2019-10-16 05:30:40 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2019-10-17 17:49:59 +00:00
"19:42:33 [I] klustakwik KlustaKwik2 version 0.2.6\n",
2019-10-16 05:30:40 +00:00
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
" return f(*args, **kwds)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
" return f(*args, **kwds)\n"
]
}
],
"source": [
"import os\n",
"import pathlib\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import colors\n",
"import seaborn as sns\n",
"import re\n",
"import shutil\n",
"import pandas as pd\n",
"import scipy.stats\n",
"\n",
"import exdir\n",
"import expipe\n",
"from distutils.dir_util import copy_tree\n",
"import septum_mec\n",
"import spatial_maps as sp\n",
"import head_direction.head as head\n",
"import septum_mec.analysis.data_processing as dp\n",
"import septum_mec.analysis.registration\n",
"from septum_mec.analysis.plotting import violinplot\n",
"\n",
"from spike_statistics.core import permutation_resampling\n",
"\n",
"from tqdm import tqdm_notebook as tqdm\n",
"from tqdm._tqdm_notebook import tqdm_notebook\n",
"tqdm_notebook.pandas()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"project_path = dp.project_path()\n",
"project = expipe.get_project(project_path)\n",
"actions = project.actions\n",
"\n",
"output_path = pathlib.Path(\"output\") / \"longitudinal-comparisons-gridcells\"\n",
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load cell statistics and shuffling quantiles"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>action</th>\n",
" <th>baseline</th>\n",
" <th>entity</th>\n",
" <th>frequency</th>\n",
" <th>i</th>\n",
" <th>ii</th>\n",
" <th>session</th>\n",
" <th>stim_location</th>\n",
" <th>stimulated</th>\n",
" <th>tag</th>\n",
" <th>...</th>\n",
" <th>burst_event_ratio</th>\n",
" <th>bursty_spike_ratio</th>\n",
" <th>gridness</th>\n",
" <th>border_score</th>\n",
" <th>information_rate</th>\n",
" <th>information_specificity</th>\n",
" <th>head_mean_ang</th>\n",
" <th>head_mean_vec_len</th>\n",
" <th>spacing</th>\n",
" <th>orientation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>0.397921</td>\n",
" <td>0.676486</td>\n",
" <td>-0.459487</td>\n",
" <td>0.078474</td>\n",
" <td>0.965845</td>\n",
" <td>0.309723</td>\n",
" <td>5.788704</td>\n",
" <td>0.043321</td>\n",
" <td>0.624971</td>\n",
" <td>22.067900</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>0.146481</td>\n",
" <td>0.277121</td>\n",
" <td>-0.615405</td>\n",
" <td>0.311180</td>\n",
" <td>0.191375</td>\n",
" <td>0.032266</td>\n",
" <td>1.821598</td>\n",
" <td>0.014624</td>\n",
" <td>0.753333</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>0.373466</td>\n",
" <td>0.658748</td>\n",
" <td>-0.527711</td>\n",
" <td>0.131660</td>\n",
" <td>3.833587</td>\n",
" <td>0.336590</td>\n",
" <td>4.407614</td>\n",
" <td>0.121115</td>\n",
" <td>0.542877</td>\n",
" <td>27.758541</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>0.097464</td>\n",
" <td>0.196189</td>\n",
" <td>-0.641543</td>\n",
" <td>0.274989</td>\n",
" <td>0.153740</td>\n",
" <td>0.068626</td>\n",
" <td>6.128601</td>\n",
" <td>0.099223</td>\n",
" <td>0.484916</td>\n",
" <td>11.309932</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>0.248036</td>\n",
" <td>0.461250</td>\n",
" <td>-0.085292</td>\n",
" <td>0.198676</td>\n",
" <td>0.526720</td>\n",
" <td>0.033667</td>\n",
" <td>1.602362</td>\n",
" <td>0.051825</td>\n",
" <td>0.646571</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
2019-10-17 17:49:59 +00:00
"<p>5 rows × 39 columns</p>\n",
2019-10-16 05:30:40 +00:00
"</div>"
],
"text/plain": [
" action baseline entity frequency i ii session \\\n",
"0 1849-060319-3 True 1849 NaN False True 3 \n",
"1 1849-060319-3 True 1849 NaN False True 3 \n",
"2 1849-060319-3 True 1849 NaN False True 3 \n",
"3 1849-060319-3 True 1849 NaN False True 3 \n",
"4 1849-060319-3 True 1849 NaN False True 3 \n",
"\n",
" stim_location stimulated tag ... burst_event_ratio \\\n",
"0 NaN False baseline ii ... 0.397921 \n",
"1 NaN False baseline ii ... 0.146481 \n",
"2 NaN False baseline ii ... 0.373466 \n",
"3 NaN False baseline ii ... 0.097464 \n",
"4 NaN False baseline ii ... 0.248036 \n",
"\n",
2019-10-17 17:49:59 +00:00
" bursty_spike_ratio gridness border_score information_rate \\\n",
"0 0.676486 -0.459487 0.078474 0.965845 \n",
"1 0.277121 -0.615405 0.311180 0.191375 \n",
"2 0.658748 -0.527711 0.131660 3.833587 \n",
"3 0.196189 -0.641543 0.274989 0.153740 \n",
"4 0.461250 -0.085292 0.198676 0.526720 \n",
2019-10-16 05:30:40 +00:00
"\n",
2019-10-17 17:49:59 +00:00
" information_specificity head_mean_ang head_mean_vec_len spacing \\\n",
"0 0.309723 5.788704 0.043321 0.624971 \n",
"1 0.032266 1.821598 0.014624 0.753333 \n",
"2 0.336590 4.407614 0.121115 0.542877 \n",
"3 0.068626 6.128601 0.099223 0.484916 \n",
"4 0.033667 1.602362 0.051825 0.646571 \n",
2019-10-16 05:30:40 +00:00
"\n",
" orientation \n",
"0 22.067900 \n",
"1 0.000000 \n",
"2 27.758541 \n",
"3 11.309932 \n",
"4 0.000000 \n",
"\n",
2019-10-17 17:49:59 +00:00
"[5 rows x 39 columns]"
2019-10-16 05:30:40 +00:00
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"statistics_action = actions['calculate-statistics']\n",
"identification_action = actions['identify-neurons']\n",
"sessions = pd.read_csv(identification_action.data_path('sessions'))\n",
"units = pd.read_csv(identification_action.data_path('units'))\n",
"session_units = pd.merge(sessions, units, on='action')\n",
"statistics_results = pd.read_csv(statistics_action.data_path('results'))\n",
"statistics = pd.merge(session_units, statistics_results, how='left')\n",
"statistics.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
2019-10-17 17:49:59 +00:00
"source": [
"statistics['unit_day'] = statistics.apply(lambda x: str(x.unit_idnum) + '_' + x.action.split('-')[1], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
2019-10-16 05:30:40 +00:00
"source": [
"stim_response_action = actions['stimulus-response']\n",
"stim_response_results = pd.read_csv(stim_response_action.data_path('results'))"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 7,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [],
"source": [
"statistics = pd.merge(statistics, stim_response_results, how='left')"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 8,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2019-10-17 17:49:59 +00:00
"N cells: 1284\n"
2019-10-16 05:30:40 +00:00
]
}
],
"source": [
"print('N cells:',statistics.shape[0])"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 9,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>border_score</th>\n",
" <th>gridness</th>\n",
" <th>head_mean_ang</th>\n",
" <th>head_mean_vec_len</th>\n",
" <th>information_rate</th>\n",
" <th>speed_score</th>\n",
" <th>action</th>\n",
" <th>channel_group</th>\n",
" <th>unit_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.348023</td>\n",
" <td>0.275109</td>\n",
" <td>3.012689</td>\n",
" <td>0.086792</td>\n",
" <td>0.707197</td>\n",
" <td>0.149071</td>\n",
" <td>1833-010719-1</td>\n",
" <td>0.0</td>\n",
" <td>127.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.362380</td>\n",
" <td>0.166475</td>\n",
" <td>3.133138</td>\n",
" <td>0.037271</td>\n",
" <td>0.482486</td>\n",
" <td>0.132212</td>\n",
" <td>1833-010719-1</td>\n",
" <td>0.0</td>\n",
" <td>161.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.367498</td>\n",
" <td>0.266865</td>\n",
" <td>5.586395</td>\n",
" <td>0.182843</td>\n",
" <td>0.271188</td>\n",
" <td>0.062821</td>\n",
" <td>1833-010719-1</td>\n",
" <td>0.0</td>\n",
" <td>191.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.331942</td>\n",
" <td>0.312155</td>\n",
" <td>5.955767</td>\n",
" <td>0.090786</td>\n",
" <td>0.354018</td>\n",
" <td>0.052009</td>\n",
" <td>1833-010719-1</td>\n",
" <td>0.0</td>\n",
" <td>223.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.325842</td>\n",
" <td>0.180495</td>\n",
" <td>5.262721</td>\n",
" <td>0.103584</td>\n",
" <td>0.210427</td>\n",
" <td>0.094041</td>\n",
" <td>1833-010719-1</td>\n",
" <td>0.0</td>\n",
" <td>225.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" border_score gridness head_mean_ang head_mean_vec_len information_rate \\\n",
"0 0.348023 0.275109 3.012689 0.086792 0.707197 \n",
"1 0.362380 0.166475 3.133138 0.037271 0.482486 \n",
"2 0.367498 0.266865 5.586395 0.182843 0.271188 \n",
"3 0.331942 0.312155 5.955767 0.090786 0.354018 \n",
"4 0.325842 0.180495 5.262721 0.103584 0.210427 \n",
"\n",
" speed_score action channel_group unit_name \n",
"0 0.149071 1833-010719-1 0.0 127.0 \n",
"1 0.132212 1833-010719-1 0.0 161.0 \n",
"2 0.062821 1833-010719-1 0.0 191.0 \n",
"3 0.052009 1833-010719-1 0.0 223.0 \n",
"4 0.094041 1833-010719-1 0.0 225.0 "
]
},
2019-10-17 17:49:59 +00:00
"execution_count": 9,
2019-10-16 05:30:40 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shuffling = actions['shuffling']\n",
"quantiles_95 = pd.read_csv(shuffling.data_path('quantiles_95'))\n",
"quantiles_95.head()"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 10,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>action</th>\n",
" <th>baseline</th>\n",
" <th>entity</th>\n",
" <th>frequency</th>\n",
" <th>i</th>\n",
" <th>ii</th>\n",
" <th>session</th>\n",
" <th>stim_location</th>\n",
" <th>stimulated</th>\n",
" <th>tag</th>\n",
" <th>...</th>\n",
" <th>p_e_peak</th>\n",
" <th>t_i_peak</th>\n",
" <th>p_i_peak</th>\n",
" <th>border_score_threshold</th>\n",
" <th>gridness_threshold</th>\n",
" <th>head_mean_ang_threshold</th>\n",
" <th>head_mean_vec_len_threshold</th>\n",
" <th>information_rate_threshold</th>\n",
" <th>speed_score_threshold</th>\n",
" <th>specificity</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.332548</td>\n",
" <td>0.229073</td>\n",
" <td>6.029431</td>\n",
" <td>0.205362</td>\n",
" <td>1.115825</td>\n",
" <td>0.066736</td>\n",
" <td>0.445206</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.354830</td>\n",
" <td>0.089333</td>\n",
" <td>6.120055</td>\n",
" <td>0.073566</td>\n",
" <td>0.223237</td>\n",
" <td>0.052594</td>\n",
" <td>0.097485</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.264610</td>\n",
" <td>-0.121081</td>\n",
" <td>5.759406</td>\n",
" <td>0.150827</td>\n",
" <td>4.964984</td>\n",
" <td>0.027120</td>\n",
" <td>0.393687</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.344280</td>\n",
" <td>0.215829</td>\n",
" <td>6.033364</td>\n",
" <td>0.110495</td>\n",
" <td>0.239996</td>\n",
" <td>0.054074</td>\n",
" <td>0.262612</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1849-060319-3</td>\n",
" <td>True</td>\n",
" <td>1849</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.342799</td>\n",
" <td>0.218967</td>\n",
" <td>5.768170</td>\n",
" <td>0.054762</td>\n",
" <td>0.524990</td>\n",
" <td>0.144702</td>\n",
" <td>0.133677</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
2019-10-17 17:49:59 +00:00
"<p>5 rows × 51 columns</p>\n",
2019-10-16 05:30:40 +00:00
"</div>"
],
"text/plain": [
" action baseline entity frequency i ii session \\\n",
"0 1849-060319-3 True 1849 NaN False True 3 \n",
"1 1849-060319-3 True 1849 NaN False True 3 \n",
"2 1849-060319-3 True 1849 NaN False True 3 \n",
"3 1849-060319-3 True 1849 NaN False True 3 \n",
"4 1849-060319-3 True 1849 NaN False True 3 \n",
"\n",
2019-10-17 17:49:59 +00:00
" stim_location stimulated tag ... p_e_peak t_i_peak p_i_peak \\\n",
"0 NaN False baseline ii ... NaN NaN NaN \n",
"1 NaN False baseline ii ... NaN NaN NaN \n",
"2 NaN False baseline ii ... NaN NaN NaN \n",
"3 NaN False baseline ii ... NaN NaN NaN \n",
"4 NaN False baseline ii ... NaN NaN NaN \n",
2019-10-16 05:30:40 +00:00
"\n",
2019-10-17 17:49:59 +00:00
" border_score_threshold gridness_threshold head_mean_ang_threshold \\\n",
"0 0.332548 0.229073 6.029431 \n",
"1 0.354830 0.089333 6.120055 \n",
"2 0.264610 -0.121081 5.759406 \n",
"3 0.344280 0.215829 6.033364 \n",
"4 0.342799 0.218967 5.768170 \n",
2019-10-16 05:30:40 +00:00
"\n",
2019-10-17 17:49:59 +00:00
" head_mean_vec_len_threshold information_rate_threshold \\\n",
"0 0.205362 1.115825 \n",
"1 0.073566 0.223237 \n",
"2 0.150827 4.964984 \n",
"3 0.110495 0.239996 \n",
"4 0.054762 0.524990 \n",
2019-10-16 05:30:40 +00:00
"\n",
" speed_score_threshold specificity \n",
"0 0.066736 0.445206 \n",
"1 0.052594 0.097485 \n",
"2 0.027120 0.393687 \n",
"3 0.054074 0.262612 \n",
"4 0.144702 0.133677 \n",
"\n",
2019-10-17 17:49:59 +00:00
"[5 rows x 51 columns]"
2019-10-16 05:30:40 +00:00
]
},
2019-10-17 17:49:59 +00:00
"execution_count": 10,
2019-10-16 05:30:40 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"action_columns = ['action', 'channel_group', 'unit_name']\n",
"data = pd.merge(statistics, quantiles_95, on=action_columns, suffixes=(\"\", \"_threshold\"))\n",
"\n",
"data['specificity'] = np.log10(data['in_field_mean_rate'] / data['out_field_mean_rate'])\n",
"\n",
"data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Statistics about all cell-sessions"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 11,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"stimulated\n",
"False 624\n",
2019-10-17 17:49:59 +00:00
"True 660\n",
2019-10-16 05:30:40 +00:00
"Name: action, dtype: int64"
]
},
2019-10-17 17:49:59 +00:00
"execution_count": 11,
2019-10-16 05:30:40 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby('stimulated').count()['action']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Find all cells with gridness above threshold"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2019-10-17 17:49:59 +00:00
"Number of gridcells 225\n",
2019-10-16 05:30:40 +00:00
"Number of animals 4\n"
]
}
],
"source": [
"query = 'gridness > gridness_threshold and information_rate > information_rate_threshold'\n",
"sessions_above_threshold = data.query(query)\n",
"print(\"Number of gridcells\", len(sessions_above_threshold))\n",
"print(\"Number of animals\", len(sessions_above_threshold.groupby(['entity'])))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"columns = [\n",
" 'average_rate', 'gridness', 'sparsity', 'selectivity', 'information_specificity',\n",
" 'max_rate', 'information_rate', 'interspike_interval_cv', \n",
" 'in_field_mean_rate', 'out_field_mean_rate', \n",
" 'burst_event_ratio', 'specificity', 'speed_score'\n",
"]"
]
},
2019-10-17 17:49:59 +00:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## select neurons that have been characterized as a grid cell on the same day"
]
},
2019-10-16 05:30:40 +00:00
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
2019-10-17 17:49:59 +00:00
"once_a_gridcell = statistics[statistics.unit_day.isin(sessions_above_threshold.unit_day.values)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# divide into stim not stim"
2019-10-16 05:30:40 +00:00
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2019-10-17 17:49:59 +00:00
"Number of gridcells in baseline i sessions 76\n",
"Number of gridcells in stimulated 11Hz ms sessions 68\n",
"Number of gridcells in baseline ii sessions 64\n",
"Number of gridcells in stimulated 30Hz ms sessions 52\n"
2019-10-16 05:30:40 +00:00
]
}
],
"source": [
2019-10-17 17:49:59 +00:00
"baseline_i = once_a_gridcell.query('baseline and Hz11')\n",
"stimulated_11 = once_a_gridcell.query('stimulated and frequency==11 and stim_location==\"ms\"')\n",
2019-10-16 05:30:40 +00:00
"\n",
2019-10-17 17:49:59 +00:00
"baseline_ii = once_a_gridcell.query('baseline and Hz30')\n",
"stimulated_30 = once_a_gridcell.query('stimulated and frequency==30 and stim_location==\"ms\"')\n",
2019-10-16 05:30:40 +00:00
"\n",
"print(\"Number of gridcells in baseline i sessions\", len(baseline_i))\n",
"print(\"Number of gridcells in stimulated 11Hz ms sessions\", len(stimulated_11))\n",
"\n",
"print(\"Number of gridcells in baseline ii sessions\", len(baseline_ii))\n",
"print(\"Number of gridcells in stimulated 30Hz ms sessions\", len(stimulated_30))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plotting\n",
"## TODO select units that are grid in baseline i"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 16,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [],
"source": [
"max_speed = 1, # m/s only used for speed score\n",
"min_speed = 0.02, # m/s only used for speed score\n",
"position_sampling_rate = 100 # for interpolation\n",
"position_low_pass_frequency = 6 # for low pass filtering of position\n",
"\n",
"box_size = [1.0, 1.0]\n",
"bin_size = 0.02\n",
"smoothing_low = 0.03\n",
"smoothing_high = 0.06"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 17,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [],
"source": [
"data_loader = dp.Data(\n",
" position_sampling_rate=position_sampling_rate, \n",
" position_low_pass_frequency=position_low_pass_frequency,\n",
" box_size=box_size, bin_size=bin_size\n",
")"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 18,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [],
"source": [
"results_corr = [[], [], []]\n",
"results_gridness = [[], [], []]\n",
"results_unit_name = [[], [], []]\n",
"results_unit_id = [[], [], []]\n",
"results_id_map = {}\n",
2019-10-17 17:49:59 +00:00
"for nid, unit_sessions in once_a_gridcell.groupby('unit_id'):\n",
" base_i = unit_sessions.query(\"baseline and Hz11\")\n",
" base_ii = unit_sessions.query(\"baseline and Hz30\")\n",
" stim_i = unit_sessions.query(\"frequency==11\")\n",
" stim_ii = unit_sessions.query(\"frequency==30\")\n",
2019-10-16 05:30:40 +00:00
" dfs = [(base_i, base_ii), (base_i, stim_i), (base_ii, stim_ii)]\n",
" for i, pair in enumerate(dfs):\n",
" for (_, row_1), (_, row_2) in zip(pair[0].iterrows(), pair[1].iterrows()):\n",
" rate_map_1 = data_loader.rate_map(\n",
" row_1['action'], row_1['channel_group'], row_1['unit_name'], smoothing_low)\n",
" rate_map_2 = data_loader.rate_map(\n",
" row_2['action'], row_2['channel_group'], row_2['unit_name'], smoothing_low)\n",
" results_corr[i].append(np.corrcoef(rate_map_1.ravel(), rate_map_2.ravel())[0,1])\n",
" results_gridness[i].append((row_1.gridness, row_2.gridness))\n",
" results_unit_name[i].append((\n",
" f'{row_1.action}_{row_1.channel_group}_{row_1.unit_name}', \n",
" f'{row_2.action}_{row_2.channel_group}_{row_2.unit_name}'))\n",
" assert row_1.unit_id == row_2.unit_id\n",
" uid = row_2.unit_id\n",
2019-10-17 17:49:59 +00:00
" idnum = row_1.unit_idnum\n",
" results_id_map[uid] = idnum\n",
" results_unit_id[i].append(idnum)"
2019-10-16 05:30:40 +00:00
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 19,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:14: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" \n"
]
}
],
"source": [
"def session_id(row):\n",
" if row.baseline and row.i:\n",
" n = 0\n",
" elif row.stimulated and row.i:\n",
" n = 1\n",
" elif row.baseline and row.ii:\n",
" n = 2\n",
" elif row.stimulated and row.ii:\n",
" n = 3\n",
" else:\n",
" raise ValueError('what')\n",
" return n\n",
" \n",
"once_a_gridcell['session_id'] = once_a_gridcell.apply(session_id, axis=1)"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 20,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [],
"source": [
"plt.rc('axes', titlesize=12)\n",
"plt.rcParams.update({\n",
" 'font.size': 12, \n",
" 'figure.figsize': (6, 4), \n",
" 'figure.dpi': 150\n",
"})"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": 21,
2019-10-16 05:30:40 +00:00
"metadata": {
"scrolled": true
},
"outputs": [
2019-10-17 17:49:59 +00:00
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/matplotlib/pyplot.py:514: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" max_open_warning, RuntimeWarning)\n"
]
},
2019-10-16 05:30:40 +00:00
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYZFWd//FPV3WaxASGOIQBhKOCJBFQWEFRFiPL4ioISjArCuiqGFBwEUHMIIYFRfkJ6oKC6xoQxIQiqIAC8lVyHMIMk6dz//44t+iaOt/qvt33dk83/X49Tz/VffqGU7eq7j331L2f0zI4OCgAAAAAAABgrCobugIAAAAAAACY2uhgAgAAAAAAQCF0MAEAAAAAAKAQOpgAAAAAAABQCB1MAAAAAAAAKIQOJgAAAAAAABRCBxMAAAAAAAAKoYMJAAAAAAAAhdDBBAAAAAAAgELoYAIAAAAAAEAhdDABAAAAAACgEDqYAAAAAAAAUAgdTAAAAAAAACiEDiYAAAAAAAAU0rqhKwAAACZeCOFXkg7I/vyomX0y53znSXpX9ud2ZnZv+bVDHiGEdkl/kbSzpOeb2fUjTH+BpDflXPxTr20I4UBJ146hit8ys2PHMB8AAJiCuIIJAACcGkJ41oauBEbtU4qdS3ntMV4VaaJngtcHAAA2IK5gAgAAHZIuDCHsb2YDG7oyGFkI4UOS3juK6Vs11Bl1gaQvjzDLw3W//0n5OqcWSbpc8f30iKRP5K0fAACY+uhgAgAAkvR8Se+R9IUNXRE0l90W90VJbx/lrM9S7PiRpKvN7Oa8M5rZaknDTh9CqEo6L1tHv6QjzOzBUdYRAABMYdwiBwDA9DYgqS/7/ZMhhO03ZGXQXAhhb0nXaahzqX8Us+9e93vuzqVReJ+k/bLfzzaz34zDOgAAwCRGBxMAANNbr6Rzst9nSvrvDVgXNBFCOEvS9ZL2yoqu1OiuNqvd4rZG0j9LrJpCCIslnZb9aeLWOAAApiVukQMAAKdLOkzSMyW9OITwFjMr1NGUhYafIOkgSVtJapH0gOJoZOea2e1N5vuV4uh23WbWOczyb1XMFLrPzBY3/G8w+/VkSf+neOvW/oqdaXdKOsXMrq6bfiNJb5Z0qKRdJM2RtFTSTZL+R9LFZtanBlnHyj3Zn4dJ+pGkYyW9MavbHEkPSfq5pM+a2V3Nnk8O+ypuw2WSPmBmF4YQThvF/LUrmG4Zh5ytz0qakf1+gpl1l7x8AAAwBXAFEwAA01zWIfBmxdvlJOmcEMKisS4vhHCqpL9JeqekIGmW4tVRQfH2rr+FEE4LIbQUqvjItla8pezgbP1zJe2p2MlUq+uLJN2h2EnyQkkLJLVJ2lzSyyR9Q9JNIYQdRljXTElXS7pQsYNsoWIe0faS3iHpthDCyws8lyclnS3pGWZ24Rjm3y17vDmE8OoQwhUhhCUhhJ4QwsMhhP/JtsWohBD2kfTv2Z//W99xBwAAphc6mAAAgMzsOg2NLDZX0lfHspzsqppPSKpK+qtih9ILFK8gOlHSXYrtj49nP+PpJMWOnk9L+hdJ/yHpTDO7N6vr8xWvcNpC0qCk/yfp1ZL2kXSEpKuy5ewi6bchhC2GWddnJb1I8Ta2N2TL+DdJv8j+3yHpohDC7DE+l8PN7BQze3K0M4YQtlHsOJOkoxVvrztU0maKnWlbSHqNpF+GEL6WjTiX18eb/A4AAKYZbpEDAAA1H5L0KkmLJb0yhPB6M7sk78whhD0lnZr9ebGk4xtuLbsuhHChpB9LOlDSx0II3292u1wJKoodSh+pK7ssq2tV8eqkGYpXbr3OzC6rm+4GSd8LIXxM8RbCLSR9TbEDyrO54nM+tv4WtBDCjxSf78slbSLpFZK+N9onUvC2tj3qft9I0i2Szpd0q2LH14GS3i1pvqS3Kna2jThKXQjhmZIOyf68ysxuKlBHAAAwxXEFEwAAkCSZ2RrFDoaaL4YQNhnFIt6n2LZYKuntXm5Rto7jFTsxWhQ7NsbTV5qUv0oxc0qSvtLQufQUM/uEpF/V5gkhPLvJ8rokndTYEWRmg1o/OH03Tbz6EeQulLSXmX3dzH5vZtea2ccVO6Huy6Z5WwjhwBzLPVHxNZSks0qrLQAAmJLoYAIAAE8xs19I+mb250JJ5+aZL8tTeln253VmtnaYddwj6e/ZnweNsap5PGRmDzb537/W/f61EZZzft3vhzSZ5s9mtqzJ/+rDveeMsK7xcI5ix9ar1Lzj7z7FHK6ak4ZbYAhhnmKYuSTdaGbXllRXAAAwRXGLHAAAaPRexY6ULSS9LoRwqZldOcI8ixVvsZKkV9eN5DaS7cZWxVweGOZ/u2SPqxVvFRvO9XW/P6fJNPcOM//qut8nvO2Vdfb9NfsZbrqrQwj3KL4mLw4htGRXYHlerRhsLkkXlVVXAAAwdXEFEwAAWI+ZLZf0rrqir2RXrAxn4RhX1xpCGK+relYO87+Ns8cnhulEqXm07vcFTaZZ3aRcircD1oz3yHlF3ZI9ztFQh6Hn0OyxX1muFQAAmN64ggkAACTM7IchhP9RHHltC8VR0t40zCz1bYpvKOetdZmmt9MNI8+XZMN1HI2mo6da93uRsO2poP61aPcmCCF0augWw1+b2WPjXisAADDp0cEEAACaOUHSixWv9jk+hPDdYaatzx/qN7Obx7jOWqfQSB1Ac8e4/JpafReOcCuYJG3mzDclhBAqiq/hJpK6zOyHI8yyafbYr+bP9UWSZmW/f79wJQEAwNMCt8gBAABXdmXKyXVFX9dQx0KjuzV09cu+Iy07hPDBEMLbQggvafhXLYC6PYRQbZwvm3eGYodJEbU8otmSdh5h2vrnc0fB9U6obFS7yyRdIun8LIzdFULokPS87M+/mllPk0lfWPf7b0qpKAAAmPLoYAIAAE2Z2cWSfpr9uVjSUU2m65VUG0nsOSGE/ZstM4TwYsVh7b8q6cMN/15e9/viJot4iaS24eqdw1V1v79thGnfXvf7Lwqud0OodQJtLungYaY7XkNXhg13tdre2eMqSVasagAA4OmCDiYAADCStyl2JkjDd+x8ru73i0IIWzdOEELYVPFKqJovNUxSP9LZu535N5N0zrC1zedHku7Mfn9nCOEwb6IQwqmSDsj+vKbArX8b0vl1v38phJAEsocQ9pH06ezPJVr/NWq0a/Z4U3aFFAAAABlMADCO8g7TDky4vffeWzfccIPa29s7NMJ71cx0ySWX6PTTT1+v/JprrrmncbrTTjtNl156qSTtMHfu3PvPO+887b13vODl1ltv1aabbqrHHouZ0C996Ut13nnnrZcJdNVVV+nlL3+5+vr6JOnED3/4wye+4hWvUEdHh26++ean5t9mm210//33a9GiRds2q//+++//r83+Z2a6+eabdfTRR6u3t7dSqVR+8MEPflCHHHKINt54Yz300EO67LKhwdHmz5+vK6+88iDlz4iaNMzsZyGESyS9XtJOkm4KIXxa0o2Ktzy+QnHUwHZJvZKOzUYSTIQQ5mtoxMCHx7vuAABg6qCDCQAAjOjII4/UT37yE914443DTnfqqaeqo6ND3/rWt7RixQqde64/mNzBBx+sc85JL0Tadttt9eEPf1hnnHGGBgYGdPnll+vyyy9/6v+VSkXvfe97tXz5cn3jG98o9Jx23313XXDBBTr55JO1bNkyXXHFFbriiiuS6XbeeWd9/vOf12abbeYsZco4XnEEvKMlbaX0yjEphnofZ2Y/H2Y5W9X97nZCAQCA6YkOJgAAMKKWlhadccYZOvTQQ9XV1dV0umq1qg996EM67LDDdOmll+qGG27QkiVL1NvbqwULFmj33XfX4YcfrgMOOKDpMo466ijtvvvuuuiii3TDDTdo6dKlmjdvnvbaay8dc8wx2mOPPXT22WeX8rz23Xdf/eIXv9All1yia6+9VnfffbfWrFmjTTfdVDvttJMOPfRQveQlL1FbW9HIpw3LzLolvSGE8E1Jb5X0AsXR8dZKukfxlsHzs2D34WxU9zsdTAAA4Cktg4PcwQEA44QdLPD
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG9CAYAAABZDcySAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xe8JFWZ//HvzXdmmAAzwJAHEB+RoLAmVhQU47KiGDDvIiqGNaCu4WfAtLqGNSMqIgbQFQOKrqKAyq6ggIEgKI8SJc4QJs/cufH3x6nm9vR5+t7qrp6ZO8zn/Xrd1719blV1dXXV6VOnq76na2JiQgAAAAAAAEC7urf0CgAAAAAAAGDrRgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKCS3i29AgAAYPMzs4skHVE8fLe7f6jkfKdI+rfi4d7ufnPn1w4RM9tV0mslPVXSgyTNkXSfpCskfVvSN919dIr5T5f08pJPF763ZjYo6ZWSni/pQEmDkm6X9H+Svuzuvyn7egAAwAMLVzABAID3mNn+W3ol0JyZHSfJJb1L0iMkLZDUJ2lnSU+T9DVJvzGz3aZYzCEV12FvSX+U9FlJj5U0X9KApH0kHS/pEjP7vJnRvgQAYBtEAwAAAAxI+godAzOTmR0l6VuStpM0JOmTkp4i6dGSXqh09ZAkPVLST81sdrCMXkkHFA9PV+psmurnjob550g6X1KtI/Inko6TdLjSFU1/K8pfK+nDVV4vAADYOnGLHAAAkKTDJL1B0qe39Ipgkpl1STpFUo9S59IT3P3SukkuN7OzJZ0q6dWSDpZ0kvJOnv2VOhIl6UJ3v7LFVXmr0m15kvQJd//3uv9dYmZnSbpc0kGS3mJmp7r731t8DgAAsBXjm0oAALZt45JquT0fMrN9tuTKIHOYpIcUf3+2oXNJkuTuE5LeJGlZUfQvwXIeXvd3q51L0mR2012S3hmsw5Ck9xUPeyU9u43nAAAAWzE6mAAA2LaNSPp48fdsSV/eguuC3OPq/v5Rs4mKDp6Li4dmZgMNk9Tyl9Zq8na2UsxsO0m/UuqY+qG7DzeZ9C91f+/ZynMAAICtH7fIAQCA90s6VulKmSea2SvdvVJHUxEa/jpJR0naXVKXpFuVOio+5+5/bjLfRUqj221w98Epln+NUqbQLe6+pOF/E8Wfb1LKCjpFKStoRNL1kt7h7hfWTT9P0iskPVNpZLS5ku5VGp3tu5LOjEZnM7Mlkm4qHh6r1AF0vNIVRAcUy7ld0s+Vbiu7odnrmcLlkv5T0q7Fuk+lq+7vQUkb6h7XrmC6yt3HW1kBd1+j+KqoRnvV/X1nK88BAAC2fnQwAQCwjXP3DWb2CqWw6G5JHzezn7r77e0sz8zeI+m9SrlBG/2r+DnRzD4o6f3F7V2byh6SLpG0Y13ZoarrqDGzJ0j6pqRdGuZdLOnpxc+bzexZ03QQzZZ0oaQnNJTvI+k1kk4ws2e7+09beQHu/iulTrkpmVmf0shukrTS3Vc2TPKw4veVZnaMpBMkPUbSDpLuUdpOpxbP1zIzmyXpPcXDMUnfb2c5AABg68UtcgAAQO5+iaTPFw/nS/piO8sxs/dJ+oBS59LVSsHT/6h0BdEbJd2g1P54b/GzKZ0kaZGkjyndavY8SR9295uLdT1M6QqnXSRNSDpL0jFKo7O9QGnUNCld1fRrM2vshKr3CaXOpUslvbRYxrMkXVD8f0DS14rbzTaFEyTtVPz98/p/mNmeSh1JkvQSSecqXa21s6Q+pdf/XEm/NLMvFSPOTcvM+sxsHzN7pdLtc/9Y/Ovd7n5jlRcDAAC2PlzBBAAAav6fpGdIWiLpn83sRe7+rbIzm9mhmryK5UxJJzTcWnaJmX1F0v9IOlLSyWb2nWa3y3VAt1KH0rvqyr5XrGuPpDMkzVIKOn++u3+vbrrLJZ1tZicr3UK4i6QvKXVARRYrvebj629BM7MfKb3ef1K6kupoSWdXf2mTzOxBkj5SV/SJhkkOqft7nqSrlEadu0ap4+tISa+XtL2kE5U62149zXN2K+U59dUVL5d0krt/o+UXAQAAtnpcwQQAACRJ7r5WqYOh5jNmtmOz6QNvUWpb3Cvp1VFuUfEcJyh1YnQpdWxsSl9oUv4MTY7O9oWGzqX7ufsHJF1Um8fMHtpkeUNKnSsb5RsVtwDW51k9TB1kZjspdWAtKIpOd/fLGyarH0HuK5Ie4e6nuftv3P1X7v5epU6oW4ppXmVmR07z1Lto484lFevwL2Z2eKuvAwAAbP3oYAIAAPdz9wskfbV4uEjS58rMZ2ZdSnlFknSJu6+b4jlu0uSIY0e1uapl3O7utzX531Pr/v7SNMs5te7vpzWZ5g/ufl+T/9VnN82d5rlKM7PFkn6hlGslpVDyNwSTflypY+sZat7xd4tS0HnNSdM8/YjSLYePVnrfv6iUvXSUpF+Y2bPKvxIAAPBAwC1yAACg0ZuVOlJ2kfR8M/tvdz93mnmWKN1iJUnH1I3kNp2921vFUm6d4n8HFr/XKN0qNpVL6/4+qMk0N08x/5q6vzvS9jKzfZWylvYtilzS0919feO0RWff1cVPU+5+oZndpPSePNHMupqFsLv7MhW3GxZ+ZmY/ULqaql8pb2pvd1/e4ksDAABbKa5gAgAAG3H3FZL+ra7oC2a2oNn0hUVtPl2vmXXsqp4Gq6b438Li9z0lRrJbWvf3Dk2mWdOkXEq3A9Z0TfNc0yrCyX+ryc6layU9wd2XNp+rtKuK33M12WFYirufL+kzxcP5kp7TgfUBAABbCTqYAABAxt1/IOm7xcNdlAdHN6q/MucMpUyfsj9Nb6ebQpk2zFQdR6109PTU/T3edKrNwMyeJ+mXSoHhknSZpCPc/c4OPUX9e9Hfxvzn1P19cMV1AQAAWxFukQMAAM28TtITla72OcHMvj3FtPX5Q2PufmWbz1nrFJquA2h+m8uvqa3voqluBSvsHMy32ZnZayWdoslt8xNJx02Vd1WM9vZEpQ6poaLjcCo7Fb/HVLxWM+tXum1uX0lXTNOZdW/d3+10UAEAgK0UVzABAIBQkbPzprqi0yTNaTL5jZq8+uUx0y3bzN5uZq8ysyc1/KsWQN1vZj2N8xXzztLkFTztquURbSfpgGmmrX8911V83raY2WskfV6TnUtflvTMqTqXJKkY1e57kr4l6dQijL3ZcwxIemTx8Gp3Hy7+Pkbpdf9E0ounWdV96/5uFrAOAAAegOhgAgAATbn7mZLOKx4uUZMOBncfkfSr4uFBUw1Vb2ZPlPQRpZHH3tnw7xV1fy9psognSeqbar1LOL/u71dNM+2r6/6+oOLztqzohDulruhD7n6iu4+VXMT/Fb8XS3rKFNOdoMkrw+qvVvuNJm8NPL64KqqZl9f9vdm3FQAA2HLoYAIAANN5laTVxd9Tdex8su7vr5nZHo0TmNlOSldC1Xy2YZL6kc5eH8y/s6SPT7m25fxI0vXF3681s2OjiczsPZKOKB7+osKtf20xs/mSvq7JNtun3P3dLS7m1Lq/P2tmWSC7mT1a0seKh3ep7j1y9zsk/bB4eICk8PnN7CRNBntf5O6XtbieAABgK0YGEwAAmJK732pmb9fGHRXRdL80sy9Ieo3SrVJXmdmnJf1vMckjJL1Z0q7F4x+4+w8bFvPfkk5WaqO8sRhh7tuShpRuVTupmP8GbXw7VquvaczMXlqsW7+k75nZWUrB5ssk7aV0Nc5Ti1nukfSv7T5fBa/X5Pa6WdK3zOzhJeb7c+0WN3f/mZl9S9KLJD1Y0hVm9jFJv1O65fFopVED+yWNSDq+GEmw3pskHa6U0fR+M3uspK9KuknS7krb5hnFtEslvaz1lwoAALZmdDABAIAyvijpBZIeP810r1fqDDpJaZj79zeZ7hxJL2ksdPfriythPqt
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4ZFd9xvF3ZtRX23dtr+t6bXMA2+BCc0Ixvfdeg00MmBgwTmghGAg1EEKvAWIwHRJCCQRM7y0YsLF93HvZLq36aGbyx7ljzc7vN9KVrnYte7+f59lH0tnby7l3ztz7nlKj0RAAAAAAAACwUOXbegEAAAAAAABw+0YDEwAAAAAAAAqhgQkAAAAAAACF0MAEAAAAAACAQmhgAgAAAAAAQCE0MAEAAAAAAKAQGpgAAAAAAABQCA1MAAAAAAAAKIQGJgAAAAAAABRCAxMAAAAAAAAKoYEJAAAAAAAAhdDABAAAAAAAgEJoYAIAAAAAAEAhNDABAAAAAACgkK7begEAAMDeFUL4saQHZH/+U4zxrTnH+6Ckv8v+PDzGePXiLx08IYQDJb1E0sMlHSlpmaTtks6X9EVJn4sxTs8xjZOzafyVpPWSdki6SNIXJH06xji1gOV6naS3SPpYjPHF8x0fAADccfAEEwAA+7bXhxDuclsvBDoLITxNUpT0Okn3kLRKUrek/SU9QtI5kn4ZQjiow/jlEMKHJP1I0lMlHSSpJxv/gZI+Lul3IYSj5rlc95T0+gWsEgAAuAOigQkAgH1br6RPhhC4J1iCQggPlvR5SYOSJiT9m6SHSbq3pGdK+mk26D0lfTuEMOBM5q1KTy5J0vWSzpB0f0lPUnp6SZLuJulbIYQVOZfrGEnfUTp+AAAAeEUOAADoJEkvk/Te23pBMCOEUJL0QUkVpcalB8YYf90yyG9DCF+S9GFJL1ZqJDpT0ttapnGEpFdmf14p6YQY41DLNL4WQviL0mtud1JqfHqbZhFCeKykcyWtXPjaAQCAOxq+rQQAYN9Vl9TM7XlrCGHTbbkwME6SdOfs9/e3NS5JkmKMDUmvkLQ5K3pe2yCnKDVQSdKZbY1LTW+XtDP7/WmdFiaEsDqE8D5JX1dqXKrlWQkAALBvoIEJAIB9V1XSu7LfByT9+224LLDu1/L7NzoNFGOckPTz7M8QQmh9be1mpeyl6ySd12H8uqRLsz8P9YYJIfyVpMuVnnQrSbpJ0rPmXgUAALCv4BU5AAD2bW+S9ESlJ2UeFEI4LcZYqKEpCw0/Q9KDJR2s1CBxnVJDxwdijBd1GO/HSr3bTcYY+2aZ/oWSjpZ0TYxxY9v/NbJfXyHpf5ReMbuvUmPa5ZJeE2P8fsvwKyT9raTHSzpG0nJJ25R6Z/uKpHO93tlCCBslXZX9+USlBqDnKz1BdHQ2nRskfVfSu2OMV3Ran1n8VunpogOzZZ9NqeX3PkmTkhRj/KDSNugoexWv2bB0U4fB7iRpjaSGpM8obV9ekQMAALfiCSYAAPZhMcZJpQaWelb0rk69keURQni9pAuUQqWDpGVKT0cFpZygC0IIb8waNfakQyT9QikQe0CpMeQEtTTUhBAeKOkSSe9WCr1eo9Q72wGSHinpU5LOz3KMZjMg6fuSPqnUQLZOKfx6k6TTJf0lhPCo+a5AjPFHMcZ/jDE+P8Z4S6fhQgjdkv46+3Oow2tws3mp0jpL0pc6DFOX9G1J986WZ8c85wEAAO7geIIJAIB9XIzxF1k39i9Vaoj5qKTHznc6IYQ3SnpD9ueflcKn/6z0hdaJSq9XHdEyzBuLLPcczlR6quedkr6p1IByXIzx6mxZT1J6wqlf6amcz0n6sqRbJB0u6VSlxqljJP0shHBijLHT0z3vzqb/a0kfUnrdbIOkv5P0UKXGpnNCCJtijCOLvqZpWffLfv/uXANnjXvrJB2bLeOTsv/6P6Ve6jyfjTF+puByAgCAOzAamAAAgCS9VqlRaaOkx4QQnhVj/HzekUMIJ0h6ffbnuZJObXu17BchhE9K+pakkyWdHUL4cqfX5RZBWdLbYoyvayn7arasFaWnk/qVnsx5eozxqy3D/VbSl0IIZyu9QrhB0sckPa7DvA5QWufnZ3lGyubzDaX1fZSk9ZIerc5PCC1ICOFISe9oKXp3jtH+XdIL2so+KekfOjWAta4XAACAh1fkAACAYoyjkl7YUvS+EML6eUzi75XuK7ZJerGXW5TN41SlJ4ZKSk9M7Ukf6VD+WM30zvaRtsalW8UY/1nSj5vjhBDu2mF6E0o9tO3WCJP18NaaZ3X3PAudVwhhP6UGrFVZ0SdijL/NMephTtlDJJ0WQuDeEAAALAg3EQAAQJIUYzxP0n9kf66T9IE842WvXD0y+/MXMcaxWeZxlaSLsz8fvMBFzeOGGOP1Hf7v4S2/f2yO6Xy45fdHdBjm/2KM2zv8X2u49/I55pVbCOEAST9QyraSUij5y3KO/mGlHur+WtJZSgHshym9Tvg5GpkAAMBC8IocAABodZZSQ8oGSU8PIXwhxvj1OcbZKGl19vvjWnpym8vhC1vEXK6b5f+OyX6OSLpwjun8uuX3YzsMc/Us47e+crYo911Z6Ph3lfKsJClKemSMcTzP+DHGr7X8+csQwqeVQsqPl/QMSecpvUIIAACQG99QAQCAW8UYdyoFPzd9JISwqtPwmXULnF1XCGHRnuppMzzL/63Nfm7NXmObTWvvbWs6DDNbcHfr9Av3nJeFk/9KM41Lf5H0wNl6mZtL9vTV81qKTl34EgIAgH0VDUwAAGA32RMuX8n+3KC5g6Nbn8z5lNKTMHn/dXydbhZ57l9maziaT0NPpeX32zToOoTwVEk/VAoMl6TfSHrALL3b5RZjvFCp9ztJulvR6QEAgH0Pr8gBAADPGZIepPS0z6khhC/OMmxr/lAtxvjHBc6z2Sg0VwPQygVOv6m5vOtCCKU5nmLa3xlvrwshvETSBzWzbf5H0tNmy7vKxjtQ6WmnWozxl3PMZlv2s6fIsgIAgH0TTzABAAAjxrhZ0itaij4uaVmHwa/UzJNI95lr2iGEV4cQXhRCeEjbfzV7nusJIVTax8vG7dfMEzwL9efs56Cko+cYtnV9Lik43wUJIZwu6UOaaVz6d0mPz9G4VFJa5p8q7b+5ht2U/dkpHB0AAKAjGpgAAIArxniupO9kf26U9OwOw1Ul/Sj789gQwn07TTOE8CBJ75D0UUn/2PbfO1t+39hhEg+R1D3bcufwvZbfXzTHsC9u+f28gvOdt6wR7oMtRW+NMb4wxliba9zsyaxfZH8eHUK49yyDP1ozT2vt9fUEAAC3fzQwAQCA2bxI0q7s99kadv6t5fdzQgiHtA8QQthPuz9J8/62Qf7c8vtLnfH3l/SuWZc2n29Iujz7/SUhhCd6A4UQXi/pAdmfPyjw6t+ChBBWSvq0Zu7X3hNj/Kd5TubDLb9/NJtm+3yCpE9kf1a1+74EAADIhQwmAADQUYzxuhDCq7V7Q4U33A9DCB+RdLpS5s+fQgjvlfSTbJB7SDpL0oHZ31+LMf5322S+IOlspfuTl2c9zH1R0oTSq2pnZuNfoZle1BayTrUQwnOzZeuR9NUQwmeVgs03SzpM0gskPTwbZaukv1no/Ap4qWa219WSPh9COC7HeBfFGKckKcb4zRDClyQ9XdJxki4KIbxT0vlKAeYPVcrbavbm9/IY42WLtwoA7iDm6nETwO1b4Z5uJRqYAADA3D4q6RmS7j/HcC9Vagw6U9JqSW/qMNx/SXpOe2GM8fIQwplKTzaVJZ2a/WuqK71Wt1bS389j+Y0Y469DCI+Q9CWlTKfnZf/a/UHS02OMNxSZ3wK9sOX3jZJ+l3O8w5UapJr+RunJpOcoNVi91xlnQtIZMcZPznspAQAAxCtyAABgDlmWz99KGp9juFqM8SxJxys1Sl0iaUSpceMGSf8p6dExxifHGN1pxRg/JOmekj6rFDY9JekmSV+WdN8Y49sXZaXSvH4k6UhJr1HKKtqeze9qSd+S9DRJ94kxXt5pGntKCGGdJPOa4ULEGCdjjM+
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZFWd//93VXWenBmGMCQPiKwYFjBiQl0DyE9ddY1gDruuuiuGZQWzomsATGvAVWENKKi77oqu2VXUL6xiOChZYIDJ09O5qn5/3NtMUefd3bf71gzTzOv5eMyjuk7fcG6o01OfuvW+lWazKQAAAAAAAGCuqnd3BwAAAAAAADC/UWACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKV13dwcAAMCeFUL4vqQT86f/FGN8R8H5zpP0yvzpITHG6zvfOxQRQuiR9P8kHS3pQTHGn81xOX8r6cP50xmPaQjhFEmnSzpe0nJJmyX9XNInY4zfmEsfAADAPQNXMAEAsG87M4Rw1N3dCczau5QVl+YshHBIvpwi0y4MIXxd0iWSTpa0RlJ3/niypK+HEL4WQugv0ycAADB/UWACAGDf1ivpUyEE/k8wT4QQ3ijptSWXUZH0KUkLCkxblfRVSU/Om+6Q9HpJD5F0kqSPSqpLeoqk74QQusv0DQAAzE98RQ4AADxI0t9J+uDd3RFMLf9a3IckvawDi3uppEcWnPZ0ZYUkSbpa0iNjjLe0/P47IYRvKbu66cGSXi3pfR3oIwAAmEf4tBIAgH1XQ9JE/vM7QgiH3p2dwdRCCMdJ+ol2FZfqJZZ1kKT35k83Fpjl7/LHpqRnthWXJEl5/tIn8qf/HEJYONf+AQCA+YkCEwAA+65xSefkPw9I+te7sS+YQgjh3ZJ+JumBedOlKne12b9KWiTpx5K+NMO6V0k6Jn/6wxjjFdNM/pn8cZGkJ5ToHwAAmIf4ihwAAPu2syWdKulISY8KIbw4xliq0JSHhr9K0qMlHSCpIukmSd+TdG6M8XdTzPd9ZXe3G40x9k2z/KuUBVzfEGNc3/a7Zv7jayT9h6TzJD1UWTHtT5LeEGP8Tsv0iyW9SNIpku6jrDiySdIVkr4s6XMxxgm1CSGsl3Rd/vRUSV+X9AJJz8v7tkjSzZL+W9L7Y4zXTLU9BZygbB9ulvT6GOOnQghnzWVBIYQXSnqspBFl2/23M8xyUMvPP59h2tbj+iDNULwCAAD3LFzBBADAPizGOKqs0NDIm84JIayb6/JCCGdK+o2kV0gKykKkB/KfXybpNyGEs/KQ6d3pQGVfKXtsvv4lku6vrMg02ddHSvqDpPdLerik5crujLafpL+S9GlJV4QQDpthXQOSvqMsNPtESSuVhacfKunlkn4bQihzRc8WSe+RdHiM8VNzXUh+XN+fPz07xhgLzNbT8vOOGaYdb/n5XrPpGwAAmP8oMAEAsI+LMf5E0vn50yWSPjaX5eRX1bxVUk3Sr5UVlB6s7AqiV0u6Rtn/Pd6S/9ud/l5Zoee9kh4m6emS3hljvD7v64OUXeG0Vlm20OclnSzpeEnPlPTtfDn3kfSjEMLaadb1fmWB2T+T9Nx8GU+RdFn++15JF5TIJXpqjPENMcYtc5x/0ieUHd8rVDyEuzWj6YAZpj2w5ef9ZtEvAABwD8BX5AAAgCS9Udlt6NdLelII4W9ijBcWnTmEcH9JZ+ZPPyfp9Lavlv0khPApSd+U9AhlQdBfmurrch1QVVZQenNL21fyvtaUXZ3Ur+zKrWfEGL/SMt3lkr4YQvhnZV8hXCvp48oKUM5+yrb5BTHGySvBFEL4urLtfYKkVZKeKOmLs92Q1mXOVQjheXk/JpQem+n8SdlXBldIemIIoTvGOD7FtE9u+XnBnDsLAADmJa5gAgAAijHulPSSlqYP5QHPRb1O2f8rNkl6mStg5Os4XdkVQxXNnP9T1kenaH+ysswpSfpoW3HpTjHGt0r6/uQ8IYR7T7G8EUl/314IijE2ddfg9PsW6XSnhRD2065Q8PfGGK8sOm++DV/Inx4g6Z1TrONgSW9qaeqeQ1cBAMA8RoEJAABIkmKMl2nXncBWSjq3yHx5ntJf5U9/EmMcmmYd10n6ff700XPsahE3xxj/PMXvHtfy88dnWM5HWn5+/BTT/CrGuHmK37WGey+aYV27y8ckLVOWN/XWOcz/Tkkb8p//IYTwxRDCA0IIvSGEFfnVUT/N1zE53VjZTgMAgPmFr8gBAIBWr1VWSFkr6RkhhItijJfOMM96ZcUFSTq55U5uMzlkbl0s5KZpfnef/HFQ0lUzLOdnLT8fM8U0108z/2DLz3v8/10hhGcpu0NeQ9IL81D3WYkx3hZCOFlZZtUqSX+d/2s1rizQ/G+UfWVwZ5l+AwCA+YcrmAAAwJ1ijFslvbKl6aMhhKUzzLZyjqvrCiHsrqt6tk/zuxX548b8K2DTua3l5+VTTDM4RbuUfR1w0u6+c95dhBBWS/pw/vT8GONP57qsGOMvJB2r7Ct/rft2QtKlkk6IMf6rdhUabxMAANincAUTAAC4ixjj10IIX1Z257W1yu6S9sJpZmn9/8SnVfCrdbkpv043jSIfkE1XOJpNoafW8nPpsO097MPKin/bJH0phHCsmaa1OHjvyWKiy2mKMd4i6SUhhFcqy2OqSbpp8qqoEEJV0hH55Nd1bCsAAMC8QIEJAAA4r5L0KGVX+5weQvj3aaZtzR+qzyZEus1kUWimAtCSOS5/0mR/V4YQKjNcxbTGzDdfnJA/LpH0owLT/0fLz1Meg/wucq6A9BeSBvKf53oOAACAeYqvyAEAgESM8XZJr2lp+oSmvvX8tdp1JdIJU0xzpxDCGSGEl4YQHtP2q8k7z/WEEGrt8+Xz9ivLASrj1/njQklHzzBt6/b8oeR656UQwotCCB8IIZw9w6Sntvz8nd3ZJwAAsPehwAQAAKwY4+ckfSt/ul7Ss6eYblzS9/Knx4QQHjrVMkMIj5L0bmV3NntT26+3tvy8fopFPEZS93T9LuDbLT+/dIZpX9by82Ul17tHxRjXxxgr0/2TdH7LLIe0tLd6nKS/l/SGqTKz8vaX509/FGO8vtPbAwAA9m4UmAAAwHReKmlH/vN0hZ1/afn5ghDCge0T5KHTn2hp+nDbJL9u+flvzfxrJJ0zbW+L+bqkP+U/vyKEcKqbKIRwpqQT86ffLfHVv/nu4vyxR9Lb2n8ZQuiT9AXturLsrD3TLQAAsDfZVzOYit4+GcD8tEfv1DQNxhrslY477jhdfvnl6unp6dUM52mMURdeeKHOPvuu34767ne/e137dGeddZYuuugiSTpsyZIlN5533nk67rjjJElXXXWVVq9erdtvv12SdNJJJ+m88877Wusyvv3tb+sJT3iCJiYmJOnVb3rTm179xCc+Ub29vbryyivvnP+ggw7SjTfeqHXr1h08Vf8f+tCHPm6q38UYdeWVV+o5z3mOxsfHq9Vq9atnnHGGHv/4x2vFihW6+eab9ZWvfOXO6ZctW6ZLL7300W3LO2S6/XYP82VJZyi7i9yrQwhrlRWU7lD2FcO/166vGp4bY/yfu6WXAADgbrWvFpgAAEBBz3rWs/Sf//mf+sUvfjHtdGeeeaZ6e3v12c9+Vtu2bdO55/qbyT32sY/VOeekFyIdfPDBetOb3qS3v/3tajQauvjii3XxxRff+ftqtarXvva12rp1qz796U+X2qZjjz1Wn/zkJ/Wa17xGmzdv1iWXXKJLLrkkme7oo4/WBz7wAa1Zs8YsZd8QY6yHEE5R9hXBe0n66/xfq6akD0r6hz3cPQAAsJegwAQAAKZVqVT09re/XaeccopGRkamnK5Wq+mNb3yjTj31VF100UW6/PLLtWHDBo2Pj2v58uU69thj9dSnPlUnnnjilMt49rOfrWO
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFdB9vGnqnpfZs8kk3USAoclCASQl13CLoL4Kouggig7yCYEQQibwCugoEAABYQgmyyyCMgimwgqiOw5JJAESAhJJrP23lX1/nFu0TV1nu6+M7d6pjPz+34+86np03dfzr196t7n1NrttgAAAAAAAIDDVT/aCwAAAAAAAIAbNhqYAAAAAAAAUAkNTAAAAAAAAKiEBiYAAAAAAABUQgMTAAAAAAAAKqGBCQAAAAAAAJXQwAQAAAAAAIBKaGACAAAAAABAJTQwAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAAAAACVDBztBQAAAEdWCOELku5e/PjnMca/KDne6yU9ufjxzBjj5f1fOjghhLMlPV3SvSWdLmlW0mWSPiTpLTHGa0pM41ck/Ymke0g6WVKzmMYnJL0uxnjVYSzX8yW9TNKbY4xPONTxAQDAsYMnmAAAOL69IIRws6O9EFheCOHRkr6j1Lh3E0kjkjZJuo2kl0r6Xgjh11eZxtMk/Y+kP5J0VjGNcUnnSHpOMY37HuJy3V7SCw5lHAAAcOyigQkAgOPbsKS3hhC4J1iHQgj3l/Q2pQahGaWnhe4j6b6SXiFpTtI2SR8IIZy7zDR+S9JrJTWUnnx6maR7SXqApAsltZQarD4UQjin5HKdI+mTSscPAAAAr8gBAADdUenVqdce7QXBkqLR7/WSapLmJd01xviNrkE+HUL4lKTPSxqV9Eqlxqderyw+FyWdF2P8atfvPhFC+Kqkd0oak/RySQ9aZbkeKOkiSRsPeaUAAMAxi28rAQA4frWUGh0k6S9CCGcdzYVB5jyl19kk6fU9jUuSpBjjlyT9S/HjvUMIm7t/H0K4kdJrdZL0oZ7Gpc40LpLUmfZ9QwiDbmFCCJtDCK+T9BGlxqXmIa4PAAA4htHABADA8WtB0quK/49J+rujuCzwPi7pJ0qNOsv5Qdf/T+v53fau//9whWl8t/gckrS195chhDtJulTpSbeapJ9LesQK0wMAAMcZXpEDAOD49mJJvyXpppLOCyE8NsZYqaGpCA1/iqR7SjpVqUHip0qvcv1tjPH7y4z3BaXe7eZijCMrTP+7km4h6YoY486e37WL/z5D6cme10u6i1Jj2qWSnhtj/GzX8Bsk/bGk31QKvJ6UtEvSNyX9k6SLYoyL6hFC2KnUA5uUtt9HJT1a0h8UyzYp6UpJ/yrpNTHGHy23PssplvOzqw4ondH1/5/3/K67Z7ibrjCNs4vPBUnXmt/fRNIWSW2l1+meIV6RAwAAXXiCCQCA41iMcU6pgaVVFL0qhHDK4U4vhPACpR7PniQpKPVUNlb8/wmSvhNCeFEIoVZpwVd3mqSvKGUSjSk1hpyr1MjUWdZ7SLpY0msk3U2pAWVQ0kmSOuHa3yxeM1vJmFJD0FuVGsi2KYVfnyXpiSrRy9vhKnpye3Dx4+djjAc1DsUYr5D0reLHBxfD907jAZLuXPz44Rije/WtJekTku4QY3x0jHF3X1YAAAAcM3iCCQCA41yM8SshhDdIeqpSQ8ybJD3wUKcTQniRpAuKH78t6Y3FZ13SbZVer7pR1zAvqrLcq3i60pNTfynpY0qNRreOMV5eLOsdlZ5wGlV6KucfJb1f0i8knSnpMUqNU+dI+nII4bYxxt6ngzpeU0z/a5LeoPQq2g5JT5Z0b6XGpn8IIZwVYzxQZaWKhrkJSTeW9PuSHldMf7fSU2POkyV9qhjvCyGEV0n6slKvcveW9LRiuMskPXuZabwrxvjOKssOAACObTQwAQAASfozpUalnZJ+I4TwiBjju8uOHEI4V9ILih8vkvSYnlfLvhJCeKtSptCvSXphCOH9y70u1wd1SS+PMT6/q+wDxbI2lJ5OGlV6MudhMcYPdA33X5LeF0J4odIrhDskvVnL9652ktI6PzrG2HkSTCGEjyqt769LOkHSAyS9r+J6PbKYV7evSPrjGOPFboSiAfFOSr3J/bqWGvi6vUnSBTHGa5aZRsuVAwAAdPCKHAAAUIxxSulpmI7XhRBOOIRJPEvpvmKXpCe43KJiHo9RemKopvTE1Fq6cJnyB2opj+jCnsalX4oxvkTSFzrjhBBuvsz0ZiU9vbcRJsbY1sHB6bcqs9CrOMOU3VLSU3t7kOsonnq6m5Z6k3Pup9T4BAAAcFhoYAIAAJKkGONnJL29+HGbpL8tM17RgHH/4sevxBinV5jHZVrq9eyeh7moZVwZY/zZMr+7b9f/37zKdN7Y9f/7LTPMN2KM1y/zu+5w78lV5lXGF5Vea7uD0ityX5O0QSnz6kshhO5e4zpPa71DKez8bKUnqu6k9PTWJqVw828pPbn29hDCS/qwjAAA4DjEK3IAAKDbM5UaUnZIelgI4T0xxo+sMs5OSZ2nZx7U1ZPbas48vEUs5acr/O6c4vOApO+uMp2vdf3/lssMc/kK43dnLlW+74ox/nvXj/8VQni30lNSj1Far1cr9WTX8WSlhihJ+vsY42O7fjcr6aMhhM8oZTTdTdILQgj/EWP8VNVlBQAAxxeeYAIAAL8UY9yj1CjRcWEIYdMqo207zNkNhBD68VSPs2+F320tPq8rXmNbyS+6/r9lmWFWCu7unn7fe84rXst7kqQri6KHhRDGugbp7Mvdkp6xzDRmlBqoOq/4LRcWDgAAsCwamAAAwEFijB+W9E/FjzuUeklbSfeTOW+TdJtD+Lfs63QrKHP/slLD0aE09DS6/r8ug65jjHNKPeJJ0pCKfKkQwgYt5S59caUe7GKMP5L0neLHO6zRogIAgGMYr8gBAADnKZLOU3ra5zEhhPeuMGx3/lAzxvi/hznPTqPQag1AGw9z+h2d5d0WQqit8hTTiWa8I6II7b6RpJNijB9fZfBdXf8fKj4nusr2lJhlpwe5qtsXAAAch3iCCQAAZIru6rtfqXqLpPFlBv+xlp5E+j+rTTuEcH4I4fEhhHv1/KrT89xQEU7txh2VdCi92znfLj4nJN1ilWG71+fiivM9VBdJ+m+lnKTV1vlGXf/vhJvv0tJTVzfS6k4pPq9ZcSgAAACDBiYAAGDFGC+S9Mnix52SHrnMcAuSPl/8eMsQwl2Wm2YI4TxJr5T0JknP6/l191M2O5eZxL0kDa603CV8uuv/j19l2Cd0/f8zFed7qL5cfNaUMpKsEMJJkh5Q/Hhxp/e84tW5/y7K7xxCOGuFadxK0s175gsAAFAaDUwAAGAlj5e0v/j/Sg07f9X1/38IIZzWO0AIYbvSk1Adf9MzyLe7/v9UM/6Jkl614tKW81FJlxb/f1II4bfcQCGEF0i6e/Hj5yq8+ne43iFpqvj/80IIWS92RUj6+7X0dNkrewZ5Q/FZl3RRCCF7/S2EsE3Su7qK/rbKQgMAgOPT8ZrBVLb7ZAA3TH3vqQk4XsUYfxpCOF/SG1cZ7t9CCBdKeqLS61jfCiG8VtIXi0FuJ+mZkk4ufv5wjPGfeybzHkkvVLo/eVrRePJeSbNKr6o9vRj/Ryr3ytdyy9oMIfx+sWxDkj4QQniXUrD5NZLOkPRHku5bjHKdpEcd7vwqLOfVIYQ/lXShpA2S/qvYpl9Q6iXv9kqvMe4sRnmvpHf2TOZdkn5H0oMk3Ulpv/yt0pNNzaKss10l6bUxxv9Yo1UCAADHsOO1gQkAAJT3JkkPl3S3VYZ7qlJj0NMlbZb04mWG+5Ck3+stjDFeGkJ4utKTTXWl18K6Xw1rKb1Wt1XSsw5h+TMxxq+FEO4n6X1KmU5/UPzr9T+SHhZjvLLK/A5XjPFNIYRhpSe3RiQ9t/jX60JJT+sNLI8xtkMIvyvp7yX9rlLj2avN+G2l3gLP7+PiAwCA4wivyAE
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcXFWd9/FvVXV1dzp7Qja2QCIcFEUEBHlgRBQRRBZXBJQHXMD9EdQZwRFEERVHQVkGEUFgRFBARhwcRcCFQQZUQNkORAmBANmX7nR6q6rnj3MrXenzq+rbuZWkk3zer1de3XX6Lufeuvd06tf3fm+uUqkIAAAAAAAA2FD5zd0BAAAAAAAAbNkoMAEAAAAAACATCkwAAAAAAADIhAITAAAAAAAAMqHABAAAAAAAgEwoMAEAAAAAACATCkwAAAAAAADIhAITAAAAAAAAMqHABAAAAAAAgEwoMAEAAAAAACATCkwAAAAAAADIhAITAAAAAAAAMqHABAAAAAAAgEwoMAEAAAAAACCTls3dAQAAsGk5534r6ZDk5b9677+acr5LJX08ebmr935+83sHi3Nue0kfk/QWSS+TNFbSckkPSbpR0o+89wMbsNxPSvpu8nLY99Q590pJn5F0qKRZklZLekLSdZKu8d6XRtoHAACwdeAKJgAAtm1fdM69fHN3AvU5594jyUv6gqT9JE2SVJQ0Q9IRkn4o6T7n3A4jXO6ukr42guk/KOkvkk6RNFtSq6TtJP2TpO9L+r1zbvJI+gAAALYeFJgAANi2tUn6gXOO/xOMQs65N0m6QdI4ST2Svi3pcEkHSDpB0u+TSV8r6Q7nXEfK5eYk/UDhSqg00x+uUEQqSlok6ZOSDpR0rKRfJZP9H0k/TZYNAAC2MdwiBwAADpT0KUkXb+6OYFBSqLlUUkGhuHSo9/7+mkkecM7dJOlySR+RtJekT0u6IMXiT1e4zS1NP4rJOnKSlko6wHv/bM0kP3fOXaZwC9+bJL1b0k/SLBsAAGw9+GslAADbrrKkam7PV51zczZnZxA5UNIeyfffHVJckiR57yuSzpC0OGk6ebiFOud2lnRh8nJpin4cI2lu8v3XhhSXqs6U9ELy/edSLBMAAGxlKDABALDt6pf0zeT7DoVboDB6/FPN9z+vN5H3vkfSvclL55xrG2a535c0PpknzZVG70i+ViRdX6cPvZJ+lLzczzm3S4rlAgCArQi3yAEAsG07T9LbFa6UeaNz7sPe+0yFpiQ0/BMKt0vtqHBr1XOS7pF0iff+8Trz/Vbh6Xa93vv2Bst/VNKekp713u8y5GeV5NszJP2Xwi1mBysU0+ZJ+rz3/jc100+Q9CGFLKFXKhRelik8ne2nkq63ns6WFFCeSV6+XaEAdIrCFUR7JstZqJBP9C3v/d/rbU8DDyiEcG+f9L2R2tyjdkm91kRJUPfhCrfcfUghS2k4ByVfH/feL2kw3e81ePXSGyVdnWLZAABgK7GtXsFU4R//+LdV/xstNvd+4B//zH/777//IZLU2tra5r3vueGGG/bI58N/CcaPH3/lokWLzPlOOumkjytx1113PWNNc9lll1UKhcLjCnk8TiFEuiP5/iP5fP6xSy65pFKpVBr2q1H/d9tttz0laYcddpht/FySdOqpp140ZcqUpxSKKR2SJuZyuX3vuuuuO6vT3n///ZVp06atkvQtSa+XNEUhxHqmpCMlXb377rv3L1iwwOpHrQ5Jv1EIzT5E4clqbZLmSPqopMecc2/VCHnv7/Hen+29P8V7v6jedElGUrUItMp7v6rOdDsk2ypJ53nv/XB9SELDd05ePj3M5LVFNJ5MCADANoYrmAAA2Mbtu+++Oumkk3T99ders7NT5557rq644ooRL+eSSy7RpZdeKklyzunEE0+Uc07lclmPPfaYrr/+ei1YsGDdNJ/8ZJqLZzbMtddeq0qlog996EM69NBDtXTpUj3xxBPacccdJUkPPfSQTj/9dPX09CiXy+noo4/WkUceqe22207PP/+8brnlFt1777166qmndOKJJ+rWW2/V9OnT663uWwpFqfslXSbpKUmzJH1c0psVik0/dM7N8d53bYTN/YCkaud+1WC6KyVNVLg6699SLnt7DV4dtWCYaZ+r+X6HlMsHAABbCQpMAABAZ555pu6++24tXLhQ99xzj26//XYdffTRqed/7LHHdPnll0uSjj32WF1wwQVqaRn8b8a+++6rd73rXTr99NP1wAMP6LLLLtORRx6pl73sZU3fFkkql8v6yEc+ojPOOGNd2xFHHCFJKpVKOvvss9XT06N8Pq+LLrpo3c8kaa+99tJb3/pWXXrppbrkkku0ZMkSnXPOOY2KbjMVsolO8d6Xq43OuZ9L+oWkt0qaJukoSTc1czudcy+T9PWapm/Vme7kpB8Dkj5g3fZXx5Sa7zuHmXZNzfeTUi4fAABsJbbVW+QAAECNjo4OfeUrX1n3+qtf/aqWL1+eev6rr75a5XJZkyZN0nnnnbdecal2HRdccIFyuZwqlYquv97Mi26aE044wWy/55579I9//GPdNLXFpVqf+MQntP/++6+bZ968ujFIPZI+XVtcktY94a02z+rVI+j+sJxz0xUKWNVizlXe+weM6WZKujh5eaH3/uERrKY2MLyn0YTJ9lazn4YLGgcAAFsZCkwAAECSdNBBB+kd7wgPDFuxYsV6BadGKpWK/vCHP0iS9tlnH40ZM6butDvttJPmzg1PvL///vsz9ri+GTNmaObMmebPqn2VpOOPP77hck488URzviH+7L2vV42rzSUa33BlI5AUje5SyLaSwm1vn6oz+RWSJkt6UtKXR7iqUs33Q7OnGhnJtAAAYCvALXIAAGCds846S3/4wx+0ZMkS3XHHHTrqqKN02GGHNZzn+eef16pVIVf67rvvlnOu4fS1820ss2bNqvuzp58OWdUdHR3afffdGy5n7733Xvf9U089VW+y+Q0WUZu51JT/dznn5ipkLc1NmrykI733a41pT1B4Ql5Z0ge99+bT5Rqo7X/dJ/sl68pp8Mqlhlc7AQCArQ9XMAEAgHUmTJigc889d93rL33pS1q9enXDeVasWLFB6xoYGFBX18bIvJbGjRtX92crV66UJE2ePFm5XK7udJI0derUaD5Do42ovZKn8cpScM4dKOmPGiwuPSbpUOspc8ktdN9NXl7mvb9vA1ZZm7s0dphpa3+e/v5KAACwVeAKJgAAsJ43v/nNOuKII/Tf//3fWrJkib7+9a/rggsuqDt9qTR4F9U73/lOvf/970+9rka309VTLpeHn6iBSiX93Vu168rnN+/f5Zxz75Z0nQavJPpfSUd575fVmeW7kraTtErST5xzexvTbFfz/Succ5MkqSanaaFCMHiLpJ2G6WLtz18YZloAALCVocAEAAAi55xzju6//36tXLlSt9xyi4466qi6006cOHHd94VCQS9/+cszrXu4AlBn53APM2us2t8VK1aoUqk0vIpp6dKl0Xybg3PuY5Iu1eBVUP8l6T3e++4Gs70u+TpRUt0AqRr/VfN9TpK8933OuXmS9tDgVVP11P788RTrAwAAWxFukQMAAJGpU6fqrLPOWvf6i1/8otaujSJ+JIXg7uqVSA8/PPwDyq688krdeOONuu++9e/Yqj55rr+/f72romr19PRs8C15VdWMqO7u7nV5TPU88sgj676fM2dOpvVuKOfcRyVdpsHi0vclHTtMcamZqmnseznnJjSY7vU136cpaAEAgK0IBSYAAGA67rjj9PrXh5rBwoULdfvtt5vTFYtFHXDAAZJCEPaf/vSnusv84x//qG9961s699xzdcUVV6z3s/HjBx+ytnDhQnP+++67T/39/SPajqEOPvjgdd/fdNNNDae98cYb131/0EEHZVrvhnDOHaZw5VLVV733p3nv7QpcDe/9Lt77XKN/CoWrql1r2mvdnHwtSDq5Tj/bJJ2UvHzEe/9Mqg0EAABbDQpMAACgri9/+csaOzZkNzcq7Jxyyinrvj/rrLP04osvRtMsW7ZM55xzzrr
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x1200 with 8 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4ZVWd7vE352SuKqqgoBgUmYSljQrSiqJ24zy28yyoiC3O7XRblG4H1PaqtLOidiPihDOi9pV2RG2nhusVWxyWIJQoUBTUnKQynXPuH2vHpM56k+xkn6pKrO/neepJsrKHtaeVyi97v7ur1WoJAAAAAAAAWKza3u4AAAAAAAAAljcKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKike293AAAA7FkhhO9JOrX48p9jjP9Scr4PSHpx8eVRMcb1ne8dyggh9Er6f5KOl3RKjPGn80x/gaTnlly8PbYhhB5JTyv+3V3SgZJ2SrpO0n9Kel+M8eay2wAAAP6ycAcTAAD7tteFEO68tzuBBfvfSsWlsu5eZWUhhMMl/UTSJyQ9UtKhknok7SfpREmvkfS7EMITqqwHAAAsXxSYAADYt/VJ+mgIgf8TLBMhhNdKeuUCpu/WdDHqAqVi01z/bmqbf0DpDqW/Lpq+Lenpku4l6aGS3itpXNJKSZ8LIdx/EZsFAACWOR6RAwAAp0j6B0nv2dsdweyKx+LeK+kFC5z1zkqFREn6dozxqgXO/zJJf1V8/u4YY3tx61shhC9L+qakXkkfCiEcH2NsLnA9AABgGeOvlQAA7LuakiaLz/8lhHD03uwMZhdCOFnSjzRdXGosYPYTZ3y+0OKSJJ1ZfLxR0tlughjj9yV9pPjyTpJOXsR6AADAMkaBCQCAfdeEpPOKzwcl/fte7AtmEUJ4m6SfSrpH0fQVLexus6n8pWFJ1yxw3QdLOrb48rIY48Qck39rxucnLGQ9AABg+eMROQAA9m3nSnq80l0nDwwhPC/GWKnQVISGv0TSgyTdXlKXpD9KulzS+2OMv55lvu8pvd1uLMbYP8fyr1bKFPpDjPHItu+1ik9fIen/SPqApPspFdOulfSaGOO3Z0y/n6S/l/RYSXeRtErSJkk/l/QFSZ+MMU6qTQjhSEnXF18+XtJXJZ0h6VlF31Yp3fHzDUnvjDH+frbtKeHeSvtws6RXxxg/GkJ44wLmn7qD6ReLeGytKel1kg6T9L15pu2a8fmsxw8AAPxlosAEAMA+LMY4FkL4e0k/ULqz+bwQwtdjjDcuZnkhhNdJeoOkevu3in9nhRDeLOncGGOrff4OOlzpkbKDZrSdpFRkmurrAyR9WumNaDMdIukRxb9XhhAeN0+BaFAp+PoBbe1HS3qhpDNDCE+IMX59MRsiaYukt0t6e4xxyyLmn7qb6KoQwmOUHnm7t6QDJN2mtJ/OjzFe3j5jjPFWSW8puZ77z/j8D4voJwAAWMZ4RA4AgH1cjPFHkj5YfLla0ocXs5zirpo3KRWX/kcpL+g+SncQvUzS75X+7/GG4t/u9HJJB0p6h6S/kfRkSW+NMa4v+nqK0h1Oh0pqSfqUpMcovRntaUqB1VK6q+m/QgjtRaiZ3qlUXPqppGcWy3icph8Z65N0UQhh5SK35YkxxtcsprgUQriDUiFJkk5XerzusZIOltSjtP1PkvTdEMJHijfOLVgIYZ2ms5omlO5WAwAA+xDuYAIAAJL0WkmPlnSkpL8LITwjxnhx2ZlDCCcpPUolSZ+UdGbbo2U/CiF8VNJ/KN3p8voQwudne1yuA2pKBaV/mtH2xaKvdUkXShpQegTsqTHGL86Y7gpJnwshvF7pEcJDlQKsHzPLug5R2uYzZj6CFkL4qtL2PlLpTqpHSfrcQjek4tvY7j7j8/0k/ULS+ZKuVip83V/SSyXtL+kspWLbgt5SF0LoknSBUnFSki6IMW6r0GcAALAMcQcTAABQjHFYqcAw5b0hhINmm954ldL/KzZJeoHLLSrWcaZSEaNLqbCxO31olvZHK2VOSdKH2opLfxZjfJOmc4ceHUL4q1mWNyrp5e2FoOIRwJl5Vnsj+HrmG+Q+KukeMcZ/izH+OMZ4eYzxDUpFqKlH2p4fQrj/AtfxLqV9Kkk3afffnQYAAJYgCkwAAECSFGP8lqSPFV8eKOn9ZeYr7mB5RPHlj2KMI3Os43pJvym+fNAiu1rGjTHGP83yvYfN+Pwj8yzn/BmfP3yWaX4WY9w8y/dmZjetmmddu8N5SoWtR2v2wt8flILOp7y87MJDCOfNmH5c0tOK3CYAALCP4RE5AAAw0yuVCimHSnpqCOEzMcavzDPPkUqPWEnSY2a8yW0+Ry2ui6X8cY7v3aX4OKT0qNhcfjrj87vOMs36OeYfmvH5Hv9/V1Hs+5/i31zTfTuEcL3SMXlgCKFrrhD2IqvpQ5ouTE1KOi3G+F+d6TkAAFhuuIMJAAD8WYxxq6QXz2j6UAhhzTyzHbjI1XWHEHbXXT3b5/je2uLjbSXeZHfLjM8PmGWaoVnapfQ44JSueda1t/2i+LhK0wXDTHHMvqbp4tLUnUv2UUMAALBv4A4mAACwixjjl0MIX1B689qhSm9Je+4cs8z8/8SFKvloXWHWx+nmUOYPZHMVjhZS6KnP+LxK2PZyMPNY9LoJQgi3U3r73lSe1LDSW+6+sZv7BgAAljgKTAAAwHmJpAcq3e1zZgjhs3NMOzN/qBFjvGqR65wqCs1XAFo9z/fnM9XfA+d7FEzSwWa+ZSGEUFM6hgdJGo0xfnmeWdYVHxsy2xpCOE7StyTdoWjaKOnvYoxXdqbHAABgOeMROQAAkIkxbpT0ihlN/yZpxSyTX6fpu1/uPd+yQwhnhxCeH0J4cNu3pgKoe0MI9fb5inkHlAomVUzlEa2UdPw8087cnt9WXO8eVbzV7ouSLpZ0fhHGboUQ+iTds/jyf2KM423fP1rS5ZouLl0r6RSKSwAAYAoFJgAAYMUYPynpsuLLIyWdNst0E0rFB0m6awjhfrMtM4TwQElvk/RhSee0fXvrjM+PnGURD5bUM1e/S/jmjM+fP8+0L5jx+bcqrndv+EHx8RBJD51jujM1fWfYLnerhRAGlR6LO6xo+rmk+8QYr+tgPwEAwDJHgQkAAMzl+ZJ2FJ/PVdh514zPLwohHN4+QQhhndKdUFPe1zbJzDedvdTMf7Ck8+bsbTlfVboDR5JeFEJ4vJsohPA6SacWX36nwqN/e9P5Mz5/XwghC2QPIdxL0juKLzdo12MkpX1+p+Lz30t6UIzx1k53FAAALG/7agZT2dcnA1ielsqbmhhrsCSdfPLJuuKKK9Tb29unec7TGKMuvvhinXvuubu0f+c737m+fbo3vvGN+sxnPiNJx6xevfqGD3zgAzr55JMlSVdffbXWrVunjRs3SpIe8pCH6AMf+MAumUDf/OY39chHPlKTk5OS9LJzzjnnZY961KPU19enq6666s/z3+EOd9ANN9yg293udkfM1v/73e9+D5vtezFGXXXVVTr99NM1MTFRq9Vql5x99tl6+MMfrrVr1+rGG2/UF784/UK0/fffX1/5ylce1La8o+bab0tFjPE/QwgXS3qGpOMk/TyE8A5JVyo98vgopbcG9kqakHRG8SZBSVII4UhJZ81Y5FslHRFCOGKeVW+IMW7o2IYAAIAlb18tMAEAgJKe/vSn6+tf/7quvHLuuJ3Xve516uvr08c//nFt27ZN73+/f5ncQx/6UJ13Xn4j0hFHHKFzzjlHb3nLW9RsNvWlL31JX/rSl/78/Vqtple+8pXaunWrLrzwwkrbdOKJJ+qCCy7QK17xCm3evFmXXnqpLr300my6448/Xu9+97t18MEHm6UsG2cqvQHvdEm3V37nmJRCvZ9j3gZ3pnb9/+JHS67zXElvXFg3AQD
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAZYCAYAAADaI3gtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYXFdh/vF3dravenEvsg0cU4wppgZiWgiQACHU/EKH0AkEQk3oGEIogRCwk1BDcQKETiiB0EIogQDBGA6xkcFVVpdW22f298e5g0Zz3t29u3dWWknfz/PoWe3Z28u5d87c+57a7OysAAAAAAAAgKXqOdILAAAAAAAAgKMbDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAAAQCU0MAEAAAAAAKASGpgAAAAAAABQCQ1MAAAAAAAAqIQGJgAAAAAAAFRCAxMAAAAAAAAqoYEJAAAAAAAAldDABAAAAAAAgEpoYAIAAAAAAEAlNDABAAAAAACgEhqYAAAAAAAAUEnvkV4AAAAAAMCKNnukFwDAsqp1YyI8wQQAAAAAAIBKaGACAAAAAABAJTQwAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohF7kAAA4zoQQvibpwuLXv4wxXlRyvL+T9Mzi17NijFd1f+lQRgihX9L/SLqlpLvEGL9TcryHSXq0pAskbZa0X9IPJb1X0qUxxnl7igoh3E3pGPgtSSdKmpD0C0mfkvSOGOPuJa0QAAA46vEEEwAAx7eXhRBufqQXAov2eqXGpVJCCGtDCF+W9FFJD5Z0qqR+SRsl3UfShyR9LoQwOM803ijpm5IeJen0Yvw1So1Vr5H0kxDC7Za0NgAA4KhHAxMAAMe3AUnvDiFwT3CUCCG8RNLzFjF8n6QvSrp3UfQdSf9P0p0lPUbST4vy+0u6eI5pPFfSnxe/7pH0Ikn3kPQQSf9clJ8q6fMhhJPKLhsAADh28IocAAC4i6Q/lfTWI70gmFvxWtzbJD1tkaM+X9Kdiv9fKukxMcZG8ft3QwifkPRtSedJenwI4Y0xxsvb5jsk6VXFr/skXRBjvLJt+p8MIVwu6dWSTpD0UqXjCQAAHEf4thIAgONXU9JM8f+LQghnH8mFwdxCCHeU9C0dbFxqzDN4+3iDkl5S/HqlpMe1NS5JkmKMByT9RVvRQzsmc1elV+Ek6ZKOxqWW10m6sfj/A8ssGwAAOLbQwAQAwPFrWtIbi/8PS/rHI7gsmEMI4a+UXmu7oCj6lMo/bfZ7Otg49PIY4/Qcw31J0j8pPSF1WcffTmj7/y/cyEWj1c+KX08uuWwAAOAYwityAAAc316llKNzrqR7hRD+JMZYqaGpCA1/llLmz2mSapKulvRVSW9vf/2qY7yvKfVuNxljnC9s+jKlgOtfxRi3dPyt1Qvan0n6nKS/k3Q3pca0KyS9OMb45bbh10h6slLw9a0krZa0U6lntY9K+kCMcUYdQghbJG0tfn2IpE9LerykxxbLtlrStUrZR2+e46mfsu6stA13SXphjPHdIYRXlhz3/sXPKUmfmGugGOOkpMfN8efr2v5/7jzzOscMDwAAjhM8wQQAwHGsaFh4stLrcpL0xhDCqUudXgjhZZJ+IukZkoKkEaWno4LS610/CSG8MoRQq7TgCztd6ZWy+xbzXyvpdkqNTK1lvaekn0t6s6TflrRBUp+kk5QaZt4j6YchhHM0v2FJX5b0bqUGsk1K4elnS3q6pJ+GEB5QYV12S3qDpJvEGN+9yHHPK37+NMY43ioMIQyHEG4WQjijRMD7dyVtK/7/lBDCmZ0DhBCeqdSYKKWGOQAAcJzhCSYAAI5zMcZvhRDeIenZSg0xl2gJOTrFUzWvKH79X0nvLH72SLq9UvDzOW3DvLLKci/guUpP/fy1pM8oNRrdJsZ4VbGsd1F6wmlI0qykD0n6iFJDylmSnqjUOHUrSd8MIdw+xnj9HPN6czH970h6h9JrZCdLeqak31FqbHpfCOHsGOPoEtbloTHG5sKDWbcofv5KkkIIFyrlLd1LUr342/YQwnslXRRj3Nc5gRjjRNGA9M9Kr9v9IITweknfV3pS68GSnlQM/gNJr1/isgIAgKMYDUwAAEBKQdAPlLRF0u+HEP5fjPHDZUcOIdxO0suKXz8g6Ykdr5Z9K4TwbkmfVere/uUhhI/M9bpcF/RIel2MsT28+mPFstaVnk4aUnpy65Exxo+1Dfc9Sf8SQni50iuEJ0v6e0kPmmNeJymt8+PbG4JCCJ9WWt8HSNqslIf0L4tdkaU2LoUQBiStKn7dE0J4qaTXKjW8tdss6YWSHhRC+N0Y46/NMvxr8cTXG5RCv9/UMUhDqWHpr2OM+5eyvAAA4OjGK3IAAKDVk9hT2oreFkLYvIhJPF/pvmKnpKe53KJiHk9UemKopvTE1HK6eI7yB+pgltDFHY1LvxFjfLWkr7XGCSHcwg0naULSczsbgmKMszo0OP38MgvdRava/n8vSRdJ2i7pT5SCuwcl3UnS54thzpX0yaJh6hAhhH6l1/+2zDGvuqQ/KIYBAADHIRqYAACAJCnG+O+S3lv8uknS28uMV+QptcKkvxVjHJtnHlt1sLexey9xUcu4NsZ4zRx/+922///9AtN5Z9v/7zfHMD+IMe6a42/t4d6rF5hXtw23/f8Mpca/u8YY3xVj3B5jnIwxfk+HPll1Wx183U2SFEIYUXqd8LWSTpH0Pkm3UWqg2izpj5UCz28l6dMhhCcv2xoBAIAVi1fkAABAu+cpNaScLOmRIYRLY4yfWmCcLZLWF/9/UFtPbgs5a2mLWMrV8/ztVsXPUUmXLTCd77T9/7w5hrlqnvHbM5cO933XeMfvr3K92cUYZ0MIz1HqDa9f0qN1aMPaayTdp/j/y2KMr23726SkD4cQvqAUqn6upEtCCN+OMf60S+sBAACOAjzBBAAAfiPGuEcpnLrl4hDCugVG27TE2fWGEJbrqZ4srLrNxuLnjuI1tvlsa/v/hjmGmS+4u336y91zXqfOLKRPzDVgjHGbUvaUJN2h1ctfCKFP6ZU6KYWXv26O8Xcp9Rwopdflnr7EZQYAAEcpGpgAAMAhYoyf0MGu5k9W6iVtPu1P5rxH6TWrsv/mfJ1uHmXuX+ZrOFpMQ0+97f9L7cntiIgxTkra3VZ03QKjtJ766pXUalS8uQ5mOf3bAoHjX5O0p/j/ncovKQAAOBbwihwAAHCepRQMvVHSE0MI/zzPsO35Q40Y44+WOM9Wo9BCDUBrlzj9ltbybgoh1BZ4iulEM97R5CeSfrv4/zrNvw6tcO+GDj4B1h4UvkfzKF61217Mp+o+AgAARxmeYAIAAJkY442S/qyt6B8kjcwx+C918EmkOy807RDCi0IITw0h3KfjT62e5/pDCPXO8Ypxh5SCpav43+LnKkm3XGDY9vX5ecX5HgntGVIL7ZvWtrgmxtgo/r+97e/nzDdysc9OKn69sfQSAgCAYwINTAAAwIoxfkAHu7DfotRbmBtuWtJXi1/PCyHcba5phhDuJemvJF0i6aUdf25/QmbLHJO4j6S++Za7hC+1/f+pCwz7tLb//3vF+R4J7U+ePWOugUIId5QUil8/2fanKyTdUPz/QSGE+Z5M+n0d7Cnvm4tcTgAAcJSjgQkAAMznqToYFj1fw85b2v7/vhDC6Z0DhBBOUHoSquVvOwb537b/P9uMf6KkN867tOV8WqnhRJKeEUJ4iBsohPAySRcWv36lwqt/R0yM8Yc62DD2e0VvcYcIIWyQ9O7i1xlJ/9g2/qwO9ii3VtJ7QwgD6hBCOLttuCkdup8BAMBxgAwmAAAwpxjj1SGEF+nQbuvdcP8RQrhYqfewcyT9OITwVklfLwa5QNLzJJ1S/P6JGOMnOyZzqaSXK92fPKfoYe6fJU0ovd713GL8K7XA61oLLGsjhPCYYtn6JX0shPBBpWDzGyWdKelJkn63GGWHpMctdX4rwFOVeojbJOmtIYR7Snq/Uuj3+ZJeooNPjF0UY/x
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x1800 with 12 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZXV9//H33Dt9G8vSF6UY/ajYC2rsYkeJ/kzsBfwZe6JgIpaoqKAkxICCjShqNNhQwSSa2H7R2EATiKLyVQQUUOqybJl+7/39cc64d+f7ntmzc+4sO+zr+XjwmJnvnPI97Tvcz57zPn2dTkcAAAAAAADAYjVu6w4AAAAAAABgeaPABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFr6b+sOAACAXSsi/lPSI8sf/yaldErF+c6S9Kryx8NSSlf1vneoIiIGJf2PpCMkPSSl9MMK89xH0l9KerSkAyVNSPqppM9I+khKaXIH818u6U4VuveblNKhFaYDAAC3I9zBBADAnu0tEXG327oT2GnvVlFcqiQiTlJRkDpO0qGShiStkfQwSWdJuiQiDltg/tWSDl98dwEAwO0ddzABALBnG5L00Yh4WEqpfVt3BjsWEW+UdMJOTP8WSW8rf5yW9AFJ/6LiDqZHSPprSXeV9IOI+OOU0hVmMfeW1Fd+/3JJFy6wyqmqfQMAALcfFJgAAMBDVDw6dcZt3RHMr3ws7r0qCjxV5wlJJ5U/jkt6YkrpO12TfC8iPifpu5IOkPQ+SU8xi7pP1/fnp5Su34muAwCAPQCPyAEAsOdqS5opvz8lIngEajcVEUdK+p62FZdaFWd9lbb9/96b5hSXJEkppV9Lem3549ER8ci502hbgek6iksAAMChwAQAwJ5rWtJp5fejkv7xNuwL5hERp0r6oaQHlE0XqPrdZo8pv05I+vAC050naUv5/bPM7+9bfr244noBAMAehkfkAADYs71d0tNVZPA8JiL+PKVUq9BUhoa/WtJRkg5Wkd1ztaT/J+nMlNLP55nvP1W83W4ypTS8wPIvVRFwnb2tLCI65bfHS/o3FQHWD1NRTLtc0htSSt/omn61pJdI+hNJ95C0StLNKgopn5f0yZTSjOaIiEMlXVn++HRJX5Z0rKQXln1bJelaSf8h6T3lXUKL9WAV+3CDpNenlD5ahnZXcUj59ScppfH5JkoptSIiSbq/ikcm/yAiBiTdvfyRAhMAALC4gwkAgD1Y+Wr6l6h4XE6STouI9YtdXhko/VNJr5QUklaouDsqVDze9dOIOCki+uZfSk/cQcUjZY8v179G0v1UFJlm+/poSZdJeo+KsOu9JQ2oyCJ6kqRzJF0cEXfawbpGJX1D0kdVFMj2URGefrikV0j6WUQ8uca23CLpbyX9UUrpozs572D5dXOFaafLr3ee0343FdsjSb+IiFdGxHciYmNETETE5RHxwQr7CQAA3I5RYAIAYA+XUvqepPeXP66R9KHFLKe8q+YdkpqSfqKioPTHKu4geo2kX6v4f4+3adtbzZbKa1UUev5O0sMl/Zmkd6WUrir7+hAVdzgdKKkj6VOSjpH0IEnPlvS1cjn3kPRfEXHgAut6j6RHq3iM7QXlMp4m6evl74ckfTwiVi5yW56RUnpDSumWRcx7U/n14ArT3qH8uiIiVnW1dwd8v7/87+EqzpUhSXdScax/HhEvWUQfAQDA7QCPyAEAAEl6o6SnSjpU0lMi4rkppXOrzhwR95P0lvLHT0p68ZxHy74XER+V9K+SHiXprRHxufkel+uBhoqC0pu72s4r+9pUcXfSiIo7t56VUjqva7qLJH02It6q4hHCA1XkFx0zz7oOULHNx6aUZu8EU0R8WcX2PlnSvpKOlvTZnd2Q7mUuwoUqHuGLiLj7Ao8n3ldS951rK7Ttrqf7drWvlvQvKrb3tyq262mSXqTibql/jIgtKaXP1OgzAABYhriDCQAAKKW0VdJLu5reGxH77sQiXqfi/ytulvRyl1tUruPFKu4Y6pP0F4vvcSUfnKf9qSoypyTpg3OKS3+QUnqHpP+cnSci7u6mUxGg/dq5haCUUkfbB6ffu0qne+yTXd9/OCKybKuIGJL0vjnNA13fz97B1FFRODwmpfT5lNKFKaV/TSm9REURbfYRuw9FxF496j8AAFgmKDABAABJUkrp65I+Vv64j6Qzq8xX5ik9qfzxeymlsQXWcaWkX5Q/HrXIrlZxbUrpmnl+94Su7xd6s5okfaDr+yfOM81/p5Q2zPO77nDvVfNMs5TOl/St8vuHqbiT7EkRsTIiRiPisZK+Xf7u2q75prq+f4aKx/4ek1L6mIzy3Pm78sc1KgLPAQDAHoRH5AAAQLcTVBRSDpT0rIj4dErpgh3Mc6ikteX3x3S9yW1HDltcFyu5eoHf3aP8ukXSpTtYzg+7vr/nPNNctcD8W7q+3+X/35VS6kTEsyR9RdIDVQSdf8VM+jEVj7zNZmNt7VrGBhWPDe7I2ZJmH0l8rKQzFtltAACwDHEHEwAA+IOU0kZJr+pq+mCFx532WeTq+ueESffSpgV+t678elP5GNtCru/6fu95ptkyT7tUPFY2a6nfnGellG5S8Za8v1FeeLtI0jNTSi+WNHuct6aUFtqm+dbzW0kbyx/vuMjuAgCAZYo7mAAAwHZSSl+KiM+rePPagSrekvZ/F5il+/8nzlHFR+tK8z5Ot4Aq/0C2UOFoZwo9za7v64Rt36ZSShOSTpF0SkSsV/G43u9SSt2FuNlcqqtqrGpMRaFqsMYyAADAMkSBCQAAOK+W9BgVd/u8OCIWeitYd/5QK6V0ySLXOVsU2lEBaM0ilz9rtr/7RETfDu5i2t/Mt6yllK6d21a+We8B5Y+XdLWvlfRgSftJuiyldOF8yy2XMXt32A096zAAAFgWeEQOAABkUko3SDq+q+lsFa+ud67QtjuRHryjZUfEiRHxsjJgutvsm+cGy2KFm3dE0s683c75Sfl1paQjdjBt9/ZcVnO9u1xEHBURfxsRHyvfFjefR2hbcejrXe2Hqshs+riKfK6FPEDS7Dp+vPO9BQAAyxkFJgAAYKWUPinpq+WPh0p63jzTTUv6f+WP94yIh823zIh4jKRTJX1I0pvm/Hpj1/eHzrOIx0oaWKjfFXyt6/uX7WDal3d9//V5p9p93VXS61W81e1RC0x3Yvl1i4o3z826VNLN5fdHR8Q6za+7ALXQHW8AAOB2iAITAABYyMskbS6/X6iw8w9d3388Iu4wd4KI2E/FnVCz3jdnkp90ff8XZv79JZ22YG+r+bKky8vvXxkRT3cTRcRbJD2y/PGbNR79uy1dIKlVfn9yRGTHMCLeJOkJ5Y+np5Runf1dWTz8SPnjChWh79ndZRHxKknPLH/895RSlbfOAQCA25E9NYOp6uuTASxPt8mbmgzGGuyWjjzySF100UUaHBwc0g7O05SSzj33XL397W/frv2b3/zmlXOnO+mkk/TpT39aku60Zs2a35511lk68sgjJUmXXnqp9ttvP91wQxHN87jHPU5nnXXWl7qX8bWvfU1PfvKTNTMzI0mvedOb3vSao48+WkNDQ7rkkkv+MP8d73hH/fa3v9X69esPma//D3vYw54w3+9SSrrkkkv0/Oc/X9PT041Go/HFE088UU984hO1bt06XXvttTrvvPP+MP3atWt1wQUXHDVneYcttN92FymlayLiAyoKdg+Q9IOI+AcVjzWuVxHe/qRy8oskvcss5hRJT5MUKoLf7xgR71VRpDtI0gsl/Z9y2mskvXRptgYAAOzO9tQCEwAAqOg5z3mOvvKVr+hHP/rRgtO95S1v0dDQkD7xiU/o1ltv1Zln+pfJPf7xj9dpp+U3Ih1yyCF605vepJNPPlntdltf+MIX9IUvfOEPv280GjrhhBO0ceN
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJFd59v+7w+SZzavV7molrYQ4IhsQBmww0RhMfgnCJIsMJglMsHlBBBMNIppkk0w0wdjCMrw2IIJJxj+CACE9gFBCCEm72jSzE7v798ep9vbO88xMz9TM7qz0/VzXXrNzpsKp6qrT1aer7lNptVoCAAAAAAAAlqp6tCsAAAAAAACAYxsdTAAAAAAAACiFDiYAAAAAAACUQgcTAAAAAAAASqGDCQAAAAAAAKXQwQQAAAAAAIBS6GACAAAAAABAKXQwAQAAAAAAoBQ6mAAAAAAAAFAKHUwAAAAAAAAohQ4mAAAAAAAAlEIHEwAAAAAAAEqhgwkAAAAAAACl0MEEAAAAAACAUupHuwIAAODISil9XdI9il9fbmav63K+v5P07OLXnWZ2+fLXDt1IKfVK+qGkW0m6q5l9r4t5fk/S8yTdS9JWSROSfirpnyR9wMwmu1jGgKRnSHqEpCRpraTrJX1L0jvN7DtL2iAAAHDM4w4mAABu2l6RUrrF0a4EFu0Nyp1LXUkpvUq5Q+pJkk6W1KfcOXQ3SX8n6ccppZ0LLOO2ki6S9LZivs2SeiVtl3SmpG8V6wEAADdBdDABAHDT1ifpgyklrgmOESmlv5b0wkVM/wpJr5RUkTQt6R2S7qvcSfQySXsknS7puymlU+ZYxk5JF0jaKakl6ZOSHiTprpJeLOmGYvmvTCn9+ZI2DAAAHNN4RA4AANxV+dGptx/timBuxWNx75D0zEXMkyS9qvh1XNL9zeybHZN8O6X0GeVH3I6X9E7ljqPZ3iNpY/H/55jZezr+9r2U0vnKd0gNSHp9SunjZtbotp4AAODYx7eVAADcdDUlzRT/f91cd6/g6Esp/b6kb+tQ51K3nTfP1qHrvZfN6lySJJnZpZLOLn59YErpHp1/TyndVdL9i18/Oqtzqb2MSyS9t/h1m6Q/6LJ+AADgRoIOJgAAbrqmJb25+P+gpH84inXBHFJKb5T0PUlnFEXnqfu7ze5d/JyQ9P55pvucpNHi/2fO+ttji58NSS+fZxkflfQRSW+RdKDL+gEAgBsJHpEDAOCm7dWSHq6cwXPvlNLTzKxUR1MRGv4cSfeRdIJyNs9Vkr4m6V1m9vM55vu68uh2k2bWP8/yf6YccH2FmZ0862+t4r8vkPTvygHWd1PuTPuVpL8ys690TL9G0lMlPVTSrSWNSNot6UeSPivpY2Y2o1lSSidLuqz49eGSviDpLElPLOo2IulqSf8h6dziLqGluovyPrxB0kvM7IOLCNM+qfj5EzMbn2siM2uklEzSHZUfmez0gOLnd83sqnmWcaFyiDgAALgJ4g4mAABuwoqh6Z+q/LicJL05pbR9qcsrAqV/KukvlIexH1K+OyopP97105TSq1JKlVIVX9gO5UfK7lesf62kOyh3MrXrei9Jl0g6V9IfSdogqUc5i+gBkj4k6UcppVMXWNegpK9I+qByB9km5fD0UyQ9S9JFKaU/LbEteyS9SdLNzOyDi5y3t/jZzR1F08XP09oFKaUh5e2QpP/pnDiltD6ldHpK6bhF1gkAANwI0cEEAMBNnJl9W9K7i1/XSnrfUpZT3FXzGkk1ST9R7lD6A+U7iJ4v6VLla49XFv9W0tnKHT1/K+nukh4l6fVmdnlR17sq3+G0VXlUtI9LeoikO0t6jKT/LJZza0n/lVLaOs+6zpV0L+XH2J5QLONhkr5c/L1P0kdSSsNL3JZHmNlfmdmeJcy7q/h5QhfT7ih+DqWURor/n65895QkXZFSqqSUnppSulD5jqqLJV2bUrKU0tMZjRAAgJsuHpEDAACS9NeSHizpZEkPSik91sw+2e3MKaU7SHpF8evHJD151qNl304pfVDS+ZLuKemclNJn5npcbhlUlTuU/m9H2eeKutaU704aUL5z60wz+1zHdN+X9OmU0jnKjxBuVc4vesgc6zpeeZvPMrP2nWBKKX1BeXv/VNJmSQ+U9OnFbkjnMpfgv5Uf4UsppVvO83ji7SV13rk2pHzX06aOsjHlRwGjUeZurryPHpBSOtPMpkrUGQAAHIP4lgkAAMjMxiQ9vaPoHSmlzYtYxF8qX1fslvTMKLeoWMeTle8Yqkh67tJr3JX3zlH+YOU7cyTpvbM6l/6Xmb1G0tfb86SUbjnH8iYknT27I8jMWjo8OP123VR6mX2s4//vTym5bKuUUp+kd84q7il+dt519QrlzqUfKXeajUhao5xfdUkxzcPUfQA5AAC4EaGDCQAASJLM7MuSPlz8uknSu7qZr8hTagdBf9vMDs6zjsuUH6uScgj4SrnazH4zx9/+pOP/842sJknv6fj//eeY5gdmdsMcf+sM9x6ZY5qV9K+SLij+fzflO8kekFIaTikNppTuK+kbxd+u7pivfQfSYEfZiZK+K+kPzexLZjZqZgfM7AvKweC/LKZ7ZkrpViu1QQAAYHXiETkAANDphcodKVslnZlS+pSZnbfAPCdLWl/8/yEdI7ktZOfSqtiVOUc7U85VkqRRST9bYDnf6/j/beaY5vJ55h/t+P8Rv+4ys1ZK6UxJX5R0J+Wg8y8Gk35Y0pU6lI01VvycPfLcM6LR6Mxsb0rpJZL+RfnutMdJeln5LQAAAMcK7mACAAD/y8z2Snp2R9F7U0rrFpht0wJ/n0u9I0x6ue2f528bi5+7isfY5nNtx/83zDHN6BzlUn4csG2lR84Lmdku5VHyXi7f8fZ9SY82sydLar/OY2bW3qbO0ecuNbOfzrOq/6dDI9HduVytAQDAsYY7mAAAwGHM7F9SSp9VHnltq/IoaU+ZZ5bO64kPqctH6wpzPk43j26+IJuv42gxHT21jv+XCds+qsxsQtLrJL0upbRd+XG935pZZ0dcO5fq8o6yazr+3/kIXbiOlNIu5WNmqZ2OAADgGEUHEwAAiDxH0r2V7/Z5ckrpn+aZtjN/qGFmP17iOtudQgt1AK1d4vLb2vXdlFKqLHAX05ZgvmOambmOomJkvTOKXztfv0skzShfM66fPV+gr/i5p0wdAQDAsYdH5AAAgGNm10l6QUfR3ysPXR/5tQ7diXSXhZadUnppSukZRcB0p/bIc71Fh0c074CkxYxuF/lJ8XNY0kJh1J3bc8mcU61SKaX7pJTelFL6cDFa3Fz+SIceHfxyu9DMpiT98NDi5n5cMqV0vA49Rnj50msNAACORXQwAQCAkJl9TNKXil9PVg5ujqablvS14tfbpJTuNtcyU0r3lvRGSe+TD4He2/H/k+dYxH0l9cxX7y78Z8f/n7HAtM/s+P+X55xq9Tpd0ksknSXpnvNM99Li56jyyHOd2nev9Up66jzLeGLH/2cvAwAA3MjRwQQAAObzDB0Kep6vY+etHf//SEppx+wJUkrHKd8J1fbOWZP8pOP/zw3m3yLpzfPWtjtfkPSr4v9/kVJ6eDRRSukVku5R/PrVEo/+HU3nSWoU/39tSsm9himll0n6k+LXt5nZvlmTfETSdcX/X5VS+oNgGXeQdE7x65WKR6oDAAA3YjfVDKZuh08GcGw6KiM1ATdGZnZVSumlkt6zwHQXpJTeK+lZkk6VdGFK6e2SvlFMcoakF0raVvz+L2Y2+y6XTyl3UtQlPb8YYe6fJE0oP6p2djH/pcU6lrpNjZTSE4q69Ur6XErp45I+q9yRcpJyqHm702WXpD9f6vqOJjP7TUrpPcoddmdI+m5K6a3KjzVuV97OBxSTf1/S64Nl7EkpPV3SPys/JnlBSun9ks5XfjTyjyW9qPhbS9KTikfrAADATchNtYMJAAB0732SHqOc0zOf5yp3Bp2tHAj96jmm+7ykx88uNLNfpZTOVr6zqSrpycW/tqbyY3UbJf3lIurvmNn3Ukr3l/Rp5UynJ+rwR7zafij
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZ1V9//H39LKN3pEmHlSIIJqIsWM09hgT1EQNoj81URNsscUeTQzR2HtDDWokGqNir4GoSQRFUD+iAgIiZVl2d3Z6+f1x7tf97ve8Z+bO3JnZBV7Px2MfO3Pm9nLu/Z7vve/TNTc3JwAAAAAAAGC5unf3AgAAAAAAAOCWjQYmAAAAAAAANEIDEwAAAAAAABqhgQkAAAAAAACN0MAEAAAAAACARmhgAgAAAAAAQCM0MAEAAAAAAKARGpgAAAAAAADQCA1MAAAAAAAAaIQGJgAAAAAAADRCAxMAAAAAAAAaoYEJAAAAAAAAjdDABAAAAAAAgEZoYAIAAAAAAEAjvbt7AQAAwNpLKX1T0n2rX/8uIl5bc7y3SXpm9etREXHFyi8dOqWUniDpIzUHf3JEfGie6Rwh6fmSHizpdpJGJf1c0sclvTMixmosy6GSniXpoZKOkDQg6VeSviTpDRFxZc3lBAAAtyI8wQQAAF6WUrrj7l4ILOikphNIKT1U0iXKjUPHKjcM7S3p7pLeIOn/UkpHLjKNx0v6qaQXSfodSZskDUq6g6RnS/pRSulhTZcVAADc8tDABAAABiS9P6XEfcGe68Tq/x8oNzYt9O8/O0dOKZ0g6VxJ6yVtl/QSSb8v6Q8lfawa7E6SPptSGnILkFL6I0kfraaxQ9LrJJ0q6f6S3ixpRtIGSeemlFKjtQUAALc4vCIHAAAk6RRJfy3pTbt7QWDdpfr/uxHxg2WM/zZJQ5LGJd0/Ir7f9rcvpZR+IOn1ko5XfhLpn9pHTiltkvQu5S8nt0l6UER8r22Qb6aULpR0tvITTa+W9NhlLCcAALiF4ptKAABu22YlTVc/vzaldPTuXBiUUkqHS9q3+nXJjUsppZMl3af69b0djUuSpIj4J0mt8ueap9n+StKB1c9ndjQutabxYUkXVr8+MqXUt9RlBQAAt1w0MAEAcNs2Jems6udhSe/djcsCrz1/6aJljP/HbT9/eIHhPlD9f6B2Nki1/Fn1/0+Vn1Kazz8rH0P/ovwqHQAAuI3gFTkAAPAqSY+WdJykB6SU/l9ENGpoqkLDn6Wc0XOYpC5JV0n6hqS3RsSP5xnvm8q9201ExOAC079E0p0lXRkRR3b8ba768TmSPq/8eti9lBvTfi7pRRHx1bbhN0p6qqRHKb8itkHSZuXGnE9K+khETKtDFYh9efXro5Wzj06X9KRq2TZIukY7e1f7xXzrs4hW/tKMpB8tY/zfr/7frp1PGDnfbvv5AZK+KUkppcOUt4sknRsRs/NNICI+pp2ZTgAA4DaEBiYAAG7jImIipfRU5QaGbklnpZTOi4hrljO9lNLLJL1CUk/nn6p/T0spvUbSqyJirnP8FXS4pAsk7d9WdlflRqbWst5f0r9KOrhj3IMkPaT699yU0h8t0kA0LOmryoHX7Y6W9JeSzkgp/XFEnLeM9Wg1MP00L3J6pnID0GGSRiT9UDl8++yImDHjt3oI/MVCjUOS2tevvVfBE9p+/t/WDymlLuWnnfaS9OuI2FZjXQAAwK0Ur8gBAABFxAWS3l792gp0XrKU0iuVA557JF0s6RmS7qn8BNHfKDdidCs3QL2i0UIv7kxJ+ykHVt9b0p9Kel1EXFEt6ynKTzgdLGlOuZHmkZJ+T9LjJH25ms7xkv4rpdTZCNXuDcqNS9+V9MRqGn8k6SvV3wckfSiltJzXxloNTEcoP4H0VOWGq35J+1Tzfb+k81NKB7SPWOUgtRrYfrXQTCJiTPnJLUk6tO1Pd2r7+cqU0rqU0mslXS3pWkk/kbQlpfTtlNIDlrhuAADgVoInmAAAQMuLJT1C0pGSHp5S+rOIOKfuyCmlu0p6WfXrRySd0fFq2QUppfdL+pyk+0l6eUrp3+Z7XW4FdCs3KL20rezcall7lDOHhpSDzh8bEee2Dfc/kj6RUnq58iuEB0t6t3IDlHOQ8jqf3v6UUErpP5XX96HKDT0Pk/SJuitQ9d52VPXrekm/UX7l7zvKPcKdqNz7X5J0D0lfTCndMyLGq3H2Vn49UcqvyC1mh3Kg+F5tZfu1/bxe+YmpYzrG61ZuxPtqSunFEfH6GvMCAAC3IjzBBAAAJEkRsUPS09qK3pxS2n++4Y3nKd9bbJb0DJdbVM3jDOUnhrokPXv5S1zLO+cpf4Ry5pQkvbOjcem3IuLVqrKIJD0ipXQnN5xyY8+Zna+gVa8AtudZ3aXOQrc5se3n/5P0OxHx2oj4ekT8d0S8QzkE/IvVMCdJelHbOAMdy7iYMTNe+1NX5yg3Lp0r6WRJg8qNa8+UtFV5n/5jSum0GvMCAAC3IjQwAQCA34qIr0j6YPXrfpLeWme8Ko/nIdWvF0TE6ALzuFz5tSoph4Cvlmsi4up5/vbgtp/fvch03tH28x/OM8z3I+Kmef7Wnm20YZF5dbpA0h2q+T4iIm7oHKB6te3PJbUykJ5dPaEl5WDwlqXkXbUPO9z28+0kvSki/jQiLoyIiYi4rmroeoB2NmK9IaXUv4T5AQCAWzhekQMAAJ2eq9ygcbCkx6aUPhYRn1lknCOVX8eSpEe29eS2mKMWH2TZrlrgb61e0UYkXbLIdL7b9vMJ8wxzxQLjj7T9vKR7r+opsMuqfwsNd1NK6d8lPVk5l+kk5See2uc9b698bYaq/9ufdhpr+/laSS+cZxkuTCm9Wzlr6zDl1yC/7IYFAAC3PjzBBAAAdhERNyu/8tTyzpTSXvMNX9lvkb/PpzeltNSneupaqFezfav/b6zRk911bT/vM88wI/OUS7s+DdQ171DN/bDt59tV/4+0zX9djWm0hml/Gqs9u+m8iJhcYPzPtv38ezXmBwAAbiVoYAIAAIWI+LSkT1a/HqzcS9pC2p/M+YDyEzR1/837Ot0C6tzDLNRwtJSGnp62n2fnHWr3a9+O/ZJUZUK1XhM8fKGRU0pD2tnw9uu2P13b9vM1iyxD+1Njy210BAAAt0C8IgcAAObzLOVcnX0lnZFS+vgCw7Y/8TITET9Y5jxbjUKLNQBtWub0W1rLu19KqWuRp5gONOOtiZTSycqvEe4n6d2LLOcBbT9f3/bzpcqNS0cvMrv2nuHae/b7UdvPe2th7eHgWxYZFgAA3IrwBBMAALAi4npJz2kreo/mf83ql9r5BM09Fpt2SumFKaWnp5Qe2PGnVs9z/W1B1Z3jDklaSu92zsXV/+sl3XmRYdvX56cN57tUL1d+kuyd2tnr3XzuVf0/K+nCtvJWhtQ+KaWF1vU+bT//V9vPF0qaqn5ebN+2T/+KRYYFAAC3IjQwAQCAeUXERyR9ofr1SOXeytxwU5K+Uf16QkrpXm44SUopPUDSP0p6l6SXdPz55rafj5xnEg+U1LfQctfQHj799EWGfUbbz19pON+l+lbbz0+ab6Cq4ehB1a9fqnK0Ws5t+/nJC8zrjOr/GySd3yqMiK3aeQzcPaV09wWm0VrGaUmfX2A4AABwK0MDEwAAWMzTtTPoeaGGnTe2/fyhlFKR+ZNSOkD5SaiWt3QMcnHbz8824x8o6awFl7ae/5T08+rnv0opPdoNlFJ6maT7Vr9+rcGrf8v1Ue3c9n+TUiqCs6tt+gnl+7pZSa9p/3tEXCrpm9Wvz3KNfymlv5V0cvXr26sGw3Znaefri2enlA4203iapIdUv54bETcsvGoAAODW5LaawVS362QAt0yr2UsTcJsTEVellF4o6R2LDPf1lNI7Jf2lcp7PD1NKb9LOp3DuJum5kg6pfv90RPxHx2Q+pvxaWK9yg8oGSR+XNK78etaZ1fi/0K6ZQUtdp5mU0hOrZeuXdG5K6aPKr6NdL+kISU+R9OBqlBsl/cVy59dgOa9PKT1f0rslDUn6RrVNv6T8lNA9JL1AO3O
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYXGWZ9/FfVfWebpKQkBC2BCI8LIq4gQwoooAgqwoyEEAEBlDQEXXGAQUUIaMwCLK9KMoWZRMQxQF9NUReEDEuoBDwAYEQCJA9nXR6q66q949THTp9391dyanuJOT7ua6+uuqu55zznKVz4e05v8qUSiUBAAAAAAAA6yq7vicAAAAAAACAjRsNJgAAAAAAAKRCgwkAAAAAAACp0GACAAAAAABAKjSYAAAAAAAAkAoNJgAAAAAAAKRCgwkAAAAAAACp0GACAAAAAABAKjSYAAAAAAAAkAoNJgAAAAAAAKRCgwkAAAAAAACp0GACAAAAAABAKjSYAAAAAAAAkAoNJgAAAAAAAKRSs74nAAAARlYI4XeS9iu//XqM8ZIKl7tG0lnlt9vHGOdWf3bwhBC2kvQ5SR+V9DZJoyQtlfSEpDsk/STG2LMO6/28pKvKbwc9pyGEnKQTJJ0oaQ9JLZLekDRb0o0xxgfXdvsAAOCtgzuYAADYtJ0fQthlfU8CAwshfEpSlPQ1Se+VNEZSraSJkg6WdLOkx0IIW6/lereX9N8Vjt1c0v8rb+sjksZJqpO0naSjJT0QQrg7hNC0NnMAAABvHTSYAADYtNVL+lEIgf8m2ACFED4i6TZJzZI6JX1X0kGS9pJ0nJKmjyS9T0mTp6IGTwghI+lHSu6EGmpsVtIvJP1LufQHJXcy7avkbqY/l+uflHRjJdsHAABvPTwiBwAA9pb0BUlXru+J4E3lJtA1knJKmkv7xxgf7zNkdgjhTknXSTpT0u6SvihpegWrP0PS/hVO5SRJ+5Rf/1TSsTHGUvn970MIt0l6QMnje8eGEK6KMT5W4boBAMBbBP9vJQAAm66ipN7cnktCCDusz8nA2FvSzuXXV/VrLkmSyo2ecyQtLJdOGmqlIYTtJF1afru4gnmcVv6dl/TZPs2l3jkUJZ3Xp/SpCtYJAADeYmgwAQCw6cpLuqz8uknSDetxLrA+0Of1LwYaFGPslPRo+W0IIdQPsd4blAR0Pyrprgrm8ZSkP0n6vzHGJQOMebbP6+0qWCcAAHiL4RE5AAA2bd+U9HEld8p8OITwbzHGVI2mcmj42UrCoLeRlJH0iqRZkq6OMT4zwHK/U/Ltdl0xxoZB1v+0pN0kvRxjnNLvs967a86R9L9KHjHbV0kz7Z+S/ivG+Ns+4zdTcofOkZLerqTxskTJt7P9VNIM79vZQghTJL1UfvtxJQ2gk5XcQbRbeT3zJf1a0uUxxhcG2p9BzFYSwr1Vee6DyfR53SCpyxsUQjhVSYZTp5L9/vxQk4gxfraCuU7u8/r1CsYDAIC3GO5gAoDhU+KHnw3xZ88999xPkurq6upjjJ233Xbbztls8p8ELS0tP1iwYIG73LRp085S2cyZM1/yxlx77bWlXC73jKTPSQpKQqSbyq/PzGazc66++upSqVQadF6DzX/HHXfcTZK23nrryc7nkqTPfOYzV2y++ebPKWmmNEkanclk3jNz5szf9I59/PHHS1tssUWrpMslfVDS5kq+nW1LSYdIunGnnXbKz5s3z5tHX02SfqskNHs/SeOVhKfvIOmzkuaEED6mtRRjnBVjPC/GeHKMccEAw0r5fL40bty4j0tSS0uLYozLveO2YMGCUktLyw8l6ctf/nJDjPEflZzToX4KhULpox/96Oo7mH784x9/bl3Www8//Lg/G4r1fRz44Yef4f2pCu5gAgBgE/ee97xH06ZN04wZM7Ry5UpdeOGFuv7669d6PVdffbWuueYaSVIIQccff7xCCCoWi5ozZ45mzJihefPmrR7z+c8PefPMOrvllltUKpV02mmnaf/999fixYv17LPPaptttpEkPfHEEzrjjDPU2dmpTCajww8/XIcccojGjx+vV199Vffcc48effRRPffcczr++ON17733asKECQNt7nIlTanHJV0r6TlJkySdJelAJc2mm0MIO8QY26q9r/fcc4+WLEmeXNt3330HHHf++edr5cqV2nXXXXXKKaek2mahUNDChQv117/+VT/60Y80Z84cSdKxxx6r973vfanWDQAANk40mAAAgL70pS/poYce0vz58zVr1izdf//9Ovzwwytefs6cObruuuskSUceeaSmT5+umpo3/zPjPe95j44++midccYZmj17tq699lodcsghetvb3lb1fZGkYrGoM888U+ecc87q2sEHHywpaY6cd9556uzsVDab1RVXXLH6M0nafffd9bGPfUzXXHONrr76ai1atEgXXHDBYE23LSXNkHRyOfBakhRC+IWkX0r6mKQtJB0q6c5q7ufLL7+syy+/fPX7gRpH9913nx5++GHV1NSYc7MuDj74YM2bN2/1+/r6en3xi1/UySefnGq9AABg48UjcgAAQE1NTfrWt761+v0ll1yipUuXVrz8jTfeqGKxqDFjxuib3/ym28BoamrS9OnTlclkVCqVNGPGjKrMfSDHHXecW581a5ZefPHF1WP6Npf6Ovvss7XnnnuuXuaf/xwwBqlT0hf7Npek1d/w1jfP6p1rMf0hhRAmnHHGGVqxYoUk6ZhjjtHuu+9uxi1atEjTp0+XJJ122mnaZZddUm23VCrp9dfXjFnq6urSgw8+qFmzZqVaNwAA2HjRYAIAAJKkffbZR5/4xCckScuWLVuj4TSYUqmkRx55RJL07ne/W42NjQOO3XbbbTV16lRJ0uOPP55yxgObOHGittxyS/ez3rlKySNdgzn++OPd5fr5S4xxoG5c33DvlkE3thZCCFtKmvnSSy9JknbddVd9/etfd8deeOGFam1t1Q477KCzzjrLHbM2uru7NX36dN111126+eabddppp6mxsVF///vfddZZZ+knP/lJ6m0AAICND4/IAQCA1c4991w98sgjWrRokR544AEdeuihOuCAAwZd5tVXX1Vra6sk6aGHHlIIoaJtvfrqq6nnO5BJkyYN+Nnzzz8vKbmjaqeddhp0PXvsscfq188999xAw+YOsoq+mUtV+e+uEMJUJd9ON1WStt9+e91www1qaLBfvPfLX/5SM2fOVDab1SWXXKK6urrU26+vr9cRRxyx+v3ee++tww47TCeeeKJWrlyp6dOna++999YOO+yQelsAAGDjwR1MAABgtc0220wXXnjh6vff+MY3Vj+CNZBly5at07Z6enrU1lb1zGtJUnNz84CfLV++XJI0duxYZTKZQdczbtw4s5xjsJ3o+80sg2+sAiGEvSX9QeXm0o477qhbb71V48ePN2OXLFmiiy++WJI0bdo0vfvd7067+QHtsssuq/Ouenp69POf/3zYtgUAADZM3MEEAADWcOCBB+rggw/Wr371Ky1atEjf/va3V2f4eAqFwurXn/zkJ3XiiSdWvK3BHqcbSLFYHHrQIEqlyr+Nt++2stn1+//LhRCOkXSrpN5blf44Y8aMvcaOHeuOv/jii7Vs2TK1tLTo4IMP1rPPPmvG9G0OvvDCC1q5cqUkrVNO04EHHqiLLrpIkhRjXOvlAQDAxo0GEwAAMC644AI9/vjjWr58ue655x4deuihA44dPXr06te5XK4qIdKD6W2CrKve+S5btkylUmnQu5gWL15sllsfQgifk3SN3rwL6n8lfWrs2LGrBlrmb3/7m6TkeE2bNm3IbZx++umrX/c2iAqFgubPn6958+Zpm2220ZQpUwZcfsyYMatf5/P5IbcHAADeWnhEDgAAGOPGjdO55567+v3555+vjo4Od+y22267+k6kJ598csh1/+AHP9Add9yhxx57bI167zfP5fP5Ne6K6quzs3OdH8nr1ZsR1d7evjqPaSC9TRpJ6y1TKITwWUnX6s3m0g2Sjowxtg/3tp955hkdeOCBOvXUU3XrrbcOOva
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x1200 with 8 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG9CAYAAABZDcySAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecJEd9/vFnc7ioLAFChwR8SQIEmGAEiGTAJGOSMAhERkQRBPwMyICNwcZgwCaDEEggEFFEEyWCLIIBgwSoSBLIIiqe7m5v8++P6mFH08/s1k7v3u1xn/frda/d6+3pru7prq6p6X6qb35+XgAAAAAAAECv+nd3AQAAAAAAALBno4MJAAAAAAAAjdDBBAAAAAAAgEboYAIAAAAAAEAjdDABAAAAAACgETqYAAAAAAAA0AgdTAAAAAAAAGiEDiYAAAAAAAA0QgcTAAAAAAAAGqGDCQAAAAAAAI3QwQQAAAAAAIBG6GACAAAAAABAI3QwAQAAAAAAoBE6mAAAAAAAANDI4O4uAAAA2PUi4hxJd6v++9KU0qsKX/efkp5R/fcGKaWLV750cCLihpJOlHRvSdeXtFPSRZI+JukdKaU/9Ljc10l6niSllPoWmW9Q0jWSRgsW+9WU0jG9lAcAAOyZuIMJAAC8LCJuursLge4i4nhJ5yt37t1YuZNns6SjJP2jpB9FxF/3sNw7KXdalbipyjqXAADAXog7mAAAwIikd0fE0Smlud1dGFxbRNxP0imS+iRNSHqdpK9V/z9G+e6j/SV9pHoPv1e43JFquaVfON667fcHSbpkkXm3FS4TAAD8maCDCQAASNKdJD1b0ht2d0GwICL6Jf2ncmfSlKS7pJS+2zbLFyLivySdLWlM0msk/VXh4l8h6SbLKE6rg2m7pM/QGQkAANrxiBwAAHu3OUkz1e+viojDd2dhUHMPSa335D87OpckSSmlr0n6TPXfe0fEPkstNCJuJ+kF1X8vKyxLq4PpfDqXAABAJzqYAADYu01Lem31+7ikd+7GssD7tKRfSzprkXl+0vb7oYstLCKGJb1H0oCkD0j6VmE5Wh1M3y+cHwAA7EV4RA4AALxC0kOUH5e6R0Q8OaXUqKOpCg1/pqR7Srqe8iNelyg/yvUfKaUfd3ndOcqj202mlLoGSkfEBZJuLulXKaUtHX+br359rvKdPf8p6WjlzrSfS3pxSulLbfNvlPQkSQ+WdAtJGyRdrtyR8mFJp6WUZtQhIrYoj+Im5f33SUnHS3psVbYNki6V9HlJr0sp/aLb9nRTlfNLS84oHdb2+2+XmPdlytv5R0nPkXTqUguPiOtL2rf6Lx1MAACghjuYAADYy6WUJpU7WFqPPb02Iq7b6/Ii4mXKI549XVJIWqd8d1RIepqk8yPi5RHR16jgSztU0rnKmUTjkjZJuo1yJ1OrrHeXdKFycPZdlTtRhiQdLKkVrv39iDhiiXWNK3cEvVu5g2x/5fD0wyWdoB5HeSsREX8h6W+q/56dUvrjIvMeJenF1X+fnVJa7uNxknRRRLw4Ir4VEddExI6I+HFEvDYiDl7+FgAAgD8HdDABAACllM6V9Obqv5skva2X5UTEyyW9Uvnxqx8qdyj9pfIdRM+R9Avl9sc/VP9W04nKHT3/Kukukh4u6Z9TShdXZb2T8h1Oh0ial3S68uhod5B0rKQvVMu5haSvR8Qhi6zrdZLuLumbko6rlvE3kr5Y/X1E0qkRsb7pRkVEX0RsiIjbRMS/SzqnWv6VyneNdXvdkPKjcYOSPpVS+uAyVtvewfRRSa+WdHtJ65XDxW+qnOn004i4/zKWCwAA/kzwiBwAAGj5f5IeKGmLpAdExN+llD5Q+uKIuI3y41eSdJqkJ3Q8WnZuRLxbOVPoGEknR8SZ3R6XWwH9yh1KL2mb9pGqrAPKdyeNKd+59ciU0kfa5vu2pA9FxMnKjxAeIuntyh1QzsHK23x8ewB2RHxSeXv/WtIBku4v6UMNt+vR1branSvpSSmlCxd53f+TdCtJVyvfVbUcR7X9vr5a/0cl/U7SdZU75B6u/FjgJyLi7imlbyxzHQAAYA/GHUwAAECSlFLaLukpbZPeGBEHLGMRz1duW1wu6Wkut6haxxOU7xjqk/Ss3ktc5K1dpj9QOXNKkt7a0bn0JymlVyrfISRJD4yIm3VZ3k5JJ3aOrpZSmte1g9NvVVLoJRxmph0p6VndRpCLiCMltTraTkopXbrMdbbuYJqS9NcppcemlM5KKX0rpfSxlNIjJD2+mmdQ+W4tvsgEAGAvQgcTAAD4k5TSF5Ufo5Ly42X/UfK6Kk/pftV/z00p7VhkHRdpYdSze/ZY1BKXppT+r8vf7tP2+9uXWM5b2n6/b5d5vptSuqLL39rDvTcssa4SX5V0b+XH8I5Tfixvo3Lm1dci4sD2mauOnvdIGlbOaOolwP2Oku4s6a4ppc+7GVJKp0p6f/XfIyQ9oIf1AACAPRTfLAEAgE7PU+5IOUTSIyPijJTSWUu8Zouk1t0zD2obyW0pN+itiEUuWeRvt6h+bpN0wRLL+Wbb70d2mefiRV6/re33xm2vjkfPvh0RH1C+S+oJytv1b8oj2bWcJOm2knZIenKP6/y9pN8XzPoO5Uf4JOlekj7Ry/oAAMCehzuYAADAtaSUrpL0jLZJb42IzUu8bP8eVzcYEStxV4+zdZG/7Vf9vKx6jG0x7R0r+3aZZ1uX6VJ+HLBlxUfOqx7Le7qk1mNvj4yIcUmKiJtqIUz9ZSmlX5hFrKQftP1+/VVeFwAAWEO4gwkAANSklD4eER9WDm4+RHmUtCcu8pL2NsUpKny0rtL1cbpFlHxJtljH0XI6egbafp/rOtdulFKajIjPKGdoDSvnS31P+dG4EeU7rM6JiFubl29s/dL296kew9fb38vhHl4PAAD2UHQwAQCAbp4p6R7Kd/s8ISIWG9a+PX9oNqX0vz2us9UptFQH0KYel9/SKu/+EdG3xF1MB5nX7RJVaPcRkg5OKX16idkvb/u91blzh+rnFknfLVjl96ufv6peo4g4RPkRuwMkfTOl9BP/UklSe/7THwrWBwAA/kzwiBwAALBSSn+Q9Ny2Se+QtK7L7L/Uwt0rd1xq2RHxooh4akTcq+NPrZHnhiNioPN11WvHlDs7mvhh9XO9pJsvMW/79lzYcL3LdZqk70j6ZMGIfke0/d4t3LwXd5T0KeU7045fYt6j237/nxUsAwAAWOPoYAIAAF2llE6T9Lnqv1u0EODcOd+0pLOr/x4ZEUe7+SQpIu4h6TWS3ibp7zv+fFXb71u6LOJekoYWK3eBL7T9/tQl5n1a2+9fbLje5fp69bNPOcTbioiDJd2/+u+FrdHzUkp9S/2T9JnWctqmb2lb/LmSZqvfj40I++hbRPRLOrH674ykjy5vUwEAwJ6MDiYAALCUp0q6pvp9sY6d17f9fmpEHNo5Q0QcqHwnVMubOmb5YdvvzzKvP0jSaxctbZlPSvp59fvTI+IhbqaIeJmku1X//XKDR/969V5J26vf/z4iaqPYVSHpZ2rh7rLXrGQBqjvZPlL99/qSXt1l1tdo4W6vd6WULu0yHwAA+DNEBhMAAFhUSumSiHiRpLcsMd9XIuKtkk5QflzrBxHxBklfrWa5naTnSbpO9f+Pp5Q6h7E/Q9LJym2U51SdJx+UtFO58+LE6vW/0LUfCVvuNs1GxHFV2YYlfSQiTpf0YeXsoMOUQ83vU73kMkmP63V9Dcr5u4h4gaS3Kodxf7vap+coj5L3F8qPMW6pXvJBSe9bhaKcJOkY5Tyq50XEzZQ7Ci+VdAPlTsi7V/OeL+lFq1AGAACwhtHBBAAASrxN0rGS7rrEfM9S7gw6UdI+kl7RZb6PSXpM58SU0s8j4kTlO5v6lR8La380bE75sbr9JD1/GeWvSSl9MyLuK+lDyplOj63+dfqepEfurjtyUkpvi4gR5Tu3RiW9uPrX6a2SnrNEYHmvZbgkIu4t6ePKHXv3rf51+m9Jf5tS2rrSZQAAAGsbj8gBAIAlVZ0WT5I0scR8syml50k6SrlT6kJ
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xe8ZVV99/HPPbdMY5gBYSiCNHWBoCKxYXnslYAlGguaBzGxJ9aESDRqNImRWCL2IHZsoFiixm5iN3lExbJEqYLUYXq59flj7+ucOet37+x795n+eb9e8zr3rLPLOnvvs+6c3937uwempqaQJEmSJEmS5quzszsgSZIkSZKk3ZsFJkmSJEmSJLVigUmSJEmSJEmtWGCSJEmSJElSKxaYJEmSJEmS1IoFJkmSJEmSJLVigUmSJEmSJEmtWGCSJEmSJElSKxaYJEmSJEmS1IoFJkmSJEmSJLVigUmSJEmSJEmtWGCSJEmSJElSKxaYJEmSJEmS1IoFJkmSJEmSJLUytLM7IEmSdqyU0jeBB9RPX5Fz/seG870NeH799Kic85X9751mklK6B/Bs4EHAIcA4kIGLgLflnNfNMu95wDMbrirctymlQeBpwOnA3YBlwI3AfwPvzDn/V+M3I0mS9jiewSRJ0t7tlSml43Z2JzSzlNJASulfgR9QFYmOBhYBS4G7A/8M/DildMwsi7lbyz4cBHwbeD/wMOAAYBi4LfBk4FsppXfURShJkrQXssAkSdLebQHw3pSS/yfYdb0ReCkwAFwD/CVwP+BU4PP1NLcHPp9SWtA7c0ppCDi+fnoeVbFptn/X9cy/GPgKcO+66QrgecDJwCnAR+v253b9LEmS9jJeIidJkk4G/gp4y87uiLaWUjoZeFH99FLgwTnnm7om+XxK6XzgGcCxwJnAO3sWcxxVIRHgqznnS+bYjbOBO9c/fw94ZM55TdfrX0gpfQd4G/DElNITcs4XznEdkiRpN+dfKyVJ2ntNUuX4APxjSunondkZhV5NdebSOPAnPcWlaS8DxuqfnxC8fmLXz3MqLtWXvD2vfroBeEJPcQmAnPPbgS/VT9+QUhqYy3okSdLuzwKTJEl7rzHgnPrnxcC/78S+qEede/SQ+un7cs6/jqbLOa+kymF6B/CFYJLp/KX1wGVz7MbdgP3qnz+Zc75ulmnfVz8eBdxjjuuRJEm7OS+RkyRp7/Ya4HFUl1c9OKX0FznnVoWmOjT8BVTFkcPYkh30DeDcnPMvZpjvm1R3t9ucc144y/IvpcoUuirnfGTPa1P1jy8G/oPqsq37URXTfgP8bc75q13T7wv8OfAY4ASq4OxbgB8DnwQ+lHMep0dK6UiqLCKott9ngTOAP6v7thS4FvhP4I0559/O9H5m8TBgOjT747NNmHN+1SwvT5/B9JOc8+Qc+3BE188/2Ma03fv1ZOCHc1yXJEnajVlgkiRpL5Zz3pxS+nPgv6jObD4npfSFnPO181leSumVwKvYUhj5w0v1v2ellF4LvCbnPNU7fx8dDnwHOLCr7SSqItN0Xx8EfAQ4pGfeg4FH1f9eklJ67DYKRIuBrwIP6mk/mir4+syU0uNzztHZRbO5c9fP/9PV7yGqwt0QcE3OefM2lnPX+vGSlNJpVDlN9wb2B26m2k7vyDl/I5h3pOvntdtYz1jXz3fcxrSSJGkP4yVykiTt5XLO3wHeXj9dBrxrPstJKb0a+Aeq4tJPgecA96E6g+iFwG+p/u/xqvrf9vQi4ADgDcD9gScC/5RzvrLu68lUZzgdAkwBHwZOA+4FPBn4cr2cE4D/Tin1FqG6vZGquPR94On1Mh5Ldec1qAK2359S2meO7+FO9eOqnPPqlNKRKaUPAquozp66DLg1pfSxlNIx0QJSSrejKiQBPA34DNXZWgcBw1Tv/wnA11NK766LV91u7vr5sG309/Cunw/exrSSJGkP4xlMkiQJ4OVUt70/EvjjlNJTc84XNJ05pXQS8Mr66YeAM3suLftOSum9wOeBBwJ/n1L6xEyXy/VBh6qg9HddbRfWfR0EzgcWUQWdP6nnrmc/BD6eUvp7qksIDwHeTVWAihxM9Z7P6L4ELaX0War3+2iqM6lOYRuXuvU4oH5clVJ6GPApoLdItQh4EvDo+iypr/a8freun/cFfkKV1XQpVeHrgcBfUuUsPYuq2Pacrnn+h2obdaguBXz9LP09tevnJbO9MUmStOfxDCZJkkTOeT1VgWHav6WUDpxp+sBLqf5fcQvwnCi3qF7HmVRFjAGqwsb29M4Z2k+lypwCeGdPcekPcs7/AHxzep6U0p2i6YBNwIt6843qSwC786zuytxMF5OWAxcBC4HXAcdQFYfuSHX21BRV5tNFKaXb9yyj+w5y7wXunnN+T875uznnb9TZTXcDrqqneXZK6YFd7+FWqiIZwD1TSi+IOloXGLuPn+G5vFFJkrT7s8AkSZIAyDl/hS13AjsAOLfJfPUt6R9VP/1OznnDLOu4Avhl/fQhM03XB9fmnH83w2uP6Pr53dtYzju6fn7kDNP8b30nt0h3dtPSbayr1+L6cTlVselPc86vzDlfnnMezTlflnN+GVWgOlRnKP1TzzLOoSpsncrMhb+rqILOp72oZ5KXA9P79NyU0ttTSndKKQ2nlA6ui05fByaoLt8DGJ3je5UkSbs5L5GTJEndXkJVSDkEeFJK6aM5589sY54j2XIr+9O67uS2LUfNr4uNXDPLayfUj+uoLhWbzfe7fr7zDNNcOcv867p+nuv/uzZ2/fzpnPOno4lyzu9IKT2LqpD02JTSkvpsMepi30/rfzPKOX81pXQF1T55cEppYDqEPef8i5TSE4FPUF369rz6X7f1VNlV51IVxNbP7a1KkqTdnWcwSZKkP8g5rwKe39X0zpTS8m3MdsA2Xp/JUEpprmf1NLVmltduUz/e3OBOdjd0/bz/DNOsm6EdqsvXpg1sY129uu/aFhaXunyufhymulvefPykflzKloIhAPUd8E6iKjJ1F742UgWkn5hz/nzXfN3bTZIk7QU8g0mSJG0l5/zplNInqe68dghVzs8zZ5ml+/8T59Pw0rrajJfTzaLJH8hmKxzNpdAz2PXz5IxTbR+/7/r52m1M233G1nwLft37YqT3xZzzr6nOaltIdUe5CeB3OecxgJTSwVR3IYTqLneSJGkvYoFJkiRFXgA8mOpsnzNTSh+bZdru/KGJnPMl81zndFFoWwWgZdt4fVum+3tA96VgMzgomG9H+RnVndug54yiwIKun28FSCl1qPbhgcCmmS6x67Kifpxglveac94E/CZ46d5dP8/3GJAkSbspL5GTJEmFnPONwIu7mt7DzLeev5wtZ7/ce4Zp/iCldFZK6dkppYf2vDQdQD2SUhrsna+edxFVwaSN6TyifYDjtzFt9/v5Vcv1zlV3/tO2tmv3+7gSoL6r3YXABcA76jD2UEppAXCP+ulPc86jXa+9LKX01pTStu76N10M2wh8ZxvTSpKkPYwFJkmSFMo5fwj4Yv30SOD0GaYbA75RP71zSul+My0zpfRg4PXAu4Cze15e1fXzkTMs4qFUOUNtfLnr52dvY9rndP38lZbrnauvAjfXPz9tpryqlNIS4E/qpz/JOV/Z9fJ/1Y8HAw+fZV1nsuXMsN6z1Z4E/CXw8pmKVCmlI6hCvgEuzDlvjKaTJEl7LgtMkiRpNs9mS9j0bIWdN3X9/P6U0uG9E6SUVlCdCTXtrT2TdN/prDhbJqV0EHDOrL1t5rNsucTreSmlx0UTpZReCTygfvq1Fpf+zUtduHtz/fQQ4LyU0lb7oL4M7l1syV16Z89i3tH181tTSkU+U0rpXsAb6qfXs/U+Arioqw8vDOZfThX+PQKMAf8087uSJEl7qr01g6np7ZMl7Z7meqem7cWxRruke97znvzwhz9kZGRkAds4TnPOXHDBBbzmNa/Zqv1rX/vaFb3TvfrVr+ajH/0owDHLli27+m1vexv3vOc9Abj00ktZsWIFN954IwAPe9jDeNvb3rZVJtCXv/xlHv3oRzM+Pg7wwrP
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAbwCAYAAAAvbOuuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJEdh/vF3dzZfjtKdJHRKlEAgko0twCbZhB9RZJskyYDBCBBgELbJBoGNyUFggxAmihxkMCYHgYgCoVSgcEIoX77bvDvz+6N62Lmpd3d7t/d0e7rv53nu2dva7p7qVNNT0/1WR6PREAAAAAAAADBfnfu7AgAAAAAAADiw0cEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBKuvZ3BQAAAAAAi1pjf1cAwD7VsRAL4Q4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASgj5BgDgIBNC+K6k+xe/vjLG+MaS871H0vOLX4+KMW5e+NrBCSFslPQPkh4q6VhJSyRtk3SRpE9J+niMcWKWZTygWMZ9JK2TtF3SZZI+KekjMcaxWebvlvSU4t89JK2VNCzpakn/K+ldMcYb57eGAADgQNfRaDAgAAAAB5O2DqZRSfeIMV5eYj46mPaDEMKTJH1I0tIZJvuZpJNjjNeb+TslvVupc2k6F0t6Qozxd9PU4QhJX5B0rxmWsUfSM2OMn59hGgAHJj40ArdvjCIHAAAq65X0oaITAotMCOHBkj6h1Lk0Iultkh4i6c8k/Y2k7xeT/qmkr4YQBsxi3qipzqU/SDpd0l9KepzS3UuSdKKk80MIy00d+pXuUGp2Ln2zeO0/K+ryTkljRR3PK+6UAgAABxkekQMAACdJeqGkd+zvimBKCKFD0nsk1ZQ6lx4YY7ywZZKfhhDOk/Q+Sc9V6iQ6Q9JZLcs4RtLLil+vlnTPGOPOlmV8IYRwqaQ3SLqjUufTWdrbiyTdufj/22OML2n7+zdCCF+Q9H+SeiSdHUI4IcZYn8dqAwCAAxTfVgIAcPCqS2rm9rwxhHD0/qwMMidJOr74/7vaOpckSTHGhqQXS7qlKHpG2ySnKnVQSdIZbZ1LTW+StKP4/5PM308rfl4v6UxX0Rjj9yR9oPj1eEn3dtMBAIDbLzqYAAA4eI1Lekvx/wFJ/7Uf64LcX7T8/8vTTRRjHJH0w+LXEELobfnzTZK+I+k6Sd+YZv66pN8Wv96h9W8hhEMkHVf8+rUY4/gM9W1d/t1mmA4AANwO8YgcAAAHt9dJOlnprpMHhRCeHWOs1NEUQriT0qNWD5Z0uFJw5HVKHR3vjjFeNs1831UKHx+NMfbNsPxLJJ0g6doY46a2vzWDaF8s6X+UHjG7n1Jn2pWSXhFj/GbL9MslPUvSYyTdRdIySVuVRmf7jKSPutHZQgibJF1T/HqyUgfQKUp3EJ1QLOd6SV+X9NYY41XTrc8Mfqp0d9HGou4zaQ3n7FMKb1eM8T1K22BaxaN4zY6l9lHg6pJeVdThu3OsAwAAOIjQwQQAwEEsxjgaQniWUlh0p6S3hBC+6kYjKyOE8CpJr9HUY1l//FPx7zkhhH+V9Lri8a595QhJF0ha11J2T7V01IQQHijp45I2tM17qKSHF/9eEkJ47CwdRANKwdcPbCs/WtLzJJ0WQnhcjPGrc1mBGON3lDrlZhRC6JZ03+LXndM8BjeTFyitsySd11aHW5Xymcp4QMv/r51jHQAAwAGOR+QAADjIxRgvkPTe4tcVkt4/n+WEEF4r6fVKnUsXKwVP30fpDqIXSbpK6drjNcW/fekMSWsl/bvSo2ZPlHRWjHFzUdeTlO5w2qA0/PbHJD1aaWS0pygFVkvprqYfhBDaO6FavVWpc+lCSU8vlvFYTT0y1ivp3BDC0gVat3anSVpf/P/rs00cQugIIawLITwohPA5pVHgJOkXSqPUzVkIYb2msprGVaJjDAAA3L5wBxMAAJCkf5L0KEmbJD0yhPC3McZPlJ05hHBPpUepJOmjkk5re7TsghDChySdr3Sny6tDCJ+e7nG5BdCp1KH0Ly1lny3qWpN0jqR+pUfAnhxj/GzLdD+VdF4I4dVKjxBuUAqwfvQ0r3Wo0jqf0jpyWgjhy0rr+/+U7qR6hNruEKoqhHCspDe3FL21xGz/Jenv2so+JOkfY4x75lGHDkkfVOqclKQPzuMuKgAAcIDjDiYAAKAY46Ck57QUvTOEsG666Y2XKl1XbJX0XJdbVLzGaUp3DHUoPZq1L509TfmjNDU629ltnUt/FGN8vaZyhx4VQrjzNMsbURqhrd5aWDwC2JpntaDB18VdQ+dLWlkUfTDG+NMSsx5pyv5K0rNDCPO5Nnyb0jaVpBu07+9OAwAAixAdTAAAQJIUY/yGpA8Xv66V9O4y8xV3sDy8+PWCGOPQDK9xjaTLi18fPM+qlnF9jPEP0/ztoS3//8Asy3lfy/8fNs00v4gxbpvmb63ZTctmea3SQgiHSvqWUq6VlELJX1hy9vcpPTZ4X0kvUQpgP1LpccKPz6WTKYTwFqXHESVpTNJTitwmAABwkOEROQAA0OolSh0pGyQ9OYTwyRjjl2aZZ5OkVcX/H90ykttsjppfFUu5boa/3aX4uUfSJbMs58KW/991mmk2zzB/6yNnC3LdFUI4Rilr6ZiiKEp6eIxxuMz8McYvtPz6oxDCR5RCyu+hlD/1DaVHCGeqQ5fSHWLPKoomJD01xviDsusBAABuX7iDCQAA/FGMcYek57cUnR1CWDnd9IW183y5rhDCgt3V02bXDH9bU/zcUmIku5tb/r96mmlmyi1qXX7HLK81qyKc/Mea6ly6VNIDY4w3Tz/XzIq7r57RUnTadNMWdVgm6Sua6lxq3rlkHzUEAAAHBzqYAADAXoo7XD5T/LpBswdHt96Zc47SnTBl/037ON0Myly/zNRxNJeOnlrL/+vTTnUbCCE8UdK3lQLDJeknku4fY7yx6rJjjJdI+m3x64kz1OEwST/Q1OOCg5IeHWP8XNU6AACAAxuPyAEAAOd0SQ9SutvntBDCp2aYtjV/aDLG+Kt5vmazU2i2DqAVs/x9Ns36rg0hdMxyF9MhZr7bXAjhHyS9R1Pb5n8kPWmmvKtivo1KdztNxhh/NMvLbC1+9kyzrDsqPT53h6LoFkmPjDH+bPY1AAAAt3fcwQQAADIxxlskvbil6D8lLZlm8qs1dSfSn8+27BDCmSGEvw8h/FXbn5ojz/WEEGrt8xXz9mvqDp75urj4uVTSCbNM27o+V1R83XkJITxP0ns11bn0X5IeU6JzqUOpzt9X2n+zTXt08WsWjh5COFrSdzTVuXSlpJPoXAIAAE10MAEAACvG+FFJXyt+3STpqdNMN67U+SBJdw0h3G+6ZYYQHiTpzZLeL+mf2/68o+X/m6ZZxF9J6p6p3iX8X8v//36WaZ/b8v9vVHzdOSs64d7TUvTGGONzYoyTs81b3Jl1QfHrCSGEP5th8kdo6m6tvdYzhDCgdMfUxqLoIkn3iTFeXWIVAADAQYIOJgAAMJO/l7S7+P9MHTtva/n/uSGEI9onCCGs19530ryrbZKLW/7/AjP/IZLeMmNty/my0h04kvQPIYST3UQhhFdJun/x67cqPPo3LyGEFZI+oqnrtbfHGF85x8W8r+X/7y+W2f46QdIHi1/Htfe+lNI2P774/1WSHhxjvHWO9QAAALdzZDABAIBpxRivCyGcqb07Ktx03w4hnC3peUqZP78OIbxD0veKSf5E0ks0dRfMF2KMX2xbzCclvVrp+uRFxWhln5I0ovSo2hnF/FdpahS1+azTZAjh6UXdeiR9NoTwMaVg81skHSnp7yQ9tJhli6Rnzvf
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x1800 with 12 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8XFed9/HvzGjUZVuOS5zeyKEklFBCKEtCIJQ8BNilJAvshrD0njz0BULnIUACCaHXLKEFCCy9LJ0FliWhcyCkkuIU27Ktrpl5/rhXeDznK2nsO3Ys6/N+vfySdHTLmXtHusc/3fs9pUajIQAAAAAAAGBnlW/vDgAAAAAAAGBxo8AEAAAAAACAQigwAQAAAAAAoBAKTAAAAAAAACiEAhMAAAAAAAAKocAEAAAAAACAQigwAQAAAAAAoBAKTAAAAAAAACiEAhMAAAAAAAAKocAEAAAAAACAQigwAQAAAAAAoBAKTAAAAAAAACiEAhMAAAAAAAAKocAEAAAAAACAQrpu7w4AAIDdL4TwfUkPyr/89xjjm9pc7wJJz82/PDTGeHXnewcnhLCfpOdIepikIyQNSNog6TJJn5b0yRjjzDzrf0jS09rc3ZznNoRwP0kvknR/Sasl3Sbp15I+HGP8XJvbBwAAexnuYAIAAK8OIdzp9u4E5hZCeIKkKOlVku4laYWkqqS1kh4u6WOSfhpC2H+ezdyjA/14raQfS3q8pP3yPuyrrOj12RDCF0MIPUX3AwAAFh8KTAAAoEfSh0MIjAv2QCGEEyVdLGlQ0oSkd0o6SdKxkk6T9MN80XtL+loIod9so0vSXfIvP6Ss2DTfvxvMNv5N0tmSSpKukHSGpPtKeqKkn+eLPUbShQVeLgAAWKR4RA4AAEjScZJeIOm827sj2CaEUJJ0gaSKsuLSCTHGnzUt8osQwmeUFXWeJemuyh5fe3PLpu6krJAoSd+JMV6+g/1YKemc/Mu/SDo2xrgx//rnIYQvSPq8pFMknRFCeH+M8Rc7sg8AALC48ZdKAACWtrqk2dyeN4UQDrs9O4PEcZLumH/+7pbikiQpxtiQ9GJJN+dN/2K2c/emz3eouJR7qrLH8iTp5U3Fpdk+zEh6hqSxvOklO7EPAACwiFFgAgBgaZvWtjtT+iV98HbsC1IPbPr8y3MtFGOcUJaNJEnB5CDN5i+NKrsDaUf9Y/5xRNKX5ujDeklfzb98pHtUDwAA7L14RA4AALxO0mOV3Snz4BDC02OMhQpNeWj48ySdKOkAZbk910n6nqTzY4x/mGO97yub3W4yxtg7z/Z/pyxT6JoY4yEt32vkn75YWcHjAkkPUFZMu0LZHTjfaVp+maR/k/RoSUdJGlI2M9plkj4n6SI3O1sI4RBJV+VfPlZZAeh0ZXcQ3SXfzvWSvinpHTHGv871eubxC0lvURaofcUCy5aaPu+VNNn09ewdTL+OMdZ3pAMhhKqyfCdJ+nGMsTbP4j9UFgDeryyf6b92ZF8AAGDxosAEAMASF2OczAOcf6js7uZzQghfizFevzPbCyG8WtJrleUGbfet/N8zQghvkPS6/PGuXeVAST+RtLqp7Rg1FWpCCCdI+qSkdS3r7ivpEfm/M0MIj1mgQNQv6TuSTmhpP0zSs5XlEv1jjPFrO/ICYozfU1aUm1deBLp//uVIjHGkZZG75R8vDyGcom0B3Ssl3arsOF2Y76/VEcpmi5MWvvup+RjdSRSYAABYMnhEDgAAKMb4E0nvyb9cLul9O7OdEMLZkl6vrLj0G2XB0/dTdgfRC5UVIMrKClCvLdTphb1I0ipJb1P2qNnjJb05xnh13tfjlN3htE5SQ9J/KAupPlbSqZK+lW/nKEk/CiG0FqGavUNZcelnkp6Sb+Mxkr6df79H0sdCCIMdem2tzpC0Jv/8m83fCCEcpKyQJElPVvaI26MlrVVWOFon6XGS/iuE8P58xrlm+zd9fu0C/bhujvUAAMBejjuYAADArFdIepSkQyT9nxDCP8cYL2535RDCMZJenX95kaQzWh4t+0kI4cOSviLpeEmvCSF8dq7H5TqgrKyg9KqmtkvyvlYkfURSn7Kg8yfGGC9pWu4Xkj4TQniNskcI10l6v7IClLOvstd8evMjaCGELyt7vY9UdifVyZI+U/ylbRNCOELSW5ua3tGyyD2aPl8m6dfKZp37nbLC1/GSni9pWFlQd0NZYXDWyqbPtyzQndGmz1fMuRQAANjrcAcTAACQJMUYR5UVGGa9K4Sweq7ljbOUjS1uk/Qsl1uU7+MMZUWMkrLCxq703jnaH6Vts7O9t6W49HcxxtdL+v7sOiGEO8+xvQlJL2rNN8ofAWzOs7qbOiiEsEZZAWu2mPOhGOMvWhZrnkHuw5LuFWP8QIzxpzHG78UYX6usCHVNvswzQwjHN63THBg+sUCXxudYDwAA7OUoMAEAgL+LMX5b0kfzL1dJOr+d9UIIJWV5RZL0kxjj2FzLxhivkvTH/MsTd7Kr7bg+xvi3Ob73sKbP37/Adi5s+vzhcyzzvzHGDXN8rzmXaGiBfbUthLCvpO8qy7WSslDyF5hFz1FW2HqU5i78XaMs6HzWi5o+bw713pHMrF2ZrwUAAPYwPCIHAABanamskLJO0hNDCJ+KMdqp6ZscouwRK0k6pWkmt4UcunNdbMt183zvqPzjVmWPis3nZ02fHz3HMlfPs/7Wps87MvYKIRyuLGvp8LwpSnpEjHG8ddm82Peb/N+cYozfCSFcpeycPDiEUMrvwGru/5wz++X6mj5f6G4nAACwF+EOJgAAsJ0Y4yZJz21qem8IYaE8nVU7ubuuEELH7uppsXme7+2Tf7y1jZns1jd9vnKOZbbO0S5tfydPaYF9LSgPJ/9vbSsu/V7SCTHG9XOv1bZf5x+HtK1g2Jy7NLDA+s3fn+uOLgAAsBfiDiYAAJCIMX4xhPA5ZTOvrVMWHP20eVZpHlN8RG0+Wpeb83G6ebTzR7L5Ckc7UuipNH1en3Op3SCE8HhJn9C2O4l+LunkGONtHdpF87nozj9e09R24ALrN3//ho70CAAALAoUmAAAwFyeJ+nByu72OSOE8Ol5lm2+W6UWY7x8J/c5WxRaqAC0fCe3P2u2v6uaHgWby1qz3m4XQniOpAu07dh8VdIT5su7CiGUlZ3D1ZImYoxfXGA3a/KPNW17rVcpKzz1a9tdU3Np/v6umh0QAADsgXhEDgAAWDHGmyW9uKnpA5r7Eakrte3ul/sutO0QwstCCM8MITyk5VuzAdTdIYRK63r5un3KCiZFzOYRDUq6ywLLNr+ePxXc704JITxb0nu0rbj0QUmPnq+4JEn5rHaXSLpY0oV5GPtc++iRdO/8y9/EGKfybTQkzc5M94D5tiHpH/KPk5L+Z76+AQCAvQsFJgAAMKcY40WSvp5/eYikJ82x3LSk7+VfHh1CeMBc2wwhPFjSWyW9T9IrW769qenzQ+bYxEMkVefrdxu+1fT5MxdY9llNn3+74H53WF6Eu6Cp6U0xxmfEGGtzrdPih/nHfSWdNM9yZ2jbnWGtd6tdkn9cLenkOfq5tul733CB4wAAYO9FgQkAACzkmdoW9DxfYeedTZ9/LISQ5PWEENYouxNq1rtbFmme6ez5Zv21ks6Zt7ft+bKkK/LPnxNCeKxbKITwakkPyr/8boFH/3ZKCGG5pI9r25jt3Bjjv+/gZi5s+vzdIYQkkD2EcKykt+Vf3qTtz5EkfUrbHpl7d34emtfvytfpn+3nDvYRAAAscmQwAcCu0+407cBud5/73Ee/+MUv1N3d3aMF3qsxRl188cV63etet137d7/73atalzv77LP1qU99SpIOX758+bUXXHCB7nOf+0iSfve732nNmjW6+eabJUkPfehDdcEFF2yXCfStb31Lj3zkIzUzMyNJL3zlK1/5wpNPPlk9PT26/PLL/77+QQcdpGuvvVb777//wXP1/wEPeMDD5vpejFGXX365nvzkJ2t6erpcLpe/8LKXvUwPf/jDtc8+++j666/XJZdc8vflh4eH9aUvfelEtZ8R1SnPl7R
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xe4JFWd//H3zRMJkpXkIBwVdRUVZfWnoqggAi5GgophxYCuqLsr7gJiQMSEEkTWRRF1TSCKq+6KYEBkQRdUWD2AikhOk2DSTb8/qnqm6free+tO9eT363nm6dunK5yqrj53+nurPtUzPj6OJEmSJEmStLp613UHJEmSJEmStGGzwCRJkiRJkqRGLDBJkiRJkiSpEQtMkiRJkiRJasQCkyRJkiRJkhqxwCRJkiRJkqRGLDBJkiRJkiSpEQtMkiRJkiRJasQCkyRJkiRJkhqxwCRJkiRJkqRGLDBJkiRJkiSpEQtMkiRJkiRJasQCkyRJkiRJkhqxwCRJkiRJkqRG+td1ByRJ0tqVUvoJ8Ozy6b/mnD9cc74zgLeVTx+Zc765+73TRFJKTwWOBvYFdgBGgAxcAJyRc35gknk/D7yh5qomfG9TSltSHAMHA7sBc4DbgUuBT+acr6+5DkmStJHxDCZJkjZtx6eUHrOuO6GJpZR6UkofB/6Hokg0D5gJzAWeAnwEuCaltNski3lSF/rxXOAPwAeBpwIPAwaBXYHXl314Y9P1SJKkDZMFJkmSNm1DwL+nlPw/wfrrE8C7gR7gr8DbgWcCBwHfK6d5FPC9lNJQ58wppX5gz/Lp5ymKTZP9uz1YxtPKdW0LDANnAvuX/fgAsAQYAD6XUtq36QZLkqQNj5fISZKkfYB3AKet647ooVJK+wDvLJ9eBzw353xP2yTfSymdC7wOeDTFmUSf7VjMYygKiQCX5JyvnWYf+ikKUzMpiksvyzl/t22SX6SULqO4TK4XOAV42nTWIUmSNnz+tVKSpE3XGEWOD8CHU0rz1mVnFHo/xZlLI8BLO4pLLe+hKPwAvCx4/YltP0+ruFR6OfC48uePdBSXAMg5/wT4dvl075TSTquxHkmStAHzDCZJkjZdw8AngeOAWcC/Ac9bpz3SSiml7Vj1fnwh53xDNF3O+f6U0keArYE/BZO08pceBG5cja4cXj7eD3xskuk+CywA7gX6VmM9kiRpA2aBSZKkTdtJwN9RXF713JTS3+ec/63JAsvQ8GMoiiM7sio76DLg9Jzz/00w308o7m63POc8Y5LlX0eRKfSXnPOuHa+Nlz8eC/wncAZFTtAwcBPw3pzzJW3Tbwa8ETiE4iyducB9wDXAN4Hzc84jdEgp7Qr8uXz6d8B3gaOA15R9mwvcBvwX8Imc8x8n2p5JPJ9VhZqvTzZhzvnESV5uncH0m5zz2HQ6UF4e9/zy6fcnu1NduV8vmeh1SZK0cdtUC0zjU08iaQPWs647UHKs0Xpp77335qqrrmJwcHDod7/73bJf//rXHHnkkYyNjTF37txz7rrrrnO22267ynxHHHEEX/nKVwD48Y9//OfKBMCZZ55JX18fo6OjnS8lIPX29r759NNP55hjjqGn56Ef1fZ+McnnZ/fdd+fGG2/kEY94xC4TTfe6173uU9/5znc+df/9969s6+npefIll1zyo9bzK6+8km222YZ77qlcdbY9cABwwB577HHuLbfcws4779w5zSPbfp5FUVjpDLeeB7wFeH1K6dCc8/cn2qYJPL7t51+1fiiLPjtS/D/urznn5VMs52/Kx2tTSgdT5DQ9neIucPcCvwDOyjlfFsy7O6vym65ufyGltA3FWVN35Zzv75xRkiRtWjbVApMkSSo9+clP5ogjjuD8889n8eLFnHjiiZx99tnTXs7pp5/OGWecAUBKicMPP5yUEmNjY1x//fWcf/753HLLLSunefvb397V7Wh33nnnMT4+zhvf+Eb23Xdf7r33Xn7/+9+z4447AnDNNddw9NFHs2zZMnp6ejjooIM44IAD2Hrrrbn11lu54IILuPzyy7nhhhs4/PDDufDCC9l2220nWt0nKIpSV1LcXe0GYAfgbRRn/wwBX0wpzZvsDKDAY8vHBTnnheVZUx8ADgVml68tTSl9F/iX6CyplNLOFIUkgCOBt3ZMsgNFbtPLUkrnAG/rOGPrsW0//6Usbh0LHA3s1raea4CTc87fmsb2SZKkjYgFJkmSxLve9S4uvfRSbrvtNi677DIuvvhiDjrooNrzX3/99Zx11lkAHHLIIZx88sn096/6b8aTn/xkXvayl3H00Udz1VVXceaZZ3LAAQfwqEc9quvbAjA2Nsab3/xmjj322JVt+++/PwCjo6O8733vY9myZfT29vKpT31q5WsAT3jCE3jRi17EGWecwemnn84999zDCSecMFnRbXvgfOCo9kvQysLP94AXAdsABzLFpW4dti4fF6SUng9cCMzpmGYm8ErgReVZUp2XqD2p7efNgN8AZ1HckW4IeA7wdmBL4E0UZ4S9OegDFKHwVwBPDfr6JOCbKaWzgGNyzp7BKUnSJsa7yEmSJGbNmsUHP/jBlc8//OEP03552VTOPfdcxsbG2GKLLTjppJMeUlxqX8fJJ59MT08P4+PjnH/++V3p+0QOO+ywsP2yyy7jT3/608pp2otL7Y455hj23nvvlfPcdNNNE61qGfDOznyjssjSnmf1N0xPq5i0BXABMAP4EMWZQ0PAHhRnT41TZD5dkFLqrNi130Hu34Gn5JzPyTlfkXO+rMxuehLwl3Kao1NKzwn6AEWe1VMpsrSeRXFp4FbAq4Hby2neCvzjNLdTkiRtBCwwSZIkAJ7xjGdw6KGHAjB//vyHFJwmMz4+zs9//nMA9tprL2bOnDnhtDvttBO77VZcWXXllVc27PHEtttuO7bffvvwtVZfAV75yldOupzDDz985c/t83X49SQZRO2Xrc2ddGVVs8rHLSgKPa/IOR+fc/5TznlFzvnGnPN7KALVoThD6eSOZXyMorB1EPDmKLA85/wXiqDzlncGfQDYmaLQ9fyc889zzktzzvfnnL8M7EOR5wRwQpnPJEmSNiEWmCRJ0krHHXcc22xT1Aa+//3vc8klU98U7NZbb2XhwoUAXHrppaSUJv3XOhPo1ltvXWPbscMOO0z42o033ggUZ1Ttscceky7niU9cdQLQDTfcMNFkN0+yiPbMpelGEyxt+/nbOedvRxPlnM+iuPQN4CUppdltry3JOf825/y9qLjUNt0lrLor3nNTSq0E9vY+LAPeknOuJLjnnG8BPlw+nU1xZz1JkrQJscAkSZJW2myzzTjxxFV3vH//+9/PokWLJp1n/vz5q7WukZERHnhgOpnX9c2Z0xlVtMqCBQsA2HLLLSt3suu01VZbVeYLTLYR7VlE073D5eK2n8PiUpuLy8cBYK9prqelVaSaS5HJ1NmHX+ScK7fcC/oA8LTV7IMkSdpAGfItSZIe4vnPfz77778/P/zhD7nnnns45ZRTOPnkziuvVhkdXXVCy0tf+lJe/epX117XZJfTTWRsbGzqiSYxPl4/f7p9Xb29a/3vcne0/XzbFNP+te3nrSecanJL2n4eXEd9kCRJGygLTJIkqeKEE07gyiuvZMGCBVxwwQUceOCBE067+eabr/y5r6+PxzzmMY3WPVUBaPHixZO+PpVWf+fPn8/4+PikZzHde++9K39u38615HesutRsy8kmpAj9bpkPkFLqBZ5LcQe7ZRNdYtdm2/JxFGhlSv2u7fVp90GSJG06vEROkiRVbLXVVhx33HErnx9//PEsXbo0nHannXZaeSbStddeO+WyzznnHL72ta9xxRVXPKS9dee54eHhh5wV1W7ZsmWrfUleS0oJgCVLlqzMY5rIb37zm5U/z5s3r9F6V0N7CvrTp5h2z7afbwYo72r3LeCrwFltuUoVKaUhijvEAfw257yibVl3lT8/tSxa1e6DJEnadFhgkiRJoZe85CU861nPAuC2227j4osvDqcbGBjgaU8rInduuOEGfvWrX024zF/+8pd84hOf4MQ
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x1200 with 8 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8JVd9/vHn6qqvtMW7a6/7YmMOBjuAQw0GTAgt1ISEkmBiyo8WCDYJJRRjCC2hdwdwKCb0mEAIxRQDwaF3O/iAce/2equ67tXvjzPXutJ5JI000q6W/bxfr32t7mhm7rlzZ84dfe/Mc2pTU1MCAAAAAAAAlqpjXzcAAAAAAAAA+zcKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKikc183AAAA7H0hhG9JekDx8BUxxteVXO7dkv62eHi7GOMVy986OCGE20s6XdKDJR0laVTS5ZLOk/T+GONNCyz/dUkPKvNcMcZa23KnSfrQEpr86hjjWUtYDgAA7Ie4ggkAALwyhHD8vm4E5lYUeX6lVNy7g6ReSesl3U3SP0m6OITwpwus5q4r2UZjfC8/HwAA2Ie4ggkAAPRIOieEcHKMsbmvG4OZQggPl/RvkmqSRiS9RdJ3isenSHqhpE2SPlu8hz816zhS0sbi4WskfW4RTfiCUiFrIXdRutKpJuliSe9axHMAAID9HAUmAAAgSfeR9HeS3r6vG4JpIYQOSe9WKtqMS7pfjPEnbbOcH0L4iqQLJPVJeqOkh5hVtV+99KUY48/LtiHGeKukWxdo54CkzxTtHJL05zHG3WWfAwAA7P+4RQ4AgANbU9Jk8fPrQgjH7MvGIPPHklrvybtnFZckSTHG70j67+Lhg0MIG8x6WgWmptKtdsvtXyTdvvj5jBjjb1bgOQAAwCpGgQkAgAPbhKQ3FT/3S/rAPmwLvC9KukrS5+eZ59dtPx9pft+6xS3GGIeXq2GSFEK4t6RnFw8viDGyDwEAcADiFjkAAPBqSX8m6Y6S/jiE8P+qFgmK0PDnKY1adoTSrVNXK93K9a4Y4//Nsdy3lEa3G4sx9s6z/osk3VnSlTHGrbN+N1X8eIbSlT3vlnSyUjHtUkkvjTF+vW3+tZKeIekxkk6QNChpm6SfKd32dW6McVKzhBC2Ko3iJqXt9wVJp0l6StG2QUnXSvqqpLfEGH831+uZS9HOry84o3R028/Xm9+3rmD62WLbMJ8QQk3Tt/BNSnrucq4fAADsP7iCCQCAA1yMcUypwNIK+H5TCOHwpa4vhPBKpduwnispSFqjdHVUULrS5VchhLOK4sRKOlLShUqZRP2S1kk6SanI1GrrAyVdohScfX9JB0nqkrRFUitc+2chhGMXeK5+pULQOUoFsk1K4enHSHqOyo3ytiQhhHtIemzx8IIY482zfr9W0tbi4S9DCE8OIXw1hHBLCGEshHBVCOEjIYQyQd6zPV7SHxY/vy/GeMlSXgMAANj/UWACAACKMV4o6T3Fw3WSzl7KekIIZymNUlaX9EulgtIfKV1B9AJJv1M6/3hV8W8lna5U6PkXSfeT9JeSXh9jvKJo632UrnA6VNKUpI9JerSke0l6oqTzi/WcIOl/QgiHzvNcb5H0QEnfl3RqsY7HSvpa8fseSR8uwrArCSHUQgiDIYSTQghvk/StYv3bla4am+2uSlcYSdLLJJ2rVHTbKKlbqRD3FEk/CSEs9j05s/h/TNLrF7ksAAD4PcItcgAAoOUfJT1K6WqXR4YQ/irG+PGyC4cQTpL0yuLhuZKeNuvWsgtDCOcoZQqdIunMEMKn57pdbhl0KBWUXt427bNFW+tKVyf1KV259YQY42fb5vuhpE+FEM5UuoXwUEn/qlSAcrYovebTYoytK8EUQviC0uv9U0mbJT1C0qcqvq6/Lp6r3YWSnjHHFUTtVyatlfQdSR+U9Nvi8UOVrrLqk3RWCGEsxvjGhRoRQniopDsVDz8SY7xhUa8CAAD8XuEKJgAAIEmKMQ5JembbpHeEEDYvYhV/r3RusU3Ss11uUfEcT1O6Yqgm6flLb3Ep75tj+qOUMqekdGvXZ91MMcbXKF0hJEmPCiHcyc0naVTS6e3FpWL5Kc0MTr9LmUYv4Ggz7URJz19gBDlJOivG+IAY47kxxu/HGM+PMf690lVmO4p5XhtCuH2+mszpxf8NTQfFAwCAAxQFJgAAcJsY49ckfah4uEnSu8osV+QpPbx4eOF8I5XFGC/X9KhnD1piU8u4NsZ4zRy/e2jbz/+6wHre2/bzw+aY5ycxxlvn+F17uPfgAs9VxrclPVjpNrxTlW7LW6uUefWdEMLBs+Z/gVJO0sNjjK92K4wx/lzSi4qHdflb7W4TQriDprfheTHGS+ebHwAA/P7jFjkAADDbC5UKKYdKekII4RMxxs8vsMxWSa2rZx7dNpLbQm63tCaWcvU8vzuh+H+PpIsWWM/3234+cY55rphn+T1tP1c+94oxfrft4Q9DCB9XukrqaUqv681KmUqt+XdJ+mmJVZ+rVFDslfQnC8z7RE3nOn24VMMBAMDvNa5gAgAAM8QYd0j627ZJ7wshrF9gsU1LfLrOEMJyXNXj7JrndxuL/28pbmObz41tPx80xzx75pgupdsBW5Z95LzitrznSrq2mPSEEEL/EtYzpjSiniQdtcDsjyn+367pIHMAAHAAo8AEAAAyMcbPSfpM8fBQpVHS5tN+Zc6/KQVLl/035+108yhzDjNf4WgxhZ5628/NOefah4ri0H8XD7s1nS+1WK33onuuGUIIR0o6qXj4uRjjxBKfCwAA/B7hFjkAADCX50n6Y6WrfZ4WQvjkPPO25w81ikyfpWgVhRYqAK1b4vpbWu3dFEKoLXAV0yFmub2iCO0+VtKWGOMXF5h9W9vP3cXyfZLuJ+lgSTfEGL++wDpa+U03zTPPI9t+/vQC6wMAAAcIrmACAABWjPEmSWe0TXq/pDVzzH6Zpq9+ufdC6w4hvCSE8KwQwuysn9bIc90hhPrs5Ypl+yQtZnQ755fF/wOS7rzAvO2v55I551oZ50r6kaQvlBjR79i2n1vh5r2Svlqs53XzLRxC2NK2jh/PM+v9i/+bkr47z3wAAOAAQoEJAADMKcZ4rqQvFw+3SvrrOeabkHRB8fDEEMLJc60zhPDHkt4o6WxJL5v16x1tP2+dYxV/IqlrvnaXcH7bz89aYN5nt/28t/OG/qf4v6YU4m0VxaFHFA8vaY2eF2PcLulXxfR7hBDmu3XuDE1fOTbf1Wr3bHueoXnmAwAABxAKTAAAYCHPkrS7+Hm+ws5b237+cJHVM0MI4WClK6Fa3jlrll+2/fx8s/whkt40b2vL+YKkS4ufnxtC+DM3UwjhlZIeUDz8RoVb/5bqI5JaRZyXhRCyUeyKkPRPa/rqsjfOmuW9xf81SR90AeAhhMdI+vvi4UWSznONCSEMaHrkv/mucgIAAAcYMpgAAMC8YoxXhxBeoulCxVzzfTOE8D5Jz1G61eoXIYS3S/p2McvdJb1Q0mHF48/FGP9z1mo+IelMpXOUFxTFk09KGlW6Ve30YvnfaeYtYYt9TY0QwqlF27olfTaE8DGlYPObJB0t6emSHloscoukv1nq81Vo5w0hhH+Q9D5JayX9sNim31IaJe8eSlcebS0W+aSkj85azQck/ZVSFtN9Jf04hPBmpULSQZL+UtJpSl887pJ0aoxxUt5xmr7K6bpqrw7AfmSh0TYB7N+WZZRbCkwAAKCMsyU9UdP5O3N5vlIx6HRJGyS9eo75zpP05NkTY4yXhhBOV7qyqUPptrD2W8OaSrfVbdT0FTdLEmP8fgjhYZI+pZTp9JTi32w/lfSEGOO1VZ5vqWKMZ4cQepSu3OqV9NLi32zvk/SC2YHlRTHt0Uqv8yGSjpd0jln+aqXXOd9VWke0/bx
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJFd97vG3uyfu7Gp3tcoBReuQBAYERkgkGRMNmGtzQcaWQVyiyRgExmRj0iWaZEwWxiaZYDDXIJJJwiaYKH4E5Rw2zu5O6p77R9WwvXPemamd6tmZ3fl+nmefnj5T4XRV9ent31S91ZienhYAAAAAAACwWM3l7gAAAAAAAAAObBSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUEvfcncAAADsXymlr0m6d/n0byLiVRXne5ukvyyfnhQRl/e+d6gipTQg6QeSbifpzIi4uMI8d5b0ZEn3knScpJakGyR9W9K7I+Jri+jHYyR9WNJ/RMQD93V+AABw8OAMJgAAVrcXp5Rus9ydwD57tYri0oJSSo2U0uskfU/SEyQlSSOShiSdIOlcSV9NKb2/LFxVklI6SdJb9rXjAADg4ESBCQCA1W1Q0ntTSvyf4ACRUnqhpOfswywvkfQ8SQ1J15Y/31PSPSQ9XdKl5XSPlfSOin04VtKXJW3ah34AAICDGJfIAQCAMyU9Q9Kbl7sjmFt5dtFbVFzmVnWeEyT9dfn0l5LOjoibuib5TkrpQyqKRWdIenxK6X0R8e15lnmmpI9LOnYfXwIAADiI8ddKAABWr46kqfLnV6WUTl7OzmBuKaW7SfqW9hSX2hVnfYykmcvenjWruCRJiojtkp7U1XTeHH0YTim9RNLXVRSXqvYBAACsAhSYAABYvSYlvb78eY2kf1zGvmAOKaXXSLpYxRlGkvQZVT/b7J7l425JX5prooj4gaTN5dM7mj6cKikkvVxSv6Ttkh5esQ8AAGAV4BI5AABWt5dLeoSkW0s6J6X0hIioVWgqQ8OfJun3VdytrCHpKklflfT3EfHzOeb7moq7241HxNA8y/+pioDrKyLixFm/my5/fLakz0t6m6SzVRTTfi3pBRFxUdf0h0j6PyqKJbeXtE7SLZJ+qOIysAsjYkqzpJROlHRZ+fQRkj6rIsPovLJv6yRdI+k/JL0hIn4z1+up4O4qtuFmSc+PiPemlF5Wcd6PSvqZpH73OmZplI9u2x8n6fjy589LenJEXJ1SqtgNAABwsOMMJgAAVrGIGFdRYOmUTa8vA5wXJaX0Ykk/kfRU7blb2Zry5ydL+klK6WUppcbcS+mJ41VcUnb/cv3rJd1ZRZFppq/3lfQLSW+QdC9Jh6o4O+coSQ+S9D5JP0wpnbLAutZIukjSe1UUyA5TEZ5+sqSnSPpZSunBNV7LFkmvlXRqRLx3X2aMiA9ExF9FxDPnmy6ldAdJG8unV5hJplVuz4j4w4i4el/6AQAADn4UmAAAWOUi4luS3l4+XS/pXYtZTnlWzSsktST9WEVB6R4qziB6pqTfqPi/x0vLf0vpWSoKPa9TcZnYIyX9XURcXvb1TBVn4hytonjyYUkPk/R7kh4t6Yvlcm4v6RsppaPnWdcbJN1XxWVsf14u44+055K0QUkfSCmtXeRr+eOIeEFEbFnk/FW8sOvn/zC//0ZEnB0Rc15mBwAAVjcukQMAAFJRYHiopBMl/WFK6U8j4iNVZ04p3VnSi8unF0o6f9YlWd9KKb1X0uck3UfSS1JKH5vrcrkeaKooKL2oq+0TZV9bKs5OGlZx5tajIuITXdP9l6SPloHWL1dRhPoHFQUo5ygVr/mxETFzJphSSp9V8XofLOlwSQ9RccnaPule5lJIKT1SRVFNkm5U8Vr2ax8AAMCBjzOYAACAImKnpCd2Nb0lpXT4PiziuSr+X3GLinyeLO+nXMf5Ks4Yakh6+uJ7XMk752h/qIrMKUl656zi0m9FxCskfW1mnpTSbedY3piKO7TtVYSJiGntHZyehWcvt5TSPSR9oKvpORExukzdAQAABzAKTAAAQJJUXv70/vLpYZL+vsp8ZZ7Sg8qn34qIXfOs4zJJl5RPf3+RXa3imnlygh7Q9fM/LLCcd3T9/MA5pvl+RGye43fd4d7rFljXfpVSOkvSv6vIkJKkd0XEPy1jlwAAwAGMS+QAAEC356gopBwt6VEppX+OiM8sMM+J2hMQ/bCuO7kt5KTFdbGSq+b53e3Lx1FJP11gORd3/Xz6HNNcPs/83WcDrZj/d5Wh4x/XnuLSJ1Xc+Q8AAGBROIMJAAD8VkRslfSXXU3vTCltWGC2wxa5ur6U0lKd1bN9nt9tKh9vLi9jm88NXT8fOsc0811S1r38pb5zXiUppSdL+qz2FJc+KunREdFevl4BAIAD3Yr5SxoAAFgZIuJTKaWPq7jz2tEq7pL2+Hlm6f7/xPtU8dK60pyX082jyh/I5isc7Uuhp9X18wEddF1eyvg6SX/V1fxuSU8hxBsAANRFgQkAADhPk3SOirN9zk8p/cs803bnD7Uj4n8Wuc6ZotBCBaD1i1z+jJn+HpZSaixwFtORZr4DTnnnvA9KekxX88si4uXL1CUAAHCQ4RI5AACQiYgbJT27q+ndkkbmmPxS7TkT6e4LLTuldEFK6UkppfvN+tXMnecGyoKIm3dY0r7c3c75cfm4VtLtFpi2+/X8ouZ6l0V55tKF2lNcmpJ0PsUlAADQSxSYAACAFREXSvpC+fRE7X32S/d0k5K+Wj49PaV09lzLTCmdI+k1kt4l6a9n/Xpr188nzrGI+0nqn6/fFXyx6+cnLTDtk7t+/lLN9S6Xl0s6t/x5TNIjIuL980wPAACwzygwAQCA+TxJ0o7y5/kKO2/s+vkDKaXjZ0+QUjpCxZlQM946a5Ifd/38dDP/kZJeP29vq/mspF+XPz81pfQIN1FK6cWS7l0+/XKNS/+WTUrp7tpTyJtWEeb9uWXsEgAAOEiRwQQAAOYUEVellC6Q9I4FpvtKSumdkp4i6RRJP0opvVnS18tJzpD0HEnHlM8/FRGfnrWYf5b0EhX/P3lmeYe5f1Fx1s3dJT2rnP835ToW+5raKaU/L/s2IOkTKaUPS/q4pBslnaAi1PwB5Sw3S/qLxa5vqX30ox/9zly/O/PMM/Wd7xS/vt/97td42tOe9ulLLrlk3uX19/fr1FNP3ac+nH322Q/Q/MHqABZnRdx9Ury/gYNdT8YaCkwAAGAh75L0aEn3WmC6p6soBj1L0kYVl2Y5/yrpz2Y3RsSvU0rPUnFmU1PS+eW/GR0VZ+NskvTcfeh/JiIuTik9UNJHVWQ6nVf+m+0Hkh4VEdfUWd9yuOqqq35bXJKkiy66SBdddNGC8x177LH6yle+spRdAwAAByEukQMAAPMq77L2fyTtXmC6dkQ8R9KdVBSlfiFpVNKkpGskfVLSQyLijyPCLisi3i7prpI+LOlqSROSrpP0MUlnR8Sre/KiinV9VdKpkl4g6Vsq7hI3IelySZ+T9L8l3T0ifj3XMlayn/3sZ8vdBQAAsIo0pqc52xEAAOAAxX/kgIMbl8gB2B96MtZwBhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQA
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcLFdB9vFnunv2mbtnX0mAA4R9R8CwKLsoIvsii8giSAyaoK9h8RUQeNkEwiJhEQUEBAU0SEBEBUHQCATIkZCEJSHrXWef6Z73j1Od6dvnmZmaqZ575ya/7+dzPzNzblX1qe1UzZmq5/QtLi4KAAAAAAAAWK/a4a4AAAAAAAAAjmx0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKmkc7goAAIDNJ4TwL5LOLH784xjja0rO9w5Jv1P8eKsY45W9rx3KCCEMSPpvSWdIul+M8esl5nmQpBdJ+gVJR0naI+n7kj4q6UMxxrkNqzAAADii8QQTAABYzXkhhNsf7kpgzV6n1Lm0qhBCLYTwTklflvQESSdIGpB0jKQHS3qvpG+GEG6zQXUFAABHODqYAADAagYlXRBC4L7hCBFC+ENJZ69hltcoPbkkST+T9GJJvyjp15WeXpKkO0v6XAhhS6/qCQAAbj54RQ4AAJRxP0m/K+mth7siWF7xWtzbJL1gDfOcLukPih8vl3T3GOO+jkk+HUL4nqQ/lXRbpc6n1/amxgAA4OaCv0QCAICVtCQtFN+/JoRw2uGsDJYXQri3pK9qqXOpWXLWZ0uqF9+f1dW51PY6SXuL75+47koCAICbLTqYAADASuYlvbH4fkTSXxzGumAZIYQ/k/R1Sfcsiv5e5Z82u0Ype+mnki5yE8QYW5L+t/jx5PXXFAAA3FzxihwAAFjNqyU9TtLtJD0khPC8GGOljqYiNPzFkh4q6URJfUodHF+W9PYY4/eXme9flEa3m40xDq2w/EuUAq5/HGM8tev/Fotvf0/SP0h6h6QHKHWmXSbp5THGL3ZMv0XSb0n6VUl3lDQu6UZJF0v6hKQPxxgX1CWEcKqkK4ofHyfpM5KeJemZRd3GJV0l6Z8kvSnG+KPl1qeE+yptw92SzokxXhBCeFWZGWOM71DaBssKIfRpqWPp5xXqCQAAbqZ4ggkAAKwoxjir1MHSKoreGEI4Yb3LCyGcJ+m7SqHSQdKo0tNRQen1ru+GEF5VdGpspJOUXil7WPH5WyXdXamTqV3XB0u6VNKblEKvd0jql3SspEdKer+ki4sco5WMSPqipAuUOsh2KYWnnybphZK+F0J4VIV12SPp9ZJuHWO8oMJylvMSpXWWpL/ZgOUDAIAjHE8wAQCAVcUYv1oMY/8SpY6Yd0v6lbUup3iq5pXFj9+RdH7xtSbpHkpB4qd3TPOqKvVexVlKT/28QdJnlTpQ7hpjvLKo6/2UnnAalrQo6a8lfVzStZJuJek5Sp1Td5T0byGEe8QYl3u6503F8r8u6Z1Kr5sdJ+l3JP2yUmfTB0MIp8UYJ9axLo8vXmPriaJzb5ekOxV1/PXiv/5L0pt79TkAAODmgw4mAABQ1h8qdSqdKukxIYSnxhg/UnbmEMLdJZ1X/PhhSc/perXsqyGECyR9TtKDJL0ihPDx5V6X64GapNfGGP9PR9kni7rWlZ5OGlZ6cutJMcZPdkz3n5L+JoTwCqVXCI+T9B5Jj13ms45VWudndXYEhRA+o7S+j5J0lKRHax1PCPWyc6nwF5Ke21V2gaTfX2cHGAAAuJnjFTkAAFBKjHFS0m93FL0thHDUGhbxMqV7jxslvcDlFhWf8RylJ4b6lJ6Y2kjvWqb8V5QypyTpXV2dSzeJMf6JpH9pzxNCuMMyy5tRGqHtoI6gGOOiDg5Ov0uZSh8Cp5iyX5L0vBAC948AACDDDQIAACgtxniRpA8UP+6S9PYy8xWvXD2y+PGrMcapFT7jCkk/KH586DqrWsZVMcafLfN/D+/4/j2rLOf8ju8fscw0/xVj3L3M/3WGe4+v8lmHyvmSHijp/pLOVgpgP0XpdcK/ppMJAAB04xU5AACwVmcrdaQcJ+lJIYSPxhj/fpV5TpW0vfj+sR0jua3mVuurYik/XeH/7lh8nZB0ySrL+XrH93daZporV5i/85WzTXFvFmP8dMePXwshfEgppPxukp4s6SKlVwgBAAAk8QQTAABYoxjjXqXg57Z3hRC2rTLbrnV+XCOEsFFP9exf4f92Fl9vKF5jW8m1Hd/vWGaalXKLOpe/0SPnrUvx9NUzO4qec7jqAgAANic6mAAAwJoVT7h8ovjxOKVR0lbS+WTO+5WehCn7b9nX6VZQ5h5npY6jtXT01Du+73XY9qYRY7xEafQ7Sbrz4awLAADYfDbFY9gAAOCI9GJJD1F62uc5IYSPrTBtZ/5QM8b4P+v8zHan0GodQFvXufy2dn13hRD6VnmK6Rgz3xEjhHC8pNOV9svXVpn8xuLrwMbWCgAAHGl4ggkAAKxLjPE6Sb/XUfReSaPLTH65lp5Euu9qyw4hnBtCeH4I4Ze6/qs98txACKHePV8x77CktYxu53yn+Dom6YxVpu1cn0srfu4hVYSvXyrpX5X232rTnlb8uFw4OgAAuIWigwkAAKxbjPHDki4sfjxV0tOWmW5e0peLH+8UQnjAcssMITxE0p9JerekP+r6770d35+6zCJ+SVL/SvUu4Qsd3z9/lWlf0PH9RRU/95Aqnsz6avHjGSGE+6ww+aO19LTWEbWeAABg49HBBAAAqnq+pAPF9yt17Ly54/sPhhBO6p4ghHC0Dn6S5s+7JvlOx/cvMfMfI+mNK9a2nM9Iuqz4/kUhhMe5iUII50k6s/jxSxVe/Tuczu/4/t0hhOz1whBCkPS+4sd5HbwvAQAAbrEZTGWHRgZwZNqUozABN1cxxp+GEM7VwR0Vbrp/DiG8S9ILlTJ/vh1CeKukrxST3FPS2ZKOL37+dIzx77oW81FJr1C6h3lpMcLcxyTNKL2qdlYx/4+Kz1jvOjVDCM8o6jYg6ZMhhL9SCja/TtIpkp4r6eHFLDdI+s31ft7hFGP8bAjhbyQ9SdJdJX0/hPAGSRcrBZj/slLeVns0v5fGGH94WCoLAAA2rVtqBxMAAOitd0t6sqRfXGW6lyh1Bp0labukVy8z3ackPb27MMZ4WQjhLKUnm2qSnlP8a2spvVa3U9LL1lD/TIzx6yGER0j6G6VMp2cW/7r9t6QnxRivqvJ5h9lvKj2Z9HSlDrq3mmlmJL04xnjBoawYAAA4MvCKHAAAqKzI8vktSdOrTNeMMZ4t6W5KnVKXSppQ6ty4StLfSnp0jPHxMUa7rBjjOyXdS9JfKYVNz0n6uaSPS3pAjPF1PVmp9FlflnRrSS9XyiraXXzelZI+J+mJku4bY7xsuWUcCWKMszHGZ0h6qFKH2s+U9sl+Sf+jlIl1Op1LAABgOX2Li7fIt8VukSsN3ILwihwAAAAAHEI8wQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuh
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJFd1/vG3u6cnb05aZYlwwWQZhDBgwAQhMCIZEAiwDAYBRuQofsiAZYwtGwMiChACTBYgDAYTZDLCYECACAcEklZ5c5o83f37o6q1vX3OzPRM9ezOSt/P8+zTM3cq3Ap9Z/tM1VulRqMhAAAAAAAAYKHKB7sDAAAAAAAAOLRRYAIAAAAAAEAhFJgAAAAAAABQCAUmAAAAAAAAFEKBCQAAAAAAAIVQYAIAAAAAAEAhFJgAAAAAAABQCAUmAAAAAAAAFEKBCQAAAAAAAIVQYAIAAAAAAEAhFJgAAAAAAABQCAUmAAAAAAAAFEKBCQAAAAAAAIVQYAIAAAAAAEAhPQe7AwAAYOlJKX1L0oPyb/+fmf1jh/O9U9Lf5d8eZ2ZXd793iKSUlkt6gaTHS0qSBiRtkfQDSe8xs292sIwTJD1P0p9LOlJSRdLN+TIuMLNvLUrnAQDAIa/UaDQOdh8AAMAS01ZgmpB0LzP7TQfzUWA6CFJKd5H0JUnHzjLZuySdZWbuP38ppZKkf5b0CkmlWZZxkaQzzWxywZ0FAAC3StwiBwAA5tIn6YMpJf7fsATlVy59RfuKS1+W9CRlVyG9SNJNefvfSXrjDIs5R9IrlRWXbsi/fqCkP5N0lqQ/5tOdIend3ew/AAC4deAWOQAA0In7KStWvO1gdwTOCyUdlX/9LjN7YcvPvptS+pSkn0s6TNKrU0rvMbMbmxOklI6RdHb+7e8kPcDMtrQs47KU0kckXSrp3pKenVK60Mx+sEjbAwAADkH8JRIAAMymLmk6//ofU0rHH8zOIHRK/lqT9Jr2H5rZZknNDK1eSY9om+T0vF2SXtJWXGouY7ekM1uanlmkwwAA4NaHAhMAAJjNlKTz8q8HJb3/IPYFsfX5641mtneGaa5o+Xpj288emL+OSfr6TCsxs59K2p5/e4/5dhIAANy6cYscAACYyxuVPZnsTpL+IqX0HDMrVGhKKd1Z2a1dD1X2tLKSpGslfVPS+Wb26xnm+5ay8PEJM+ufZflXSLqLpGvM7Ni2nzVDrl8q6b8kvVPSA5QV066U9Boz+0bL9Msl/a2kx0q6q6RlkrZJ+pmkz0j6qJlNq01K6VhJV+XfPl7SfyrLMHpm3rdlkq6X9FVJ/2Zmf5hpe+Zwg6Q7Sjo8pbTMzPYE09y+bfpWn5L0K0nVaDvaNAPAZ9z3AADgtokrmAAAwKzMbEJZgaWeN52XUjpioctLKb1e0i8lvUBSkjSk7OqoJOl5kn6ZUnpD/mSzxXSUpO8ru2VsUNIKSScoKzI1+/oQSb+V9G/KQrNXS6oqyzM6RdKFkn6WUrrdHOsalPQNSR9UViBbqyw8/XhJz5f0q5TSoxa4Hf+Zv5Ylndv+w7xA9tr82xFlIeC3MLOLzOwVZvbi2VaSUrq7pFX5t9cssK8AAOBWigITAACYk5l9X9lj7qWsEPPehSwnpfQGSW+SVJH0C2UFpT9TdgXRiyX9Qdn/T/4+/7eYXqKs0PMvym4Te5KkN5vZ1Xlf76fsCqeNkhqS/kPSqZLuK+k0SV/Ll3NXZWHa7beetfo3SQ+R9ENJz8iX8TjtuyWtT9JFKaXhBWzH+5QVyiTpRSmlL6SUnphSun9K6bnKAr6PV1Yg/Dsz27qAdUj7ilRSdtUVAADALbhFDgAAdOq1kh4j6VhJf5lSepqZfbzTmVNKJ0h6ff7tRyU9q+2WrO+nlD4o6UuSHizpnJTSp2e6Xa4LysoKSq9rabs472tF2dVJA8oKM08xs4tbpvuRpE+llM5RdgvhRmWFnlNnWNdhyrb5DDNrXgmmlNJ/KtveR0laJ+nRym5Z65iZjaaUTlYW8P3SvA/t/bhc0ovM7LvzWXZLP5+krKgmSZuVbQsAAMAtuIIJAAB0xMxGJD23pentKaV181jEy5X932ObpOdFeT/5Op6l7IqhkqSzFt7jjrxnhvbHKMuckqT3tBWXbmFmb5L0reY8KaU/mWF548qe0FZvbTSzhvYPTl9oePZdJN1TWUEscmdJp6WUVs3w8xmllP5M0kUtTS+bJUwcAADcRlFgAgAAHTOzr0v6UP7tWknndzJfnqd0Sv7t981sdJZ1XCXpN/m3D11gVztxvZldN8PPTm75+n1zLOfdLV8/coZpfmJm22f4WWu497I51uWklE6V9G1Jf6ksNPyZyq6G6ldWsHq/slvwXiDp0pTSmnks+/7KMpsG86b3mtnH5ttHAABw68ctcgAAYL5epqyQslHSU1JKnzCzL8wxz7HaFxB9asuT3OZy3MK62JFrZ/nZXfPXvZKumGM5P2z5+m4zTHP1LPO3Xg00r/+bpZQOl/RxZcWk6yTd18xubJnkF5Kem1K6XFmG1r3y19PalxUs+1HKnpLXLC59VtmT/wAAAByuYAIAAPNiZjsl/V1L03tSSivnmG3tAlfXk1Ka91U9Hdo9y8+aV/lszW9jm83NLV+vnmGa2W4pa13+fJ+c99fKnsInSa9pKy7dwszeLek7+bd/lVLaMNtCU0rPU/Z0umZx6VOSTjOz2jz7BwAAbiO4ggkAAMybmX0+pfQZZU9e26jsKWnPnmWW1v9zXKgOb63LzXg73Sw6+SPabIWj+RR6Ki1f12ecanHcp+XrL80x7ecl/bmy/t5b2RPy9pPfyvgvkl7R0nyBpOe350cBAAC0osAEAAAW6oWS/kLZ1T7PSil9cpZpW/OHamZ2+QLX2SwKzVUAWrHA5Tc1+7s2pVSa4yqm1quBZspZWizD+Wtd0p45pt3c8rXbP/mT8z4s6fSW5jeY2RsL9RAAANwmcIscAABYEDPbLOmlLU0XaN/tWu3+qH1XIp0017JTSq9OKZ2ZUnpY24+aT57rzQsi0bwDykKui/hF/jqs7Alts2ndnt8WXO98bclfy8pyrmZzRMvXrcWm5pVLH9W+4tK0pGdRXAIAAJ2iwAQAABbMzD4q6Sv5t8dq/6tfWqebkvTN/Nu7pZQeMNMyU0p/Iektkt4r6ey2H+9s+frYGRbxMEnV2frdga+1fH3mHNM+r+Xrrxdc73x9t+XrZ8w0UV5AagZ7T0r637ZJ3ijpqfnX45Ieb2YfEgAAQIcoMAEAgKLO1L7bs2Yr7Ly15euLUkpHtU+QUlqv7Eqopne0TfKLlq/PCubfIOm8WXvbmf+UdGX+9QtSSo+PJkopvV7Sg/JvLy1w699CfUL7bst7bUrpgTNM92ZJJ+Rff9jMbrmdLqV0kvYV8hrKwrznynMCAADYz201g6nTRyMDODTN9ylMi4WxBoesE088UT/60Y/U29vbpznOZTPTxz/+cb3xjfvfTXXppZde1T7dG97wBn3iE5+QpNutWLFi0zvf+U6deOKJkqQrrrhC69ev1+bN2d1bD3/4w/XOd77z863L+NrXvqZHPepRmp6elqQXn3322S9+9KMfrb6+Pl1++eW3zH/00Udr06ZNOuKII46Zqf8PeMADTp7pZ2amyy+/XE9/+tM1NTVVLpfLn3v1q1+tRz7ykVqzZo2e9KQnPVlZqPnJ+SxblT3R7YAys10ppTMlfVpSn6RLU0oXSvqistvnjpP0HEkPzWf5g6TXti3mXO0LKv+CpGtSSvecY9WTZvbrLmwCAAC4lbitFpgAAEAXPfWpT9WXv/xl/fjHP551ute//vXq6+vThz/8Ye3atUvnnx8/TO4Rj3iEzjvPX4h0zDHH6Oyzz9a5556rer2uz372s/rsZz97y8/L5bJe9rKXaefOnbrwwgsLbdM973lPfeADH9BLX/pSbd++XZdccokuueSS5o8/3TLpTyU9xcyuL7TCBTKzi1NKT5f0fkmDyq4oi27r+6mkJ5jZtmZDSul47Ss+SdLj8n9zuUZzZz4BAIDbEG6RAwAAhZVKJZ1
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcXFWZ//FvLb1m6ewksmRhOYIgi4rgMO4L6Ig6jgri+BMdl3FQREZRHBUEFcWNAUdFxQXHDZlBx9EZcN9wEGURlSNrgABJSNJJOkl3V1fV7497y67U83T37b6VtT/v1yuv6j59l1O3qvuePHXv9xTq9boAAAAAAACAqSru6g4AAAAAAABgz0aBCQAAAAAAALlQYAIAAAAAAEAuFJgAAAAAAACQCwUmAAAAAAAA5EKBCQAAAAAAALlQYAIAAAAAAEAuFJgAAAAAAACQCwUmAAAAAAAA5EKBCQAAAAAAALlQYAIAAAAAAEAuFJgAAAAAAACQCwUmAAAAAAAA5EKBCQAAAAAAALmUd3UHAADA7ieE8BNJT0m//ZcY4/szrneZpH9Kv10eY7y3/b1DqxDCKyRdmXHx02OMX2xatz6FXa6MMS6bwnoAAGAvxRVMAABgIu8OIRy6qzuBcR29k/c3vJP3BwAAdnNcwQQAACbSJenzIYQTYoy1Xd0ZuI5KH2+WdPoEy97X8n2W4lRZ0tckHSSpKumMSfUOAADs9SgwAQCALI6X9GZJn9jVHYHryPTx1zHGmyezYpblQwgfVFJckqT3xBivnWT/AADAXo5b5AAAwHhqkkbSr98fQlixKzsDK4Swv6T56beTKi5l3P7xkt6efvtzSRe1ex8AAGDPR4EJAACMpyLp4vTrXkmf3YV9ga/5Freb2rnhEEJZ0uVKxoxDkl7LbZIAAMDDLXIAAGAi50t6kaRHS3p6COG1McZchaY0NPwMSc+QtJ+kgqT7Jf1Y0qUxxj+Osd5PlMxuNxRj7B5n+7dJeoyc2c6aZk07S9J/S7pM0glKiml3SnpHjPEHTcvPlvQPkl4g6XBJsyStU1LMuUrSlTHGEbUIISyTdE/67YskfUfSqyS9Mu3bLEmrJP2vpI/GGO8a6/lMoJG/VJX0+yluYyz/qOQ5S9JHYoyxzdsHAAB7Ca5gAgAA44oxDikpsDSuXLk4hLDvVLcXQni3kkLIGyUFSTOUXB0VJL1B0u9DCOeFEAq5Oj6x/SX9UtKz0/33STpGSZGp0denSbpd0kclPVnSPEkdkhZLOknSFZJuCiEcOMG+eiX9QNLnlRTIFigJT1+hpIjzhxDCc6f4PBoFptuTLofPhhDuCiEMhRDWhRB+FEJ4dQihNJmNhhBmSnp3+u1D4tY4AAAwDgpMAABgQjHGX0r6ZPptn6RPT2U7IYTzJL1PUknSrUoKSk9ScgXRmZLuUjI+eW/6b0d6i5JCz4cl/bWkl0j6QIzx3rSvxyu5wmmJpLqkr0g6WdITJZ0iqRF0fbikn4cQloyzr49KepqkX0v6+3QbL5R0XfrzLklfTIs6k9UoMC2V9DslxcAVkjqVFMSepqSw9YsQwqJJbPeNkhamX384xjgwhb4BAIBpglvkAABAVu+U9HxJyyT9TQjh5THGr2ZdOYRwjEaviLlS0qtbbi37ZQjh85K+K+mpkt4TQvjmWLfLtUFRSUHpXU1t30r7WlJydVKPkiu3XhZj/FbTcjdI+kYI4T1KbiFcIukzSgpQnsVKnvOrmjOMQgjfUfJ8n6ukmPM8Sd/I+gRCCH2SlqffzpT0sJJb/q6XNKik+PRmJVeHHSfpf0IIT4oxDk6w3bKSWxglab3I3gIAABPgCiYAAJBJjHGLpNc1NV0SQlg41vKOs5WMPdZJeoOXW5Tu49VKrhgqSHrT1HucyafGaH++kswpSfpUS3HpL2KM75P0k8Y6IYTDxtjeoKS3tAZkxxjr2r54c2SWTjc5qunrGyU9Nsb4/hjjj2KMv4ox/puSEPD/SZc5WtI7Mmz3xUpuIZSky9LXBQAAYEwUmAAAQGYxxuskfSH9doGkS7Osl+YpnZR++8sY49Zx9nGPpD+l3z5jil3NYlWM8YExfvacpq8/M8F2/q3p6xPHWOa3Mcb1Y/ysOdx71gT7avVLSYek+31+jHFt6wIxxm2STpO0KW16U4Y8pjenj9uU8TUGAADTG7fIAQCAyXqrkoLGEkkvCyF8Lcb47QnWWSZpbvr1yU0zuU1k+cSLTNn94/ysMXPagKTbJtjOr5u+PmKMZe4dZ/3mbKNJjc3Sq8DuSP+Nt9z6EMLVkk5Xkst0tJIrnowQwgFKcrEk6bsxxkcm0ycAADA9cQUTAACYlBhjv6R/amr6VAhhzgSrLZji7sohhMle1ZPVpnF+Nj99fCS9jW08q5u+njfGMuMFZDdvf0fOnHdL09cHjLPcC5q+zpwHBQAApjeuYAIAAJMWY/zPEMJVSmZeW6JklrTXjLNK85jjCk3utqsxb6cbR5YP0cYrHE2m0NN8u1ltzKV2vebj2DnOci9MHwckfW/HdQcAAOxNKDABAICpOkPS05Vc7fPqEMLXx1m2OX+oGmO8eYr7bBSFJioA9U1x+w2N/i4IIRQmuIppH2e9nSKE8DgltxEukPSZCfq5qOnrNWNsb7akJ6fffjfNbwIAAJgQt8gBAIApiTGukXRWU9PlkmaMsfjdGr2C5riJth1COCeE8PoQwjNbftSYea5zrKDqEEKPpMnMbue5NX2cKekxEyzb/Hxuz7nfyXqPpKuUzIb36AmWPSF9rEn63RjLHK/RDyB/lrt3AABg2qDABAAApizGeKWk76ffLlMyW5m3XEXSj9NvjwghnOAtJ0khhKdLukjSpyWd2/Lj/qavl42xiWdK6hiv3xlc2/T16ydY9g1NX1+Xc7+T9dOmr1851kIhhMdIenb67f+mOVqeY5u+dkPAAQAAPBSYAABAXq+XtDn9erzCzseavv5iCGH/1gVCCIuUXAnV8K8ti9za9PWbnPX3kXTxuL3N5juS7ky/fmMI4UXeQiGEd0t6SvrtD3Pc+jdVX9HosT8zhPDE1gXSY/oNJeO+mqQLxtneY9PHirY/1gAAAOMigwkAdpys07ADu51jjz1WN9xwgzo7O7s0wXs5xqivfvWrOv/887dr/+EPf3hP63LnnXeevva1r0nSgX19ffdddtllOvbY5KKZ2267TYsWLdKaNUk80LOe9Sxddtll/9m8jWuvvVbPfe5zNTIyIklnnnvuuWc+73nPU1dXl26++ea/rH/AAQfovvvu07777rt0rP6fcMIJzxnrZzFG3XzzzXrFK16hSqVSLBaL/3HOOefoxBNP1Pz58/WSl7zkpUpCzZ+TrvKIpP833nHaEWKMa0II/yzpM5J6JP04hPAJSf+r5HbC4yS9TaM5URfGGK8fZ5OHpI/rYoxDO6jbAPY8jGmAvVtbZrGlwAQAAHI79dRT9b3vfU+/+c1vxl3u3e9+t7q6uvSlL31JGzdu1KWX+pPJPfvZz9bFF9sLkZYuXapzzz1XF154oWq1mq6++mpdffXVf/l5sVjUW9/6VvX39+uKK67I9ZyOOuoofe5zn9NZZ52l9evX65prrtE111zT+PE3mxb9naSXxRhX5drhFMUYL09zpy5WUmR6Z/qv2Yik98cYz5tgc/ulj2PdQgcAAODiFjkAAJBboVDQhRdeqO7u7nGXK5VKeuc736lrrrlGp5xyilasWKHe3l51dHRon3320XOe8xxdfvnluvTSS8fc1mmnnaZvfetbOvnkk7V48WJ1dHRo4cKFOumkk/TVr35Vr3/9RJFJ2R133HG67rrrdPbZZ+uYY47RnDlz1NHRIUn3SvqupJdKOi7GeOd429nRYoyXSDpc0mVKgsa3pv/uUBIA/rgMxSVJmp0+UmACAACTUqjXudoRAHYQ/sACe6+2XEoOAHsIxjTA3q0t4xquYAIAAAAAAEAuFJgAAAAAAACQCwUmAAAAAAAA5EKBCQAAAAAAALlQYAIAAAAAAEAuFJgAAAAAAACQCwUmAAAAAAAA5EKBCQAAAAA
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8HVd9/vHn6mq3vMWOYydO7CTAYUkKyQ8KtNCwNUApWylLy1JKCxQKJUApLS17KfvSlrVAoQQIW6EsLVtYS4BSdlLgkD0hiR3vtmSt9+r3x4ywrO8jaaSRHCX5vF8vv+R7NMuZ5Z47OnfmOY3JyUkBAAAAAAAAi9VxY1cAAAAAAAAAN210MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFroYAIAAAAAAEAtdDABAAAAAACgFjqYAAAAAAAAUAsdTAAAAAAAAKiFDiYAAAAAAADUQgcTAAAAAAAAaum8sSsAAABWnpTSVyWdU778u5zzKyrO92ZJf16+PDXnfOXS1w5OSulWks6T9NuSTpE0IukKSR+X9C855xvmmf9CSfetsq6cc6NebQEAwM0NdzABAID5vDCldLsbuxKYXUrpiZJ+oqJz7zaSeiWtk3SWpJdL+r+U0u/Ms5g7LWcdAQDAzRt3MAEAgPn0SHp3SukeOef2jV0ZHC2l9EBJ/yqpIWlY0uslfb18fS9Jz5G0UdLHymP4fbOMkyVtKF++TNInlr/mAADg5oQOJgAAUMXdJf2FpDfd2BXBESmlDklvVtGZNCbpnjnn702b5Asppc9J+oqkPkmvknSuWdT0u5f+K+f8w2WqMgAAuJniETkAADCXtqSJ8v+vSCmddmNWBsF9JE0dkzfP6FySJOWcvy7pP8uXv51SWm+WM9XB1FbxqB0AAMCC0MEEAADmMi7pteX/+yW980asC7zPSLpa0ifnmOZn0/5/svn9WeXPnHM+vFQVAwAAtxw8IgcAAObzUkkPl3RbSfdJKT0551yro6kMDX+GilHLtqp4xOsaFY9y/XPO+aezzPdVFaPbjeace+dY/sWS7iDpqpzz9hm/myz/+2wVd/a8WdI9VHSmXSrpr3POF06bfo2kP5X0UElnSFotaY+kH0j6qKTzc84TmiGltF3FKG5Ssf8+JemJkp5Q1m21pGslfV7S63POl822PbMp63nhvBNK26b9/3rz+6k7mH6w0DoAAABI3MEEAADmkXMeVdHBMhXw/dqU0kmLXV5K6YUqHsN6uqQkaZWKu6OSpD+T9JOU0ktSSo1aFZ/fyZIuUpFJ1C9praSzVXQyTdX13pJ+riI4+7ckHSepS9JmSVPh2j9IKZ0+z7r6VXQEvVtFB9lGFeHpp0l6mqqN8rYoKaW7SHpY+fIrOeddM36/RtL28uWPU0qPSyl9PqW0O6U0mlK6OqX0bymlswQAADALOpgAAMC8cs4XSXpL+XKtpLcvZjkppZeoGKWsKenHKjqUfkPFHUTPknSZiuuTF5f/ltN5Kjp6XiPpnpIeKekfcs5XlnW9u4o7nLZImpT0fkkPkXRXSY+R9IVyOWdI+u+U0pY51vV6SfeW9G1Jjy+X8TBJXyx/3yPpvSmlgboblVJqpJRWp5TOTim9UdJXy+XvU3HX2Ex3UnEHmSS9QNL5KjrdNkjqVtER9wRJ30spLfcxAQAAN1E8IgcAAKr6G0kPVnG3y++mlP4w5/zBqjOnlM6W9MLy5fmSnjTj0bKLUkrvVpEpdC9JL0opfWS2x+WWQIeKDqW/nVb2sbKuTRV3J/WpuHPr0Tnnj02b7juSPpxSepGKRwi3SHqHig4oZ7OKbX5iznnqTjCllD6lYnt/R9Lxkh4k6cM1t+ux5bqmu0jSn+acf26mn35n0hpJX5f0LkmXlK/vr+Iuqz5JL0kpjeacX1WzjgAA4GaGO5gAAEAlOechSU+ZVvSPKaXjF7CI56q49tgj6c9cblG5jiepuGOoIemZi69xJW+bpfzBKjKnJOltMzqXfiXn/DIVdwhJ0oNTSrefZXkjks6b3rlUzj+po4PT71il0vPYZsrOlPTMeUaQk6SX5JzPyTmfn3P+ds75Cznn56q4y2x/Oc3fp5RutQT1BAAANyN0MAEAgMpyzl+U9J7y5UZJ/1xlvjJP6YHly4vmGqks53yFjox6dt9FVrWKa3POv5zld/ef9v93zLOct077/wNmmeZ7Oee9s/xuerj36nnWVcXXJP22isfwHq/isbw1KjKvvp5S2jRj+mdJ+n+SHphzfqlbYM75h5KeV75syj9qBwAAbsF4RA4AACzUc1R0pGyR9OiU0gU550/OM892SVN3zzxk2khu8zl1cVWs5Jo5fndG+XNQ0sXzLOfb0/5/5izTXDnH/IPT/l/72izn/I1pL7+TUvqgiruknqRiu16nIlNpavqDkr5fYdHnq+hQ7JV0v7r1BAAANy/cwQQAABYk57xf0p9PK3pbSmndPLNtXOTqOlNKS3FXj3Nwjt9tKH/uLh9jm8vOaf8/bpZpBmcpl4rHAacs+ch55WN5T5d0bVn06JRS/yKWM6piRD1JOmWJqgcAAG4m6GACAAALlnP+hKSPli+3qBglbS7T78z5VxXB0lX/zfo43RyqXOPM1XG0kI6e5rT/t2ed6kZUdg79Z/myW0fypRZq6lh0164UAAC4WeEROQAAsFjPkHQfFXf7PCml9KE5pp2eP9QqM30WY6pTaL4OoLWLXP6UqfpuTCk15rmL6QQz3zFRhnafLmlzzvkz80y+Z9r/u8v5+yTdU9ImSTtyzhfOs4yp/KYbFlFdAABwM8YdTAAAYFFyzjdIeva0on+RtGqWyS/Xkbtf7jbfslNKz08pPTWlNDPrZ2rkue6UUnPmfOW8fZIWMrqd8+Py54CkO8wz7fTt+fmsUy2P8yX9r6RPVRjR7/Rp/58KN++V9PlyOa+Ya+aU0uZpy/juwqsKAABuzuhgAgAAi5ZzPl/SZ8uX2yU9dpbpxiV9pXx5ZkrpHrMtM6V0H0mvkvR2SS+Y8ev90/6/fZZF3E9S11z1ruAL0/7/1Hmm/bNp//9izfUu1H+XPxsqQrytsnPoQeXLn0+Nnpdz3ifpJ2X5XVJKcz0692wduXNsrrvVAADALRAdTAAAoK6nSjpU/n+ujp03TPv/e1NKJ8+cIKW0ScWdUFP+acYkP572/2ea+U+Q9No5a1vNpyRdWv7/6Smlh7uJUkovlHRO+fJLNR79W6x/kzRU/v8FKaUwil0Zkv4RHbm77FUzJnlr+bMh6V0uADyl9FBJzy1fXizp4zXrDQAAbmZuqRlMVYdGBnDTtOSjMAGYXc75mpTS83Wko2K26b6cUnqbpKepeNTqRymlN0n6WjnJnSU9R9KJ5etP5Jz/Y8ZiLpD0IhXXMM8qO08+JGlExaNq55XzX6ajHwlb6Da1UkqPL+vWLeljKaX3qwg2v0HSNkl/Iun+5Sy7Jf3RYtdXo547Ukp/KeltktZI+k65T7+qYpS8u6i482h7OcuHJL1vxmLeKekPVWQx/aak76aUXqeiI+k4SY+U9EQVX0welPT4nPOEAAAAprmldjABAICl9XZJj5H0W/NM90wVnUHnSVov6aWzTPdxSY+bWZhzvjSldJ6KO5s6VDwWNv3RsLaKx+o26MgdN4uSc/52SukBkj6sItPpCeW/mb4v6dE552vrrG+xcs5vTyn1qLhzq1fSX5f/ZnqbpGfNDCwvO9MeomI7z5V0O0nvNvNfo2I7j/VdWgAA4CaAR+QAAEBtZafFn0oanme6Vs75OZLOUtEp9XNJg5LGJV0r6d8lPSjn/Iics11WzvktKu7Meb+KsOoxSdereAzsHjnnVy7JRhXr+oqkW6nosLlIxShxY5KulPQZSY+SdLec86WzLeNYyDn/o6QzJL1FUlZxHIZVPOb3bkl3zjk/vczCcvPvl/QASY9Q8XjgDhXHZI+kb0v6K0m3zzl/a5k3BQAA3EQ1JidvkU+L3SI3GrgF4RE5AAAAADi
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAbwCAYAAAAvbOuuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYJVVh/vH33tt7z87AgAw/BogcJBiEoFHEhUVQIxoMiAGNBo0SFOISxSWgGJcogpqoIIkLIkEWMYAbRhQTjWg0iCByAsi+D7P23n1v//6oujO3+7zdfbure7b+fp5nnu57ppZTy606dbrqrdLo6KgAAAAAAACAmSpv7QoAAAAAAABg+0YHEwAAAAAAAAqhgwkAAAAAAACF0MEEAAAAAACAQuhgAgAAAAAAQCF0MAEAAAAAAKAQOpgAAAAAAABQCB1MAAAAAAAAKIQOJgAAAAAAABRCBxMAAAAAAAAKoYMJAAAAAAAAhdDBBAAAAAAAgELoYAIAAAAAAEAhdDABAAAAAACgEDqYAAAAAAAAUAgdTAAAAAAAACiEDiYAAAAAAAAUQgcTAAAAAAAACmnZ2hUAAADAjI1u7QoAmFOlrV0BAGgWdzABAAAAAACgEDqYAAAAAAAAUAgdTAAAAAAAACiEDiYAAAAAAAAUQsg3AADzUAjhRkkvyD/+fYzxI02O91lJb8k/7hVjvHf2a4eJhBCeKenNkg6XtFt3d7f22msvHXPMMTr55JPV3d094bjvf//7ddVVVzU1nxtuuEErV64cUzYyMqKDDz5Yg4ODU47/rGc9S5dccklT8wIAADsG7mACAABnhRCetrUrgYmFEEohhE9K+rmkN0jaW1Jnb2+vbrvtNp133nk67rjjdP/99084jd/97neF6nD33Xc31bkEAADmJ+5gAgAA7ZK+GEI4LMZY29qVgXWepLfnvz8g6ROSbr7wwgt/cvnll+tHP/qR7rvvPr35zW/WNddco7a2tjEjj4yM6M4775QknXDCCTr55JMnndkuu+ySlDV2UF1wwQXabbfdJhy/q6urmWUCAAA7EDqYAACAJD1H0hmSPr21K4KxQgjPkfS2/ONtko6IMT5R///DDz9c733ve3X11Vfr97//va666iqddNJJY6Zx9913a2hoSJJ06KGH6mlPm/4Na3fccYekrPPohS98ocplboQHAACb0TIAAGB+q0kayX//SAhh761ZGVgflFRStp3+vLFzqe7MM89Ua2urJOn6669PJtB499F+++03o0rUp7HvvvvSuQQAABLcwQQAwPw2LOl8Se+V1CXpXyQduVVrhE1CCCu0eXt8Ocb4f264JUuW6E1vepPWrl2rPfbYI/n/eudQV1eXVq1aNaO61O9gmsndTwAAYMdHBxMAADhH0nGS9pN0RAjhr2OM/1Jkgnlo+FuVdY6sVHYHzgOSfiTpn2OMt08w3o3K3m43GGPsmGT6t0n6Q0n3xRhXjfu/0fzXt0v6tqTPSjpMWWfaXZLeE2P8QcPwiyS9UdIrJB0gaaGkJyXdLOlKSZfEGEc0TghhlaR78o/HSbpW0usl/WVet4WSHpJ0vaTzYox3T7Q8k3iRpEr+++WTDXjGGWdM+H/1DqYQwozuPnr44Ye1bt06SdL+++8/7fEBAMCOj/ubAQCY52KMg8o6WOoB3+eGEHaf6fRCCGdJulXSaZKCpG5ld0cFSadKujWE8MEQQqlQxae2h6SfSjo6n/9iSQcr62Sq1/VwSXcoC9F+vqRlklol7SrpJZK+JOnmEMI+U8yrS9IPJH1RWQfZcmXh6XtL+htJvw0hvHQGy/D0ht9/2VDvlhDCqvvuu29TttJkYoySsruPbrjhBp122ml67nOfqwMOOECHHXaYzjjjDN10000Tjt/4iN3KlSt10UUX6YQTTtBBBx2kAw88UC996Uv18Y9/XE88kTy9BwAA5gk6mAAAgGKMP5X0ufzjYkkXzmQ6IYQPSvqQsrtufqOsQ+lQZXcQ/a2ku5W1Pz6Q/5tLb1PW0fMJSc+TdIKkj8YY783r+hxldzjtJmlU0tckvVzSn0h6taTv59M5QNJ/hRAmfm1a1kF1uKSbJL02n8afSfqP/P/bJX0lhLBgmstQv11oXYxxfQhhVQjhq5LWSbrn6KOP1jOf+Uy9/e1v1/33328n0Hj30bXXXqvTTjtNN9xwg1avXq3h4WE98cQTuv766/W6171OZ599tkZGkpu1xnQwnX766TrvvPP0m9/8Rn19fRoYGNDdd9+tL33pSzrmmGN04403TnMRAQDAjoBH5AAAQN17JR0raZWkl4UQToox/luzI4cQDpZ0Vv7xEkmnjHu07KchhC9K+pakF0o6O4RwxUSPy82CsrIOpfc3lF2V17Wi7O6kTmV3bp0YY7yqYbhfSLo8hHC2skcId5P0BWUdUM6uypb59THG+p1gCiFcq2x5XyppZ0l/qikedRtnef5zXQjhRZKuljSmk2pgYEDf+c539OMf/1if/exndeihh46ZwO23b169PT092m+//XTSSSfpqU99qoaGhvSLX/xCX/va17R+/XpdfnlWtQ996ENjptHYwdTX16dXvOIVOvroo7Xzzjvrscce07e//W1973vfU29vr97ylrfo4osv1iGHHDKNxQQAANs77mACAACSpBhjr6Q3NRR9JoSw8zQm8U5lbYsnJZ3qcovyeZyi7I6hkqTTZ17jplwwQfmxyjKnJOmCcZ1Lm8QYPyTpxvo4IYSJAogGJL2tsXMpH39UWXB63YHNVLpBvTNpiaRvSOqQ9GFJ+0hqv/7663XKKaeoVCqpt7dXp59+uu67774xE6iHc0vS8ccfr2984xs68cQTdfDBB+vZz362zjjjDH3zm9/U7rtnT0Vefvnl+vnPfz5mGvUOptbWVl100UX6xCc+oaOOOkoHHnigjj76aH3mM5/Rxz72MUnSyMiI3vve99o7oQAAwI6LDiYAALBJjPE/JH05/7hc0j83M16ep/SS/ONPY4x9k8zjHkn1W2Lm8o11D8UYH5zg/45p+P0LU0zn8w2/v3iCYX4VY1wzwf81hnsvnGJe43XlP5co62x6VYzxrBjj72OMQ6tWrdKZZ56ps87Kbhzr6enR+eefP2YCb3jDG3TNNdfowgsv1DnnnKOWlvQG9t13310f/vCHN32++OKLx/z/FVdcocsuu0yXXnqpnve859mKvvKVr9Sxxx4rSbr//vt5VA4AgHmGR+QAAMB471DWkbKbpBNDCJfFGK+ZYpxVkpbmv7+84U1uU9lrZlVsygOT/N8B+c8eSbdNMZ3G9OunTzDMvZOM39Pw+3TbXv0Nv38zxvhNN9DJJ5+sK664QnfccYduuOEG9fX1qasr65vq7OzUfvvtp/3228+Nusmhhx6qlStX6sEHH9RNN92k0dFRlUpZDvvy5cu1fPnySceXpBNPPFHXXXedJOm///u/ddRRRzWzjAAAYAfAHUwAAGCMGOM6SW9pKLoghLBkitGm7n3wWkII072rp1kbJvm/nfKfq/PH2CbzWMPvyyYYpmeCcil7HLBuum/O29jwu+1cqjv88MMlScPDw2Nyl6aj3gnV29ur9evXz3h8KQsXBwAA8wd3MAEAgESM8ZshhCuVvXltN2VvSXvDJKM0tim+pCYfrctN+DjdJJr5I9lkHUfT6eipNPxem3CoufFIw+8PTTbgbrttfsnd2rVrZzSzjo6OTb8PDw9v8fEBAMD2iw4mAAAwkbdKOkLZ3T6nhBC+PsmwjflD1Rjjr2c4z3qn0FQdQItnOP26en2XhxBKU9zFtMKMt6XcKum4/Pelkw04NDS06fdFixZJkmq1mm666SatWbNG7e3tetGLXjTpzNasyRavUqlo8eJsFT/++OP67W9/qzVr1ugZz3iG9tlnnynHl6SddtppwuEAAMCOh0fkAACAFWN8XNLbG4ouktQ9weC/1+Y7kZ491bRDCGeGEN4cQhgf0lN/9VhbCKEyfrx83E5J03m7nfOb/OcCSX84xbCNy3PHhEPNjcb8p0nX65133rnp9/ob4crlss444wy
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x1800 with 12 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4ZGd5/vF7mqSVtnp3vV6vy7rgFwwGU0MxMT0EDAmhJ0BMSSgxgTgE8wvg0EMwJEAIEAhgAsSQYFNCAhgIBkIwoTkYbB5j3Ndt+6pLU35/nCM0O88jaaQzK6+938917TUzr055T9XOo3PuU2q1WgIAAAAAAACWqnxHdwAAAAAAAAB3bhSYAAAAAAAAUAgFJgAAAAAAABRCgQkAAAAAAACFUGACAAAAAABAIRSYAAAAAAAAUAgFJgAAAAAAABRCgQkAAAAAAACFUGACAAAAAABAIRSYAAAAAAAAUAgFJgAAAAAAABRCgQkAAAAAAACFUGACAAAAAABAIRSYAAAAAAAAUEj1ju4AAABYfimlSySdnn98nZm9tcvx3ifpT/KPx5nZdb3vHWaklM6X9IdLGPWRZnZJF9N/uKRvSbrKzO6+wLBVScOSBrqY/7fM7BFdDAcAAO4iuIIJAAC8PqV0jzu6E+ipqYUGSCkdJukjkkpdTvMe6q64BAAADkFcwQQAAPolfSSldJqZNe/ozmA/50p6dxfDPV/Sn+bvP2Fm/zPfwCml1ZK+Kului+jLqW3vnyzpxnmGHVnEdAEAwF0ABSYAACBJD1FWoOimmIFlYmY3SLphvmFSSveR9OL84+WS/niB4ZOkiySdvMjuzBSYRiX9B8VIAADQjlvkAAA4tDUl1fP3b00pHX9HdgaLk1KqSfq4sqvQpiQ928wm5hi2mlL6E0k/0GxxaTFFopkC0+UUlwAAQCcKTAAAHNqmJZ2Xvx+U9OE7sC9YvLMl3Sd//zYz+3k0UEppnaSfSnqfpFWSJiW9SPPf5tZppsD0k6V1FQAA3JVxixwAAHijpKdIurukR6WU/sjMChWa8tDwsyQ9WtJRyoKkb5T0TUl/b2ZXzDHeJcqebjdpZnMGSqeUfibpnpKuN7OtHT9r5W//TNJ/KCuqnKasmHa1pNeY2dfbhl+trNjyO5LupawAs1NZIeXflGUa1dUhpbRV0rX5x6dI+qKkMyU9L+/bKknblGUdvcvMfjXX8ixFSmmzpNfnH6+R9PZ5Bl+jLKRbkr4n6UVmdkVK6fXzjNM+r2MkHZZ/pMAEAAAcrmACAOAQZ2YzV7PM3PZ0Xkppy1KnlxctLpf0MklJ0pCyq6OSpJdIujyl9IaUUrdPL1uqoyV9V9Lj8vmvkXQ/ZUWmmb4+UtIvJL1L0m8qK6LUJB0h6bclfVTST1JKJywwr0FJX1f2VLbTJW1Qdtva8ZJeKunnKaUn9GrBcucqW7eS9Bf5dpzPTyU9y8weOleBbx7tAd/XppRek1L6fkppOKU0llK6IqV0XkrpiEVOFwAA3EVQYAIAADKz70r6h/zjGkkfXMp0UkpvkPQmSRVlBY2XSHqosiuIXiHpV8r+//FX+b8D6ZXKCj3vkPRwSU9XdhvZdXlfH6LsCqfNklqSPqns6Wi/IelZki7Op3MvSd/Jrxiay7skPVLSpZKem0/jdyV9Lf95v6TzU0ore7FgeQHwhfnHy8zsogVGucHM7mNmn1niLNsLTBdK+mtJD5K0UtIKZVdHvUrSVSmlJy5xHgAA4E6MW+QAAMCM/yfpSZK2SjojpfT7ZvYv3Y6cUrqfZm/Z+oSkF3TcWvbdlNJHJH1J0iMknZtS+tclXE3TrbKygtJr29o+m/e1ouzqpBXKrtx6ppl9tm24/5X0mZTSucpuIdws6R+VFaAiRyhb5jPbA7BTSl9UtrxPkLRR0hMlLbXI0+4sZVdaSVkBbV49COW+b9v7lcqW9UJJt0raoqwg93RltwV+PqX0SDP774LzBAAAdyJcwQQAACRJZjaq/R9x/56U0sZFTOLPlf3fYqekl0S5Rfk8XqDsiqGSpJcvvcdd+cAc7U9SljklSR/oKC79mpm9SdIlM+OklE6OhpM0IemVnYUcM2tp/+D0+6iglNIKzW6nayT9a9FpdmHmCqYpSU8ws+eZ2RfM7PtmdpGZPUPS8/Nhqsqu1uIPmQAAHEIoMAEAgF8zs69J+lj+cYOkv+9mvDxP6bfzj981s7F55nGtpCvzj49eYle7sc3MbprjZ7/V9v4fF5jO+9veP36OYX5kZrvm+Fl7uPeqBebVjedoNnD7XWbW6ME0F/JgSQ+T9Jtm9tVoADM7X9Kn8o8nSDpjGfoFAAAOEvxlCQAAdDpbWSFls6RnppQuMLMvLDDOVknr8vdPbnuS20KOW1oXu3LjPD+7V/46IulnC0zn0rb3p8wxzHXzjD/S9r4X//d6dv46JanrWxiLMLPbJN3WxaAfkvQH+fvHSPr8AesUAAA4qHAFEwAA2I+Z7ZH0J21NH0gprV1gtA1LnF01pdSLq3oi++b52fr8dUd+G9t82gsrh80xzMgc7VJ2O+CMQk/OSymtUxZYLkkX59vqYPJ/be+PucN6AQAAlh1XMAEAAMfMPpdS+jdlwc2blT0l7YXzjNL+f4qPqstb63Jz3k43j27+SDZf4WgxhZ5K2/uiYdlFnaHZdb0c2UuL1b4t++6wXgAAgGVHgQkAAMzlLEmPUna1zwtSSp+eZ9j2/KGGmV22xHnOFIUWKgCtWeL0Z8z0d0NKqbTAVUybgvHuKDO5RlOSFrptsSdSSpsl3V/ZU/AuNbMr5xn88Lb3tx/QjgEAgIMKt8gBAICQmd0u6c/amj4kaWiOwa/R7NUrD15o2imlc1JKL04pPabjRzNPnutLKVU6x8vHXaGs2FHET/PXlZLuucCw7cvzi4LzLWrm9rjLzGy+WwB76cGS/l3ZlWlnLjDsaW3vf3igOgQAAA4+FJgAAMCczOwTkr6cf9yq2QDnzuGmJX0z/3hKSum0aDhJSik9StLbJX1Q0l92/Lg9U2jrHJN4jKTafP3uwsVt71+8wLAvaXv/tYLzXbKU0tHKbleUlrd4811JM0+qe1ZKKbz1LaVUlvTK/GNd0oXL0DcAAHCQoMAEAAAW8mJJw/n7+Qo7f9v2/vy8ILKflNLhyq6EmvHejkF+2vb+5cH4mySdN29vu/NFSVfn71+WUnpKNFBK6fWSTs8/fqPArX+9cO+298tWYMqvZPts/vEYSX89x6Bv1+zVXv9kZtsOdN8AAMDBgwwmAAAwLzO7MaV0jqT3LzDcf6WUPiDppZJOkPR/KaV3S/pWPsgDJJ0t6cj88+fMrPMx9hdIOlfZ/1FekT9h7tOSJpQVL16Zj/+rfB5LXaZGSum5ed/6JH02pfRJSf+mLDvoWGWh5r+Vj7JD0h8udX49clLb+5vz14WegDevLVu2aNu2bTruuOPSfNO65JJL9LSnPU07duyQpLNf9KIXnf3MZz5TmzZt0k033aRPf3o2nuukk07SBRdc8BLtf+UXgKUp9OTJHip0rgFw0OvJuYYCEwAA6MYHJT1L0m8uMNzLlRWDXilpnaQ3zjHcRZKe09loZlenlF6p7MqmsqQX5P9mNJXdVrde0p8vov+OmV2aUnq8pM8oy3R6Xv6v048lPfMguCLnqLb3e+Yc6gDYvHmzPvrRj+qss87SDTfcoO985zv6zne+44a7733vq/e9731auXLlcnYPAAAcBLhFDgAALCh/ytqLJI0vMFzDzM6WdF9lRalfSBqRNC1pm7Jcniea2VPNLJyWmf2DpAdK+qSkm5Q9Me0WSf8q6TQzm+sWrUUzs29KOlHSa5RlDe3K53edpC9JeoakB5vZ1XNNYxmtbnu/rAUmSUop6Ytf/KJe+9rX6oEPfKDWrl2rWq2mjRs36vTTT9c73/lOXXDBBdqwYcNydw0AABwESq0WVzsCAADcSfEfOeCujVvkACyHnpxruIIJAAAAAAAAhVBgAgAAAAAAQCEUmAAAAAAAAFAIBSYAAAAAAAAUQoEJAAAAAAAAhVBgAgAAAAAAQCE
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG9CAYAAABZDcySAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJEdh/vF3dzaH28t3SkiHJEpYBIvwI0eRDSaaYJIIBgSIZEyWCCYZgckIYwtEMNnYgGxsghEyGAwmmFwgoXiKlzen2d8f1aOdm3pnd3Z7V7fSfT/Pc8/e9nb31HSoqa7pfqttbm5OAAAAAAAAwHK1H+oCAAAAAAAA4KaNDiYAAAAAAACUQgcTAAAAAAAASqGDCQAAAAAAAKXQwQQAAAAAAIBS6GACAAAAAABAKXQwAQAAAAAAoBQ6mAAAAAAAAFAKHUwAAAAAAAAohQ4mAAAAAAAAlEIHEwAAAAAAAEqhgwkAAAAAAACl0MEEAAAAAACAUuhgAgAAAAAAQCkdh7oAAADgxhdCuEDSfYpfXxdjfEuLy31A0guKX3fEGC9d+dLBCSGcIOklkh4o6RaSJiRdIulLkj4SY7yuhXUcK+nlkh5crGNM0kWSPivpnBjj+DLKNSDpl5KOlfTxGONpS10HAAC46eMOJgAAcGYI4daHuhBoLoRwmqRfKHXu3UpSj6T1kk6R9NeSfhVCeNgi63iYUkfQCyWdKKlb0gZJd5b0Lkn/G0I4bhnFe4dS5xIAADiM0cEEAAC6JZ0bQqBdsAaFEB4q6aNKnUrjkt4s6UFKdyG9TdKkpM2SvhhCuEOTddxW0hclDUgalvQaSfeQ9BBJnylm+yNJXw0h9C6hbPeV9LwlvykAAHCzwyNyAABAku4m6UWS3nOoC4J5RaffByS1SZqSdK8Y44/rZvl6COHfJX1bUq+ktyt1PjX6QPH3CUn3a1jHf4QQfibpbyTdRtIZSnclLVa2PknnFmUDAACHOb6pBADg8FaVNFP8/y0hhFseysIgc39JtX3ygYaOIUlSjPFCSf9a/PrAEMKG+r+HEO4o6d7Fr3/fZB3vkFSb/rIW72Z7W1G2XS3MCwAAbuboYAIA4PA2Lens4v99kv7+EJYF3vmSLpf05QXm+U3d/49p+Ntj6v7/iQXW8dHi5zbNd0hZIYR7KmU5SenONwAAcJjjETkAAPBGSY+WdJKk+4cQ/iLGWKqjqQgNf6GkUyUdrfQY1RVKj3K9P8b46ybLXaA0ut1kjLFngfX/UtLJki6LMR7X8Le54r8vVbqz5wOS7qnUmXaRpFfFGL9ZN/86Sc+W9EilR8QGJe2W9FNJX5D0yRjjjBoUgdiXFL8+WtJXJJ0m6WlF2QYl7ZT0H5LeFWO8uNn7aaYo5zcXnfHgkO2rG/52j+LnsKSfLLCOC+v+f39JF7iZioymjyp9UXmepG+0UD4AAHAzxx1MAAAc5mKMk0odLNVi0tkhhKOWu74QwplKI549X1KQ1K90d1RQCoT+RQjhDSGE1c7uOUbS95QyifokDUm6g1InU62s95P0W6VR1O4taaOkTknbJdXCtX8aQjh+kdfqU+oIOlepg2yzUnj6LSWdrhZGeVuuEMKdJT2q+PXbMcbrG2apjRB4cYyxqubqO8AWGlXwr5VGobtG0suWUlYAAHDzRQcTAABQjPF7kj5Y/Dok6cPLWU8I4Q2S3iSpIunnSh1Kd1e6g+jFSp0Y7ZJeX/xbTS9R6uh5h6R7SfozSW+NMV5alPVuSnc4HSFpTtKnJP2ppLtIeqKkrxfruY2k/wohHLHAa71L0v0k/UDSU4t1PErzd/d0SzovhDBQ9k2FENpCCIMhhDuEEN6tdKdRt6S9mn9srTZvp6Qtxa+XL7TeGOO40p1bkmQ7GEMId1W6M0ySXhBj3LusNwEAAG52eEQOAADUvFrSIyQdJ+nhIYQ/jzF+utWFQwh3kHRm8esnJT2z4dGy74UQzlXKFLqvpLNCCJ9v9rjcCmhX6lB6bd20LxZlrSjdndSrdOfWE2KMX6yb74eSPhdCOEvpEcIjJP2dUgeUs13pPZ9Wf5dQCOErSu/3YUodPX8i6XMl39eTi9eq9z1Jz44x/rZh+gbNj/I23MK6RyVtkrS+8Q8hhG7NPxr3xRjjl5ZSaAAAcPPGHUwAAECSFGMclfScuknvDSFsaTa/8ZdKbYvdkp7ncouK13im0h1DbZLOWH6JW3JOk+mPUMqckqRzGjqXbhBjfJPms4geEUL4oybrm5D0ksZH0GKMczo4OP32rRR6EceaabeVdEbjCHJKdzbVl3Ex42a5mjcoPTq3Rw13SgEAANDBBAAAbhBj/IakjxW/bpb0/laWK/KUHlr8+r0Y49gCr3GJ5kc9O3WZRW3FzhjjlU3+9uC6///dIuv5UN3/H9Jknh/HGPc0+Vt9ttHgIq/Viu9IeqDSY3hPVXosb51S5tWFIYStdfPO1v1/Tq07aN4Qwp0k/VXx68tijNcutdAAAODmjUfkAABAo5cpdaQcIekJIYTPxBi/vMgyxyk9jiVJf1o3kttidiyviC25YoG/3ab4OSLpl4us5wd1/79tk3kuXWD5kbr/l257xRi/W/frD0MIn1a6S+qZSu/rnUoj2TW+dtNR+er0Fj9vuNsphNCl1OlYkfQfMcaPL7PoAADgZow7mAAAwEFijPskvaBu0jkhhCyTp8HmZb5cRwhhJe7qcQ4s8LdNxc9dxWNsC6m/W2djk3lGmkyXDr4baMVHzisey3u+pJ3FpCeEEPrqylV7/f4WVlebp/5urNcpdVyN6OBHKAEAAG7AHUwAACATY/znEMIXlEZeO0JplLRnLbBIfZvio2rx0bpC08fpFtDKl2QLdRwtpaOnUvf/atO5DqEY42QI4V+VOoC6lPKlfhJjrIYQrpR0TPGvqRBCr+Y73q4qpt1W0quKaR+XtDGE0NjJVt/5uDGE8MfF/6+JMV6z3PcEAABuWuhgAgAAzbxQ0v2VOh2eGUL47ALz1t/xMhtj/NkyX7PWKbRYB9DQMtdfUyvv5hBC2yJ3MW0zy90oitDu4yVtjzGev8jsu+v+31X3/18pdS7dcpHlj6/7f21kvztK6iz+/wIdfGeb84jin5RG33vDIvMDAICbCR6RAwAAVozxOkkvrZv0ETV/zOoPmr8T6a6LrTuE8MoQwnNDCA9o+FNt5LmuEEKlcbli2V5JSxndzvl58XNA0smLzFv/fn5b8nWX6pOSfiTpKy2M6FffQVQfbl7LkNoYQljovd677v//1XoRAQAA6GACAAALiDF+UtLXil+Pk/TkJvNNS/p28ettQwj3bLbOEML9Jb1d0oclvabhz/vq/n9ck1U8QPN31SzX1+v+/9xF5n1e3f+/UfJ1l6rW0dOmFOJthRC2S/qT4tffNoye98W6/z9jgdeqrf96Sd+VpBjjeTHGtoX+6eDOvo/X/e0Ni789AABwc0EHEwAAWMxzJQ0X/1+oY+dv6/5/Xgghy/wJIWxVuhOq5n0Ns/y87v9nmOW3STp7wdK25iuSLir+//wQwqPdTCGEMyXdp/j1WyUe/Vuuj0saLf7/miIT6SBFSPrnNX932dvr/x5j/JWkC4pfX+g6/0IIr1B6HE6SPlh0GAIAALSMDCYAALCgGOMVIYRXSvrQIvP9ZwjhHEmnKz2u9X8hhPdI+k4xy50kvUzSkcXv/xxj/JeG1XxG0llKbZQXF50nn5U0ofSo2kuK5S/WwY+ELfU9zYYQnlqUrUvSF0MIn5L0BUnXSTpWKdT8wcUiuyQ9fbmvV6Kc14QQXi7pHEnrJP2w2KYXKI2Sd2elxxiPKxb5rKRPmFW9UNKPJXVL+kYI4Wylu7j6JD1N83em/VbSO1fjvQAAgJs37mACAACt+LCkC1uY7wxJ71YK696gFPR8QfHvnZrvXPqSzON2McaLlDqRaqO1PVOpI+RCSe+QtF3psbrGjqklizH+QNJDlB4Ja1fqaPmqpP9RuiOo1rn0E0l3izHuLPuayyznh5W2ybSkHqVR3f5d0n9Leq/mO5fOkfQ0F1he3MX0GEkjxTr
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFV5//FvV/Uy+wzMsAwMMKwPsgpuqLiiUaOgREXjFkRF/SkGVJQYFzRxj0sUhRjFhRAFI4oSiQqKCbgkEqMi+CAMIAwwzL733r8/zi26qPN09+2+1TPDzOf9evWruk/f5dSte0/dOnXv93SMjIwIAAAAAAAAmKra9q4AAAAAAAAAHt7oYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVNK5vSsAAAC2LTO7TtJTij/f7e4fLDnfBZLeVPx5oLvf2f7aYSxm9hhJr5f0NEmLJQ1KcknfknSBu2+aYP7jJb1B0pMlLZFUl7RC0s8kfcHdrytRh+dLOkPS4yTtLmmNpF9K+qK7f29KTwwAAOwUOkZGRrZ3HQAAwDbU0sHUJ+k4d7+lxHx0MG0HZtYh6eOS3iqpY4zJbpP0bHe/fYz5Pyrp7ePML0lfkfR6d+8PljFH0r9KOnmc+b8j6WXuvnWcaQAAwE6KW+QAANi19Uj6kplxTrDj+oSktyl1Dt0t6SxJJyp19lxVTHOIpKvMrCeY/72Szi3mv7f4/UmSnlAsa1kx3emSPt86c7FvXKHRzqWVkt4h6YmSninpQklDkl4g6Roz65ryMwUAAA9b3CIHAAAeL+ktkj69vSuChzKzx0s6u/jzJklPd/eVTZNcZWYXS3q1pMOVbl+7sGn+AyS9q/jzVkkntsz/czP7mqRrJT1a0mvM7GJ3/1nTNGcodSQ1lvE0d7+36f/XmNnVSlcwPUHSX0v6h6k+ZwAA8PDEt5UAAOy6hpVyfCTpg2Z20PasDELnK115NCjphS2dQw1vlzRQ/P6ilv+9XFJ38fvZ0fzuvkEp26nhVS2TvKV4HJH00pbOpcYyvifpC8Wf7y1uqQMAALsQOpgAANh1DShl+0jSLEn/vB3rghZmtpekk4o/v+zut0bTufsaSR9Wur3t+y3/flLxuFXSj8Zal7v/r1JgtyQd21SHPSQdXfz5n+7+63Gq/OXica6kPx9nOgAAsBPiFjkAAHZt75d0qtLtVU83s9e5e6WOJjN7hKQ3K3WOLNFodtBPJH3W3W8eY77rlMLH+9x9xjjLv0nSkZLucvelLf9rjF5yjqR/l3SBUl7RgFIQ9nnufk3T9PMkvVbS8yUdpdQ5slrSryV9U9Il7j6oFma2VNIdxZ+nSvquUobRq4q6zZW0XNIPJH0iCt8u4ZlKI71J0mXjTeju7xvjX5dJ+r2kruh5tGgEgDdv+/2bfv/lBPM3v66Pl3T5BNMDAICdCB1MAADswty9z8xeK+k/la5s/riZfd/dl09leWb2Hknv02jHyIP/Kn7ONLO/k/R+d5/OoWz3k3SDpD2ayo5X6mRq1PVpki6VtLhl3r0lPaf4eauZvWCCDqJZkq6R9LSW8oMkvVHSGWb2F+7eenXRRI5u+v1XTfXuVOq465R0t7v3jbUAd/9KmRWZ2TGSdiv+vKvpX91Nv2+cYDEDTb8fVma9AABg58EtcgAA7OLc/QZJnyv+nC/poqksx8zOl/QBpc6l30p6g1Lo84lKwc+3K517vK/4mU5nS1ok6WNKt4m9WNKH3P3Ooq6PV7rCabFSttC/SDpF0uMkvVTSD4vlHCXpv8ystROq2SeUOpd+IemVxTJeoNFb0nokfWUKuURHFI/r3H29mS0tArnXKV099UdJa83sG2Z28CSX3epvmn7/QdPvq5p+XzLBMvZr+n3vivUBAAAPM1zBBAAApNTBcLKkpZKeZ2Yvc/d/LTuzmR0v6T3Fn5dIOqPllqwbzOxLkq6S9FSlIOjLx7pdrg1qSh1Kf9tU9m9FXeuSLpY0Uyno/CXu/m9N0/23pMvM7L1KtxAulvRPSh1Qkb2VnvPp7j7cKDSz7yo93z9XupLquZrgVrcWi4rHdWb2TElXSGrtpJop6SWS/ry4SuoaTZKZvVipU02SHiieS8NtSrcMLpT0XDPrcvcBxU5u+n32ZOsBAAAe3riCCQAAyN03Szqzqegfi4Dnst6mdF6xWtIboryfYh1nKF0x1CHprKnXuJQLxyg/WSlzSpIubOlcepC7f0DSdY15zOyIaDpJvUojtA03Fxa3ADbnWR2ryWl0Ji2Q9C2lbKS/l3Sw0lVRhyldPTWilPn0LTM7ZDIrMLMnSPpKU9Fb3X1T44/iOVxa/LlE0ofGWM4Bkt7VVNQ1mXoAAICHP65gAgAAkiR3/5GZfVnSq5WunvmsRq9sGZOZdSjlFUnSDe6+ZZx13GFmtyjd/nXSWNO1wXJ3v2eM/z2r6fd/mmA5n1e64kqSnq2HBlk33FiM5BZpzm6aO8G6Ws0qHhcodSK90N2/3fT/P0p6u5ktU7rFcZ5SB9BpZRZuZk9Uuk2wsZ6L3P3SYNLGMvcu1re/0q2HNyl1gj1XaRS73STdX0zXX/I5AgCAnQQdTAAAoNlblTpSFkt6iZl93d2vnGCepRoNiD6laSS3iRw4tSqWcvc4/zuqeNyk1Ekynl80/X70GNPcOc78m5p+n+x519am37/d0rn0IHf/vJmdqXSF1AvMbHZxtdiYzOzPlUbJa3QufUtp5L9o+SvM7BSlzqg9lDqbWjuxBpQCzV+m1ME07voBAMDOh1vkAADAg9x9naQ3NRVdaGYLJpht0QT/H0unmU32qp6yNozzv4XF46oSI9mtaPp99zGm2TRGuZSuPGromGBdrZpHbQs7l5p8r3jsUhotb0xm9gZJ39Vo59Jlkl7q7kNjzePu/yPpkUq3/DVv20FJV0o6wd3/WaMdjSsEAAB2KVzBBAAAHsLdv21m31QaeW2xUs7Pa8aZpfl84mKlW+vKGvN2unGU+YJsvI6jyXT01Jt+Hx5zqulxX9PvyyeYtvmKrbDDr7iV8WOS3t5U/AVJb2zNj4q4+72SzjSzNynlMdUl3e3ufcXya5IOLSa/Y6LlAQCAnQsdTAAAIPJmSU9XutrnDDP7xjjTNucPDbn7/01xnY1OoYk6gOZPcfkNjfouMrOOCa5i2iuYb1v5naRTi993G29CpdDvhrWt/yxGzvuqpJc3FZ/v7u+fbKWKUeSiDqRjNHpV1FT3AQAA8DDFLXIAACDj7g9IOqep6Asae+j5ZRq9EumEiZZtZu80s9eb2TNa/tUYea676BCJ5p2plANUxW+LxzmSjpxg2ubn84eK652s5vynibZr8/O4s/kfxZVLl2i0c2lQ0hllO5fM7LVm9ikzm2j6U5t+v6bMsgEAwM6DDiYAABBy90skXV38uVQPvfqleboBST8p/jzazE4ca5lm9nRJH5F0kR46rL0krWv6fekYi3iGUs5QFT9s+v31E0z7hqbff1RxvZN1jaRVxe+vGCuvysxmS3ph8edv3P3OlkneL+kvi997JZ3q7l+eRD2eJelsSeeNU4e5SiHfkvRfQR0AAMBOjg4mAAAwntdrNGx6vI6dTzb9/hUz2691AjPbU+lKqIbPtEzy26bfzwrm30vSx8etbTnflXRb8fv/M7NTo4nM7D2SnlL8eW2FW/+mpOi4+1Tx52JJXzSzh7wGRe7RRRrNXbqw5f8naLQjb0QpzPuqSVblW8Vjt6S/a/2nmc2QdKlGryw7f5LLBwAAO4FdNYOp7PDJAB6eJjtSE4AxuPvdZvZOSZ+fYLofm9mFSlexHCzpN2b2aUk/LSZ5tKS3Stqn+Pvb7v6dlsV8XdJ7lc5P/rq4KuYbSlfdnKB0Fc0+km4v1jHV5zRkZq8s6tYt6d/M7F8kfVPSA5IOUAo1f1Yxyyp
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYZUlB/vG3b+g8aRO7sHnVIidBRZGMJFlBQBREcZG0gAQBUYIEyWkRVoIEAQGBBQT5iZKjEmQRWXBLYNkFls0TO9/Qvz/qXObOrbe7T/e5M9Oz8/08zzzdXX1CnVT3TPU5b40sLy8LAAAAAAAA2Kja4a4AAAAAAAAAjmx0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKmkc7goAAIBDL4TweUl3Ln58TozxxSXne4OkJxQ/nhFjvHT4tYMTQvgFSU+RdE9Jp0pakPQjSR+W9JYY49UrzLe8gdVdFmM8fYXl3UjSEyXdV9JpksYk/VjSv0t6dYzxsg2sDwAAHOF4ggkAADw3hHCTw10JrCyE8EhJ31Hq3PslSeOStku6jaQXSfpuCOG+Q1zl0gr1+ANJF0t6lqRbStpW1OWXJD1J0ndCCPcbYj0AAMARgg4mAAAwJultIQTuCzahEMJ9JL1dqSNnXtLfSPotSfeS9FJJi5KOk3RBCOG2ZhG3KfHv9pJ+UEzfUXpCabAeD5D0j5KmJc1Keomku0u6q6TXFfNtKeoRKm42AAA4wvCKHAAAkKQ7SPozSecd7opgv6LT7w2SRpSeKvrNGOM3+yb5ZAjh3yR9TtKEpJcpdT79XIzxv0us56WSfqH48Xkxxk8O/H6bpDcp/XFyr6TfijF+rW+Sz4cQLpT0TqWOsBdKemjZ7QQAAEc+/lIJAMDRrSupXXz/4hDCmYezMsjcTVLvmLxhoHNJkhRj/KKk/1f8eM8Qwo71rCCEcAdJzyx+/JJSJ9WgcyXdoPj+KQOdS716vEvShcWPZ4cQmuupBwAAOLLRwQQAwNGtJemVxfeTkv7+MNYF3seVQrQ/uso0/9v3/SllFxxCaEh6i9I94aKkR8cYu2bShxVfL1Z6Smklr1I6h16r9CodAAA4SvCKHAAAeIGkB0q6saS7hRAeHWOs1NFUhIY/USmj52SlV7x+ovQq1+tjjN9bYb7PK41utxhjHF9l+RdJupnMaGd9o6Y9VenJnjdIuqNSZ9oPJD0rxvjpvum3SvpTSb8j6eZKOULXSfqWpA9KeneMsa0BIYTTlUZxk9L++5ikR0r6o6JuWyRdrv2jq/1wpe1ZSVHPT685YRrNreeKdazi8UrbLEmvijHGwQlCCCf3TXPBCh1QkqQY4/skvW8d6wcAANcTPMEEAMBRLsa4qNTB0us4eGUxFP2GhBCeqzTi2bmSgqQppaejgqTHKY009vwQwkiliq/tFElfUcokmlQa8ey22h9mrRDCXZWeynm1pDtJOkZSU9KJknrh2t8KIZy1xromlTqC3qbUQXacUnj6mUqdOMMe5e3nQgi3l/SA4sfPxRivKTnftKTnFj9eIf9qnCTdou/7b/TNPxJCODGEcOOikw4AABzF6GACAACKMX5F0vnFj71A53ULITxfKeC5Lul/lDqUfl3pCaInS/qh0v3HXxf/DqanKHX0vELSb0p6iKSXxBgvLep6B6UnnE6StKw0QtrZkn5V0u9L6gVd31zSl0IIJ62yrlcrjab2VUmPKJbxAEmfKn4/Jukfik6dSoqOnS0hhNuGEF4r6fPF8nfJjP62inMlHV98/4oY48wK09207/vLQghTIYQXS/qpUsfU/0raFUL4YgjhbuvZFgAAcP3BK3IAAKDnLyXdX9Lpkn47hPCwGON7y84cQrit9j8R825J5wy8WvaVEMLblDKF7iLpeSGED6z0utwQ1JQ6lJ7dV3ZBUde60tNJE0pPbj00xnhB33Rfl/T+EMLzlF4hPEnSm5U6oJwTlbb5kf2vkIUQPqa0vfdV6sy5n6T3V9yuhxfr6vcVSX8aY7y4zAKK7KVeZ9ROrZ69dVzf99OSvi1p8ImumlIn3qdDCH8ZY3x5mXoAAIDrD55gAgAAkqQY46ykx/QVvS6EcPxK0xt/rnRvcZ2kx7ncomId5yg9MTQi6Ukbr3Epb1yh/P5KmVOS9MaBzqWfizG+UOkJIUm6fwjhpm46SQtKo6sdkE8UY1zWgZ03typT6TWcZspuIelJ6xhB7kHaHwb+huK4rKT/qav3KnUuXSDplyWNK3WuPUHSHqVj+rIQwu+VrAcAALieoIMJAAD8XIzxU5LeUfx4nKTXl5mvyFO6T/HjV2KMc6us40faP+rZ3TdY1TIujzH+dIXf3avv+zevsZy/6/v+3itM880Y484Vftcf7r1ljXWV8QVJ91R6De8RSq/lbVV65e2LIYQTSizjz4qv81r7GE/2fX+qpPNijA+JMV4YY1yMMV4VY/w7SXdT6miTpFeHEEbLbQ4AALg+4BU5AAAw6GlKHSknSXpoCOF9McaPrjHP6ZJ6T8+c3TeS21rO2FgVS/nJKr/rjYo2I+miNZbz1b7vb7HCNJeuMn9/tlHle68Y45f7fvx6COG9Sk9JnaO0Xa9SGsnOCiGcqpSLJUkfjzFeu8Yq5/u+v0LSX6xQrwtDCG9Wyto6Wek1yE+6aQEAwPUPTzABAIADxBh3K73y1PPGEML2NWY7bo3fr6QRQhjGUz3O3lV+d2zx9driNbbVXNX3/TErTLNSQLaUXgfsGfrIecVreedKurwoemgIYXKVWX6n7/syeVD7+r7/1xjj0irT/kvf979aYtkAAOB6gg4mAACQiTF+RNIHix9PUholbTX9T+a8XdJt1vFvxdfpVlHmHma1jqP1dPTU+77vrjjVYRRjXFQaEU+SRrU/X8p5QPF1RtK/llj8FX3fX77iVEn/U2Mb7XQEAABHIF6RAwAAK3miUq7OsZLOCSH80yrT9ucPdWKM/73BdfY6hdbqANq2weX39Op7XAhhZI2nmG5g5jskitDusySdGGP8+BqTX9f3vc0/CiFslXSn4sePxxjn3XQDvtP3/Voh4mN93+8qsWwAAHA9wRNMAADAijFeLempfUVvkTS1wuSXaP+TSL+21rJDCH8RQnhsCOEeA7/qjTw3GkKoD85XzDshaT2j2zn/U3ydlnSzNabt356LK653vd4t6RuSPlZiRL+z+r5fKdz8Dtr/B8YvlqzDhZJaxfdrHdv+fXlpyeUDAIDrATqYAADAimKM75b0ieLH0yU9fIXpWpI+V/x4ixDCHVdaZgjhbpJeJulNkv5q4Ne7+74/fYVF3ENSc7V6l9AfPv3YNaZ9XN/3n6q43vX6UvF1RCnE2wohnCjpfsWPF68yet6v9H3/X2UqEGPco/3nwO1DCLdfZfJeuHhb+1/ZAwAARwE6mAAAwFoeq/1Bz6t17Lym7/t/CCGcMjhBCOEEpSehev52YJL/6fv+SWb+G0h65aq1Ledjkn5QfH9uCOGBbqIQwnMl3bn48TMVXv3bqHdKmi2+/6sQQjaKXRGS/gHtf7rsZass75bF15YO3NdreaX2v774zhDCSaYej5F0n+LHC2KM16xj+QAA4AhHBhMAAFhVjPEnIYS/kPR3a0z32RDCGyU9Xul1rW+HEM6T9IVikttJepqkGxY/fyTG+M8Di3mfpOcp3aM8ueg8+SdJC0qvZz2lmP+HOvCVsPVuUyeE8IiibqOSLggh/KNSsPnVkk6T9ChJ9ypmuVbSH290fRXqeWUI4emS3ihpq6SvF/v080qj5N1e6TXG04tZ/knSu1ZZ5C8VX68rgsHL1uPLIYTXSPpzSTeRdGFRj/+QNC7pYdq/f66R9OSyywZwRFhrtE0AR7ahjHJLBxMAACjjTZJ+X/sDolfyJKXOoKcoBUK/YIXpPizpDwcLY4w
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYZFdd//FPLb13zz6ZmSQDk0ngELYIKBCIrMomIPxABCGYgEKQIAHEoEjYZNGw76BhSwQERUEEFGQRYhCBEMh2yDIJyez7TO/dVf3749yia+r77e7bdbtnejLv1/PM09On77117nbq1ql7P6c0NTUlAAAAAAAAoF3lY10BAAAAAAAAHN/oYAIAAAAAAEAhdDABAAAAAACgEDqYAAAAAAAAUAgdTAAAAAAAACiEDiYAAAAAAAAUQgcTAAAAAAAACqGDCQAAAAAAAIXQwQQAAAAAAIBC6GACAAAAAABAIXQwAQAAAAAAoBA6mAAAAAAAAFAIHUwAAAAAAAAohA4mAAAAAAAAFFI91hUAAABLTwjhO5Iemf36VzHGt+Sc7wOSXpr9elqM8baFrx1ahRCeJ+nynJOfH2P85AzLub+kP5X0aEknS6pJ2iLpq5LeG2PcVry2AADgrog7mAAAwFxeF0I481hXArN6QNEFhBBeLuknkl4oabOkbkl9ku4r6c8lXRdCeHzR1wEAAHdN3MEEAADm0iXpshDCOTHG+rGuDFy/lv38qaTz55j2l60FIYSnS3pP9uuopHdI+o7Svn+ypBdLWiHpiyGEh8QYr12AOgMAgLsQOpgAAEAeZys9OvWeuSbEMXFW9vMHMcaftjH/27Ofk5IeE2O8qulvXw0hXCXp05J6Jb1V0lPbrikAALhL4hE5AAAwm7pSp4MkvSWEsPlYVgZWCGGjpNXZr/PuXAohnC7pntmvX2zpXJIkxRgvl/Tj7NfHhxA62qkrAAC466KDCQAAzGZC0qXZ/3sl/d0xrAt8zflLV7cx/0lN///FLNM1Hovr1HSHFgAAgCQekQMAAHN7o6SnS7qXpMeEEP44xliooykLDb9Q0mMlnSqpJOkOSd+W9P4Y4/UzzPcdpdHtxmKM3bMs/1pJ95F0e4xxU8vfprL/vkLSv0v6gKRzlDrTbpb0mhjjN5umXybpjyT9rlLg9YCkvUqdOV+QdHmMcVItQgiblEZgk9L2+7Kk8yQ9P6vbgKStkv5D0jtjjLfMtD5zaOQv1ST9vI35m0eGu9cs052R/ZyQtLuN1wEAAHdh3MEEAABmFWMcU+pgaQR8XxpCOKXd5YUQXqfUEfInkoLSSGW92f8vkPTzEMIbQgilQhWf20ZJV0p6XPb6yyU9UKmTqVHXR0u6UdI7JT1C0ipJHZLWS3qipI9Lujp7zGw2vZK+KekypQ6yNUoB2pslvURphLYntbkejQ6mG1OVw9+FEG4JIYyFEPaGEL4VQnhBCKHizRxjvF3SNdmvTwsh/EbrNCGE35H08OzXf4kx1tqsKwAAuIuigwkAAMwpxnilpA9mvy6X9JF2lhNCeIOkN0mqSPqZUofSw5TuIHq5pFuUrk9en/1bTBcpdfT8raTflPR7kt4aY7wtq+vZSnc4bZA0JekKpXDrh0h6tqT/zJZzX0nfCyFsmOW13inp0ZJ+IOncbBlPk/SN7O9dkj4ZQuhvYz0aHUx3l/QTpc7AzUqPsq3KXvcySd8PIZzkLkF6qaRBpbvbv5N18D02hPC4EMKlkv4lm26LpFe3UUcAAHAXxyNyAAAgr7+Q9BRJmyQ9OYTwBzHGz+SdOYTwQEmvy369XNILWh4tuzKEcJmkr0h6lKRLQgifn+lxuQVQVupQem1T2T9lda0o3Z3Uo3Tn1u/HGP+pabofSvrHEMIlSo8QbpD0Uc08utp6pXU+L8bYuBNMIYQvK63vkyStlfQ7kv4x7wqEEJZLOi37tV/SDqVH/q6SNKrU+fSnSneHPVTS10MID4sxjjYvJ8Z4ZQjhYUqjyT1JfufeRyS9Psa4K2/9AADAiYM7mAAAQC4xxiFJL2oqem8IYe08FvEqpWuPvZIu8HKLstd4gdIdQyVJL2u/xrl8eIbyp2g6j+jDLZ1LvxJjfJOk7zTmCSHce4bljUq6qLlzKZt/SkcGp5+Vp9JNfq3p/z+SdP8Y41tijN+KMf5PjPFDSiHgX8+meYCk17QuJHsc8RGaHk3O8wSlzicAAACDDiYAAJBbjPEbkj6R/bpG0vvzzJd1YDwx+/XKGOPwLK+xRdIN2a+PbbOqeWyNMd45w98e3/T/j86xnA81/f8JM0zz4xjjvhn+1hzuPTDHa7W6UqlT6AmSnhJjNOHbMcYRSc+VdCgrellzHlP2/08p3fl0htIdVQ9TuntrhVK4+TVKd659IoTwpnnWEQAAnAB4RA4AAMzXK5U6NDZI+v0QwmdjjF+aY55NklZm/39q00huczlt7knadscsf7tv9nNQ0rVzLOcHTf+/3wzT3DbL/INN/5/XtVl2F9hN2b/ZptsXQvhnSecr5TI9QOmOJynlL52b/f/vY4x/3DTrqKQvhxC+oXQX1CMkvS6E8D8xxq8LAAAgwx1MAABgXmKMB5Q6JRo+HEJYMcdsa9p8uWoIYb539eR1aJa/rc5+7skeY5vNzqb/r5phmsEZyqX0OGDDYo6cd03T/+/W9P/Gvtwv6RXejNldUC/Q9EiCFy547QAAwHGNDiYAADBvMcZ/kfSF7NcNSqOkzab5zpyPK91Bk/ffjI/TzSLPNc5sHUfz6eipNP2/PuNUx17zduyUpBDCMk3nLn03xjhjR1iM8RZJP89+fcii1BAAABy3eEQOAAC060JJj1G62+cFIYTPzTJtc/5QLcb40zZfs9EpNFcH0PI2l9/QqO+aEEJpjruY1jnzHRUhhAcpPUa4RtJH56jnSU3/b4wE199UdiDHSzbmK7p9AQDAXQx3MAEAgLZkw9U3P1L1MUl9M0x+q6bvoHnoXMsOIVwcQnhxCOG3Wv7UGHmuszmoumXeHknzGd3O87PsZ7+k+8wxbfP63FjwdefrEqU7yT6s6VHvZnJO9rMu6SfZ//dq+q6r03O83inZz12zTgUAAE44dDABAIC2xRgvl/S17NdNSqOVedNNSPp29uv9QgjneNNJUgjhMZLeLukjkv6y5c/Nd9lsmmERvyWpY7Z65/CfTf9/8RzTXtD0/28UfN35+m7T/58/00QhhPtIelz2639kOVqKMY5J+r+s/OEhhM2zLOMsSffOfv1e2zUGAAB3SXQwAQCAol4s6XD2/9k6dt7V9P9PhhA2tk4QQjhJ6U6ohve1TPKzpv+/zJl/naRLZ61tPl+WdHP2/z8JITzdmyiE8DpJj8x+/a8Cj/616wpNb/uXhxBMNlK2Tf9R6bqvLunNLZN8MPtZlnR5CME8/hZCWJO9VsP7C9YbAADcxZDBBAAACokx3hFCuFjSh+aY7lshhA9LeonS41jXhBDeo+m7cH5d0islnZz9/i8xxn9tWcxnlR4Lqyp1qAxI+pykUaVH1S7K5r9F+R75mqmutRDCuVndOiX9UwjhCqXH0XZJurukF0p6fDbLHkl/2O7rFajnrhDCn0n6qKQeSd/Otul/KD1O+FBJr9Z0TtRfxxivalnMFZKeKempkh6mtF/er3RnUy0ra2xXSXpPjPF/Fm+tACxBc42mCeD4tiCj2NLBBAAAFsJHJD1b0iPmmO5lSp1BF0laKemNM0z3RUnPay2MMd4cQrhI6c6msqQXZP8a6kqP1a2W9Kp51N+IMf4ghPAEpbt/1io9guY9hvYTSb8fY9xa5PXaFWP8WJY7dalSJ9NfZP+aTUp6S4zxDc78UyGE50j6e0nPUeo8e4fzUlNKowVevHC1BwAAdxU8IgcAAArLRi/7I0kjc0xXizG+UtIDlDqlbpQ0KGlC0lZJ/yzpd2KMz4gxusuKMX5Q0m8o3Xlzp6RxSdslfV7SOTHGty3ISqXX+rakMyS9RtKVSqPEjUu6TdJXJD1L0kNjjDfPtIyjIcb4Xkn3lfQBpW06nP27SSkA/EFe51LT/MM
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFV99/FvVXX1Nvs+wzAwDMiRRVkU1IgPKApBI2pMosbEoImauMUlcSFxDXEj+qi4P0BUohEVRSVugGgUF3AFFI5swwwDw+zT0zPTW1U9f5xbTE3/ft19u2/1zMB83q/XvLr7zL1V996699xzT937PaVGoyEAAAAAAABgqsr7ewEAAAAAAADw0EYHEwAAAAAAAAqhgwkAAAAAAACF0MEEAAAAAACAQuhgAgAAAAAAQCF0MAEAAAAAAKAQOpgAAAAAAABQCB1MAAAAAAAAKIQOJgAAAAAAABRCBxMAAAAAAAAKoYMJAAAAAAAAhdDBBAAAAAAAgELoYAIAAAAAAEAhdDABAAAAAACgkI79vQAAAODAE0L4gaTTsz//Ncb47znn+6ikV2Z/HhFjXN3+pYMnhHCUpNdKepqkwyQNSLpb0lclfTrGuGEKr/kkST+U9IcY4yPbuLgAAOBhhjuYAADARN4aQjhmfy8ExhZCOE/SzUqde0dL6pY0V9JJkv5N0u9CCE+f5GvOl3SJpFJbFxYAADws0cEEAAAm0iXpkhAC7YYDUAjhHEmXKnUq7ZZ0gaSzJJ0t6T2SBiUtlPSVEMLJOV9ztqTvSnrEdCwzAAB4+OEROQAAkMcTJL1G0of294Jgj6zT76NKdxkNSXpSjPGXLZN8L4TwHUnXSeqR9F6lzqfxXjMoPVZ37LQsNAAAeFjim0gAADCeuqSR7Pd/DyGs2p8LA+MpkpqfyUdHdS5JkmKM/yvpf7I/nxZCmOe9UAihI4TwSkk3ak/nUr3NywsAAB6m6GACAADjGZZ0YfZ7r6T/tx+XBb6rJK2R9PVxprm15fcVo/8z63S6SeluqFlKj9X9naS17VtMAADwcMYjcgAAYCLvlPQcSY+U9JQQwktjjIU6mrLQ8FdJOlPSoUqPeK1VepTrohjj78eY7wdKo9sNxhi7x3n9WyQdJ+meGOPKUf/XyH59ndKdPR+VdJpSZ9odkt4cY7ymZfrZSp0tz5J0vFIHzGZJv5b0ZUmXxRhHNEoIYaXSKG5S2n7fkHSepBdlyzZL0jqlrKMPxBjvHGt9xpIt5zUTTigd3vL7/c7/z5HUDHL/qaS/izH+PoTw1skuEwAAODhxBxMAABhXjLF5N0vzcakLQwjLp/p6WafFzZJeISlImqF0d1SQ9PeSbg4hvCOEMN2jl62QdL1SJlGvUifLyUqdTM1lfbKk2yR9QNL/kTRfUlXSUknNcO1fhxCOnOC9epU6gi5R6iBbqBSevkrSP2gKo7zlFUI4RdKzsz+vizFuHGPSmyQ9P8b4R2N18AEAAIyFO5gAAMCEYozXhxA+JunVSh0xn5T0zMm+TgjhHZLenv15k6SPZz/Lkh6jFCR+ZMs07yiy3BN4rdKdU++X9E2lTqMTY4yrs2V9gtIdTj2SGpI+L+lLkh6QdISklyh1Th0v6UchhMfEGL27g6TUQbVU0s8kfUzSHyQtk/RKSU9T6mz6TAhhVYyxv8hKZR1zM5VGgPtrSS/LXn+r0l1jnjUxxhOKvC8AADi40cEEAADyeotSp9JKSX8SQvjLGOMX8s4cQjhZUvORq8skvWTUo2XXhxAuUcoUOkPS20IIX5rGu2nKkt4dY/yXlrKvZMtaUbo7qUfpzq3nxRi/0jLdDZIuDyG8TekRwmWSPiXp3DHea6nSOp8XY3wwODuE8A2l9X26pEWSniHp8oLr9cLsvVpdr/TY223eDK3LBAAAMBU8IgcAAHKJMe5Uuhum6cMhhEWTeIk3KLU9Nkv6ey+3KHuPlyjdMVRSumNqOn1ijPJnKmVOSdInRnUuPSjG+C5JP2jOE0I41ptO0oCk147uyIkxNrR3cHo77iI63Cl7lKRXjzWCHAAAQFF0MAEAgNxijFdL+s/sz4WSLsozX/bY1jnZn9fHGHeN8x53a8+oZ2dOcVHzWBdjvHeM/zu75fdPTfA6H2/5/Y/HmOaXMcYtY/xfa7j3rAneK48fKj129zilR+R+Jmm2UubV/4YQFrfhPQAAAPbCI3IAAGCyXq/UkbJM0vNCCP8dY/z6BPOslNS8e+bclpHcJnLE1BYxl7Xj/N/x2c9+SbdM8Do/a/n9UWNMs3qc+Vszlwq3zWKMP27584YQwheU7pJ6idJ6/YfSSHYAAABtwx1MAABgUmKM25TCqZs+EUKYO8FsC6f4dh0hhHbc1ePpG+f/FmQ/N2WPsY3ngZbf548xzXjB3a2v3/aR87LH8l4haV1W9LwQQm+73wcAABzc6GACAACTFmP8mqQvZ38uUxolbTytd+ZcKumkSfwb83G6ceRp44zXcTSZjp5Ky+8HZFh2jHFQaUQ8SerUnnwpAACAtuAROQAAMFWvkvQUpbt9XhJC+OI407bmD9VijL+Z4ns2O4Um6gCaM8XXb2ou78IQQmmCu5iWOPPtE1lo95GSlsYYr5pg8s0tv3dO31IBAICDEXcwAQCAKYkxbpD0upaiT0uaMcbkd2nPnUiPn+i1QwhvCiG8PITw1FH/1Rx5rjOEUBk9XzZvj6TJjG7nuSn7OVPScRNM27o+txV838m6TNKNkr6RY0S/I1t+HyvcHAAAYEroYAIAAFMWY7xM0rezP1dKeuEY0w1Lui7781EhhNPGes0QwlMkvVfSJyWdP+q/t7X8vnKMl3iqpOp4y53D91p+f/kE0/59y+9XF3zfyfpR9rOkFOLtCiEslfSM7M/bxhk9DwAAYEroYAIAAEW9XNKO7PfxOnY+2PL7Z0IIK0ZPEEJYrHQnVNNHRk1yU8vvr3bmXyLpwnGXNp9vSLoj+/0VIYTneBOFEN4q6fTsz2sLPPo3VZ+VtDP7/fwQghnFLgtJ/5L23F323n20bAAA4CBCBxMATJ8G//j3UP136qmnni5JnZ2dXRNNG2Nc8/a3v92M9HbttdfePWq6a1/wghc0//vIOXPmrPnoRz/auOGGGxo33HBD49JLL20sXrz4AWWPcj3taU9rhok/+Brf+9733tXR8WCE5D+ef/75jeuvv77xi1/8onHxxRc3Fi9evF5SOOywwyRJy5cvP9xZZknSaaeddvY46zRy+eWXH1WtViWpXC6Xv/qmN72pcd111zVuuummRgjhz0MI35H0ruzlNkn6m9HbYLrFGNdL+qfsz9mSbgghvCeEcHYI4QkhhNcodco9KZvmi5I+t6+XEwAAPPwR8g0AAAp7wQteoG9961u68cYbx53urW99q7q6uvTZz35W27dv10UXXeROd9ZZZ+nCC+2NSIcffrjOP/98XXDBBarX67riiit0xRVXPPj/5XJZr3/967Vt2zZdeumlhdbpxBNP1MUXX6zXve512rJli6688kpdeeWVzf/+Usukv5L0vBjjukJvOEUxxk+GELqU7tzqlvTm7N9on5D0jxMElgMAAEwJdzABAIDCSqWSLrjgAnV3d487XaVS0Vve8hZdeeWVev7zn69Vq1apt7dX1WpVS5Ys0dlnn61Pf/rTuuiii8Z8rRe+8IX6yle+onPPPVdLly5VtVrVokWLdM455+gLX/iCXv7yiSKT8nv84x+vq6++Wm94wxt08skna+7cucrualot6SpJfyHp8THGO8Z7nekWY/ywpOMlfUxSlLQ7+3eHpEskPTbG+IosCwsAAKDtSo0GX2IBwDShggUevkr7ewEAAAAOJNzBBAAAAAAAgELoYAIAAAAAAEAhdDABAAAAAACgEDqYAAAAAAAAUAgdTAAAAAAAACiEDiYAAAAAAAAUQgcTAAAAAAAACqGDCQAAAAAAAIXQwQQAAAAAAIBC6GACAAAAAABAIXQwAQAAAAAAoBA6mAAAAAAAAFAIHUwAAAAAAAAohA4mAAAAAAAAFEIHEwAAAAAAAAqhgwkAAAA
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XXWd//H33bK3SVdayr59FQRFRGV0FHcUR+XhIG4oMgKyOKOgooMbjqg/GQRFBR1BEX4CVp1xRP3NIIg6KLgMArJ82QrUUlrapkv2m3vv749z0qb5fJLc5NwuNK/n45FHku89y/d8z5Lkk3PfJ1er1QQAAAAAAABMV35HdwAAAAAAAABPbxSYAAAAAAAAkAkFJgAAAAAAAGRCgQkAAAAAAACZUGACAAAAAABAJhSYAAAAAAAAkAkFJgAAAAAAAGRCgQkAAAAAAACZUGACAAAAAABAJhSYAAAAAAAAkAkFJgAAAAAAAGRCgQkAAAAAAACZUGACAAAAAABAJhSYAAAAAAAAkElxR3cAAADsfEIIt0h6afrtx2OMF9Q531clnZl+u2+M8dHG9w6eEMJukj4o6VhJ+yr5R+JDkm6Q9OUY46o6l/P3kt4p6XmSFkjaJOkOSd+WdG2Msdb43gMAgKc77mACAACT+UQI4Zk7uhMYXwjh7yQ9KOlcSc+S1C6pVdKhkj4m6YEQwmsmWUZnCOEXkpZKeqOkJZKaJM2T9EpJ/1fST0MILdtqOwAAwNMXBSYAADCZZklXhBD4vWEnFEI4WtK/S5qVNv1Y0pskvVDSP0i6X9JsSTeEEN44zjJKkv5L0ivSptskvT1dxomS7knbXyvpsoZvBAAAeNrjF0UAAFCPoyT9447uBLYWQigqeetaIW36cIzxTTHGH8cYb48xXinpCEm/UhKNcFkIYZazqHMkvSD9+lpJL44xXpsu45r0tbvT108KIRy8rbYJAAA8PVFgAgAAE6lKGk6/viCEsN+O7AyMN0jaJ/36xzHGfx07QYyxT8ldSGVJiyWdPfr19C1vH0u/fVjSu2OMlTHL6JV03qimNzei8wAAYNdBgQkAAEykLOnC9Os2Sf+2A/sC6+Wjvr5kvIlijMsl/SL99oQxLx+r5C10kvTJGGN5nMX8t6TvSvqypL9MvasAAGBXxlPkAADAZM6XdJykZ0h6eQjhlBhjpkJTGhp+lpLMnz0k5SQtl/RLSZfGGO8dZ75blDzdbjDGOG7YdAjhL5IOkfRYjHGfMa+NPAXtg5J+Kumrkl6spJj2kKSPxhh/MWr62ZLeqyT4+llKso7WKnmy2lJJV8cYhzVGCGEfScvSb4+T9J+STpL0rrRvsyStUJJ9dFGM8eHxtmcCe4/6+vZJpr1XSYbSM0IIXTHG9Wn7a9PPQ0qynFwxxkFJ755GHwEAwAzAHUwAAGBCaWHhvUreLidJF4YQlkx3eSGETyjJ8zlDUlDyxLO29Ov3Sbo7hPDpEEIuU8cnt6ekWyW9Ol1/p6TnKikyjfT1ZUpCsi+S9BJJcyWVJC1SUpi5UtIdIYT9J1lXm5I7iK5QUiCbryQ8fT9Jp0u6J4TwuqluwItf/OLXS1KhUBh5K1xtvI9TTz31nHS23NKlS7tH2g877LB/kKSDDz64afQy+vv7a8uWLas98cQTtWq1Ou5y+eCDj236sbPY0ePABx98bNuPhqDABAAAJhVjvFXS19JvOyVdPp3lhBA+LekzSkKp71JSUPobJXcQ/ZOSDKC8pE+lH9vSB5QUer4o6W8lHS/pczHGR9O+HqXkDqfFSn75ukZJ5tELJL1VyVvGpOSupt+EEBZPsK6LJL1MydPZTkyX8SZJN6avN0v6TgihYyob0NXVJUmqVCp66qmnJpx25cqVm79es2bN5q8feiipp+2+++6SpN///vc6+eSTdcQRR+iYY47Ry172Mr3oRS/ShRdeqJ6enql0DwAAzCC8RQ4AANTrY5L+Tkmo9OtDCG+PMX6v3plDCM+V9In026slnTzmrWW3hhCukHSDpKMlfTKE8P3x3i7XAHklBaXR4dU/SPtaUHJ3UquSO7dOiDH+YNR0v5d0fQjhk0reQrhY0jeUFKA8i5Rs80kxxpE7wRRC+E8l2/s6SQuU5CFdX+8GPPvZz9YNN9wgSbrxxhv19re/3Z1uaGhIt9566+bv+/v7N7f39fVJkmbPnq3LL79cl1xyiWq1rf+ZuW7dOn3rW9/SzTffrCuuuGJzMQoAAGAEdzABAIC6pE8SO3VU05dDCAumsIhzlPzusVbS+7zconQdJyu5Yygn6f3T73FdLhun/e+UZE5J0mVjikubxRg/I+mWkXlCCAePs7wBSR8YXVxK569p6+D0Z9fT6RHHHHOMmpqaJEmXXnqpli9f7k53ySWXaN26dZu/L5eTHO/e3t7NbbfddpsuvvhizZ07V5/97Gf1u9/9TnfffbeWLl2ql7zkJZKkRx55RGeeeaaGhoam0k0AADADUGACAAB1izHeKOnb6bfzJV1az3xpntJImPStadbPeOtYJum+9NtXTLOr9VgRY/zrOK+9ZtTX35hkOV8f9fUx40zzpxjjunFeGx3uPWuSdW1l4cKFOu200yQldxm99a1v1dKlS7V27VoNDQ3p/vvv14c//GFdccUV2m233TbPN1KUGhgY2Nz2xBNPqKurS9ddd52OP/54zZ07V01NTTrssMP0zW9+U697XRIRde+992rp0qVT6SYAAJgBeIscAACYqrOVFFIWSzohhHBtjPHHk8yzj6Q56ddvGPUkt8nsO70u1sW/3SfxrPRzj6S/TLKc20Z9feg40zw6wfyjg42m/LvZGWecoZUrV+oHP/iB1qxZo49//ONmmkMOOUSnn366zjrrLElSa2urJKm5uXmr6c466yzttddeZv5cLqfzzjtPN954o8rlsn7yk5/oHe94x1S7CgAAdmHcwQQAAKYkfbz9maOaLgshdE0y2/xprq4YQpjSXT1TsHGC1+aln9ekb2ObyKpRX88dZ5qJ0rFHL3/KT87L5/O64IIL9KUvfUkHH7z1O/SWLFmic845R9ddd51yuS2Lnjcv2byOjq0zxV/1qleNu5758+frsMMOkyTdfffdJqcJAADMbNzBBAAApizG+O8hhKVKnry2WMlT0v5hgllG/85xpep8a11q3LfTTaCef6JNVCGZSqGnMOrr6rhTbWPHHnusjj32WHV3d2vdunXq6uraXEiSkvykEXvssYek5K1ynZ2d2rBhg6TkLXcTWbw4eVDe8PCwNm7cqM7OzkZvBgAAeJqiwAQAAKbrLEkvV3K3z8khhOsmmHZ0/lAlxvjnaa5zpCg0WQEoa+VjpL/zQwi5Se5i2m3U1+PlLG03c+bM0Zw5c0z7n/+cDPluu+2muXO33Gh10EEH6Q9/+IMkaePGjerqGv9mtJFw70KhYO5+AgAAMxtvkQMAANMSY1wt6YOjmr4pqX2cyR/RljuRXjjZskMI54YQTgshvHLMSyNPnmsKIRTGzpfO2yppKk+389yVfu6QdMgk047envszrndKHnvsMV188cX6+Mc/rvvuu2/c6fr6+vTb3/5WkvSiF71oq9ee/ewtD6678847J1zfgw8+KElatGiRCgV3+AEAwAxFgQkAAExbjPFqST9Pv91Hkpv8HGMsS/pl+u2hIYQXj7fMEMLLJX1B0uWS/nnMy+tHfb3POIt4paTSRP2uw3+P+vq0SaZ936ivb8y43ikZGhrS5ZdfrqVLl+pnP/vZuNNdc8016u/vlyS94Q1v2Oq1Y489dvPX3/ve98Zdxl133aVly5ZJkl7xim35cD8AAPB0RIEJAABkdZqkTenXExV2vjTq6++EEPYcO0EIYaGSO6FGfGXMJHeN+vr9zvy7Sbpwwt7W5z8lPZR+fUYI4ThvohDCJyS9NP32pgxv/ZuWAw88UPvumzxo79prr9WKFSvMNLfddpsuvTSJvDryyCN11FFHbfX6wQcfvPmupltuuUVXXXWVWcb69et13nnnSZKKxaLe8pa3NHQ7AADA0x8ZTAAAIJMY4/IQwrmSvj7
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x1200 with 8 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYZVWZ7/HfiZU6N51AoAFxgQiYx8CImMYcZjCPDhhBHUGcK96ZMV/FER1zmhmREbOOo45eveacUFFBYEGTaWiaplPlOun+sfehT9X7VtWu2qe7q7u+n+fpp+qs2mHtcFb1eWvv3y60Wi0BAAAAAAAA81Xc3x0AAAAAAADAgY0CEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHIp7+8OAACAhSeE8CNJp6Yv/znG+PaM831I0ivTl0fFGG/sfu+QVQjhfpJ+o+T/fGfGGC92prlR0pFzXXaMsZCzewAA4CDCFUwAAGA2bwghHL+/O4G5CSFUJH1Se+cPirW9sEwAAHAA4womAAAwmx5JnwghnBJjbO7vziCzf5R0cobpniipmmG6D0t6WPr9WfPtFAAAODhRYAIAAFk8VNKrJb1vf3cEswshnCTpn7JMG2O8MsPyXq49xaV/jzFelKN7AADgIMQtcgAAYCZNSfX0+7eHEI7en53B7EIIZSW3xlUkbevC8o6W9J705bWSzs27TAAAcPChwAQAAGZSk3Rh+n2/pH/fj31BNq+TdH9J2yW9uQvL+7CkgfT7l8UYR7qwTAAAcJDhFjkAADCbt0h6hqTjJD0qhPDSGGOuQlMaGv4qSY+WdA9JBUm3SPqhpA9Od9tWx9PtxmOMvTMs/wpJJ0i6Kca4ccrPWum3r5H0TUkfknSKkmLaJkmvjzF+r2P6ZZJeIulpku4jaamkuyRdJulLki6JMdY1RQhho6Qb0pfPkPR1SWdIemHat6WSNkv6f5LeE2O8brrtySqEcG9Jb0xfnidpOOfyniLp8enLz8QYf5RneQAA4ODFFUwAAGBGMcZxJQWWdsD3hSGEw+a7vBDCGyRdLukVkoKSq2P60+/PknR5COHNIYRCro7P7nBJP5f0uHT9y5Vc+bOpo6+nSbpayS1ij5C0SsmtZ+slPUHSRZIuCyEcM8u6+iV9T9InlBTIDlESnn60pLMl/TmE8MQ8GxNCKCm5Na5H0v+LMf5nzuUVJV2QvhyV9Po8ywMAAAc3CkwAAGBWMcafK7lVSkoKMR+bz3JCCG+W9FZJJUl/UlJQepiSK4jOkXSdkv+fvCn9tzedq6TQ8y5JfynpmZLeEWO8Me3rQ5Vc4bRBUkvSpyU9VdJfSHqOpO+ky7mPpJ+GEDbMsK73SDpN0q8kvSBdxtMlfTf9eY+ki0MIS3Jsz3mSHixpSNLLciyn7XQlV1pJ0r/FGG/twjIBAMBBilvkAABAVv9b0lMkbZT05BDC82KMn806cwjh/pLekL68RNKLptxa9vMQwickfUPSIyW9MYTwxSxPOZunopKCUufT1r6c9rWk5OqkPiVXbj07xvjljul+I+kLIYQ3KrmFcIOkjyspQHnWK9nmM2KM7SvBFEL4upLtfaKkNZKeJOkLc92QEEJQUriTklv8bp7rMhyvSb/WJP1rF5YHAAAOYlzBBAAAMokxDmvylTHvDyGsmcMiXqvk/x53STrLyy1K1/EiJVcMFST9/fx7nMlHp2l/ipLMKUn66JTi0t1ijG+V9KP2PGkGkmdM0rmdxaV0/pYmB6efnKXTndJb2S6S1CvpZ5I+MtdlOMt8sKSHpC8/16WCFQAAOIhRYAIAAJnFGL+rJOdHSm4v+2CW+dI8pSekL38+05PIYow3SLoqffnoeXY1i80z3Pb1Vx3ff3yW5XQWdB4/zTS/izFun+ZnneHeS2dZl+fVSm4zHJP0krRoldc5Hd+/qwvLAwAABzlukQMAAHN1npJCygZJzw4hfC7G+LVZ5tkoaWX6/VM7nuQ2m6Pm18VMbpnhZ/dJvw5JumKW5fyq4/sTp5nmxhnmH+r4fk7/N0vDxd+evnxLjDHOZf5pltmnJB9Kki6NMf457zIBAMDBjyuYAADAnMQYd0p6ZUfTR0MIK2aZ7ZB5rq4cQpjPVT1Z7J7hZ6vTr9syXBF0R8f3q6aZZmiadim5HbAt85Pz0qvCPqHkCXWXSXp31nln8Zh0mdI88qAAAMDixBVMAABgzmKM/x1C+JKSJ69tUPKUtBfPMEvn/zkuUsZb61LT3k43gyx/RJupcJS50KPkiXhtzWmn6r6XSzo1/f4Dku6TZH1PsrHj+yNCCPdNv98UY5yu6NW+eqkl6Utd6CcAAFgEKDABAID5epWkRym52udFIYTPzzBtZ/5QI8b4h3mus10Umq0AtHyey29r9/eQEEJhlquY1jnz7QsP6fj+k9NOtcdb0n+SdJr2hJNP9aT0668J9wYAAFlxixwAAJiXGONW7XmUvST9m6SBaSa/XnuuRHrINNPcLYRwfgjh5SGEx0z5UfvJc9UQQmnqfOm8fZLm8nQ7z5/Sr0sknTDLtJ3bc3XO9e5XIbkEql0w+8n+7AsAADiwcAUTAACYtxjjJSGE5yp5QtxGSc+fZrpaCOGHSq6OOTGEcEqM8WfetCGER0l6Z/ryh5K+1/HjnR3fb9TkJ7C1PUZSZQ6b4fmOpLPS718u6e9nmPasju+/m3O9mcUYz5B0xkzThBBO157b3M6MMV48y2If3PH9b+fbNwAAsPhwBRMAAMjr5ZIG0+9nKuz8a8f3F4cQDp86QQhhrZIrodo+MGWSP3V8b4o+IYR1ki6csbfZfF3SpvT7V4QQnuFNFEJ4g/bkIH0/x61/C8VJHd9TYAIAAJlxBRMAAMglxnhLCOF8SR+ZZbofhBA+KulsScdI+mMI4X2SfpxO8kBJ50k6NH393zHGr05ZzOckvVHJ/2HOSZ8w93lJY0puVTs3nf+6dB3z3aZGCOEFad+qkr4cQvi0kquBtko6Ukmo+V+ls2yT9HfzXV8OMz7h7v3vf7/OOeccSdIFF1zwSc2S1fSoRz1KP/jBDyRJl19++fVd6iOA+ZvLAwf2ptmepgngwNaVsYYCEwAA6IaPSXqOpEfMMt3fKykGnStppfaETk/1FUl/O7UxxrgphHCukiubipJelP5ra0r6RyXB46+dQ/+NGOOvQgiPl/QFJZlOL0z/TfV7Sc+OMW7Os76F4I477pAk9fT0qFqt7ufeAACAAwm3yAEAgNzSp6y9RNLoLNM1YoznSbqfkqLU1ZKGJNUkbZb0X5KeFGP8mxiju6wY44clPUjSpyXdKmlC0u2SvijplBjjBV3ZqGRdP5R0T0mvl/RzJU+Jm5B0o6RvSHqWpIfEGDdNt4wDydDQkCRp2bJl+7knAADgQFNotbjaEQAA4ADFf+SAgxu3yAHYF7oy1nAFEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDABAAAAAAAgFwpMAAAAAAAAyIUCEwAAAAAAAHKhwAQAAAAAAIBcKDA
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJFd57/Ffp8kzm7PErnYlDkkCyZgcDMIEAwJscjACDAgksknGZNsChHQFGBAYRBBRwgIM12By1CVYSAQBB0lopZVWm3dnJ/b0dPf9o6q1PfO+M9Mz1Zu/n+fZZ6bPVDhVXXVm+52qX+Xq9boAAAAAAACAhcof7g4AAAAAAADg6EaBCQAAAAAAAJlQYAIAAAAAAEAmFJgAAAAAAACQCQUmAAAAAAAAZEKBCQAAAAAAAJlQYAIAAAAAAEAmFJgAAAAAAACQCQUmAAAAAAAAZEKBCQAAAAAAAJlQYAIAAAAAAEAmFJgAAAAAAACQCQUmAAAAAAAAZEKBCQAAAAAAAJkUD3cHAADAkSeE8ANJD01f/nOM8V9bnO/fJZ2bvjwpxri5/b1DQwjhk5Keu4BZHxZj/IGzvIdKeomkB0laKWlI0tWSPi3pczHG2oI7CwAAjmlcwQQAAOby5hDCXQ93J9BWE80vQgilEMJHJf1A0tMkrZNUkrRU0l9LukzSj0MIyw5xPwEAwFGCAhMAAJhLp6SPhxD4f8OR5y2STm/h3/ub5rksxnjVtOV8WNIL0++HJb1TyRVsfyXpXZLGJD1A0lUhhMUHY0MAAMDRjVvkAABAK+4v6eWSLj7cHcEBMcZbJN0y2zQhhHtKenH68reSXjTt54+Q9IL05Q4lt8/9vmmSH4YQrlRyddOdJf2LpPMydx4AABxT+EskAACYTU3SZPr9v4YQNh7OzmB+QgglSZ9SchXahKRnxBjHp0328qbvXzytuCRJijH+UtI70pfncBwAAIDpKDABAIDZVCRdkH7fI+k/DmNfMH+vlnTP9Pt/izFe1/zDEEJOyW1wkrQ5xviVWZb1yfRrQdKT29hHAABwDOAWOQAAMJe3S3qSpLtIengI4YUxxkyFpjQ0/DxJZ0o6QVJO0hZJ35f0Ae8qmnS+HyjJBirHGLtmWf7vJN1d0s0xxg3TflZPv32VpP8r6d+VPDWtIukGSW+IMX6nafoBSf8g6QmS7iGpX9JuSddIukJJptGkpgkhbJB0U/rySZL+S9LZkv4+7Vu/pNsk/Y+kC2OMN860PQsRQlgj6c3pyz8ryVKabmnaD0n6xWzLizFuDyHslrRMyS2TAAAAd+AKJgAAMKsYY1lJgaXxiPoLQgjrFrq8EMKblWQBvVRSkNSr5OqoIOkcSb8NIbwtvbrmYDpR0k8lPTJd/yJJZygpMjX6+jBJf5R0oaSHKCnIlCStlvQYSZdKuiaEsGmOdfVI+o6kjyspkC1XctvaRkkvkXRdCOFv2rVhqbco2beS9Nr0fZyuo+n7oRaWWUm/3jlLxwAAwLGHAhMAAJhTjPGnkj6Yvlwk6ZKFLCeE8DYlWT4FSb9RUlB6gJIriF4h6UYl/z95a/rvYHqlkkLPeyQ9WNJTlNxGtjnt6/2VXOG0RlJd0mcknSXpvpKeLulb6XLuIenH6RVDM7lQ0sMk/UzSc9JlPFHSt9Ofd0r6ZAihrx0blhYAG8Hd18YYr5xh0j1Ktk1KriSbbZndSvaXlBTYAAAA7sAtcgAAoFVvlPR4SRskPS6E8MwY4+danTmEcIYO3LJ1maTnT7u17KchhI9L+rqSXKC3hBAun+l2uTbIKykovamp7UtpXwtKrk7qVnLl1tNijF9qmu4Xkr4YQniLklsI10j6iJIClGe1km0+O8bYuBJMIYT/UrK9fyNphaTHSvpi9k3TeUqutJKSAporxlgOIVwr6XRJDw4hLIsx7p5h8kfrwP8de2eYBgAAHKe4ggkAALQkxjiiqY+4f18IYcU8FvEaJf/32C3pHC+3KF3H85VcVZOT9LKF97glH56h/fFKMqck6cPTikt3iDG+Q9IPGvOEEO42w/LGJb2yubiUzl/X1OD0eyqj9Eqjxvv0Z0mXzzHLZenXHkkfCiGY/x+GEBZLendTU2n6NAAA4PhGgQkAALQsxvhtSZ9IXy6X9IFW5kvzlB6TvvxpjHF0lnXcJOkP6cszF9jVVtwWY7x1hp89qun7j8yxnA81ff/oGaa5Osa4Z4afNYd7988wzXw8W0lWlJSEh1fnmP4SSY2rxJ4q6VshhIeEELpDCAMhhCcqubXvFCWh5JI00YZ+AgCAYwi3yAEAgPl6tZJCyhpJTwshfD7G+NU55tkgaUn6/VlNT3Kby0kL62JLtszys3ukX4cl/W6O5fys6ftTZ5hm8yzzDzd9347/mz0j/Tohac5bGGOMYyGEs5Q8zW6TkqLe9MJeXUl21p2UPAlvpA39BAAAxxCuYAIAAPMSY9wn6dympg+nt1DNZvkcP59JMYTQjqt6PPtn+dmy9Ouu9Da22Wxv+n7pDNMMz9AuHQjZlpLbAhcshLBESWC5JH0rfa/mFGO8UdK9Jb1X0s5pffuepL+OMb5VB4qE2wUAANCEK5gAAMC8xRi/HEK4QsmT19YoeUraC2aZpfn/HJeqxVvrUjPeTjeLVv6INlvhaD6FnkLT97UZpzo0HqcD+3qu7KUp0mLUa0MIr1fyRLluSVum3c7YyKW6KWtHAQDAsYUCEwAAWKjzJD1cydU+zw8hfGGWaZvzh6oxxmsXuM5GUWiuAtCiBS6/odHf5SGE3BxXMa1y5jtcHpd+nZA0122LrjSI/Jbp7SGEpUpymCRpoe8fAAA4RnGLHAAAWJAY4w5Jr2pq+qhmfnz9n3XgSqT7zbXsEMLrQwgvDiE8YtqPGk+e6wghFKbPl87bLWk+T7fz/Cb92ifp7nNM27w9f8y43qwat8ddG2Oc7RbAO4QQ/i6E8N4Qwr/PMekTdOD/jt9eaAcBAMCxiQITAABYsBjjZZK+kb7cIOlZM0xXkfT99OWpIYQHzbTMEMLDJb1LydPN/mnaj5szhTbMsIhHSCrN1u8WfKvp+xfPMe05Td8ftsJLCOFEJbcrStL/zmPW+0l6jaRzQwhhhmUX02mkJLD8JwvsJgAAOEZRYAIAAFm9WNJQ+v1shZ2Lmr7/ZFoQmSKEsFLJlVAN7582yW+avn+ZM/8qSRfM2tvW/JekG9LvXxpCeJI3UQjhzZIemr78boZb/9rhtKbv51Ng+s+m7981/YchhLySzKzGlVzvjDFW5989AABwLCODCQAAZBJj3JIGQ39ojum+F0L4sKSXSNok6dchhIsl/TCd5N6SXi1pbfr6yzHGr0xbzOclvUXJ/2FekT5h7guSxpVcifPKdP4b03UsdJuqIYTnpH3rkPSlEMJnJF0haYek9UpCzR+VzrJL0nMXur4M7siGeuMb36jzzz9fkvSxj33sUiVh6nOKMeqcc87R97//fUl64vOe97z605/+dK1atUq33HKLTj/9dF1zzTWSpDPPPFMf/OAHPy7p4+3eEACuTE+WbKO5nqYJ4OjWlrGGAhMAAGiHSyQ9XdJD5pjuZUqKQa9U8sj7t88w3ZWSnj29McZ4QwjhlUqubMpLen76r6Gm5La6ZTpwS9eCxBh/FkJ4tKQvKsl0+vv033S/kvS0GONtWdaX1bZt2+74fmBgYF7zvuc979ELX/hCXXvttbrqqqt01VVXmWke+9jH6vzzz1cud6R83gUAAEcSbpEDAACZpU9Z+wdJY3NMV40xvlrS6UqKUn+UNCypIuk2JbdrPTbG+HcxRndZMcYPSvpLSZ+RdKuSJ6bdLulySQ+KMZ7flo1K1vV9SSdLeoOknyp5StyEkhyir0t6qqT7xRhvmGkZh8rw8PAd3/f3989r3oGBAX3mM5/RW9/6Vp1xxhnq6+tTsVjUypUr9ahHPUqXXnqpLrroInV2dra72wAA4BiRq9e52hEAAOAoxX/kgGPbkXLJIGMNcGxry1jDFUwAAAAAAADIhAITAAAAAAAAMqHABAAAAAAAgEwoMAEAAAAAACA
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAbwCAYAAAAvbOuuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYXGWZ9/Ffrb1lJUDCGgThgVdRBhRFGAFBDLIpOirroDjigg4os4DKLoO4gC8EEZFVEVAYFGV4RUAFgcFRYUDhYQsEIiH70kt1V1fV+8epTjp9392p5FSS7uT7uS6u7r77Oc95zqlKqNx1zq8ytVpNAAAAAAAAwNrKbugFAAAAAAAAYGyjwQQAAAAAAIBUaDABAAAAAAAgFRpMAAAAAAAASIUGEwAAAAAAAFKhwQQAAAAAAIBUaDABAAAAAAAgFRpMAAAAAAAASIUGEwAAAAAAAFKhwQQAAAAAAIBUaDABAAAAAAAgFRpMAAAAAAAASIUGEwAAAAAAAFKhwQQAAAAAAIBUaDABAAAAAAAgFRpMAAAAAAAASIUGEwAAAAAAAFKhwQQAAAAAAIBU8ht6ARtIbUMvAMA6ldnQC6jj7xpg4zVa/p4BgPWB1zTAxq0pr2u4ggkAAAAAAACp0GACAAAAAABAKjSYAAAAAAAAkAoNJgAAAAAAAKSyqYZ8AwCwSTvhhBP02GOPSZJOO+00feYzn2lou/PPP18/+tGPJEn33Xeftt1223W2RqwqhPBGSadJeq+k7SWVJM2SdIekq2OM8xqY4wOSTpb0dkmbSZon6QlJN0q6LcY4YpBvCKFd0sclfVDSWyRNktQpKUr6haSZMcYla3N8AABgbOMKJgAANnFXXnmlXnjhhQ29DIwghHCSpCclfU7SLpJalTR3/k7SBZL+EkJ4/wjbt4YQ/lPSf0o6XNJUSQVJ20h6v6RbJD0QQthyhDl2l/S/kq6QdJCkLepzTJb0TkkXSoohhP3SHCsAABibaDABALCJ6+vr05e//GVVq9UNvRQ4QgiHSrpWSVOpR0kj5xBJ75P0H5J6JW0u6achhD2HmeY6SR+of/+0kquY9pP0UUm/qtf3l3RHCMFc4R5CmFYft1O99BNJR0vaW0nD6jolH2O+paS7Qwi7reXhAgCAMYpb5AAAgP785z/rxhtv1EknnbShl4JBQghZJVcMZST1Sfr7GOMfBw35VQjhHkkPSGqTdLGS5tPgOQ6Q9LH6j49IOiDG2DdoyG0hhKsl/ZOkfSV9RNLNQ5ZyrqRp9e9PizF+Z8jvfxlCuLe+3XhJ3xm6DgAAsHHjCiYAADZh2WxW+XzyftNll12mV155ZQOvCEO8R9KO9e+vGNJckiTFGH8n6Zf1H98bQpg8ZMgnB31/ypDm0oB/H/T9Rwb/IoTQKunY+o+POc2lgXX8WNJd9R8PDiFs7Y0DAAAbJxpMAABswvL5vE4++WRJUk9Pj77yla9s4BXB8QtJsyX9bIQxTw/6frshv3tR0u8lPR5jfNLbOMa4SEngt5QEiA/2ViVXJUnSz1ez1nvrXzOSdl/NWAAAsBHhFjkAADZxp556qu699169+OKLevTRR3XbbbfpIx/5yOo3HMELL7ygH/7wh3rkkUf0+uuvq1aradq0aXrHO96hE044QW984xvd7QY+3a5YLOrJJ91eiCTp8MMP13PPPadtttlG999//yq/CyFIks4880wdcMABuuCCC/THP/5R+Xxe22+/vc444wy9613vWjG+s7NTP/nJT3TffffpueeeU1dXlyZNmqTddttNM2bM0FFHHbXiKq8h+9lByae4Scmnqv1c0kmSTpT0JiVNmTmS/p+kb8UY1zhJPcb4a0m/bmDo9EHfvzZkjrMlnT3SxiGECUrCus32khYouUVua0kPr2YdmUHft65mLAAA2IjQYAIAYBNXLBZ14YUX6vjjj1e1WtUll1yi/fffX1OnTl2r+WbOnKmZM2eqUqmsUp81a5ZmzZql2267TZ/97Gd16qmnKpPJDDNLenPnztUxxxyjRYsWraj99a9/1fbbr7xA59FHH9UZZ5yh+fPnr7Lt/PnzNX/+fP3ud7/T9ddfr5kzZ66ynaNdSSPowCH1HSV9RtInQghHxxjvTndUVgjh7VoZ4P1AjHH+SOOHca6ST4STpFsH/6LeGDuvwXkOGPT9y2uxDgAAMEbRYAIAANprr7103HHH6aabbtLy5ct1zjnn6KqrrlrjeS6//HJdccUVkpIriY499liFEFStVvWXv/xFN910k2bPnr1izOc///mmHsdgN9xwg2q1mj75yU/qwAMP1IIFC/T0009r2223lZQEm59yyikqlUrKZDI64ogjdOihh2rzzTfXq6++qttvv10PPfSQnn32WR177LG64447tOWWWw63u28pCcF+VNJMSc9K2krS5yS9V1KLpOtDCDvGGDvTHFcIISNpnKSdJZ0g6VP1+RdLOrXBObKSpkraS9LpSrKeJOlu2YDvRtf1fyQdWf9xrqQn1mYeAAAwNtFgAgAAkqQvfvGLuv/++zVnzhw98MADuuuuu3TEEUc0vP1f/vIXXXnllZKko446ShdddNEqt5bttdde+vCHP6xTTjlFjz32mGbOnKlDDz102Nvl0qpWq/r0pz+t008/fUVtxowZkqRKpaKzzjpLpVJJ2WxWl1566YrfSdJb3vIWvf/979cVV1yhyy+/XPPnz9fZZ589UtNtmqSbJJ0UY6wOFEMIP1eSofR+SVtIOkxDrhBaC8fV9zXY7yV9Msb4TINz/ErSQYN+rkq6RNJ5Mcb+NV1QPQj8Rkm5eunSGGNtTecBAABjFyHfAABAktTe3q4LLrhgxc9f+9rXVrm9bHWuvfZaVatVTZo0Seedd56bW9Te3q6LLrpImUxGtVpNN900tE/SXMccc4xbf+CBB/Tiiy+uGDO4uTTYqaeeqr333nvFNs8///xwuypJOm1wc0mS6k2W7w8qvXUNlj+c6U5td0mfdz5BrtE5skquPjrWGTuiEEJO0g+VXA0lSU9K+r9rOg8AABjbaDABAIAV9t13Xx199NGSpMWLF6/ScBpJrVbTgw8+KEnac8891dbWNuzY7bbbTjvttJOkJANpXZk6daqmTZvm/m5grZL00Y9+dMR5jj12Zc9l8HZD/LH+SWyeweHe44cZsyZ+q+S2u3couUXuUUkTJH1W0u9CCMPexzfIOZLeJWl/JQHgCyX9H0k/CCFc0uhCQggFJc2lD9VLSyX9Q4yx1OgcAABg48AtcgAAYBVnnnmmHnzwQc2fP1933323DjvsMB188MEjbvPqq69q6dKlkqT7779/xSe5rc6rr76aer3D2WqrrYb93XPPPScpuaJql112GXGePfbYY8X3zz777HDDXhphisGZS6lfe8UYHxr042MhhJuVXCX1CUlvlvRNJZ9kN9Icg3OWfhdCuEHSg5K2l/QvIYR7Yoz3+1snQggdSm73O6xe6pJ0eIwxrsnxAACAjQNXMAEAgFVMmDBB55xzzoqfzz33XC1btmzEbRYvXrxW++rv71dnZ6rM62GNGzdu2N8tWbJEkjR58uTVfpLdlClTzHaOkQ5icBZR0z82r35b3mclzamXPhpCaF/DOWbX5xjwiZHGhxCmKbmSaqC5tEzSjCHNLwAAsAnhCiYAAGC8973v1YwZM3TPPfdo/vz5uvjii3XRRRcNO75Sqaz4/kMf+pBOOOGEhvc10u10w6lWq6sfNIJarfH86cH7ymZH53tzMcbeEMIvlXyiXFHSrpL+tIbT3COpW1K7pLcMNyiE8CYlnza3fb00T9KhMcY13R8AANiI0GACAACus88+W48++qiWLFmi22+/XYcddtiwYydOnLji+1wup9122y3VvlfXAFq+fHmq+QfWu3jxYtVqtRGvYlqwYIHZbn2ph3bvJGlajPEXqxm+cND3xfr2GUnb1edYFGN8YriNY4yVEMJSJQ2m4jDr2UfSLyUNhIk/r+TKpRe88QAAYNMxOt+GAwAAG9yUKVN05plnrvj5q1/9qnp6etyx22233YorkR5//PH
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x1800 with 12 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYJFWV/vG3srbuhm5W2ZVNPTqIG7gwbihuDKIjLugoiOgI7qD+xHFB0FFQRsUFBRXFjREVUEcHR0VBRR0dZRRGOcqOLfve3VVdVZn1++NG2tl5T1VFVURXZVd/P8/TT1bejOVGZOTNqtMRb/RNTk4KAAAAAAAAmKvGQncAAAAAAAAAGzcKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKiEAhMAAAAAAAAqocAEAAAAAACASigwAQAAAAAAoBIKTAAAAAAAAKhkYKE7AAAA5peZXSTpScXTd7r7+0rO9wlJry2e7u7u19bfO0TM7P6SjpH0NEn3kzQq6RpJ50n6tLvfUmIZ/ZKOkHSopL0lbSPpDkm/kvQpd79gDv16h6R/lXSGux892/kBAMDiwRlMAABs2t5lZg9e6E5gamZ2hKTLlIp7D5S0RNKWkh4h6b2S/s/M/mGGZewi6X8kfVapSLWDpEFJ20s6WNJ/mtlnzaz074Zm9ihJ75rt9gAAgMWJAhMAAJu2YUlnzqawgPljZgdK+pxSUWlE6Wyhp0t6hqSTJK2VtK2kb5jZI6dYxpaSLpb08KLpAkmHSNpP0tGSbijaX6GSBSMze0ixnOFZbxQAAFiUuEQOAADsJ+kNkk5d6I5gnaLo9wlJfZLGJD3B3X/TMcn3zex7kn4saamkk5WKT91OlrRH8fMH3f24jtd+aWbflPS/Smc1vc3MPubud07Tr4MlfUnSFnPbMgAAsBjxv5UAAGy6WpImip/fZ2Z7TDcx5t1TtK4w9Imu4pIkyd1/Ium7xdOnmdlWna8Xl8b9c/H0J13FpfYybpb0/uLpEknPijpjZluZ2UclfUupuNSc3eYAAIDFjAITAACbrnFJpxQ/L5P0mQXsC2LfkXS9UlFnKn/s+Pm+Xa8dqnW/7/3LNMs4V+mspI9I+kv3i2b295KuVDrTrU/SjZL+abqOAwCATQuXyAEAsGk7UdJzJT1I0lPM7J/dvVKhqQgNf52kAyTtolSQuEHpUq6Pu/sfppjvIqW726119yXTLP9ySXtJus7dd+t6bbL48VilM3s+IenxSsW0KyW9zd1/2DH9CkmvlPQcSQ+RtFzS7ZIulfR1SV9y9wl1MbPdlO7iJqX9922lO7QdXvRtuaSVkv5L0ofc/aqptmcqRT9/OOOE0q4dP9/Y9dqBxeMN7v7zadb1V6W+T+WBkraWNCnpi0r7l0vkAADA33AGEwAAmzB3X6tUYGkVTaeY2c5zXZ6ZvUvpjmevkWSSNlM6O8qUAqUvM7MTzKyvUsdndl9JlyhlEi1TKoY8UqnI1O7rkyVdIelDkp6oVEAZVMoiaodrX2pme86wrmVKhaAzlQpk2yqFX+8h6dUqcZe3uSru5PaPxdMfu/utXZPsXTz+T9d8yy3ZqeSqWpL+U9Jj3P2I6TKaAADApokzmAAA2MS5+yVmdpqk1ysVYk5XunX9rJjZCZLeXTz9vaRPFo8NSfsoXV61Z8c0J1Tp9wyOUTpz6oOS/kOpaPRwd7+26Ot+Smc4LVU6K+crkr4m6WZJu0s6Uqk49RBJPzWzfdy9++ygtg8Vy/+lpNMk/UnSjpJeK+lpSsWms8xsD3dfVWWjisLc5pIeIOkwSa8qln+n0lljndNuI2m74ul1Rdshkt4s6e87prtB6b36SFFwjHzZ3b9Ype8AAGBxo8AEAACklM9zsKTdJD3LzP7J3c8uO7OZPVLrbnH/JUlHdl1adomZnamUKbS/pOPN7GtTXS5Xg4ak97v7OzravlH0tV/p7KSlSmfmHOru3+iY7leSzjGz45UuIdxR0hmSnj3FunZQ2uYj3L19JpjM7NtK2/sPku4j6SBJ51TcrpcU6+p0iaRXuvsVXe3bdvx8l5mdLumoYJn3lXSSpIPN7FnR2Umd2wUAABDhEjkAACB3X610NkzbR83sPrNYxJuVfq+4XdLRUW5RsY4jlc4Y6lM6Y2pD+tQU7QcrZU5J0qe6ikt/4+7vkXRRex4z+7spljcq6ZjuIoy7T2r94PSHlen0DHYN2vaW9PruO8gpnenUdqRScelqpeDvrZQuXzxA6cwrKZ3V9OUa+ggAADZBFJgAAIAkyd1/IOnzxdNtJX28zHzFZVvtMOlL3H3NNOu4RuvuenbAHLtaxkp3z+6GVnhGx89nzLCcT3b8/MwppvmNu98xxWud4d7LZ1hXGRcrXXb3GKVL5H4paYVS5tVPzGy7jmmXdfx8v6Ivj3b3r7n7Xe6+xt1/pHRG2c+K6f5hQ+VFAQCAxY1L5AAAQKc3KRVSdpR0qJn9u7t/a4Z5dlM6I0aSnt1xJ7eZ7D63LpZywzSvPaR4XCXp8hmW88uOn/eeYpprp5m/M3Op8u9d7v6zjqe/MrOzlc6SOlJpu/5N6+4GN9I1+7HufnuwzLVm9nqlO+dJ0kuVAr0BAABK4wwmAADwN+5+l1I4ddunzGzLGWbbdobXpzJgZnWc1RO5Z5rXtikebysuY5vOzR0/bz3FNNMFd3cuv/Y75xWX5b1G0sqi6VAza5+5dG/HpCOSvjfNcv5XUvuMr8fU3U8AALD4UWACAADrcffzJX29eLqj0l3SptN5Zs7nJD1iFv+mvJxuGmV+f5mucDSbQk9/x889GXRd3Pntu8XTIa3Ll7qpY7Jb3X18hkW1z/qaa8EQAABswrhEDgAARF4n6SlKZ/scaWZfnWbazvyhZnE2zFy0i0IzFYC2mOPy29r93dbM+mY4i2n7YL55UYR27ylpB3f/zgyTd176NiRJ7n63mV2vlL/UHQAeGS4es7vIAQAAzIQzmAAAQMbdb5F0bEfTp5XuOha5WuvORHrsTMs2s+PM7Cgze2rXS+07zw2ZWX/3fMW8SyXN5u52kd8Xj5tL2muGaTu354qK652tL0n6taRvl7ij354dP3eGm7czpJZPcxc8mdmAJCueXjvLfgIAAFBgAgAAMXf/kqQLiqe7SXrJFNONS/px8XRvM3v8VMs0s6dIOlnS6ZLe3vXyXR0/7zbFIp4qaXC6fpfw/Y6fj5ph2qM7fv5BxfXO1k+Lxz6lEO+Qme0g6aDi6RVdd8/rPPPsNdOs6xCtKyB+c5b9BAAAoMAEAACmdZTWhUVPV9j5cMfPZ5nZfbsnMLPtlM6EavtY1yS/7/j59cH820s6ZdrelvNtSVcWP7/GzJ4bTWRm75L0pOLphRUu/ZurL0haXfz8djPL7mJXhKR/TeuKQyd3TfIdSX8ofn61mR0SLGM3SacWT++RdHa1bgMAgE0RGUwAAGBK7n6DmR0n6ZMzTPcjM/uUpFcrXa71OzM7VdLFxST7SnqTpJ2K5+e7e/eZMv8u6Xil30/eWBRPvippVOlStWOK+a/S+peEzXabmmZ2WNG3IUnfMLMvKwWb3yJpV0mvkPSMYpbbJL1sruur0M+bzOwtkj4laYWkXxX79CKlQtCjdt5554+uXJluIHfQQQfpQx/60FmSzupYhn7/+9/rsMMO0+joaKPRaJz7tre9TQceeKBWrFihSy+9VFtttZXuvDPFLp100kkrDjnkkM47503pwgsv1AEHHCBJOvTQQ4/SzGeDAZi92u8+OUcz3XETwMatlrGGAhMAAJjJ6ZJeJOmJM0z3eqVi0DFKodInTjHdeZJe2t3o7lea2TFKZzY1lC4L67w0rKV0Wd02kt48i/5n3P2XZvZMSecoZTodXvzr9ltJh7r7yirrmyt3P93MhpXO3Foi6W3FP0lSu7j04he/WO94xzvU15f/fvjQhz5UZ555po455hjdeuutOv/883X++eevN83AwIC
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZFWd/vGnqjpPhIFhEJCkHgwYUDHALmZEF9MaUMBF3Z854JoxK+66srqimFAwY2IRDOuuiIqi6+IqSFAOgsQhDEye6VxVvz/uLaemztPdd/rWDD3Tn/frNa/qOn3DqVtF38O37n1OpdlsCgAAAAAAAJit6j3dAQAAAAAAAOzcKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACglJ57ugMAAGDuCSH8XNJR+dN3xRg/VHC9MyS9Jn96YIzxxu73Dk4I4T6STpb0ZEn3ljQq6QZJ50k6M8a4qsA29pf0ZklH59sYlnSdpG9K+kyMcWT79B4AAOzsuIIJAADM5N0hhPvf053A1EIIJ0m6Ullx736SBiQtlfQwSR+UdHUI4WkzbONpkq6S9FpJ95XUL2k3SY+U9FFJ/xdCOGD7vAIAALCzo8AEAABm0i/prBAC44Y5KIRwjKSzlRWVRiSdKukpyq5C+hdJY5L2kHRuCOGwKbZxqKRzJS2UtFHSKZKOkPRUSd/IF3uApO+HEAa324sBAAA7LW6RAwAARTxG0uslffye7gi2yIt+Z0iqSBqX9Dcxxt+1LfLjEMJ/SfqZpEFJH1ZWfOp0Rv77UUmP79jGf4cQLpf0r5IeJOl1kj7S7dcCAAB2bnwTCQAAptOQNJn//KEQwkH3ZGeQeIKk1ntyRkdhSJIUY/yFpB/mT58cQtit/fchhIdL+tv86een2MZHJLXa/4mr2QAAQCcGBwAAYDoTkk7Lfx6S9Pl7sC/wfiDpZkkXTLPMn9p+3q/jd89p+/kr02zj7PxxL20pSAEAAEjiFjkAADCz90t6tqRDJD0hhPD/YoylCk15aPhrJT1R0r7KbvG6RdmtXJ+MMf5xivV+rmx2u7EY48A0279K0gMl3RRjPKDjd838xzcqu7LnDElHKiumXSfp7THGn7Qtv1jSP0p6prJbxBZJWi3pMknfkfTVGOOkOuSB2DfkT58t6XuSTpL04rxviyStlPTfkj4aY7x+qtczlbyfP5lxQWn/tp9v7/jdEfnjRkm/n2Ybv2j7+QmSfl5gvwAAYJ7gCiYAADCtGOOYsgJLI286LYSwz2y3F0J4t7IZz14tKUhaoOzqqCDplZKuDCG8L4RQKdXxme0n6VfKMomGJC2RdJiyIlOrr4+XdI2yWdT+VtLuknolrZDUCte+LIRw8Az7GlJWCDpLWYFsD2Xh6QdJepUKzPI2WyGER0p6Vv70ZzHGuzoWac0QeH2MsaGptRfAmFUQAABshQITAACYUYzxV5I+lT9dIumzs9lOCOF9kj4gqSbpCmUFpccqu4LoDcqKGFVJ783/bU8nKyv0fETS30h6nqR/jjHemPf1McqucNpbUlPS1yQ9Q9KjJB0n6cf5dh4k6ZchhL2n2ddHJT1e0m8knZhv41mSLsx/3y/pSyGEhWVfVAihEkJYFEI4LITw78quNOqXtFbZVWPty/ZK2jN/evN0240xjii7ckuSZl1gBAAAuyZukQMAAEW9Q9Kxkg6Q9HchhBfFGM8punII4TBJ786fflXSSztuLftVCOEsZZlCj5P0nhDCt6e6Xa4LqsoKSu9sazs372tN2dVJg8qu3HpBjPHctuUulfStEMJ7lN1CuLekzykrQDkrlL3mk9qvEgohfE/Z632askLP0yV9q+TrOj7fV7tfSfrHGOM1He27Kbs9UcpukZvJZknLJC0t1UMAALDL4QomAABQSIxxs6SXtzWdHkLYc6rljTcpG3uslvRKl1uU7+Olyq4Yqkh63ex7XMhnpmg/VlnmlCR9pqO49Fcxxg9oSxbRsSGEB0yxvVFJJ3feghZjbGrr4PSHFOn0DPY3bYdKel3nDHLKrmxq7+NMRsx6AAAAFJgAAEBxMcYLJX0xf7qHpE8WWS/PUzomf/qrGOPwNPu4QVtmPXviLLtaxMoY461T/O7otp8/N8N2Pt3281OnWOZ3McY1U/yuPdto0Qz7KuJiSU9Wdhveicpuy1usLPPqFyGE5W3L1tt+bqq4bVkWAADMA9wiBwAAttU/KSuk7C3pBSGEb8QYL5hhnQOU3Y4lSc9om8ltJgfOrouF3DLN7x6UP26SdNUM2/lN28+HTrHMjdOsv6nt59JjsxjjJW1PLw0hnKPsKqmXKntd/6ZsJrvOfU85K1+bwfyxyNVOAABgHuEKJgAAsE1ijOskvaat6TMhhJkyefaY5e56QgjduKrH2TDN75blj3fnt7FN5862n3efYplNU7RLW18N1PWZ8/Lb8l4taWXe9IIQwlBbv1r7X1Bgc61lproaCwAAzFMUmAAAwDaLMX5X0nfyp3srmyVtOu1X5pwt6WHb8G/K2+mmUWSMM13haFsKPbW2nxtTLnUPijGOKZsRT5L6lOdL5cWn1m2C+023jRDCoLYU3m7bDt0EAAA7MW6RAwAAs/VaSU9QVnR4aQjhm9Ms237FSz3GePks99kqCs1UAFoyy+23tPq7RwihMsNVTHuZ9XaIPLT7YEkrYow/mGHx1W0/97X9fLWy4tJBM6x/cNvP22tmPwAAsJPiCiYAADArMcZVkt7Y1nSmpr7N6i/aciXSo2fadgjhbSGEV4QQntTxq9bMc30hhFrnevm6g5K2ZXY754r8caGkB86wbPvruabkfrfVVyX9VtL3Cszo114gag83b2VI7R5CmO61/m3bz78s3kUAADAfUGACAACzFmP8qqQf5U8PkHT8FMtNSPpZ/vTQEMKRU20zhPAESR+W9FlJp3T8el3bzwdMsYknSeqdrt8F/Ljt51fMsOwr236+sOR+t1Wr0FNRFuJthRBWSHp6/vSajtnzzm37+SXT7Ku1/bskXTLNcgAAYB6iwAQAAMp6haSN+c/TFXY+1vbzl0IISeZPCGG5siuhWj7RscgVbT+/zqy/l6TTpu1tMd+TdF3+86tDCM92C4UQ3i3pqPzpRSVu/ZutL0vanP98SgghmcUuD0n/trZcXfbh9t/HGK+W9PP86Wtd8S+E8FZJD8+ffiovGAIAAPwVGUwAsP0UnYYdmHMOP/xwXXrpperr6+vXDJ/lGKPOOeccvf/979+q/aKLLrqhc7n3ve99+sY3viFJBy9ZsuTmM844Q4cffrgk6aqrrtLy5cu1atUqSdKTn/xknXHGGd9t38aPf/xjPe1pT9Pk5KQkveGUU055w9Of/nT19/fr8ssv/+v69773vXXzzTdrn3322X+q/h955JFHT/W7GKMuv/xynXDCCZqYmKhWq9Xz3va2t+mpT32qli1bpuc973nPl/QySUfnq9wt6R+mO07bQ4zxjhDCmyV9RtJiSZeGED6urGC0QdIjld3GeEC+yjclfcVs6rWSfiepX9KFIYTTlF3FNSTpxdpyZdo1kv5te7wWAHMaYxpg19aVWWwrzSZ/KwBgO+EPLHZaJ554YqvApCuvvHLG5ZvNpk488UT99re//WvbRRddpH333Xer5er1uj7ykY/oy1/+sqYbgzzlKU/RaaedpoGBgeR3X//613Xqqaeq0UgnbKtWqzr55JO1bt06nX322dpnn33005/+dKtlQgiSpCOPPFJnnXXWtK/rN7/5jd74xjdqzZpps7t/L+kFMcbr2htDCAdIahXZPhdjfGXnituy3HRCCG9QduXWdFeQfUbSG6a6+iiE8DRJ31KWO+VcJ+kpMcYbpvg9gF0XYxpg19aVAhO3yAEAgNIqlYpOPfVUWxBqV6vV9I53vEPnn3++jjvuOB100EEaGhp
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcJHV9//F3d0/PtTe7C8u9cvhFBUU0eMcbvIL6U4xn4hEvxANMPDAoKGoM8QTjEcUYIyYeEUzUBCQmHvFKhBgUv8p9w8Kec8909++PqnZ7+/uemZqp3mWXfT0fj33M9Lfr+FZ11Xd2PlP1rkqr1RIAAAAAAACwWNV7ugMAAAAAAADYs1FgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApVBgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApVBgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApVBgAgAAAAAAQCl993QHAADA7ieE8B+SHpu//PMY43sLzne+pNflL+8TY7y+972DE0I4QNIpkk6UdISkJZI2Srpc0j9I+mKMcabAcp4r6cWSHippraRt+TI+J+lLMcbWTtkAAACwR+MKJgAAMJ8zQwj3u6c7gdmFEJ4nKUp6h7LC0EpJdUn7SXqKpL+V9F8hhAPnWMaKEMJ3JH1F0jMlHSipX9JqSU+S9EVJ3wwhDO68LQEAAHsqCkwAAGA+A5I+G0Lg/w27oRDCEyVdKGmppAlJH5J0gqSHSXqBpO/lk/6epG+FEIbNMuqS/k3SE/OmH0t6oaSHS3qJpF/m7U+V9ImdsiEAAGCPxi1yAACgiEdIeoOkj9zTHcF2IYSKpPMl1ZQVlx4fY/xxxyQ/DSH8o6S/lvQaSQ+U9CZJ7+ta1JuVFaQk6UuSXhJjbOSvfxJC+LqkH0k6RtJLQwjnxhh/tTO2CQAA7Jn4SyQAAJhLU1I7t+e9IYTD7snOIPEISUfl33+sq7gkScozk06TdGfe9Eed7+e3vL09f3mNpD/uKC61lzGq7Pa7tueU7zoAALg3ocAEAADmMi3p3Pz7YUl/cw/2BanHdHz/jdkmijFOSPpB/jKEEAY63n66pOX59++MMU7PsphLJP2dpI9KunJx3QUAAPdW3CIHAADmc7akZyu7UuYJIYRXxhhLFZry0PBTlWX+HCSpIukmSd+VdN5st191PN1uMsY4a9h0COFKSQ+QdEOMcX3Xe+2noJ0m6ZvKbjF7tLJi2tWS3hZj/E7H9Msl/Ymy4OujJS2TdLeyJ6t9RdIX3NPZQgjrJV2Xv3y2sgLQS5VdQfSAfDm3KMs++mCM8ZrZtmcOP5X0fkkH5H2fS6Xj+0FJk/n3T82/Tkn6+mwzxxgnJf3xIvoIAAD2AhSYAADAnGKMkyGEP1EWFl2VdG4I4VsxxlsWs7wQwpmS3qUsN2iHt/J/rwohvEfS2fntXTvLwZJ+KGltR9tx6ijUhBAer+zpaft3zbtOWWHmqZJODyE8a54C0bCk70h6fFf7YZJeK+nlIYT/F2P81kI2IMb4XWVFuTnlId6Pyl9uiTFu6Xj7mPzrL2OM4x3zDCsr/k1IujnG2FxI3wAAwN6FW+QAAMC8Yow/lPTx/OUKSZ9czHJCCGdJerey4tIvlAVPP1LZFURvVJYBVFVWgHpXqU7P702S1kj6S2W3mp0s6X0xxuvzvj5C2RVO+0tqSfp7SScpC8N+vrJbxqTsqqbvhxC6i1CdPqisuPRjZU9le5ikZ0m6NH9/QNLfhhCW9mjbur1c0r759//W9d798683SFII4bEhhEskbZUU8/bbQwgfyK/mAgAASHAFEwAAKOrtkv5A0npJzwghvDDGeGHRmUMIx0k6M3/5BUkv77q17IchhM9K+hdJj5P0zhDCl3fi08qqygpKneHVX837WpN0gaQhZUHnfxhj/GrHdD+V9I8hhHcqu4Vwf0mfUlaActYp2+aXdl4JFEL4hrLtfZqyK6meLukfy2/adiGEIyT9RUfTBzveG5DULmptDiGcIekc7Xg7nfK+vUXSSSGEE2OMN/ayjwAAYM/HFUwAAKCQ/Elir+po+mgIYe1s0xtvVvZ/j7slvcblFuXreLmyK4Yqkl6/+B4X8olZ2v9A25/O9omu4tLvxBjfLek/2vOEEO7vplN2m9mbum8zy28B7MyzelCRThcVQthXWQFrZd70mRjjTzsm6bxi6gmS3itpg6RXKrviaVDZ1Vbfzqc5StJFXSHhAAAAFJgAAEBxMcZLJX0uf7lG0nlF5gshVLQ9TPqHMcaxOdZxnaSr8pdPXGRXi7glxnjzLO+d2PH9p+ZZzl93fP+UWab5nxjjxlne68xuWjbPugoLIayTdJmyXCspCyV/Q9dkwx3fH6Ks+PfIGONnYowbYoyTeUGq88qqB0t6Ra/6CQAA7h24RQ4AACzU6coKKftL+sMQwpdijBfPM896Savy70/qeJLbfO6zuC4WctMc7x2dfx2RdOU8y/lxx/fHzDLN9XPMP9LxfU/+bxZCOFxZ1tLheVOU9NTOEO9c9+uzXVh5jLEVQnijsqfh9Ut6sXYsrAEAgL0cVzABAIAFiTFulvS6jqZPhBBWzjZ9bs0iV9cXQujZVT1dts7x3ur8610FnmR3R8f3+8wyzcgs7VJ2O2Bbd/bRguXh5D/S9uLSLyU9PsZ4h5l8W9frr8+23Hz+9u11v5dflQYAACCJAhMAAFiEGOPXJX0lf7m/OoKjZ9F5Zc4Fym6zKvpv1tvp5lDk/zhzFY4WUjypdXzfnHWqXSCEcLKkf1cWyi1JP5H02BjjbW76GOOkpE0dTbfOs4r2VV992p7rBAAAwC1yAABg0U5VFgy9WtLLQwj/MMe0nflDjRjjFYtcZ7soNF8BaMUil9/W7u+aEEJlnquY9jPz7XIhhFMkna/t++abkp43V95V7v8k/X7+/UrNvQ3tcO+G5r4CDAAA7GW4ggkAACxKjPFOSad1NH1a0pJZJr9W269Eevh8yw4hvDWE8OoQwpO63mo/ea4/hFDrni+fd0jbr+BZrF/kX5dKesA803Zuz69LrndRQgivlfRxbS8u/Y2kZxYoLkk7ZkjN99m098XNMcbGwnoJAADuzSgwAQCARYsxfkHbH2G/XtKLZpluWtJ385fHhBAePdsyQwhPkPQXkj4p6Yyutzd3fL9+lkU8SVJ9rn4XcEnH96+eZ9rXdHx/acn1LlhehDu/o+m9McZXLaAA1Hnl2SlzrOd4bX8i3UUL6yUAALi3o8AEAADKerW2h0XPVdj5UMf3fxtCOLh7ghDCvsquhGr7WNckv+j4/vVm/v0knTtnb4v5hqSr8+9PCSE8200UQjhT0mPzl5eVuPVvUUIIKyR9Xtv/T/fhGOOfL2QZMcbLtb0w9vT8aXHd69lH0mfzlzPKrpACAAD4nb01g6noo5EB7Jl2lycbMdZgj3X88cfrpz/9qfr7+wc0z7EcY9SFF16os88+e4f2yy677Lru6c466yx96UtfkqTDV6xYceP555+v448/XpJ05ZVXat9999Wdd94pSXryk5+s888/f4enml1yySV62tOeppmZGUl64xlnnPHGpz/96RoYGNAVV1zxu/kPOeQQ3XjjjTrwwAMPna3/j370o0+c7b0Yo6644gq9+MUv1vT0dLVarf7TW9/6Vj3lKU/R6tWrdfLJJz9P0isknZjPcpekP55rP+0kr5d0QP799ZIuDCEcW2C+X8UYpzpev1rZE+LWSPpICOHxygpXt0p6kKS3a/sVY++NMf6yfNcBAMC9yd5aYAIAAD30ghe8QN/61rf0s5/9bM7pzjzzTA0MDOjzn/+8tmzZovPOO89Od8IJJ+jcc9MLkQ499FCdccYZOuecc9RsNvW1r31NX/va1373frVa1emnn67NmzfrggsuKLVNxx57rD7zmc/otNNO08aNG3XRRRfpoot+d2fYlzsm/bmkP4wx3lJqhYvzqo7v10ua+wPY7j7KClKSpBjjdSGEx0q6WNIRkp6
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAbwCAYAAAAvbOuuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYFNW9//FPd8/GDoICCoiiHlHjrsQlahI1IhqM0URxue7EXM3VxHsNrjEak2gUE8Uk17ggigZD9GpiFrf8olEu1y1xyxEFZBFk2JfZerr790c3k5k535kpqJoB5P16Hp6Z+fapqlPLzGO+qfpUqlAoCAAAAAAAANhY6U09AQAAAAAAAGzZaDABAAAAAAAgFhpMAAAAAAAAiIUGEwAAAAAAAGKhwQQAAAAAAIBYaDABAAAAAAAgFhpMAAAAAAAAiIUGEwAAAAAAAGKhwQQAAAAAAIBYaDABAAAAAAAgFhpMAAAAAAAAiIUGEwAAAAAAAGKhwQQAAAAAAIBYaDABAAAAAAAgFhpMAAAAAAAAiIUGEwAAAAAAAGKhwQQAAAAAAIBYaDABAAAAAAAglrJNPQEA+BQrbOoJAOg0qU09gRL+zgCfbvytAdAVEvlbwx1MAAAAAAAAiIUGEwAAAAAAAGKhwQQAAAAAAIBYaDABAAAAAAAgFkK+AQDYCp111lmaOXOmJOmyyy7TxRdfHGm573//+3r44YclSc8995yGDBnSaXNES8657SV9U9KXJO0iqceAAQM0cuRIjRkzRieeeKLKytr/T7v//d//1dSpU/XGG29o+fLl6tOnj0aMGKETTjhBJ510kioqKtpdvr6+XtOmTdPTTz+tWbNmqb6+XgMHDtRBBx2kU089Vfvvv39SuwsAALYwqUKBFwIAQCfhDyw2W80bTBUVFXriiSc0YsSIDpejwdSkS9/s5Jz7mqR7JfVsa8xnPvMZTZo0SQMHDgw+y+fzuvHGGzV16tT2tqGf/exnGj58uPn5/PnzNX78eH344YdtrmPcuHG69tprlU5zkzyQEN4iB6Ar8BY5AAAQX0NDg66++mrl8/lNPRUYnHNflDRVxeZSnaTbJR0radTtt9+ugw46SJL01ltv6cILL1RtbW2wjokTJzY1lwYNGqTrrrtODz/8sO666y6dcMIJkiTvvcaPH6+1a9cGy9fU1Oj8889vai4dddRRuuOOOzR16lTddNNNTU2pqVOn6vbbb0/2AAAAgC0CDSYAAKA33nhDDz744KaeBlpxzqUk3SUpo2Jz6fPe++9475/x3s8cM2aMpkyZotNOO01SsUk0efLkFuuYN2+e7r33XknS0KFD9bvf/U5nnHGGDjzwQB1zzDG67bbbdNlll0mS5s6dq4ceeiiYx7333quPPvpIknTeeefpl7/8pUaPHq0DDjhAp556qp588knttttukqT7779fH3/8caccDwAAsPmiwQQAwFYsnU435fbccccdmj9//iaeEVo5RNLupe9/5r2f0XpAKpXSVVddpf79+0uSnnjiiRafT58+XblcTpJ01VVXqVevXsFGxo8fr969e0uS/vCHPwSf/+Y3v5Ekbbvttrr88suDzysrK3XppZdKkhobG/XnP/854u4BAIBPCxpMAABsxcrKynT++edLkmpra3XNNdds4hmhlc81+/7JtgZVVlbqgAMOkCTNmTNHDQ0NTZ9tu+22GjVqlAYPHqzDDjvMXD6dTjc95rZo0aIWn61bt06jRo3SyJEj9cUvfrHNIPDmGV6t1wEAAD79eIscAABbuUsuuUTPPPOMZs+erRkzZmjatGn62te+FmudH374oR566CG98sor+uSTT1QoFDRo0CCNGjVKZ511lnbZZRdzufXh4xUVFXrrrbfaXP8JJ5ygWbNmaYcddtDzzz/f4jPnnCRpwoQJOuqoo3TjjTfqtddeU1lZmYYNG6YrrrhChx56aNP4tWvX6rHHHtNzzz2nWbNmad26derbt69Gjhyp4447TmPHjjXfzuacGy5pTunHr6jYADpH0tmS9pTUS9JCSX+SdJv3vu107LbNlPRDSdtL+qC9gc1f3FJfX9/UCDrzzDN15plntruRQqHQ1BTadtttW3zWo0cP3XLLLR1OdOHChU3ft14HAAD49KPBBADAVq6iokI33XSTzjzzTOXzed1yyy068sgjzbeRRTFp0iRNmjSp6bGs9ebMmaM5c+Zo2rRp+uY3v6lLLrlEqVTnvSBp8eLFOv3007V8+fKm2rvvvqthw4Y1/TxjxgxdccUVqq6ubrFsdXW1qqur9de//lUPPPCAJk2a1GI5Q3dJz0r6fKv6zpIulnSec+5k7/3TG7IP3vsXJL3Q0bhsNqvXX39dktSrVy/zMbj2TJkypekYjB49eoOWlaS6ujrdfffdkqRMJqMvfelLG7wOAACwZaPBBAAAdMABB+iMM87QlClTtGbNGl1//fX6xS9+scHrufPOO3XXXXdJKt5JNG7cODnnlM/n9c4772jKlCmaN29e05j1uT2dYfLkySoUCrrgggv0+c9/XkuXLtV7772nIUOGSCoGm48fP151dXVKpVI68cQTNXr0aA0YMEALFizQ9OnT9dJLL+n999/XuHHj9Nvf/lbbbbddW5u7TdIgSTMkTZL0vqTBkv5d0jGSKiU94Jzb2XsfvqYtpunTp2vZsmWSpMMPP7zD8YVCQStWrJD3XlOnTm3KTNpzzz117rnnRtpmNpvV4sWL9corr+jee+/V3LlzJUmXXXaZhg4dunE7AgAAtlg0mAAAgCTp29/+tp5//nktXLhQL7zwgp566imdeOKJkZd/5513mu5iGTt2rG6++eYWj5YdcMABOuWUUzR+/HjNnDlTkyZN0ujRo9t8XC6ufD6vb3zjGy1CqY877jhJUi6X01VXXaW6ujql02lNnDix6TNJ2nvvvXX88cfrrrvu0p133qnq6mpdd9117TXdBkmaIukc731+fdE596Sk30k6XtK2ksZI+nWS+/nRRx/ptttua/r5vPPO63CZa665pim4e71TTjlFV155pXr06NHh8vl8Xvvtt5+y2WxTrU+fPrrqqqt00kknbcDsAQDApwUh3wAAQJLUvXt33XjjjU0//+AHP2jxeFlH7rvvPuXzefXt21c33HCDmVvUvXt33XzzzUqlUioUCpoyZUoic2/L6aefbtZfeOEFzZ49u2lM8+ZSc5dccokOPvjgpmU++KDNGKQ6SZc1by5Jkve+IOmeZqV9NmD6HVq2bJnGjx+v1atXS5JOPfVU7b333h0u9/HHHwe1V155RdOmTVM+nzeWaKm6urpFc0mSVq9erSeeeEKvvvpqxNkDAIBPExpMAACgyWGHHaaTTz5ZkrRixYoWDaf2FAoFvfjii5Kk/fffX926dWtz7NChQ5veODZjxoyYM27bwIEDNWjQIPOz9XOVpK9//evtrmfcuHHmcq285r1vqxvXPNx7w8KR2uGcG3TOOedozpxizvgee+wR+S2A48aN08MPP6xHHnlEEyZM0ODBg7Vw4ULdeuutuuKKKzpsMpWVlemnP/2pHnvsMd1zzz067bTTlMlk9Morr+icc87Rs88+G3v/AADAloVH5AAAQAsTJkzQiy++qOrqaj399NMaM2aMjj766HaXWbBggVatWiVJev7555ve5NaRBQsWxJ5vWwYPHtzmZ7NmzZJUvKNqt912a3c9++67b9P377//flvD5raziuaZS4n8t5dzboSkP62fz0477aR77rlHVVVVkZY/5phjmr7ff//9ddJJJ+ncc8/Vu+++q9///vc69NBDdcopp7S5fP/+/Vvc9XXEEUfomGOO0Te+8Q1ls1l997vf1XPPPac+ffps3A4CAIAtDncwAQCAFnr37q3rr7++6efvfe97TY9gtWXFihUbta3GxkatXZt45rUkqWfPnm1+tnLlSklSv379OnyTXf/+/YPlDO3tRKHZ97Ffm+ecO0TSK5JGSNKuu+6qBx98UAMGDNjodfbt21c//vGPm36ePn36Bq/j8MMP11lnnSVJWrNmTVNwOAAA2DpwBxM
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x1800 with 12 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZFWZ//FvVXWaPMMEZggyJB8UMYc1AoKurlnXtCoruKIYFpV1MfwUwRVdI2ZcE0ZUDLuuGRVdBcO6iorAg0TJMEzs7unu6qr+/XFv2zV1nu6+3bd6pmfm83695lVdp284N52aOn3v91TGxsYEAAAAAAAAzFZ1V1cAAAAAAAAAuzc6mAAAAAAAAFAKHUwAAAAAAAAohQ4mAAAAAAAAlEIHEwAAAAAAAEqhgwkAAAAAAACl0MEEAAAAAACAUuhgAgAAAAAAQCl0MAEAAAAAAKAUOpgAAAAAAABQCh1MAAAAAAAAKIUOJgAAAAAAAJRCBxMAAAAAAABKoYMJAAAAAAAApXTt6goAAICdy8x+Iuno/O3/c/e3FZzvQ5Jenr892N2v73ztEDGz/SS9TNLfSjpM0iJJGyX9TtKXJH3B3UenWcYx+TIeJmm1pE2SLpd0vqTPuPvILOpVk3SJpAdL+qm7HzPTZQAAgD0DdzABALB3e5OZ3WNXVwKTM7NnSXJJb5T0QEnLJXVL2lfS4ySdJ+kSM9t/kvmrZvZhSRdJeqak/SX15PMfK+k/JP2vmR0+i+qdpqxzCQAA7OXoYAIAYO/WK+mTZsb/CeYhMztO0hclLZY0JOm9kh4r6SGSnivpf/JJHyTpO2a2MFjM25TduSRJN0l6haRHSXq6sruXJOnekr5lZktnUDeTdOZMtgcAAOy5eEQOAAA8VNI/SzpnV1cEE8ysIulDkmrKOpeOdfdftkzyazP7sqSPSHqpsk6iV0k6u2UZh0p6bf72Wkn3d/ctLcv4hpn9SdK/Sbq7ss6nszWNvEPyU5L6Zrd1AABgT8NfKwEA2Hs1JY3n9rzNzA7ZlZVB4qGSjsh//kBb55Ikyd3HJL1a0h150Qltk5yorINKkl7V1rk07u2SNuc/P6tg3U5VluW0RVK94DwAAGAPRgcTAAB7r7qkd+U/L5T08V1YF6Qe2fLzNyebyN2HJP08f2tm1tvy69uUZS/dKOnCSeZvSroqf3u36SplZocpe+xOyu6OmnE4OAAA2PPwiBwAAHu3MyU9TdmdMo82sxe7e6mOpjw0/BWSjpN0gKSKsg6OiyR90N0vn2S+nygb3W7Y3Sd99MrMLpN0pKQb3H192+/G8h9fLenbyh4xe4SyzrSrJb3O3X/YMv1SSf8k6SmS7iVpiaS7lI3OdoGkz0Wjs5nZeknX5W+fpqwD6IXK7iA6Ml/OzZK+L+k97n7NZNszhV8ru7tov7zuU6m0/NwnaViS3P1DyvbBpPJH8cY7lm4tMO0nJS2QdJG7f9zM3jdN3QAAwF5gb+1gGpt+EgC7scr0kwCQJHcfNrN/UhYWXZX0LjP7jrvfPJvlmdmbJJ2hicey/vqr/N/JZvZWSWfmj3fNlQMlXSxpdUvZ/dXSUWNmx0r6gqR1bfOulfT4/N9rzOyp03QQLZT0Q2UjsrU6RNIpkk4ys6e7+3dmsgHufpGyTrkpmVm3pIfnb7dM8hjcVF6pbJsl6cvTTPtyZQHhg5JePMP1ANh98f0J2LN15PsTj8gBALCXc/eLJX04f7tM0rmzWY6ZvUXSWco6l/6gLHj6YcruIDpV0jXK/u9xRv5vLr1K0ipJ71T2qNkzJZ3t7tfndX2osjuc1in74vR5SU9WNjrbcyT9IF/OvST9zMzaO6FavUdZ59IvJb0gX8ZTNfFIWq+k88xscYe2rd1JktbkP39/uonNrGJmq83s0Wb2NUnvz3/1f8pGqZtsvoMlvSN/+6ZZ3pUFAAD2UHvrHUwAAGBHr5f0JEnrJT3RzP7B3b9YdGYzu7+kN+VvPyfppLZHyy42s09K+pakYyS92cy+Mtnjch1QVdah9MaWsq/mda0pGwFtgbKg82e7+1dbpvu1pC+b2ZuVPUK4TtLHlHVARdYq2+YX5nlGytfzTWXb+3fK7qR6gqa/Q2hG8jykd7QUvafAbB+X9KK2sk9K+hd3759kPRVJn5C0SNKvxIiDAACgDXcwAQAAufuApJNbit5vZqsnmz5wmrL/V9wl6aVRblG+jpOU3TFUUfZo1lz66CTlT9LE6Gwfbetc+it3P0vST8bnMbN7TrK8IWUjtDVbC/NHAFvzrO5TpNJFmdkaZR1Yy/OiT7j7rwvMelBQdrykF5vZZP83PFnSo5UFer+ofVsBAADoYAIAAJIkd79Q0qfzt6skfbDIfPndLY/P317s7oNTrOM6SVfkb4+bZVWLuNndb5rkd3/b8vPHplnOR1p+ftwk0/yfu2+c5Hetj5EtmWZdhZnZWkk/UpZrJWWh5P9ccPaPKHts8OGSXqMsgP0gZY8TfqG9k8nMDtTEaINnu/ufytUeAADsiXhEDgAAtHqNso6UdZKebWbnu/t/TTPPekkr8p+f3DKS23QOnl0VC7lxit/dK3/tl3TZNMv5ZcvPR00yzfVTzN/6yFlH/t9lZocqy1o6NC9ySY939+1F5nf3b7S8vcTMPqMspPx+yvKnLlT2COG4jyvrHPujpLPL1R4AAOypuIMJAAD8lbtvVjZS2LiPmtnyyabPrZrl6rrMrGN39bTZOsXvVuavGwqMZHd7y8/7TDJNmFuUa11+6RFa8nDyX2iic+lPko5199snn2tq+d1XJ7QUndSyvpOU3fHVUPZoXH226wEAAHs27mACAAA7cPdvmNkFykZeW6csOLo9FLpV6/8nPqWCj9blJn2cbgpF/kA2VcfRTDp6ai0/79LcITN7pqTPSurLi34l6QnuflfZZbv7ZWZ2laS7S7p3vr61mhhV7puS6mZ232D28eOxuOX3G939L2XrBQAAdh90MAEAgMgrlIU6r5R0kpl9aYppW/OHGu5+6SzXOd4pNF0H0LJZLn/ceH1XmVllmruY9g3m2+nM7GWSPqSJffNtSc+aKu8qn28/ZXc7Ndz9kmlWM95R1ZO/HqGJff20/N9UHqAsC0qSPiPphdNMDwAA9iA8IgcAABLufoekV7cU/YeyIeoj12riTqS/mW7ZZna6mb3EzI5v+9X4yHM9ZlZrny+fd4GkmYxuF/lD/rpY0pHTTNu6PVeWXO+smNkpkj6sic6lj0t6SoHOpYqyOv+PsuM33bSH5G8nC0cHAACYFHcwAQCAkLt/zsyeq2yEuPWSnjfJdHUzu0jSEyQdZWaPcPefR9Oa2aMlvSN/e5GycOlxm1t+Xq8dR2Abd7yk7hlsRuQHkl6a//wSSa+cYtqXtvx8Ycn1zljeCfehlqK3ufv/KzKvu4+Z2cXKQtuPNLOHuPuvJpn8CZq4W+vCfP6fqMDjhGbWr6zz8afufkyRugEAgD0PdzABAICpvETStvznqTp23tvy83n50PY7MLM12vFOmg+0TfKHlp+TTh8z21fSu6asbTHflHR1/vPLzCx89MvM3iTp6Pztj0o8+jcrZrZM2aNm4/9fe1/RzqUWH2n5+dx8me3rMUmfyN/WteOxBAAAKIQ7mAAAwKTc/UYzO107dlRE0/3YzD4q6RRlmT+/N7NzJP00n+SBkl4jab/8/Tfc/T/bFnO+pDcr+//JqfkIc1+SNKTsUbVX5fNfo4lR1GazTQ0ze0Fetx5JXzWzz0u6QNIdkg5SFmr+t/ksGyT942zXV8IrNbG/rpf0xUlCtttd7u4jkuTu/21mX5b0bEn3lXS5mb1TWVZSTdJjlOVtjY/md6q7/7lzmwAAAPYWdDABAIDpnCvpOZIeNc10r1TWGfQqSSsknTnJdF+X9Pz2Qne/2sxepezOpqqkk/J/45qS3qAsePy0GdQ/4e6/NLPHSfqyskynE/J/7X4r6dnufnOZ9c3SyS0/r5f0vwXnO1hZh9S4f1R2Z9LzlXVYnRPMMyTpFe7+yRnXEgAAQDwiBwAAppGPsvZPkrZPM13
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x1200 with 8 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFV99/FvVXX1NtMzwz4DosOiR8BdI65xfYyiuCUE44po1LgvcYkaRROXwKMh5lHAFVdEFNyiRkUx0bjFuBuOogwCMsAwPTO9L1X1/HFv2zV1vt19u2/NRn/erxev6jp9l3OXOk395t7vrbRaLQEAAAAAAAArVd3XHQAAAAAAAMCBjQITAAAAAAAASqHABAAAAAAAgFIoMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASqHABAAAAAAAgFIoMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASqHABAAAAAAAgFIoMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASunZ1x0AAAB7XwjhCkkPyt++Psb4loLz/T9JL8jfHhNj3NL93qGIEEKvpP+RdJKk+8YYv7fE9O+X9KyCi1/w2IYQ7ifppZLuL+kwSbdI+qmkD8QYLym4fAAAcCvDFUwAAODvQwgn7OtOYNnepqy4VNTdy64whPBGSd+WdJqkIyXVJW2U9GeSPhVCuCyE0Fd2PQAA4MBDgQkAAPRJ+kAIgf8vOECEEP5O0suXMX2P5otR71dWbFrsvz+YZTxb0lmSKpKuknSmpPtIOl3S9/PJHi/pPcvdHgAAcODjFjkAACBJ95X0Yknn7uuOYGH5bXH/Iul5y5z1BGWFREn6eozxJ8tc78GSzsnf/kbSyTHG4fz990MIl0r6jKTHSjozhHBBjPEHy+wjAAA4gPEvlQAArG5NSbP5z28JIRy7LzuDhYUQ7i3pO5ovLjWWMfvd2n5eVnEp90xJG/KfX9NWXJIkxRhnJT1H0nje9MoVrAMAABzAKDABALC6zWj+ypRBSe/bh33BAkIIb5f0PUn3yps+p+VdbTaXvzSm7Aqk5Xpi/rozX3cixnijpH/L354SQhhcwXoAAMABilvkAADAmyQ9QdIdJT00hPDXMcZShaY8NPyFkh4m6TbKcnuulfRNSf8aY/zVAvNdoezpdlMxxv5Flv8LZZlC18QYN3f8rpX/+DJlBY//J+kByoppVym7AufrbdOvk/RsSY+TdCdJQ8qejPZjSZdI+mh+hU5nHzZLujp/+wRJn5d0hqSn530bknS9pH+X9I4Y428X2p4C7qNsH26X9KoY4wdCCGctY/65K5h+GmNsLmfFIYS6pD/J3347xrjYlVP/oSwAfDDv8zeWsy4AAHDg4gomAABWuRjjlLICy1zh4ZwQwlErXV4I4e8l/VzS8yUFSWuUFRyCstu7fh5COCuEUCnV8aUdreyWskfk618v6R7KikxzfX2IpCslvUPSn0o6WPNPRnuUpA9K+nEI4bgl1jUo6euSPqCsQHaossyjYyX9jaRfhhBOKbEtw5L+SdLxMcYPrGD+u+avPwkhPDaE8NkQwtYQwnQI4Q8hhEvyfeEcr2yfSEtf/dReROPJhAAArCIUmAAAgGKM35H07vzteknnr2Q5+VU1b5ZUk/QzZQWl+ym7guglygoQVUlvzP/bk16qrNBztqQHKruy5q0xxi15X++r7AqnTZJakj6mLKT6ZElPkvTVfDl3kvSfIYRNi6zrHZIeouw2tqfly3i8pK/lv++TdGEIYe0Kt+XPY4xJ9lERIYTbKiucSdJTld3i9jhJRygrHG2S9BeSvhFCuCB/4ly79mLj75dY3bULzAcAAG7luEUOAADM+TtJp0raLOkxIYQnxxg/UXTmEMI9JP19/vajks7suLXsOyGED0j6oqQHS3pDCOFTC90u1wVVZQWl17W1fTrva03Z1UkDyq7cOj3G+Om26X4g6eIQwhuU3UK4SdIFygpQzkZl23xG+y1oIYTPK9veUyQdJunRki5e7oYs97a2Dndv+3mdpJ9Keo+kXygrfD1Y0oskHaQsqLul3Z9Sd3DbzyNLrGus7ecNC04FAABudbiCCQAASJJijGPKCgxz/iWEcNgyFvEKZf9vcYuk57nconwdZyorYlSUFTb2pPMWaD9VWeaUJJ3XUVz6oxjjmyVdMTdPCOHEBZY3KemlnYWgGGNLuwen31V7X/sT5D4g6V4xxvfGGP8rxvjNGOMblRWhrsmneW4I4cFt8/S1/Ty5xLomFpgPAADcylFgAgAAfxRj/JqkD+VvD5X0r0Xmy/OUHpW//U6McXyhaWOMV0v63/ztw1bY1SKujzFet8Dv/qzt5wuWWM572n5+5ALT/CjGuH2B37XnEg0tsa494Rxlha1TtXDh7xplOVxzXtr2c3uod0vFLWdaAABwgOMWOQAA0OnlygopmySdHkK4KMZoH03fZrOyW6wk6bFtT3JbyjEr62Ih1y7yuzvlr6PKbhVbzPfafr7zAtNsWWT+0baf9/r/e+XFvp/l/y023ddDCFcrOyYPDSFU8iuw2vu/4JP9cgNtPy91tRMAALgV4QomAACwmxjjDkkvaGs6L4SwVJ7OoStcXU8IYU9d1bNrkd8dkr9uy4soi7mx7eeDF5hmdIF2afcrefb0k/PK+mn+OqT5gmF77tKaJeZv//1CV3QBAIBbIa5gAgAAiRjjZSGES5Q9eW2TsqekPWuRWdr/n+KDKnhrXW7B2+kWUeQfyRYrHC2n0FNr+7lM2PaBoP1Y9Oav17S1Hb3E/O2//0NXegQAAA4IFJgAAMBCXijpocqu9jkzhPDJRaZtv1qlEWP8yQrXOVcUWqoAtH6Fy58z199D224FW8gRZr4DQgihquwYHiZpMsZ42RKzHJ6/NjS/rVcrKzwNSjpuifnbf7+nng4IAAD2Q9wiBwAArBjjTZJe1tb0Xi18i9TvNH/1y32WWnYI4dUhhOeGEB7e8au5AOreEEKtc7583gFlBZMy5vKI1ko6aYlp27fnypLr3avyp9p9WtInJL0nD2O3Qgh9kv4kf/uzGON0voyWpB/k7Q9YbBmS/jR/nZL0wzJ9BwAABxYKTAAAYEExxo9K+nL+drOkpyww3Yykb+Zv7xxCeMBCywwhPFTS2yWdL+m1Hb/e0fbz5gUW8XBJ9cX6XcBX235+7hLTPq/t56+VXO++8B/560ZJj1hkujM1f2VY59Vqn85fD5P0aDdzCOGItt99JcY4sfyuAgCAAxUFJgAAsJTnaj7oebHCzjvbfr4whJDk9YQQDld2JdScd3VM0v6ksxeZ+Y+QdM6ivS3m85Kuyn9+fgjhCW6iEMLfS3pQ/vbyErf+7Uvvafv5XSGEJJA9hHCypLPzt1u1+zGSpIs0f8vcu/Lj0D5/Tz7PYN70z2U7DQAADixkMAEAgEXFGK8NIbxauxcq3HTfCCGcJ+lvlGXx/DSEcK6kb+WT3EvSyyUdmb+/LMb42Y7FXCTpDcr+H+Ul+RPmPqnskff3kfTSfP7fauk8oMX62gghPC3vW6+kT4cQPibpEkk3SbqdslDzP8tn2SbpGStd35528cUXf3eh38UY9YpXvEJf/OIXJekOGzduvPmjH/2o7nznO2tiYkJXXHGF6vW6ZmZmVK/Xdd5552184AMfONy5jEsuuUSvf/3rJemYjRs3br3ooot0wgkn6IYbbtDd7nY3/eQnWe3tcY97nM4+++wr9tzWAqvK/vLkyaWetgngwNaVsYYCEwAAKOJ8SU/SfMbOQl6krBj0UmWPuX/TAtNdKumpnY0xxqtCCC9VdmVTVdltW2e2TdJUdlvdIZJesYz+J2KM3wshPFLSxcpu/Xp6/l+n/5F0eozx+jLr25fe9ra3qVqt6vOf/7y2bt2qf/zHf0ym2bBhg9761rfqgQ98oF3Gaaedpq1bt+rd7363tm7dqrPOOiuZ5sEPfrDe/OY3d7v7AADgAMAtcgAAYEl50POzJS2aqxNjbMQYXy7p7sqKUldKGpU0I+l6SZ+R9OgY458vlNETY3y3srDpj0m
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJEdh/vF3ZjZfDtJJJyGdAhRBQuRgsIkGTLDB2AbbCINsggkmmWCTMck4ECySbYkMRkQTbP/IxoBFMhlUIBQ5BU53e2Hz7uz8/qgebm7q3d3e7bm7Pen7eZ57dreuu6c61fTUdL9Va7VaAgAAAAAAAFaqfrQrAAAAAAAAgGMbHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEr6jnYFAADAkRdC+JKkexV/vijG+KqS850v6anFn6fFGK/ofe1QRghhQNL/SbqNpLvHGC8uMc+9JT1F0q9JOk7SqKQfS/qApHfFGGdKLOPXJD1T0j2KZeyW9D1JF8QYP7SilQEAAMc87mACAAAvDiHc6mhXAsv2GqXOpSWFEOohhDdL+qKk35d0kqQBSdsk3UfSP0v6Zgjh5kss56WSvlIsY7ukfkknSHqgpItCCB8LIQyubHUAAMCxjA4mAAAwKOmCEALXBceIEMJfSXr2MmZ5ldKdS5L0C0lPk/Qbkn5X6e4lSbqtpE+FENYv8Jp/JullkmqSLpV0nqS7SXqUpK8Xkz1c0luWUS8AAHAjwSNyAABAku4u6S8kveFoVwQLKx6Le6OkJy9jnjMkPbf48zJJd4gx7uuY5GMhhB9JeqWkWyh1Pr26axmbJf1d8efPJN01xjha/P31EMJHJX1E0m9LOi+E8PYY4zeWtXIAAOCYxjeVAADctM1Lmit+f1UI4fSjWRksLIRwF0lf1cHOpWbJWR8vqVH8/syuzqW210jaW/z+BwssY2Px+ws6OpckSTHGOUlPlDRRFD1XAADgJoUOJgAAbtpmdfDOlBFJ/3IU64IFhBBeK+liSXcqiv5d5e82u04pe+lqSZ91E8QY5yX9tPjzFDPJ7xY/9xWv7ZZxvaRPF38+OIQwUrJ+AADgRoBH5AAAwMslPULSLSXdN4TwhBhjpY6mIjT8aZLuJ+lkpdyeq5U6Ov4pxvjjBeb7ktLodtMxxqFFlv9DpYDrK2OMO7r+r1X8+iylDo/zJd1TqTPtUqU7cD7XMf16SX8m6XcknSVpndLIaN+R9CFJ7ynu0Omuww5Jlxd/PkLSJyQ9TtJji7qtk7RT0v+T9A8xxp8vtD4l3E1pG+6R9LwY4wUhhJeVmTHGeL7SNlhQCKGmgx1L13b9X7+kOxd/fiXGuNidU19WCgAfKer8hTJ1BAAAxz7uYAIA4CYuxjit1MEyXxT9XQjhpJUuL4TwYkk/UAqVDpLWKHU4BKXHu34QQnhZ0alxON1M6ZGyBxSvv0HSHZQ6mdp1vY+kSyT9g1Lo9WYdHBnttyRdKOk7RY7RYkYkfU7SBUodZFuVwtNPl/Tnkn4UQnhwhXUZlfS3ks6MMV5QYTkLebrSOkvSB7v+70ylbSKl/KXFdHaiMTIhAAA3IdzBBAAAFGP8ajGM/dOVOmLeJulhy11OcVfNS4s/v680otj3lb7UuqNSkPgZHdO8rEq9l/BMpbt+Xifpk0odKLeLMV5R1PXuSnc4DUtqSXqfpIskXS/pNKVR0h6gdFfT/4QQ7hhjvFbePxTLv1jSm5UeNztR0lMl/aZSZ9M7QwinxxjHVrAujyweY+uJonNvq6Szizq2H4H7tqR/7Jq8s7PxqiUWffUC8wEAgBs5OpgAAEDbXyl1Ku2Q9NAQwh/FGN9fduYQwh0kvbj48z2Szut6tOyrIYQLJH1K0r0lvSSEcNFCj8v1QF3Sq2OML+wo+3BR14bS3UnDSnduPSrG+OGO6b4h6YMhhJcoPUJ4oqS3K42S5pygtM6P6+wICiF8Qml9HyzpOEkPUX6H0JJ62blU+BdJf9pVdoGkvzQdYJs7fj+wxHLHO37fuOBUAADgRodH5AAAgCQpxjiuNBJY2xtDCMctYxHPUbq22C3pyS63qHiN85TuGKop3TF1OL11gfKHKWVOSdJbuzqXfiXG+ApJX2rPE0K49QLLm1Iaoe2QjqAYY0uHBqefU6bSR8Cppuz+kp4QQui+Phzs+H1qieVOLjAfAAC4kaODCQAA/EqM8bOS3lH8uVXSP5WZr3jk6reKP78aY5xYaNoY4+WSflL8eb8VVrWMnTHGXyzwfw/s+P3tSyznLR2/P2iBab4dY9yzwP915hKtW+K1jpS3SPp1SfeQ9GylR9tOVXqc8H1dnUydod4tlbecaQEAwDGOR+QAAEC3Zyt1pJwo6VEhhA/EGO3Q9B12SNpU/P7bHSO5LeW0lVWxlKsX+b+zip9jkn64xHIu7vj97AWmuWKR+TsfOVsV114xxo91/Pm1EMK7lELKby/p0ZI+q/QIoXRo/Rcc2a8w3PH7Unc7AQCAGxHuYAIAAIeIMe5VCn5ue2sIYak8na0rfLm+EMLhuqtn/yL/t6X4eUPxGNtiru/4ffMC0ywW3N25/MM9ct6KFHdfPbaj6LyO3ztzl9YssajO/1/oji4AAHAjRAcTAADIFHe4fKj480SlUdIW03lnzoVKd8KU/bfg43SLKHMNs1jH0XI6ehodv/c6bHvViDH+UGn0O0m6bcd/Xdnx+82WWEzn/1/Ti3oBAIBjw6q4TRsAAKxKT5N0X6W7fc4LIfzbItN23q3SjDF+d4Wv2e4UWqoDaMMKl9/Wru/WEEJtibuYtpn5jhkhhO2SzlDaL19bYvLdxc+BjrLLlToBR4rlLKbz/w/X6IAAAGAV4g4mAABgxRh/KelZHUX/rIUfkbpMB+9EuttSyw4hPD+E8KQQwv27/qs98txACKHRPV8x77Ck5Yxu53y/+LlW0m2WmLZzfS6p+LpHVBG+fomkLyvtv6WmPb3481fh6EXn2zeKP+9ZTLeQ3yh+Tkv65krqDAAAjk10MAEAgAXFGN8j6T+LP3dI+uMFppuV9MXiz7NDCPdcaJkhhPtKeq2kt0n6667/3tvx+44FFnF/Sf2L1buEz3T8/qQlpn1yx++frfi6R1TROfTV4s/bhBDuusjkD9HBu7W61/PDxc/jiukyIYRtHf/3XzHGyeXXGAAAHKvoYAIAAEt5kg4GPS/WsfOPHb+/M4SQ5fWEEI7XoXfSvKlrku93/P50M/82SX+3aG3L+YSkS4vfnxJCeISbKITwYkn3Kv78fIVH/46mt3T8/rYQQvZ4YQghSPrX4s9ZHbovJekDOvh44JuK/dA5f5/Sfh0pil5ftdIAAODYQgYTAABYVIzx6hDC83VoR4Wb7gshhLdK+nOlLJ7vhRDeIOm/i0nuJOnZkrYXf38sxvjxrsV8QNJLlK5RnlGMMPdvSkPe303SM4v5f66l84AWq2szhHBuUbcBSR8OIbxXKdj8l5JOlfSnkh5YzHKDpD9Z6esdTTHGT4YQPijpUZJuJ+nHIYTXSfqOUoD5byrlbbVH83tGjPFnXcvYE0J4nlIn1GmSvhVCeJWk7yoFez9bBx8lfE+M8b8F4MZkqdE2ARzbejLKLR1MAACgjLdJerQOZuws5OlKnUHPlLRJ0ssXmO6jkh7TXRhjvDSE8EylO5vqks4r/rXNKz1Wt0XSc5ZR/0yM8eIQwoMkfVDp0a/HFv+6/Z+kR8UYd1Z5vaPsT5TuTHqMUgfdG8w0U5KeFmO8wC0gxnhBcVfaSySdLOmtZrJPa+lHDgEAwI0Qj8gBAIAlFVk+fyZp0VydGGMzxvhsSbdX6pS6RNKYUufGTkkfkfSQGOMjF8roiTG+WdKdJb1XKWx6RtK1ki6SdM8Y42t6slLptb4o6UxJL1DKKtpTvN4Vkj4l6Q8k3S3GeOlCyzg
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4ZVd97vH3nKM6mhn3Dthg4x/FEHqA0IkduBRTAwklmFANvtQEUiCY0EK5oZsSIMb0DiGFFjuAgxOKAdMWGLAN7nWq+tH9Y20x8lmvpK3ZR5qR/f08zzzSWdpl7XKWRr+z97tbc3NzAgAAAAAAAHZXe093AAAAAAAAAOsbBSYAAAAAAAA0QoEJAAAAAAAAjVBgAgAAAAAAQCMUmAAAAAAAANAIBSYAAAAAAAA0QoEJAAAAAAAAjVBgAgAAAAAAQCMUmAAAAAAAANAIBSYAAAAAAAA0QoEJAAAAAAAAjVBgAgAAAAAAQCMUmAAAAAAAANAIBSYAAAAAAAA0MrCnOwAAANZeRJwl6b7Vy79NKb265nxvl/Sc6uXNU0oX9L93cCLiGEnPl3S8pJtJmpD0a0mfkfSelNIVy8z/VUkPrLOulFJrkWXsq3z8HyEpJHUk/VbSVyS9O6V0Xq2NAQAANzhcwQQAAF4WEbfe053A4iLiKZLOUy7uHCtpRNK+ku4o6e8l/Tgi/s8yi7lDwz7cWdKPJL1K0l0kbZK0oerPcyR9LyL+psk6AADA+kWBCQAADEt6X0Tw/4K9UEQ8WNL7lYtK48oFnhMk/ZGk10qalHSgpE9FxJ0WWcZNJR1QvXylcmFqqX+98x8u6cuSjqiazpD0SEn3kfR/JV2qfGX8qyLiWY02GAAArEvcIgcAACTpHsqFgjfv6Y5gl6ro93ZJLUlTku6dUvrugkm+HBH/IelMSaOSXqdcfOq18Oqlf0spfX+FXXmNpP2r709JKb19wc++EREflfRDSYdJek1EnJFS2rHCdQAAgHWMTyoBALhx60qaqb5/dUTcYk92BoUHSJo/Jm/vKS5JklJKX5f0r9XL4yNiP7Oc+QJTV/lWu9oiYkzS46uX3+0pLs334SpJb6xe7qecEwUAAG5EKDABAHDjNi3pDdX3GyS9dw/2Bd4XJV0k6fNLTPPTBd/f1Px8/ra3lFLaucL1HyDpc5J+ohwoXqcPN1vhOgAAwDrHLXIAAOBU5TydW0l6QEQ8PaXUqNBUhYY/V/mpZTdRvsXrN8q3cr0tpfSTReY7S/npdpMppZEllv8jSbeVdGFK6aien81V375A+cqet0u6l3Ix7XxJL00pfXXB9JslPU3SiZKOUw6vvlrSuZI+KemMlNKMekTEUcpPcZPy/vuCpKdIenLVt02SLpb0JUlvSin9crHtWUzVz68uO6F05ILvLzU/n7+C6dzd6MNF2nUFU5M+AACAGzCuYAIA4EYupTSpXGDpVk1viIgjlphlSRHxMuXbsE5WfpT9mPLVUSHpWZLOi4hXRESrUceXd1NJZytnEm2QtI+kOykXmeb7en9JP5P0JuXA6v0lDUo6VNJ8uPa5EXH0MuvaoFwIep9ygexA5fD0W0h6tuo95W23RMRdJT2ienlmSunKnp9vlnRU9fKHEfHEiPhSRFwVEZMRcVFEnB4RRbj3CvpwgKQXVS+3KBfVAADAjQgFJgAAoJTS2ZLeUb3cR9K7dmc5EfEK5aeUdZRDn58l6Z7KVxA9T9Ivlf//8XfVv9X0fOVCz+sl3VvSYyW9JqV0QdXXeyhf4XSYpDlJH5L0cEm/r3zFzper5RynHGR92BLrepOk+0s6R9KTqmU8QtJXqp8PS/rniNjYdKMiohURmyLiThHxj5LOqpZ/rfJVY73uoHwFmST9tfIT4E5QvvVtSLkQ92RJ342I2sckIoYj4tiIeJGkH0g6Rnk/npxS2rpbGwcAANYtbpEDAADz/krSw5SvdnloRPxpSukjdWeOiDtJeln18gxJT+25tezsiHifcqbQ/SS9PCI+sdjtcn3QVi4o/c2Ctk9Vfe0oX500qnzl1uNSSp9aMN3/Svp4RLxc+RbCwyS9W7kA5RyqvM1PSSnNXwmmiPiC8vb+H0kHSXqIpI833K4nVOta6GxJT0sp/cxMv/DKpM2Svi7pnyT9onr9R8pXWY1KekVETKaUXrdUByLiJsq3PC70W0nPTCn9W90NAQAANxxcwQQAACRJ1WPln7Gg6S0RcdAKFvEi5f9bXC3pWS63qFrHU5WvdGlJOmX3e1zLaYu0P0w5c0qSTuspLv1OSumVylcISdLDIuI2iyxvQtLzFxaXqvnndP3g9N+r0+llHGnabifplGWeICdJr0gp3TeldEZK6ZyU0pdTSi9SvsrsumqaV0XEMbvRh8MkPT0ijltuAwAAwA0PBSYAAPA7KaWvSPpA9fJASW+rM1+Vp/Tg6uXZSz2pLKX0a+164tgDd7OrdVycUvrtIj/7owXfv3uZ5bxzwfcPWmSa76aUrlnkZwvDvTcts646/kvS8cq34T1J+ba8zcqZV1+PiIN7pn+epDtLenBK6VS3wJTS9yX9RfWyI3+r3UKXKYei3636+tFqvkdI+mZ1+yEAALgR4RY5AADQ64XKhZTDJD0uIj6aUvr8MvMcJWn+6pmHL3iS23JuvntdrKX3Fq6F5q+y2S7pR8ss55wF399ukWkuWGL+7Qu+b/x/r5TSNxe8/N+I+IjyVVJPVd6uNypnKs1Pv1XS92os+gzlguKIpD9cpg+/1PULZ1+IiK8o33a4j6QPR8QtU0qzNdYLAABuALiCCQAAXE9K6TpJz1nQdFpE7LvMbAfu5uoGIqIfV/U4SwVNH1B9vaq6jW0ply/4fv9Fptm+SLuUbwec1/cn51W35Z0s6eKq6XERsWE3ljOp/EQ9SbrZbsz/AVUZV8qFw/uvdBkAAGD9osAEAAAKKaXPSvpk9fIw5aekLWXhlTnvVw6Wrvtv0dvpllDn/zBLFY5WUujpLPi+u+hUe1BVHPrX6uWQduVLrdT8sRjazfk/s+D72+/mMgAAwDrELXIAAGAxz5X0AOWrfZ4aER9bYtqF+UOzVabP7pgvCi1XANpnN5c/b76/B0ZEa5mrmA4x862JKrT7aEmHppS+uMzkVy/4fqiaf1TSvSUdLOmylNJXl1nGfH7TFQv6MFr14RaSzqpuuavdBwAAcOPAFUwAAMBKKV0h6QULmt4jaWyRyX+lXVe/3H25ZUfESyLimRHRm/Uz/+S5oYjo9M5XzTsqaSVPt3N+WH3dKOm2y0y7cHt+tuhUq+MMSd9WzjhabpuPXvD9fLj5iKQvVct59VIzR8ShC5bxnQU/eo6k8yR9XtIJu9EHAABwI0CBCQAALCqldIakf69eHiXpCYtMNy3pzOrl7SLiXostMyIeIOl1kt4l6a97fnzdgu+PWmQRfyhpcKl+1/DlBd8/c5lpn7Xg+680XO9KfaP62lIO8baq4tBDqpc/m396XkrpWuXikCTdNSKWunXuBdp15djCq9W+seD7P1+iDy1JJ1Uvu5K+tsS6AADADQwFJgAAsJxnStpWfb9UYef/Lfj+nyPipr0TRMTByldCzXtrzyQ/XPD9KWb+QyS9Ycne1vMFSedX358cEY90E0XEyyTdt3r5tQa3/u2u0yXtqL7/64gonmJXhaR/QruuLntdzyTvrL62JP2TCwCPiBMlvah6+SMtyFJKKf2PpO9WLx8UEU/umX2+uPQmSXetmj6YUrp06U0DAAA3JDfWDKa6j04GsD71/SlNwI1ZSuk3EfES7SpULDbdf0bEaZKerXyr1A8i4s2S/qua5C6SXijp8Or1Z1NKn+tZzEclvVz5/yjPq4onH5M0oXyr2vOr+X+p69+OtdJtmo2IJ1V9G5L0qYj4kHKw+RWSjlS+WuePqlmukvRnu7u+Bv28LCJeLOk0SZsl/W+1T89SfkreXZWvPDqqmuVjkj7Ys5j3SvpT5SymP5D0nYh4o3IhaX9Jj5X0FOUPHrdKelJKaaZnGc9QvpJpg6TTI+JByk+Mu1jSMcpXec1ftfYz5eMM4Ia
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG9CAYAAABZDcySAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJEdh/vF3djZdPp3SneJJwioRJCORDAYjkEnGYMAkG8QPhEnCgADbYEwSJggwmGhyNtmASSYbCQMmGEQQQqV4cJykk+50urx5f39UDzs39e5u7fbs3Ur3/TzPPbdb29PT3dNdXV3T/VZjcnJSAAAAAAAAwHz1HOgFAAAAAAAAwC0bHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFp6D/QCAACAxSeEcKGke1e/vjjG+KrC171N0jOrX0+IMW7o/tLBCSHcRtJ5ku4n6ThJQ5KukfRZSe+OMd5QMI8zJf2NpLtLWlcVb5L0HUlvizFe3P0lBwAAtwbcwQQAAGbzkhDCbQ/0QmB6IYQnSvqlUufeyZIGJa2WdLqkf5b0qxDCn83w+v4QwkckfVvS4ySdKGlJ9e82ks6R9NMQQlFHIwAAOPjQwQQAAGYzIOl9IQTaDYtQCOFBkt6v1Km0V9IrJd1f0gMkvUbSsKTDJP1HCOGMaWbzLkmPr36+XKmj6h6S7iXphZI2V397UQjhxQuwGgAA4BaOR+QAAECJu0t6tqQ3HegFwZSq0+9tkhqSRiTdK8b4k7ZJvh5C+KrSnUlLJF2g1PnUPo+7S3pi9et3JT0wxri7bZLvhhA+LOn7ktYr3dH27zz+CAAA2vFNJAAAmMmEpLHq51eFEE48kAuDzH2VHmeTUkbSTzoniDF+R9KXq1/vF0I4pGOSJ7X9/NSOzqXWPK6T9Pzq135Jj6211AAA4FaHDiYAADCTUUmvr35eKuk9B3BZ4H1J0m8lfX6GaX7d9vOxHX+7V/X/lTHGX2t632j7+Q/LFw8AABwMeEQOAADM5nxJD5d0iqT7hhCeEmOs1dFUhYb/raSzJB2j9IjXRqVHud4aY7x0mtddqDS63XCMcXCG+V8i6faSfhNjXN/xt8nqx+cq3dnzNkn3VOpMu1LSC2OM32ybfqXSyGp/IekOklZI2irpYkmflvSRGOOYOoQQ1iuN4ial7fcFpUfRnlAt2wqlEdq+JukNMcarpluf6VTL+c1ZJ5SOb/v5uo6/vUvp0bebZplHo+3nabc9AAA4OHEHEwAAmFGMcVipg2WiKnp9COHo+c4vhPASpRHPzpUUJC1TujsqSHq6pF+GEF4eQmhMP5euOFbS95QyiZZKWiXpDKVOptay3kfSZZLeIOlPJK2R1CdpraRWuPbFIYSTZnmvpUodQe9T6iA7TCk8/URJz9Aso7zVEUK4i6SHVb9+O8Z4Y/vfY4xvijGeF2N8xSyzOrPt5990cREBAMCtAB1MAABgVjHG70l6e/XrKknvnM98Qggvl/QKSU1Jv1DqULqH0h1Ez5F0lVL75GXVv4V0nlJHz+uUHhN7lKRXt8Krq/DrL0taJ2lS0r9LeqikuyllEH29ms8dJP1PCGHdDO/1Bkn3kfQDSWdX83iYph47G5D0wRDC8rorFUJohBBWhBDOCCH8q6QLq/lvU7prbF7zlPSCtqKv1V1OAABw68IjcgAAoNQ/SnqI0uNUfx5C+OsY48dKXxxCOEPSS6pfPyLpnI5Hy74XQnifUqbQmZJeGkL41HSPy3VBj1KH0j+1lf1HtaxNpbuTlijdufWYGON/tE33I0mfDCG8VOkRwnVKj5o9dJr3Wqu0zk+MMbbuBFMI4QtK6/tnkg6X9GBJn6y5Xo+r3qvd9yT9TYzxsnnO8/lKHYGSdInoYAIAAB24gwkAABSpRhd7alvRm0MIh89hFs9XantslfR0l1tUvcc5SncMNSQ9a/5LXOQd05Q/RClzSpLe0dG59HvVY2UXtl4TQrjdNPMbknRee+dS9fpJ7Ruc3o3w7ONN2amSnmVGkJtVCOERki6ofh2X9MzO9QAAAKCDCQAAFIsxfkPSB6pfD5P01pLXVY9YPaj69Xsxxj0zvMc1mhr17Kx5LmqJTTHG303ztwe0/fyuWebzb20/P3CaaX4SY5wuRLs93HvFLO9V4iJJ91N6DO9spcfyViplXn0nhHBE6YyqzqWPKz3SKEn/FGP8TheWEQAA3MrwiBwAAJir5yl1pKyT9JgQwsdjjJ+f5TXrJbXunnlo20huszlhfotYZOMMf7tD9f8upUfCZvKDtp9PnWaaDTO8flfbz7XbZjHG77b9+qMQwseU7pI6R2m9/kVpJLsZhRCerNS51upcenOM8bV1lw8AANw6cQcTAACYkxjjzZKe2Vb0jhDC6lledtg83643hNCNu3qcHTP87dDq/y3VY2wz2dz285ppptk1TbmUHgds6frIedXjbOdK2lQVPSaEsHS66auQ8H+W9F5NdS69McZ4XreXDQAA3HrQwQQAAOYsxvg5SZ+ufl2nNEraTNrvzHm/pNPn8G/ax+lmUNLGmanjaC4dPc22nxdlNlGMcVhpRDxJ6tdUvtQ+QggDSqPlvbit+CUxxucv7BICAIBbOh6RAwAA8/W3ku6rdLfPOSGET8wwbXv+0HiM8WfzfM9Wp9BsHUCr5jn/ltbyHhZCaMxyF9OR5nX7RRXafZKktTHGL80y+da2n/vNvJZJ+rymcq/GlMLY39eNZQUAALdu3MEEAADmJcZ4g6TnthW9W9KyaSa/WlN3Iv3RbPMOIbwghPC0EMKfdvypNfJcfwih2fm66rVLJM1ldDvnF9X/yyXdfpZp29fnsprvO1cfkfRjSV8oGNHvpLaf9wk3DyEMKt3h1Opc2i3poXQuAQCAUnQwAQCAeYsxfkTSV6pf10t63DTTjUr6dvXrqSGEe043zxDCfSVdIOmdkl7U8eeb235eP80s/lRS30zLXeDrbT8/bZZpn9728zdqvu9c/U/1f0MpxNsKIayV9ODq18vM6HnvlnTv6uebJN03xvgVAQAAFKKDCQAA1PU0STurn2fq2Hlj288fDCEc2zlBCOEIpc6Olrd0TPKLtp+fZV5/pKTXz7i0Zb4g6crq53NDCA93E4UQXqKpjplv1Xj0b74+pHS3kSS9KISQjWJXhaR/SlN3l13Q8fdHSTq7+nVY0gNjjD9amMUFAAC3VmQwAQCAWmKMG0MIL5D0b7NM998hhHdIeobS41o/DyG8SdJF1SR3lvQ8SUdVv38uxvifHbP5uKSXKrVhnlN1nnxC0pDSo2rnVa+/Svs+EjbXdRoPIZxdLVu/pP8IIfy7UrD5DZKOl/RkSQ+oXrJF0v+b7/vVWM7rQwh/J+kdklZK+lG1TS9UGiXvLkqPMa6vXvIJSR9uvT6E0CPplW2zfJ+k0RDCHWd5610xxitnmQYAABxE6GACAADd8E5Jj5X0J7NM9yylzqDzJB0i6fxppvuspMd3FsYYrwwhnKd0Z1OP0mNh7Y+GTSg9VneopFojn8UYfxBCeKCkTyplOj2h+tfpp5IeE2PcVOf95ivG+M5q9LfXSxqU9MLqX6d3SHpOR2D5mZJObvv93OrfbC6qXgsAACCJR+QAAEAXVJ0WfyNp7yzTjccYnyfpdKVOqcsk7ZI0KmmTpM9IenCM8S9jjHZeMca3K92Z8+9KYdUjkq5TegzsnjHG13RlpdJ7fVvSbZQ6bL6nlE80ImmDpC9JerSkPzrQd/PEGN8s6Q6S3i4pKn0Oe5Ue83ufpDvHGM+tsrDanbFfFxQAANxqNSYnZxp1FwAAAAAAAJgZdzABAAAAAACgFjqYAAAAAAAAUAsdTAAAAAAAAKiFDiYAAAAAAADUQgcTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQ
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFV9/vGnlt5nH2YAh02IHpRFNIoaibhh3A3RaPy5E437rkExCCauMYkaMGDigiEBNwyaxJ0oqNGACiIixwUQZBuGWXuv7ffHve309Hm6+87c6tn683695lVdp2/de+pWdd0z37r3OZVOpyMAAAAAAABgV1X3dAcAAAAAAACwb6PABAAAAAAAgFIoMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASqHABAAAAAAAgFIoMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASqHABAAAAAAAgFIoMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASqHABAAAAAAAgFLqe7oDAABg9wshfFvSyfndv4oxvrvg486V9Kr87r1jjDd3v3dwQgi/J+n1kk6RdJikcUk3SfqCpH+OMa7fhXX+oaTLJf0ixnj0LMs8StK3dqHLn4oxvmgXHgcAAPZBnMEEAADODCHcb093ArMLIbxI0k+VFffuK6lf0gpJD5T0N5J+FkJ40k6uc5Wkj0uqdLWz200u0HoBAMBeiDOYAABAn6SPhxBOijG293RnsKMQwhMlfUJZIWhM0t9LuiK//yhJb5R0gKTP56/hjwusc5mkr0m6T4Eu/FBZIWs+6yRdouz9dIekvy7wGAAAsJ+gwAQAACTp4ZJeK+lDe7oj2C6EUJV0rrJi0qSkP4wx/mjaIl8PIXxV2SVsA5LeJ+nx86wzKLus7v5F+hBjHJZ0zTzrrOX97JPUkvRnMcbfFlk/AADYP3CJHAAAi1tbUjP/+d0hhCP3ZGeQeIykqdfk3BnFJUlSjPEKSf+d3z0lhLDSrSiEUA8hvErSVdpeXOrWGWtvkvSI/Of3530CAACLCAUmAAAWt4akD+Q/D0r6lz3YF3j/JekWSV+cY5mfT/v50Jm/zItO1yo7y2ippAlJL5F0a9nOhRCOkHR2fjeKS+MAAFiUuEQOAAC8U9Kpko6W9JgQwktjjKUKTXlo+KslPVbSIcou8bpV2aVc58QYr5/lcd9WNrvdRIyxf471XyfpGEm/iTEeMeN3nfzHNyg7s+dcSScpK6b9StJbY4zfnLb8MmXFlqdLOlZZAeYeSVdL+pykC2OMTc2QF1Zuyu+eKulLkl4k6QV535ZKuk1Z1tHfxxh/PdvzmU3ez2/Ou6B0+LSf7zC/Xy5pKsj9+5JeEmO8PoRw5s72yfh7ZZfnSdKrY4wTXVgnAADYx3AGEwAAi1xeEHiJtl8u9YEQwrpdXV9etPippFdKCpKGlJ0dFSS9XNJPQwhnhxAWavayKYdK+p6yTKJBZUWWBykrMk319dGSblBWJHmkpFWSeiQdJGkqXPvqEMJR82xrUFkh6OPKCmQHKMsjOlLSK7QLs7wVFUJ4iKQ/zu9+K8Z49yyLXqssG+kPZivw7cK2HyrpT/K7/zm9cAcAABYXzmACAACKMX4vhPARSa9RVog5X9JTd3Y9IYSzJZ2V371W0j/lt1VJv68sSPyoacucXabf83i9sjOn/lbSfyorGp0QY7w57+vDlZ3hNCCpI+nfJX1W0l2S7i3pNGXFqWMlfSeE8PsxRnd2kJQVqA6S9ANJH5H0C0kHS3qVpFOUFZsuCCEcmYdm77K8MLdE2Qxwz5f0F/n6Nyk7a8y5Jcb4gDLbncVZs/wMAAAWGQpMAABgytuUFZWOkPSUEML/izFeVPTBIYQHSZq65OpCSafNuLTseyGEjyvLFHqUpHeEED7brbNpjKqk98QY3z6t7fN5X2vKzk4aUHbm1rNjjJ+fttyVkj4TQniHsksID5b0UUlPm2VbByl7zi+KMf4uODuE8CVlz/dJktZIerKkz5R8Xs/NtzXd95Rd9naDe8D0PnVLCOFoSU/I7349xnh1t7cBAAD2HVwiBwAAJEkxxhFlZ8NM+XAIYc1OrOJNysYW90h6ucstyrdxmrIzhirKzphaSOfN0v5UZZlTknTejOLS78QY/1rSt6ceE0K4v1tO0rik188s5MQYO9oxOL0bZxEdbtqOk/Sa2WaQWyCvU/YaStL7duN2AQDAXogCEwAA+J0Y4zckfTK/e4Ckc4o8Lr9s64n53e/FGEfn2MZN2j7r2WN3satF3BZj/O0sv/ujaT9/dJ71/NO0n58wyzI/ijFunOV308O9l86zrSIuV3bZ3UOVXSL3A0nLlGVeXRFCWNuFbcwphLBCWZi5JF0VY/zWQm8TAADs3bhEDgAAzPRGZYWUgyU9O4RwcYzxi/M85ghJU2fPPG3aTG7zufeudbGQW+f43bH57bCk6+ZZzw+m/XzcLMvcPMfjp2culR57xRi/O+3ulSGEi5SdJXWasuf1d9pe/FkoT1MWbC5JFyzwtgAAwD6AM5gAAMAOYoyblYVTTzkvP2NlLgfs4ubqIYRunNXjbJ3jd6vz2w35ZWxzuWvaz6tmWWau4O7p6+/6zHn5ZXmvlHRb3vTsEMLgHA/phqfnty3luVYAAGBxo8AEAAASMcb/kPS5/O7BymZJm8v0M3M+IemBO/Fv1svp5lBkDDNX4WhnCj21aT93PSy7G2KME8pmxJOkXm3Pl+q6EEK/tl9ieHmMcf1CbQsAAOw7uEQOAADM5tWSHqPsbJ/TQgifnmPZ6flDrRjjNbu4zami0HwFoOW7uP4pU/09IIRQmecspgPN43aLPLT7KEkHxRj/a57F75n2c+/C9UqPljSU//zZBdwOAADYh3AGEwAAsPIzU94wremftb2wMNON2n4m0sPmW3cI4fQQwstCCI+b8aupmed6Qwi1mY/LHzsgaWdmt3OuzW+XSDpmnmWnP58bSm53Z10o6SpJXyowo99R036eLdy8Gx457ecrFnA7AABgH0KBCQAAzCrGeKGkr+R3j5D03FmWa0iamknsuBDCSbOtM4TwGGXT2p8v6YwZv9487ecjZlnF4yT1zNXvAr4+7eeXzbPsy6f9/I2S291Z38lvK8pCvK0QwkGSnpzfvWGO2fO64cT8dpukuIDbAQAA+xAKTAAAYD4vU1ZMkOYu7PzDtJ8vCCEcOnOBEMJaZWdCTfnHGYtcO+3n15jHHyjpA3P2tpgvSfpV/vMrQwinuoVCCGdKOjm/e1mJS/921ackjeQ/nxFCSGaxy0PSP6vtZ5e9b4H7dHx+e3UeMA4AAEAGEwAsoKLTtAO73Yknnqgrr7xSvb29fZrnvRpj1EUXXaR3vvOdO7RfdtllN81c7uyzz9bFF18sSUctX778lnPPPVcnnpid8HLddddp7dq1Wr8+y4Q+5ZRTdO655/7H9HV8/etf15Oe9CQ1m01Jet0ZZ5zxuic/+cnq6+vTNddc87vHH3bYYbrlllu0bt26w2fr/0knnfRHs/0uxqhrrrlGz3ve89RoNKrVavULp59+up7whCdo9erVuu222/T5z2+fHG3lypX64he/+FgVz4jqihjjnSGEN0s6T9IySVeGED4k6dvKZsl7iLLLGI/IH/JpSf+6UP3JM6GmZgy8faG2A2Cvw5gG2L91ZVxDgQkAAMzrOc95jr785S/rqquumnO5M888U319ffrUpz6lLVu26JxzzrHLPf7xj9cHPpCeiHT44YfrjDPO0Lve9S61221dcskluuSSS373+2q1qje+8Y3avHmzPvGJT5R6TieccII+9rGP6Q1veIM2btyoSy+9VJdeemmy3DHHHKMPfvCDOvDAA81aFl6M8fwQQp+yM7f6Jb01/zfTeZJeN09geVmHTPt586xLAQCARYcCEwAAmFelUtG73vUuPf3pT9f4+Pisy9VqNb3tbW/TqaeeqosvvlhXXnml7rzzTjUaDa1atUonnHCCnvGMZ+jkk0+edR3Pfe5zdcIJJ+iCCy7QlVdeqXvuuUcrVqzQgx/8YL3
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecLEW5//HvxpM55KwcSY8KKGBWFBRFxZyzgjnndL3qxYw5C3rFhAkDJn5ixoSiXvWqeOUBFURRQJBDOmnP7v7+qB53mHpmt3Zq2J3D+bxfr33tbm2H6p7ump7a7m8NTU9PCwAAAAAAAOjV8GJXAAAAAAAAAFs2OpgAAAAAAABQhQ4mAAAAAAAAVKGDCQAAAAAAAFXoYAIAAAAAAEAVOpgAAAAAAABQhQ4mAAAAAAAAVKGDCQAAAAAAAFXoYAIAAAAAAEAVOpgAAAAAAABQhQ4mAAAAAAAAVKGDCQAAAAAAAFXoYAIAAAAAAEAVOpgAAAAAAABQZXSxKwAAABaemX1f0uHNr6909zcUzvc+Sc9qfr2Ju1/Q/9ohYmb7Snq+pHtIurGkDZLOl3SqpA+5+6VzzP8dSUeWrMvdh7osY0TSIyU9XtIhkraVdJWkX0v6lKRPuvvmknUAAIAbFu5gAgAArzKzmy12JdCdmR0j6XdKnXv7S1qq1LlziKTXSfq9mR09x2IOrqzDKknfkvRJSUdJ2knSmKQdJN1d0kclnWFm29esBwAAbJnoYAIAAEsknWRmXBcMIDO7t6SPKHUqrZf0eqUOnntKepOkjZJ2lPQFMzu0yzJupNQRJEmvVeqYmu0rcrKkuzU/nyPpiZIOk/Q4Sb9syg+TdKqZhXdAAQCAGy4ekQMAAJJ0B0nPlfSuxa4IZjSdfu+TNCRpk6Q7u/sv2yb5lpl9Q9IZkpZJOl6p86lT+91LX3f3/51nPe4o6QHNr7+SdEd339j8fqaZfUbS15t1Hy7pQUqP7gEAgK0E/6kEAGDrNiWplZnzBjPbezErg8zdJLVek/d1dC5Jktz9h5L+X/PrPcxsu2A5rQ6mKaVH7ebr3m0/v7Ktc6lVh0lJL2orul8P6wAAAFswOpgAANi6TUh6a/Pzckn/vYh1Qew0SRdK+sos0/yh7ecbBX9vPfbm7r6uhzrs3PbzubPUYar5ebce1gEAALZgPCIHAABeo/RI000l3c3MnuLuVR1NTWj4s5VGLdtT6RGvvyo9yvVed/+/LvN9X+kRq43uvnSW5Z8t6QBJf3H3NR1/m25+fIHSnT3vU8oGmpD0R0kvd/fvtE2/jaQnKz0CdqCkVZIuVxoZ7fOSTo5GRjOzNUqjuElp/31V0jFKI6wd0CznIknflPR2d/9Tt+3ppqnnd+acUNqr7ed/BH9v3cH06/nWofH3tp9vKinalpto5p+Xfw/+DgAAbsC4gwkAgK1c87jTkzVz98lbzWyPXpdnZq9SegzrmZJM0gqlu6NM0tMl/c7MjluAIOgbSTpTKRdouaTVkg5V6mRq1fWuSoHVb5d0F0nbK42MtqvSY2EfkfRrM9tnjnUtV+oIOkmpg2xHpfD0vSU9Q2WjvPXEzG4j6YHNr2e4+z87/r6NpDXNr781s8ea2TfN7DIz22hmF5rZx82sW7i3JH2t7efjzGysYx1Dkt7YVvT5njYGAABssehgAgAAcvczJb2/+XW1pBN7WY6ZHac0StmIpN8qdSjdUekOoucp3fkyLOm/mq/r0/OVOnreIunOkh4m6Y3ufkFT1zso3eG0m6RpSZ+UdH9Jt5P0SEnfapZzoKQfmdlsj329XdJdJZ2lNKra7ZQ6fb7d/H2JpI+Z2crajTKzITNbZWaHmtk7JX2/Wf4VSneNdTpY6Q4ySXqF0mhwRymNKjeu1BH3eEm/NLPwNXH3X0l6Z/PrrSX9ysyOMbM7mtkjlO5Me1jz95Pc/fTKzQQAAFsYHpEDAAAt/6EUzrxG0n3N7NHu/unSmc3sUEmvan49WdITOx4tO9PMTlLKFDpC0qvN7HPdHpfrg2GlDqX/bCv7QlPXEaW7k5Yp3bn1CHf/Qtt0P5d0ipm9WukRwt0kfVCpAyqyq9I2H+PurTvBZGZfVdreoyXtJOk+kk6p3K7HNOtqd6akJ7v7OcH07XcmbSPph5I+LOm85vd7Kt1ltUzp7qSN7n5850Lc/YVm9jtJxyl1un20Y5LLJL1E0sfnu0EAAGDLxx1MAABAkuTu10p6alvRu81sp3ks4kVK1xaXS3p6lFvUrOOJSncMDUl6Tu81LnJCl/L7KWUJSdIJHZ1L/+bur1W6Q0iS7mdmN++yvA2Snt/eudTMP63rBqffsqTSc9grKDtI0nPmGEFOko5z98Pd/WR3P8vdv+XuL1K6y2xtM83rzWzfzoWY2e5Kd2bt2KVeOyrdxdRtHwEAgBswOpgAAMC/ufu3NXNnyo6S3lsyX5PB0xrK/szZRipz9/M1M+rZkT1WtcRF7v63Ln+7Z9vPH5xjOR9o+/leXab5pbv/q8vf2gOxV82xrhI/kHQPpc6exyk9lreNUubVD81s547pnyfpVpLu7e6viRbo7v+rdPeRlB5vvM6jdma2n6SfSnqa0vXjfyqFei9pvr9c0rVKd2r9yMxuVbeJAABgS8MjcgAAoNMLlTpSdpP0CDP7jLt/ZY551khq3T1z/7aR3OZyk96qWOSvs/ztwOb7NZLOnmM5Z7X9fFCXaS6YZf5r2n6uvvZy9x+3/fpzM/u00l1ST1TarrcpZSq1pr9K0q8KFn2yUofiUkl37/jbKZJuLGmzpKPd/Yy2v10g6c1m9l2lzq/tJH3RzKwJkAcAAFsB7mACAADX4e5rJT2rregEM9t2jtm6PTY1l1Ez68ddPZGrZvnbDs33y5rH2GZzSdvP23eZ5pou5VJ6HLCl7yPnNY/lPVPSRU3RI8xseQ/L2ag0op6UOpMk/TsMvZXj9LGOzqX2+f9HqXNLSo/x3W++dQAAAFsuOpgAAEDG3b+kmaHmd1MaJW027XfmfESpQ6L0q+vjdLMouYaZreNoPh09I20/T3WdahE1nUP/r/l1XDP5UvPVei3G28pu0/bzaXPM/6W2n2/XYx0AAMAWiEfkAABAN8+WdDelu32eaGafnWXa9vyhySbTpxetTqG5OoBW97j8llZ9dzSzoTnuYtolmG9BNKHd+0ja1d3n6ty5vO3n8Wb+ZZLuLGlnSRe7+3fmWEYrv+nStrKVbT+v1eza56t9jQAAwBaEO5gAAEDI3S+V9IK2og9JWtFl8j9r5u6X28+1bDN7mZk9zcw6s35aI8+Nm9lI53zNvMskzWd0u8hvm+8rJR0wx7Tt23NO16muHydL+oWkrxaM6LdP28+tcPOlkr7ZLOcNs81sZru2LeN/2v70zy7riOzR9vOlXacCAAA3OHQwAQCArtz9ZEmnN7+ukfSYLtNNSGpl8xxkZod1W6aZ3U3S8ZJOlPSKjj+33yGzpssi7i5pbLZ6F/hW289Pm2Pap7f9/O3K9c7Xj5rvQ0oh3qGmc+g+za/ntEbPc/crJP2uKb+Nmc326NwLNHPnWPvdaj9q+/lxc9T30V3mAwAAN3B0MAEAgLk8TdLVzc+zdey8o+3nj5nZjTonMLOdle6EanlPxyS/bfv5OcH8u0h666y1LfNVSX9sfn6mmT0omsjMXiXp8ObX71Y8+terj0u6tvn5FWaWjWLXhKR/TjN3lx3fMckHmu9Dkj4cBYCb2QMkvaj59WxJp7b+5u7nSPpe8+sRZvaSqKJmdl+lxyol6Q+S5nocDwAA3ICQwQQAAGbl7n81s5dppqOi23TfM7MTJD1D6VGq35jZu5SGrpekW0t6oaTdm9+/5O5f7ljMZyS9Wuka5XlN58lnJW1QelTt+c38f9Lcj2vNVtdJM3tcU7dxSV8ws08qBZtfqjQK2pMk3bOZ5TJJT+h1fRX1vNjMXizpBEnbSPp5s0+/rzRK3m2U7jxa08zyWUmf6FjMfyvdWXRnSXeS9D9m9jaljqTtJT1M0jFK/3i8StLj3H1zxzKeLulnkraT9JbmLrSPKz0auaO
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8ZFd99/HvaNS3e3e9u65rG+fgGnAwYEroNfQQWiqmYwjEBAyEnoceAqbDgwmJSQiBmA7Pgw2GGAfzhI7bD9zNro2370patZl5/jh3rNk5P0lHuiOv5P28Xy+9Rjq6bW45986Ze7+n0mg0BAAAAAAAAMxX18FeAAAAAAAAACxtNDABAAAAAACgFBqYAAAAAAAAUAoNTAAAAAAAACiFBiYAAAAAAACUQgMTAAAAAAAASqGBCQAAAAAAAKXQwAQAAAAAAIBSaGACAAAAAABAKTQwAQAAAAAAoBQamAAAAAAAAFAKDUwAAAAAAAAohQYmAAAAAAAAlEIDEwAAAAAAAErpPtgLAAAA7lohhO9Jekjx5xvM7O2Z431Y0jnFn8eZ2U2dXzrkCCH0SvqppFMknWVmV2SMs07SuZKeJOl4SZOSbpR0kaQPmdnOjGmsUdwHniTpBEnLJW2V9F1J/2hmV83rDQEAgCWPO5gAADi0vTGEcNLBXgjM2TsVG5eyhBDuI+kqSa8rxhuQtELS6ZLeIukXIYQzZpnGwyVdK+nvJZ0p6TBJvZI2Szpb0s9CCM+f4/sAAAB3EzQwAQBwaOuTdEEIgWuCJSKE8DrFO5Fyh98k6ZuSDpc0LundinewPVzSRyTVJR0l6WshhA3TTON+kr5eTGOiGO+xkh4k6W2SRiT1SPpECOFh83pjAABgSeMROQAAcJakv5b0gYO9IJhe8Vjc+ZJePMdR3yVpffH708zsGy3/uzSEcJmkz0k6QtKbJb20bb7dkj6leNfThKSnm9lXWwa5PIRwqeJjcl3F/O43x2UEAABLHN9WAgBw6Kor5vBI0ttDCMcfzIXB9EII95V0uaYal2qZ422U9Jziz6+1NS5Jkszs85K+VPz5vCJnqdWfSDq1+P2dbY1LzWl8r2Ua9w0hHJ2zfAAA4O6DBiYAAA5dE5LeW/w+KOl/H8RlwTRCCO+SdIWk+xRFX1H+3WZP1NQd6/8yw3AXFK+9kp7c9r9mA9VOTe0vno9J+rSk90iqZi4fAAC4m+AROQAADm1vlfRUSfeU9PAQwgvMrFRDUxEa/jJJj1DM9qlIulXSpYq9lV09zXjfU8wGGjOz/hmmf6ViUPXNZra57X+N4te/kfQNSR9WzAmakHSdpNea2SUtw6+U9HzFRpVTFYOvd0j6maQvSLrQzCbVJoSwWbEHNimuv69K+itJf1Es2wpJWyT9X0nvM7Prp3s/Ge6vuA53SnqNmV0QQnhL5rgPbPn9ezMMd5mkRjGfh0v6jHTn43GPKob5ppkNTTeBYr1eMt3/AQDA3Rt3MAEAcAgzszHFBpZ6UfTeEMKR851eCOGNkn6lmOMTJC1TvDsqKD7e9asQwltCCJVSCz67oxUfKXt0Mf9Vks5QbGRqLuvDFHtFe5+kP1TsFa1H0kZJj1O8G+dnIYQTZpnXoGLDygWKDWTrFMPTj5f0EklXhRAeX+K97FIM5r6HmV0w28Btmj0E7jaz7dMNZGb7JG1rG0eSTlR8L5L0P63jhBDWhxBOCiEcNsdlArD0NPjhh5+79U9H0MAEAMAhzswuV+wVTIoNMR+fz3SKu2repvh41C8VG5QeoHgH0SskXa947fHm4mchvVKxoec9kh6smCP0DjO7qVjWsxTvcNqkeGH1WUlPUgynfpakbxfTOVXSZUVPbNN5n6SHKT7G9ufFNJ4i6eLi/32SPhNCWD7P9/LHZvZaM9s1j3GbjYW3ZAx7a9s4knRyy+83hxC6QwivDiFcJ+kOSVdL2hFC+GkI4enzWD4AAHA3wSNyAABAkl6nmNezWdITQgjPMbN/yx05hHCGpDcWf14o6ey2R8suDyFcoNjV/UMlvSmE8B/TPS7XAV2KDUp/11L2xWJZq4p3Jw0o3rn1TDP7Ystw/0/S50MIb1J8hHCTpE8oNkB5Niq+578ys+adYAohfFXx/T5esRe3P5L0+bm+kdZpzkPz7qJ9GcMOF6+rW8rWtfxel/Tfks50xr23pC+EED4q6WVm1rFvQwEAwNLAHUwAAEBmNizphS1F54cQ1k83vONVitcVOyS92MstKuZxtuIdQxVJL5//Emf52DTlT1TMnJKkj7U1Lt3JzN6mqdyiJ4YQTvaGkzQq6ZXtDUFFI0trntXv5yx0hzUfbxvNGHZ/2ziS1HrX1YcVG5cuVXykcFDSWsW7trYWw7xU0qvnu7AAAGDpooEJAABIkszsYkn/VPy5TtKHcsYr8pQeV/x5uZmNzDCPGyVdU/z5iHkuao4tZvbbaf73mJbfPzHLdD7a8vtjpxnmJ2a2c5r/tYZ7r5hlXguhVrzO5Y6i1mEHW34/RtJ/SnqUmV1mZvvNbKeZfVbSWZKaGU9vmmPjJAAAuBvgETkAANDqXMWGlE2SnhlC+JyZfWWWcTZLWlP8/qSWntxmc9z8FjHLrTP879TidUjSlbNM54qW30+bZpibZhi/tde1g3HdNaS4babtla/FQPHaerfT/pbfRyW9xMxqamNmt4QQ3i7p/YrB7k+V9Ml5LTEAAFiSuIMJAADcycx2SzqnpehjIYTV0w1fWDfL/6fTHUJYqLt69s7wv7XF6/aMrKDftfw+XW9pQ9OUSwfeDbTQPed5mtlLyzKGbQ7TejdWa3bT5Wa2TdP7Wsvv98uYHwAAuBvhDiYAAHAAM/tSCOELij2vbVLsJe15M4zSej3xaWU+WleY9nG6GeR8QTZTw9FcGnqqLb+XCds+WG5WfLTt6Ixhm8NsbSm7reX3LbOM33rX2HwbHQEAwBJFAxMAAPC8TNLDFe/2OTuE8O8zDNt6x0vNzH4+z3k2G4VmawBaNc/pNzWXd10IoTLLXUwbnPGWkqskPVjxva4ysz3eQMWdZM3cpNae/X7V8vsazaw1HHzXXBcUAAAsbTwiBwAAEmZ2h6S/aSn6pKZ/zOoGTd2JdP/Zph1COC+E8KIQwiPb/tXsea43hFBtH68Yd0BTDSHz9cvidbmkU2YZtvX9XFtyvgdDa4bUg2YY7sGaati7rKX8Jk09JnhmCGGma8fWdXlT5vIBAIC7CRqYAACAy8wulPSt4s/Nkv50muEmFLuul6TTQgjTNmSEEB4u6V2SPi7p9W3/3t3y++ZpJvFIST0zLXeGb7f8/qJZhn1xy+8Xl5zvwfAVSRPF78+dYbjmI5ATkr7RLCzu7vp88edGSU+bYRp/0fL7l+e2mAAAYKmjgQkAAMzkRZoKep6pYecfW37/TAghyfwJIRyuA3sW+2DbIL9s+f3lzvgbJL13xqXN81VJ1xW/vzSE8FRvoBDCGyU9pPjzOyUe/TtoitD2fy3+fFoI4Rntw4QQnqnY65sk/Wtx91qrD2qqN7kPhRDu6UzjcZJeWPx5xVJcVwAAoBwymAAAwLTM7NYQwnmSPjrLcN8NIXxM0ksknSDpFyGED0j6fjHIfSSdK+mI4u8vmVn7XS6fk/QmxeuTVxS5QP8uaVTxUbVXFuNfX8xjvu+pFkL482LZeiV9MYTwWUlfkHSHpGMV7+h5TDHKdkl/Od/5LQLnSXqSYi94nyvuMLuo+N/TFHsNrCi+9/a7ymRm14cQXqMY3r5R0hUhhA9J+q5ibtaTi2lUFbfV2Qv6bgAAwKLEHUwAAGA2H5f0XxnDvVzS+xUbHdZIequk7xU//6CpxqWL5DxuZ2bXKTYiNXtrO1vxcbb/kvQexcaN16sDj1+Z2RWSHitpm+L10F9I+pqkH0n6D001Lv1U0llmNlsPaotWcUfSYzT1Xl+u+EjjpcXvXYqNS483s9ummcaHi2HHFEPW36DYwHSp4jbrKab/GDO7ZiHfDwAAWJxoYAIAADMqcnier6nHpKYbrmZm50q6t2Kj1LWShhRzfbZI+k9Jf2Rmf2x
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x1200 with 8 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8JVWd/vHnLlk63emVHaRZhCMiiogoLoMLMg4u6DgqiqOg4zqu+FPcRcWVccddcGEG1NFxG0VBBhnHDRdQUTnKvjYNvSfppG9u7u+Pqtjpe54kldTtptP5vF+vfiU5qeXcupXU6W+qnlNptVoCAAAAAAAAZqt6T3cAAAAAAAAAcxsFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRSv6c7AAAAdqwQwo8lHZd/+ZYY47sLrneOpH/Nvzwwxnhj53uHIkII3ZJ+K+lwScfGGH9RYJ1HSXqZpIdJ2l3SOkl/knShpC/FGLdMs36XpJPzfw+UtJukzZKul/QDSR+LMd4xy5cEAADmOO5gAgBgfntrCOGwe7oTmLH3KisuTSuEUA0hfELSZZKeLmlfSd2S9pT0aEmflfSrEMIhU2zjXpJ+LunLkk6UtLekLkmLJR0p6Q2S/hJC+MfZviAAADC3UWACAGB+65F0bgiBMcEcEUJ4o6TTZ7DKu5XduSRJt0p6uaS/k/SPyu5ekqT7S/rvEMJis78Fyu5QelDe9CNJz5L0EEknSPqopC2SFkn6an6nFAAAmGd4RA4AABwr6ZWSPnJPdwSTyx+L+6ikl8xgnYMlvS7/8npJR8UYN0xY5JshhD9KOkvSocqKT+9p28yrJN03//zDMcb24tYlIYRvSrpY2Z1RnwohHB5jHCvaTwAAMPfx10oAAOavMUmj+efvDiEcdE92BpMLIRwj6afaWlxqFlz1NEm1/PNXtxWXxr1X0vr882eY7z8//3ibpDPcTmKMl0v6TP7lfSQdU7B/AABgF0GBCQCA+ash6ez88z5Jn7sH+4JJhBDeJ+kXko7Om76t4nebrVKWvXSLpEvcAvmdRn/Jv9y/bd97ShrPZrooxtiYYl8Tt/+Agv0DAAC7CB6RAwBgfnuHpKcqu+vkMSGEF8YYSxWa8tDwl0t6rKT9JFWUFTguk/TxGOOfJlnvx8pmtxuJMfZOsf2rlQVc3xRjPKDte63809dI+p6kcyQ9Qlkx7VpJb4gx/mjC8osl/YukkyTdT1K/pDWSrpT0n5LOjzGOqk0I4QBJN+RfPlXSdySdKum5ed/6ld3x80NJH4wxXjfZ6yngocqO4VpJr48xnhtCOLPIijHGc5Qdg0mFECraWlhqnwVuTNJbJe0j6cfT7K4y4fNJ3z8AALBr4g4mAADmsRjjiLICy3heztkhhH1nu70Qwlsl/UFZqHSQtFDZ3VFB2eNdfwghnJkXNbaneyl7pOyEfP9LJB2lrMg03tdHS7pG0geVhV4vVzYz2l6S/kHSeZKuzHOMptKnLPj6XGUFst2UhacfJOmlkv4YQjixxGtZJ+n9ku4dYzy3xHYm8wplr1mSvjrxGzHGu2KMZ8UYXxZj/No023nUhM9v6mD/AADAHMAdTAAAzHMxxp/m09i/Qlkh5tOSnjTT7eR31bw9//L3kj6Zf6wqm4HslZIOnrDMmWX6PY1XK7uj5gOSvqusgHJkjPHGvK/HKrvDaYGklqT/kPQ1SXdKOlBZ7tAJyu5q+kkI4UExxva7e8Z9MN/+LyR9QtnjZntL+ldJj1NWbPpiCOGgGOPALF7L0zoZmJ0X93aTdETex3/Mv/UbSR+a5Tb30Naspoayu9UAAMA8QoEJAABI0huVFZUOkPTEEMKzY4wXFF05hHCUskepJOl8Sc9ve7TspyGEcyX9t7I7Xd4WQvjaZI/LdUBV0ntijG+e0Pb1vK81ZXcnLVB259YzY4xfn7DcFZK+GkJ4m7JHCPdWFmD95En2tZey13zqxEJQCOE7yl7viZJ2l/QEtd0hVMR2mI3tc5Je0NZ2rqT/N5sCWF6w+ryy4qQkfX6SMHEAALAL4xE5AACgGOOgpBdNaPpoCGH3GWzitcrGFWskvcTlFuX7eL6yO4Yqyu6Y2p4+NUn7k5RlTknSp9qKS38TY3yntuYOPSmEcN9JtjesbIa2bQpBMcaWtg1O31mCr1eatuMlvTCEMJux4Ye09Y6327X1DjUAADCPUGACAACSpBjjJZK+kH+5m6SPF1kvv4PlH/IvfxpjHJpiHzdI+nP+5WNn2dUibosx3jrJ9/5+wuefmWY7n5zw+eMnWeY3Mca1k3xvYrh3/zT72lE+KemRkh4u6XRlAewrlT1O+B8zKTKFEM5W9jiiJG2RdHKM8a7OdhcAAMwFPCIHAAAmOl1ZIWVvSc8MIVwYY/z2NOscIGlZ/vmTJ8zkNp0DZ9fFQm6Z4nv3yz8OSLp6mu38YsLnR0yyzI1TrD/xkbOdYtwVY/zmhC9/FkL4krKQ8gdKOlnSJcoeIZxUCKGu7A6xf8mbRiWdEmP8Sed7DAAA5gLuYAIAAH8TY1yvLPh53KdCCEunWW23We6uHkLYXnf1bJzieyvyj3fnj7FN5c4Jny+fZJmpcosmbn97z5w3K/ndV8+d0PT8yZaVpPw9+662FpfG71yyjxoCAID5gQITAADYRn6Hy3/mX+6tbJa0qUy8M+c8ZXfCFP036eN0UygyfpmqcDSTQk9twuedDtveacQYr1Y2+50k3X+y5UII+0r6ibY+Ljgo6ckxxm9s3x4CAICd3U5xqzYAANjpvFzSY5Td7fP8EMJXplh2Yv5QM8Z41Sz3OV4Umq4AtGSa709nvL+7hRAq09zFtKdZb84IIewj6WBl78vPpll8Tf6xe5JtHars8bn986bVkp4YY/xVJ/oKAADmNu5gAgAAiRjjakmvmdD0WUkLJ1n8em29E+mh0207hHBGCOHFIYTj2741PvNcdwih1r5evu4CSTOZ3c75ff5xkaTDp1l24uu5puR+d6g8fP0aSf+r7P2bbtmD8i+TcPQQwkGSLtPW4tK1ko6luAQAAMZRYAIAAFaM8XxJF+VfHiDplEmWaygrPkjSESGER0y2zRDCYyS9T9KnJb2p7dvrJ3x+wCSbOF5S11T9LuDiCZ+/eJplXzLh80tK7neHyu/M+mn+5eEhhIdMsfgTtPVurW1eZwihT9L3JO2TN10p6WExxus72F0AADDHUWACAABTebGkTfnnUxV2PjTh8y+GEO7VvkAIYQ9teyfNx9oW+f2Ez19h1t9T0tlT9raY7yi7A0eSXhZCeKpbKITwVknH5V9eWuLRv3vSJyd8/ukQQvJ4YQghSPp8/mVD276XUnbM75N/fp2kx8YY7+p0RwEAwNxGBhMAbD9Fp2oHdqhjjjlGV1xxhbq7u3s0zXkaY9QFF1ygd7zjHdu0X3rppTe0L3fmmWfqwgsvlKSDlyxZcvM555yjY445RpJ09dVXa4899tDq1aslSY973ON0zjnnfHPiNi6++GKdeOKJGh0dlaRXvelNb3rVE57wBPX09Oiqq6762/r777+/br75Zu27774rJ+v/Ix7xiL+f7HsxRl111VV6znOeo0ajUa1Wq/91xhln6PGPf7xWrFih2267TV//+tYJ0ZYtW6Zvf/vbj23b3oFTHbedRYzxuyGEr0p6pqQjJf0phPABZXch1SQ9Tlne1vhsfq+KMf51fP0QwgGSXjRhk++RtDKEsHKaXa+KMa7qzKsAsBNgTAPs2joy0y0FJgAAMKVnPetZ+v73v69f/WrquJ23vvWt6unp0Ze+9CVt2LBBH//4x+1yJ5xwgs4+O70RaeXKlXrTm96ks846S2NjY/rGN76hb3xj6+Rk1WpVp59+utavX6/zzjuv1Gs68sgj9fnPf16vec1rtHbtWn3rW9/St771rWS5ww8
2019-10-16 05:30:40 +00:00
"text/plain": [
"<Figure size 1200x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
2019-10-17 17:49:59 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYJVVh/vG3b+/dsy8MwzqsByUioCGQkJ8iLuCCoHEFDWoiJm64hYiBgEGjMSoCiqLiGowoCGowKrjELWJUVBAPIAz7MszSs/T0drt/f5y6zJ173tt9e6pnGGa+n+eZp6erazm13KpT51a9p21iYkIAAAAAAADAlqo82gUAAAAAAADAYxsNTAAAAAAAACiFBiYAAAAAAACUQgMTAAAAAAAASqGBCQAAAAAAAKXQwAQAAAAAAIBSaGACAAAAAABAKTQwAQAAAAAAoBQamAAAAAAAAFAKDUwAAAAAAAAohQYmAAAAAAAAlEIDEwAAAAAAAEqhgQkAAAAAAACl0MAEAAAAAACAUjoe7QIAAIBtK4TwA0lPKX79pxjje1qc7iJJry9+3SfGuHzmS4dmQgh/Kuk0ScdIWippTFKUdIWki2KM66eYfh9Jp0t6pqS9JLVJulvStZLOjzHeOsX07ZJOkfQKSYdKmi3pAUnXS7o0xvitLV45AADwmNc2MTHxaJcBAABsQw0NTMOSDosx3tzCdDQwPQpCCG2SPiDprUqNQs5tko6LMf6xyTxeJOmzkvqaTD8s6bUxxs83mX6BpG9I+vNJinqFpFfGGAcnGQcAAOygeEUOAICdW7ekT4cQqBNsvz4o6W3a9MTRGyUdLel5kr5ZjLO/pG+GELobJw4hHCHpP5Qal6qSLpT0bEnPkPSvkkaUjoPPhBCeYaavSPq6NjUu/UzpSaajlZ5m+r9i+AslXVpuVQEAwGMVr8gBAICjJL1J0vmPdkGwuRDCUUqvtUnSjZKeFmNcUTfKN0MIl0p6laSDJL1a0sUNszlPUmfx/5fFGL9S97drQwjflvQ9pS8ePyjpkIbpXynpL4r/f0XSS2KMtUfgfxJCuEzSNZKeJeklIYQLYow/nf7aAgCAxzK+rQQAYOc1rpTjI0nvCSHs+2gWBtY5Sk8ujUl6YUPjUs3bJY0W//+r+j8UTzQdU/x6fUPjkiQpxvhDSV8rfn1CCGHvhlH+pvg5Kunv6hqXatOPSzqzbtCLJ1shAACwY6KBCQCAndeoUraPlF6f+uSjWBY0CCEskXRs8etnYoy3uPFijKuUXnX7mNKTRPUWaNMT63b6wo11/1/a8LffSfqFpO/EGFc2mb4+w2uvSZYDAAB2ULwiBwDAzu1cSScpvV71tBDC38YYSzU0hRAeJ+kNSo0je2hTdtD3JV0YY/x9k+l+oBQ+Phxj7Jlk/jdKOljSnTHGZQ1/qz1d8xZJ/yXpIqWsoFGlIOx/jDFeWzf+HKUndJ4v6U+UekZbKenXSq+DfSHGOKYGIYRlku4ofj1JKaPoVKXXyQ4u5nOvpG9L+mCz8O0pPENSe/H/L082Yozxn5v8aYXS008dSvu4mf3r/n9fw7z/bvJiSpLqn3q6v4XxAQDADoYnmAAA2InFGIeVGljGi0EfCCHsvqXzCyGcpfTEy99LCpL6lZ6OCpJeJ+l3IYRzip7RtqY9Jf1E0jOL5c+VdLhSI1OtrMdI+oNS7tD/U3rap1PSrpKOVwqs/nUIYb8pltUn6VpJn1ZqIFukFJq9r6S/k3RTCOHZW7AOT6j7fy1IWyGEjhDCshDC/i7Uu17ROFZ7qunJIYSTGscJIRwm6UXFr9fHGO+aTiFDCO2S/qVu0KSNYQAAYMfEE0wAAOzkYow/CSF8VKl3srmSPq7UQ9m0hBDOkVR7kua3Sq9s/VbpC60nKQWJ71c3zjllyj2F05WenPo3Sd9QajQ6NMa4vCjrUUpPOPVKmlDqZe1ySQ9K2kcpLPuZSk81/SiE8KQYY7Mncz5YzP9/JX1U6VW0pZJer/QUUrekz4YQ9o0xrp/GOjy++LkmxjhQPDX1bkkvUGq4k6SNIYSvS3rXJE9JvUPSEUUZLw8hXCjpO5KGlZ7uOkNSl9KTW69tpWBFo9JuSuHfb1fav5L0iRjj/7S8hgAAYIdBAxMAAJCkdyo1Ki2T9NwQwstjjJe1OnEI4XBJZxW/fkHSqxteLftJCOHTkr4p6amSzg4hXN7sdbkZUJH03hjju+qGfbUoa7vS00m9Sk9uvSTG+NW68a6X9OUQwtlKrxAulfQJSSc0WdauSut8ahF4rWI5X1da32dLWizpOZre0z2Lip9rQgjPkHSlpFkN4/RKeomkZ4cQXlD/+l9NjPGWEMKRSr3Jnaz0+uBbGka7QtI7Yox3NE7fRFRqLKwZkvRPkj7c4vQAAGAHwytyAABAMcYN2vzplY+EEBZPYxZvU6pXrJT0OpdbVCzj1UpPDLUpPTG1NV3cZPjztCmP6OKGxqVHxBjfLekHtWlCCI934yk1rpxe37hUTD+hzYPTn9hKoevUGpPmKTUA9Sg1Eu2n9FTUgUpPT00oZT5dEULY38xHkv5cKRuq2auJfynphSGEKeuGxeuNezYM7lHqPe65U00PAAB2TDQwAQAASVKM8buSPlP8ukjSha1MVzQ4HF/8+pMY4+Aky7hDm3ocO7bZeDPg3hjjPU3+9qy6/39iivl8rO7/xzUZ55dFT25O/Wtrs6dYVqO+4uc8pcamF8cYz4ox3h5jHIkx3hpjfLtSoLokzZH03saZhBDeK+kySYdJ+qnSa3uzin/HSvqhpF2UehT8dAuNTN1KDYVHSnq60muIg0qv4V0VQnj9NNcTAADsAHhFDgAA1HurUkPKUkkvCSF8KcZ49RTTLJM0v/j/CXU9uU1lny0rYkvunuRvf1L8XC/pxinm8791/39Ck3GWTzJ9febSdOtdG+v+/7UY49fcSDHGj4UQXqv0hNSJIYT+4mkxhRBOUHr9UZL+W9IJMcbRusm/F0L4oaQvSnqpUk94P1fK4bJijENKmVU114UQvqT0tNdcSeeHEK6NMcaW1xQAADzm8QQTAAB4RIxxjVI4dc3FIYR5U0y2aIq/N9MRQpjuUz2tWjvJ3xYWPx8uXmObzIN1/1/QZJzJgrvr5z/dnvPW1f3fNi7V+Ubxs1Opt7ya2r4cl3RaQ+OSJCnGWFXq7a62zd7QOM5UYow3SKrlXXVIesV05wEAAB7baGACAACbKZ6U+Urx61KlnJ/J1D+Zc6nSq1it/mv6Ot0kWqm/TNZwNJ2Gnva6/483HWvrqO+17t4pxq1/Yqu+we9Pi5+/jTHe1WziomHx+8WvB4cQGsPEW3Fl3f8P2YLpAQDAYxivyAEAAOcNkp6m9LTPq0MI/znJuPX5Q9XiaZYtUWsUmqoBaO4Wzr+mVt5FIYS2KZ5iWmKm21Z+J+mk4v/zJxtRKRepZnXd/2sNRWtaWN5Ddf+fI2l90ePeMqVg8TtijLdOMv3Kuv93tbA8AACwA+EJJgAAkIkxPqTNu7K/RFJ/k9Fv16YnkY6cat4hhDNCCKeFEJ7e8Kdaz3NdRcOGm7ZX0nR6t3N+W/ycpdSz2mTq1+cPJZc7XfX5T1Nt1/r1WF73/xXFz31bWN7uxc9xSQ8X/z9M0m2Svi3pzVNMv1/d/5sFrAMAgB0UDUwAAMCKMX5B0reKX5dJOrnJeKPa9HrVE0IIRzebZwjhaZLepxQifWbDn+ufslnWZBZPV8oZKuM7df8/bYpxX1f3/++WXO50XatNDT2nNMurCiH0S3ph8etvYozL6/78o+LnXiGEpzRbUAhhV0nHFL9eH2McKf7/O0kDxf9fUiyrmdfU/X9bbysAAPAoo4EJAABM5jRtCpuerGHnQ3X//2wIYc/GEUIIuyg9CVVzQcMov637/xvN9EskfWDS0rbm60pP5UjS34cQTnIjhRDOklRrlLmuxKt/W6RouPtw8etSSZ8KIWy2D0IIFaXGulru0sUNs/lo3f8/GULYveHvCiH0KfUK11sMurCuDMOSPl38ukjSR4plNs7jhZJOL369VZvnMQE
2019-10-16 05:30:40 +00:00
"text/plain": [
2019-10-17 17:49:59 +00:00
"<Figure size 1200x600 with 4 Axes>"
2019-10-16 05:30:40 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"for unit_id, id_num in results_id_map.items():\n",
" sessions = once_a_gridcell.query(f'unit_id==\"{unit_id}\"')\n",
" n_action = sessions.date.nunique()\n",
" fig, axs = plt.subplots(n_action, 4, sharey=True, sharex=True, figsize=(8, n_action*4))\n",
" sns.despine(left=True, bottom=True)\n",
" fig.suptitle(f'Neuron {id_num}')\n",
" if n_action == 1:\n",
" axs = [axs]\n",
" waxs = None\n",
" for ax, (date, rows) in zip(axs, sessions.groupby('date')):\n",
" entity = rows.iloc[0].entity\n",
" ax[0].set_ylabel(f'{entity}-{date}')\n",
" for _, row in rows.iterrows():\n",
" action_id = row['action']\n",
" channel_id = row['channel_group']\n",
" unit_name = row['unit_name']\n",
" rate_map = data_loader.rate_map(action_id, channel_id, unit_name, smoothing_low)\n",
" idx = row.session_id\n",
2019-10-17 17:49:59 +00:00
" ax[idx].imshow(rate_map, origin='lower')\n",
2019-10-16 05:30:40 +00:00
" ax[idx].set_title(f'{row.gridness:.2f} {row.max_rate:.2f}')\n",
" ax[idx].set_yticklabels([])\n",
" ax[idx].set_xticklabels([])\n",
" plt.tight_layout()\n",
" fig.savefig(output_path / 'figures' / f'neuron_{id_num}_rate_map.png', bbox_inches='tight')\n",
" fig.savefig(output_path / 'figures' / f'neuron_{id_num}_rate_map.svg', bbox_inches='tight')\n",
" \n",
" # waveforms\n",
"# template = data_loader.template(action_id, channel_id, unit_name)\n",
"# if waxs is None:\n",
"# wfig, waxs = plt.subplots(1, template.data.shape[0], sharey=True, sharex=True)\n",
"# for i, wax in enumerate(waxs):\n",
"# wax.plot(template.data[i,:]) \n",
"# if i > 0:\n",
"# ax.set_yticklabels([])"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
2019-10-17 17:49:59 +00:00
"outputs": [],
2019-10-16 05:30:40 +00:00
"source": [
"from scipy.interpolate import interp1d\n",
"\n",
"\n",
"for unit_id, id_num in results_id_map.items():\n",
" sessions = once_a_gridcell.query(f'unit_id==\"{unit_id}\"')\n",
" n_action = sessions.date.nunique()\n",
" fig, axs = plt.subplots(n_action, 4, sharey=True, sharex=True, figsize=(8, n_action*4))\n",
2019-10-17 17:49:59 +00:00
" sns.despine(left=True, bottom=True)\n",
2019-10-16 05:30:40 +00:00
" fig.suptitle(f'Neuron {id_num}')\n",
" if n_action == 1:\n",
" axs = [axs]\n",
" waxs = None\n",
" for ax, (date, rows) in zip(axs, sessions.groupby('date')):\n",
" entity = rows.iloc[0].entity\n",
" ax[0].set_ylabel(f'{entity}-{date}')\n",
" for _, row in rows.iterrows():\n",
" action_id = row['action']\n",
" channel_id = row['channel_group']\n",
" unit_name = row['unit_name']\n",
" idx = row.session_id\n",
" x, y, t, speed = map(data_loader.tracking(action_id).get, ['x', 'y', 't', 'v'])\n",
" ax[idx].plot(x, y, 'k', alpha=0.3)\n",
" spike_times = data_loader.spike_train(action_id, channel_id, unit_name)\n",
" spike_times = spike_times[(spike_times > min(t)) & (spike_times < max(t))]\n",
" x_spike = interp1d(t, x)(spike_times)\n",
" y_spike = interp1d(t, y)(spike_times)\n",
" ax[idx].set_xticks([])\n",
" ax[idx].set_yticks([])\n",
" ax[idx].scatter(x_spike, y_spike, marker='.', color=(0.7, 0.2, 0.2), s=1.5)\n",
" ax[idx].set_title(f'{row.session}')\n",
" ax[idx].set_yticklabels([])\n",
" ax[idx].set_xticklabels([])\n",
" for a in ax:\n",
" a.set_aspect(1)\n",
" plt.tight_layout()\n",
2019-10-17 17:49:59 +00:00
" fig.savefig(\n",
" output_path / 'figures' / f'neuron_{id_num}_spike_map.png', \n",
" bbox_inches='tight', transparent=True)\n",
" fig.savefig(\n",
" output_path / 'figures' / f'neuron_{id_num}_spike_map.svg', \n",
" bbox_inches='tight')"
2019-10-16 05:30:40 +00:00
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [],
"source": [
"plt.rc('axes', titlesize=12)\n",
"plt.rcParams.update({\n",
" 'font.size': 12, \n",
" 'figure.figsize': (6, 4), \n",
" 'figure.dpi': 150\n",
"})\n",
"cmap = ['#1b9e77','#d95f02','#7570b3']"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
2019-10-17 17:49:59 +00:00
"outputs": [],
"source": [
"len(results_gridness)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
2019-10-16 05:30:40 +00:00
"source": [
"msize = 9\n",
"fig = plt.figure()\n",
"ticks = []\n",
2019-10-17 17:49:59 +00:00
"nuids = {}\n",
"n = 0\n",
2019-10-16 05:30:40 +00:00
"for i, pairs in enumerate(results_gridness):\n",
" for j, pair in enumerate(pairs):\n",
2019-10-17 17:49:59 +00:00
" nuid = results_unit_id[i][j]\n",
" if nuid not in nuids:\n",
" nuids[nuid] = n\n",
" n += 1\n",
2019-10-16 05:30:40 +00:00
" plt.plot(\n",
2019-10-17 17:49:59 +00:00
" nuids[nuid], np.diff(pair), \n",
2019-10-16 05:30:40 +00:00
" color=cmap[i], marker='.', ls='none', markersize=msize)\n",
2019-10-17 17:49:59 +00:00
"for l in range(n):\n",
2019-10-16 05:30:40 +00:00
" plt.axvline(l, color='k', lw=.1, alpha=.5)\n",
"\n",
"from matplotlib.lines import Line2D\n",
"\n",
"labels = ['Baseline I vs baseline II', 'Baseline I vs stim I', 'Baseline II vs stim II']\n",
"custom_lines = [\n",
" Line2D([],[], color=cmap[i], marker='.', ls='none', label=label, markersize=msize) \n",
" for i, label in enumerate(labels)\n",
"]\n",
2019-10-17 17:49:59 +00:00
"plt.ylabel('Difference in gridness')\n",
2019-10-16 05:30:40 +00:00
"plt.xlabel('Neuron')\n",
"plt.legend(handles=custom_lines, bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
"fig.savefig(output_path / 'figures' / 'neuron_gridness.png', bbox_inches='tight')\n",
"fig.savefig(output_path / 'figures' / 'neuron_gridness.svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
2019-10-17 17:49:59 +00:00
"outputs": [],
2019-10-16 05:30:40 +00:00
"source": [
"fig = plt.figure()\n",
"labels = ['Baseline I vs baseline II', 'Baseline I vs stim I', 'Baseline II vs stim II']\n",
"for i, pairs in enumerate(results_gridness):\n",
" for j, pair in enumerate(pairs):\n",
" plt.plot(*pair, color=cmap[i], marker='.', ls='none', markersize=msize)\n",
"# plt.scatter(*np.array(pairs).T, label=labels[i], color=cmap[i])\n",
"# plt.legend(bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
"custom_lines = [\n",
" Line2D([],[], color=cmap[i], marker='.', ls='none', label=label, markersize=msize) \n",
" for i, label in enumerate(labels)\n",
"]\n",
"plt.legend(handles=custom_lines, bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
"plt.ylabel('Gridness')\n",
"plt.xlabel('Baseline gridness')\n",
"lim = [-.7, 1.35]\n",
"plt.ylim(lim)\n",
"plt.xlim(lim)\n",
"plt.plot(lim, lim, '--k', alpha=.5, lw=1)\n",
"fig.savefig(output_path / 'figures' / 'baseline_gridness_vs_other.png', bbox_inches='tight')\n",
"fig.savefig(output_path / 'figures' / 'baseline_gridness_vs_other.svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
2019-10-17 17:49:59 +00:00
"outputs": [],
2019-10-16 05:30:40 +00:00
"source": [
"fig = plt.figure()\n",
"import matplotlib\n",
"cNorm = matplotlib.colors.Normalize(vmin=-np.pi/2, vmax=np.pi/2)\n",
"scalarMap = plt.cm.ScalarMappable(norm=cNorm, cmap=plt.cm.Blues)\n",
"\n",
"ticks = []\n",
"for i, pairs in enumerate(results_gridness):\n",
" for j, pair in enumerate(pairs):\n",
" angle = float(np.arctan(np.diff(pair) / 0.9))\n",
" color = scalarMap.to_rgba(angle)\n",
"# color = plt.cm.Paired((np.sign(angle)+1)/14)\n",
" tick = (i, i+.8)\n",
" plt.plot(tick, pair, marker='.', color=color)\n",
" ticks.append(tick)\n",
"plt.xticks(\n",
" [t for tick in ticks for t in tick], \n",
" ['Baseline I', 'Baseline II', 'Baseline I', 'Stimulation I', 'Baseline II', 'Stimulation II'],\n",
" rotation=-45, ha='left'\n",
")\n",
"plt.ylabel('Gridness')\n",
"fig.savefig(output_path / 'figures' / 'stickplot_gridness.png', bbox_inches='tight')\n",
"fig.savefig(output_path / 'figures' / 'stickplot_gridness.svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
2019-10-17 17:49:59 +00:00
"outputs": [],
2019-10-16 05:30:40 +00:00
"source": [
"fig = plt.figure()\n",
"ticks = [0,0.6,1.2]\n",
"\n",
"diff_res = [[], [], []]\n",
"for i, pairs in enumerate(results_gridness):\n",
" for j, pair in enumerate(pairs):\n",
2019-10-17 17:49:59 +00:00
"# if results_unit_id[i][j] in [results_id_map[i] for i in exclude]:\n",
"# continue\n",
" diff_res[i].append(np.diff(pair))\n",
2019-10-16 05:30:40 +00:00
"violins = plt.violinplot(\n",
" diff_res, ticks, showmedians=True, showextrema=False, points=1000, bw_method=.2)\n",
"\n",
"\n",
"for category in ['cbars', 'cmins', 'cmaxes', 'cmedians']:\n",
" if category in violins:\n",
" violins[category].set_color(['k', 'k'])\n",
" violins[category].set_linewidth(2.0)\n",
" \n",
"colors = plt.cm.Paired(np.linspace(0,1,12))\n",
" \n",
"for pc, c in zip(violins['bodies'], cmap):\n",
" pc.set_facecolor(c)\n",
" pc.set_edgecolor(c)\n",
" \n",
"plt.xticks(ticks, ['baseline', 'stim i', 'stim ii'])\n",
2019-10-17 17:49:59 +00:00
"plt.ylabel('Difference in gridness')\n",
2019-10-16 05:30:40 +00:00
"\n",
"plt.gca().spines['top'].set_visible(False)\n",
"plt.gca().spines['right'].set_visible(False)\n",
"fig.savefig(output_path / 'figures' / 'violins_gridness_difference.png', bbox_inches='tight')\n",
"fig.savefig(output_path / 'figures' / 'violins_gridness_difference.svg', bbox_inches='tight')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Save to expipe"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [],
"source": [
"action = project.require_action(\"longitudinal-comparisons-gridcells\")"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
2019-10-17 17:49:59 +00:00
"outputs": [],
2019-10-16 05:30:40 +00:00
"source": [
"copy_tree(output_path, str(action.data_path()))"
]
},
{
"cell_type": "code",
2019-10-17 17:49:59 +00:00
"execution_count": null,
2019-10-16 05:30:40 +00:00
"metadata": {},
"outputs": [],
"source": [
"septum_mec.analysis.registration.store_notebook(action, \"20_longitudinal_comparisons_gridcells.ipynb\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}