septum-mec/actions/stimulus-response/data/20_stimulus-spike-response....

1040 lines
462 KiB
Plaintext
Raw Normal View History

2019-10-17 17:50:31 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2019-12-13 10:43:57 +00:00
"08:27:49 [I] klustakwik KlustaKwik2 version 0.2.6\n"
2019-10-17 17:50:31 +00:00
]
}
],
"source": [
"import os\n",
"import expipe\n",
"import pathlib\n",
"import numpy as np\n",
"import spatial_maps.stats as stats\n",
"import septum_mec\n",
"import septum_mec.analysis.data_processing as dp\n",
"import septum_mec.analysis.registration\n",
"import head_direction.head as head\n",
"import spatial_maps as sp\n",
"import speed_cells.speed as spd\n",
"import re\n",
"import joblib\n",
"import multiprocessing\n",
"import shutil\n",
"import psutil\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"# import seaborn as sns\n",
2019-10-17 17:50:31 +00:00
"from distutils.dir_util import copy_tree\n",
"from neo import SpikeTrain\n",
"import scipy\n",
"\n",
2019-12-13 10:43:57 +00:00
"from tqdm.notebook import tqdm_notebook as tqdm\n",
"tqdm.pandas()\n",
2019-10-17 17:50:31 +00:00
"\n",
"from spike_statistics.core import permutation_resampling\n",
"\n",
"from spikewaveform.core import calculate_waveform_features_from_template, cluster_waveform_features\n",
"\n",
"from septum_mec.analysis.plotting import violinplot, despine"
2019-10-17 17:50:31 +00:00
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"plt.rc('axes', titlesize=12)\n",
"plt.rcParams.update({\n",
" 'font.size': 12, \n",
" 'figure.figsize': (6, 4), \n",
" 'figure.dpi': 150\n",
"})\n",
"\n",
"output_path = pathlib.Path(\"output\") / \"stimulus-response\"\n",
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)\n",
"output_path.mkdir(exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"data_loader = dp.Data()\n",
"actions = data_loader.actions\n",
"project = data_loader.project"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"identification_action = actions['identify-neurons']\n",
"sessions = pd.read_csv(identification_action.data_path('sessions'))\n",
"units = pd.read_csv(identification_action.data_path('units'))\n",
"session_units = pd.merge(sessions, units, on='action')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"stim_action = actions['stimulus-response']\n",
"stim_results = pd.read_csv(stim_action.data_path('results'))"
]
},
{
"cell_type": "code",
"execution_count": 7,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [],
"source": [
"# lfp_results has old unit id's but correct on (action, unit_name, channel_group)\n",
"stim_results = stim_results.drop('unit_id', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 8,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [],
"source": [
"statistics_action = actions['calculate-statistics']\n",
"shuffling = actions['shuffling']\n",
"\n",
"statistics_results = pd.read_csv(statistics_action.data_path('results'))\n",
"statistics_results = session_units.merge(statistics_results, how='left')\n",
"quantiles_95 = pd.read_csv(shuffling.data_path('quantiles_95'))\n",
"action_columns = ['action', 'channel_group', 'unit_name']\n",
"data = pd.merge(statistics_results, quantiles_95, on=action_columns, suffixes=(\"\", \"_threshold\"))"
]
},
{
"cell_type": "code",
"execution_count": 9,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [],
"source": [
"data['unit_day'] = data.apply(lambda x: str(x.unit_idnum) + '_' + x.action.split('-')[1], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"data = data.merge(stim_results, how='left')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"waveform_action = actions['waveform-analysis']\n",
"waveform_results = pd.read_csv(waveform_action.data_path('results')).drop('template', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"data = data.merge(waveform_results, how='left')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"colors = ['#d95f02','#e7298a']\n",
"labels = ['11 Hz', '30 HZ']\n",
"queries = ['frequency==11', 'frequency==30']"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"data.bs = data.bs.astype(bool)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
2019-12-13 10:43:57 +00:00
"data.loc[data.eval('t_i_peak == t_i_peak and not bs'), 'ns_inhibited'] = True\n",
"data.ns_inhibited.fillna(False, inplace=True)\n",
"\n",
2019-12-13 10:43:57 +00:00
"data.loc[data.eval('t_i_peak != t_i_peak and not bs'), 'ns_not_inhibited'] = True\n",
"data.ns_not_inhibited.fillna(False, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
2019-10-17 17:50:31 +00:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of sessions above threshold 194\n",
"Number of animals 4\n"
2019-10-17 17:50:31 +00:00
]
}
],
"source": [
"query = (\n",
" 'gridness > gridness_threshold and '\n",
" 'information_rate > information_rate_threshold and '\n",
" 'gridness > .2 and '\n",
" 'average_rate < 25'\n",
")\n",
"sessions_above_threshold = data.query(query)\n",
"print(\"Number of sessions above threshold\", len(sessions_above_threshold))\n",
"print(\"Number of animals\", len(sessions_above_threshold.groupby(['entity'])))"
2019-10-17 17:50:31 +00:00
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of gridcells 139\n",
"Number of gridcell recordings 231\n",
"Number of animals 4\n"
]
}
],
"source": [
"gridcell_sessions = data[data.unit_day.isin(sessions_above_threshold.unit_day.values)]\n",
"print(\"Number of gridcells\", gridcell_sessions.unit_idnum.nunique())\n",
"print(\"Number of gridcell recordings\", len(gridcell_sessions))\n",
"print(\"Number of animals\", len(gridcell_sessions.groupby(['entity'])))"
]
},
{
"cell_type": "code",
"execution_count": 18,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [],
"source": [
"data.loc[:,'gridcell'] = np.nan\n",
"data['gridcell'] = data.isin(gridcell_sessions)\n",
"\n",
"data.loc[data.eval('not gridcell and bs'), 'bs_not_gridcell'] = True\n",
"data.bs_not_gridcell.fillna(False, inplace=True)"
2019-10-17 17:50:31 +00:00
]
},
{
"cell_type": "code",
"execution_count": 19,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>action</th>\n",
" <th>baseline</th>\n",
" <th>entity</th>\n",
" <th>frequency</th>\n",
" <th>i</th>\n",
" <th>ii</th>\n",
" <th>session</th>\n",
" <th>stim_location</th>\n",
" <th>stimulated</th>\n",
" <th>tag</th>\n",
2019-10-17 17:50:31 +00:00
" <th>...</th>\n",
" <th>half_width</th>\n",
" <th>peak_to_trough</th>\n",
" <th>average_firing_rate</th>\n",
" <th>bs</th>\n",
" <th>bs_stim</th>\n",
" <th>bs_ctrl</th>\n",
" <th>ns_inhibited</th>\n",
" <th>ns_not_inhibited</th>\n",
2019-10-17 17:50:31 +00:00
" <th>gridcell</th>\n",
" <th>bs_not_gridcell</th>\n",
2019-10-17 17:50:31 +00:00
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>33</th>\n",
2019-10-17 17:50:31 +00:00
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
2019-10-17 17:50:31 +00:00
" <td>...</td>\n",
" <td>0.272875</td>\n",
" <td>0.602667</td>\n",
" <td>5.945508</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>1833-260619-1</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>1833</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>0.226452</td>\n",
" <td>0.274814</td>\n",
" <td>2.860048</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>1833-260619-1</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>1833</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>0.247266</td>\n",
" <td>0.570104</td>\n",
" <td>3.365674</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>1833-260619-1</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>1833</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>0.284542</td>\n",
" <td>0.644111</td>\n",
" <td>17.471520</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
2019-10-17 17:50:31 +00:00
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>0.259920</td>\n",
" <td>0.581698</td>\n",
" <td>5.891739</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" <td>True</td>\n",
" <td>False</td>\n",
2019-10-17 17:50:31 +00:00
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 60 columns</p>\n",
2019-10-17 17:50:31 +00:00
"</div>"
],
"text/plain": [
" action baseline entity frequency i ii session \\\n",
"33 1833-260619-1 True 1833 NaN True False 1 \n",
"34 1833-260619-1 True 1833 NaN True False 1 \n",
"35 1833-260619-1 True 1833 NaN True False 1 \n",
"39 1833-260619-1 True 1833 NaN True False 1 \n",
"40 1833-260619-1 True 1833 NaN True False 1 \n",
2019-10-17 17:50:31 +00:00
"\n",
" stim_location stimulated tag ... half_width peak_to_trough \\\n",
"33 NaN False baseline i ... 0.272875 0.602667 \n",
"34 NaN False baseline i ... 0.226452 0.274814 \n",
"35 NaN False baseline i ... 0.247266 0.570104 \n",
"39 NaN False baseline i ... 0.284542 0.644111 \n",
"40 NaN False baseline i ... 0.259920 0.581698 \n",
2019-10-17 17:50:31 +00:00
"\n",
" average_firing_rate bs bs_stim bs_ctrl ns_inhibited \\\n",
"33 5.945508 True NaN 1.0 False \n",
"34 2.860048 False NaN 0.0 False \n",
"35 3.365674 True NaN 1.0 False \n",
"39 17.471520 True NaN 1.0 False \n",
"40 5.891739 True NaN 1.0 False \n",
2019-10-17 17:50:31 +00:00
"\n",
" ns_not_inhibited gridcell bs_not_gridcell \n",
"33 False True False \n",
"34 True True False \n",
"35 False True False \n",
"39 False True False \n",
"40 False True False \n",
2019-10-17 17:50:31 +00:00
"\n",
"[5 rows x 60 columns]"
2019-10-17 17:50:31 +00:00
]
},
"execution_count": 19,
2019-10-17 17:50:31 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.query('baseline and Hz11 and gridcell').head()"
2019-10-17 17:50:31 +00:00
]
},
{
"cell_type": "code",
"execution_count": 20,
2019-12-13 10:43:57 +00:00
"metadata": {},
"outputs": [],
"source": [
"entity_date_ = data.query('stim_location==\"ms\"').entity_date.unique()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"data = data.query('stim_location!=\"mecl\" and stim_location!=\"mecr\"')"
]
},
{
"cell_type": "code",
"execution_count": 22,
2019-10-17 17:50:31 +00:00
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/lib/histograms.py:898: RuntimeWarning: invalid value encountered in true_divide\n",
" return n/db/n.sum(), bin_edges\n"
]
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxcVZ338U93J5B0QnaWQCBAQn5AEAiyDBAkuICKC4oMCkFCBEFgmIdnWMImYR4hIDMiIhJFZQlGFkEgaGTJIPs2CLL/AoQEBDFkQ7IR0l3PH+cUXemuvaq76la+79erX7fq3nNOnepK+lf3rE2pVAoRERFJhuZaV0BERESKp8AtIiKSIArcIiIiCaLALSIikiAK3CIiIgmiwC0iIpIgCtwiIiIJosAtIiKSIArcIiIiCaLALSIikiAK3CIiIgmiwC0iIpIgCtwiIiIJosAtIiKSIL1qXQFpDGa2s7s/101lp/eevdvdP98dr5F0ZjYJuCY+/Za731jD6lSk0s+70+/iAHf/c5WqVrFc783MJgD3x6dnufvFPV03SQ4FbqmImQ0E/hM4Cf17EhHpdvpDK5X6ETC51pUQEVlfKHBLpVq6+wXcvam7X0Pqhz5vkfw0OE1ERCRBFLhFREQSRE3lUhYzmwqc3+lcesTsA+4+oYqv1W2jys3sWuBowN19ezPbDTgbGA8MAd4F/gf4L3d/oUBZvYFJwGHAzjH/MuCvwO+Aa9x9TYEyxgNHxtffHBgAfAD8DXgAuNLdXynjfQ4F/gzsFE+d5+4/KKOcrYHTgIOArYAVwLPAdHe/2cymA8cDC9x960753ohPvwb8nTA+YjdgFfAScKK7P1fo8zazJuBg4HvAJ4CNgbcIv+NLinwfLbGMYwif1RaxHi8CNwO/cPfVefIfFPPuDWwa874G/BG4wt0XFVMPkXLojlskMrPDgMeAQwl/jHsDWxIC+zNmNjFP3tGEAP0L4HMZ+TcGPgtMB/5qZpYjf18z+x3wEHACIcAOIXy5HkwIUCcDz5vZkSW+rwHA3VQetD9PCGwnAaOBDWLdDgBuMrPfUtzNwDjC1Kd9gD6xjF2AeUXUoS9wGzAL+CLh8+kDbAecBTwPbFugjM0IX8buAA6J6TcEBgH7ApcDfzGzrbLk7WdmtwF/Ag4nfHlJ590d+D7wupl9udB7ESmXAreUazrhD/CsjHPj4s+xNalRZTYDriME218Rgu9+wEXAakJAut7Mvtg5YwwEDwE7AGuAKwl3c3sCX43ltgHbA/eb2fAsrz+d8IUB4H+B7wATgE8R7uIfjdd6AT+Pd9AFmVk/wl3gJ+OpcoP2vwB3Aq2E9/jfhIC9H6Hl5QPgm8BRRRR3LtBECLT7At8Gprr78iLyziAEW4DnCF+q/oXwu7uXEMjPyfM++hC+NHwqnnoQmBjL+DrhCw6Ez/LO2IqSzttM+B18LZ66ixC89yJ8ObsIeJ/QSvJ7M/tMEe9HpGRqKpeyuPu7wLtmtiTj3LM1rFKlBsbjRHf/Tcb5h83sD4Q7tA2By83sXnf/KCPNdELg/yfwWXd/qlPZd8a76TuB4cBlhCAHgJltR0fAewLY390/zMj/EHCdmd0CfAPoB3wBuCHfG4pB6g5CcITyg3Yz8FPCl5o1wOfc/cGMJA+b2c2EILhxEUU2A6e4+9Xx+aP5EmfU43N0fLmZAxzc6fd0m5ldDpySp5hzCV+gIDRpd077+4zuk10In9OMeO0U4NPx8Qnu/vNOeeeY2a+ARwj/Hq4xs1Gd/q2IVEx33CIdru8UtAFw90eBS+PT0YS7KwDMbAzwlfj0wixBO13GXYQ7b4DDzGzzjMs7Aa8S7uwv6hSMMmXWbYt8byTeKf4OSN/1lRW0o/F03LH/d6egDUDsd/+/RZa3io7fRSmOj8c2YHKO39NphL7mLuIXkHRr0OvAf+R4ndOAdLA9KCNv+v3NzhK0AXD3ecCU+HRLwl28SFUpcIt0uDLPtV9nPM7sv/wiodkXQlNtPn+Mx2ZCMzgA7v57dzdCM/SsLPnS3s14vGGedC3ATEJzPVQWtGHd93tNzlRwE2EwXiF/KTRIrzMz60XovgB4xN3fzJYu3t3maonYgzD2AOC3ue6E48Cy3YBh7p4e17AzIRBD4c95dsZjNZdL1ampXCRYDTyd66K7v2FmSwkDqbbPuDQu4/Ffcow9y6bLACp3T4+mxsw2jWlGAzsSBj7tk5E835fuHwBbZzxfXGylctg1Ht9391dzJXL3j8zsGULfdz5vlVGH9Ah7CKPY83kyx/kxGY//kq+ALDMIMj/nH5nZjwrUIS3vQDmRcihwiwQL3b2tQJpFhMC9Wca5YWW+3uDOJ+IUoxOB/enoc8/UXmTZW8fjh4Q780vM7C53LydgQsddajFfABYWkeafFdShmHr8owpldFa1z1mkUgrcIsHaItKkl3fNbObN/D+0Jx19o4W8l34Q5yX/gq6j8d8CXiGMnn6U0Aw9p8jy/5PQj3sdsBHwc0Kzfjk2iMdiutZShZMUlSZfnkJLoub6DCr5e5eZ90TCtMFirKrgNUWyUuAWCYYUkSZ91/X3jHNLMh6/7e7vlPHaJ9ARtF8lzAW+x90zy05v/ViMH7v7+THP0YSR0F8ws6PcfUb+rFktAgwYZmZNmU36WZR7Z1pI5u+80Mj1XJ9l5u+zqOl0OfK+n/AZFJJwCtwiwSAzG+nuC7JdjAunpPtY/5pxKbMv9F8Ii4NkZWZ7EQalzScMsPpbvHRSPLYBB7n7G11zA2Gxj2I8kfH4BMIdex/gMjO7292Lac7O9CxhSll/wkInc7MliiOvd812rQreJQTPIYRBZvnkqsNLGY93AX6fqwAzm0kYoPYKYd525895Zp68GxPuyucDz7r7X3OlFSmHRpVLpYrtd02CfIuHZG5dmhmc7854/L0C5V8KXAzcyLqDlkbH49I8QRvCUqhpRX3pjoPJ0iPKhxLmY5cqc6R7vlXbDqab7rjj+IPb49M9zewT2dLFbodcK9w9RUf/+uHxi0a2MvoQuhUMGBpbGJ6i4677iLgPfS7/BkwFriUswCNSVQrcUqmP59KaWf9aVqQKzjKzT3Y+aWYHAKfGp4+4+8ejlt39fwkLjwB81szOzlawmf0HYZUxCHewD2VcTq9rPczMds+St8nMLgAOzDidbzpYZz+k427zMDM7JF/iLO7JyH+6me2ZpY4jgCtKLLdUVxBaJSCsYjcoS5qzCCPwu4jzvn8Rn25PCK7Z/DcdgwOvjnnX0PGlZygww8y6fAZmti9weny6Kp1fpJrW66ZyM7sTwN2/Uiit5JTZ93iRmV0PtLn7M7WqUAVagQfiVJ97CP8/vkS4g+pNmDJ2fJZ8xxKWKR0AXGhm+xOWTV1AmMZ0JB0LcawBvtupn/hmOr4Y/MHMfhjLSwFjCZtZdG4eznfHt444Tet4wheMJuBnZvZndy9mzjXunor57wf6An82s58Q1uteQ5imdgbr9j2XMwCtUD2ejb+bswjN4c+a2cXAM4Q7/UmEleVWEFaXy+YCwoI5Y4Dz4qYy1xA2cdmasNRser74g6w7J3wa4d/DboS57c+a2Y8JXSeDCAvznEjolgCY4u6Z/z9EqmJ9v+MeNXr06C8T/sjop4yf22+//YKWlvRga/4NeGrzzTf/S5VfB4Dx48cfVO36f+1rXzs6Xf5xxx1HU1NTP+A8wh3x/YTVtTYYOnQoN910U584v3edMtx97u233z5giy0+XszsQMJiJI8TmtUPBZoGDhzI1VdfvUG8Y/84/9NPP33qTjul9/9gE+C/CDt5PQD8DNijd+/eTJkyhU03DTOaxo0bd1xmGdOmTbsmXcCPfvSj32ap40OHH354ejT28EMPPXRpKb8nd3/osssu69WnTx8IwfvM+Pt5hNAFsPERRxzByJEjAdhmm222zsw/Z86cN9L1O/zww48v9/N+5ZVXzvrOd76TTjISuCr+nu8CvjFo0CCmTZuWK2gT10P/DCHYQ2je/10s40Y6gvYDwFfdvT0j72rCZ/s/8dT2hOVuHyMsuvIf8XfTBpz
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxV1bn/8U8SUCYZg4KoqFAeBSesw1VpxQ62arVatVbFFq3WqfVeb8Xhaiv214LW21prrbTe1gGLM1XRUgeuVXG+1gmtDyqC1pYikxoBkSS/P9Y65BDOnJOcs5Pv+/XKa2efvdY66+xAnqy111DT3NyMiIiIJENtpSsgIiIihVPgFhERSRAFbhERkQRR4BYREUkQBW4REZEEUeAWERFJEAVuERGRBFHgFhERSRAFbhERkQRR4BYREUkQBW4REZEEUeAWERFJEAVuERGRBFHgFhERSZBula6AJI+Z7eLuL1W6HpKbmU0Erounx7r7LRWsTpuYWWr/4fvd/csl5J9Iy704wN3/UqaqtVm2z2Zm44GH4+kF7n5pR9dNqpMCtxTMzPoBPwLORP92REQqQr98pRg/B06qdCVERLoyBW4pRl2lKyBdk7vXVLoOItVCg9NEREQSRIFbREQkQdRVLnmZ2WTg4lavpUbCPuLu49vhPXsBpwOHAzsAfYFlwP8BM4Db3L2p3O8b3/t64FuAu/sOZrY78F/AOGAgsBj4X+C/3X1enrK6AxOBo4FdYv6VwIvAHcB17r42TxnjgOPj+29JuBcfAn8HHgGudvfXSvicg4C/ADvFl37g7j8uoZxtgXOALwHbAB8BLwDT3P02M5sGnAoscvdtW+V7K54eAfyTMI5id2A18Cpwhru/lG9UuZnVAIcQ/s3sDAwG3iHc48sK/Bx1sYwTCT+rYbEerwC3Ab919zU58n8p5t0H2CLmfQP4E3CVuy8tpB4i+ajFLVXHzPYE5gP/TQhW9cAmwFDgUOBm4DEzG9oBdTkaeBI4kvDLuDuwNSGwP29mE3LkHUkI0L8FvpiWfzDwBWAa8KKZWZb8Pc3sDuAx4DRCgB1I+IN7ACFAfRd42cyOL/Jz9QXup+1B+8uEwHYmMJLwcxoAHADcamY3U1gDYSxh6tO+QI9Yxq7AggLq0BOYCcwCDib8fHoAnwIuAF4Gts9TxhDCH2N3E/5Y3B7YFOgP7AdcCfzVzLbJkLe3mc0E/gwcQ/jjJZV3D+CHwJtmdmi+zyJSCAVuKcQ0wi/WWWmvjY1fJ5fzjcxsDOEX+DBCq/Iy4EBgb+DrwF0x6b7AA2bWu5zv38oQ4AZCsP0dIfh+BpgCrCEEpBvN7OAMn2MIIeDuCKwFria05vYCvhrLbST0Jjyc5Y+QaYQ/GCD0NHwbGA98ltCKfyJe6wb8Jrag84r37E/Ap+NLpQbtfwPuAXoRPuPPCAH7M4Qemg+BbwAnFFDcRUANIdDuB3wTmOzuDQXknU4ItgAvEf6o+jfCvXuQEMgvzPE5ehD+zX02vvQoMCGW8TXCHzgQfpb3xF6UVN5awj04Ir50LyF4703442wK8D6hl+SPZvb5Aj6PSE7qKpe83H0xsNjMlqe99kI7vd1NQG9CN/B4d38z7dozwO1mdgYhEO4E/AA4v53q0i8eJ7j7H9Jen2tm9xFaaJsCV5rZg+7+SVqaaYTA/wHwBXd/tlXZ98TW9D2EnoQrCEEOADP7FC0B72lgf3f/OC3/Y8ANZnY7cBThnh1EuH9ZxSB1NyE4QulBuxb4FeGPmrXAF9390bQkc83sNkIQHFxAkbXAWe5+bTx/IlfitHp8kZY/buYAh7S6TzPN7ErgrBzFXET4AwpCl3brtH9Me3yyK+HnND1eOwv4XPz+NHf/Tau8c8zsd8DjhH8P15nZiFb/VkSKoha3VI34S3i3ePr9VkF7PXf/NeHZLMDp6S2gdnBjq6CdqsMTwOXxdCShdQWAmY0CDounP8kQtFNl3EtoeQMcbWZbpl3eCXid0LKf0ioYpUuv27BcHyTepzuAVKuvpKAdjaOlxf6zVkEbgPjc/T8LLG81LfeiGKfGYyNwUpb7dA7hWfNG4h8gqV6jN4HvZ3mfc4BUsP1SWt7U55udIWgD4O4LaPnjcmtCK16kZArcUk0OSfv+wTxp/xSPfYE926c6QGjZZ/P7tO/Tn18eTOj2hcI/Ry2hGxwAd/+juxuhG3pWhnwpi9O+3zRHujrCoL7UPW5L0IYNP+91WVPBrYTBePn8Nd8gvdbMrBvh8QXA4+7+dqZ0sXWbrSdiT8LYA4Cbs7WE48Cy3YF6d0+Na9iFEIgh/895dtr36i6XNlFXuVSTsWnfL88yZiuT7Smwa7VIa4Dnsl1097fMbAVhINUOaZfSP8dfi/wcrd8jNZoaM9siphkJjCYMfNo3LXmuP8R/DGybdr6s0EplkeoZed/dX8+WyN0/MbPnCc++c3mnhDqkRthDGMWeyzNZXh+V9v1fcxWQYQZB+s/552b28zx1SMk5UE4kHwVuqSb1JeYbUNZatFji7o150iyN7z8k7bWyfY44xegMYH9anrmnK3RK3Lbx+DGhZX6Zmd3r7qUETGhppRbyB8CSAtJ80IY6FFKPf5WhjNaq7d+rdBEK3FJNUv8el9LSBVqId9uhLgDrCkiTWgY2vZs3/f/VXrQ8G83nvdQ3cV7yb9l41P47wGuE0dNPELqh5xRY/o8Iz3FvADYDfkPo1i/FJvFYyOO25vxJCkqTK0++JVGz/Qza8jswPe8ZhGmDhVjdhvcUUeCWqpIatd4HeKm9FlgpwsAC0qRaXf9Me2152vfvuvs/Snjv02gJ2q8T5gI/4O7pZae2fizEL9z94pjnW4SR0AeZ2QnuPj131oyWAgbUm1lNepd+BqW2TPNJv+f5Rq5n+1mm38+CptNlyft+O860ENmAArdUk3mEubM9CM9Qsz5zjAt/jAEWElZva49Vqfqb2XB3X5SlDkbLM9YX0y6lPwv9N8LiIBmZ2d6EQWkLCQOs/h4vnRmPjcCX3P2tjXMDYbGPQjyd9v1phBZ7D+AKM7vf3Qvpzk73AmFKWR/CQifzMyWKI693y3StDBYTgudA8g9QzFaHV9O+3xX4Y7YCzGwGYYDaa4R5261/zjNy5B1MaJUvBF5w9xezpRXJR6PKpRjt3QK+P+37M7IliktT/pqwstodhDnM7SXX4iHpW5ymB+f0z3F6nvIvBy4FbmHDQUsj43FFjqANYSnUlIL+EI+DyVIjygcR5mMXK32ke65V2w6hnVrccfxBakGevcxs50zp4mOHbCvcPUvL8/Vj4h8amcroQXisYMCg2MPwLC2t7uPifvXZfA+YDFxPWIBHpGQK3FKM9XNkzaxPO5R/Fy1LXJ6UYxnPK4Dt4vd3Z2sRl8kFZvbp1i+a2QHA2fH0cXdfP2rZ3f+PsPAIwBfM7L8yFWxm3yesMgahBftY2uVUD0K9me2RIW+NmV1CWFUuJdd0sNZ+Sktr82gzOzxX4gweSMs/ycz2ylDHrYCriiy3WFcReiUgrGLXP0OaCwgj8DcS533/Np7uQAiumfyMlsGB18a8a2n5o2cQMN3MNvoZmNl+wKR4ujqVX6RUXbqr3MzuAXD3w/KlFWDDZ4pTzOxGoNHdny9H4e6+zsy+SVh+sjvhF2FqbfLFhJHR36FlpaoVwH+U471z6AU8Eqf6PED4P/MVQguqO2HK2KkZ8p1MWKa0L/ATM9ufsGzqIsI0puNpWYhjLfCdVs+Jb6PlD4P7zOynsbxmwiOCE9m4ezhXi28DcZrWqYQ/MGqAX5vZX9y9kDnXuHtzzP8w0BP4i5n9krBe91rCNLVz2fDZcykD0PLV44V4by4gdIe/YGaXAs8TWvoTCSvLfUT2nplLCAvmjAJ+EDeVuY6wet+2hKVmU4MlH2XDOeFTCf8edifMbX/BzH5BeHTSn7AwzxmExxIA57t7+v8jkaJ19Rb3iJEjRx5K+IWirzxfd9111yV1dalB1HwPeHbLLbf8aznfw93nXnfddd379+8PIaAcQ2iJP0XoTv4cwJAhQ7jzzjsHxG7
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxcRb338c/MZLInEBJCMCEJJOSHQTaBsIWbgFfgsudhUSBgQIN4WRSVRUABH1Z5uCKKssoSjCAS2QRkkS0Iwcsm6y8sJiASgSREspFl+vmjqplOT+/TM91n8n2/XvM63X2q6lRPJ/2bqlNLQyqVQkRERJKhsdYVEBERkdIpcIuIiCSIAreIiEiCKHCLiIgkiAK3iIhIgihwi4iIJIgCt4iISIIocIuIiCSIAreIiEiCKHCLiIgkiAK3iIhIgihwi4iIJIgCt4iISIIocIuIiCRIt1pXQKRcZnYD8LX4dEN3n1fD6tQtM0vv2fsnd9+rppVph2p83hm/ixvdfUqVqtZuhd6bmc0BRgDu7pt1euWkbqnFLSIikiAK3CIiIgmirnJJnNjVOaXG1ZBOos9bZE1qcYuIiCSIAreIiEiCqKtcypIxOvcHwMXAN4CpwGaEf0+vA7cBl7v7kg6qww100KhyM5sIPBKf7gS8ApwOHAwMB5YDzwPXAdPdPZWjmMzydgSOBSYAnwNWAnOABwi/o3eK5N+A8Pv9EmDAesAqYD7wV+AW4PZi9chT9gWEzxHgf4Evu/vHZZbRPdbvcGALoJnw/mYAPwE+DzwVk+/m7o9m5H2U8Hu5E5gM/A9wENALeBe40t1/WsrnbWajgO8AuwMjgU+AJ4BL3P2ZEt/LZvG9fJkwmrsZeAd4CPiZu79RIO9GwInAnvH63YH3Yx2udPen8uUVKZcCt1SqEfgdIaBl2ib+fM3M9igWmOrcYOB6wh8laT2B3eLPwWZ2mLsvz85oZt2Ay4FvZZ3qSQhwWwAnmNlJ7n51roub2deAXxECWaYeQB/CHxIHAXeb2SR3X13qGzOzM2l/0B4I3AuMyzq1GXAGcBRwVglFNcdyds14bQywoMR6HEn4Q6o54+XehH+bk8zshCL5G2J9f0zbXkiLP98ws6nuPi1H/q8DvyB8tpk2jj9HmdnVwAnuvrKU9yRSiLrKpVInEr4YPyC0dHYGDgDui+cNeNTMetemelVxFSEIPQ8cAexIGCT1Wjx/IHBjnrzX0hq0ZxJajDsCEwlBYh4hAF8VA/QazGx34AZC0F5ACCr/Fcs4CLgCWBGT70fo+SiJmX0HOC8+rTRodwMepDVo/5nw72FHQsB+DhgG5PyjJMtehKB9F/CfhFbrrwg9N8XqsR/hM2gGlgDnxrJ2I7T4VxF+V4WcTfh9NBL+PZ9B6An4EnABsIzwWV1vZjtlXX8K4bPuCfwd+F68/s6E1vsLMemxlPa7EClKLW6p1BBCl+iu7v6PjNfvMrPLCYF9Y+A0whdjEg0htAQnuXs6SM4ys98Tuk93BA41syvdPd29jpkdSGvX7oXufkZWuY+Z2bXAo8BY4Aozu8fd52ek+XE8rgL2dPf/zSpjhpndD9wdnx9C+EOjIDM7FvhpfFpR0I6OJ/SsAPzK3f8749wsM7sFuBWYVEJZjYQ/bia5e0t87YFimcysB3AZ0AAsJvxbfCEjyaNmdifwMG1bw+kyPk8I1ABvABPc/f2MJH82s0eA+4EmQoD/Usz7OVr/KHgYOCDr9tBTsZv/JuAwYIqZ3eru9xd7byKFqMUt7XFMVtBO+x7wdnx8bOyKTKKFwJEZQRuA+OV8FJAOMsdl5TslHl8BzsxVsLt/CKSDXR8yWsyxl6IHoaV9d46gnS7jHiAddIcWezNmNpnQkoX2BW2Ab8fjHEKPS3bdVgJHE+7Fl+KqjKBdqi8Dm8THF2UF7XQ9/kJoeedzNK1d7N/MCtrpMh4i9AYA7Ghm/ePj4wld8quAo3KN6XD3VYSel0XxpW9npxEplwK3VOq1zFZmpvilfXN8OgTYvtNqVV23uHvO+6xxoNLM+HSv2HWMmQ0gDGoDeLjIoLGZhEFUEFtxseyl7r69uw+k7RiCbOmBWj0KJTKzgwhd743As7QjaJvZ5oTeFAgD9FbkSufuiwit7lI8XUFV9s54PL1Aul8XOLdfPP4j37/n6ETCHwn93P3f8bV94vFVd/9nvozx9/BkfPofZtacL61IKdRVLpV6ssj55zIebwaUNLK3zpTyHv8D6E8YMf4OsDWh6xbgJDM7qcRrbZLrxXQr1Mz6EILlKMLvcytgPLBRTFroj/AtCIGtKT5fAfw7f/Kits54nLM3IMMsWnsWCnm3gnqkBw0ucve/50vk7nPN7APCYMPPxJ6g0fHpc20yrlnGe1l5uxF+rwBbZsy2KKY3sAGQq6dKpCQK3FKpvC2M6MOMx0M6siIdqNz3+A4wqMJrDch+wcyGEW477E+ewE7ori/Wc/a5ePyU0DLfidCC/FlFNQ2BJ+2jImk/KKG8Fe7+aTvqUcro83+RFbiBgbR+B5bapZ82gMp7LAegwC3toMAtlVpV5HxTxuOcXakJUMl7zPw/dR5we4nXWmMql5ntBfyecP877RPCiPZXCHO4HwL+AGxeQvkvAF8h9CIMAs43s7sKtVQL6J7xuFjwKqUlWvYc9Kx8pYyhyDUNqz3ff5l576d1al0p3mzHdUUUuKVi6xU5v37G4zYDfhKikveY2fpblmvAVDFmNoSwsEofQsC5EPgtYXvHVFbaviUU+TbwJXdfYGbfJYxy7gNcQ5h+Va7MVvb6eVMFlfZAlOJ9wh8tg8ysoch4glyf5cKMxwPLvHbm59xUyecsUikNTpNKbV3kfOaAtBc7siIdqNT3+D6tXcIvZ5zfsVBmM+tuZmeb2dez5gdPBtaJj89z97Pd/fUcQbsHa3Zb5/NGepBdXEDk4fj6l+LiIeXKDFJfLJJ22wrKL9Ur8diXNRfJWYOZrUtYCW0NsXv+rfh0q0IXMrN9zew9M3vCzHaJedMt523TgxML5D/OzI43s32KpRUpRoFbKrWrmbX5MoTPAsrh8elr7v5651Wrqg4zs6ZcJ8xsLLBDfHpHOqjGQUzpgLKXmW2cK380GTiHsIDH1IzXR2c8frZA/oNonZ9cTjA4jrB0K8D/M7MNy8gLYUGa9GCtr+QLRGbWk9A931Eyb0MU+gPkSPJ3pz8UjyPMbOcCZexLGCswntaR/H+Kx/WAr+bLaGajCfO9fwH8PE4RE6mYArdUqgm4IX45fyaO1P05YTlOCOtPJ5UB57d5MczjvYkQDFYSvpAzXRqPzcAtscWXXcYYWucXpwi/s7TMruj/ylkxs3FZeQpOB8vk7m/SunLaurTO7S41/+qMa28CXJSjful/B5/LPldFT9I6qv3bZtam2z9OXftx9usZrqD1Xvmv4nS+7DJ2pvUPg0fcPd1K/xmtYxMuM7MtcuTtTZgamf6uvbxAXURKslZ32ZjZXQDuvn+t65JQE4G/mtklhM1FNgJOiK8DPEZYQzrJTotf/lcTusO3JGw6krnwx6tZeW4gtIb3ISwJ+pKZ/ZQwNaonodX2HULQBLjM3Z/PyP97wmpeDcB/xy//2wkBfShhadnDWHNt7v4l3OfN9JNYxubAAWb2FXcvdc41hNXXDif8Pr5nZl8g/I7+Qdhk43jCVLlMlQ5Cy8ndW2JX/zOEP1zuNbNfAXcQBgvuDnwf6EdYtjR7zXfc/SUzu4gwuGxL4AUzu5Qw+K8/YenUbxO+K5eRsYCKu79hZmcQNtsZSFgx7grCYLXlhOli3wU2jVmeofjyqyJFre0t7lGjR4/ej/CFop/SfgDYdttt2XbbbQG+QFgrehYh4EwEmDBhAs8999yEOA+5qnWYNGnSZ2t7z5w58/1qln3TTTc9ki570qRJrL/++hC6Se8iLBJyNTFoH3/88bj7D7PLcPeWF198cZ999903XdQwQit8JqFr9hxi0D7iiCN47bXXTs7K//zJJ5+c7tptIKzudU+8/u2EVduaJ0yYwKGHHpq+Rvc//elP2b9rAMa
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxcRbn/8c/MZCULCQkhkEACiXkQZJMYQMIl6pVFkEU2gYDBKxhlUVRkVdEfi8hFEUUWRZZgBJFFQIMKsgUheGURAj4BYgIiEQgBs5JkZn5/VDXT6enldM+ZmT6T7/v1yut096mqUz09maerTp3nNLS2tiIiIiLZ0NjdHRAREZHkFLhFREQyRIFbREQkQxS4RUREMkSBW0REJEMUuEVERDJEgVtERCRDFLhFREQyRIFbREQkQxS4RUREMkSBW0REJEMUuEVERDJEgVtERCRDFLhFREQypFd3d0BEuoaZ5e7h+3t336dbO9MBZnYd8Jn4dFN3X1RDG7mfxfXuPi2lrnVYufdmZguAMYC7+9Zd3jmpGxpxi4iIZIgCt4iISIZoqlxEMiVObU/r5m6IdBuNuEVERDJEgVtERCRDNFUuReWtuj0TuAj4HHA8sDXh9+bvwC3AZe6+vAv6szdwHLAbsAmwEngR+B3wI3d/s5OOOwW4Pz7dDZgLnAEcCmwBrAKeBK4BZrp7a5Fm8tvbFTgB2BPYDFgDLAD+QPhZvlyh/iaEz+FjgAEbAWuBxcBfgJuAWyv1o0TbFxA+b4D/Az7u7m9X2Uaf2L+jgO2A3oT3dxvwPeD9wKOx+Efc/YG8ug8Qfi6/AaYC3wcOAfoDrwBXuvsPkqwqN7NxwJeBjwJjgaXAw8DF7v54wveydXwvHyes5u4NvAzcC/zQ3V8oU3dz4GRg73j8PsBrsQ9XuvujpeqKVKLALZU0Ar8iBKp8O8V/nzGzvSoFnFqZ2QBgBnBwwa6+wMT478tmNtXd7+qMPuQZAVxL+PKS0w/4SPx3qJkd6e6rCiuaWS/gMuALBbv6EQLcdsBJZnaKu19d7OBm9hngCkIgy9cXGED4InEIcJeZHezuzUnfmJmdTceD9jDCF6lJBbu2Bs4CjgXOSdBU79jOHnmvTQDeStiPYwhfpHrnvbwB4Xf4YDM7qUL9htjf79B+VtLiv8+Z2fHuPqNI/f8Bfkz4bPNtGf8da2ZXAye5+5ok70kkn6bKpZKTCX/wXieMYD4MHAjMivsNeMDMNkj7wGbWCNxJW9C+GzgC2AX4b+AC4B1gMHC7mX0s7T4UuIoQhJ4EjgZ2JSySej7uPwi4vkTdn9EWtGcTRoy7AlMIQWIRIQBfFQP0Oszso8B1hKD9FiGo7BvbOAS4HFgdi3+SMEOSiJl9GTgvPq01aPcC/khb0P4T4fdmV0LAfgIYDRT9UlJgH0LQvpPwOe9N+MJyS4J+fJLwGfQGlgPfjm19hDDiX0v4WZXzLcLPo5Hwe38WYSbgY4TfuZWEz+paM9ut4PjTCJ91P+AfwFfj8T9MGL0/FYueQLKfhUg7GnFLJSMJU517uPs/816/08wuIwT2LYHTCX/w0nQKYaoTYLq7X1Ww/z4zuwZ4JPbzWjMb14mjmJGEkeDB7p4LknPM7NeE6dNdgcPN7Ep3z02vY2YH0Ta1e6G7n1XQ7oNm9jPgAWAb4HIzu9vdF+eV+U7crgX2dvf/K2jjNjO7B8jNOhxG+KJRlpmdAPwgPq0paEcnEmZgAK5w9y/m7ZtjZjcBN9N+5qSYRsKXm4PdvSW+9odKlcysL3Ap0AAsI/zOPpVX5AEz+w1wH+1Hw7k23k8I1AAvAHu6+2t5Rf5kZvcD9wBNhAD/sVh3M9q+FNwHHFhwGunROM1/A3AkMM3Mbnb3eyq9N5F8GnFLEp8tCNo5XwXmx8cnxCnGVMTR9lfi01lFgjYA7j6fcM4ZYHPgU2n1oYglwDF5QTvXh+WEUWUuyEwvqHda3M4Fzi7WsLu/AeSC3QDyRsxxNqMvYaR9V5GgnWvjbiAXdEdVejNmNpUwkoWOBW2AL8XtAsLMTGHf1hDWKCwu3FfCVXlBO6mPA1vFx98tCNq5fvyZMPIu5Tjaptg/XxC0c23cS5gNANjVzAbHxycSpuTXAscWW/vh7msJMy/vxJe+VFhGpBIFbqnk+fzRY774x/jG+HQk8KEUj7s9IRBDmIItZ1be486cLr/J3YueZ40LlWbHp/vEqWPMbChhURvAfRUWjc0mLKKCvPfh7ivc/UPuPoz2aw0K5RZq9S1XyMwOIUy9NwJ/pQNB28y2Jcy6QFigt7pYOXd/hzDqTuKxGrryibzHM8uU+3mZfZ+M23+W+r2PTiZ8SRjk7v+Jr+0Xt8+5+79KVYw/h0fi0/8ys96lyooUo6lyqeSRCvufyHu8NZBoxW4CO+U9/r6ZfT9hva0qF6lZkp/FfxHOuW9GWIG8I2HqFuAUMzsl4bGKvo/cKDQu2tsSGEf4ue8ATKbty065L+XbEQJbU3y+GvhP6eIV7Zj3uOhsQJ45tM0slPNKDf3ILRp8x93/UaqQuy80s9cJiw3fE2eMxsenT7SruG4brxbU7UX4uQJsn3dVRiUbEK6SKDajJVKUArdUUnLkEL2R93hkiscdXmO9oSn2oVC1P4uXSfF9mNlowumJAyj9BaWFyjNpm8Xtu4SR+W6EEeQPa+ppCDw5lS7Lez1Be6vd/d0O9CPJ6vN/UxC4gWG0/U1MOqWfM5TaZzCHosAtVVDglkrWVtjflPe46BRpjfJ/N79I27W/laxMsQ+FavlZ5L+P84BbEx5rnUu5zGwf4NeE8985Swkr2ucSruG+F7gd2DZB+08RVug/Qvhycb6Z3VlupFpGn7zHlYJXkpFo1degF9RLstai2ALGjvw9zK97D22X1iXxYgeOK+shBW6pZKMK+zfOe9xuIU8H5I+a3im20Kgb1PKzyH8fK2t5H2Y2kpBYZQAh4FwI/JJwe8fWgrIDEzQ5H/iYu79lZl8hrHIeAPyUcPlVtfJH2RuXLBXUOgORxGuELy3DzayhwnqCYp/lkrzHw6o8dv7n3FQnv6/SQylwSyU7VtifvyDt6RSP+2ze410ps9jIzDYmjMoXAE+5e5r9yLcjIatXKbmfxWu0TQkXvo+SYtaxMwnTps/lZdeaCmwYH5/n7t8pUb8v605bl/JCbpGdu8+I141/DPiYmf2Pu1+ToI18+UHqg4SZgVJ2rrLtaswlfPEYSDjf/XyxQmY2hJAJbR3u/q6ZvURYN7BDuQOZ2f6Ey+3mA2e4+yNm9iLhHPnOZtYrriAvVX86YYZmAeH+6JVmc0Teo1XlUskeZtbujxy8FyiOik+fd/e/p3jcv9A2ijnKzDYsU/Zk4FzCKukDU+xDoSPNrKnYDjPbhpAYBuCO3GgvLmKaG1/fx8y2LFY/mkp4Hz8jJOvIGZ/3+K9l6h9C2/XJ1Xwpn05I3Qrwv2a2aRV1ISSkyS3WOiK3or6QmfUjTM93lvzTEP9TptwxlJ5Ovzdux5jZh8u0sT9hrcBk2lby/z5uNwI+XaqimY0nXO/9Y0K6XgVtqYoCt1TSBFwX/+i+J67A/REhzSaEvNKpiZcU/Tg+HQbMiF8U1mFmu9N2nfRKwnRvZzHg/CJ9GEyYbm4gTGX/uKDIJXHbG7gpjvgK25hA2/XFrYSfbU7+VPS+RTtmNqmgTtnLwfK5+4u0ZU4bQtu13UnrN+cdeyvgu0X6l/t92axwX4oeoW1V+5fMrN20f7x0reiMRXQ5befKr4iX8xW28WHavhjc7+4vxcc/pG1twqVmtl2RuhsQLqHM/e29rExfRIpar6fKzexOAHc/oLv7UuemAH8xs4sJNxfZHDgpvg7wICE3dNouJIxsPki4vvYpM7uUMCU/hDAt+kXaRplnFEuYkbLT4x//qwnT4dsTEsDkJ/54rqDOdYTR8H6ElKDPmNkPCJdG9SOM2r5MeE8Al7r7k3n1f03I5tUAfDH+8b+VENBHEWYZjmTd3NyDE5znzfe92Ma2wIFmdoS7J73mGkL2taMIP4+vmtkHCD+jfxJusnE
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3debzd073/8dc5J4lMZESICBL5IKbcIk1FpZOhVKlSJSqU0lL3+hV10eLeomjLpWm1WjUPRYogVNU8V9XcjzHhcjVkQEhEzjm/P9baOTv77Pns6bvP+/l4nMd37++wvmufPXy+a33X0NLZ2YmIiIgkQ2u9MyAiIiLFU+AWERFJEAVuERGRBFHgFhERSRAFbhERkQRR4BYREUkQBW4REZEEUeAWERFJEAVuERGRBFHgFhERSRAFbhERkQRR4BYREUkQBW4REZEEUeAWERFJkD71zkBvY2ZbuvvTVUo7NUfrHe6+SzXOkXRmNgP4Q3z6TXe/psLpzwXGAu7um1Qy7d6omt+XWjGzDYDX4tPfuPsRZaRxKnBKfLqhu8+tSOZ6KN9rq/Z3rTdT4K4RMxsC/BdwJPq/i+Sl74tIbvpC1M4vgEPqnQmRhND3RSQHBe7aaav2Cdy9pdrnEKmRqn9faiVWa+u7KRWjxmkiIiIJosAtIiKSIKoqr7KM1qCpdanW3/e6+7QKnqtqrcrN7BLgIGJraTP7N+BEYCowHHgb+CvwM3d/tkBafYEZwD7AlvH4xcBTwPXAH9x9eYE0pgIHxPOvC6wBfAD8L3AvMNPd/1nG6xwB3ANsHlf9yN1/Umo6ael9FTga+DegL/AqcBNwnrsvyHPcNsDhwI7AGKADeAd4GLgGuNndO3Md34P8nkr4vL7n7kPNbBTw/4CvAOsDnwAvANcCv3b3j/OktRrwLeDrwNbAMML7/BxwI/Bbd1+a4/zp66ryfUlLf0vgGODzwDoxj48C57v7nWZ2O7Bz5vnNbBpwd3w6ifA5PB3YlPBZfBo4EOhHgVblZtYH2Bc4FNgEGAq8AlwJnFvk61iN8L8+MOZhFPA+4Xt1BXCZu3fkOLYlnn9/YBtgZHwNLxA+rxe6+5Ji8iHVpxK3lMzM9iEEkL2BtQkBaQwhsD9pZtPzHDue8EPyW+BLacevCXwRuBB4yswsx/EDzOx64H7gCEKAHU64CB0GbAEcBTxjZgeU+LrWAO6gckH7XEKA+jzhh3hQzN/JwEtmtkOO444HHiP8iG8M9AcGErqZ7RfT/LOZDSo3b0XmfyohyB5HCCYDgSHApwnB5DEzG57j2C3pep93Atai632eBpwHeLxAqRszOxj4O+FCcn268rg74X98TpFJfRmYTbhAWY0Q+DYA/q+IPAwnXGxeCXyOcPEwgPA5PJPwWRhRII0JwN8IAXrn+Fr6xXx8gdAt6z4zG5rl2LUI36drgD0IFyD94jmnAucQ3qsphV6L1IYCd/VdSLgan522blL8O7QuOeqZUcClhB+43xOC7w7AGcAyQgC9zMy+nHlgLL3dTygNLAdmArsB2wFfjem2E4LE3Wa2TpbzX0i4YIDwQ/VtQiD4LOHH96G4rQ/wm1iCLigGwduAT8VVPQrawATgP4BFwAnA9sAuwOVx+zDgttgPNj0fnwV+SmjM9BRwMPAZwg/oocDzcdcvErpLVcsA4GZCTcavY94/Q7goeivusyWhhLkKM9sY+AuQuvi6hVC7MhnYC/hjXD8GuMfMNk87vGbfFzPbG7iY0BDufUJJfwfChdbPCZ/RYwnBtJD/Bt4j/H+2J1xU/nehWhEzawXmEP63APcRSr6fBqYDjxP+z9/Lk8aawAN0XXDeTCh5fxr4JiHwE/N1Zcaxgwi1BtsDnYTAvxfhO7krcAHhe70u4UJmYr7XI7WhqvIqc/e3gbfNbGHaun/UMUs9NSQup7t7+o/AA2Z2K6G6fDXgf8zsTnf/JG2fC+mqvvuiuz+ekfbNsTR9M6HUcS6hhAmsDAgHxqePAjtmVNXeD1xqZtcRfrgGEX58rsj3gsysP6E6cPu4qqdBG0LgfRuY6u6vpK2/w8weBX4JDCaUZvZJ235wPHYB4fW9l7btwfja/g6MA75tZse7e3sP85pNP0JA293db09b/7CZ3QY8SyiB729mR2e8z78ilFoBfuDuv8hI+8aYxiWE9+hKM9va3Ttr9X2JAeu8+HQh4X16IW2Xu83sRuBOQo1HIa3AN9z9zvj8oXw7p/k2IUhCuKg7KC3YP2pm1xIudPbKk8a5dP2/j3X3n6dtezR+p+YQLva+bGY7uPv9cfvpwGbACmAvd78lI+3bzewyQo3AYMLF+qeLfG1SJSpxSzkuywjaALj7Q4RABDCe8EMBrKzK2yM+PT1L0E6lcQuh5A2wj5mtm7Z5c+AlQgngjDz3V9PzNjrfC4n3268nVCdCZYJ2yvczgjYA7j6TcB8dYM9YE5GSejw/I2injn2fUNX+C+Akigsq5ZqVEbRTeXiNENAglMg3TG0zs63pet9vzRK0U2lcSgjcEEqUtR7pb29gvfj4PzOCNgDu/gBZahRyeCUtaJfi8LhcBHwvs4Tu7isI/dm7fRZg5UA1+8an92UE7fQ0fpC2aud47FDgsLjuoixBO3X834Cz49PJZja50IuS6lLglnLMzLPt4rTHX0l7/GW6+rIW+oG7LS5bCdXgALj7n9zdCCW92VmOS3k77fFqefZrA64iVNdDZYP2u8Cf8mxPXZz0IVTNpqQa1G1qZheZ2djMA939Gnf/gbvPdPcPK5PdrP6cZ1v6BcnqaY93Tnv8mwLp/yrt8a7FZqpCUp/NT8ioPs7w2yLTe6TUDJjZ2oRGiwCzczX+cvfF5P4s7UK4bQVwWa5zxWFjJwFD3P3kuHoa4bsExX8noesiV+pEVeVSqmXAE7k2uvtrZraIcA83fazuSWmP/56j7Vk2G2U5x8pSSfzx24hQwt+M0CL2M2m757s4/QmhAVFKzlbeZfhbgSrsJ9Meb5H2eCah+nR1wj3dQ83sOcIP61+Ae6ocrNPNzbMtPcik/46k368uFMyeJNxH7seq/4Na2DouX8j3/3T3+Wb2Gmm1Cjm8UUYejK6L2UK3Ax4jtOHINCHt8d/zJZDllkP6d3JWT76TUlsqcUup5hdxT/XduEyvAh5Z5vmGZa4ws53N7CYzW0woXT9EKG2cQKimLbb6eIO4TFW5n2VmY8rMZ6b5Bba/m/Z4Zctsd3+ZUGpN78o2kdDQ7RZggZnNNrPdqL583X/Sq3TTRwVLNQbsYNXX2E2swk1dLGVtnV5Fa8dl3jxGhd5LCO02ys0DFL5o/FcF0shUse+k1JZK3FKqFUXskxquMr0vdvpnbTtCFWUx3kk9iH1Nf0v31sVvEALd04Qgvhi4q8j0/4tQ7XspoZT7G0K1frWlB7tV7tW7+8Ox9e404GuE6tBxcfNqhK5Ku5vZFYTGTFn75tZJqUN7pj4rtX4N/eKymMJLMf3ly+lTn+viJ5tc35ee/IanH7snMK/I47Leb5faUeCWUhVTMkpdyaf3YV2Y9vhNd3+L0h1BV9B+Cfgx8Gd3T087NTBGMc5z91PiMQcR7jXvamYHuvvl+Q8tqND/aa20x91KSjEY/zX+paZP/ALh3uxuhO/udMJ96J7mtZJS70Ur4XPwTq4dY8PAVOltYa79quRdQsPFNQvtSPkl00LSvx+F8pHr85T+fxsBvF7C+dOPfSfhvV16FVWVS6mGZmswlRIHTlkjPn0qbVP6aGp5u5OY2WQz+6GZfcPM1kvbdGRctgM7x0Za2X7w18+XfppH0x4fQbh/D3BuHJSiJwr1d90u7fHKe5NmtrqZbWtmq9xHdPe57v57d9+Trn7sEErfjSR97uxCrY8/RVfDqpJHueuhVJCakG8gm9jyulr3dP9J+CwDbFtg361zrH8+7fFW+RIws/vN7FkzuzCuKuU7OcHMTjKzA2K3TKkjBe7aaaTqzJ46MM+29KkYZ6U9viPt8XcLpH8OYRCSa1j1R3N8XC6KXZJySR8xrahaJXd/idBYDULJ5ZfFHJfHhmaW9cc
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcVbn/8c/MJEAWyAoEQwiQmAcQUJRFIEgUBZSIIIssQRZBUZF7vYKi4BXuFRDxij+QxQuyhS2yyCaoGNmRRWQHH5aQgHBjdiQkEDIzvz/OqZlOp9eZ6umunu/79ZpXdXVVnT5d091PnVNnaens7ERERESyobXeGRAREZHKKXCLiIhkiAK3iIhIhihwi4iIZIgCt4iISIYocIuIiGSIAreIiEiGKHCLiIhkiAK3iIhIhihwi4iIZIgCt4iISIYocIuIiGSIAreIiEiGKHCLiIhkyIB6Z6CZmdnW7v50vfMhpZnZEcBlcfVgd78u5fRnA+MBd/fN0ky7P2qG75WZbQy8Gld/5e7H9iCNU4EfxdVN3H12KpnrpVLvrdbftf5CgbsGzGwY8F/AN9E5FkmFvlcigT78tfFz4Kh6Z0Kkyeh7JYICd6201TsDIk2oab5XsVq7pd75kGxS4zQREZEMUeAWERHJEFWVpyivlWfyXGd8eK+7T6nBaw4Gvg7sA2wGrAMsBP4KXAP8xt070n7d+NqXA4cTW0ub2UeBHwCTgZHAXODPwM/c/dkyaQ0EjgAOALaOxy8BngJuAC5z9xVl0pgMHBpf/wOEc/E28A/gXuB8d/97D97nKOAeYMv41A/d/cfVppOT3heA44GPAgOBWcAtwC/cfWGJ47YFvgbsCowDOoD5wF+A64Bb3b2z2PG9yO+phM/1W+4+3MzGAP8BfB7YCHgfeAGYAVzo7u+VSGtN4MvA/sBHgBGE//NzwM3A/7r78iKvn/tcrb9XWwPfBj4FbBDz+AhwrrvfZWa/B/bIf30zmwLcHVe3IXwOTwc2J3wWnwYOA9agTKtyMxsAHAgcTfhuDwdeAa4GzqnwfaxJONeHxTyMAf5F+F5dBVxZ7PfBzFri6x8CbAuMju/hBcLn9SJ3X1pJPiRdKnFnmJltB7wI/IwQrEYTfhA2IPyoXgvcb2Yb9EFeDiAEkP2A9QkBaRwhsD9hZtNKHDuR8EPyv8Bnco5fF/g0cBHwlJlZkeMHmdkNwP3AsYQAO5JwYToC2Ao4DnjGzA6t8n2tA/yB9IL2OYQA9SnCD/GQmL9TgJfMbJcix30XeJTwI/5BYC1gMKGb2UExzT+a2ZCe5q3C/E8mBNkTCcFkMDAM+DghmDxqZiOLHLs13f/n3YH16P4/TwF+AXi8QKkbMzsS+BvhQnIjuvM4lXCOz64wqc8BtxEuUNYkfD83Bv6vgjyMJFxsXg18kvCdHkT4HJ5J+CyMKpPGJMIF/FWEi4yNCL8Po4HdCN2y7jOz4QWOXY/wfboO2JtwAbJGfM3JwNmE/9WO5d6LpE+BO10XEa6yb8t5bpv4d3SaL2RmHyJc2Y8lXAWfRfgx3IFwlXxz3HUnav+DPga4gvAD92tC8N0FOAN4lxBArzSzzxV4H2MIPxCbAyuA84G9gO2BL8R02wlB4u4iFyEXES4YIPxQfYUQCD5B+PF9KG4bAPwqlqDLiufsDuBj8aleBW1gEvDvwGLgJGBnYE9getw+Argj9oPNzccngJ8QGjM9BRxJ+L9OJnyuno+7fprQXapWBgG3EmoyLox534lwUfRm3GdrQglzFWb2QeBPQHLxdTuhdmUHYF/gN/H5ccA9ZrZlzuF9+b3aD7iU0BDuX4SS/i6EC63/IXxGTyAE03L+G3iLcH52JlxU/ne5WhEzawXuJJxbgPsI3+mPA9OAxwjn+Rsl0lgXeIDuC85bCSXvjwMHEwI/MV9X5x07hPDbsjPQSQj8+xK+k58FziN8rz9A+G35UKn3I+lTVXmK3H0uMNfMFuU892SNXu4qQmntH8AUd38lZ9ujwPVm9g1CINwS+CEhWNTCsLic5u65PwIPmNnvCNXlawL/z8zucvf3c/a5iO7qu0+7+2N5ad8aS9O3Ekod5xBKmEBXQDgsrj4C7JpXVXs/cIWZXU/44RpC+PG5qtQbMrO1CNWBO8enehu0IQTeucDkvP/XH8zsEeCXwFBCaeaAnO1HxmMXEt7fWznbHozv7W/ABOArZvZdd2/vZV4LWYMQ0Ka6++9znv+Lmd0BPEsogR9iZsfn/Z8vIJRaAb7j7j/PS/vmmMblhP/R1Wb2EXfv7KvvVQxYv4iriwj/pxdydrnbzG4G7iLUeJTTCnzJ3e+K6w+V2jnHVwhBEsJF3eE5wf4RM5tBuNDZt0Qa59B9vk9w9//J2fZI/E7dSbjY+5yZ7eLu98ftpwNbACuBfd399ry0f29mVxJqBIYSLtY/XuF7kxSoxJ1BZvYZQvUbhB/BVwrt5+4XEO7NAnw93keulSvzgnaSh4cIgQhgIuGHAuiqyts7rp5eIGgnadxOKHkDHGBmH8jZvCXwEqEEcEaJ+6u5eRtb6o3E83QDoToR0gnaiW8V+n+5+/l0/6/2iTURieTxvLygnRz7L0JV+8+Bk6ksqPTUTXlBO8nDq4SABqFEvkmyzcw+Qvf//XcFgnaSxhWEwA2hRLlnSnmu1H7AhvHx9/OCNgDu/gAFahSKeCUnaFfja3G5GPhGfgnd3VcS+rOv9lmAroFqDoyr9+UF7dw0vpPz1B7x2OHAMfG5iwsE7eT4vwI/jas7mNkO5d6UpEeBO5v2ynlc7ofhjrhcB9iuNtkBQsm+mEtzHn8+5/Hn6O7LWun7aCVUgwPg7r91dyOU9G4rcFxibs7jNUvs10Zo1Jec4zSD9gLgtyW2JxcnAwhVs4mkQd3mZnaxmY3PP9Ddr3P377j7+e7+TjrZLeiPJbblXpCsnfN4j5zHvyqT/gU5jz9baaZSknw23yev+jjP/1aY3sPVZsDM1ic0WgS4rVjjL3dfQvHP0p6E21YAVxZ7rThs7DbAMHc/JT49hfBdgsq/k9B9kSt9QFXl2bRNzuNFRdpsFbIplVfXVeNd4PFiG939VTNbTLiHmztWd+77+FuV7yP/NbpKJfHHb1NCCX8LQovYnXJ2L3XB+mNCA6JE0VbePfDXMlXYT+Q83irn8fmE6tO1Cfd0jzaz5wg/rH8C7qlxsM41u8S23CCT+9uSe7+6XDB7gnAfeQ1WPQd9IanFeqHU+XT3eWb2Kjm1CkW83oM8GN0Xs+VuBzxKaMORb1LO47+VSqDALYfc7+RNvflOSu2oxJ1No3t43IhUc9FtXgX3VBfEZW4VcGrvw8z2MLNbzGwJoXT9EKG0cRKhmrbS6uON4zKpcj/LzMb1MJ/55pXZviDncVfLbHd/mVBqze3K9iFCQ7fbgYVmdpuZ5dbE1Eqp7j+5Vbq5o4IljQE7WPU9riZW4SYXSwVbp9fQ+nFZMo9Ruf8lhHYbPc0DlL9o/GcKaeRrtN8WKUAl7mxK/m8LCC24K/VGDfICoRFLOclwlbl9sXM/f9sTqigrMT95EPua/i+rty5+nRDoniYE8SXAzArT/y9Cte8VhFLurwjV+rWWG+xWuVfv7n+JrXenAF8kVIdOiJvXJHRVmmpmVxEaM9Wk734PVTu0Z/JZ6ev3sEZcVlKgqaS/fE/61Be7+Cmk2PelN7/rucfuA8yp8LiC99ulNhS4sylpXTsUeLoBfqQrKRklV/K5fVgX5Tx+w93fpHrH0h20XwL+E/iju+emnQyMUYlfuPuP4jGHE+41f9bMDnP36aUPLavceVov5/FqJaX4f/5z/EumT9yNcG92L8L3eRrhPnRv85qm5H/RSvgczC+2Y2wYmJTeFhXbr0YWEBourltuR3peMi0n9/tRLh/FPk+5520U8FoVr5977Pwa9oqRXlDgzqZnCd0v1iLclyt6H8vM9iRUq84mjPJUSTVgtYab2Xh3L3h1HgdOWSeuPpWzKXc0tY8DNxV7gdhqdQrhfTzo7v+Im74Zl+3AHrF1cyEblXoDOR7JeXwsocS+FnC
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcVdX/8c9kX4EkJICBBEjgsIiAbCJBEBVBlsCPTVkDj0AU5BFlU1CCD8gmjwqCyL4GEEUJS0RARcOmsq+HNQkiPEBYJIFAlvn9cW9lKp3ep3q6a+b7fr3mVdNdVbdvT0/36bp17qm29vZ2REREJB96NbsDIiIiUj0FbhERkRxR4BYREckRBW4REZEcUeAWERHJEQVuERGRHFHgFhERyREFbhERkRxR4BYREckRBW4REZEcUeAWERHJEQVuERGRHFHgFhERyREFbhERkRzp0+wOSOOY2RXAQfHmKu7+ehO707LMLLm27R3uvkPGbU8BTo43t3T3B7Jsv6cxsyHAKHd/qdl96Qwz+wuwDfCRuw+oY//VgZfjzVPcfUpmneukcs+tke+1nkRH3CKSC2a2D/As8Llm90WkmXTELSItz8y2Bq5vdj9EWoECdzfm7pOASU3uhkgWeje7A1ly922b3QfJLw2Vi4iI5IgCt4iISI5oqLxBUtmT3wPOBL4OHAqsQ/i7PwvcCJzr7vMa1IcraFBWuZltC/w53twSeAo4AdgTGAPMBx4BLgWmunt7kWbS7X0GOIyQjfoJYAEwE/gj4W80u8L+KxH+vl8ADBgOLATmAP8gnB/9baV+lGj7x4TXEeCfwJfc/d1a24ltjQV+AOwArAi8CdwDXODu95XZbxjwDWBnYD1gEPAO4f/oduBX9fapQn9XpyN7eXdgGuH0y4HA+sBQ4FXgDuAcd3+xQntbEl7nrYHRhNdoNnA38At3f67M4ycuN7PL4+9ruPvM2p9Z2T4OBb5F+F82oB14HrgO+Dnh73Bdscc3s5nA2Ljd6cB5hNe6jfD/fLq7T60mq9zMNgSOJry/xhD+l+8EzgA+qvK5bEZ4X2wV+wXwIvAH4Gfu/lqZfdcFjiS8p1aNz+EVwvv+PHd/upo+SPZ0xN14vYBfAxcBmxE+6AYCGwM/Bh4yszHN614mRgF/B74PrA0MAFYAPg9cA9xkZqU+nPqY2QXA/cDBwJpx/6HABsB3gefM7LBSD25mBxE+3P8H2BZYBegPDCZ84O1B+JJ0s5nVdK7UzE4ko6BNCFZPAP9FCFr9CR+I+wH3mtnZJfrwKcIXo9MIH+LLA30Jf/fPET7IX4xBsZEGAXcRvoxtQ/ji0Z/wmn0DeMrMvlLiOfSPXyTvIwT+cYTXeQjhi8i34v7fb+xTKM/M1iB84TyN8B4dRPg/2ojwBfyfwEpVNLUc8FdgL8L/8hDgk4QvOdX044TYj4PoeE+NJvztHgV2rbB/XzM7j/C+PJTwNx4cfz4FHAc8Y2ZfLLH/Dwj/q98kfHkZTPhbGDAZeMLMpphZWzXPR7KlwN14yTf3N4BvA58FJgLT43oD/mJmg5rTvUz8ijCS8AghCH2G8AHzTFy/G3BliX0vIXzoA8wgfFB9hhCAvw+8TggOv4oBeilmth1wBeHL0NvAj4AdYxt7AOcDH8fNdyGMfFTFzL4NnBpvdjZoQ/jgHwpcG/v4WeDY2G+AY8zsuwV96A38hvBlZB4whXAEtDnh/+jauOlw4EYzG9iJ/lVyDuHL2APAAcAWhNf2zri+P3BFnGudfg69gKl0jP7MAv4bmEB4nU8G3iWMRJ0W574n/k0IoIem7js53rdxXJ8JM1ueEGzHxbt+S/if2RI4nHCk+kngrCqaSwJu8iVnV8JR6j1V9ONIwtF6G/AWcAzhf2V7wnutH/DTCs1cTDhahvCl9ijCUfcOhPfEQsIXwN+Z2ZoFjz+F8D7qDTxOCNSfJbxe/034O/QivA4nI11OQ+WNtzJhiGxrd/9X6v5pZnYuIbCvARxPft8EKxOGa3d39yRIPmhmvyEcoX0G2NvMLnT3ZHgdM9uNjg/z09298GjrHjO7BPgL4YjhfDO71d3npLb5UVwuBL7s7v8saOMmM/sDcEu8vRfhw6+seISffDhmEbQhfBAf4e4XpO6738x+B9xLOJL7HzO70t3fiusnAGvF3w9392tZ2jQz+zfhC8Bo4CuEgNMIKwNXA5PcfXFyp5lNA26Njz0S2Am4IbXf14D/F3+/F9jR3d9Prb/HzK4kvM6rAz+Mr/M/4//To2a2Qmr72e7+aKbPLJhCGAEBOMHdz0yte8DMriOcEqhmZKMX4RRR+oviLaU2TpjZSDq+LP4b+Ky7z0ptcqeZ3UkYQSrVxhfpeF/dT3hfpP/ed5jZPwhfeIcAJxJGgTCzTxNO5UB4rQ9x94Wpfe81s0sJr/e2hNfq1xo271o64u4ahxQE7cR3gaQC1GE5HnZ6BzggFbQBiOfuDwSSD/nJBfsdG5dPET48luHubxKG6yAM1y35IIyjFP0JR6y3FAnaSRu3Eo7oIAS3ssxsf+CX8WZWQRvgtoKgnfTvRcIXNwgjB5NSq1dO/f58iXZ/TjjC+h7wQue7WdJ84NvpoA0Q8wYuTt21YcF+yev8EfDVgiCStDGLjufdltqnS8RTOcnpmPsKgjYAsd/7Er4kVuOXlTdZxj6EI2GA4wqCdtKP3xKCainJ81gMHFji730lYYQM4Eupz57vEuLCHGByQdBO9p0HHEI4999GOPiQLqTA3XjPpI8y09x9AeEcMIQP6M26rFfZut7d3y62wt2fJwyBA+xgZn1gSbJVcuRyd4WksRlA8uHzhVTbH7j7Zu4+gnA6opwkMa9/uY3MbA/CkUgv4CGyC9oQ8hxKuYGOhKPtU/c/m/r9cjPbLg49L+Hur7r7Ye5+hrs/llFfi3mo1OtMGD5NDE1+MbOV6Qjkt5X4AgtAHEZOjty2L3yeDfYFwjlcCK9/UTER7Y9VtLeQ8KWvVkmOwEeUHzm5rNid8f2VlBK9z93LfZHbA1gNGOvu7TF47xjX3evuH5Ta0d1fpuNU2BdKbSeNoaHyxru3wvqHU7+vQ0gmyZtqnuPnCAk7nyBkEW9E+LYOcJSZHVXlY61Z7M7kKNDMBhNOPYwj/D03JAw3rxY3LRcMNiCci00S2D4G/lNlv6rxYKkV7j7fzJ4h/F02SN3/mJlNJ3ygrkfIvp5jZncTTkP8sdhRWYPMLLNubur39OfK+qnfq6nT/gDhea5AeM266rltlPq9UsB9kI4AW8pb7j6/jn6sE5deYf9/0nHEm7YKHV+cHqaMGHzTVgeGxd93Tc2MqWSNKreTjChwN16l5Jk3U7+vXHKr1lbrc5xNyEiux7DCO8xsVcIQ366UCOyEYcNKR3CfiMuPCEfmWxKGAX9eV0+X9WaF9cl57eEF93+VkFC0H+GDegSwd/zBzJ4gfOH4hbvPpXHKtZ3+kE8HkxGp39+o4jH+L/X7cLoucKczxd8quVVQzfOo9wtf0o855TZy93lmNpfU6EbB/hXbKKLe92QfMxtabEheGkOBu/EqnQ9LT0/6uORWra2e55j+3zuV6hOqFqVvmNkOhKzrwam73ycM4z1FmMN9F/A7lj76K+VRwnnGewkfZKeZ2bQiRyf1qHQEkwS8pebouvt/gAPM7IeE5LqdCQl/feMmGxCykL9pZp+vNJe6i9Wat5H+X1lccqvs9Uv9XukLXjVHojXXCyjYr5q/24Ii93XmMz2972WEOejVKjmsLtlT4G68wqOnQiNTv5cshtDi6nmO6XOlH9aTJRzPn15PCNoLCMHrOsIwY3vBtkOWbWEZLwFfcPe3zew7wFWx7YuBovNdazSc8kdBo+Ky6Dbxy8NZwFnx+WxNOJ+5D+FIazXCefRWOueYfp1HldyqQ/qIsdT59EZIH2WPpPyRfr1HptV4DRjP0u+ZZcRpgssVWZX+m40osr6c9L6LGpS5LxlQ4G68jSqsTyekNTKxqJE2Am4usz55jq/RMcz4ZGr9Z8o1bmb9CBnT/wKedvf746r96cjAPdXdf1Ri//5
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3debyUZf3/8ddZ2EFBBFEQUMhPSuSumZhmZVoq+nMrd/umUpnfTE3TUiyXyvxWmmWLKS5oWVqk0qKVpamVuS8ft0AzTUBUDgjIOef3x3UN5z5zZj/3nJnhvJ+Px3ncM3Pf9zXXzJyZz33tTZ2dnYiIiEhjaK51BkRERKR0CtwiIiINRIFbRESkgShwi4iINBAFbhERkQaiwC0iItJAFLhFREQaiAK3iIhIA1HgFhERaSAK3CIiIg1EgVtERKSBKHCLiIg0EAVuERGRBqLALSIi0kBaa50BkXpkZpn1bn/r7nunnPZs4Nx4dxd3vy/N9PsbMxsOjHX352udl94wsz8BuwOr3H1wBedPBv4V757n7rNTy1wvFXpt1fyuratU4haRhmVmhwFPAe+rdV5E+opK3CLSkMxsN+DGWudDpK8pcItIo2qpdQbS5O571DoP0hhUVS4iItJAFLhFREQaiKrKU5DoFflF4OvAJ4HjgXcS3uOngJuAS919eR/k58PAccAuwEbAW8CzwO3AZe6+uErPuwfwx3h3F+Bx4EzgYGAisBJ4ELgSmOvunTmSSab3HuAEQm/UTYC3gQXA7wjv5QtFzt+I8Dl8ADBgA2ANsAT4O6F99BfF8pEn7QsJnzfAP4APufvr5aYT05oEfBnYG9gQWATcBXzP3f9a4LxRwKeAfYGtgKHAUsL/2+3ADyrNU5H8Tqar9/KBwDzgWOBoYBowAngJ+C1wibs/VyS9XQif827AeMJn9AJwJ/Bdd3+6wPNnXGVmV8Xbm7n7gvJfWcE8jgA+S/hfNqATeAa4AfgO4X24Idfzm9kCYFI87iLgMsJn3UT4f77I3eeW0qvczLYGTiF8vyYS/pd/D3wNWFXia9mR8L3YNeYL4DngN8C33f3lAuduCZxE+E5NiK/hRcL3/jJ3f6KUPEjvqMSdrmbgZ8APgR0JP2BDgG2BC4EHzGxitZ7czIaZ2c2EL+BhhC/2IGAksANwDvCcme1XrTwkjAX+BpwFbAEMjvl4P3AdcLOZ5ftxajWz7wH3Ei5ANo/njwCmA6cCT5vZCfme3MyOIfy4fxXYA9iY8F4MI7wvBxEupn5lZmW1lZrZ2aQUtAnB6lHgfwhBaxDhB/EI4B4zuzhPHt5NuDC6gPAjvj4wgPC+v4/wQ/5cDIrVNBS4g3AxtjvhwmMQ4TP7FPC4mX0kz2sYZGZXA38lBP4phM95OOFC5LPx/LOq+xIKM7PNCBecFxC+y0MJ/0fbEC7U/0G4QC5mPeDPwCGE/+XhwLsIFzml5OPMmI9j6PpOjSe8dw8B+xc5f4CZXUb4Xh5PeI+Hxb93A18AnjSzD+Y5/8uE/9VPEy5ehhHeCwNmAY+a2Wwzayrl9UjlFLjTlbkifxX4HPBeYCYwP+434E9mNjTtJzazZkLJ58D40K2E4L0z8EHChcMbhB+PW8zsA2nnIcsPCDUODxKC0HsIPzBPxv0HAHPynPtjwo8+wN2EH6r3EALwWcArhODwgxiguzGzPYGrCRdNrwFfAfaJaRwEXA6sjofvR6ghKYmZfQ44P97tbdCG8MM/Arg+5vG9wOkx3wCnmdmpWXloAX5OuBhZDswmlIB2Ivy/XR8P3QC4ycyG9CJ/xVxCuBi7DziK8P92AKEUCOFzujqOtU6+hmZgLuGzBVgI/C8wg/A5nwu8TqixuiCOfc/4DyGAHp947Nz42LZxfyrMbH1CsJ0SH/oF4X9mF+BEQkn1XcA3SkguE3AzFzn7E0qpd5WQj5MIpfUmYDFwGuF/ZS/Cd20g8K0iyfyIUFqGcFF7MqHUvTfhO7GGcAF4i5ltnvX8swnfoxbgEUKgfi/h8/pfwvvQTPgczkWqSlXl6RpHqPrazd3/nXh8npldSgjsmwFnkP4/98nAnvH2LHf/Qdb+O83sSuCemM+rzGyKu7+dcj4yxhGqaw9090yQvN/Mfk4oob0HONTMrnD3TPU6ZnYAXT/mF7l7dmnrLjP7MfAnQonhcjO71d2XJI75StyuAT7s7v/ISuNmM/sN8Ot4/xDCj19BsYSf+XFMI2hD+CH+jLt/L/HYvWZ2C+Gz2gj4qpnNSTRxzADeEW+f6O7X0908M/sP4QJgPPARQsCphnHAtcCx7t6RedDM5hEuHj8CjAE+Cvw0cd7Hgf8Xb98D7OPuyxL77zKzOYTPeTJwTvyc/xH/nx4ys5GJ419w94dSfWXBbEINCMCZ7v71xL77zOwGQpNAKTUbzYQmouSF4q/zHZxhZmPoulj8D/Bed1+YOOT3ZvZ7Qg1SvjQ+SNf36l7C9yL5fv/WzP5OuOAdDpxNqAXCzLYjNOVA+Kw/4e5rEufeE39bbiVcdJ1jZj9TtXn1qMSdvk9kBe2MU4HMzE4npFmdFEsvn4935+cI2gDEmaXOjHc3peuHsxqWAkclgnYmD8sJbaGZH/lZWeedHrePE348enD3RYTqOgjVdWt/CGNtxiBCifXXOYJ2Jo1bCSU6CMGtIDM7Evh+vJtW0Aa4LStoZ/L3HOECD0LNwbGJ3eMSt5/Jk+53CCWsLxL6N1TLSuBzyaANEPsN/Cjx0NZZ52U+51XAx7KCSCaNhXS97qbEOX0iNuVkmmP+mhW0AYj5PpxwkViK7xc/pIfDCCVhgC9kBe1MPn5BCKr5ZF5HB3B0nvd7DqGGDOBDid+oUwmxYgmhUNDjtcbv9ScIbf9NhEKKVIkCd7qeTJYek2LJ9rp4dxyhDTwt7yYEYuiqosxnfuJ2NavLb3T313LtcPdnCFXgAHubWSus7WyVKbncWaTT2N1A5sdn7etw9xXuvqO7jyY0WxTyStwOKnSQmR1EKIk0Aw+QXtCG0B8in5/S1eFor8TjTyVuX2Vme8aLt7Xc/SV3P8Hdv+buD6eU11weyPc5E6pPM0ZkbpjZOLoC+W15LnQBiNXImZLbXtmvs8o+QGjDhfD55xQ7ov2uhPTWEC76ypXpI7CKwjUnP8n1YPx+ZaYS/au7F7qQO4jwWzLJ3Ttj8N4n7rvH3VfkO9Hd/0VXU1i1m+L6NVWVp+ueIvv/mbj9TkInkTRsm7j9f2b2fyWet3nxQypWynvxPkKb+yaEXsTbEK7WAU42s5NLfK6cryNTCjSzYYQmiimE931rQnVz5mKnUDCYTmiLzXRgWw28WWK+SnF/vh3uvtLMniS8L9MTjz9sZvMJP6hbEXpfLzGzOwnNEL/LVSqrkgUF9rUlbid/a6YlbpcyT/t9hNc5kvCZ9dVr2yZxu1jAvZ+uAJvPYndfWUE+3hm3XuT8f9BV4k3amK4Lp39SQAy+SZOBUfH2/okRNMVsVuJxUgEF7nQV6xSzKHF7XN6jyrdhheeNKn5Ixcp9L14gxddhZhMIVXz7k/8CpYPitU6bxO0qQsl8F0I14HcqymlPi4rsz7Rrb5D1+McIHYqOIPxQjwYOjX+Y2aOEC47vunsb1VMo7eSPfDKYjE7cfrWE5/hv4vYG9F3gTvYULzaEspTXUekFXyYfSwod5O7LzayNRO1G1vlF08ih0u9kq5mNyFUlL72nwJ2uYu1cyWFHq/MeVb7k5/hpQueTUryVYh6yVfJeJF/H+ZTeoao9ecfM9ib0uh6WeHgZoRrvccIY7juAW+he+svnIUI74z2EH7ILzGxejtJJJYqVYDIBr9sYXXd/EzjKzM4hdK7bl9Dhb0A8ZDqhF/Knzez9xcZS97Fy+3ck/1c68h6VvoGJ28Uu8EopiZY9X0DWeaW8b7k6m/bmdz557k8IY9BLlbdaXXpHgTtd2aWibGMSt/NOclCBZBvjG1XqXVuuSt6L5Ot4q5LXEdtPbyQE7bcJwesGQjVjZ9axw3um0MPzwAfc/TUz+zxwTUz7R4Rhdr21AYVLQWPjNucx8eLhG8A
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
2019-10-17 17:50:31 +00:00
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZgcVdn+8e/MZE/IOkAgQIAEHiCIRllEQOKGoIgooihBAoKgIMpPQATUoAgC7+UCgviiyCLIIpFNwiICssOL7ODDmoAgBrIAgYSQmfn9cU4xnZ7ep2a6q+f+XNdcNV3LqdPTPX13VZ06p6WrqwsRERHJhtZ6V0BEREQqp+AWERHJEAW3iIhIhii4RUREMkTBLSIikiEKbhERkQxRcIuIiGSIgltERCRDFNwiIiIZouAWERHJEAW3iIhIhii4RUREMkTBLSIikiEKbhERkQwZVO8KSO+Z2Rbu/nAflZ2M+3q9u+/cF/vIOjObBfwhPvyyu19cx+o0HDObDfwoPtzW3e9OufxevUfNbAZwc3z4fXf/Wc6y2fSy7mZ2C7Aj8La7DyuyTp/9D1cq5+94nrvPqmddpDQFd4aZ2Rjgx8Ah6LUUyRz9D0st9EbJtp8D+9e7EiJSM/0PS9UU3NnW1tc7cPeWvt6HNDd3nw3MrnM1inL3W4A+e5+7+4wSi/v8f1iajxqniYiIZIiCW0REJEN0qjyD8lq6JvOSFqG3ljk1V+2++qxVuZmdC+wLuLtvYmbvB44BtgfGAy8Dfwf+x90fLVPWYGAWsCewRdx+CfAQ8GfgD+6+okwZ2wN7x/2vDYwG3gD+DdwKnOHu/6rheU4AbgE2j7N+4O4nVLH9PGAy8Ct3/46ZfRT4JrAt0A4sAm4HznT3m0uUsyVwEKGF87pAJ/AKcBdwMXCVu3cV275WpVpm57S4vtLddzezDwCHATOANYHXgfuA37n7Xyrc326E57kV4TV8mfD3/5W7P1Bg/RkUaVVeYN3JwA+AnQl/+1cI740z3f3OItskz/HdVuW1/A+b2SeB/Qiv+5rAMuBp4FrgdHd/tVi94/ZTgO8AHwXWJ7y3bwNOdfd7S20rjUVH3NIQzGxPQoDsQfhQGkwIl32BB8xsZoltpxIC+n+BT+RsvzrwceAs4CEzsyLbDzezPxM+xA4mBOx4whfbccB7gEOBR8xs7yqf12jgemoM7QLlnQzcRPg7rQ0MASYCXwD+bmY/KbLdUcC9wAHARsAwYAThC8FewBXADWY2sta69ZaZfQu4G/gqsB4wlPAafgqYY2bnm1mpa9GDzexC4Mq4zeqxjMmE99E9ZrZvL6q4A/AI8DVgUix7HcKXvTvM7NRelF2UmY00sznAdcCX6P7bjAW2BH4IPGNmnylRxj7AE4T38WaE135NwvvmTjM7uC/qLn1DwZ1NZwHTgatz5k2PPwfUpUa9MxE4jxC2vyeE7w7AicByQoCeb2afyt/QzCYSAndTYAVwBvBpYGvgs7HcDmAT4GYzW6vA/s8iBCHA/xE+mGcAHyYcxSdHUoOA38Yj6LJiCF4LfCDO6lVoEz60jwJeAA4HPkT4YnImkBytHWdmH8yrx4eBnxEaYD1EOGr7EOHMwgHA43HVjxNuTaqHDwK/Ihxh/4Dwt9+R8B5IzpTsA3yxRBkfBb4CPEs4at8B+BzhjAuE99dvzGz9Gut4MrAacCGwC+FveCThjAfAEWb23QrLquh/2MxagasIzwPgGsL7YBvC63Ui8BrhzMJfzOxj+TuKgZ78f70JHE/423wEOAVYSfi/kYzQqfIMcveXgZfNbFHOvAfrWKXeGhOnM939wpz5t5vZXwmny4cCvzKzG939nZx1ziIE/+vAx939vryyr4pH01cBawG/IBxhAmBmGxECAeAeYEd3fztn+9uA88zsMsLRyUjCh/YfSz0hMxtGOPLbLs7qbWhDeJ6PATu4++Kc+TeZ2XxCsEA4usztKGQ/QmgvJDy/13KW3RGf2z+BKcDXzOwod+/oZV2rtSbwH+CD7v58zvx/mNlDwCXx8ayc3wu5E9jF3V/PmXeFmZ1FOH0+nHA5pZaj4xbgEHc/M2feXWb2F+CO+Bx+YmbnlTttXcX/8GGELyQAB7v7b/OW32Rmv4/7nwj8wcymJP8jZjYU+GWs+1LCeyd3P7eY2ZWEszgFO4eRxqMjbmkU5+eFNgDxumHyITuVcJQBgJltDOwWH/60QGgnZVxDOOIA2NPM1s5ZvDnwFOHI/sS80M6VW7dJpZ5IvN7+ZyA5+kkjtBNH5YV24my6j7rfm7dsYpwuyAttAGLIHUe4p/hY6vcBfkJeaCcuA5LnnP/c8h2UF9qJ3CPKzQssr8Rf80IbAHd/BvhefDic8OWi1+LR9v+LD+cWCO1k/88CR8eH6wKfz1n8CWDD+PvPCn05iP9jp6RRZ+kfCm5pFKVO1Z2T83vudbxP0X3/7Y1lyr82TlsJp8EBcPe/uLsRrvldXWC7xMs5vw8tsV4bcBHhdD2kG9orCWcfeohhnoTbanmLkwZ1m5rZ2bGBVf72F7v7d939DHd/M6X6VuuGQjNjg7nn4sP855brhRKNGJ/K+X18DXWD0IaimEuA5EvfTjWWn28LQhBD+ff33Jzfc0+X515euqjE9ueUWCYNRqfKpREsB+4vttDdnzOzxYSGYpvkLJqe8/s/i7Q9K2TD/Bm5ranNbM24zlRCQ54tCdczE6W+8J5AaLGbWFhppSrwX3dfXmL5Urob1eU6g3DdfjXC9dMDzOwxQhj8DbiljmGda16JZUvjtNRn1r+LLXD35Tnvj1o/9+4pU/4TwPsIjRnTkPv+/rmZ/bzC7XLf38n/y2vu/lyhlQHcfb6ZLQDWqLKOUgcKbmkECyq4pvoqIbgn5sxrr3F/4/JnxFttvkloEDWmxxbh1qlKrB+nbxOOzE82s2vc/YUa6plvaZnlyZePVVpeu/vT8fmdQ/cH+bT48x3gbTO7ETjL3f+aQj1r8ba7ryyxvOBzy/NGhfuqtZe0V8osT65r13pEny+N9/eacbqo0Ip5/ouCOxMU3NIISn1gJ5KuIXPvxc59/24N5DZaK+XdD+B4e9H/0rM1/guEU8wPExo8LSE04KnEj4FnCNfVVwN+y6qnLPudu99lZtMIlwk+T7gPeUpcPBTYFdjVzP4I7OvulX5RaSSp34NeZfnJF4Ji7SSqlfv+/ibhdslKLMv5vZIvPIlK/3+kzhTc0ggqOUJJjj7+kzMv9yjiRXd/qYZ9H0x3aD9FuCf2Bndf5QgldtJRiV+6+4/iNvsSWgTvYmb7uPsFNdQvNTGM/x5/iLdFfYzQbuDThM+DmYRrzXWta4MaT+lLH8nRalqXR3Lfg6/VeOfIfwhnVtrNrKVMBztpnSmQPqbglkYw1swmu/v8Qgtjxymj48OHchblNkT6IDCn2A7MbBvC0eY84A53T66HHhKnHcAnS1wHXK/UE8iRex30YMIR+zDgF2Z2vbsvqLCc1JjZaoRT5AtjC2QA3H0e4b7538fexq6Mi3ZFwV3INOAfhRbEv/Gm8eE/U9pf/vu7aOMyM1udcFQ+D3jQ3ZP/k8cId2KMIrwHniiy/VhCRzWSAWpVnm1ZPJ1ZzD4lluUOe5gbztfn/P6NMuWfSuiE5GJWbbwzNU4Xl2q8Q+gdK1HRF153f4rQWA1gAvDrSrZLk5mtS7jH/V5Kj9B1Pd3vJ93PW9iXSizbl+73xXVVlFnqf/g+uo+6vxLH7i7mW4TX91xCx0OJy3N+/1qJ7fehD0dIk3QpuLPt3WtpZjaqnhVJwfdjP9WrMLOPEHoJg3Ck/G6fyu7+f3QfAX3czI4pVHDszWqH+PBBQqcqiaRBUXvsyzt/2xYzO55Vb/EpdTtYvlPo7plsTzPbvYptey02ikuOvr5oZtsWWXUvuj8PCt4PLxxkZj366zezLej+graAMp3z5Cn6Pxz71k++7E0ALogdquTvfztCD24Qrm+fnbP4DkJvgADfNrOPkye2fahXj3lSgwF9qtzMrgJw993Krdugcq/3nmhm5wMdhQZSyIARwK3xlpcbCO/
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcRf3/8ddmE8hFDrJAIECABD5AEA0CkctERQRBRAFBCBIQlEuUrwSjoAQPTn8eKIhf5Awgh0TuIIhc4f4iN/jhTEAQA0k4Qgghu/v7o6qzk2HundmZnn0/H4999PR0V3VN78x8pqqrqls6OzsRERGRdOhT7wKIiIhI6RS4RUREUkSBW0REJEUUuEVERFJEgVtERCRFFLhFRERSRIFbREQkRRS4RUREUkSBW0REJEUUuEVERFJEgVtERCRFFLhFRERSRIFbREQkRRS4RUREUkSBO2XMbPN6l0GKM7MpZtYZ//atd3kajZlNzzg/n6pB/kneN1eYflJGHtOytnW77GZ2R0y/pMA+df+sZ7zOC+tdFunSt94FkNKY2VDgp8CR6P8m0rT0WZdi9KZIj18BB9e7ECJSc/qsS0EK3OnRWu8CiFSLu08Hpte5GHm5+x1ASw3zn1Rgsz7rUpCucYuIiKSIAreIiEiKqKm8wZnZdODErOc648M7izS5VXrMgcDhwB7AxsAQYD7wf8BlwJXu3lHt48ZjXwgcCLi7b2xmWwA/ArYHVgVeB/4B/NLdnyySVz9gCrA3sHlM/xbwGPAX4AJ3X1okj+2B/ePx1yKci3eBfwN3Ame5+78qeJ0jgDuAzeJTP3b3n5eRfg4wGvitu3/PzD4LHAFsA7QBC4DZwNnufnuBfLYEvg1MBNYBOoA3gPuAy4Hr3L0zX/pKZb2vt3H3+zO23RHLc62772FmnwSOBiYBawDvAA8Bf3L3v5Z4vN0Jr3Mrwv/wdcL5/627P5Jj/0lAct5+6O6nFsh7NPBjYGfCuX+D8N44293vzZMmeY0fuHv/+Nx0yvysm9kXgIMI//c1gPeB54GbgN+5+5v5yh3TjwG+B3wWWI/w3r4bOMPdHyyUVupHNW5ZgZltBTwL/JIQrNqAlYA1gS8BfwbuNrM1e6AsexMCyJ6EL6V+hOByIPCImU0ukHYsIUD/L/D5jPSrATsC5wCPmZnlST/AzP5C+BI7jBBgVyX82B0OfAw4CnjCzPYv83UNAf5GhUE7R36nAbcRztNahP/XSGAv4B9m9rM86Y4DHgQOATYE+gMDCT8I9gWuAW4xs0GVlq27zOw7wP3AN4B1gZUJ/8MvAjPN7GIzK3Qtup+ZXQpcG9OsFvMYTXgfPWBmB3ajiDsATwDfBEbFvNcm/Ni7x8zO6EbeeZnZIDObCdwM7EPXuRkGbAn8BHjBzL5UII8DgGcI7+NNCf/7NQjvm3vN7LBalF26T4G78Z0DjAeuz3hufPw7pJoHMrNxhFrGKMIv79OAnYAJwNcIX+QA21L7L/SRwEWEYHseIfjuAJwMLCEE0IvN7Is5XsdIQsDdBFgKnAXsCmwNfDnm205oTbg9z4+QcwiBEEJLwzcJNb5PE2rxSU2qL/DHWIMuKp6zm4BPxqe6FbQJX9rHAa8AxxD+NzsCZwNJbe2E7PHGZvZp4FRCB6zHCLW2bQk/1g4Bno677kgYmlQPnwJ+S6hh/5hw7icS3gNJS8kBhPdmPp8F9gNeJNTadwC+QmhxgfD++oOZrVdhGU8DVgEuBXYhnMOphBYPgGPN7Psl5lXSZ93M+gDXEV4HwA2E98EEwv/rZOBtQsvCX83sc9kHigE9+Xy9B5xEODefAU4HlhE+N9KA1FTe4Nz9deB1M1uQ8dyjNTrcJcAgQjPwJHd/IWPbg8BVZnYE4QO9GeHLdNpHcqmOoXE52d0vzXh+tpndSGguXxn4rZnd6u4fZuxzDiHwvwPs6O4PZeV9XaxNX0doSfg1oYYJgJltSAgIAA8AE939g4z0dwMXmdlVhNrJIMKX9iWFXpCZ9SfU/LaLT3U3aEN4nU8BO7j7woznbzOzuYTAAqF2eX/G9oMIQXs+4fW9nbHtnvja/gmMAb5pZse5e3s3y1quNYD/AJ9y95cznr/LzB4DrojrUzIe53IvsIu7v5Px3DVmdg6h+XwA4XJKJbXjFuBIdz8747n7zOyvwD3xNfzMzC4q1mxdxmf9aMIPEoDD3P2PWdtvM7Pz4vFHAheY2ZjkM2JmKwO/iWVfRHjvZB7nDjO7ltCK079QmaU+VOMWAMzs88An4ur3s4L2cvEL6o64eni8jlwrF2cF7aQM99L1JTuWUMsAwMw2AnaPq7/IEbSTPG4g1DgA9jaztTI2bwY8R6jZn5wVtDNllm1UoRcSz9NfgKT2U42gnTguK2gnzqWr1v3xrG0j43JeVtAGIAa5Ewhjio+nfl/gP88K2omrgOQ1Z7+2bN/OCtqJzBrlZjm2l+LGrKANQPz8/CCuDiD8uOi2WNv+n7g6K0fQTo7/Il0/qtcBvpqx+fPABvHxqbl+HMTP2OnVKLNUnwK3JHbNeHxrkX1visshhM4+tVKoqe78jMeZ1/G+SNf421JfRx9CMzgA7v5XdzfCNb/rc6RLvJ7xeOUC+7USOvUl57iaQXsZofXhI2IwT4LbKlmbkw51m5jZubGDVXb6y939++5+lru/V6XyluuWXE/GDnMvxdXs15bplQKdGJ/LeLxqBWWD0IcinyuA5EffThXmn21zQiCG4u/vWRmPM5vLMy8vXVYg/fkFtkkdqalcEuMzHi/I02crlw3out5bTUuAh/NtdPeXzGwhoaPYxhmbMl/HP8t8HdnHWN6b2szWiPuMJXTk2ZJwPTNR6Efwzwk9dhPzSy1UCf7r7nnnuyY0hSad6jKdRbhuvwrh+ukhZvYUIRj8HbijjsE605wC2xbFZaHvsX/n2+DuSzLeH5V+Fz5QJP9nCC1ZH6sw/2yZ7+9fmdmvSkyX+f5OPi9vu/tLuXYGcPe5ZjYPWL3MMkqNKXBLoq3CdMOrWoou80q4pvpmPP7IjOeq9jriUJsjCB2ihn4kRRg6VYr14vIDQs38NDO7wd1fqaCc2RYV2Z78+Fih57W7Px9f3/l0fZGPi3/fAz4ws1uBc9z9xiqUsxIfuPuyAttzvrYs75Z4rEpnSXujyPbkunalNfps1Xh/rxGXC3LtmOW/KHA3HAVuSSTvhTcJ18BK9WoNygKhCbiYZGrIzLHYme/prYHMTmuFLP8CjsOL/peP9tp/hdDE/DihleEtQgeeUvwUeIFwXX0V4I+s2GTZ49z9vjiSYBLhGujOhM5oEH5g7AbsZmaXAAfWaux+jVV9DHqZ+Sc/CPL1kyhX5vv7CMJwyVK8n/G4lB88iVI/P9KDFLglkfz6Hgw83gBf0qXUUJLax38ynsusRbzq7q9VcOzD6ArazxHGxN7i7ivUUOIkHaX4jbufGNMcSOgRvIuZHeDuMyooX9XE//M/4h9xWNTnCP0GdiV8R0wmXGuua1kb1KoUvvSR1FardXkk8z34doUjTP5DaFlpM7OWIhPsVKulQKpIgVsSTxLGzfYnXJP7Z74dzWxnwgd/DmFGp4LDXCo0zMxGu/vcPGUwQuc4COOQE5kdkT4FzMx3ADObQKhtzgHucffkeuiRcdkOfKHAdcB1C72ADJnXQQ8j1Nj7A782s7+5+7wS86kaM1uF0EQ+P/ZABsDd5xDGzZ8XZxu7Nm7aDQXuXMYBd+XaEM/xJnE17+epTNnv77ydy8xsNUKtfA7wqLsnn5OnCCMxBhPeA8/kST+MMFGNNBj1Kk+PWteA/5bx+Ih8O5lZK2Fyj18ShjfVchKWAwpsy7ztYWZwznwdhxfJ/wzCJCSXs2LnnbFxubBQ5x3C7FiJkn4Eu/tzhM5qACOA35eSrprMbB3CGPcHKXyHrr/R9b7TeN7c9imw7UC63hc3l5Fnoc/6Q3TVuveL9+7O5zuE/++FhImHEldnPP5mgfQHUMM7pEnlFLjTY/k1MjMbXIP8ryHMLgVwcIFpPH8NrB8fX5uvRlwlP4zzVK/AzD5
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3debyd073H8c85J4lEBJFBNJGERH4a11RTVVSqt6gpZkUQvTW0Vbe0aHEreg3F1UFRlBqiMZUSihZVUw29php/xiRquMhAEiKSc+4fa+2cJ/vs+ex99n7O+b5fr7ye8+znedZe++yT/dtrPb+1VlNbWxsiIiKSDs31roCIiIiUToFbREQkRRS4RUREUkSBW0REJEUUuEVERFJEgVtERCRFFLhFRERSRIFbREQkRRS4RUREUkSBW0REJEUUuEVERFJEgVtERCRFFLhFRERSRIFbREQkRXrVuwKSLmZ2JXBo3F3L3d+tY3Ualpll1sv9s7vvVNfKNBgzGw28EXcvcfejqlz+lXTyb9TMZgKjAHf39ROPj6aTdTezKcAVcfcAd78uxzmrAEPd/fVyy6+W5O/R3ZvqVQ/pSC1uEZEGYmb7Ay8BX653XaQxqcUtItIgzGxboEMLXCRJgVvK4u5TgCl1roakmLvPBBq669XdR9ew7CuBK/McbqnV80r3oa5yERGRFFHgFhERSRF1ladIIlP5x8DZwLeAw4H1Ce/lS8CNwPnuvqhGdbiSGmWVm9lE4L64uzXwPPAjYB9gJLAYeAq4HJju7m05ikmW90XgCGA74HPAZ8BM4C+E39HsItevSfj9fhUwYA1gKTAH+AfhXuRNxeqRp+wzCe8jwP8CX3P3+SVeOxU4FfjQ3Vc3s2HAccBuhN/TZ8CLwPXAb9z90zzlDAS+DewKjAdWBuYR/o7uIGRNl1SnchTKzM7KuB4ItALfB/YC1iV0sb8K3Az8yt0/KvH5jgd2AoYDHwEvELqrr8r1/uXLKs9xXi/ge4T/E+MIf6PPAdcCl7n7ZzmuSb7GA9z9uqzfScYVZpY5b514iyFZztrxuXcERgN9gHeAB4GL3f2RfPWO1/cj3PY6GFgP6Et47y8HLi10rdSXWtzp1AzcQPjPtQUwAOgHbAqcCTxhZiPrV72qGAo8DpxE+EDsC6wOfAW4BrjZzPrmutDMepnZRcAjwGGED/y+hN/ThsAPgJfN7Ih8T25mhxI+SP8bmAisBawE9CcEx70JX5JuNbOy7kua2clUGLRzlDWB8AXneMIXuJWB1YAvAr8AHjezNXJct1G87gzCl6TVgN6E3/uXgZ8Br5nZ1pXUq0oMeBY4DdiY8P6tAmwC/BR4Lga8QvYmfIn5DuHvYCVgCOHL3BXAn2LwrcQqwN+An8f69SN82dgWuIjw/3CtCssuyMz+A3iZ8L5vBKxK+BtfBzgE+LuZXWJmvfNcPwp4MtZza2BwfD2bA78hfLnN+f9L6k+BO52+R2iFvkdojXwJmATcGY8b8DczW7k+1auKSwiB6CngIEIgmkL4EAbYA7gqz7WXEVqSAA8RWkNfJATgk4B3CR/gl8QAvQIz257QGusHzCUEia/HMvYGLgSWxNN3I/R8lMTMvg+cHnc7FbRj/WYQPrR/Q2hRfgk4Gng7nrMRITgn69AC/IHwZWQRMJXQq7Al4e/o9/HUNYAbY8usHm4hfEm6Ftid8Ps/jBCwANYmvO5CLiC00i8k/H6+ApxMeN0Q3tfjKqzfgcA2hNb7YbF++wEPx+MbUvoXg7cJX7wPTzx2anxsU9rfz0yL/TJCYH2D8EV0W8J7fzjwdDz1CHK0nM2sP3A/4f8XwK20/36/Rfj9fhXYt4R6Sx2oqzydhhG6fLd1938lHp9hZucTAvs6wImE//xpNIzQXbunu2eC5GNm9gfgHuKHpJld7O6Z7nXMbA/au/LPcveTssq938wuI7SUxgMXmtnt7j4ncc5P43YpsKO7/29WGTeb2V3AbXF/X8IXjYJiC/8XcbezQRtC12gLsKu735V4/BEzu4PQZbsycKCZHZPotp1A6BoFONLdf8+KZpjZ24TW3HBgZ+CmTtSzUsOAw939ssRjj5nZLYRguRawo5kNK3DL5lNge3f/e+Kxv5nZXwk9MhD+Xs6poH5NhAD4dXf/JFG/mwhfNvYjBN0jCV8c8op/40+b2eqJh2e7+9PJ88zsc4my7gUmZd0WeyTezroaOACYYmbXZ/19nES4DQBwhrufkjj2mJldB9xNaIlLA1KLO72+mRW0M34AZGZbOsLMGnrYTQHzgIMTQRuA+CF1COHeJ0D2zFXHx+3zhJZVB+7+PqHrFELX9/IWc+ylWInQ0r4tR9DOlHE7kAm6w4u9GDObTHvrsBpBO+PmrA/lTP3eIHz4QmiRr5M4PCzx8yt5yv0V8FtCl/6rVahnJf6RFbQBiL+3G+JuE6FXIZ8LsoJ2poxHCV3FAOtX2F3+KXBQImhnym4ltHw/jA99O/vCTvgu4cvYUuCQXLks7r40Pmfm+f8zc8zMmmlv1Ts5vtjn+D8mDUaBO51eTLYyk2Kr6pq4O4xwDzyNrnP3ubkOuPsrhC5wgJ0yH7ox2SrTSri3SNLYQ8CC+PNXE2V/7O5buPsgwu2IQjKtvJUKnWRmexO63puBJ6he0IZwLzKf1xI/D0j8/FLi5yvMbPv4gb6cu7/l7ke4+8/c/ZlqVLQClby2bHcUOJb50tJMuMdfrjvc/a1cB2LS3C1xd4PYUq6GXeL2BXd/O99J7v4h7V32X07c696ccI8f4Hp3X5bn+leBB6pQX6kBdZWn08NFjj+Z+Hl9QpJX2pTyGr9MaE1+DphNSFrK9DAcY2bHlPhc6+Z6MLacMvcE1wHGEH6fGxO6m9eOpxb6ArwhMJ32iTWWELKaq2VmgWMLEz8v/7/u7s+Y2Z2E+7vjCV2uc8zsXsJtiL+4+6wq1rFSMwscy/nacsjVK5WxuMQy8nmsyPGnaL9tsyGJ+9SViF9QN4y7GyVGmRSzMrAm4XeRzJB/Ovfpyz1OyAuRBqPAnU7FPgDeT/w8LO9Zja3c1zibkBlbiYHZD5jZCMJth93JE9gJXYnFeq0yLa1PCS3zrQk5CL+qqKYdLSxwLPnBnn3L5BuEe6UHxWODCPdk9wMws2cJXzgucPdCz1FLlb62pAUFjiVVckvpvSLHP0j83CGzvwIDqbyXdCAhcK+ZeGxOnnMz/q/C55IaU+BOp6VFjieHJy3Je1Zjq+Q1Jv+eT6f0hKoVugvNbCdC1nX/xMMLCBntzxPGcN8D/BHYoITynwb2J/QiDAbOMLMZ8T50XcSu3IPN7CeE5LpdCQl/mS7VDYGzgO+Y2Vfc/bXcJTW8ssfYV1Hyy0DOsfRlSv5930X7kMJSZPIUSv3CA2E+AGlACtzpVOzb+5DEz+/UsiI1VMlrTN4T/yQ7I7cUcTKT6whB+zNC8LqWMBFHW9a5q5RQ5OvAV919rpkdR8j27U9I/Pr3cutXbfHLwznAOfH1bEsYNrU/oXW2NmFI0VfzFtJzFfsbHZr4uVjrthTJv++WSv6+WfHzYEjes4Jq9BJIDSg5LZ02KXI8mZBWr8Sizir1Nb5De5flc4njXyx0sZn1MbNTzew/siYZmUx7otLp7n6qu7+UI2ivxIrdjvm8kkmyc/dphPvJAF+Nk2h0uThBzTgz2yb5uLsvdPc73f0/gc/TPjph+zqO5W5kxXpbtozbVorfTy4qzoCXaTlvViwT3syOMrPvmtkuiXOfT5xSLHG12P9BqRMF7nTaNs581EEMKAfG3Rfd/aVc56XAAflmJDOz8cBWcfeWTFCNGb6ZD6adzGydXNdHkwkTj1zGipNejE38/ESB6/emfWapcnqujqI9Kep/ajWzVhF3EYYC3RMT7zpw93m0j3MGzaKVy675Jjkys6GEyXkAHo1Z3qUoNgTrz3G7BiFPISczG0vIYbgA+HUcIkZspWe+kB1YYPbBIYSeF2lACtzp1AJcmf2fLo7Z/jVhtikIUzGmlZE14xeAma1K6G5uInRlX5B1ynlx2xu4LmtCi0wZ42i
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3debxVVf3/8RfzJCqjKAoIyMfwi0NOkRhopeZEfp1S0bBvKpX5TQs19adYmtM3s3IecsBwSlQysZLM1ETNKccPogLmkApKyiAC9/fHWpt7OJz57nvv2fB+Ph489tlnr7XOOudwz2evYa/dpqGhAREREcmGtq1dAREREamcAreIiEiGKHCLiIhkiAK3iIhIhihwi4iIZIgCt4iISIYocIuIiGSIAreIiEiGKHCLiIhkiAK3iIhIhihwi4iIZIgCt4iISIYocIuIiGSIAreIiEiGtG/tCoisK8wsuYfuH919r1atTJ0xs0HAG3H3KnefkHL5NwDfjLsbu/u7NZQxBxgIuLtvmfP8IJpYdzMbD1wfdw9z91sLpFkP6Ovur1dbflpyP0d3b9Na9VjXqcUtIlLnzOxQ4BXgS61dF2l9anGLiNQxM9sVWKMFLusuBW4RaXXuPgeo665Xdx/UjGXfANxQ5HC75npdySZ1lYuIiGSIAreIiEiGqKu8TuXMQP4xcAHwbeAYYEvC9/YKcAfwK3df1AL12RM4GhgJbAQsAWYD9wG/dvcPmul1xwAPxt2RwIvAqcBBwABgKfAMcB0wxd0bChSTW94XgGOB0cAmwGfAHOBPhM9yXpn8GxG+hy8DBvQElgPzgScJY5F3lqtHkbJ/Rvi+Af4BfNXdP6ow7yTgLGChu29oZv2Ak4D9CJ/TZ8DLwG3AFe7+aZFyegDfAfYFhgNdgQ8J/9/uI8yarqhO1Sg1MztvxnUPYCXwA+C/gcGELvbZwFTgl+7+nwpfbyKwF9Af+A/wEqG7+sZC31+xWeUF0rUHvk+YfT2M8H/0BeAW4Fp3/6xAntz3eJi735r3mSSuN7Mk3eZxiCG3nM3ia+8JDAI6Au8ADwNXuvtjxeod83cBxgNHAlsAnQnf/XXA1aXySstRi7v+tQVuJ/zR7Ah0B7oA2wE/A54yswHN9eJm1s3MpgL3A4cSgkAnYENgB+BM4DUz26+56pCjL/AEcBrhB7FzrMduwM3AVDPrXCijmbU3s8uBxwgnIINj/u7ACOCHwCwzO7bYi5vZNwk/pD8FxgAbEz6LboTP5UDCydQ9ZlbVuKSZnU6NQbtAWaMIJzgTCSd6XYENgC8AvwCeMLOeBfJtHfOdSzhJ2gDoQPjcvwScT/iuR9ZSr5QY8DxwNrAN4ftbD9gW+AnwQgx4pRxIOIn5LuH/QSegD+Fk7nrgDzH41mI94K/AxbF+XQgnG7sClxP+XjeuseySzOx/gFmE731rYH3C//HNgaOAv5vZVWbWoUj+gcDTsZ4jgd7x/ewAXEE4uS349yUtS4G7/n2f0Lp8j9DK+CIwFpgejxvwVzPrmvYLm1lbYBpwQHzqXkLw3hn4CuHEYSHhB+IuM/ty2nXIcxUhED0DHEEIROMJP8IAXwduLJL3WkJLEuARQmvoC4QAfBrwLuEH/KoYoFdjZrsTWmNdgAWEIPG1WMaBwGXAsph8P0IPSUXM7AfAOXG3SUE71m8a4Tu5gtCi/CJwPPB2TLM1ITjn1qEd8DvCycgiYBKhV2Enwv+338akPYE7YsusNdxNOEm6Bdif8PkfTQhYAJsR3ncplxJa6ZcRPp/dgNMJ7xvC93pSjfU7HNiF0Ho/OtbvEODReHwElZ8YvE04QT8m57mz4nPb0fh9Ji32awmB9Q3CieiuhO/+GODZmPRYCrSczawb8BDh7wvgHho/328TPt8vAwdXUG9pZuoqr3/9CF25u7r7v3Ken2ZmvyIE9s2BUwh/1Gk6Adg9Pp7g7lflHZ9hZtcRfpT6EbrxhhTqCkxJP0J37QHungTJx83sd8ADxB9JM7vS3ZPudczs6zQuvnGeu5+WV+5DZnYtoaU0HLjMzO519/k5aX4St8uBPd39H3llTDWz+4Hfx/2DCScaJcUW/i/iblODNoSu0XbAvu5+f87zj5nZfYQu267A4WZ2Qs53NYrQNQpwnLv/ltVNM7O3Ca25/sDewJ1NqGet+gHHuPu1Oc89bmZ3E4LlxsCeZtavxCIrnwK7u/vfc577q5n9hdAjA+H/y4U11K8NIQB+zd2X5NTvTsLJxiGEoHsc4cShqPh//Fkz2zDn6Xnu/mxuOjPbJKesGcDYvOGzx+LCKTcBhwHjzey2vP8fpxGGAQDOdfczco49bma3An8mtMSllanFnQ3fygvaiR8CySpKx5pZapfTxNZ20uqYXiBoAxBXcTo17m5GGHdsLh8CR+YE7aQOiwhdgSvjU/krV02M2xcJLas1uPv7hK5TCF3fq1rMsTejE6Gl/fsCQTsp414gCbr9y70ZMxtHY+swjaCdmJr3o5zU7w3Cjy+EFvnmOYf75Tx+tUi5vwSuIXTpz06hnrV4Mi9oAxA/t9vjbhtCr0Ixl+YF7aSMmYSuYoAta+wu/xQ4IidoJ2WvJLR8F8anvpOfsQm+RzgZWw4cVWjOi7svj6+ZvP7/Jsfi33rSqncKNAAK/I1JK1Lgrn8v57Yec8XW0s1xtx9hDDwtWxMCMTT+2BczPedxc3aX3+ruCwodcPdXCV3gAHslP7pxslXSSphRZtLYI8DH8fGq9+Hui919R3fvRRi2KCVp5XUqlcjMDiR0vbcFniK9oA1hLLKY13Ied895/ErO4+vNbPf4g76Ku7/l7se6+/nu/lwaFa1BLe8t330ljiUnLW0JY/zVus/d3yp0IE6auzvubhVbymnYJ25fcve3iyVy94U0dtl/KWesewfCGD/Abe6+okj+2cDfUqivNJG6yuvfo2WOP53zeEvC5K00bJfz+GIzu7jCfINTev1CKvksvkRoTW4CzCNMWkp6Ik4wsxMqfK2C7yO2nJIxwc2BIYTPfRtCd3NyslPqpHgEMIXGhTWWEWY1p2VOiWOf5Dxe9ffv7s+Z2XTC+O5wQpfrfDObQRiG+JO7z02xjrWaU+JYwfdWQKHeq8TSCsso5vEyx5+hcdhmBDnj1LWIJ6gj4u7WOVejlNOVcHXIv2gc14bGsfBiniDMC5FWpMBd/8r9Yb+f87hf0VTV611jvh4p1iFftZ/FPFJ8H2a2KWF4Yn+Kn6CspHxPVtLS+pTQMh9JmKvwy5pquqZPShzL/WHPH1r5BmGs9Ih4rBdhTPYQADN7nnDCcam7l3qN5lTre8v1cYljuWoZenqvzPHcyybXmNlfgx7U3nPagxC4N8p5bn6RtIl/1/hakiIF7vq3vMzx3MuOlhVNVb3c/xvfpXHSTjlLyiepWS2fRe77OIfKJ1St1l1oZnsRZl13y3n6Y8KM9hcJ13A/ANwFbFVB+c8SZug/Sji5ONfMpsVx6FYRu3KPNLMzCZPr9iVM+Eu6VEcA5wHfNbPd3P21wiXVvaqvsU9R7slAwWvpq5T7//t+Gi8prEQyT6HSEx4I6wFIK1Pgrn/lzsr75Dx+J8XXzR1LXpg/k7WV1PJZ5L6PJbW8j7iYya2EoP0ZIXjdQliIoyEv7XoVFPk68GV3X2BmJxFm+3YjTPz6SrX1S1s8ebgQuDC+n10Jl00dSmidbUa4pKi5L//LonL/R/vmPC7Xuq1E7v/vdjX+neb+bvQpmipIo5dAmkiBu/5tW+Z47oS0NCcMvZDz+AuELtKCzKwPoVU+B3i2GScubUu4vrSY5LN4h8Yuy/z3UZSZdSS0WP5FmOiT9DKMo3Gi0jnu/pMi+TuxerdjMa8mk+zcfXK8bvzLwJfN7H/c/boKykhVHCsdDPRx91VzCWKX+HRgelyd7R8x3e5m1iV/9rSU7W3ZKW5XUn48uSx3/9TMZgNDge3NrH2cQV6QmU0g9EzNIdwXfjmhxyixI6FnqZhyv0fSAjSrvP7tGlc0WkMMFIfH3Zfd/ZVC6Wr0JI1n84ebWakZtt8nLNhxA2GxjuZ
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAFGCAYAAABHb8fWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5gUVb7/8fcQBhgDKK6CiKTRL7oGTLiKAcNedM2yumJcFXVdvbr+cNW9uld0zbouoi6KWUwIipnrKoYVA6joIoavAcEsGUElz++PUzXTNB0n9RR8Xs8zT3V31Tl9uqe6P11Vp06VVVVVISIiIk1fs1I3QERERAqj0BYREUkIhbaIiEhCKLRFREQSQqEtIiKSEAptERGRhFBoi4iIJIRCW0REJCEU2iIiIgmh0BYREUkIhbaIiEhCKLRFREQSQqEtIiKSEAptERGRhGhR6gasbsxsG3ef3EB1x9dRfdbd92uI50g6M/s9cFd0d4C7P1TC5kgeSf28mNlg4OLo7i7u/kYt6ngJ2BNY7O6t0+bVqe1m1hd4Mbr7F3e/KsMy5UB3d/+o2PrrS9r72M3dp5WqLUmhLe16YmZtzewGYFKp2yLS1OnzUlpmti8wGTiq1G2R4mhLu/5cD5xU6kaIJIQ+LyViZp2B50rdDqkdhXb9ad7QT+DuZQ39HCKNZI3/vLh73was+yUg2+tv8PdeGo52j4uIiCSEQltERCQhtHu8jtJ6P8aPxT0/X67PXWAN3Bv2buAEwN29p5ltD/wPsBuwPvAd8AJwnbtPyVNXS+D3wBHANlH5ecB/gNHAXe6+JE8duwHHRM+/MbAusAD4CngZuLk2vV7NrD3wErBV9NBf3f2yIspPA7oAN7j7n8xsb+CPwC7ABsAcYDzwT3d/MUc9OwKnEXoPdwZWADOB14GHgCfcvSpb+dpKWV/nu3s7M+sA/D/gIGBTYCnwITASGObui3PU1Qo4Hvgt0AtYj/B/fh94DBju7j9nef7Uxxr185LWs3o74APgDOB3gAGtgGnAU8Df3f37Ap7rF8C5hPexK7AI+Bh4kPA+rrK+5+o9nrZcGeHzdCphvV0R1T0auMndf8xQJvU1VvceT3lPYhebWfz/2CvarZ5az/rAfwMHAJVABTADeIPwOR6brd1R+RbAkcBAoCfQDvgMuB/4R66ykpm2tGUVZnYEITz6AxsBLQnBcgLwjpkdm6NsJSGchwO/Tin/C2Bf4BbgP2ZmWcq3MbPRwCvAHwhfUusTfmCuB2wNnAm8Z2bHFPm61gWepZaBnaG+q4FxhPdpY6Ac6EAIsRfM7G9Zyp0HTCR8kW0GtCZ8GXYh9OZ9DPiXma1V27YV2P7dCAH7Z8IXagXQFvgV4Qt1YvSlnansNtT8n/8L2JCa/3NfYAjg0Y+TpmxD4C1Cx7idCaHSBtiC8L58ZGY75KljN8CB86JybQjr6s6E9+HVaN2rjRbAw8CdhP/L2oQfsDsCVwEfmtkWtaw7JzP7DSFgBwM7EV5TK8J3wRHAM2b2uJmtk6X8+oQf2PcDewEdCe/NVsCVhM9A+4Zo++pMoV13txB+rT+Z8th20d/AkrSobjoA9xC+gO8gBO/uwBWErYcWwL3RB3ol0VbbK4QvriXAzYRf6L2BQ6J6lxMC4kUz65jh+W8hhCCEL9OTCSGwB2Fr47VoXgvg1mjLOa8oAJ8B4i/gOgU2YavsPOBL4BxgV8KPkn8C8dbMRWb2q7R27EH4si0jhN6JUdndCOvLB9Gi+wKX1qF9+bQBniAEwDBgv6gdZwLfRMtsA1yeXtDMNgOeJ2yVQtgiPYIQUocRQgbCl/tLZrZVSvGm9nm5h/BD8P+oeQ1HAW9G89sR1vdcndqujZYbQdjS3gM4G5gVzY8Dtjb2JvwI/IqwN2AXwmfpqWh+Z+A5M2tbYH3bET6TsVupef/fih80s30I60c7wpb1/xKC91fAcYS9VQAHA2PMbKXObWbWDBhLWKcA/k3Y4v4VcCzh/d2GsJdKiqDd43Xk7t8B35nZnJTH3i1hk+oq/vAf6+73pzw+3syeJuwibwXcYGbPufvSlGVuIYT+D8C+7v4mK3si2op+gvCr+x+knCcahcFx0d0JwJ5pu2dfAe4xs1GEL7K1gP2B+3K9IDNrDTwO9IkeqmtgQ3id7wO7u/vclMfHmdl04Oro/gmEXYmxEwmBPZvw+uanzHs1em2TgB7AyWZ2nrsvr2NbMykn9CI+0N3/L+Xx183sGWAKYcv7aDM7K+3//E/CFjXAIHe/Pq3ux6I67ib8j+43s17uXtUEPy8dgMvd/aKUxyaa2RjCluC2wJaEH54TctRzpLuPTrn/ipk9SVhH2gDHmtmZ7r6iyPaVEX7I7enus1Ief8LMriXsku8EXETYM5CTu79rZvNSHvou/f03szaEz1Rz4D1gH3efmbLIBOC+aE/TecA+wCmEz3/sZMJ7BuHHzAkph3smmNlIwo+7w/K1WVamLW3J5N60wAbA3V8jbFVAOL61bzzPzDYn/OqG8CWYHthxHU8Rtm4AjjCzjVNmbwV8QtiivyLH8dTUtnXK9UKi4+ujCV8sUD+BHTsvLbBjt1Gztb1t2rwO0XRGWmAD4O4/EL6ArwcuJOw6byiPpgV23IbPqTmPd12gWzzPzHpR839/OkNgx3XcQwhtCFtUTXUEv28Ju39XEh2DvjvlofT/Y6pH0gI7ruNzwtYmwDqEwx+18fu0wI79hfB5ATgpGuGsPhxLzXo6MC2wU10IfBrdPjtt3mnRdC7wx/T+Ge6+jHCe/iqfAclNoS2Z3Jxj3p0ptw9Kuf0bas4LzTdwwzPRtBlh1zcA7j7G3Y2whfdkhnKx71Jut8qxXHPgAWp2B9ZnYC8j7HVYRRTkcZinH++LO89tYWa3mdkqX+Tu/pC7D3L3mzN1MqpH/8ox77OU26mvoV/K7Vvz1P/PlNv7F9qoRvZCFCCZZHsP0j2TY94nKbcz9g/I450cP4CXEdbvuO766j8Qf17mu/vEbAtFzx+vQz3jH+BmthGwffT4k+6+MEv5ecCY+mnymkO7xyXdIuDtbDPd/XMzm0volNIzZdZ2KbcnZelnlkn3DM9R/as8+gLoTtiy35LwxbRryuK5fnheRujJG5tdaKMK8L27L8oxfyE1HehS3UzYdbgO4RjuQDN7n/BD53ngpQYO6lTTcsxL/aJNfQ2px6fzjbf9DqFvQznhuHFTNC3HvGzvQbqvcsxLXUdq832ba5c8hPc4tjU1fT7qIv4st83Q2zyX7oT+EEbND/h8hz4mEvqqSIG0pS3pZhRwDDXeVdch5bENavl866U/YGb9ol6p8whb1a8B9wIXEHbNFrrLuGs0jXezXx0N4VgfMm49pIi/7FbqwOTunxK2VlNPV/sl8CdC56LZZvakmaV2FmoouV5D6pd16muIO/6toGY9yCjaEot/KNVmK7Mx1OY9SLegwOeqzQhtM/LMT/0f1Nd7XNfP8kYpj+X7oZz3dDpZmba0JV22XYWp4p6iqeeepq5LvQnn+xai+nhZ1EN3OKv2Iv6SEHKTCQE+j3CqVSEuJezmvIewdXsrYVd+ybj762b2S8KhgcMJx3t7RLNbAQcCB5rZfYQOPMV2XmpIxQZPvK40pddQ3+r9fPoipP4/sp5TX6T4szyZ0JGyUJ9H00J/7EDh3xMSUWhLukJ+rce/xL9NeWxOyu2v3f0bivcHagL7E8JpJv9y99S644EjCjHE3S+OypxAOH1mfzM7zt1H1KJ99SYK4heiP8ysK6Gz3EGEY4otCB2C/kXofdtUxP+LZoT1IFsnpbgTYLz1NSfbcpJTvs/jhim36+vwzxzCXrQ2tezZn/q98IusSwVNdQ9Mk6XQlnTtzKyLu0/PNDMaFCUeKOI/KbNSR0n7FfBoticws50JW5nTgFfdPT4meEY0XQ70i3rfZrJprheQIvV44B8IWw6tgX+Y2bPunm/XY72LBqLoCcx296nx49F1hO8A7jCzgwmnqEHY6m5KoT0ZODq6vTM15wtnsgPhfH9Y+XCAFO6Xeeb3TrldX5c5nUII7Uo
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcVbn/8c9kEiALkJCFQIgBEngAWURZBKJEQZbLIsoiS5CAgKCI+hMQL3gBr4CIoqIBFGQx7PseWcK+I4LsD2sCwsWQDQhJCJmZ3x/nVKbT6X1qprs63/frNa/q7jp1+nRNdz11Tp1zqqWjowMRERHJhl71LoCIiIhUToFbREQkQxS4RUREMkSBW0REJEMUuEVERDJEgVtERCRDFLhFREQyRIFbREQkQxS4RUREMkSBW0REJEMUuEVERDJEgVtERCRDFLhFREQyRIFbREQkQ3rXuwBZZmYbu/uz9S6HlGZmE4CL4tP93P3KOhZHyujO35WZJfcxvsPdd0o575OBk+LTrdz9sRryuA/YFvjE3VfIW9elspvZOODe+PRn7v6rAmmWA9Z295erzT8teftxLXefWq+yNCrVuGtgZiub2R+Af9a7LCLNQr+r+jKz7YFngX3rXRYpTTXu2pwFHFLvQog0Gf2u6sTMRgJ31bscUhkF7tq01rsAIk2o239X7t7S3e/RFe4+rhvzvg8o9vl1TMsQNZWLiIhkiAK3iIhIhqipvAp5vR2T15Kenvd3RzOXmfUDjgT2ANYDVgJmAv8ALgeudvf2tN83vvfFwEGAu/t6ZvZ54L+BscAqwHvAPcBv3P35Mnn1ASYAewMbx+3nAP8CrgUucveFZfIYCxwQ3391wr74CPg3cD8wsZbesGY2GLgP2DC+9HN3/2UV208FRgF/cPcfmdlXge8BWwFDgFnAQ8A57n5viXw2A75L6FU8EmgH3gceBa4Ebnb3jmLb1yrne/2Buw80s+HA/wN2Az4DfAq8BFwFnOvun5TIa3ng28BewOeAQYT/8wvAjcBf3H1+kffPfa1bflfFembn9bjeFHgR+D7wLcCA5YGpwK3Ab939PxW811DgGMJ+XBNYALwCXEHYj0t930v1Ks9L10L4PR1O+N62x7yvBf7k7h8X2Cb3My7uVZ6zTxInmVny//hKbGLPzWcV4AfALsAYoB8wHXiM8DueXKzccfvewD7AoYRj2kDgdeAy4HeltpVANe4GZmabE36MvyEEqyHAcsBqhIPBFcCDZrZaD5Rlb0IA2RNYFehDCC4HAU+b2fgS244hBOi/AF/L2X4osD1wHvAvM7Mi2/c1s2uBB4EjCAeqVQgnnoOAjYCjgOfM7IAqP9dKwB3UGLQL5HcGMIWwn1Yn/L+GEwLZPWb2v0W2Ow54gnAwWwdYgXBAHEXo5XsjcKeZ9a+1bBWWfywhyB5LOKj2A1YGvkg4qD4RD9yFtt2Yzv/zDsAwOv/P44DfAx5PUBrZMMKJ8VnAloTA0hdYn7BfXjazL5TJYyzgwHFxu76E7+qWhP3wcPzu1aI3cDVwIeH/MoBwErsZ8CvgJTNbv8a8SzKz/yIE2ZOBzQmfaXnCsWBv4HYzu8nMViyy/SqEk+zLgK8QjmV9Cb+/0wm/gcHdUfZmosBdnfMIZ+O35Ly2afw7NM03MrPPEs6ORxBqlWcQDoZbEs5Wb4xJt6b7D+jDgUsIB+G/EoLvl4DTCLWI3sDf4o86/3MMJwTc9YGFwETCmfoWwNdjvm2EIHFvkZOQ8wiBEMIB9TuEQPBlQq3jkbiuN/DnWIMuK+6z24HkINyloE2onR0HvA38mPC/2R44B0hqNSea2RfzyvFlwgG3hRD4Do7bjiV8r16MSbcHftGF8pXTF7iZEATOBXaK5TgKeDem2Rg4NX9DM1sHuJtQO4VQM92b8H39BiHQQDjA32dmG+Zs3mO/qwpdQjgZ/Dudn2Ff4Mm4fiDh+16qo9uZMd0kwkn2l4EfAjPi+iTI1uKrhBPBfxNaBbYi/JZujetHAneZ2coV5rcp4TeZ+DOd+/8fyYtmth3h+zGQUMP+H0Lw/SJwIKHVCmB34AYzW6LDm5n1AiYTvlMADxCOZV8ExhP278aE1iopQU3lVXD394D3zGxWzmvPdNPbXQr0J/w4x7n76znrngCuMbPvEQLhhsDPgeO7qSzJAWC8u1+W8/pDZnYbobl8eeAPZnaXu3+ak+Y8QuD/ENje3Z9kSTfH2vTNhLPv35EzjjQGhAPj08eBbfOaah8ELjGzawgHs/7AzoT9V5SZrQDcBGwTX+pq0IbwOV8AvuTus3Nen2Jm0wgnXxBaKXIn5ziYELRnEj7fBznrHo6f7Z/AaOA7Znacu7d1sayFLEfoXbyru/895/VHzex24HlCDXx/Mzs67/98DqFmDfATdz8rL+8bYx4XE/5Hl5nZ59y9o4d/V5UYDpzq7ifmvPaEmd1A+O1tAmxAOPl8vEQ++7j7tTnPHzSzWwjfkb7AeDM7qoZLXS2Ek7lt3X1Gzus3m9mZhOb5EcCJhBaCktz9GTObk/PSe/n738z6En5TrcBzwHbu/n5OkseBS2OL03HAdsBhhN9/4juEfQbhhOagnEs/j5vZVYQTvG+UK/OyTjXuBmRmXyNcH4RwEHy9UDp3P4fOs9wj43Xk7vK3vKCdlOERQu0CwvWu7ZN1ZrYu4ewbwoEwP2gnedxKqOUA7G1mq+es3hB4lVCzP63E9dXcso0o9UHifrqWcHCBdIJ24ri8oJ04n85a9yZ564bH5fS8oA2Au39IOAifBZxAaEbvLtfnBe2kDG/SOc53JWCtZJ2ZfY7O//ttBYJ2ksclhMANoWaV6sxlKfo/QlPwEuI16YtzXsr/P+a6Li9oJ3m8Sah1AqxIuBRSiwl5QTvxM8LvBeCQOBNaGsbT+T09NC9o5zoBeC0+/mHeuu/G5Wzge/n9Ndx9EWEc/1K/AVmSAndjym22Kjcpwu1xuRLhmlN3mVhi3YU5j3fLefxfdI4brfRz9CI0gwPg7je4uxFqercU2C7xXs7j5UukayV06kv2cZpBexGh9WEpMZgnAT3/+l/SoW59MzvfzJY6mLv7le7+E3efWKjjUYruLLEu9wQy9zPsmPP4z2XyPyfn8c6VFqqH3RODSCHF9kG+20usezXnccH+AmU8XeIkeBHh+53knVZ/guT38oG7P1EsUXz/5Du0XnISbmarAp+Pr9/i7nOLbD8HuCGdIjcvNZU3pk1zHs8q0merkLXpvN6bpgXAU8VWuvubZjab0FFlvZxVuZ/jn1V+jvz3WHx2Hg8CaxNq+BsQDk5b5yQvdUL6S0IP38TMSgtVgf+4+4IS6+fS2aku10RCM+KKhGu6h5rZC4STnbuB+7o5WOeaWmJd7sE29zPkXq8uNz/304S+DssRriM3oqkl1hXbB/n+XWJd7neklmNwqeZ5CPs4sRHpHBOS3/LKBXqhl7I2oX+E0XkSX+4yyBOEvitShGrcjWlIjdsNSrUUnaZXcE01abYbnvNaap/DzHaMvVXnEGrXjwB/I1zX357Km4/XjMukyf2MON1jGgrWInIkB7wlOjW5+2uEWmvuULbPAj8idDiaaWa3mFluS0x3KfUZcg/YuZ8h6QzYTuf3oKBYI0tOlmqpbfaEWvZBvo8qfK9aZnKbXmZ97v8grX3c1d/yqjmvlTtZLjvUblmnGndjSv4vMwg9uCv1TjeUBUITcDlJD9Lcsam5368tCOOBK7H4+lnsufsXlu5d/DYh0D1LCOJzCMOwKvELQpPnJYRa7p8Jzfp14+6PxpEE44BvEq7/jo6rlwd2BXY1s0sJnXq6Zex+jaoNPsl3pZE+Q9pSH29fhdz/R9Ex91VKfsvPEjpXVurNuKz0hAcqP04ssxS4G1PSu3YA8GwDHKQrOWtPzsj/L+e1WTmP33H3d6neEXQG7VcJQ1DudPfcvJPJJSrxe3c/KW5zEGFozc5mdqC7T6qhfKmJ/+d74h9mtiahA91uhGuMvQmdhO4k9MptFMn/ohfhe1Cs41LSMTCphc0qlk5KKvd7HJbzOK1LQbM
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFGCAYAAAB+CHaNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwUxfnH8c9yu4ogREW5RNBH8QAUNYpG1CQYb/FARY13TDQqwYj+YiIa7yuIJipqRPFAUYy3RvFIQMUDESH6eAKKBzeCyr2/P6qbHYaZ2Zm9Zhq+79drX70zXVVTU7szT3d1VXVZRUUFIiIiklwNil0BERERqRkFcxERkYRTMBcREUk4BXMREZGEUzAXERFJOAVzERGRhFMwFxERSTgFcxERkYRTMBcREUk4BXMREZGEUzAXERFJOAVzERGRhFMwFxERSTgFcxERkYRrVOwKSPWZ2XDg19HDzdz9myJWp2SZWXyf3+fdff+iVkZyMrMNgE3c/bM6KHs4dfR5MbMtgM+jh7e7+5nVKOMk4O7o4bHuPjJl33BqWHczmwp0BNzdt8mSZkd3n1Ro2bUlrR0vdffBxapL0ujMXERKgpn1Az4EflbsuqxrzKyNmd0HPF7sukj16MxcRIrOzPYCRlaZUOrK/cC+wLRiV0SqR8E8wdz9JOCkIldDpDY0rOsXKPXPi7sPB4bXYflb5Nhd5+0vdUvd7CIiIgmnYC4iIpJw6mavppQR0hcB1wCnAacD2xDa9UNgFDDU3b+vozoMp+5G5/YGXo4e7g5MAS4EjgQ6AIuBd4G7gAfcvSJDManl/RQ4A9gb2BxYBkwF/k1oo+lV5N+U0L77AQa0ApYDc4C3CNdbH62qHlnKvpLwdwR4G/iFu8/PM+9g4BJggbu3NLM2wB+AgwnttAz4AHgIuNXdl2QpZyPgt8BBQFegHJhH+D96hjBCOq86FSJt9PDhwBOErugTge2A5sAM4HngBnf/tIrydif8nfcC2hL+RtOBMcAt7v5RjteP3W1m8ajuTu4+tfB3lrFuw8nyeUkZ6X2Tu59nZvsCvyP87/8EmAuMBf7h7i9TBTMrA04gtGU3wt9zBvAcMMTdP8mQ5ySyjGbPkHZHwv/sPkBL4Cvgxaj+U7Lkid/jqtHsaW0C0DHlu+2e6NJE+vs6GjgO6Elom4WE//HHgdvcfVG2ekdldAMGENq2A+Ez/AJwNZDx8yFV05l5zTUAHgaGAbsQvvzWA3oAVwLvmFmH4lWvVmwCvAn8H7A10IzwBbIPcB8w2syaZcpoZo3M7B/A68DJwJZR/ubADsBA4CMzOyPbi5vZrwlf+H8FegObAU2B9QlfBkcQDpweN7OCrv2Z2Z+oZiDPUNaehIOePxIO6sqBFsBPgb8Bb5pZqwz5dozyXUH4gmsBNCa0+88IX3KfRoGyLpUTAsJdhIOunxDaeUvCgcYUMzsgU0YzaxoFhtcIAawz4e+8AeHg5PdR/v+r27dQc2Z2DeHg4wjCgWcToA3hQPYlM/trFUU0JwSnewifkVaEtugMnAW8a2Z9alDFown/q8cAmxL+Rp0IB7sTzezcGpSdlZltAvyXcOB8CJVt0xrYE7gO8Fz/p2Z2IeEk4NdUfpe0JfzPTIzKlWpQMK+53xM+5DOB84A9gEOBZ6P9BrxiZuXFqV6tuJ0QnN4F+hOC00mEo3GAwwhfXJncSQgEEM5sfh3l7004OPiG8GV0exS0VxOdIQ0nHCDNBS4DfhWVcQTwd2BplPxgQg9JXszsPODy6GGNAnlUvyeADYFbgf0J/wtnE86aAHYkBOzUOjQEHiEcoHwPDCb0PuxK+D+6P0raChhlZutVs375uIEQfN4gnFXuRvjbvhDtbwoMj+aCp76HBsADVJ7hTQPOJXzB9yb0XMwn9FhdEfVmxL4iHPienvLcJdFzPahsu/rSD7gA+IJw9rgH8HPgH0B8xnpx1NOUzXGEv+Ekwv9jL0IAjs/oNwDuNbPm1azjEMJ399+j19mLcKD7A6GNh5jZEXmW9RdCO78TPf6ayrb/S5zIzNaP6t+L0A73EXpydiV8Hm8m9NZtDvzbzLZLfyEzOxu4CigDZgPnE9r3l4TvmCaEg16pBnWz11wbQnfxXu7+ZcrzT5jZUEKw7wQMInxJJVEbQlfv4e4eB87xZvYI4Uzup8DRZnZbahekmR1G5Rf8Ve6eflb2qpndCbxCOHv7u5k95e5zUtJcFm2XA33c/e20Mkab2XPAk9HjowhfDDlFPQHxF0dNAzmEL6KGwEHu/lzK86+b2TPAZMKZ73Fmdo67L4v27wlsFf3+G3e/n9U9YWZfEc722wIHAI/WoJ65tAFGACe5+8r4STN7Angqeu2NgQMJlw1ixwJ9o9/HAb9y94Up+181s3sIf+ctgL9Ef+e3o/+niWbWMiX9dHefWKvvLH9tCL0ke7n7vJTnx5jZNMIlNQj/12/kKGc0oas8/rwQfV6eJgS/TQgHfKOqUccK4DB3fyrlubFm9iTwKuHAcqiZPZHyf5ZRdHlrupnFXeNLs7T9FYTP6HLC98BTafufM7N7o9ffgNC7s+qAx8w2pvLA+StgD3dPnQb3gpm9QPXaQ9CZeW05JS2QxwYC8UpWZ0TXm5JoHnBC6hcTQDQW4EQg/uJPX/Xqj9F2CvCnTAW7+yzCtUkI3earzqyj3oymhDPyJzME8riMpwhnfhACXk5mdjzh7BlqJ5DHRqcF8rh+n1N5drsh4eAu1ibl94+zlHsTcAfhcsAa11pr0WLgvNRADhCNQ7gj5aluafniv/MS4Ji0QB6XMY3KaWFlKXlK0QVpgTx2B5Vn5+ltkGoJcEaGz0sFlf93ANtXs363ZgimuPtbVB5sbE7o2amx6EAr7jm5I9NrR6//NnBt9HA3M9stZXc/wuUjCO27xnx2d3+UcDAp1aBgXnMfZBsQEx0V3xc9bEO4pp5EI919bqYd7v4xofscYH8zawSrBnTF187GVDEwbSxhEA2EbsO47B/cfRd3b024lJFLPJipaa5EUffjcML//jvUXiCHMJgvm9SBY6ndqx+m/H63me0bdVuv4u4z3P0Md7/a3d+rjYpm8U62vzNZ6h8N+IsD29NZDmoBcPdXgf9FD3+Z/j5LxHLgpUw7ogAfB/lcXeRvpvUupUo9YFtj/ESehuXYl3q565fVLD9db0KvElQelGbzTMrv+6X8Ho+1WELunqV/FlQzWUXd7DU3ror9E1J+34YwkCxp8nmPPyOcdW5OGL3cnXAGBnCOmZ2T52ttmenJ+GwxunbXiTCYaBtCINkTaB8lzRUgdiBc240HyS0FvsuzXvmYmmNf6gjfVZ87d3/PzJ4ldL12JQy8mmNmYwiXMP6d6SymjkzNsS9j/Qkj3mO5up1T03QlDKBsT+mtOPatuy/OsX8RIQjn+u7MekBD6P2IVef79wfCJZuM3H2qmc0ntO8O1Sg/kx4pv482s3zzpX6W47XgvYr2fZvQ+5HUXsyiUTCvuaoG6MxK+b1N1lSlrdD3OJ0wEro6Nkp/wszaES5ZHEKWYE/o6q/qTG/zaLuEcAa/O2FMw03Vqumack3JSe2ZSP+iOoYwmKl/tK81YcDU0QBm9j7hIOSWqqb91FB16t865feZebzGtym/t6L0gnlV7Ru3Q65gs8ZlhiyqE7Bmp18GyZSGEMyre+afrjY+y5tG22w9FkC4dBddv6/u4MB1loJ5zS2vYn/qVKmlWVOVtuq8x9T/rcvJf9DWitQHZrY/YbT3+ilPx/NapxDmmL8IPMbqZ4nZTCRcvxtH+JK6IhoolD7Xud64+3fACWb2F8IAvoMIg4caR0l2IIwC/p2Z7VPVXO96VmhASv1fqSooJVXBax3UsvhvUltztlM/y4eR/wHYgpTf8zkIiuUctCeZKZjXXFVHvxun/P51XVakDlXnPaZee/2xOqOTo+uxIwmBfBkhoD1I6KqrSEu7wZolrOEzYD93n2tmfwDujcq+gzD9qKiiA4prgWuj97MXYcRzP8KZTXvC9dL9shZS/1L/zpvkkX7TlN+zXZ+X7Nboucog/jz
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFGCAYAAACsWHzVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3debxVdb3/8RcckBllFEUBBfk4XKccyMQLWZnlgF4HyhH7pVIZN0vTyuvQdTZvZmqOCaKkWZhoYhmVpTmUOeHwQSWwTFMGzYMics75/fH9Ls5ms+ezzjl7wfv5eJzH2nuv7/ru71777PVZ6zutLi0tLYiIiEg2dO3sAoiIiEjlFLhFREQyRIFbREQkQxS4RUREMkSBW0REJEMUuEVERDJEgVtERCRDFLhFREQyRIFbREQkQxS4RUREMkSBW0REJEMUuEVERDJEgVtERCRDFLhFREQypFtnF0CkM5hZcj/bX7n7/p1aGCnJzPoCQ919YTvkPR04Pj7dzN3fSDHvUcDf4tPr3H1qDXlMAW6OTz/v7rfnrJtOG8tuZouAkYC7+7ZF0uzk7s9Um3da8vbjee5+bmeVpV7oiltE6paZTQZeBP6zs8uyoTGzYWZ2K3B3Z5dF1qYrbhGpS2a2D3B72YTSXm4D9gUWd3ZBZG0K3CJSrxra+w3cfQowpb3fp1buPh2Y3o75jyqxut33v9RGVeUiIiIZosAtIiKSIaoqr0BOD+RvAZcAXwROBLYl7MMXgTuBK919RQeU59PACcBewKbA+8DLwH3AD919STu970Tgd/HpXsBzwJnA4cAIYCXwJHATMMvdWwpkk5vfR4GTgAnA5sCHwCLg14R9+WqZ7TclfA+fAAwYCKwGlgJ/JrSP/rxcOYrkfSHh+wb4C/Apd3+7wm3PBc4B3nH3TcxsGPB14CDCfvoQeAG4A/iRu39QJJ8BwJeAA4Htgd7AcsL/232EnsoVlakaeb14DwXmEKqTjwN2APoBrwG/Ai5391fK5LcX4XveBxhO+I5eBeYBV7n7ghLvn7jZzJLe1Vu5+6LqP1nBsk2nSM/snB7XP3D3r5nZvsCXCf/7g4FlwEPANe7+O8owsy7AsYR9uTPh+3wNuB+4wt1fLrDNFIr0Ki+QdifC/+zHgU2AfwK/ieV/rsg2yWdc06s8b58AjMw5Bs6IzQv5n+tI4Chgd8K+eZfwP343cK27NxYrd8xjZ+BUwr4dQfgNPwBcDBT8fWzIdMVdna7AT4HrgT0IB7BewK7AhcATZjaivd7czPqY2WzCD30y4R+8B+FHujtwNvCKmR3UXmXIMRR4HPg2MBboGcvxceBWYLaZ9Sy0oZl1M7NrgEcIJyBbx+37ATsC3wAWmNlJxd7czI4nHNz/F5gIbEbYF30I++UwwsnU3WZWVVudmX2HGoN2gbzGE05wTiec6PUGNgY+CnwfeNzMBhbYbqe43QWEg9nGQHfCfv9PwgHtlRgU21NvwsH/JsIJ1mDCft6acFLxnJl9ttCGZtYjBoE/EYLVaML33JdwIvLVuP232/cjtJ2ZXUI40TiMcJK5ETCMcNL6WzP73zJZ9CMEohmE38hAwr4YDXwFeDKekNfqSML/6ucIJ/M9gK0IJ7ZPmdl/tyHvosxsKPBHwknywbTum0HAeOAywEv9n5rZmYQT/uNpPZYMJ/zPPBXzlRwK3NX5KuGH+ibwNeBjwCRgblxvwO/NrHfab2xmXQlXPofGl+4lBO9xwCcJJw7vAP2Bu8zsE2mXIc91hED0JHA0IRBNIZxlAxxCOEgVciPhoA/hiuX4uP1EwonAG4QDz3UxQK8lXvlMJ5w0LQO+C3wm5nEYcDWwKiY/iFBDUhEz+xpwfnzapqAdyzeH8J38CNif8D9zCuFqCGAnQnDOLUMD8DPCycgK4FxCrcKehP+322LSgcCdZtarxvJV4nJCoHmUcLU4jvDdPhDX9wCmx7HWuZ+hKzCL1iu3xcB/Ew7mEwk1Em8TaqwuiLUUiX8SToZPzHntnPjarrTuu44yGfgm8HfCVeHHCL+5a4DkSvSsWINUzFGE7/AZwv/j3oRgm1yp9wVuMbN+NZbxCsLx/Or4PvsQTmrfI+zjK8zssArzOpuwn5+Iz1+ndd+fnSQysz6x/HsT9sOthOPTnoTf4w8JtXCbA782sx3y38jMTgEuAroAS4DTCPt3P8IxZiPCCa7kUFV5dYYRqnL3cfd/5Lw+x8yuJAT2rYAzCAeaNE0jDM0AmOru1+Wtn2dmNwEPx3LebGaj3f3DlMuRGEaorj3U3ZMg+ZiZ/YxwhfZR4Egzuza3GtHMDqH1YH6Ru+dfbT1oZjcCvydclV1tZve6+9KcNN+Ny9XAp939L3l5zDaz+4F74vMjCAeBkuIVfnKQaGvQhnDQaQAOdPf7c15/xMzuA+YTrmiPMrNpOd/VeGCb+Phkd7+Ntc0xs38SruKHA58Fft6GcpYyDJgJTHH35uRFM5tDOHn8LDAEOIBQ9Z/4PPBf8fHDwGfc/d2c9Q+a2QzC9zwKODt+z3+J/09PmdkmOelfdfenUv1klRtGqP3Yx92X57w+z8wWE5rPIPxfP1oin9mE6u7k90L8vfySEOiGEk7u7qyhjC3AIe5+b85rD5nZPcCDhJPIK81sTrljQmyietXMkurtVUX2/QWE3+hqwnHg3rz195vZLfH9+xJqbdac3JjZEFpPkv8JfMzdc4eePWBmD1Db/liv6Yq7el/IC9qJbwDJzE4nxXafVMSrl6/Hp3MLBG0A4sxSZ8anW9J64GwPy4Fjcw9CsQwrCG2hyUE+f7ao0+PyOeA7hTJ297cIbYkQqr7XXDHH2owehCvtewoE7SSPewlXdBCCW0lmdgzhqhjSCdqJ2XlBOynf32i9au1POOFLDMt5/FKRfH8A3ECo0l+nbTRFK4Gv5QZtgNhv4Iacl3bO2y75nj8APpcXtJM8FtM6FKtLzjb16Jt5QTtxA61X3fn7INcHwEkFfi8ttP7fAfxHjeX7UYHAibv/mdYTi80JNTZtFk+qkhqRGwq9d3z/vwCXxqfjzGxczurJhCYgCPt3nfHi7v5zwomj5FDgrs4LxTqhxLPYW+PTYYQ28LTsRAjE0HqwL2ZuzuP2rC6/3d2XFVrh7i8RqsAB9jezbrCms1XS1jWvTKexhwgdXCDnc7j7e+6+h7sPIjRblJJ0NOpRKlGsQpxO+D08QXpBG0JHu2JyO3XlVpG+mPP4ZjPbN568reHur7n7Se5+sbs/nUZBi3ii2PdMkfLHznhJEPtlkRNdANz9QeD5+HS//M9ZJ1YDvy20IgbzJKCXquZ+PK/WKFfuydk6/R0qdH2JdblNVvvVmH++iYTaIih/TLov53HuMSnpG/EBpWuMflxVyTYAqiqvzsNl1v815/G2hM5badg15/H/mdn/Vbjd1im9fyGV7Iv/JFxNbk7oRbwL4coKYJqZTavwvQp+juQqMLa1bUXo6LMtIWiMp/Vkp1Qw2JHQFpt0YFsF/LvCclViUYl1uT1t1/wW3f1pM5tLqD7dntApaqmZzSM0Q/y60NVJO1lUYl3B8hN6nidKVR3nptme0LlxS+pvpq5/ufvKEusbCQG31PG06MkLoVYjUcsx+T1Cs0tB7r7IzN4m7N8da8i/kNxj0mwzq3S73N9yMje6l9m/fyHUaqRWi5l1CtzVKdcp5q2cx8OKpqre4Bq3G5BiGfJVuy9eJcXPYWZbEJonDqb4CUoz5WuVNo/LDwhX5nsR+ir8oKaSrqvUMJjcGof8g9LnCB2Njo7rBhE6Mx0JYGbPEk44rio31KaNain/oJzHb1bwHv/KeTyQ+gvc5fZvsh9KBZZ1mgqKqCU4LclvyiiUhhC4a72iz5fGb3nTuCxWEwGE5rfY3l5rx731jgJ3dVaXWZ877GhV0VTVy/2evkwYRlWJ91MsQ75a9kXu5zifyjtUNeU+MbP9Cb2u++S8nIwbfY4whvs3wF2sffVXzFOE9raHCQekC2InnvyxxB3G3f8NHGtmZxM61x1I6NjTPSbZkdAb98tm9vFyY6k7WLXBJ/d/pVw
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"\n",
"density = True\n",
"cumulative = True\n",
"histtype = 'step'\n",
"lw = 2\n",
"bins = {\n",
" 't_i_peak': np.arange(0, 0.02, 0.0005),\n",
" 't_e_peak': np.arange(0, 0.03, 0.0005),\n",
" 'p_i_peak': np.arange(0, 0.04, 0.0005),\n",
" 'p_e_peak': np.arange(0, 0.04, 0.0005),\n",
2019-10-17 17:50:31 +00:00
"}\n",
"xlabel = {\n",
" 't_i_peak': 's',\n",
" 't_e_peak': 's',\n",
" 'p_i_peak': 'prob',\n",
" 'p_e_peak': 'prob',\n",
"}\n",
"\n",
"for cell_type in ['gridcell', 'bs_not_gridcell', 'ns_inhibited', 'ns_not_inhibited']:\n",
2019-10-17 17:50:31 +00:00
" for key in bins:\n",
" fig = plt.figure(figsize=(3.5,2.2))\n",
" plt.suptitle(key + ' ' + cell_type)\n",
" legend_lines = []\n",
" for color, query, label in zip(colors, queries, labels):\n",
" data.query(query + ' and ' + cell_type)[key].hist(\n",
" bins=bins[key], density=density, cumulative=cumulative, lw=lw, \n",
" histtype=histtype, color=color)\n",
" legend_lines.append(matplotlib.lines.Line2D([0], [0], color=color, lw=lw, label=label))\n",
" plt.xlabel(xlabel[key])\n",
" plt.legend(\n",
" handles=legend_lines,\n",
" bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
" plt.tight_layout()\n",
" plt.grid(False)\n",
" plt.xlim(-0.001, bins[key].max() - bins[key].max()*0.02)\n",
" despine()\n",
2019-10-17 17:50:31 +00:00
" figname = f'histogram-{key}-{cell_type}'.replace(' ', '-')\n",
" fig.savefig(\n",
" output_path / 'figures' / f'{figname}.png', \n",
" bbox_inches='tight', transparent=True)\n",
" fig.savefig(\n",
" output_path / 'figures' / f'{figname}.svg', \n",
" bbox_inches='tight', transparent=True)"
]
},
{
"cell_type": "code",
2019-12-13 10:43:57 +00:00
"execution_count": 23,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [],
"source": [
"from septum_mec.analysis.plotting import plot_bootstrap_timeseries"
]
},
{
"cell_type": "code",
2019-12-13 10:43:57 +00:00
"execution_count": 24,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [],
"source": [
"psth = pd.read_feather(output_path / 'data' / 'psth.feather')\n",
"times = pd.read_feather(output_path / 'data' / 'times.feather')"
]
},
{
"cell_type": "code",
2019-12-13 10:43:57 +00:00
"execution_count": 25,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [],
"source": [
"times = times.T.iloc[0].values"
]
},
{
"cell_type": "code",
2019-12-13 10:43:57 +00:00
"execution_count": 26,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAq0AAAFFCAYAAADGo9TZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZQU1dn48W/13j09+wzDsCtoKcprRKNxF4zbK24RowY1JkYlURT3uK+4Rf3FLXBi4uuGSNwTQYlL1LgigqIghbIO2+xb791V9fujZmume9aeYQaezzlzmq66t+o2B+48feve5yqmaSKEEEIIIcRAZtvRDRBCCCGEEKIzErQKIYQQQogBT4JWIYQQQggx4EnQKoQQQgghBjwJWoUQQgghxIAnQasQQgghhBjwJGgVQgghhBADngStQgghhBBiwJOgVQghhBBCDHgStAohhBBCiAFPglYhhBBCCDHgSdAqhBBCCCEGPAlahRBCCCHEgCdBax9TVfWfqqr+c0e3Qwgh+oP0eUKIvuLY0Q3YBYwdN27ceMDc0Q0RQgxIyo5uQIZJnyeE6EiP+zwZaRVCCCGEEAOeBK1CCCGEEGLAk6BVCCGEEEIMeBK0CiGEEEKIAU+CViGEEEIIMeBJ0CqEEEIIIQY8CVqFEEIIIcSAJ0GrEEIIIYQY8CRoFTuNRCSEkYj3uL4erCXwzUL0xirMXlxHCCGEEJknO2KJnUI8HOS7eY/h8PrY86TzcOfkd/saDZ/OJV69kcjaxdj9heQd8wcUm70PWiuEEEKI7pKRVrFTaNyynlBNObVrV7L8hUdo2LS2W/WDK94lUbuZ2Kbv0BsqiVdvJF61vm8aK4QQQohuk6BV7BRClVuIBxuo2/gDjVvWU7NmRZfrxivXE1r5PpENyzDiYWLbVqM3VhHbsqoPWyyEEEKI7sho0Kqq6gpVVa9WVbUkk9cVojPBis3Ego1484uJNdZRpS2jbr3WpbrhHz4hUb0Re1YB3rGH4MgrRQ9UE69Y08etFkIIIURXZXqkdW/gAaBMVdU3VFU9TVVVmTcr+lS0oZbGrRuIBRvIKhlJPBwgVLWN1QvnUl/2Y4d1jViEWMUaEvXlOApHojjdOApHY8aCJBor0UP1/fQphBBCCNGRTAeU5wG/BiYDJwNTgGpVVZ8HntY0bXmG74eqquuB0V0s/qGmaUc31XMBAcDZQfl6TdPyetM+0fe2fPUhwYpNOH1+XFnZ+EtHU7dBw1NbwQ9vvcBep/wG/9CRKevGK37ECNagONzYXD4AFLsDxeXHCNWTqN6A3fc//flxhBBCCJFCRoNWTdPmAnNVVR0GnI8VxO4NzASuUFV1GfB/wAuaptVm6LZfAps6OO8H9mv68w9tju+NFbCGgGVp6jb2unWiT4WqtlL5/Vc0bt1IwR4TAMguHY2/ZATVP3zbNL/1u/RBa/mP6IEa7P6CpOM2Xw5GuIFE7WbcIyVoFUIIIXa0Pnl0r2naFuA+4D5VVQ8ELgDOAiY2/Tyoquo/gaeBtzVNM3txrzM7Oq+q6nysoHUpcHmbU82B7Eeapp3Y0/uLHatuw2rCNeW4svNwZeW0HFdsdrKKhxGq3kawPP13mnj1RvRQHc6i3ZKO25xejHCDTA8QQgghBog+zx6gadoSTdMuA4YCxwCPAnFgKvAm1vzXO1VVLc30vVVVvQj4JdY0gF9qmhZuc7o5aP020/cV/SdSV0UiHEoKWJu5/DnEAw0EK7ew6fN3MM3k70Z6uMHaSCAaxOZNrq84PZiJCEZYglYhhBBiIOjPlFcHAydhzXXNAhTAAIYBNwNrVFW9PlM3awqCH256+0dN07ZfCt4ctH6XqXuK/heprSQRCeHw+Nqdsznd2JxOatasYNPi91nz7/nEQ4GW84nazRiRBhSXD8We/NBBcbgx41GMcEOffwYhhBBCdK5PV/arqroH1rzWc2ldLKUAy7Hmtj4PlAIXA9OBe1RVNTRN+1MGbn8P1nzWJcBfUpyXkdZBzjQMIvU1xNMErYqikD92X+o3rKbmh+XEAnXo0Qh7TjkfxWbDCNZgREPY3Fnt6zo9mIkYRjSImYihOFz98ZGEEEIIkUbGg1ZVVQuAs7GC1YOaDitAPTAP+LumaV+1qVINXK6q6irgceAyoFdBq6qqE7GyGABcuf2c2aaFYkWADjSqqnoT1kiwD1gHvKpp2lu9aYPoe9HGOhLRMKauY3d7UpZxerMoVH9CpK6K+vUaLn8ugW0byR42Bj1YixmPoDjb11XsDlBsVuAabsCeXdTXH0cIIYQQHcho0Kqq6uvACVir8hXABP4DPIUVCEY6qP4mVtBanIGm3NB0//c1Tfs4xfnmUVYTa6R1+6jld6qqLgDO0TStSxkEVFVNtwXT2K7UF90XqtxMPNiI05eFoihpyymKgje/mEhdVUtO1+xhYzCaglZbVkHqek43ZjyCHqqToFWI7UifJ4Tob5keaT2l6XUjVmaA/9M0bUMX6xYAq4FPetMAVVXHAKc3vb07TbHmoNUBvAbcD6wAcoEzsDIfnATMB/63N+0RfSewrYxYoB5nikVYqbj8ucQa69jy1YcoNjueUB1GPIzd5U1ZXnH5MGIh9MYqKBmXsXYbhsH777/PokWL+PbbbykvLycej5OXl8duu+3GEUccwdSpUykoSB1Mb2/ZsmW8/vrrfPXVV2zevLnlWvvssw8nnngiJ598Mna7PSPtnjZtGkuXLmXFihU4HF3rPgzD4Oyzz+abb75B07q2S1lbL730EjfffDN2u52VK1d2Wv6cc85h6dKlTJ06lVmzZnX7fkKIzBtM/d7bb7/NvHnzWLFiBbFYjNLSUo4++mh++9vfUlKSfsPPr776iieffJJly5YRCoUoLS3l2GOP5ZJLLiEnp2u/p5r98Y9/5LXXXuOggw7iueee67S8qqoA3HvvvfziF7/o1r0Gk0wHrS9ijaq+1900VpqmfQ3slYE2XAbYgc81TftPmjLLgdnANk3T7mxzPAL8RVXV5cBHwImqqp7YlakCmqbtk+p402jE+O58ANE1gW0biQXq8Q0Z3qXyLn8ugS3rqVu3CpvNxqgiAzOWenoAgM3lw4wG0RsrMtbm5cuXc8MNN/Djj9ZOXW63m+HDh5OVlUV1dTWLFy9m8eLFzJkzhxtuuIEzz0yf0a2xsZFbb72VhQsXAuB0OiktLSUrK4uysjI++OADPvjgA5566ikee+wxRo/u6h4cqT388MMsXbq02/X+9Kc/8c033/Tq3mLgkT5PdNVg6vduuukmXn75ZQCKi4sZMWIEGzZs4Omnn+bVV19lzpw5HHDAAe3qLVy4kKuvvhrDMCgpKWH48OH88MMP/O1vf2PhwoW88MILlJZmPEnSLifTQescrF2kOg1YVVU9DhinaVqqRVK98cum16fTFdA0bSGwsIPzH6uq+i5wLNaorcxvHWBMwyBcW0U8HMSVld2lOk5vFllDRtCwZR3ZRUVEbTqYBorDnbK84s5Cr9+K3pCZoPXTTz9l+vTpRKNRxowZw8yZM5k0aRIeT2vQvH79ep544gn++c9/cvPNN+NwODj99NPbXau6upqzzjqLsrIyiouLufTSSznjjDNwuawFY6Zp8u677/LAAw+gaRrTpk3j5ZdfZujQod1ut67rPPjggzz11FPdqpdIJPjTn/7E008/3e17CiF2DoOp33vppZd4+eWXcTgc3HvvvZxyivXwOBAIcMstt7Bw4UJmzJjBe++9h9fb+oRu7dq1XHfddRiGwS233MK0adNQFIWqqiquuOIKlixZwtVXX80LL7zQm79KQeZTXn2AlYe1K+4GMvrsrmkjg5FYeWBf6uXlmnfJ2q3DUmKHiIca0eNRTEPH5kwddKbiLx1FVlEp0fI1NKxfgeJOPx/W5s7CjIZINFS2y/HaXVVVVcycOZNoNMpPf/pTXnnlFU488cSkjhtgzJgx/OlPf+LCCy8ErEc9DQ3JabdM0+T666+nrKyM4cOHM2/ePM4555yWjhusebzHHnssc+fOpbCwkMrKSu64445ut3v9+vVccMEF3Q5
"text/plain": [
"<Figure size 750x300 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
2019-10-17 17:50:31 +00:00
"source": [
2019-12-13 10:43:57 +00:00
"cs = ['#993404', '#980043', '#d95f02', '#e7298a']\n",
"lb = ['GC 11 Hz', 'GC 30 Hz', 'NSI 11 Hz', 'NSI 30 Hz']\n",
"\n",
"fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(5,2))\n",
"ii = 0\n",
"for cell_type, ls in zip(['gridcell', 'ns_inhibited'], ['-', '--']):\n",
" for i, (ax, query) in enumerate(zip(axs.ravel(), queries)):\n",
" selection = [\n",
" f'{r.action}_{r.channel_group}_{r.unit_name}' \n",
" for i, r in data.query(query + ' and ' + cell_type).iterrows()]\n",
" values = psth.loc[:, selection].dropna(axis=1).to_numpy()\n",
"\n",
" plot_bootstrap_timeseries(times*1000, values, ax=ax, lw=2, label=lb[ii], color=cs[ii], ls=ls)\n",
" # ax.set_title(titles[i])\n",
" ax.set_xlabel('Time (ms)')\n",
" ax.legend(frameon=False)\n",
" ii += 1\n",
" axs[0].set_ylabel('Probability density')\n",
" despine()\n",
2019-12-13 10:43:57 +00:00
" plt.xlim(-5, 30)\n",
" \n",
"figname = f'response-probability-gc-ns'\n",
"fig.savefig(\n",
" output_path / 'figures' / f'{figname}.png', \n",
" bbox_inches='tight', transparent=True)\n",
"fig.savefig(\n",
" output_path / 'figures' / f'{figname}.svg', \n",
" bbox_inches='tight', transparent=True)"
2019-10-17 17:50:31 +00:00
]
},
{
"cell_type": "code",
2019-12-13 10:43:57 +00:00
"execution_count": 27,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [
{
"data": {
2019-12-13 10:43:57 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAq0AAAFFCAYAAADGo9TZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZQV1bX48W/dqeeZeVRATjAiEUkcIA6YCHnOT9Sfoj7yfCYaBRxQf5KoiUJUgryoGPitJD4VlWcSFAc6aYcoTkRBIArSZWRsoOl5uvO9VfX7o243fem+Pd4ewP1Zq1d3V51TddqF1btP7bOPZlkWQgghhBBC9GeOvh6AEEIIIYQQ7ZGgVQghhBBC9HsStAohhBBCiH5PglYhhBBCCNHvSdAqhBBCCCH6PQlahRBCCCFEvydBqxBCCCGE6PckaBVCCCGEEP2eBK1CCCGEEKLfk6BVCCGEEEL0exK0CiGEEEKIfk+CViGEEEII0e9J0CqEEEIIIfo9CVp7mFLqNaXUa309DiGE6A3yzBNC9BRXXw/gG2DsuHHjTgSsvh6IEKJf0vp6AEkmzzwhRFu6/MyTmVYhhBBCCNHvSdAqhBBCCCH6PQlahRBCCCFEvydBqxBCCCGE6PckaBVCCCGEEP2eBK1CCCGEEKLfk6BVCCGEEEL0exK0CiGEEEKIfk+CViGaiVTswb/jXSzT7OuhCCGEEKIZ2RFLiBjLsqj78FmsaAhHahapx0/p6yEJIYQQIkZmWoUAzEADNesexTIiRGsOEqna19dDEkIIIUQzMtMqBBDct5VIzUGsSBDTX0O05mBfD0kIIYQQzSQ1aFVKbQeeBp7Xdb0smdcWoidFyndi1B3C8FYCEK0rw/DV4MzI6+ORCSGEEAKSnx4wAVgClCilXlVKXaqUktlc0a8ZgXoiVXsxfDV4RpyMIzUH01dN+NBXfT00IYQQQsQkO6C8DvgPYDpwEXAhUKWUeh54Rtf1z5N8P5RSe4DRHWy+Xtf1c2L9PIAXcLfRvk7X9dzujE/0f4Hi9USrD+BIycSZkYcZ8mJ4q4gc+oq0saf19fCEEEIIQZKDVl3XXwBeUEoNA67HDmInALcB85VSW4D/AV7Udb0mSbfdCOxv43wmMCn29b+aHZ+AHbD6gS0J+jZ0e3SiX7NMk/CBL4nW7Mc9eDwAzvQ8wjUHiNYcwLIsNE3r41EKIYQQokde3eu6fhB4BHhEKTUFmANcBUyOfSxVSr0GPAP8Tdd1qxv3uqKt80qpl7CD1s3AvGanGgPZ93Vd/1FX7y+ObkbdIQx/LVY0giPdnlTXUjKwomGMYAOmrxpnZkEfj1IIIYQQPV7yStf1Tbqu3woMAc4DngAiwCzgDez81weVUkOTfW+l1I3AldhpAFfquh5odroxaP0i2fcVR49I5W4Mfw2O9NymGVVN03CkZmEGGqSKgBBCCNFP9Gad1tOAC7BzXTMADTCBYcAvgJ1KqXuSdbNYELws9u3/1XV95xFNGoPWbcm6pzj6RGsPYQYacKRlxx3XUjMxgw1EayVoFUIIIfqDHl3Zr5Q6ATuv9VoOL5bSgM+xc1ufB4YCPwFuAn6tlDJ1Xf9NEm7/a+x81k3A71o5LzOtAsNbiRX248zIjzvuSMnE9FURrTvURyMTQgghRHNJD1qVUvnA/8EOVr8XO6wBdcBq4I+6rn/WrEsVME8pVQwsB24FuhW0KqUmY1cxALj9yJzZ2EKxAYABNCilfo49E5wO7AZe1nX9r90Zg+j/LMvC8FZjhgNonvS4c47UTKJV+zDqy2UxlhBCCNEPJHtzgbXATOxV+RpgAe9ibzjwsq7rwTa6v4EdtA5MwlDujd3/77quf9jK+cZZVgt7pjX1iPP/pZRaB1yt67pUEDhGWUEvVjgA0TCaJ/6fgObJwIqGMAL1mMEGnEekDwghhBCidyV7pvXi2Od92JUB/kfX9b0d7JsPfAV81J0BKKWOAy6LfbsoQbPGoNUFvAI8CmwHcoDLsSsfXAC8BPxbB++7PcGpsR3pL3qf4a3CDPvR3KloWnx6t+ZwoHnSsEI+jLqybgWt+/fv57zzzgPg0ksv5dFHH22z/SeffML1118PgK7rrbYpLi7mL3/5Cxs2bKCsrIxQKER+fj4nnHAC55xzDrNmzSI19ci/xWzTp0/nwIED3HrrrcydO7fLPxfAHXfcwbp163jzzTcZPbqj5ZJh3rx5FBUV8c477zBixIhO3fPjjz/mxz/+MQDr169nyJAhbbZfsGABr7/+OmeccQbPPPNMp+4lEpNnnmjLsfTc27BhA88++yxbtmzB5/MxaNAgpk2bxpw5cxgzZkzCfl999RUrVqzgk08+ob6+nkGDBnHWWWdx8803M3jw4E6N4cknn2T58uUMHz6cv//97+22T+Zzvj9JdtD6v9izqu90toyVrutbgW8lYQy3Ak7gH7quv5ugzefACuCQrusPNjseBH6nlPoceB/4kVLqR5IqcGyK1h7EDHnRUjJaPa+507DCAQx/skoKw9q1a5k5cybnnntul6/xxBNPsGLFCkzTJDMzk1GjRuF2u6moqOCDDz7ggw8+4A9/+ANPPfUU3/72t5M29iOtXr2adevWdbrf888/T1FRUQ+MSAjRHx3Nz73ly5fz5JNPApCbm8sJJ5xASUkJL730EmvXruU3v/kNM2bMaNFv06ZN/Od//iehUIi8vDzGjx/P7t27Wb16NYWFhTz77LNMmDAhaeP8pkh20LoSexepdgNWpdT5wDhd11tbJNUdV8Y+P5Ooga7rhUBhG+c/VEq9DfwQe9a23aBV1/VW/y+JzUac2F5/0fsilXsw/XU40nNaPa95UjEjQUxf8oJWgPvuu49169aRk9P6fduyZs0annrqKdLT03n44Yf54Q9/iNPpbDq/c+dOFi5cyNatW7nhhhsoLCwkPz+/jSt2zTPPPMMjjzzS6X5PP/00S5YsSfp4RO+TZ57ojKPxubdhw4amgPXuu+9mzpw5OJ1OwuEwS5cu5dlnn+Wuu+5i0qRJcW98amtr+dnPfkYoFOLGG2/ktttuw+Vy4fV6WbhwIUVFRcydO5fCwkI8Hk+3x/lNkuySV+9h12HtiEXA4mTePLaRwUjsOrB/7ublGnfJOr6b1xH9kGWaRKtKMP21ONNa36nX4UrFigQx/bVJu6+maVRUVLBoUaLMlbatXLkSsB+gM2fOjHtwA4wdO5YVK1ZQUFBATU0Nzz33XLfH3Fx5eTnz5s3j4YcfxrI6/jKlrKyMW2+9lUcffbRT/YQQR7+j9bn3hz/8AYALL7yQG264oem+Ho+He++9l7FjxxIKhXjllVfi+q1atYq6ujq+853vsGDBAlwue34wMzOTpUuXMnLkSEpKSnj11VeTMs5vki4HrUqpLKXUmOYfsVNpRx4/4mOsUmo6diqAOyk/xWGXxD4X6bpe3c74nUqptmaaG//bRJIyMtGvhEuLiTZUYpkGWmpmq200TxpWJICRxJnW2bNnA/Daa6/xzjvvdKpvXV0d+/btA2DSpEkJ2+Xn5/ODH/wAgM8//7yLI23prbfeYsaMGRQVFZGTk8P999/foX5/+9vfmDFjBm+99Ra5ubkd7ieEODYcrc+9yZMnM336dC6//PIW5zRNY/x4e+vvgwfj63k3BrGzZs1q0c/j8TRd74033kjKOL9JupMekE3LlfcWcCrwrw5eY0M37t+aabHPb7fVSCm1BxgFLODwBgRHmhz7/GUyBnasi9ZXdLmvIzUThyet1XNGQ2WXZ+YcKek4EuSr+nf8nUj51zgy8rHCfqymPofba+5UrEgI01/Xpfu35rrrrqO4uJhNmzbxwAMPcOqpp5Kb2/pM75Ea/1oHePfddznxxMRvYOfOncv1119PQUHytqAtLi4mEAhw0UUXcc899xAKhTrUb8eOHQSDQS655BLuvvtufD5f0sbUVc0Xc7VnyZIlXHLJJe03FN84ZrW/y321dDdaauvzNmaNH7r6QiLVhSO99VfOZm0AzJYXduSnt9I6eY7W594tt9yS8JxhGOzYsQMgbhFqeXk5Bw4
2019-10-17 17:50:31 +00:00
"text/plain": [
"<Figure size 750x300 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
2019-12-13 10:43:57 +00:00
"cs = ['#d95f02', '#e7298a', '#993404', '#980043']\n",
"lb = ['NSI 11 Hz', 'NSI 30 Hz', 'NS 11 Hz', 'NS 30 Hz']\n",
"\n",
2019-10-17 17:50:31 +00:00
"fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(5,2))\n",
"ii = 0\n",
"for cell_type, ls in zip(['ns_inhibited', 'ns_not_inhibited'], ['--', '-']):\n",
2019-10-17 17:50:31 +00:00
" for i, (ax, query) in enumerate(zip(axs.ravel(), queries)):\n",
" selection = [\n",
" f'{r.action}_{r.channel_group}_{r.unit_name}' \n",
" for i, r in data.query(query + ' and ' + cell_type).iterrows()]\n",
" values = psth.loc[:, selection].dropna(axis=1).to_numpy()\n",
"\n",
" plot_bootstrap_timeseries(times*1000, values, ax=ax, lw=2, label=lb[ii], color=cs[ii], ls=ls)\n",
2019-10-17 17:50:31 +00:00
" # ax.set_title(titles[i])\n",
" ax.set_xlabel('Time (ms)')\n",
2019-10-17 17:50:31 +00:00
" ax.legend(frameon=False)\n",
" ii += 1\n",
" axs[0].set_ylabel('Probability density')\n",
" despine()\n",
2019-12-13 10:43:57 +00:00
" plt.xlim(-5, 30)\n",
2019-10-17 17:50:31 +00:00
" \n",
"figname = f'response-probability-nsi-ns'\n",
2019-10-17 17:50:31 +00:00
"fig.savefig(\n",
" output_path / 'figures' / f'{figname}.png', \n",
" bbox_inches='tight', transparent=True)\n",
"fig.savefig(\n",
" output_path / 'figures' / f'{figname}.svg', \n",
" bbox_inches='tight', transparent=True)"
]
},
2019-12-13 10:43:57 +00:00
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
2019-10-17 17:50:31 +00:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Store results in Expipe action"
]
},
{
"cell_type": "code",
2019-12-13 10:43:57 +00:00
"execution_count": 28,
2019-10-17 17:50:31 +00:00
"metadata": {},
"outputs": [],
"source": [
"action = project.require_action(\"stimulus-response\")"
]
},
{
"cell_type": "code",
2019-12-13 10:43:57 +00:00
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['/media/storage/expipe/septum-mec/actions/stimulus-response/data/data/times.feather',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/data/psth.feather',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-bs_not_gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_not_inhibited.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-bs_not_gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-nsi-ns.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-nsi-ns-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_not_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-gridcell.svg',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_not_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_inhibited.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_not_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_not_inhibited.svg',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_not_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-bs_not_gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-bs_not_gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-bs_not_gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-gridcell.svg',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-bs_not_gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_not_inhibited.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-nsi-ns-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_inhibited.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-bs_not_gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-bs_not_gridcell.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-gc-ns.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-bs_not_gridcell.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_not_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_not_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-nsi-ns.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-gridcell.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-gc-ns-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-gc-ns.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-gridcell.svg',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_not_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_inhibited.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_not_inhibited.svg',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-bs_not_gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-bs_not_gridcell.svg',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-bs_not_gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-bs_not_gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-gridcell.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/response-probability-gc-ns-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-bs_not_gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_inhibited.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_not_inhibited.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_not_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-bs_not_gridcell-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_not_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_inhibited-stim-mec.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_e_peak-ns_not_inhibited.svg',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-bs_not_gridcell-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_e_peak-ns_not_inhibited.png',\n",
2019-12-13 10:43:57 +00:00
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-p_i_peak-ns_inhibited-stim-mec.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-response/data/figures/histogram-t_i_peak-ns_inhibited.png']"
]
},
2019-12-13 10:43:57 +00:00
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"copy_tree(output_path, str(action.data_path()))"
]
},
{
"cell_type": "code",
2019-12-13 10:43:57 +00:00
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"septum_mec.analysis.registration.store_notebook(action, \"20_stimulus-spike-response.ipynb\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
2019-10-17 17:50:31 +00:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}