHeyweQn5jLQe9in0VvnYD8MsVVlqDhaCpGfg7Y8yy3/+MMZ3Ae8u+FKvhOH4V/98Q4E9r2F5ERES2KYVHIiIiMs9a+xXg/wQ3e4G/reVxwfyilwQ377HWZlZ4jlMsrA72vHUeai2GrbXnq9z3orLr/3OV/fxd2fUXV9nmfmvtVJX7ygdlt1XZZi3uBF6A3xr30/itcu34M6a+aYzpW7L97cBcdddrgC8bY55tjGkyxrQbY14V7OMQ/oBvgMJKBxCETW8Ibn7XWvuNDb4mERER2cLUtiYiIiJL/Tp+SDIIvNYY81Fr7UrLxIPf6jZX9fKKshXPVnPl+g6xJudWuO/64DIFPLzKfu4tu35DlW1Or/D4VNn1Df/uZa29u+zmfcaYj+BXN70J/3X9OQvBDtbarDHmFfirvh3AD+yWhnYe/qyqvfgrxqVXOYxX4FcyAfzjel6HiIiIbB+qPBIREZFFrLUzwNvKvvTBoNJkJb2r3F9N1BhTj2qcShIr3NcTXE4ErWUruVh2vbvKNqkqX4eFgdWw0OZVN0Gr3C+yUDX0WmNM85JtTgA34wdL5auxecDXgRdYa9/NQgBY/poreWVw6RDMkRIREZGdS5VHIiIisoy19t+MMZ/EX6FsEH81sZ9d4SHlv1P8AzW2uwWqtritoJYPwFYKhdYS4kTKrrtVt9pEwWDs/8SfWRXHn+f0/SXbzAC/ZYx5B/7Ka03AuSUthnNzoE5Vey5jTCMLbX93WmvH6vMqREREZKtSeCQ7SvBJ62/jL7F8JZAE7gf+2lr7hXXu8yn4Q0Gfhb+aThZ/dsRHgduttSvOhSjbz0eD4zpkrT2+wnbXAe8Enou/Ms8s8B3gr6y1X1vPaxCR9blE55Tn4S8h/3T8+TcX8JeE/0trra1xH2Hgm8AzgFilwdQrPO5b+LNy7qzhIb+Efy7qAd5kjPnYCtuWz/txrLUP1HJMFcwFPquFOx3r3P+cuePtNcaEVqk+6q/wuMsiGIB9ABiw1v7HKpuXr6IWr7ZRUKl0tsJzdePPPQJY6d/vOSysxvaJVY5JREREdgC1rcmOYYxpwS+9fzdwFXAEf2bDC4HPG2PevY59/irwbeAn8VsyHsVvTXga8Df4g0nba9jPW/DffK623UuA7wE/BXTih1Qh/KWdv2qM+Z21vgYRWZ9LdE55F/BV4OXBl47gtwn9AvCAMebVNe7qT/CDo7V6L35wVJOgouTXyr70Iaov4X6ShQqip622b2PMO4wxbzbGPH/JXXNBWNwYE1n6uOCxTfjh+kY8GFy2Atetsm356zm6weddqw8D3wU+W8PKdwfKrs8PCjfGvNoY8+fGmPev8vhXsvC74VdW2O7ZZde/uco+RUREZAdQeCQ7yQfw3xQ9AByw1t5krd2HPzS0BLynwpuUqowxzwD+Cv/75M+ALmvtjdba3fifxF8Inm/FVXqMMW9n8Uo91bbrBP4FaMSfHzFkrX0i/ifefxhs9ifGmGfW+hpEZEPqfU55HvAHwc3fAvqttTfhf4//Nf73/r8YY65YYR8RY8z7gHes5YUYY6LGmL8EfnMtjwOw1n4YmKuy2g+8vsp2RWBuxa0bVjpXGWOei7+0++3Af1ty90zZ9f1VdvF8altKfiVfLrv+5lW2fUvZ9ZVClUvhruAyhD8QuyJjzAD+Bw0AR5esMvc04DeAtxljTJXHR4NtwB/+fXel7QJPCS6TQE3VciIiIrK9KTySHcEYcwC/WscFXm+tnV9hJ3jj86f
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkWVng/29WZVVl7VVd1Su90d1wpJtNFhFBaUEEZFxgVHQUBRRxQ1FwnJ+CIIIzIyODKNAOIAJuMNogjCA7qCAg0E0vdB+66a7q2tes3CIj4sa99/fHvZEZmRURGZkZuVV9P89TTyz33hMnsqpOVbzxvu8ZyPMcSZIkSZIkqZ11Kz0BSZIkSZIkrV4GjyRJkiRJktSRwSNJkiRJkiR1ZPBIkiRJkiRJHRk8kiRJkiRJUkcGjyRJkiRJktSRwSNJkiRJkiR1ZPBIkiRJkiRJHRk8kiRJkiRJUkcGjyRJkiRJktSRwSNJkiRJkiR1ZPBIkiRJkiRJHRk8kiRJkiRJUkcGjyRJkiRJktTR4EpPQJIkLb8QwmeBp5QPXxljfH2P1/0Z8CvlwwfHGPf1f3bqJITweOAlwPcClwINIAL/APxZjHF8jutvBH4Z+C7gQmAY+Abwt8C7Y4z1Oa4fAl4MPA94ODAEHAL+BXh7jPELC31vkiRp9RrI83yl5yBJkpbZrOBRDfj2GONdPVxn8GgFhBAGgDcAvwkMdDjtXuCZMcZvtbl+HfCnFIGjTm4DfjTGeE+HOTwY+CfgYV3GeCvw0hhj1uUcSZK0xli2JkmSNgHvLAMMWp3+GHg5ReDoAPBS4MnADwL/rzznOuD/hRA2tbn+9UwHjg4Cvwp8D/BciqwjgEeW1++YfXEIYSvwcaYDR/8E/Hg5hxcDzYDTLwN/uKB3KEmSVi3L1iRJEsATgV8D3rTSE9FMIYQnAi8rH94BPDXGeKLllP8XQvgL4IXAtwEvAt7Wcv21wG+VD+8DHhNjHGm5/gMhhDuB1wEPpQgszQ4A/RZFcArgj2OMr2g59vkQwl8BXwYeAbw8hPDWGOMDC3rDkiRp1fEbRkmSzm8ZRd8cgNeHEK5ZycmorddQZBw1gP88K3DU9AogKe//6KxjLwTWl/dfNitw1PTfgTPl/R9vc/znytujwO/MPhhjrJbzhOLLyee2GUOSJK1RBo8kSTq/JRS9dAC2AG9fwblolhDCxcDTyofvijF+s915McbTFAGgtwIfmXX4KPAZinK3T3S4PgOaY185aw7byutvBT7Ypal2a8+sKzucI0mS1iDL1iRJ0u8Dz6EoeXpqCOHFMcZFBZFCCA+jKH96GnA50716PgP8aYzxGx2u+yxFI+9ajHGoy/h3ADcA+2OMV8861twN5DcoevP8GUVvnoSiqfR/izF+suX8HcDPAz9MsYPYduAUcAvwf4H3xhgbzBJCuBq4v3z4HOBDwAuAnynntp1iJ7KPUZR6ndXIugdPZzpr6H3dTowxvrrD839G8TPoqGzI3Qz4HJl1/TjFe5rLVS33j3Q8S5IkrTlmHkmSdJ6LMdYogifNHbLeEEJ40ELHCyG8CridonlyALZSZDUF4BeB20MIrykDFkvpCuDzwPeXr78TeAxFAKk51+8F7qZoSP09wAXABuAS4FnAXwC3lH2DutkCfBJ4J0Xway9FI/JrgF8C7gwh/MAC3sMjWu5/pWXegyGEq0MI13VokD1fL6V4zzBHkKqdEMJm4FXlwxT4hz7MSZIkrRJmHkmSJGKMnw8hvIUiiLATuIliJ695CSG8BmhmwNxGUUZ1G8UXVo+laMp9bcs5r1nMvOfwMoqMpz8CPkwRHHl0jHFfOdcnUmQmbQZy4K+B9wPHgAdTNJ7+fopspH8NITw2xtgpo+aPy/G/CLyFogTsUuBXKLKHNgF/GUK4pszk6dX15e2ZGONIme30WoqeQlvLY5MhhA8Bv9trdlMZuNtLEZz6FaZ7FH0VeGOPY2ygCNA9jaLn0kPLQ6+MMd7XyxiSJGltMHgkSZKa/j+KgNHVwH8KIfyXGOPf9HpxCOExTGefvBd40axyr8+HEN5JsbX8jcDvhRDe36mErQ/WAX8YY/zdluf+vpzreoqsos0UGVfPizH+fct5XwbeF0L4PYqyvkuBPwd+qMNrXULxnl9Q9g+ifJ0PUbzfHwAuBJ7N/DJ79pa3Z0IITwduBrbNOmcz8DzgB0IIz20tyevi7Uw3wW56J/CKXoJbIYR1wARFllbTMEVD7vf08PqSJGkNsWxNkiQBEGOcAH6h5ak/CSFcOI8hXk7xf4tTwC+26xNUvsaLKDJ9BigynZbS2zo8/4MUPZ4A3jYrcDQlxvha4LPNa0II17c7D6hSBE6y1idjjDkzm5A/qpdJt2gGinZRlIINAa+jyN7aRJHt88cUP8/twD+EEK7rYdyr2jz3fcCLy8DQXC5lZuCoOcefCSE8uYfrJUnSGmLwSJIkTYkxfgJ4V/lwL/CnvVxXlkE9q3z4+Rhjpctr3M/0zlxP63ReHxyKMR7scOwZLff/fI5x3tpy/5kdzvlqueNZO62lZNvneK3ZtpS3uygCST8eY3xVjPG+GGM9xnhPjPEVFM3JAXYAf9jDuG8Fvht4EvCbFM3Mr6Io8fvrHgJICfBjwBMoft9vouh19DTgUyGEH+n1DUqSpNXPsjVJkjTbb1IESS4FnhdC+NsY4z/Occ3VwO7y/g+17Hg2lwcvbIo9OdDl2MPL23HgjjnG+WLL/Ud0OGdfl+tby8Dm+3+vyZb7H4gxfqDdSTHGt4YQfoEis+lHQghbyyyvtmaN84UQwrspGn5/O/ATwCcoyvo6XX+csgSw9M8hhA9QlOhtpOjv9OAY43D3tydJktYCM48kSdIMMcYzFE2Um94WQtg1x2V75zjeyWAIYb7ZOL0a7XJsT3l7siwt6+ZYy/0LOpzTrU9Q6/jz3WFurOV+28BRiw+XtxsodpXrWZk19TMtT71oPteXY3wc+JPy4U7gP893DEmStDoZPJIkSWcpM1P+b/nwUoq+Ot20ZtT8BUUGS6+/Opa4ddHL/2G6BYXmE8RZ33I/63jW0mjd3e3QHOe2ZlrNO5gXY7yDYpc4gEfO9/rSzS33FzqGJElaZSxbkyRJnfwq8FSKLJ0XhRD+rsu5rf1+0hjjrQt8zWbAZ67gzs4Fjt/UnO/eEMLAHNlHF7e5brncDjynvL+724kUDbSbpsrFQgiXUTTYTmOMX5hjjFPl7caW6zdSlBdeC9wSYzzS7sJZ188YQ4UQwhbgv1KUBj6YIrPsq8CbYowf7dNr/G05/kNijPd2Oe87gF+n6H11CUWJ5DeAvwVuijHWO1y3Dngh8LMU5Z9bgf3AP1LsbmiporSMlmJdWcT6cCXwexSl7xcBJ4BPAf89xnhXu2s6jPNYipLxwRjjfDN2tUTMPJIkSW2VfW1+o+Wp/0PxQbGd+5jOIPrOucYOIfx2COElIYTvm3WouUPbxhDC+tnXldduptj2fjFuK2+3ATfMcW7r+7l7ka87X639lub6uba+j30w1cj8buBfKH7/OirPvaZ82Npo/IfKMf4J+Kk55nBty/1OzcrPSyGErcCngVdT/JzvBCaA7wc+EkJ4dR9e4xcpPkDOdd6vA/8O/BeKLLW7KEovv5Oi9PBfQgg7OryHTwDvoPhQeYLiz9q1wCuAr4UQLl/s+5DUm6VYVxaxPgTga8DPUfzb+nWKHUKfT7E2PGP2NR1efxPwHkx0WXUMHkmSpI5ijO8Fmt9cXk2H4EGMMQE+Uz58RLft2kMITwX+B8UOXb8z6/CZlvtXdxji+zh7m/j5+njL/ZfMce4vttz/xCJfd74+CZws7/90p/5Q5QeIZo+hr8cY9wGUGVWfL5+/IYTwhC6v9Wyms6xa3+cXmC7Xe8EcO7H9XMv95f5ZrXZvodid7lbg2hjjY2KMV1H0mmoAr2kTTO1ZCOFlzNwZsNN5TwL+N8XngD8CdscYHxVjfBBFpuHhcp7tdiF8W+s5McYQYwzAo4F7KP7OzrV7oaT+6eu6stD1IYQwSLFhwh7gvcClMcb
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAASbCAYAAAASrO/IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkV1338U9tvc5092RmMplktixwAgESAgpRlLCICwrigrihT0RxF1wQRSS44AIqPIriho/gBigSQHABBAUBFRISAjlZyGQmM5l9pqe32uv5497uru7pqq7urp6Z7v68X69+3bp1T90+PUql69u/8zuZRqOBJEmSJEmSNrbshZ6AJEmSJEmSLjxDIkmSJEmSJBkSSZIkSZIkyZBIkiRJkiRJGBJJkiRJkiQJQyJJkiRJkiRhSCRJkiRJkiQMiSRJkiRJkoQhkSRJkiRJkjAkkiRJkiRJEoZEkiRJkiRJwpBIkiRJkiRJGBJJkiRJkiQJQyJJkiRJkiQB+Qs9AUmStHwhhI8CT09PfynG+Osdvu4PgB9LT6+MMe7v/uy0kBDCDuDlwHOBK0n+aHc/8H7gTTHGo8u45zXAnUA2xtjX4WueD9wCPAW4BDgFfBr4sxjj+5Y6B0mStPZZSSRJ0vrx6hDCYy70JNRaCOGbgPuAnwceBwwC/cDjgV8A7g0hfO0S79kH/GV6n07GbwohvBd4D/A8YAdQSI/PA94bQvjHEEJH95MkSeuHIZEkSetHL/DnIQT/+34RCiHcDPwjsDl96jbgm4GnAj8A3AMMAe9Pq3w6uWcBeBfwFR2OzwLvBr4pfeo48ArgK4GvAf4IqKXz+lB6f0mStEG43EwbWghhgOSX4xeRlPyPAZ8B3hhj/GCXvsffpvd/VIzx/jbjngW8DLiJ5APEYeBfgd+NMcYWr7kZ+PdFpnBbjPGblzF1SWvTTcBPAm+80BPRrBBCHvgLIJc+9XMxxjc0Dfl0COHvgA+QLB/8oxDCR2KMY23uuZMkIPrKJUzlFpIwCOBe4BkxxsNN1z8UQvggSZXRVwA/BbwBSZK0IfiXRm1YIYRB4CPAa4CrgLuBCeA5wAdCCK/pwvf4YZKAaLFxvwx8CPjG9Km7gS3ADwF3hBC+tcVLr0+PjwCfaPH1heXOX9KaUgeq6eNfDyFcdSEno3M8D9iXPr5tXkAEQIxxEvheoALsBH661c1CCC8CPstsQFTrcB4/mR4bwIvmBUTT83gf8Cfp6S+HEDZ1eG9JkrTGGRJpI3szSbPOO4CrY4w3xhj3Ai8m+aB1awjh2cu9eQjhZcAfdjDuWcBr09OfA3bEGG8k6Q3xRqAP+KsQwq4FXj4dEr0pxvi0Fl+/uNyfQdKaUgFenz4eAP70As5F53pm0+OWVV4xxoMkfzQA+I6FxoQQPgn8LXAZSTj4GuDji00ghLCdpPcRwH/EGG9vM/wv0uNm4BsWu7ckSVofXG6mDSmEcDXwPSS/XH93+ks5ADHGt4cQHg38EnArs7+sd3rvncDvA62qf+b7ufT4t81/WY4xlkIIPw18LfAY4PuA+bsWTYdEdy1ljpLWrdcCLwCuBZ4ZQvjBGOOKwqK0EfaPA88CdgEZ4CDJUtffjzEuWK3YtOtaqd1uWyGEzwPXAQ/FGPfNu9ZIH74c+CfgD4CnkQRi9wOvjDF+qGn8EPAS4PkkTaE3AyeB20mWZb09xlhlnhDCPuDB9PQFwHuB7yf5o8F16X0OAf8C/E6M8YFWP08be5sef3qRsV8Avh64NoQwEmM8M+/6U9PjF4EfjDF+IoTwTBa3Z4lzmHYT8M4O7i9JktY4K4m0UX0vSV+IT7b4gPOW9PiVIYQ9C1xfUAjhBSS71nwrcJrZ7aXb+QTJB5K3zr8QY2wwGwA1f8CY7m9xXXr6+U7nKGn9ijGWSEKSevrU60MIVyz3fiGEV5O8B/0oEEh24hpIH/8wcFcI4dYQQmZFE1/cbpL3yuek338YuJEkKJqe6zNIGj//DvDVJFu6F0iqbb6e5D329vSPBO0MkPxx4M9JQq5tJA3BrwJ+BLg7hLCcypqe9FiLMU4tMraSHjPAoxa4/iWSf/8nxBg/sYw5QNKDr5M5ADx6Cd9DkiStYYZE2qhuSo8LlufHGA8BD6WnT1/Cfa8n+YDx18BjSRqQthVj/NUY4/Ob/xo+LYSQA56Ynt43/zLJB5fRGOOBJcxR0jqWhgZvTk+HmQ29lySEcCvwKySB+p0kocRXkFTy/BTwAMnvEa9Jv1bTy0jCmt8Gvgr4duB1Mcb96VxvIqk02knSa+evSHoAPYWkL9y/pvd5HPCfacVnK78DPAP4FMkfFJ5CstPXv6XXe4H/t4w+PSfSYy6EcNkiY3c3PV5o7KNijH+8UFVUh3OApCpsJXOQJEnrkMvNtFFdkx7bLRnYT1K9s5S/oP4HcH2M8S6YWcKwLOlfu3+T5K/IRzi30mh6qdndIYQbSZbPPY6keendwF9Oz0PShvMLJFuc7wO+MYTwXTHGv+n0xel7yqvT07cDt8wLJD4RQvhz4P3AzSTNjd/ZaulZF2RJQqFXNT339+lccyTvj/0kFVTfEWP8+6Zx/w28I90g4LUkQdIfk4RIC7mM5Gf+/hjjdEUWIYT3kvy83wBsB54LvGMJP8Onge9KH7+AZKv5c4QQekkqpqYNzh/TPK8lup9k+d1W4LkhhEKMsdJi7De1m4MkSVqfrCTSRnVpejzeZszJ9Lit05vGGD+y0mAmhPC6EMIDJFsTfxvwSZItik/OGzodEj0B+AxJz46vAb4O+BmSXdF+bSVzkbQ2xRgnSHZHnPamtGlxp36G5HeEk8APL1Sxkn6PW0gqdzLATyx/xh1ZMFQhCTOunR4zLyCaEWP8FeCj068JITy2xf2KwMvmBzHp8t/m/k7XszTvAkrp49eGEK5sMe5XSUKoaYUlfp+W0p/hr9PTXcDrFhoXQtgLNG960LU5SJKki5shkTaqgfRYbDNmumfEQJsxq+FZJL0vpv/3uRv4xgXGTX9A6SNpaH0VyTKIR5HsnJMBXhVCeMWqzlbSRSnG+G/M7lC1jaSh/qLS/kJfn55+It2WvdX3eJCkeTIk712r5VCM8eEW17626fEfL3Kf5h0nv67FmM/EGE+1uNZcfbp5ke81R4zxEeA30tPtwCdDCC8JIVwaQugJIVwfQng7yWYGh5peWl7K9+nA60iqUwF+NoTwjhDCk0IIvSGErSGEFwP/BWxpGtftOUiSpIuUy820UdXoPCRtLD6kq14EHCYJh14MvJK0+WyM8eVN496fjvunGOM/ND1/P/DyEMIJ4NeA14QQ3hpjbO5FIWlj+GmSMGQn8B0hhL+NMd62yGv2kQQEAM9r2mFsMa0qY7rhYJtrj0uP4yzexP9TTY8f32LM/javH296vJzfoX6V5L39B4AdJJVJ83ef+yzJe/e70/OJZXyflmKMR0MIzyPp4bQdeGH61axC0qT7u0iW33V1DpIk6eJlJZE2qulf9Ftuy0zS3wKg5V/RV0OM8cEYYynGeH+M8ZdJdioC+InmXXlijH8QY7xlXkDU7A0kP+cAc/tbSNog0q3Tm3dZ/KMQwsgiL+t4ie08+RDCkqprluBsm2tb0+OJdDlVO0ebHl/SYsx4i+dh7h8NlryjW4yxHmN8CfCdwO3zLu8n6SV107zvc5QuizH+D3ADSUDV/G9bBW4Dnhpj/FNmw8Kuz0GSJF2crCTSRnWC5JffrW3GTH9QOrb602ktxvi2EMJvAJeT7OrTrtl28+tKIYQvAF/O6v6FX9JFLMb4jyGEd5HsCLaTZPeuH2jzkubfDd5Kh8vUUssJ1Tv5g1W78GcpYU2u6fFymz+vWIzx74C/CyFsJemRdzLGOPPfmhDCtU3DH1ylORwGfiiE8GMk/YlywMEYYymdQ5Zk+fKqzUGSJF18DIm0UX2R5JfffW3GTF+7d7Umkfb+2EkS4nyyzY41D5GERHO2IQ4h9MUY2/VVmv7w1Wr3Gkkbw48DzyQJxm8JIfxdm7HN/XhqMcY7lvk9p4OdxUKc4WXef9r0fLeFEDK
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAASbCAYAAAAfsp+PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZikd1nv/3dVdffM9GQPazayIF8gRBZRfhGUCOjxiCtuqGxGVkFEOQfwCAIuoCKCG6ACKiCbO3rgKItBQEEJIGu+SQhZJgmzb71U17P9/nie6q6uruqu7q6qnu68X9c1V23PVpNc1TWfvu/7WyuKAkmSJEmSJKmX+lZfgCRJkiRJkk5dhkeSJEmSJEnqy/BIkiRJkiRJfRkeSZIkSZIkqS/DI0mSJEmSJPVleCRJkiRJkqS+DI8kSZIkSZLUl+GRJEmSJEmS+jI8kiRJkiRJUl+GR5IkSZIkSerL8EiSJEmSJEl9GR5JkiRJkiSpL8MjSZIkSZIk9WV4JEmSJEmSpL4mtvoCJEnSeIUQrgEeXT18aYzxNwbc7w+B51YPL4kx3jz8q1MvIYQzgJ8FfggIwB7gIPDvwBtjjP86wDGuqo7xrcDdgaPAl4F3AX8RY2xt4Loa1TV8C/DRGONV6z2GJEk69Vl5JEnSXdvLQggP2OqLUH8hhMuB/wZeTRnSnAlMAecDPwp8JITwhyGEWp/96yGEPwL+tdr+/Gr/ewLfAfwJ8F8hhG/YwOW9sLomSZK0gxkeSZJ017YLeEsIwe8Ep6Cq4ugDwMXVU++nDIC+HXg+8PXq+ecCr+xzmN+grDgC2Ac8r9r/CZRVRwDfCPxTdb5Bry2sck5JkrSD2LYmSZKupAwiXr/VF6IVngdcWN3/oxjj8zpe+1gI4T2UVUn3Al4cQnhjjPHO9gYhhMuA/109vAl4WIzxeMcx/i6E8CXg14H7Ved71VoXVYWNbwV2b+xtSZKGIYQwDbwIeCJwCXASuBZ4fYzxAxs85kXArwDfDdyDsk36w8CrY4xfWWW/XZQ/R36cssV6Cvgq8G7gtTHG+T77fSvwv4BHAWcBh4F/A347xnjtRt6Dhs/fMkqSdNeVA2l1/zdCCJdu5cWop/9Z3WbAS7pfjDEeoKwsgvJL+nd1bfLTQKO6/4Ku4Kjt1cCx6v6PDXhdP085O+k4kAy4jyRpiEIIe4GPAC8HLgW+BMxS/ix4fwjh5Rs4ZgA+A/wMcBrlLyh2A08GPhNC+B999rsn8J/A7wAPA26jrI69HPg14OMhhDN77PczwMcoZ/pNVe9hmvLn0SdDCE9e73vQaBgeSZJ015UAr6nuTwN/uoXXot7uUd3eGWOc6bPNFzvu37vrta9Tzjq6Dfhgr51jjDlwffXworUuKIRwX5YCq/8NrHvQtiRpKP4IeATwOeCyGOPDYoz3AZ5C+cuhV4QQHjfowUIIE8A/AecCbwfuHWP8ZsqfLX9IGSK9O4Rwbtd+NeC9lC3QXwYeGGN8UIzxEsoFOg5QBkqv6trvMuCNlLnEHwD3jDE+lLKa9s2UnVJv9pdbpwbb1iRJumt7JeVv++4PPCaE8IwY46ZCpGoA9/OAxwIXADXK8OJfgT+IMX65z37XUH7JXIgx9m2HCiF8kfI3mbfEGC/ueq2o7v4C8H8pv+w+ijIouxF4SYzxQx3bnwE8HfgB4EHA6ZTl8p8F/gp4e4wxpUsI4WLga9XDHwLeBzyN8gv75dVxbgf+mbJU/6v93s8a7qBsJzsvhHB6jPFkj23u27X9ohjjH1L+HfRVfelvh0Z3DrDtWyhXe/vXGOOfhhBet/pbkCQNWxW8PImyivinYoy3tV+LMb49hHA/4KXAK4AP9TzISk+i/JlyK/D09iqcMcZWCOH5wIOBb6P8GfvSjv1+hHKW3gngsTHG9jw+Yoz/FkJ4CWWr81NDCC+IMbYrVn8CmASuo6yOzat95kMIzwEeQ1lR9STgVwd8DxoRK48kSboLizEuUIYnefXUa0II52/0eCGElwFfoBzQHIC9lFVNAXg28IUQwiv6rQw2RBcCn6As3Z+mXKHsYZQBUvtav4PyC+trKb/0nkP5JfZelO1ibwU+W31BX8005Rfzt1CGX3ejHER+KfAc4EshhO/Z4Pt4X3Vbp5xLtEwVfv1S9XCWcqD2ev0c5XsGeM8a2z6X8u9qDnjGBs4lSRqOJ1O2Jf9Hn1/KvKm6fWQ1w2gQT6tu394OjtpijAXwx9XDn+iz3+90Bkcd/oayte5FlD8f29oz/b7YDo46zpdS/iIHBqiK1ehZeSRJ0l1cjPET1VLuP0cZsrwJ+L71HieE8ArKL4cAnwfeUN3WgW+iHMp9Wcc2r9jMda/hBZQVT78N/CNlOPKQGOPN1bVeSVmZtAcogL+kLLnfTzlw9GrK4OlBlIOpv6lzEHWX11bH/yRlC8H1lCX+zwW+k/KL8p+HEC5dpfWsnz8Gfhh4JPD8quLpbSzNkfglypXYcuC5McZDax2wCu7uBlxRXeMTqpeuBX53lf0uAX6zeviyTVRTSZI278rq9uO9Xowx3h5CuAW4D+UvNt6+2sGqhRC+ZbVjUv5SBuDSEMKFMcbbQggNygohgL/tcy0n6F05dGt1+40hhHpngFRdz+XVw5tXu3aNh+GRJEmCMoT4Psog4ntDCD8ZY3znoDuHEB4GvKx6+Hbg6q52r0+EEN5COUvhKuBXQgjv7dfCNgR14FUxxl/ueO6vq2ttUFYV7aEMXX48xvjXHdv9J/CeEMKvULb13ZsyxPn+Pue6F+V7flrXF9/3Ub7f7wHuDjyetSt7lokxzlXDSV9C2Sbw/T2u43PA82OMHxvwsH9KOQi101uA/9Uv3KoCpzdTVpJ9Clfmk6St1m5ZXi3Iv5kyPLrfAMc7n/Ln4mrHvI1yAYdGdczbgG+gnIWUAdeFEO4OPJXylx6nATcAb4sxfrLH8f6C8vvH/YDfDSG8qGqRmwJ+i7Kl/jjlz2xtMdvWJEkSMcZZ4JkdT/1e9QVwUC+k/F5xGHh2rzlB1Tmupqz0qVFWOo3SG/s8/32UX0gB3tgVHC2KMf4qcE17nxDCA/scr0nHrIaO/QuWDyF/8CAX3cPlwENY+lLf7QHAE0MIZw94vPv0eO5xwDOq3/T28kzK3yy3gJ/pfq+SpLFrL6hwcJVtDle3d1vH8foeM8aYUYY5ncds/0w5Svlz4iuUi3H8IOXPlucA/xFC+N3ulvUY4z7KKt/rKVfxPBBC+AxlFfALKFd9+44Y47J5ftoahkeSJAmAGOMHgT+rHt6NcuWTNVVfBttLyn8ixji3yjm+RvnFEsqB2qNye/WltJfOZYb/uM82bW/ouP/dfba5NsZ4pM9rnb+9PX2Nc60QQvh+4KPA91IO4H4KZRXTbsow6k8p2+J+Fvhw9wo4fbyBcuDpI4FfpPzN8X0oW/z+sjtACiFcyNKqfK+KMX5pve9DkjR009Vtc5Vt5ru2HeR46z1m+2fbXuDvKH9WPZbyFx7nUbaq55TVsy/qcbwTwKer+2cCDwXOqh6vuoiDxsu2NUmS1OkXKUOSewM/HkJ4V4zxH9bY52KgXfXy/R0rnq3lko1d4kBuW+W1B1W3Myxf5r6XzjL7K/psc/Mq+3e2ga3re1cI4TzgnZRB0T7gEV1zlz4PPDOE8DnKWUsPrW6fuNpxY4x/1/Hw30MIf0E58Puh1b4fZHmLwJ9S/uPgC3QtsyxJ2jIZgxeDDPJzOVvn+dvH3NNxewvw6Bjjseq5O4FfrdrFfwV4WQjhT2KMRwFCCI8F/oEyePoDypbofZTfD15EWa38HSGEx8cYr1nn9WnIrDySJEmLqi98z+146o0hhLP6bV8ZpBy+l4kQwrqrcQZ0YpXX2tU5h6rWstXs77h/Tp9tVhuC3Xn89a4w91TKL9QAL+k3sDvG+Abg36qHPxJCuOd6TlJVTT2l46mr23dCCFdTVmpllO1qCZKkU0H7Z8/uVbZpBzt9K4J7HG+9x+w89us7gqNOvwksUP5MeyxACGGS8pcTe4E3xBifH2O8KcbYiqWfoQyUpoE3hxAsfNl
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3xkd33v//eod2l7s9de2/hrbIMxNaZcDMlNgARSfpeQX9olhoT0EFK4SSCQ5Md9JIEkQG5uSKGlcSmBQG4glIAppoVisNfrr71rb9eqa/qZOe33xzkjnRnNSDPSjKTVvp6Pxz5mRnOatKuz53zmU1JhGAoAAAAAAACop2urDwAAAAAAAADbF8EjAAAAAAAANETwCAAAAAAAAA0RPAIAAAAAAEBDBI8AAAAAAADQEMEjAAAAAAAANETwCAAAAAAAAA0RPAIAAAAAAEBDBI8AAAAAAADQEMEjAAAAAAAANETwCAAAAAAAAA0RPAIAAAAAAEBDBI8AAAAAAADQEMEjAAAAAAAANNSz1QcAAAC2H2PM3ZKeHb98jbX2DU2u978k/UL88pi19nT7jw7NMsbcLumriq75fspa+641lt8r6VWSXiTpOkmepEclfVDSn1tr5zt6wAAAYFsi8wgAAKzltcaYx271QaA1xpheSe9Ukx8WGmOeLOm4pN+SdIukQUmjkh4v6fWSvmWMeWJHDhYAAGxrBI8AAMBa+iW93RjDdcPl5bcl3dbMgsaYQ5I+Kmm/pLKkP1KUefZcSX8hKZB0laR/NcYc6MjRAgCAbYuyNQAA0Iw7JP2ypDdv9YFgbcaYx0v6nRZW+UNJ++LnP2St/bfEe58xxnxe0nskHZb0Okk/35YDBQAAlwU+QQQAAKsJFPW9kaQ3GGOu28qDwdqMMT2KytV6Jc02sfxBST8av/zXmsCRJMla+15JH4pfvswYs6tNhwsAAC4DBI8AAMBqXElvjJ8PSfqbLTwWNOc3JT1R0ryiXkVreaGWs9H/bpXl3h4/9kn6/vUeHAAAuPxQtgYAANbye5J+UNJNkp5rjPlpa+2GgkhxA+5flPSdinrppCSdk/QZRVO9Hmiw3t2KevGUrLUDq2z/fkVNn89Ya6+teS+Mn/6qpH+T9L8kPVNRoOykpP9hrf1UYvkxSS9XFDC5VVET6TlJ35T0fkl/b631VMMYc62iSWVS9PP7iKSXSvrJ+NhGJV2Q9HFJf2KtPdXo+2mWMeZmSb8bv3yVpHwTqz0j8fzuVZb7vKRQ0d/VcyW9q/UjBAAAlyMyjwAAwKqstSVFwZMg/tIbjTFH1rs9Y8xrJd2nqG+OkTSsKKvJSPpZSfcZY15vjElt6MDXdrWkeyR9d7z/cUUZOycTx/ocSQ9K+hNJ/0XSbkXlYAclPV/SOyR90xhz/Rr7GpL0KUXZO8+WtFdRI/LrJP2cpOPGmBds5JsxxnQrKlfrl/Rxa+27m1y1Mklv0VrbsMzNWpuVNFOzDgAAuAIQPAIAAGuy1t6jaOqWFAVZ3rae7RhjXi/p9yV1S/q2omDR0xVl/vyKpFOKrk9eF//ppFcqCuL8saRnSXqxpP9prT0dH+sdijKTDinKuPkHSS+S9DRJPyLpE/F2bpX0+XhiWSN/Iuk5kr4s6SfibfyApE/G7/dLepcxZmQD38+rJD1VUk7Sz7SwXiUQeLaJZc/VrAMAAK4AlK0BAIBm/Zai/jjXSvo+Y8yPWmv/qdmVjTFPlPTa+OXfS7qrptzrHmPM2yX9X0l3SvpdY8z7GpWwtUGXomBRcirZB+Jj7VaUVTSoKOPqJdbaDySW+6qk9xpjfldRWd8hSX+lKLhUz0FF3/NLrbWVDC4ZYz6i6Pt9gaJpZ98r6b2tfiPGGKMoKCdFZXfNBIIqdseP2SaWrZTBTbSwfQAAcJkj8wgAADTFWptXdUbLW4wx+xotX8evKbr2mJP0s/X6BMX7uEvLvXV+af1H3JS/bPD1Fyrq8SRJf1kTOFpirf19LfcJemHcc6geR9Irk4GjeP1Q1U3Ib2vmoJOMMV2KAl0Dkr4g6X+3uIn+xDGupVizDgAAuAIQPAIAAE2z1n5SUV8dKSr5+vNm1ov7Fz0/fnmPtbawyj4elXQifvmd6zzUZlyw1p5v8N73JJ7/1RrbSQZrntdgma9ba+cbvJdslD26xr7q+WVFpX+OpJfHAalW+PFjK+u1ug8AAHAZo2wNAAC06lWKgiSHJL3EGPMea+2H11jnWkm74ucvSkw8W8ux9R1iU86t8t6t8WNO0v1rbOfLieePa7DM6VXWzyWet3RtFjfqfkP88vestbaV9RP736Uoc2ktg/FjM1lKAABghyDzCAAAtMRauyjpFxJf+ktjzFo9cPauc3c9xpj1ZOM0I7PKe3vix9kmMnmmEs93N1gm1+DrUnUWT9MT5uJsrrcrmuT2TUlvanbdGpVeR8NNLFtZplEWFQAA2IHIPAIAAC2z1n7IGPN+RRPKDimaJvayVVZJXnO8Q02Wu8UalritopkPyFYLCjUdxFE0Oa4iaLhU+71C0rPj52+VdGvUN7vKtYnnR40xT4ifn7TWVgJaZyQdlXR1E/usLHOx5aMFAACXLYJH2FGMMUOSflPRCOVjij5N/bqkN1trP7bObT5V0fjoZymallOU9ICk90h6m7W23GC9Lkk/Jem/Kyp/GFZ0gf5hRdN9Ftq5PwDYAr8o6bmKsnTuMsb8n1WWTWaq+Nbae9e5z0rAZ63gzvg6t19ROd69xpjUGtlHB+qstxm+I/H8nQ2XWvZ78R9Jeo6WG30fV/R/zl5jzLi1Nl1v5TgDrNIgvVMT8Ha8Tlyr1NnHe+LtP8Zae7KF9a5WVKY5JumYtfZ0g+WeqagB/jMU9ek6LenfJP2ZtfbChg4eQEu22f3Pus4Nxpj/JunnJD1J0UCGc4omkb7JWsuHFdsEZWvYMYwxw5I+Lel1kq5TdDGcl/Tdkj5qjHndOrb5K5K+JOlHFZVcnFBUevAdkt4i6XPGmLEGx/JJSX+r6KQ7o+jkeb2kX5f0DWPMVe3aHwBsBWvttKRfTXzpr9W49OkRLWcQfUeDZZYYY15tjHmFMea7at6qTGjrM8Z0164Xrzuo5SDHen07fhyRdMsayya/nwc3uN+tkOzZ9MxVlnuWloN2n+/c4excnbhWqbOPn1V0E9nqeilFWYGrXmcYY14t6XOSfkBRD6z7FfXM+jVJ9xtj7mx13wDWZ5vd/6zr3GCM+VtJ71f0YVRR0f+jhxVdXxw3xjyj1e8BnUHwCDvJX0h6mqR7JV1vrX2itfYaST+p6Gbj9XVuQhqKT1R/puj35I8l7bLW3matPaLo5HYx3l+9KTx/mVzGWmustUbSEyQ9rKiMoGq9De4PALaEtfbvJVU+2bxW0o81WM6V9Jn45ePiTyfrMsY8V9IfSnqbpN+ueXsx8fzaBpv4Lkm9qx13Ez6ReP6KNZb92cTzT25wv02z1r7UWpta7Y+issKKn0q8d3fi6x+W5FaWWWWXlbJEV9EnyWhdW69VahljXqnq6X+t+HlFvzurbf+Fin43U5L+RtJBa+1TFN3o/YakCUU3rJ1sdA9g2ba4/1nvucEY8zJF/7d4kn7cWnvIWnt7vN574/U+GGdXYYsRPMKOEE+b+XFFvSZ+zFq7NEEnvrH5w/jl61vY7G8oOgH+q7X21dbaUmKbn1FUjiZJPxKneVeO5amSfkLR6OPnWWu/mljvPi3fhDzfGHNko/sDgG3gFVpuurxa0OZPE8/fVe9cZozZryiDqeKtNYt8O/H8l+qsf0DSG1c92uZ8RFKl3OfnjTE/WG8hY8xrtdx36D82UI63ZeIG6P8Yv/whY8wP1y5jjHmJpMrP4B/jrDO0oEPXKpVtHzLGfEDRTV8r/bqSx/ZHWru/WKXs8RPW2p+x1uYlyVobWGvfJOn/KMo4+NNGGwDQHtvp/kfrPzf8Rvz4Rmtt5f8hWWszij7MWJC0X8v//2ALETzCTvETihqWfslaW68Pw9vix2cYY442uc3nxI/vafD+f2j5ZunJia9XTqrvjoNFte6W9BpJv6w
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxkWVnn/2/uWZWZte9d1VR3NZymG2hBARtxaERZxEHRURaVHwIOooKo4zIjq+sowiiI4gIq+FNB0YEXgiibSCtLA930UnW6q7przX2LPe4+f9wbmRGRsWfk/nm/XvWKuBH3nnsyq/JW3iee5zk9URQJAAAAAAAAqKV3oycAAAAAAACAzYvgEQAAAAAAAOoieAQAAAAAAIC6CB4BAAAAAACgLoJHAAAAAAAAqIvgEQAAAAAAAOoieAQAAAAAAIC6CB4BAAAAAACgLoJHAAAAAAAAqIvgEQAAAAAAAOoieAQAAAAAAIC6CB4BAAAAAACgLoJHAAAAAAAAqIvgEQAAAAAAAOrq3+gJAACAzccY8zlJz0g232Ct/Y0Wj/sDST+VbN5grb3Y/dmhFmPMUUk/K+n5km5Q/CHheUkfk/T71tqpDsd9raR3Jpv8nQIAsAOReQQAAJp5ozHmsRs9CdRnjPmvkh6S9EuSHidpRNIuSY+X9D8lPWiMeU4H494g6be6OFUAALAFETwCAADNDEl6rzGG3xs2IWPMHZL+UdJY8tJHJH2fpG+V9EpJ5yTtkfQxY8z3tjFuj6T3Kg5EAQCAHYxfAgEAQCtul/S6jZ4EKhlj+iX9uaS+5KVfsNZ+n7X2I9baL1lr3yfpmyX9m+J2BX9kjBmrM1y1V0t6ZtcnDQAAthyCRwAAoJFQkp88/w1jzI0bORms8AJJp5PnH7HW/m71DtbavKQfleRJOi7p55oNaoy5XtLvJJuzXZkpAADYsggeAQCARjxJb0ue75b0pxs4F6z0HWXPf6/eTtbaK5I+lWy+qIVx/1RxGdwXJH2o49kBAIBtgdXWAABAM2+V9EJJN0v6DmPMj1trVxVEShpw/7SkZ0k6KalH0hVJn5X0LmvtA3WO+5ziVeAca+1wg/Hvk3SrpEvW2tNV70XJ05+V9E+S/kDS0xUHys5L+mVr7afK9t8j6VWSvldxM+oxSXOSvi7p7yR9wFrrq4ox5rSkR5LNF0r6qKSXS3pZMrcxSdckfVLS2621F+p9PQ08quz5l5rs+4Ck50m62Rizz1q7WGsnY8wrJT1bUlHx1/3aDuYFAAC2ETKPAABAQ9ZaR3EQIUxeepsx5rpOxzPGvFHSvZJ+UpJR3JB5d/L8JyTda4x5S9KweS2dknSn4kDJbkl7JT1JcQCpNNdnKm44/XZJ/0XSAUkDko4pDsS8T9LXjTFnmpxrt+LMn/cqDn4dUtyI/EZJr5F0vzHmuzv4GgaTx8BaW2iyr5c89kh6dK0dkr/Xtyebb7XW2g7mBAAAthmCRwAAoClr7Z2S3p1s7pX0nk7GMca8RdKvKm7w/A3FwaKnKc78+RlJFxT/fvLm5M9aer3iIM7vSPp2ST8o6TettReTud6uODPpuKRI0l8p7jH0VEkvlvQvyTiPk/TvxpjjDc71dsXNp7+ouP/QUxWviPavyftDkv7CGDPa5tdQ6kfUZ4w51mTfU2XP6+37J4r/fr8uaUX/JAAAsDNRtgYAAFr1PyX9V8UNmr/HGPNSa+1ft3qwMeZJkt6YbH5A0iuqyr3uNMa8V9LHJN0h6U3GmA/VK2Hrgl7FwaJfKXvt75O59inOKtqlOOPqRdbavy/b78uSPmiMeZPisr7jkv5YcXCplmOKv+aXW2tLGVwyxnxU8df73ZIOS3q+pA+28TV8SdJLk+cvlPRHtXYyxgwpzrAqGamxz8uSefha+XcDAAB2MDKPAABAS6y1OUn/veyl3zfGHG5jiJ9X/LvHnKSfqBWcSM7xCsWZPj1a+347NYMtioNkN5f2qQocLbHW/qqkz5WOMcbcUme8oqTXlweOkuMjVTYhv62VSZf5O0lO8vytxpgb6uz3a4qDUyUD5W8mWUulhtu/Y629u815AACAbYzgEQAAaJm19l8l/XmyeUjSu1o5Lulf9Lxk885k+fh653hE0tlk81kdTrUV16y1V+u895yy53/cZJw/LHv+3Dr7fNVaO1/nvfJG2WNNzlXBWjsh6beSzcOS/tMY8ypjzBFjzKAx5jZjzAck/YLi5twlbtVQ75G0X3F/p19tZw4AAGD7o2wNAAC06+cUB0mOS3qRMeZvrLUfaXLMacXBCUl6QdmKZ83Uy6TphisN3ntc8piVdF+Tcb5Y9vzxdfa52OD4bNnzTn43+zXF/YxeKemo4kym6tXwvibp1yX9Q7KdK71hjHmJ4pXkQkmvTBqkAwAALCHzCAAAtCVZ4v2nyl76I2PMviaHHerwdP3GmLaycdqQbvDeweRxNikta2Sq7PmBOvtk67wuxSV6JW2vMGetDa21r5L0EsWNrstdVNyr6vaq80xJkjHmiKR3Jq+921r7H+2eHwAAbH9kHgEAgLZZa//RGPN3ilcoO654NbFXNjik/HeO96nFcrdE3RK3Blr5gKxRUKidIE5f2fOw7l5rzFr7t5L+1hhzUNIRSXPW2unS+8aYm8t2fyR5fKfiwF5K0oeMMd9UY+jywN8tpUAhfZEAANg5CB4BAIBO/bSk71CcpfMKY8zfNti3vN9PsIrAQyng0yy4s7fD8UtK8z1kjOlpkn10tMZxG8ZaO6e4KXm1b00er1lrZ6te2yvp31sY/p/KnredJQXJGLNb0i9KerHissyMpK9K+j1r7Sc6HPN6SW9SXE56RNKMpE9L+i1r7dkGxz1N0v+Q9HRJ+xT/u/m84qbpX21w3B7FDfBfKOlGxf8Wzkr6C8UN5oNOvg4A7Vuja8qzJL1ecdbqmKRxSf8i6R3WWtviGL2KryffJmmg3gqexpg7JH22yXAfsdZ+X2uzx1qhbA0AAHQkyWr52bKX/kQ1loBPPKzlDKJvrbPPEmPMLxljXm2M+c6qt0q/fA4aY/qqj0uO3aXKlcU68Y3kcVTSrU32Lf96zq3yvG0xxtxkjPl1Y8yf1skaKu03Ium7ks1/XZ/ZoVry9/AZSW9WHHS5X3H/qWdL+rgx5s0djGkU97R6peJ/r/dIGpb0o5K+Zox5Tp3jXqk4YPhCSYPJXHZL+iFJXzTG/Gid4x6juA/YmyQZxQ3fFyV9s+KMwo8ZYwZqHQugu9bomvImSZ+S9D3JS/cr7ln43yXdbYz5gRaH+k3FgaNmSquMTki6s86fB1o8J9YQwSMAANAxa+0HJJU+2Twt6Yfr7Odp+ZPFxxtjnl5vTGPMd0j634pXAPtfVW8vlj0/XWeI71TVUvQd+Jey569usu9PlD1f78DMkKRfkfQqSS9qsN9rFQcGJOkDpRettaettT2N/kh6d9k4N5S9jva9W9JTJd0t6Yy19knW2kdJepniwOhbagRM6zLG9Ev6mOLsvw9IOm6tfbLiUtI/UBxEKpUylh93RtIfKb4XeJeko9baJ0o6JunPFFcn/Jkx5saq44aT851SnFFwo7X2NmvtdZJ+QHGA+LmKMxYArL1uX1OeJemtyeYvKL42PElxhu3vKb6m/JUx5mSDMfqMMW+T9EstnrYUPPp9a+3T6/yp/l0AG4DgEQAAWK1XK06TlxoHbd5R9vwvjDGnqndIGjj/SdlL76za5Rtlz19b4/ijkt7WcLat+aik88nznzTGvLDWTsaYN0p6RrL56fXuA2StvV9SqYTgNcaYR1XvY4x5pqS3JJuft9Z+Zp2mhzJJwOZHFPfF+mFr7dJqf0kQ9n8nm29pY9gfkXSTpMuSXmWtLSTjuZJepzizaJ8qMwSluLn6gOJMudeXVthLjn+N4kzBwWT8cq+V9GjFjdifZ629VvY1/IOk3002X9XG1wCgA2t0TfmF5PFvrLW/WypBTa4RP6e4PHVY0v9XZ06PVlwy+z/aOGcpeHRvG8dgAxA8AgAAq5L8wtr0E8YkaPFHyeYZSfcYY95kjHlG8ufnFa8
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAASbCAYAAAAfsp+PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5hk+V3f+3flXN09nSfspJ35za60ghVC0goBEnAJxjJgwGAwGMsXENiyCdeACUISBhOMDTY2Al+RBMYEY6PrJBBKaKWVLGlXYcOZ3Z2wM9O5u3I8Fe4f51TVqe6qzj3T3ft5Pc88XeGcU6dmp39b51vf4Gu324iIiIiIiIiIiAziv9cnICIiIiIiIiIih5eCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMpSCRyIiIiIiIiIiMlTwXp+AiIiI3F3GmA8AX+re/UnLsn52m/v9GvCP3LvnLcu6sf9nJ9thjAkDnwJeAjxiWdZj29jn5cCbgC8BTgMBYBH4CPCblmV9YBvHeCnww8DrgVkgDzwN/B7w25ZlNXfzfkRERORwU+aRiIjIi9tPGWMeuNcnITv2L3ECR1syxviMMb8IfAL4bsAACSAKnAX+LvB+Y8xvu0GpYcf5hzgBq+9y9wsDE8AXA/8R+JAxZmy3b0hEREQOLwWPREREXtwiwDuNMfpMcEQYY/458EM72OUtwD8DfMCce/uLgdcAbwauudt9F/AfhrzmV+IEiEI42UpvBh4Bvg54j7vZa4A/Mcb4dnBuIiIicgSobE2OFWNMHPgR4FuB80AB+CTwK5Zl/a9dHvPLgR/A+ZCcwvng/RfAv7Ysy9rBcb4AeAwIWpY19IO1MeYNwD8GvhDnW91rwJ8Av2ZZVmY370FEducg1pQBr3EG+ByQZgelYNvdb8gaFlm32SPAPwF+ZefvQO4WNyvoV3FKz7a7z1ngx927V4HXWpa17Nnko8aY3wP+CngF8A+NMb9lWdZHPMcI4QSVfMAK8CrLsm56jvFuY8y/B74f+HLgm4E/3un7ExERkcNL3zLKsWGMSQDvA34auAA8CZSArwT+pzHmp3dxzLcA7wX+pvvQk8AY8D3AE8aYb9zmcSI4/SA2Ddi6H77f7Z5zG6ePxGng7cBn3F4TInIXHMSaMuA1fMBv4QSA9n2/TdawWfd+C2i4t3/WGHNhJ+chd48x5pXAo/QCR9vtLfTtOF9EAPzAusARAJZl5YHv9Tz0nes2+VvARff2v1wXOOr4IZzAJDiZTSIiInKMKHgkx8m/B14FPAFctCzr5ZZlncX5ENwA3mqM+YrtHsz9tv5t7t1/BkxblvVyYBrn2/ko8PvGmNPbONy/AB7c4vXejPOtLTjBohnLsr4Q5yLvV3CCSO81xoxu9z2IyJ7s65oyxPcDuznGlvttsYbddh/3A+9wb8dxypLkkDHG/DxO5uor3If+nO1niX2x+7MC/OWwjSzL+hSw5t79vHVP/233Zxt415D9a8AfuHdfYYw5t83zExERkSNAZWtyLBhjLgJ/D+db9G+3LOtW5znLst5ljLkM/CTwVpxv4bej883pH1qW9a88x6sZY34I+CrgAeDvA0MnFRljvgjnG9kyzsXZoG2CwE+5d3/TsqxuRoP7gfwHjTGvwikt+WngB7f5HkRkFw5oTRn0Gr/AJmvDHvfbbA17HicgDbAMPANcAb7MGPPdlmXtKYjkNuD+xzglTKdxyp1uAe8H/p1lWU8N2e8DOFPgapZlRTc5/udwmkXftCzr3Lrn2u7NHwT+B/BrwGsBG3gO+DHLst7r2T4N/N84vXteilPatwo8jlMy/C7Lshqs4wZHrrt3vwEna/S7cIKLL3GPcwenH9AvW5b1/LD3sw2vxvk7XAN+xLKsdxpj3rrNff8IJ+MsNOh9rNMpqV7/d/9F7s+nBmUueXyI3r+7L8PJjhMREZFjQJlHclx8B87I4Y8OuSjpfLP+RcaY+7Z5zEdxLgY2fPi1LKsNfNa9e3bYAdyyl9/BuQB9yyav9Qpg0r39i0O2+VX353eoGanIgTuINaXLbU79uzgTr358i813u9/QNWyd0zjBk5Z7/5eMMae2e04DzvGncNbH76c31Svu3n4T8FljzFvvwjp2Bufv4Cvd1x8BXo4TQOqc6+txAme/jDO+/gROQ+gZ4Gtw/u4edwN2m4njBBHfiRP8msDpK3UB+D7gSWPM39jDe8ngBAzvtyzrnTvZ0bKs37Es6/+xLOufbradMeZlOCWNADc9j8eBzr/xZ7d4OW+ATBP8REREjhEFj+S4eMT9+eFBT1qWdYfeh+Ev3c4BLcv6Gcuyvs77DXWHMSYAPOze3ezD9C8C9wM/j9Nkd5hOACq3ybfTnebc48ClTY4lInu372vKOj+Mk83x+zglSPu+32Zr2DrPWpb1KE6ZHjhBlndssv1QbjbM23ECb5/BCRa9Bifz55/iBBf8OBmUe+4ZtYUfwAni/CJO6dY3Az/XaSxujHkEJzNpFqcc6/dxevu8CqdB+l+4x3kp8NfGmFmG+2Xg9TilZd/hHuPr6ZWJRYDfMcYkd/levtGyrB874KEJ/9xz+z2e2yfpZSS9sMUxbnlu7zoAKSIiIoePytbkuLjf/blZWcANnCDN5b28kPsN9M/jBHAWGPKtvttv5PtwLqDeTi/tf5BOmYW9yTYhz+1zOFNzRORgHNiaYox5EPgZYB5nwtnIQe434DgX6e/B1lnD/jnwBpz15W8aY77Nsqz/tIPjvpxe+e27gDeuK5N61BjzTuC/A68D3mKM+eNhJWz7wI8TLPoJz2N/6p5rAOd9x3Ayrr7Fsqw/9Wz3ceCP3Ibjb8MJMP0GTnBpkBmc9/xdlmV1Mrgwxrwb5/3+DZzs0q/FKSPbEe8xD4Ix5ptxAmYAS/T3NTrhuV3Y4lAlz2315xMRETlGlHkkx8WU+3OzXgyr7s+J3byAMebn3D4hV4FvAj4KvN6yrNUB26ZxLkwaOBcTmwWFAK51zm2TBtwv8dweG7KNiOyPA1lT3P5mv4eTifI9280k2e1+647hXcM6ZbL1zhpmWVYJZ5Jkx68aYybZvh/G+VyxCrxpUH8d9zXeiBMw9wFv3un72KFfH/L4G3B6PAH8+rrAUZdlWW8HPtDZxw3gDVLFmWTWF+RxS5y9/aPWN6K+54wxr8Epr+74Icuyip77Ec/t6mbHct9vbcB+IiIicsQpeCTHRadp7GYfbCvrtt2pL8fpX9H5vTlDb/z1er+K0yPi5yzLenwbx36c3vSjn1r/pHvh+COeh8LrtxGRfXVQa8pPAF8A/K5lWf/9LuzntX4NY91tLMv6S+C33bsTwL/bzoHd/kVf49591LKs8rBtLcu6DjztOaeDcseyrNtDnvsqz+3f2OI4/8Fz+6uHbPNJy7LWhjznzV5LbfFad5U70OF/0vs3/A7Lsv5g3WZNz+0227eTbUVEROSQU9maHBdNth8M3e0H2m8F5nCCRt8J/BhuY1nLsrrTz4wxb8CZuPMEm0xh87Isq2mM+XGczILvcS/EfgGnv8SD7u3zOCUBCTYvbxORvdv3NcUt6/oJnAlcP7DdE9ntfgN417D34pTcBY0x/8a7huFMh/xqnFKtbzHG/KFlWVv1ZTpHLyPyb3kmnm3l/HZPfhdubfLcS92fReBzWxznMc/th4Zsc2OT/b1ZPIfmc5fbwPtP6AWO/gvOhLz1vOc/dAKee0wfvYyjTbOURERE5GhR5pEcF50Pt5t9sI25P4d+I74Zy7KuW5ZVsyzrOcuy3oIznQjgzZ1JPMaYceA3cYI72ylX8x7/XTgXiC3gu3EmAtVxglCvBL6R3vvM7+Y9iMi27euaYoyJ4ExJCwHfbVlWdjsnsdv9BvGuYfQHO7prmLtdFvhHnud/3RizVf+
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAASbCAYAAAAfsp+PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xkeV3v/3elrs55ctiZndn9LpmFFVhAWUARJZiVK4L88CpiuCL3EkSRFYUrRhBBDKACkgwErwgSJLO7sLuw7ALf2Z2dnHq6u6q6K8ffH99TVae6q6qruqvD9Lyej8c8KpxQp2a6z9T51CcEKpWKAAAAAAAAgGaCm30AAAAAAAAA2LoIHgEAAAAAAKAlgkcAAAAAAABoieARAAAAAAAAWiJ4BAAAAAAAgJYIHgEAAAAAAKAlgkcAAAAAAABoieARAAAAAAAAWiJ4BAAAAAAAgJYIHgEAAAAAAKAlgkcAAAAAAABoieARAAAAAAAAWiJ4BAAAAAAAgJYIHgEAAAAAAKCl8GYfAAAA2FjGmM9Jeor38HestW/ocLu/lPSr3sPD1tqTvT86dMIY0yfpLkkPk3Sztfa2DrY5LOllkp4h6aCkgKQzkj4t6c3W2vs72MeT5X4GniRpl6SspGOSPirpbdba2KreEAAA2NLIPAIA4Or2WmPMQzb7INC1/ysXOOqIMeanJN0r6X9JukHSoKQBSddL+hVJ3zLGvHCFffyxpC9Kep6kA5L6JI1KuknS73v7eEzX7wQAAGx5BI8AALi6RSW90xjDZ4IrhDHmtyS9vIv1Hyfpn+QCRiVJb5X0w5J+QC4IlZf7Ofh7Y8wPtNjHyyT9H+9hXNKrJN0i6cckfcB7fp+k/zTG7O7uHQEAgK2OsjVsO8aYQUmvlPtm9LCkRUl3yqXk/+cq9/l0uVT/myWNSDov6b8k/Zm11rbZ7jmSfk3S98h9Q/ugpH+W9JetUvuNMS+S9PcrHNJbrLUv6/JtAFiFdTqnPE7Sb0j6Xkm7JWUkfVvS+yW9w1qbb7HdwyS9WtLTJO2QlJB0u6Q/t9Z+ps3rPVHuwv/JksYlVZascrNcRsqbV/N+sDG8UrW3SPrlLjf9A0kR7/7/sNb+s2/Zp40xn5T0WbkvFf9U0iOXvO6ApN/zHi5Iuslae9y3ykeMMd+W9HpJOyW9Ru7nCQAAbBN8y4htxRgzJPcB+HWSrpV0n6SUXH+HjxtjXreKff6uXD+IZ3tP3SdpQtIvSfqGMeYnWmz3Nkkf8167Iuk7kvbLfbi+xxjz8BYv+Sjv9oSkL7f482C37wNA99bpnPIbkr4q6WclTcudG5KSniAXGPiCMWa0yXY/JOnrkn5OLgD0bbmeNc+SCwD8VovX+wW5UqMfkwti3ycp5Ful5N2+wRhzbbfvBxvDCzh+WfXAUanN6v7topKe6j28Y0ngSJJkrf28pA97Dx9hjLlmySpPlCtPk1xw87iWe6OkGe/+czo5NgAAcOUgeITt5m2SHi/pG5KOWGsfY629RtILJRUl3WqM+f5Od+ZlHFW/bX2FpF3W2sfINQl9s6R+Se81xuxfst2vy/WQkFywaLe19nsk7fG22y93sTfe5GWrwaPfstY+ucWfv+j0PQBYk16fU54k6c/l/v/9I0kT1tpHWWv3yWUTnfde76+XbDcu6b1y55x/kbTXWvtouXPR673V3ug1M/Zvd0TSX3mv91a5c9iNkr7S5PAGJf1tp+8FG8cY84eSbpPrLSS55tSdZolNqp5pfqzNevf67u9Zsmyn737TfVhrS3KB0GbbAwCAKxxla9g2vIukn5NUlvR8a+2Z6jJr7XuMMddL+h1Jt8plEnXiFd7t+621f+LbX84Y83JJPyjpIZJ+XtIbvOMIS3qtt+rfWGtf599O0m8aYx4vVybyOkm/ueQ1q8Gjb3V4jADWwTqeUwKS/t1a+yr/Amvtfxtjfl7SpyQ9zxjzSt9rPlsuCBCX9PPW2rS3TUnS64wxt0j6PkkvlvQl327/h1y50nclvcxaW/aer95W5LKQZuWyoJ5mjPlFa+2agkheA+5fk/R0uWB5darXf0t6q7X22y22+5zcFLictba/zf7vlWsWfcpae2jJsmpJ3m9K+g9JfylXrleQ9ICkV1trP+1bf1TS/5T0I5IeLleaPCfpbrky4/dYa4tNjuGQXIao5LK6PibpRXKBxYd5+zkn6ZOS/rRFtk6nniD3dzgv6ZXW2ncaY27tcNvLcoHOsFyj7FaO+u6fX7LM/7jdPo602B4AAFzhyDzCdvICuYugr7a4MHmHd/skY8zBDvf5ZbkLgnctXWCtrage4PGn+N8k14tEcpkFzbyleszGmED1SS+DaVKueWm7b4gBrL/1OKdUy4fe32L5Z+R6Kkn1LBPJTbaSpAeqgaMlvubdLj2O6nb3+gJHftVAy22qB5T+2Bizr8XxrcgY81q5c+OvSDKShuSymoxcydW3jDG3+s996+SA3Dn8Gd7rj0l6jFwAqXqsT5ULrP2pXPBtUi7YtlvSD8md++/2AontDMoFEN8pF/yalmtAfa2kl0q6zxjzw2t4LzFJb5J01Fr7zm429AJfH/ce3mSM+bGl6xhjbpT0U97DO6y1p5escrukS979X2pS1iZjzK/KBQolF3QDAADbCJlH2E5u9m6/1GyhtfacMeaUXKDnKZLes9IOrbW/32qZMSYk6Ubv4f2+RdUP1Yk23zRXm2xPSbpO9UBRNevou82+6QawoXp6TvGmmf2MXFDjiy1W8wdU/H2Jqhfz1xljhqy1qSXbVRscn1zyfHW7Rxpjgk0CSNXXu10ui+bX5YIs79Aq+tZ42TDVbMt7JL3duw1KeqxcE+UjvnVu7fY1uvAyuff3R5L+XS4g9Ghr7UnvWG+Wy0wakAui/ZOkD8kFSQ7LZXE9Qy4b6YvGmMdaay+0eK0/9fZ/m1yp4zG50q1flZtoFpX0D8aYa621yVW8l59oEfzr1CskPc47xg8ZY94qN/QhJ5eV9Sq5flhzcv38Glhrs15w6ANyvY/uNMb8X7keXCNyWVu/4K1+p9wENwAAsI0QPMJ2Uk25b1cacFLuQu/6tbyQ9y30H8oFfi6qMTOp+k1+oc0uIr77h7Q8eHSvV4by096xZuVKKN5lrT0hABuhp+cU7+L/Eyus9ky5i3HJNbau+ohcKdBeSe/ySssWvOydl8sFKPJygQu/f5T0W97x/ZlXCpdXPWgUkJvY9i7v9jly56RnG2N+1lr7vpXeV5Ux5jGql+y+R9KLlwTBv2yMeaek/yc34v13jTEfalXC1gNBSW+01v6277l/8Y41JPeeB+Qyrn7GWvsvvvXukPRBb2DC78kFgv5a0nNbvNZuuff8In+QxxjzMbn3+8NyGanPkvTBbt/IGgNHstYeM8Y8QW7q2vPlSvqWlkz/q6RXtPo/xlr7r16m1pvkGmj/yZJVSnJBoz+y1i4u3R4AAFzZKFvDdlJt6Hm5zTpz3u30al7AGPNGY8xxuWDPT8pNTHqqtXbOt1p1Etr00kbaPg/z3Z/w3a8Gj54j1xvkpXI9Q54l11vlu8aYbkc0A1iddT+n+BljhiX9mffw69baavNheZlGT5fL6vhpSeeNMXfLBa//RC778YettXf792mtPSuXPXNM0m9ImjHG3CV38S+5YPdTrbXnvdfwZ528xRizQ53733KfK+Yk/XKz7EnvNV7svW5ALtNpPf1Vi+efo3rvnr9aEjiqsda+XtLnqtsYYx7aYn9ZNfaUqm5fUWMT8kdp8zxR7v+eVuWC3yvpJ7wMuWWMMX1yGXaHWmwfkvSj3joAAGCbIXiE7WTQu822WSezZN1uPV2uh0X1d+eAXCNbv7slnfXuv3bJsmpD7Vf6nurz3a9eWAQl/R+5/hFRSY+Qm7TUJ+mvjDE/vcrjB9C5jTinSKpdmH9Iri9QSa7kqtlr3eYtH5L0aNUDXDOq9yxaakGuvEhyJWk3qp55XPGvaK39lKS/9x5Oy01o6+T4A3I9giTpyy36MlVf44TqU7me3sn+V+mcFzxr5gd99/+6xTpVb/fdf2aLde6
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJPCAYAAADBtDWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xkWV338U/nno6T087szu7M7tnALssKyBIXUXwQEyJGQCSoGDFjIKgPBjCBooiCqBhAVPBRDGRhdUGWzTtzZifP9HT3dKwcbnr+OLeqq7qruqurq9P09/169avSvadOL/SZe373d36nLYoiREREREREREREmtG+3h0QEREREREREZHNS8ElERERERERERFpmoJLIiIiIiIiIiLSNAWXRERERERERESkaQouiYiIiIiIiIhI0xRcEhERERERERGRpim4JCIiIiIiIiIiTVNwSUREREREREREmqbgkoiIiIiIiIiINE3BJRERERERERERaZqCSyIiIiIiIiIi0jQFl0REREREREREpGkKLomIiIiIiIiISNMUXBIRERERERERkaZ1rncHREREZG0ZYz4LPC9++cvW2rc1eN4fAj8Sv7zeWnuu9b2TRhhjuoGvALcBd1tr72uijVuBB4CctXZ7A8e3A98KvAJ4KrAHKAIXgE8A77LWnl1uP0RERGTzU+aSiIjI1vYmY8wt690JWbbfwAWWmmKM6QM+AHQ3ePwu4JPAP+ACTIeAHmAw7scbgBPGmNc22ycRERHZvBRcEhER2dp6gPfFWSmyCRhjfgH4qRWc3wN8FHhag8e3Ax8Dnh+/9UXglcAzgBfgAl0ZXKDqvcaYlzXbNxEREdmctCxORERE7gZ+HPj99e6I1BcvhXsn8EMraOMQ8BHgq5dx2iuBZ8XP/xr4PmttUPH5p40xHwL+CxgC3mWM+VdrbbbZfoqIiMjmoruUIiIiW1cI+PHztxljbljPzkh9xpinA/cyF1gKFjm81vltxphX4Oo0lQJLjbbx6vgxBfzwvMASANbah4Dfil/uB164nP6JiIjI5qbgkoiIyNblAe+In/cBf7qOfZE6jDG/CdyHK6INbolaw1lmxphO4EvAX+KKcAfAG4EvN3juM+KXn7PWJhc5/BMVz5/caP9ERERk89OyOBERka3tV4CXADcDX2OMeZ21dkVBprhA+I/i6vEcAtqAi8BngD+w1j5e57zP4naxK1hrexdp/1FcEenz1toj8z6L4qc/Cfwr8IfAs3GBtFPAG621n6w4fgh4LfAtwJNwBaqncLuo/T3wV9Zan3mMMUeA0s5oLwH+GXgVbgnZbXE7I8B/AL9jrT1d7/dpwDNw/w2ngZ+z1r7PGPPWZZzfyVxg6hHgtdbaLxljXtLAuT3AW4BrgIeWOLat4nnd//1ERETk6qPMJRERkS3MWlvABVfC+K13GGOuabY9Y8ybcAGMHwYM0I/LijK4JV2PGGPeaoxpq99KSxzGLSN7Yfz9w8BduABTqa/PB04AvwM8F9gJdOGWdb0IeD/wgDHm6BLf1YfbSe19uODYblxQ5gbg9cBjxphvWMHvMoNbcnbMWvu+Jtt4Ave/81OstV9q9CRrbcZa+xvW2h9tIOh4T8Xz8030UURERDYpBZdERES2OGvtvcC745fDwHuaaSfOpvlVoAN4GBdMeiYuc+gngNO4a4+3xD+r6Q24IM/bgecALwN+3Vp7Lu7r3bjMpgNABHwQ+GZcPaLvAv4zbudJwOeNMQcW+a7fwe2kdh/wiriNb2VumVgP8AFjzECTv8tLrbVvtNbONHOytTYPGGvt+2rVS2oFY0w/8GMVb/1nvWNFRETk6qNlcSIiIgLwC8A3AUeAbzTGfI+19m8aPdkYcxfwpvjlXwGvnrec7F5jzPuAf8FluLzZGPPhekvkWqAdF0z6pYr3PhL3tQOXlbQNl7H1ndbaj1Qc9yXgQ8aYN+OWDR4A/gQXfKplP+53fpW1tpQBhjHmn3G/7zfgah29GPjQcn+RyjabZa2Nlj5qRd6JWwIJ8E/W2jOr/H0iIiKygShzSURERLDWZoAfqHjrncaYPcto4qdx1xVTwA/VqlMUf8ercZlCbVRnuqyGP67z/jfhakwB/PG8wFKZtfZXgc+WzjHG3FqnvTzwhvlBoDigU7mU7Koscm2MeSPwmvhlAviZdeyOiIiIrAMFl0RERAQAa+0ngD+PX+4G/qCR8+L6SS+KX95rrc0u8h1ngePxyxc02dVGjFhrL9X57Osrnv/JEu38UcXz/1PnmPuttdN1Pqss5D24xHdtOsaYnwF+I34ZAd+vrCUREZGtR8viREREpNJP4YIoB4DvNMb8rbX2Y0uccwTYET//5ood25ZyfXNdbMjFRT57UvyYBh5dop37Kp7fXueYc4ucn654ftVcd8UBxbfhllOW/Ii19p/WqUsiIiKyjpS5JCIiImXW2lngRyre+mNjzPYlTtvd5Nd1GmNWK5snuchnu+LHyQZqEY1XPN9Z55h0nffBZfOUrPYOeWvCGNONK4BeCiyFwOuttfWWIYqIiMhV7qq5gyYiIiKtYa39J2PM3+N2WDuA2w3tNYucUnk98X4aXE4Xq7uEbhGN3BxbLGi0nCBPR8XzFRfW3uyMMTuBj+J24APwcIXMGy7+LiIiIlcfBZdkyzPG9AE/h9t6+nogBdwP/L619t+abPNa4M24pSV7gQngU8BvWGuPzzv2HuAzy2j++621H6g4/1XM1Uip553W2jcs4ztEZBlWYxyp8R1/G7d/o7X21CLH3Qa8Efga3A5lCeCLwO9Zaz+1yHnfBPwo8DSgGziPC/z0Aa82xvzdIt2rrDcUWGsfbOiXWqgUEFoq+DPcZPslpf7uNsa0LZG9tK/GeVuSMeYg8AmgVNg8Bbw0rtUlK7DBxpAXAG8A7sbVCbsM/Cfwu9Zau8h5z8QVc382sB1X3P+/gLdba+9vxe8gIrWt93xmiXa+CrfEvNNa2zbvs3tYwTxINhYti5MtzRjTD3waeAtwA/AYkAFeCHzcGPOWJto0wFdwd/kHgIeAXuAVwFeMMV8/75QEcO8SP2PxsSHVxWFhbvehs4ucr+KqIqtkNcaRGt/xQ7gLxqWOexHwZeDluMnd47hAzYuBTxpjfqHOee8G/jnuc4QruH0AF1gqeS/QX+erzzCXgfSMBvr588aYHzTGfO28j0o7zHUbYzrmnxefuw0XNFuJh+PHAeC2JY6t/H1OrPB7Ny1jzF7cBKAUWBoFnqPA0sptsDHkzcAngW+M33oMV0/tB4AHjTEvrXPea4DPAy/BBacfw40f3wHcZ4x5xUp/BxGpbYPMZ+q10wP8JfWTWlY6D5INRMEl2ereDXw18CBw1Fp7l7X2OuCVuEnOW2tMfuoyxnQC/4Kr5/FXwAFr7dNwk7Q/xA3Kf2eMKdX7wFr7gLX22fV+cBeD3fHhv2Ct/fy8r31yxWf12nnXMv+7iEjjWjqOzGeMeQPVO5bVO247rg5OL/AR4KC19k5c5s2vxof9ujHm2fPO+zHgh+OXvwrsrxi3fr/i0CPA99b6bmutx9ydx9vnf8e87/sa4DeB9wC/OO/j2XnfV8vXAl312m/Qf1Y8/8Eljv2hiudbMpASB/r+Cbgpfus08Exr7UPr16urykYZQ14A/Er88meBfdbau3BjyO/jxpYPGmMOzTvvKPDHuHnFH8TnPQXYD/wZblL5Z8aYG5r9HURkUes+n1nE/2XupsQCLZgHyQai4JJsWfHF0MtxUfDvtdaWdxay1v4VbvID8NZlNPty4BhwAXittTYXt1cEfhx3V2878JMN9rED+GtcEdl/A95R47BScOmRZfRTRFpglcaRUtsHjDEfAX6PxmoEfSNurJgFvs9am4j7EVhr34JbngLw6nnnvSl+fK+19i1xoAhrbcFa+5O4tPqSxYI6v1vx/APGmMM1fqe9uAyokvmB74crnv9YjfP3UXscXK5/BkrLgn7YGPOSWgcZY94EPC9++akVLPfb7H4ReGb8/Apwj7X23Pp15+qxwcaQn40f/9Za+9vW2iDuRwG3i+R
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkWVng/2/kvtW+V2/VG6eh2WQVYaQRxVEUhlGUcWEYBgVHB3H5CS4IuOC4MMoogqKMorKLCiOMY7PJIiAIAr2cppte6Norqyojl9hv/P64NzMjsyIiIzMjl8r8fp6nnnsj7rn3nix4btd9833fk6vX60iSJEmSJEnN9Gz0BCRJkiRJkrR5GTySJEmSJElSSwaPJEmSJEmS1JLBI0mSJEmSJLVk8EiSJEmSJEktGTySJEmSJElSSwaPJEmSJEmS1JLBI0mSJEmSJLVk8EiSJEmSJEktGTySJEmSJElSSwaPJEmSJEmS1JLBI0mSJEmSJLVk8EiSJEmSJEktGTySJEmSJElSS30bPQFJkrS+QggfBZ6affylGOOvd3jeHwA/nn28NsZ4X/dnp2ZCCDuB/wY8BwjAMHAW+BTwxhjjR1ZwzRuALwE9McahDs95NvBC4InAXuA88BngT2KM71/uHCRJ0uXBzCNJkra3V4YQHrrRk1BrIYSbgX8DfgN4ArALGACuAJ4LfDiE8AchhNwyrjkE/DlpEKqT8WMhhPcBfws8CzgE9GfbZwHvCyH8TQiho+tJkqTLi8EjSZK2t0HgT0MI/ptgE8oyjj4IHMu++gBpwOibgZcCp7Lvfxx4TYfX7AfeDXxTh+N7gPcC3519dRb4OeDJwLcBbwRqwH8Abs2uL0mSthDL1iRJ0pNIAxG/t9ET0SV+Argq239DjPEnGo59PITwTtKspMPAy0MIb4wxnmx1sRDCEdLA0ZOXMYcXkgaJAO4CnhZjPNFw/NYQwgdJs5K+CfhJ4HeWcX1JkrTJ+VtGSZK2rwSoZvu/HkK4biMno6a+I9vWgFcsPhhjPAPM9qwaAJ7R6kIhhOcB/8p84KjW4Rxemm3rwPMWBY5m5/F+4I+zj78cQhjr8NqSJOkyYPBIkqTtqwL8drY/Arx5A+ei5g5m25MxxqkWY77SsH+k2YAQwj8DbyfNUEqAVwGfWOrmIYQDwCOyj/8UY/xCm+H/O9vuAL5zqWtLkqTLh2VrkiRtb68hXcHrJuBbQgg/EmNcVRApa8D9E8DTgSuBHPB14CPA78cYb29x3kdJV4ErtVv9K4TwFeBm4P4Y47FFx+rZ7k8Bfw/8AfAU0kDZ3cArYoy3NozfCbwIeDbwcNLAxzjwBdLyrr+IMVZZJIRwDLg3+/gc4H3AC4DnZ3PbARwH/gF4XYzxnlY/zxJOAA8BjoYQdsQYJ5uMuWHR+Ga+MdveAfxIjPGTIYRv6eD+Vzfsf2aJsY3/uz4JeFcH15ckSZcBM48kSdrGYowl0uBJkn312yGEK1Z6vRDCK4Evky4rH4BR0qymALwE+HII4dXLWRlsha4CPklaxjVCukLZY0gDSLNzfRpwJ/A60gbUe0lXEDtMWi72FuALIYTrl7jXCHAr8Kekwa/9pI3IrwN+DLgthLDSTJz3Zdse4NcWH8yCXz+ffZwmbajdzNdI//4fGWP85DLuP9Cw3yxw1ajSsP+QZdxDkiRtcmYeSZK0zWVZKG8A/jtpkOVNzK+s1bEQwqtJy6EAvgT8YbbtAR5L2jvn+oYxr17NvJfwMtKMp98C3k8aEHp0jPG+bK5PIs1MGibt5fNXpJkyp4FrSZtEP4M0G+njIYTHtmlE/brs+p8G3kDaVPoI6Qpo30YaSPqzEMJ1bUrPWvkj4HtI+xS9NMt4eivpKms3kwaOjpEG/348xniuxXVujDEmLY6103i9K5cYe1XD/uEV3EuSJG1SBo8kSRKkQYjvJg1EfFcI4QdijG/r9OQQwmOAV2Yf/wJ44aJyr0+GEP4U+D/ALaRNld/VqoStC3qA18YYf7Hhu/dkc+0lzSoaJg26fH+M8T0N4z4LvDOE8MukZX1HSIM4z2pxr8OkP/MLGgM0IYT3kf683wkcAJ4JvHM5P0SMcSaE8O2kzbJ/KpvD4nl8EXhpjPHjba6zksARpJla48A+4JkhhP4YY6XF2MaA4+gK7ydJkjYhy9YkSRIxxmngRxu+en3WLLlTP0P674px4CXN+gRl93ghaaZPjjTTaS29scX3303a4wngjYsCR3NijL8CfHT2nBDCw1pcrwi8bHGAJsZYZ2ET8kd1MukmbgYeTRrsauahwPNCCHtWeP2Wsp/hr7KPVwKvbTYuhHAN8AsNX/V3ey6SJGnjGDySJEkAxBj/kfkVs/YDv9/JeVn/otkl5T8ZY5xpc497SZs2Q9pQe60cjzE+2OLYtzfs/9ES1/nDhv1/32LM52OM51sca2yUvWOJe10ihPAs4GPAd5E24H4+aRbTEGkw6s2kZXH/DfhQCGHfcu/RgdeSlskB/GwI4Z0hhMeGEAZDCPtCCM8HPgXsaRhXXoN5SJKkDWLZmiRJavTTpEGSI8D3hxDeHmP8uyXOOUYaOAB4VsOKZ0u5dmVT7MjX2xx7eLadYuEy9818umH/ES3G3Nfm/MYeR8v6d1cI4SjwNtJA0YPAExf1XfoS8KMhhC+S9lr6hmz7vOXcZykxxtNZEOvvSQNX35f9aVQhbQ7+A6RlfNPdnIMkSdpYZh5JkqQ5McaLpI2eZ70xhLB7idP2r/B2fSGEZWfjdCjf5thsds65rCyrndMN+3tbjGnXBLvx+stdYe4/M9876BWtGnbHGP8Q+Kfs4/eGEA4t8z5LijH+C2np3JtZ+HdbBf4O+MYY45uZDyKeRpIkbRlmHkmSpAVijH8TQng38FzSDKTXAf+1zSmN/554Cx2Wu2Valri10ckvv9oFhZYTxOlt2F9p0+mVenzD/v9ZYuzfAN9MOt/HkWYJdVWM8QRpptOPk/Y/6gW+HmMsAYQQeoAbs+H3dvv+kiRp4xg80pYTQhgBfo40bf9aYBL4PPB7McYPdukeb8+uf2OM8e42424mXSHnW0hT/SeAzwC/G2P80DLu91jS0om+GONyf3MtSSvxE6TPrn3AC0MI72gztrHfTy3G+MUV3nM24LPUc27XCq8/a3a++0MIuSWyjxqzeFr1NVorY9k2If1vWTtnGvZX+/fTVrbaWrPg0COBkWx/pf8fkCQtw2Z692ly3ruB7wWujTHet+jYDcBXlzGNV8YYf20Z49Vllq1pSwkhjAIfBl4FXAfcRtp34RnAB0IIr+rCPV5CB/0kQgjfAXwO+CFgN3A76QvRM4FbQwg/3+H9BoG3YrBX0jqKMZ4hXRp+1h/Tevn1rzGfQfSNS107hPDyEMKLQwjfuujQ7AptAyGE3sXnZecOkwbjV+NL2XaMdCWzdhp/njtXed/lOptte0j7SrVzRcP+mZajViCE8KIQwu+GEF6zxNDnNOzf2s05SJIutZnefZqc9xOkgaNWCsAnl/hzf8P45QSatAYMHmmreQPwRNLfeF4fY3xMjPEa0tVpqsCrm7ysdCyE8DIWrrzTatxu4C9Jm5y+BzgaY3w06W+wfyUb9toQwlM6uO2vAa2Wh5akNRNj/Atg9reWx4AfbDGuAnwk+/iIds+2EMK3AP8DeBMLl3YHuNiwf6zFJb6V1S8D//8a9l+8xNiXNOz/4yrvu1wfb9j/4VaDstXuZv9hXybNcO2mbwdeBryiVY+q7Psfyz5+fPFvmCVJa2JTvPs0Oe9ngP/VbkyM8XiM8Smt/pD+wn22XPz3Y4zvXPYPoK4yeKQtI4RwPWmWTwL8YIxxbqWd7AXof2QfX72Cax8JIbwH+F0665XxXaSNVS8C/znGOJHNoxZjfBXzjU1fuMR9n0y68tFKeoJIUje8mPmSqXZBm//ZsP9nIYSrFg8IIRwkzWCatfgfll9q2P/vTc4/BPx229l25n3AbNr9fwshPKfZoBDCK4GnZh8/tIpyvJV6O/Olcj8fQvh3Lca9FnhMtv/nMcalStyW66+z7QDwq4s
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAbwCAYAAADnAAF4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZhkaVnn/W+uVZVVXVXd1Ru9FjTwtDS7ONqAAwiDC+44giMiIorOjIo4KjMqiw7OuOM2oCIqoIgLCO8ow74II6gIY9NNP/S+VHctXZV7xn7O+8c5kXkiMiIyturqzPx+riuvExFniRNJX1nJL+/7fibSNEWSJEmSJEm72+S5vgFJkiRJkiSde4ZEkiRJkiRJMiSSJEmSJEmSIZEkSZIkSZIwJJIkSZIkSRKGRJIkSZIkScKQSJIkSZIkSRgSSZIkSZIkCUMiSZIkSZIkYUgkSZIkSZIkDIkkSZIkSZKEIZEkSZIkSZIwJJIkSZIkSRKGRJIkSZIkSQKmz/UNSJL0UBBCmAN+Cngh8HBgGfgs8IYY4/vG9B7vyK//qBjjrT2OezbwCuB64DzgPuADwK/HGGOP854K/Bfg6cBh4DTwCeCXY4yfHcdnkCRJ0s5lJZEkadcLIewHPgK8BngEcCOwCjwX+LsQwmvG8B4/RBYQbXXcq4EPAd+Yv3QjcD7wg8DnQwjP73Le9wN/D3wbMJufNwd8J/DpEML3jPoZJEmStLMZEkmSBL8LfCXweeCaGOOTY4xXAy8G6sBrQwjPGfbiIYRXAP+rj+OeDbwuf/qTwCUxxicDlwBvAPYCbw8hXNF23jXAG8n+Xf/t/LwnAZcCbyarHH5zCOERw34GSZIk7XyGRJKkXS0PWF4EJMB3xxjvae6LMb4N+J/509cOce2HhRD+CvgNYKKPU34y374jxvirMcZGfh8V4JXAF8mCou9tO++7gBngZuAV+fHEGEvADwO3k1UXvWjQzyBJkqTdw5BIkrTbfQ8wBfxDjPGmDvvflG+fFkK4qt+LhhC+DbgFeD4wD/ynPk77FPBe4C3tO2KMKXBD/vTqtt1X5tsvxBiTtvPqwOfyp33fvyRJknYfB1dLkna76/PtJzvtjDEeCyHcRRbMPAN4W5/XfQLZTKA/JRsmvXerE2KMv9BtXwhhCnhS/vSWtt1359vHhxAmi0FRCGESuC5/emdfdy5JkqRdyUoiSdJu98h8e1uPY+7Mt48e4LqfAJ4QY3xRjPH4MDfWlLfE/TnwKOA4myuN/oRs0PajgV8PIczm580CvwZcCyx2OE+SJElaZyWRJGm3uzjfnupxzOl8e2G/F40xfmToO8qFEH4ReAFwlOwPO/8AvDTGeLp4XIzx3hDCc4E/An4MeEkI4Xbg4cBh4F+Al8UY7xv1niRJkrRzWUkkSdrt5vJtuccxpbZjHyzPBh7Bxr/XVwLf2OXYJeCf88eHyFrTDufP7z9bNyhJkqSdw0oiSdJu16D/P5qkZ/NGOnghcB9ZOPRi4FXAr4QQLo8x/jhACOFjZLOSmn4beANwL1kl0U8BLwWeFUJ4XozxY/l5v8PGMO2HxxjvPNsfRt2FEJ4E/CPZ72bfF2P84z7O+Q6yFeueAlwELJMNKf8jshXyuv73ms+4ehHZ4PYnAueRtTL+I/CWGOP7Rvk8kiRpezIkkiTtdivA+fQeLL0v366d/dvZEGO8I394K/DqEMKtZPOHfiSE8DsxxtuAicIpDeCNMcbbm5cAvj+EsAr8CPDmEMK1+YpneogIIcyQBTt9/V4WQjgE/DVZpVnREeA5+deLQgjfHmPcVCEXQrgA+P+Ap7btuir/+o4Qwl8DL44xPqj/zUuSpHPLdjNJ0m73QL490uOY5iyik2f5XnqKMb6VrLJoCvjq/OXzCodMAX+Yr2hW9DqyAOka4N+c7fvUwP4b2Wp4W8oDpfezERB9GvgPwFeRVQXdmL/+9cAbO5w/CbyXjYDoH8gqip6en99sWXw+DjqXJGnXMSSSJO12X8y3R3sc09z3pbN1EyGEiRDCZSGEp3UIeYruyreX5ts9bfuvB360+EI+6LoZcD185JvV2IQQHg/8zACn/ATwlfnjdwBPjzG+I8b4mRjj2/N9N+T7XxJCeEzb+S8GnpY//kvgaTHGP40xfqpw/vvz/S8IIbRXG0mSpB3MkEiStNt9Jt9e32lnCOEKshYcgP97Fu/jCuAY8EmyGTPdXJ1vj+XbRmFfs43s9SGERzRfzKtPmkOsl0a/VY1DCGGarM1sho2Ktl7H7wX+a/70NuB7Y4zF//2JMa7SGjo9v+0yL8u3NeCH2+cWxRgTssqmpu/c6r4kSdLOYUgkSdrt/jLfPjOEEDrs/6F8+/GzOdw5xngPcHP+9Ic7HRNC+E7gMqAKfCB/ebFwyEfy7RzwB4XXv4tsrlKVLITSQ8NPAU8GzgCv7eP45wEH88evjjHWuhz3AeCtwG8CX2jbdwPwT8AH8gqzTr5YeHxVl2MkSdIO5OBqSdKuFmO8JYTwZ2RzXd4VQviWGOOtACGEFwE/nR/639vPDSFcQ1YFshhjHMcy8z8P/BlZm9CtwC83g4A8IPrD/LhfijGeyB8XK0m+mmy5+4cBXxNC+AFgHvjdfP+vxxjnB7mhEMKXAf+ZbAbOFWSDsu8BPgr8dozxpi7nfYxs1bVKjLHrUPAQwheA64C7YoxH2/Y1q1x+HPhb4HfIZufUyIZ5vyrG+KHC8QfJKmW+BXgs2bym02Qrfv0l8LZOQ7tDCEeB5pDwbyOb2fMSstas6/LrHCNrw/q1fGD4SPI2sFfnT18JrPZx2tfn2yrw7m4HxRgrwPd22dcxgGxzdeHxOP67liRJ24QhkSRJ2Qyfx+VfN4cQbiBb8az5f5Z/phhGFHw4P+ZPyEKFkcQY35GHMj9HFkr9ZB4WXUYW/AD8Pp2rThKyaqF9hdd+j43Vz/4M+NlB7ieE8HPAa8gGYrfsyr9+MITwC8Drei23PgZXAp8iW+a96clkQVHzXp8F/Ckb36emS8nCla8HXhlC+NYtQp454EPAs9pefwRZhddL81XD/m6YD5Lf6xRZm9ke4P0xxj/Jl7PfyuPy7Y0xxlLhenNkAV4ZuDdvGRvl3n6h8NI7h72WJEnafmw3kyTtennbzfVkq4B9CfgystXOPg48P8b4iw/ivbyaLKB4D1nFyBPIQpr3AF8XY3x5lxCgBnw78D6gGSBMkA2s/vYY43e3z6/pJYTwWrLKpingX8na7p5KVsnzY2QzcSbJQqTXDPYpB/YKshXmfpmsWurfA7/YbP8LIVxPVmn0MCAF3g58M9kQ5hey0Zr3WODvQwjtQVLRr5F9/z9NttrXVwLfCnww378H+OMQwoERPs8ryVaZWwF+cIDzmkOo7wIIITwjhPABsjlTMX/9eAjhl/Kqqr6EEKZCCFeGEF5INqOrGVj9XozxEwPcnyRJ2uasJJIkifWBv6+lv9kwzXOODnDsnWxU9Wx17MeAj/V77cJ57wbeHULYTzaL5ihwMa3VRVsKITyZrJoJ4G3AS9vatD4VQvhD4H8DzwReHUL4i26tZ2MwSRYKFQcy/1V+r1NkS7XvI6umekGM8a8Kx/0j8M4QwqvJQsCHkVVYfXOX97qU7DO/pBjGhRDeS/Z5v4Gsoul5DFFlk8+9+vn86atijHf3ed4eoBlMLYQQ/htZtVn7f1MXkc06+uYQwtf2ef0IXFN4XiarOvuNfu5NkiTtHFYSSZK0w+SBV7FC5TdDCBd1O76DnyD7HeE08EOd5vjk7/FSssqdCeBHhr/jvryxy+vfBFzbPKYtIFoXY/x5NoK3b+qwNHxTGXhFe7VW3k5XHAb+hH5uuiiEMEkWaO0lGyD+vwY4vVi59DXA64FTwA+QBYF7yaqe3pcfcy3wN3m41OueJsja+Yr2kq1q9o0D3J8kSdoBDIkkSdqBYowfJJt7A1mr1m/3c14eGjQHJH8qxrjW4z3uYGMlrGcPeav9OBZjvLfLvq8tPP69La5TDGW+rssxn40xnumyrzjL6Lwt3quTHyVr2SsDLxtwjtNc4fFVZAH
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXwjeX3n/5dky5bl+2j33dPXzHdmYIABAgwDYYCEQMgBjywhgZAQQgLJArmP/RHOXZKFnJCLZBd+BNhACBsCJEC4AwwzZIBhzp7v9N1tu33rvqWq/aNKsmRLtny73e/n49EPSVap9PU0VFd96nMEXNdFRERERERERESkkeB2L0BERERERERERHYuBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKQpBY9ERERERERERKSp9u1egIiIiGwtY8xXgWf5L3/fWvuOFj/3l8B/9V8es9Ze2PjVSSuMMR3Ad4HHALdZa+9e435eD7zHf7ni36kxpgt4DfATgAH6gRngG8B7rLXfXMs6REREZGdT5pGIiMi17U3GmJu2exGyan+IFzhaM2PMMX8/rW7/OOAh4M+AZwB7gA7gIPBS4BvGmLeuZ00iIiKyMyl4JCIicm3rBN5njNE5wVXCGPPfgN9Y5z4CwPuA7ha3PwZ8GTgGuMA/AD8C3Ab8NjAPBIC3GGN+bj1rExERkZ1HZWsiIiJyG/AG4M+3eyHSnF+q9m7gtRuwu9cAz17F9n8NDPvPX2et/eua9+42xvwrXhldF/AHxpgPW2vLG7BOERER2QF0l1FEROTa5QAl//k7jDHHt3Mx0pwx5inAnSwEjtYcmDHGHAHe5b+cbWH724Dn+y8/uChwBIC19hHgb/yXB4Cnr3V9IiIisvMoeCQiInLtKgJ/5D+PAP9rG9ciTRhj/idwN/Bk/0efZH1ZYv8L6MVrcv2xFrZ/mf9YBn5/me0+CHwA+GMguY71iYiIyA6jsjUREZFr29uAFwM3As8xxvyitXZdQSS/AffrgOcCh/B64VwGvgL8hbX24Saf+yreFLi8tTa8zP4fxGsWfdFae3TRe67/9NeBfwP+Eq+5cxE4A/yetfaLNdv3Aa8Gfhx4LF5QZQ64F/gn4EPW2hKLGGOOAuf9ly8GPgW8EvhZf229wDjw78CfWGvPNvt9WvA0vP+G88DvWGvft9bG1MaYXwCeB+Twfu/Xt/CxF/iPd1lrLzfbyFp7H/Dza1mXiIiI7GzKPBIREbmGWWvzeEEEx//RHxljDq51f8aYNwEPAL+CN8q9Gy+ryeCVXD1gjHmr37B5Mx3GK/N6nv/9/cAT8QJIlbU+G3gE+BPg+4EhIATswwuYvB+41xhzYoXvigBfxGtA/SxgBK8R+XHgl4GHjDE/vI7fJQq8EzhprX3fWnfi/73+if/ybdZa28JnuvF+D4B7Fr03aIy50RgzutY1iYiIyNVBwSMREZFrnLX2TuCv/Jf9wHvXsh8/G+btQBtwP16w6Ol4mT+/CpzFO/d4i/9nM/0aXhDnXcAzgZcAf2CtveCv9Ta8zKT9eNPDPgz8GPBU4KeAz/v7eSzwdWPM/mW+60/wmk/fDbzC38eLgC/473cCHzDG9Kzxd/kJa+3vWWuja/x8xd/h/f3ei1da1oob8bKeAC4aYwLGmFcbY+7Dy4Q6BUwZY6wx5pc0tU9ERGR3UtmaiIiIAPw34EeBo8CPGGNeZq39h1Y/bIx5IvAm/+WHgFctKve60xjzPuBfgTuANxtjPtashG0DBPGCRW+s+dnH/bW24WUVdeFlXL3UWvvxmu3+E/hHY8yb8cr69gN/ixdcamQf3u/8SmttJYMLY8yn8H7fHwb2AC8E/nG1v0jtPtfKGPOz/jpKLP27Wc5IzfM0XnnejzTY7ga8/0YvMMa81FpbWM96RUREZGfR3SERERHBWpsGfqnmR+82xuxZxS5+E++8Yg54baPghP8dr8LL9AnQWr+d9fibJj//UbyMGoC/WRQ4qrLWvh34auUzxpibm+wvB/za4iCPtdalvgn541tZ9EYzxuxjocH2u6y131vFx2uzpd6EFzi6Fy8Q1Qv04fWLesTf5kWsr5m3iIiI7EAKHomIiAgA1tovAP+//3IE+ItWPuf3L6o0Vb7TWptZ5jvO45U6gddQe7OMW2vHmrz3QzXP/3aF/dSOpX9+k22+Y62db/JebaPs3hW+a7O8FxjEC/C8fZWfjdQ8PwLcBdxurf2stTZlrU1aaz8F3Aac9rd7rTHmMetdtIiIiOwcKlsTERGRWr+BFyTZD7zUGPMRa+0nV/jMUbzgBMCP1Uw8W8mxtS2xJU2nguH1MQJIAQ+usJ+7a57f0mSbC8t8PlXzfMvPu4wxP42XGeQAv+A3SF+N7KLXr7HWLv4Z1tqYMeZ3gE/gZZW9HPj/1rBkERER2YGUeSQiIiJV1toY8F9rfvQ3xpiBFT42ssL7zbQbYzYrGyexzHvD/uOsX1q2nKma50NNtkk1+Tl4JXoVmz1hro4/Be09/su/stZ+cw27SdY8P2utfWCZbT8HFP3nT13Dd4mIiMgOpcwjERERqWOt/YQx5p/wJpTtx5sm9gvLfKT2fOL9tFju5mta4raMVm5+LRcUWk0Qp63m+bobV2+x9+AF9uLAx4wxT2iwTW3g7+ZKoLCmL9KVmvfHl/sya23OGDOL97+ZtQYURUREZAdS8Eh2FWNMBPgdvDHLx/DumH4H+HNr7Wc36DsO45U59AHHKmOfG2x3BHgzXvnHKDADfAn4Q2vtqSafuQP4ygpL+KS19kVrWryISOteBzwHL0vnVcaYjy6zbW2/n/IqGzLXqgR8Vgru9K9x/xWV9Y4YYwIrZB/tbfC5q8XT/Md+4OstbP9vNc8rfweP4E1oa2ehNHE5nf5jtJUFXmt22HnKU4BfBZ6JNzEwCzwMfAR4b6sT81r9PhHZHDvsuPJc4Nfw+uD1AhPA54E/tdbaRdvewcrXPbV+3lr7gdWuXTaOytZk1zDGdANfBt4CHAcewhsr/DzgM8aYt2zAdwTw7qr3rbCdAb6Ld6e+B7gPCAOvAL5rjPmhJh+tTOK5AtzZ5M9mjbUWEamy1k4Dv17zo78Duptsfo6FDKKnNdmmyhjzu8aY1xhjfmDRW5UJbR3GmLbFn/M/24U39n497vcfe4CVGjvX/j6PNN1ql/IDCN/1X5rlShj9qW6V0r4Lm7y0q84OO0/5Vbzm5y/DyxI7hVd++TTg3cDXjDHL7mM13ycim2OHHVfeDHwRbyon/loG8Sa5fs8Y8xOLPhKn+fVO5c+kv61D/QAK2QbKPJLd5K/weix8D/gxa+1lAGPMK/AOeG81xtxprf3iOr7jV4DFFzt1jDHtwL/i3a3/EH5zUWNMB17px+uAjxpjTlpr5xZ9vBI8ere19p3rWKeIyLpZaz/kN1x+AV5T7Jc32a5ojPkK8ELgFmPMM6y132i0rTHmOcD/9F9+Be9EsyJW8/wojU8UfwAIreLXaOTzwGv9568BXr/Mtq+tef6FdX7vlrLWHl1pG2PMX7LQ46rZ3eSPAk8BOoBXA3/cZHc/W/P8X1pe6LVjp5yn3A78GV522buAN1caqRtjng182F/n3wI/vd7vE5FNtVOOK88F3ua//G3gz6y1ZWNMJ96/+b8GfNgY863KJFRr7b3AM5bZ5yG8G/AA/81a20oGrWwiZR7JrmCMOQH8DF5U+uWVAyd4Fz8sXKi8dZ3f8U5W7s/xM8BJ4BLw6spUGv/u7RvwSgcGqL+jX1EJHi3XkFREZCu9hoWmycsFbf605vkH/BT3On4D57+r+dF7Fm1yf83zJQEdY8xe4I+WXW1rPgWc8Z//ijHmxY02Msa8CXiW//JL6yjHu9p9AJj2n7/VGPP0xRsYY56IV6oN3r9/n9m
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd7ykd1n//9fp/Wzvm83uJuQjm4QQpEWDBFFEATuCjR9GFBt2/eIPqX5RsWJDLKCADQUVRYogoBIINaRsNp8k2/fs6WV6udv3j/uemXvmzMyZ0+ecfT8fj/OYdpfPnOTce9/XfV3XpyMIAkREREREREREROrp3OwBiIiIiIiIiIhI+1LwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGlLwSEREREREREREGure7AGIiIjIxjPGfAp4dvTyV621b25xvT8GfjJ6ecJae2HtRyetMMb0Al8GbgbusNbeu8Tyfwn8cIubX/Tf1hjTDaSA/hbW/29r7V0t7ktERETanDKPRERE5LXGmCdu9iBk2X6DMHDUqttXub8n0lrgSERERLYZZR6JiIhIH/AOY8yd1lp/swcjSzPG/Arw88tYvptKoOkvgT9ZYpWrdd57cuz5twKXm6yfbnVsIiIi0v4UPBIRERGAO4CfBt662QORxqJStT8AfmyZqz6RMEgI8HFr7VdWsPtS8CgD/IcCjSIiItcOla2JiIhc23zAjZ6/2RhzcjMHI40ZY54O3EMlcOQtY/V41tBKAkfxbTyowJGIiMi1RcEjERGRa5sD/Hb0fBD4i00cizRgjPlN4F7gqdFbH2B5WWKlfkcZ4LEVDqMUPLpvheuLiIjIFqWyNREREXkj8B3AVwFfb4z5EWvtqoJIUQPunwKeCxwFOgh75HwS+CNr7cMN1vsU4SxwBWttw+bMxpiHCHv4XLTWHq/5LIie/hzwH8AfA3cSBsoeB15trf14bPlR4BXAtwG3ACPALGGQ5J+A91hrXWoYY44D56OX3wH8G/By4GXR2EaAMeCjwO9aa882+j4teCbh73AO+GVr7TuMMW9YxvqlwM/9K8kaMsYcA3ZHLxU8EhERucYoeCQiInKNs9YWjDGvAP6HMCv5t40xH7LWjq1ke8aY1wKvB7pqP4p+ftQY82vAG621Qe36a+g6wjKvfbH3nkIYQCqN9TnA3wKHatY9CHxz9PPzxphvXyL4Mwh8HHhOzfsngR8H7jbGfKe19kMr+SLAPPAW4C3W2vkVrH9b9PgVY8y3AncTBqR2AzOEv6e3WWs/2WD9eNnbeWPMqwkDZqcI/ztfIAzU/a61dmIF4xMREZE2prI1ERERwVp7D5UZuHYAb1/JdqJsmDcRBhQeIOzP8zWEmT8/A5wlPP94ffSznn4W2Av8FvAs4MXAr1trL0RjvYMw4HEICIC/IZxF7BnAS4H/jLZzC/C/xpjaAFPc7xIGju4FfjDaxrcDH4s+7wP+2hgzvMLv8l3W2levJHBUkzX0A4Qlb98GHAB6CL//dwOfMMb8WTQzW6148Oj9wG8ATweGgQHChty/CDxqjHnBcscoIiIi7U2ZRyIiIlLyK8CLgOPAC40x32et/btWVzbGPAV4bfTyPcDdNeVe9xhj3gF8ELgLeJ0x5h8blbCtgU7CYNFrYu+9LxprF/BOwsCHD7zEWvu+2HKfB95rjHkdYVnfIeDPCINL9Rwk/M4vj5eFGWP+jfD7fgthBtQLgPcu94usskH17bHno8D9wNuAhwiDWncBrwJ2AT9KGEirnc0tvo1hwu/6fmACOEIYbHsxYanevxpjnmOt/fQqxiwiIiJtRJlHIiIiAoC1NkMYPCj5A2PMvkbL1/ELhOcWs8CP1esTFO3jbsIARQdh0GI9/WmD919E2OMJ4E9rAkdl1to3AZ8qrWOMOdVge3ngZ2uDPFFZXrx/1G1svHjW0DuAp1pr/9xa+xlr7Setta8nDA5djJZ5pTHmrgbbKALfYq19mbX2A9baz1lr/9la+z3AD0XLdBNmWekmpYiIyDah4JGIiIiUWWs/BvxV9HIv8EetrGeM6SDsDwRwj7U222Qf54Ez0cvnrnCorRiz1l5p8Nk3xZ7/2RLbeVvs+fMbLPMla+1cg8/ivZJGltjXevhtwqDVi2gc1LtI2DS85GdrFnkm8LXA11lrP1pvJ9bavybsHwVwA/DC1Q1bRERE2oXuCImIiEitnycMkhwCXmKM+Xtr7QeWWOc4YdkTwLfGZjxbyomVDbEll5t8dkv0mCYs32rm3tjzWxssc6HJ+unY8w0/94oCeQ9EP82W+7gx5jzhf5OvN8Z0lBqaW2sngckWdvfnwPdHz78B+NcVD1xERETahjKPREREpIq1dgH4ydhbf2qM2bnEantXuLtuY8x6ZeMkm3y2J3qcaWHGt3jQZHeDZdIN3oewRK+kY4l9bbb7o8cRKsHAlawPcGz1wxEREZF2oMwjERERWcRa+y/GmH8ibIJ8iHA2sR9uskr8nOKdtFjuFmlY4tZEKzfAmgWFlhPE6Yo9X03j6q0g/t+idxPWFxERkTak4JFsO8aYQeCXCWd+OQGkgC8Bb7XWfniF23wuYf+HOwjvxl4lnML596y1tsl6twC/Sjh9805gHPgQ8GZr7ViDdV5Opd9II39gra3tRyEistZ+Cvh6wiydu40x/9Bk2Xi/H89a+5UV7rMU8FkquLNjhdsvKY13b7w8q4EDddbbEowxnYT/DfcBeWvtvyyxyv7o0SP6rsaYQ8BXR9u411p7psG68fUBplY06G2uzc5Tngf8BPAMwr/zNGH22F8B72n0d7HS9URk7a3HMaXOPq4jLPEeBU5Yay80WO4Y8DrC0vf9wDTwX8BvNPq3I5qg4ZNLDOED1tpvX9HgZc2obE22FWPMEPAJ4PXASeA0kAGeB3zIGPP6FWzzdcDHqTT+PE1lOuOvGGO+q8F6zwK+ALyE8G/tQcITrB8HHjTGPLneelRm4jkP3NPg59xyv4eIyHJZa6eAn4u99efAUIPFz1HJOnnmUts2xvwfY8wrjTHfUPNRqZlzrzGmq3a9aN0BwkDGapT6/wwDNy+xbPz7PLLK/W6oaPa39wF/B7wtamxelzGmD3ha9PIBa20xev5M4N8JM8pevsQu74w9/+JKxrydtdl5yu8CHwW+jfDv+jTh399dwLuAfzXG9KzVeiKy9tbjmFJnHx2Ex//RJZYzwJcJs5SHCQPK/cAPAl82xnxTg1VL1z7jNL72eXh130LWgoJHst38CeFdsK8AN1hrn2KtvR54GeGJzRvqXKg0FN3Je2P08peAA9bapxDehX4r4QHxb4wxR2vW2w18IPr8LcAha+1TgcPA+wlP6t5vjKmX0l86gP6KtfbOBj9/2Op3EBFZDWvte4DSncvjVJoh1y7nULlzeKsx5s56ywEYY74e+E3g7cD/X/PxQuz58Qab+AZgtRen/xl7/sollv2x2POPrXK/m+F/oseDhBcUjdxNJaMrnmV2D2EmEsBLG/zbVcpyKmXFuoT/3km1djlP+X7Cxvhe9LjTWnu7tXY/YalqCvhW4E1rsZ6IrJs1PaY08BOE/+42ZIzpBj5IeKP8PYTXPk8jLHv/Y8Jj0T8YY/bUWb107fMHTa59as8VZBMoeCTbhjHmBuAHCPtRfL+1tjzLTnTx85vRyzcsY7O/FD3+vbX2d6y1XrS9AuFJ0xnCg+H/V7PeTxMGiO611r66NC2ytTYFfB/hHfqThAf2WqUD6IPLGKeIyHp6JeFFITQP2vxe7PlfR2nuVYwx+wkzmEpqg+HxGcFeVWf9A4RTz6/WvwGPR89/whjzHfUWMsa8Fnh29PK/VlGOt5neFnv+h8aYRc3NjTHPAH4rejlB7L9RlIH2vujlMeA3GuznN6lkaf1lo/L
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"\n",
|
|||
|
"for unit_id, id_num in nsi_id_map.items():\n",
|
|||
|
" sessions = data.query(f'ns_inhibited and unit_id==\"{unit_id}\"')\n",
|
|||
|
" n_action = sessions.date.nunique()\n",
|
|||
|
" fig, axs = plt.subplots(n_action, 4, sharey=True, sharex=True, figsize=(8, n_action*4))\n",
|
|||
|
" despine()\n",
|
|||
|
" fig.suptitle(f'Neuron {id_num}')\n",
|
|||
|
" if n_action == 1:\n",
|
|||
|
" axs = [axs]\n",
|
|||
|
" waxs = None\n",
|
|||
|
" for ax, (date, rows) in zip(axs, sessions.groupby('date')):\n",
|
|||
|
" entity = rows.iloc[0].entity\n",
|
|||
|
" ax[0].set_ylabel(f'{entity}-{date}')\n",
|
|||
|
" for _, row in rows.iterrows():\n",
|
|||
|
" idx = row.session_id\n",
|
|||
|
" \n",
|
|||
|
" speed, t, spike_times, mask = load_speed(\n",
|
|||
|
" row['action'], row['channel_group'], row['unit_name'], \n",
|
|||
|
" z1, zi2, z3, split=False)\n",
|
|||
|
"\n",
|
|||
|
" speed_score, inst_speed, rate, times = spd.speed_correlation(\n",
|
|||
|
" speed, t, spike_times, return_data=True, mask=mask)\n",
|
|||
|
" \n",
|
|||
|
" inst_speed = inst_speed[~inst_speed.mask]\n",
|
|||
|
" rate = rate[~rate.mask]\n",
|
|||
|
" times = times[~times.mask]\n",
|
|||
|
"\n",
|
|||
|
" speed_bins = np.arange(min_speed, max_speed + speed_binsize, speed_binsize)\n",
|
|||
|
" ia = np.digitize(inst_speed, bins=speed_bins, right=True)\n",
|
|||
|
" rates = []\n",
|
|||
|
"\n",
|
|||
|
" for i in range(len(speed_bins)):\n",
|
|||
|
" rates.append(rate[ia==i])\n",
|
|||
|
"\n",
|
|||
|
" ax[idx].set_title(f'{speed_score:.3f}')\n",
|
|||
|
" plot_bootstrap_timeseries(speed_bins, rates, ax=ax[idx], normalize_values=True)\n",
|
|||
|
"# rr = [rr for r in rates for rr in r]\n",
|
|||
|
"# aspect = (max_speed - min_speed) / (np.nanmax(rr) - np.nanmin(rr))\n",
|
|||
|
" for a in ax:\n",
|
|||
|
" a.set_aspect('auto')\n",
|
|||
|
" plt.tight_layout()\n",
|
|||
|
" fig.savefig(\n",
|
|||
|
" output_path / 'figures' / f'nsi_neuron_{id_num}_speed_map.png', \n",
|
|||
|
" bbox_inches='tight', transparent=True)\n",
|
|||
|
" fig.savefig(\n",
|
|||
|
" output_path / 'figures' / f'nsi_neuron_{id_num}_speed_map.svg', \n",
|
|||
|
" bbox_inches='tight', transparent=True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 26,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import speed_cells.speed as spd\n",
|
|||
|
"from septum_mec.analysis.plotting import plot_bootstrap_timeseries\n",
|
|||
|
"speed_dist = [[], [], [], []]\n",
|
|||
|
"speed_bins = np.arange(min_speed, 1 + speed_binsize, speed_binsize)\n",
|
|||
|
"for unit_id, id_num in results_id_map.items():\n",
|
|||
|
" sessions = once_a_gridcell.query(f'unit_id==\"{unit_id}\"')\n",
|
|||
|
"\n",
|
|||
|
" for date, rows in sessions.groupby('date'):\n",
|
|||
|
" entity = rows.iloc[0].entity\n",
|
|||
|
" for _, row in rows.iterrows():\n",
|
|||
|
" action_id = row['action']\n",
|
|||
|
" channel_id = row['channel_group']\n",
|
|||
|
" unit_name = row['unit_name']\n",
|
|||
|
" idx = row.session_id\n",
|
|||
|
" x, y, t, speed = map(data_loader.tracking(action_id).get, ['x', 'y', 't', 'v'])\n",
|
|||
|
" hist, _ = np.histogram(speed, bins=speed_bins, density=True, )\n",
|
|||
|
" speed_dist[idx].append(hist)\n",
|
|||
|
" "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 27,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAFFCAYAAAA0M0M5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xkVZn/8U91mp6cc47PJBhyZhlEgRUBAyhZUEBFFN0V5KesgiuLqKuuyIorCqYVUVmygCBJkAGGGRgmPDMwOefQubuqfn+cW901Teep7tvd832/XvW6fcO59RQ01NPnnPucRDqdRkRERERyLy/uAERERES6KyVaIiIiIu1EiZaIiIhIO1GiJSIiItJOlGiJiIiItBMlWiIiIiLtRImWiIiISDtRoiUiIiLSTpRoiYiIiLQTJVoiIiIi7USJloiIiEg7UaIlIiIi0k6UaImIiIi0EyVabWBmD5vZw3HHISIiIp1bQdwBdFGTp0yZMhNIxx2IiBz0EnEHICKNa9dEy8w+A9wFXOXud7eh/WDgJuBcYAywC3gJ+K67v9JEu3HAN4AzgWHANuAZ4DZ3X9raOERERETaot2GDs3saOB7B9B+ODAP+BIwHHiL0IP0EeDvZvapRtoZ8AbwaaAP8CZQDFwKvGFmZ7Q1JhEREZHWaJdEy8zmAk8CfQ/gNn8AJgN/Bca4+1HAKOBGIB+4y8xm1HvfAuBRYDDwG2Ckux8NjAR+Qki47ot6ykRERETaVU4TLTMrNrObgaeBgQdwn7nAKUAJcJG77wJw95S73w78FigEvl6v6SXAFGAtcKW7l0ftqoAvAi8CA4AvtzU2ERERkZbKWaJlZlOA5cA3o0M3AWvaeLvLo+1D7r69gfN3RdsPm1nPBtr9Jkquarl7GvhZtHthG+MSERERabFc9miNAcYCrwDHuvutB3Cv46Pt3xs5/ypQA/QGjgIwszzgmGbavRRtJ5nZ2AOIT0RERKRZuUy01gNnufvx7j6/rTeJEqZJ0e67DV3j7tXAhmh3WrQdDWR6txpsB6wDkvXaiYiIiLSLnJV3cPd3gHdycKuB1MW1rYnrdgDjgSHR/rCscw22c/ekme0BBmW1E+my0skaUpVlVJeWUL2nhOp9pVTtLaOmvJJkWRXJ8iqSFdXUVFSTrKwhWVFNsipJsjpJuipJqjpJOpkmXZMinQSSqfCnSDINqTSkIZ1KQ4rwzG90rP4rkfmZNKQTtRXmEgDpaCe76lw6cy7xnnOJrGve+4EbuG6/420sKZWDingHWswqlZem9Li+nHbr5w48GBHpNDpjwdJeWT9XNHFdeb3r29quUWa2uJFTk5trK9KYZGUZpdu3UrJxM+Ubd1KxbR/V28uo2V1Bak816dIa0hUp0hVp8qogrxryaxLk1UBBMkF+EgpqX2ny02ny6iUKBbTXf9zNpRMNnVc9zZZJkHywhLUXLGXcITOav1xEuoTOmGglm79kP5mvmLa2E8mJst072f6ms/edDVSs30PV1jJSu6phX5qC8gQFlQmKqhP0qErTszpJUTJNb8JEw+al622lO6osyKNP/wOpiiPtzcwmAKsaOZ0mFNZeC/wF+KG7NzUy0ymZ2eXAPcAGdx+Tdfw5QkWAW939pniia5qZ3Qt8Enje3efGG03QGROtkqyfi5u4LjMfq6yRdo31atVv1yh3n9XQ8aina2Zz7aX7qaqsYtPLb7LjH07lqt2kt1VTuAd6lkK/8hRFyVSnGZOuyUuQSkAyL0EyD1IJSOUR/ZwmlXUslUiTzuwn0mH0LzoWfgYSWaOC0TWZY1B3DdE1iUSi9hwNbGuvqR1HzLqm/n72Dw2e2/9Y5nD9tLT2eOK9jRO56Hg7kHsUJBh5/pFMGjem+Wuls3gb2JO1X0CY/jIbOAy4ysze5+6L4ghOOofOmmhVAj0IhUcbk/k+2xpts8tADAZ2128QFTTtX6+dSIMqSqtY+/g8dr24nPSaUop3pOi/L0nP6hSjcvg+1XlQWZigoihNRWGaysI0lYUpKgtSVBalqe4B1cUJaorzSBbnk+pVCL0KoW8P8vv0IL9Pbwr69qKwX2+K+/WmZ5+e9OxZRI+CQnrkF9AjP2wL8/Jrt5lXfp7WlRc5AF9w9+fqH4yKYv8KOAv4k5nNcPdURwfXDi4jTLtpqOySNKLTJVrunjIzBw4FJjR0jZkVQu133fKo3cZoonv/qF1DTx6OJVSVr20nklGycS/rH5xHyT/epXBNBQN31dAvmaZfK+9TkwdlRVDWI01pcQ17eyXZ1TPJzt5JtvVOsWdAEZUj+lIwoj+9hvZlUL/+DOnZh6HFfRjSsw9DivswsEcvBvToSVF+p/tPVESa4e47zOyThKfjpwGnA0/EG9WBc/e1ccfQFXXW/4vPIyRaxwO/aOD8MYTYK4AFWcdfBT4QtXumgXYnRNs17r4xZ9FKl7XtrY1s+PWL5L26mSHbqxhAWDqgOWVFCXb1qWFXn2q29Kti9cAalgxL8dbwBBX9CpnQbzAT+w2JXoOZ0HcQJ/QewPBe/ehZUNjeH0tEYhYlW28DRxKGErt8oiVt01kTrfuBq4DzzOwGd99Z73zm+ec/ZJbZyWr3AeAKM/tu/erwwGej7b25Dli6jk2vrmXjL/5Ozze3MmhvNSOauDaZgF190mwbUM76QeW8NaKK5ybksalf+E9nWM++HDJ4MrMHj+LSwaOZPXgUo3sPIJGTCT8i0sVl/qraV/9ENJXlQuDjwBGEKS81wEbgb8AP3P09Iy9mdgbweeA4wnywPYS5YvcDdzfwvYeZ9QOuAz5KWKYuD1gJPECYsP+eqTYNaWgyfNbDAVsI6wp/CriaunnMbwP/A9wbrdDSLrF1ZrEmWmY2jjDeW1avS/IZQhX3E4EHzex8d98SFTP9CnAxUA3cXu+WvyUsOj0Z+F8zu8Ld95lZEfB94CTCL+Ud7fm5pPOpLq9ixS/mUfPnNxm2pZzRjVxXVpTH9v5VbBy8jwVj9/HYlDw296lb5ckGjOX0ERM5bsQkjh4+gRG9WjuwKCIHAzObTOjJSlGvNytaOu4x4NTo0GpgETAcmBq9LjGzk919QVa7LwL/Fe1uBBYS5iufEr3ON7P3u3syq810whOQEwhP579LKHM0C/gG8EkzO9Pdlx3gR04Q5qVdSpgjvZxQfPy46GWE7+fsfw4dFVus4u7R+jXhl+N5YG7moLunzeyy6PjJwJqoC3Y0MILwMNEV7r40+2buXmFmFwJ/BT4GnGFmywj/sgcBVcBH3H1He38w6Rx2LNrEujv/Tv9X1jGoquEKILt7J9gwbDfzJm3jvpmF7CzuE53pzdCefbho7ExOGT2V40ZMZHDtOZHua8w9N/YCiuKOIweq1l/xnWafMM8VM8snzD44gfDHfR6h96f+ur9fJSRZ24EPuvtrWfc4GniI0Dv0NeD86PgA6joXLnT3+7LanA48SPgePR+4LzreG3iEkMg8BFyTmTZjZiOAuwkT9h82szn1RohaaxhwEaF36s6oQHgx8HPgEuBfzew/M+UuOji2WMWdaDXK3Vea2eHA14FzgEMIJRmeAL7r7s820u41M5sD/BtwBjCH0Iv1Z+Db7r6wI+KXeO1YuJH1tz7F0MXbGhwa3NUbNozcxMtTNvPAtIFs79GX0AsP4/sO4sxxszhz/CyOGDpOT+bJQWXMPTf+CPgCuV2iLS6pMffceMf6K77zpXa6/7Nm1tT52wnfRfW9n9DTdUt2kgW132E/Bb5F+N7LMELpol3AH+q1ecrMbiPMbc4eOrySMBz3BvCx7J4ud99sZucDSwk9aJcDP23qw7TAf7v7j7Peo8LMvkQYhSogzK9+LKbYYtOuiZa7T2jm/Nxmzm8Hvhy9WvO+awj/EuUgs2fxZtbe+jSDF25ieL1zNXkJNg0tZfGkpdxzaE/e7TccGAdAz4JCPjrpcC6xY5k9eJTmWMnB7Fq6R5IF4XNcC7RXolW/jlY+0JeQQPQA/gXobWZfqpdInBQ9Pd9YBeJML1z2CiarCHO4BgL3mtkP3P3NrHv+ewP3+Ui0vS/7/bP
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 375x300 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"plt.rc('axes', titlesize=12)\n",
|
|||
|
"plt.rcParams.update({\n",
|
|||
|
" 'font.size': 12, \n",
|
|||
|
" 'figure.figsize': (2.5, 2), \n",
|
|||
|
" 'figure.dpi': 150\n",
|
|||
|
"})\n",
|
|||
|
"colors = ['#1b9e77','#d95f02','#7570b3','#e7298a']\n",
|
|||
|
"labels = ['Baseline I', '11 Hz', 'Baseline II', '30 Hz']\n",
|
|||
|
"fig = plt.figure()\n",
|
|||
|
"for i in range(len(speed_dist)):\n",
|
|||
|
" plt.plot(\n",
|
|||
|
" speed_bins[:-1], np.cumsum(np.array(speed_dist[i]).mean(0))*speed_binsize, \n",
|
|||
|
" c=colors[i], label=labels[i])\n",
|
|||
|
"plt.legend(bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
|
|||
|
"despine()\n",
|
|||
|
"plt.xlabel('Running speed (m/s)')\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'running_speed.png', bbox_inches='tight', transparent=True)\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'running_speed.svg', bbox_inches='tight')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 46,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"labels = [\n",
|
|||
|
" 'Baseline I vs baseline I',\n",
|
|||
|
" 'Baseline I vs baseline II', \n",
|
|||
|
" 'Baseline I vs stim I', \n",
|
|||
|
" 'Baseline II vs stim II', \n",
|
|||
|
" 'Baseline I vs stim II'\n",
|
|||
|
"]\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"def swarm_violin(data, ax=None, clip=None):\n",
|
|||
|
" if ax is None:\n",
|
|||
|
" fig, ax = plt.subplots()\n",
|
|||
|
" \n",
|
|||
|
" ticks = [0,1,2,3,4]\n",
|
|||
|
"\n",
|
|||
|
" violins = ax.violinplot(\n",
|
|||
|
" data, ticks, showmedians=True, showextrema=False, points=1000, bw_method=.3)\n",
|
|||
|
"\n",
|
|||
|
" for category in ['cbars', 'cmins', 'cmaxes', 'cmedians']:\n",
|
|||
|
" if category in violins:\n",
|
|||
|
" violins[category].set_color(['w', 'w'])\n",
|
|||
|
" violins[category].set_linewidth(2.0)\n",
|
|||
|
" violins[category].set_zorder(10000)\n",
|
|||
|
"\n",
|
|||
|
" for pc in violins['bodies']:\n",
|
|||
|
" pc.set_facecolor('gray')\n",
|
|||
|
"# pc.set_edgecolor(c)\n",
|
|||
|
" pc.set_alpha(0.4)\n",
|
|||
|
"\n",
|
|||
|
" sns.stripplot(data=data, size=4, ax=ax, color='k')\n",
|
|||
|
" ax.spines['top'].set_visible(False)\n",
|
|||
|
" ax.spines['right'].set_visible(False)\n",
|
|||
|
" \n",
|
|||
|
" y = -np.inf\n",
|
|||
|
" if clip is None:\n",
|
|||
|
" for val in data[1:]:\n",
|
|||
|
" data_max = np.max([max(data[0]), max(val)])\n",
|
|||
|
" data_min = np.min([min(data[0]), min(val)])\n",
|
|||
|
" y_ = data_max * 1.05 + 0.025 * (data_max - data_min)\n",
|
|||
|
" if y_ > y:\n",
|
|||
|
" y = y_\n",
|
|||
|
" else:\n",
|
|||
|
" y = clip\n",
|
|||
|
" ax.set_ylim(0, clip)\n",
|
|||
|
" \n",
|
|||
|
" x = 1\n",
|
|||
|
" for val in data[1:]:\n",
|
|||
|
" Uvalue, pvalue = scipy.stats.mannwhitneyu(data[0], val, alternative='two-sided')\n",
|
|||
|
" # significance\n",
|
|||
|
" if pvalue < 0.0001:\n",
|
|||
|
" significance = \"****\"\n",
|
|||
|
" elif pvalue < 0.001:\n",
|
|||
|
" significance = \"***\"\n",
|
|||
|
" elif pvalue < 0.01:\n",
|
|||
|
" significance = \"**\"\n",
|
|||
|
" elif pvalue < 0.05:\n",
|
|||
|
" significance = \"*\"\n",
|
|||
|
" else:\n",
|
|||
|
" significance = \"ns\"\n",
|
|||
|
"\n",
|
|||
|
" ax.text(x, y, significance, ha='center', va='bottom')\n",
|
|||
|
" x += 1"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 47,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"pairwise_gridcell = [[], [], [], [], []]\n",
|
|||
|
"for i, pairs in enumerate(gridcell_speed):\n",
|
|||
|
" for j, pair in enumerate(pairs):\n",
|
|||
|
" pairwise_gridcell[i].append(np.diff(pair))\n",
|
|||
|
" \n",
|
|||
|
"pairwise_nsi = [[], [], [], [], []]\n",
|
|||
|
"for i, pairs in enumerate(nsi_speed):\n",
|
|||
|
" for j, pair in enumerate(pairs):\n",
|
|||
|
" pairwise_nsi[i].append(np.diff(pair))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 72,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"plt.rc('axes', titlesize=12)\n",
|
|||
|
"plt.rcParams.update({\n",
|
|||
|
" 'font.size': 12, \n",
|
|||
|
" 'figure.figsize': (4, 2), \n",
|
|||
|
" 'figure.dpi': 150\n",
|
|||
|
"})"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 73,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAHtCAYAAACNuh8HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3zTdf7A8VfSle6WljIqCoJ+EMEt4sIJeMp5oufAcYIb1+HpueVQ3Nx5iJ4HiqKHCg7ufgc4UFwgiuJG1I9wCIJQoDvNaNImvz++SUzbJF1p0ibv5+PRR5rv/PRDSN75jPfH5PV6EUIIIYQQyccc7wIIIYQQQoj4kEBQCCGEECJJSSAohBBCCJGkJBAUQgghhEhSEggKIYQQQiQpCQSFEEIIIZKUBIJCCCGEEElKAkEhhBBCiCQlgaAQQgghRJKSQFAIIYQQIklJICiEEEIIkaQkEBRCCCGESFISCAohhBBCJCkJBIUQQgghkpQEgkIIIYQQSUoCQSGEEEKIJCWBoBBCCCFEkpJAUAghhBAiSUkgKIQQQgiRpFLjXQAhROwopSYB84GXgEuBW4FzgL0AG/AR8LDWelWz84YCNwMnAv0BB7AJeB14VGu9K0Z/Qo8jdR57UuexJ3Xec0mLoBDJqQBYA9wJ5ADfAdnAeOA9pdRp/gOVUkcCnwGTgXzgW+AXYARwO/CFUmpATEvfM0mdx57UeexJnfcwEggKkZzGAcXAOK11qdb6EGAQ8A2QAtwXdOzfMd7IZwN9tdaHaK2HAfsCG4BS4I5YFr6HkjqPPanz2JM672EkEBQieV2jtX7L/0RrvQO42/f0QKVUjv933+N8rXV90PGbgBuBZcCWGJQ3EUidx57UeexJnfcgMkZQiOTUCLwRYvv3Qb/nA3UY38xHAHOUUncAK7XWbgCt9VJgaReXNVFIncee1HnsSZ33MBIICpGcKrXWjhDbg7f53x9uxnhDPgJYAdQppVYCbwOvaa03dGlJE4fUeexJncee1HkPI13DQiQnVxuOMQFord8EDgcWAVaMAeCnYozv+VEptUopNayrCppApM5jT+o89qTOexgJBIUQrdJaf6W1nggUAaOBacAqwAMcA6xQSmXHsYgJR+o89qTOY0/qPP6ka1gIEZZSKgVjxl9/rbV//M4q388MpdRRwIdAP+Bk4L9xK2yCkDqPPanz2JM67z6kRVAIEclwjAHd7yql+obY/zFGlw4YqSFE50mdx57UeexJnXcTEggKIcLSWn8NrMN4I16olNrDv08plY6REywPY+WAlXEpZIKROo89qfPYkzrvPqRrWAjRmvMwloc6HtiklNoE2DG6dQow0kVcobUuj1sJE4/UeexJncee1Hk3IC2CQoiItNbfAYcA/wR+wlg7dBhQBTwDHKi1fjF+JUw8UuexJ3Uee1Ln3YPJ6/XGuwxCCCGEECIOpEUwiSilliillsS7HEIIIYToHmSMYHIZPGTIkGGANAMLIYQQ7WeKdwGircsCQaVURvAi0kqpw4CJGDOEXg9ekFoIIYQQQsRe1LuGlVJjlVLfAbOCtp2OMTNoKnAd8IZS6rFo31sIIYQQPZPH4+Gpp57i8MMPp3fv3owaNYpnn30WmcvQtaLaIqiUGg4sAdKBrUG7ZvnutQUjb9A44Gql1Gu+tQaFEEIIkcQuvvhinn/++cDz8vJyPvnkE9asWcOcOXPiWLLEFu0WwT9iBIGLgckASqkjgIEYuYFGaq1Px+giNgGXR/n+QgghhOhh3n333SZBYLC5c+fy6aefxrhEySPageDxQB1widZ6u2/bb3yPy7XWuwG01v8GtgOjonx/IYQQQvQwL74YOV1ga/tFx0V7skh/4AettTVo2xiMWarvNjt2O3BglO8vhBBCiG7E6/XidDojHlNTU9Op/aLjoh0ImjC6hgFQSuUBh/uevt/s2N6AI8r3F0IIIUQ3s3v3bhobG2lsbGyxLy0tjUMOOYRXX3017PmjRkkHYleJdtfwRmCwUqrQ93w8RrD5i9Z6vf8gXyqZvYAfo3x/IYQQQnQjJpOJ7Oxs6uvrqampafJjs9kwm81cfvnlFBcXhzy/X79+XHDBBTEudfKIdiC4FLAA/6eUuh74K0a38CsASimLUupM4D++7f+N8v1FD/Tpp5/y/PPP895770maACGESED5+flkZWWRmtq0IzI3N5eCggKKi4t566232GeffZrsHzZsGG+//TY5OTmxLG5SiXbX8EzgHOBY4BiMruLtwAO+/aMwgkIT8AVBuQZF8vnpp58499xzWbt2bWDbkCFDePHFFzn88MMjnNlSVVUVNpuN/v37YzbLyomi+/N6vWzduhWLxUJJSUm8iyNEl0pNTaWwsJCGhgaqqqoAyM7OJjs7m9zcXAAOPvhgtNa89957bNmyhcGDBzN69Oh4FjspRPUTU2tdDYwEHgaWA48Bo7TW5b5DfgQqgNnAcVprWzTvL3oOl8vFmDFjmgSBABs3bmTcuHGUlZW16Trr1q1j7NixFBUVMWDAAPr27cujjz7aFUUWImqeffZZlFLstdde9OnTh9GjR/PRRx/Fu1hCdKnc3Fyys7PJzMwkJSWFrKwsioqKmhxjMpk48cQTmTx5sgSBMWKKdVecUipFa91ytKjockqp9UOGDBn22muvxbsoLFq0iIkTJ4bdf88993DXXXdFvMaGDRs45JBDqKura7Hv8ssv58knn+x0OYWItieeeIJrrrmmxXaLxcKqVas47LDD4lAqIWLD5XKxfft23G43vXv3pqCgIN5Faq+EW2s45n1oEgQKoNXWj+D9brebRYsWcd1113HbbbfxzTffAHDXXXeFDAIBnnrqKX7++efoFTgB/fTTTzz44IPcfvvtLFmyJORsPhFd9fX1TJ8+PeQ+p9PJPffcE9sCCRFj6enpZGZmkp6eLuP+uokOjxFUSl0SjQJorZ+JxnVEz+IfExJOZmYmO3fu5Oeff+a8885j06ZNgX0PPvggkydPZsmSJRGvcffdd/P0009HpbyJZtq0adx33314PJ7AtmHDhvHmm28yYMCAOJYssa1Zs4bdu3eH3b906VKGDh3K3nvvzZVXXsnvfve7GJZOiNjIyMigsbGxxcQRER+d+VeYhzHzt7MkEExC5513Hvfff3/Y/ePGjaOiooLLLrusSRDoN3/+/FbvsXnz5s4UMWG9+uqrzJgxo8X27777jnPOOYePP/44DqVKDm0ZiqO1RmvNG2+8wbXXXsuMGTNISUlp9cuTED2F2WzGZEq4HtYeqzNdwz9H6UckoREjRnD99deH3HfyySczatQovvzyy0A3cEfvIVqaPXt22H1r1qzhs88+i2FpkssRRxxBr1692nz8448/zooVK6isrMTtdndhyYSInYaGBhmK0o10uEVQaz0wiuUQSejRRx/l0EMPZfbs2axbt46GhgY8Hg/fffcdzz77bKdbQK666qoolTSxfPfddxH3r1+/XiYsdJHMzExuv/12brrppjaf8+qrr3LQQQfhdrtJS0vrwtIJ0fW8Xi8Oh4PGxkbq6+vJyMiId5GSnnTQi7gaNmwYW7ZsweVyBbZt376dWbNmdSof4DXXXMPQoUOjUcSE07dvXyoqKsLuz8nJYdu2bU22mc1m+vfv39VFSwo33ngjFouF+++/n+3bt7d6fG1tLWlpafKB2Qnffvst8+fPZ8eOHey3335ceuml8nqOE7vdTn19PfX19dTW1tK7d+94FynpSeZdETeXXnophx9+OOXl5SH3B09kaI/09PSI4w+T3VlnnRV234ABAzjppJNwuVyUl5dTXl6O1WolJSUlhiVMfNdccw1aa5YvX86kSZMiHjt8+HByc3Pl36CDHnroIUaMGMEjjzzCwoULmTZtGoMHD2bZsmXxLlrS8Hg8LFu2jAsvvJCzzjqLf/7zn+zcuZO6ujocDke8i5f0OjNreGUU7u/VWh8XheuIHmb69Ok880zXzBO68MILycvL65Jr92Q7d+7kyiuvDDvbOicnhwULFpCdnU1VVVVgDI/JZJLWqC6Qk5PDAQccQGZmJos
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 600x300 with 2 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"fig, axs = plt.subplots(2, 1, sharex=True)\n",
|
|||
|
"\n",
|
|||
|
"swarm_violin(pairwise_gridcell, ax=axs[0])\n",
|
|||
|
"axs[0].set_ylabel('Grid cells')\n",
|
|||
|
"\n",
|
|||
|
"swarm_violin(pairwise_nsi, ax=axs[1])\n",
|
|||
|
"axs[1].set_ylabel('NSi cells')\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"plt.xticks([0,1,2,3,4], labels, rotation=-45, ha='center')\n",
|
|||
|
"# plt.tight_layout()\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'violins_swarm.png', bbox_inches='tight')\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'violins_swarm.svg', bbox_inches='tight')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Save to expipe"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 50,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"action = project.require_action(\"longitudinal-comparisons-speed\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 51,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"['/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/statistics/PRS.csv',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/statistics/summary.tex',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/statistics/PRS.tex',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/statistics/MWU.csv',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/statistics/summary.csv',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/statistics/MWU.tex',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_629_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_150_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_317_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_79_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_317_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_233_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_79_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_121_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_106_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_234_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_250_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_96_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_132_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_381_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_715_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_130_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_655_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_233_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_659_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_361_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_361_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_357_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_357_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_130_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_240_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_232_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_656_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_234_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_195_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_656_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_243_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_121_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_106_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_234_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_243_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_250_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/running_speed.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_106_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_231_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_58_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_195_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_659_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_358_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_150_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_253_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/violins.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_361_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_195_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_231_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_130_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_57_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_358_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/baseline_max_rate_vs_other.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_121_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_150_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_317_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_358_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_168_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_149_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_132_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_168_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_57_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_659_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_231_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_243_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_58_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_240_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_79_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_231_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_233_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_132_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_629_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_gridness.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_659_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_57_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_715_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/violins_swarm.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_253_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_57_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/baseline_gridness_vs_other.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_361_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_317_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_240_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_263_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/baseline_average_rate_vs_other.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_79_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/violins_swarm.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_250_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_130_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_381_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_79_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_150_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_357_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_149_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_234_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_168_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_253_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_150_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_263_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_304_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_715_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_57_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_304_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_659_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_361_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_357_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_130_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_132_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_715_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_121_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_655_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_357_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_304_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_106_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_195_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/histogram_grid_all.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_232_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_106_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_195_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_317_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_381_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_332_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_659_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/baseline_max_rate_vs_other.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_240_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_655_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/stickplot_gridness.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_629_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_629_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_656_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_121_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_149_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_629_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_332_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_58_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_243_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_250_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_655_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_381_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_96_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_233_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_96_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_629_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_132_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_250_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_304_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_234_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_358_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_332_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_58_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/baseline_average_rate_vs_other.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_357_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_79_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_232_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_332_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/running_speed.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/baseline_gridness_vs_other.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_656_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/stickplot_gridness.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_149_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_233_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_332_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/histogram_grid_all.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_57_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_106_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_168_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_358_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_358_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_243_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_243_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_234_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_263_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_304_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_232_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_240_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_231_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_232_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_96_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_233_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_656_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_gridness.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_381_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_240_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_168_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_655_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_317_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_655_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_96_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_250_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_715_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_381_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/violins.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_150_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_656_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_149_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_195_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_58_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_253_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_263_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_121_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_232_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_168_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_263_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_130_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_132_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_96_speed_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_253_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_58_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_715_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_231_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_332_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_263_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_253_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_361_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_149_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_speed_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_304_rate_map.png']"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 51,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"copy_tree(output_path, str(action.data_path()))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 52,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"septum_mec.analysis.registration.store_notebook(action, \"20_longitudinal_comparisons_speed.ipynb\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.6.8"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|