2594 lines
22 MiB
Plaintext
2594 lines
22 MiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 1,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"%load_ext autoreload\n",
|
|||
|
"%autoreload 2"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"09:05:14 [I] klustakwik KlustaKwik2 version 0.2.6\n",
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
|
|||
|
" return f(*args, **kwds)\n",
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
|
|||
|
" return f(*args, **kwds)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import os\n",
|
|||
|
"import pathlib\n",
|
|||
|
"import numpy as np\n",
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"from matplotlib import colors\n",
|
|||
|
"import seaborn as sns\n",
|
|||
|
"import re\n",
|
|||
|
"import shutil\n",
|
|||
|
"import pandas as pd\n",
|
|||
|
"import scipy.stats\n",
|
|||
|
"\n",
|
|||
|
"import exdir\n",
|
|||
|
"import expipe\n",
|
|||
|
"from distutils.dir_util import copy_tree\n",
|
|||
|
"import septum_mec\n",
|
|||
|
"import spatial_maps as sp\n",
|
|||
|
"import head_direction.head as head\n",
|
|||
|
"import septum_mec.analysis.data_processing as dp\n",
|
|||
|
"import septum_mec.analysis.registration\n",
|
|||
|
"from septum_mec.analysis.plotting import violinplot\n",
|
|||
|
"\n",
|
|||
|
"from spike_statistics.core import permutation_resampling\n",
|
|||
|
"\n",
|
|||
|
"from tqdm import tqdm_notebook as tqdm\n",
|
|||
|
"from tqdm._tqdm_notebook import tqdm_notebook\n",
|
|||
|
"tqdm_notebook.pandas()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"project_path = dp.project_path()\n",
|
|||
|
"project = expipe.get_project(project_path)\n",
|
|||
|
"actions = project.actions\n",
|
|||
|
"\n",
|
|||
|
"output_path = pathlib.Path(\"output\") / \"longitudinal-comparisons-gridcells\"\n",
|
|||
|
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
|
|||
|
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Load cell statistics and shuffling quantiles"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>action</th>\n",
|
|||
|
" <th>baseline</th>\n",
|
|||
|
" <th>entity</th>\n",
|
|||
|
" <th>frequency</th>\n",
|
|||
|
" <th>i</th>\n",
|
|||
|
" <th>ii</th>\n",
|
|||
|
" <th>session</th>\n",
|
|||
|
" <th>stim_location</th>\n",
|
|||
|
" <th>stimulated</th>\n",
|
|||
|
" <th>tag</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>burst_event_ratio</th>\n",
|
|||
|
" <th>bursty_spike_ratio</th>\n",
|
|||
|
" <th>gridness</th>\n",
|
|||
|
" <th>border_score</th>\n",
|
|||
|
" <th>information_rate</th>\n",
|
|||
|
" <th>information_specificity</th>\n",
|
|||
|
" <th>head_mean_ang</th>\n",
|
|||
|
" <th>head_mean_vec_len</th>\n",
|
|||
|
" <th>spacing</th>\n",
|
|||
|
" <th>orientation</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.397921</td>\n",
|
|||
|
" <td>0.676486</td>\n",
|
|||
|
" <td>-0.459487</td>\n",
|
|||
|
" <td>0.078474</td>\n",
|
|||
|
" <td>0.965845</td>\n",
|
|||
|
" <td>0.309723</td>\n",
|
|||
|
" <td>5.788704</td>\n",
|
|||
|
" <td>0.043321</td>\n",
|
|||
|
" <td>0.624971</td>\n",
|
|||
|
" <td>22.067900</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.146481</td>\n",
|
|||
|
" <td>0.277121</td>\n",
|
|||
|
" <td>-0.615405</td>\n",
|
|||
|
" <td>0.311180</td>\n",
|
|||
|
" <td>0.191375</td>\n",
|
|||
|
" <td>0.032266</td>\n",
|
|||
|
" <td>1.821598</td>\n",
|
|||
|
" <td>0.014624</td>\n",
|
|||
|
" <td>0.753333</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.373466</td>\n",
|
|||
|
" <td>0.658748</td>\n",
|
|||
|
" <td>-0.527711</td>\n",
|
|||
|
" <td>0.131660</td>\n",
|
|||
|
" <td>3.833587</td>\n",
|
|||
|
" <td>0.336590</td>\n",
|
|||
|
" <td>4.407614</td>\n",
|
|||
|
" <td>0.121115</td>\n",
|
|||
|
" <td>0.542877</td>\n",
|
|||
|
" <td>27.758541</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.097464</td>\n",
|
|||
|
" <td>0.196189</td>\n",
|
|||
|
" <td>-0.641543</td>\n",
|
|||
|
" <td>0.274989</td>\n",
|
|||
|
" <td>0.153740</td>\n",
|
|||
|
" <td>0.068626</td>\n",
|
|||
|
" <td>6.128601</td>\n",
|
|||
|
" <td>0.099223</td>\n",
|
|||
|
" <td>0.484916</td>\n",
|
|||
|
" <td>11.309932</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.248036</td>\n",
|
|||
|
" <td>0.461250</td>\n",
|
|||
|
" <td>-0.085292</td>\n",
|
|||
|
" <td>0.198676</td>\n",
|
|||
|
" <td>0.526720</td>\n",
|
|||
|
" <td>0.033667</td>\n",
|
|||
|
" <td>1.602362</td>\n",
|
|||
|
" <td>0.051825</td>\n",
|
|||
|
" <td>0.646571</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>5 rows × 34 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" action baseline entity frequency i ii session \\\n",
|
|||
|
"0 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"1 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"2 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"3 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"4 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"\n",
|
|||
|
" stim_location stimulated tag ... burst_event_ratio \\\n",
|
|||
|
"0 NaN False baseline ii ... 0.397921 \n",
|
|||
|
"1 NaN False baseline ii ... 0.146481 \n",
|
|||
|
"2 NaN False baseline ii ... 0.373466 \n",
|
|||
|
"3 NaN False baseline ii ... 0.097464 \n",
|
|||
|
"4 NaN False baseline ii ... 0.248036 \n",
|
|||
|
"\n",
|
|||
|
" bursty_spike_ratio gridness border_score information_rate \\\n",
|
|||
|
"0 0.676486 -0.459487 0.078474 0.965845 \n",
|
|||
|
"1 0.277121 -0.615405 0.311180 0.191375 \n",
|
|||
|
"2 0.658748 -0.527711 0.131660 3.833587 \n",
|
|||
|
"3 0.196189 -0.641543 0.274989 0.153740 \n",
|
|||
|
"4 0.461250 -0.085292 0.198676 0.526720 \n",
|
|||
|
"\n",
|
|||
|
" information_specificity head_mean_ang head_mean_vec_len spacing \\\n",
|
|||
|
"0 0.309723 5.788704 0.043321 0.624971 \n",
|
|||
|
"1 0.032266 1.821598 0.014624 0.753333 \n",
|
|||
|
"2 0.336590 4.407614 0.121115 0.542877 \n",
|
|||
|
"3 0.068626 6.128601 0.099223 0.484916 \n",
|
|||
|
"4 0.033667 1.602362 0.051825 0.646571 \n",
|
|||
|
"\n",
|
|||
|
" orientation \n",
|
|||
|
"0 22.067900 \n",
|
|||
|
"1 0.000000 \n",
|
|||
|
"2 27.758541 \n",
|
|||
|
"3 11.309932 \n",
|
|||
|
"4 0.000000 \n",
|
|||
|
"\n",
|
|||
|
"[5 rows x 34 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"statistics_action = actions['calculate-statistics']\n",
|
|||
|
"identification_action = actions['identify-neurons']\n",
|
|||
|
"sessions = pd.read_csv(identification_action.data_path('sessions'))\n",
|
|||
|
"units = pd.read_csv(identification_action.data_path('units'))\n",
|
|||
|
"session_units = pd.merge(sessions, units, on='action')\n",
|
|||
|
"statistics_results = pd.read_csv(statistics_action.data_path('results'))\n",
|
|||
|
"statistics = pd.merge(session_units, statistics_results, how='left')\n",
|
|||
|
"statistics.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 5,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"stim_response_action = actions['stimulus-response']\n",
|
|||
|
"stim_response_results = pd.read_csv(stim_response_action.data_path('results'))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"statistics = pd.merge(statistics, stim_response_results, how='left')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"N cells: 1298\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print('N cells:',statistics.shape[0])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>border_score</th>\n",
|
|||
|
" <th>gridness</th>\n",
|
|||
|
" <th>head_mean_ang</th>\n",
|
|||
|
" <th>head_mean_vec_len</th>\n",
|
|||
|
" <th>information_rate</th>\n",
|
|||
|
" <th>speed_score</th>\n",
|
|||
|
" <th>action</th>\n",
|
|||
|
" <th>channel_group</th>\n",
|
|||
|
" <th>unit_name</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>0.348023</td>\n",
|
|||
|
" <td>0.275109</td>\n",
|
|||
|
" <td>3.012689</td>\n",
|
|||
|
" <td>0.086792</td>\n",
|
|||
|
" <td>0.707197</td>\n",
|
|||
|
" <td>0.149071</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>127.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>0.362380</td>\n",
|
|||
|
" <td>0.166475</td>\n",
|
|||
|
" <td>3.133138</td>\n",
|
|||
|
" <td>0.037271</td>\n",
|
|||
|
" <td>0.482486</td>\n",
|
|||
|
" <td>0.132212</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>161.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>0.367498</td>\n",
|
|||
|
" <td>0.266865</td>\n",
|
|||
|
" <td>5.586395</td>\n",
|
|||
|
" <td>0.182843</td>\n",
|
|||
|
" <td>0.271188</td>\n",
|
|||
|
" <td>0.062821</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>191.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>0.331942</td>\n",
|
|||
|
" <td>0.312155</td>\n",
|
|||
|
" <td>5.955767</td>\n",
|
|||
|
" <td>0.090786</td>\n",
|
|||
|
" <td>0.354018</td>\n",
|
|||
|
" <td>0.052009</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>223.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>0.325842</td>\n",
|
|||
|
" <td>0.180495</td>\n",
|
|||
|
" <td>5.262721</td>\n",
|
|||
|
" <td>0.103584</td>\n",
|
|||
|
" <td>0.210427</td>\n",
|
|||
|
" <td>0.094041</td>\n",
|
|||
|
" <td>1833-010719-1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>225.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" border_score gridness head_mean_ang head_mean_vec_len information_rate \\\n",
|
|||
|
"0 0.348023 0.275109 3.012689 0.086792 0.707197 \n",
|
|||
|
"1 0.362380 0.166475 3.133138 0.037271 0.482486 \n",
|
|||
|
"2 0.367498 0.266865 5.586395 0.182843 0.271188 \n",
|
|||
|
"3 0.331942 0.312155 5.955767 0.090786 0.354018 \n",
|
|||
|
"4 0.325842 0.180495 5.262721 0.103584 0.210427 \n",
|
|||
|
"\n",
|
|||
|
" speed_score action channel_group unit_name \n",
|
|||
|
"0 0.149071 1833-010719-1 0.0 127.0 \n",
|
|||
|
"1 0.132212 1833-010719-1 0.0 161.0 \n",
|
|||
|
"2 0.062821 1833-010719-1 0.0 191.0 \n",
|
|||
|
"3 0.052009 1833-010719-1 0.0 223.0 \n",
|
|||
|
"4 0.094041 1833-010719-1 0.0 225.0 "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"shuffling = actions['shuffling']\n",
|
|||
|
"quantiles_95 = pd.read_csv(shuffling.data_path('quantiles_95'))\n",
|
|||
|
"quantiles_95.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>action</th>\n",
|
|||
|
" <th>baseline</th>\n",
|
|||
|
" <th>entity</th>\n",
|
|||
|
" <th>frequency</th>\n",
|
|||
|
" <th>i</th>\n",
|
|||
|
" <th>ii</th>\n",
|
|||
|
" <th>session</th>\n",
|
|||
|
" <th>stim_location</th>\n",
|
|||
|
" <th>stimulated</th>\n",
|
|||
|
" <th>tag</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>p_e_peak</th>\n",
|
|||
|
" <th>t_i_peak</th>\n",
|
|||
|
" <th>p_i_peak</th>\n",
|
|||
|
" <th>border_score_threshold</th>\n",
|
|||
|
" <th>gridness_threshold</th>\n",
|
|||
|
" <th>head_mean_ang_threshold</th>\n",
|
|||
|
" <th>head_mean_vec_len_threshold</th>\n",
|
|||
|
" <th>information_rate_threshold</th>\n",
|
|||
|
" <th>speed_score_threshold</th>\n",
|
|||
|
" <th>specificity</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.332548</td>\n",
|
|||
|
" <td>0.229073</td>\n",
|
|||
|
" <td>6.029431</td>\n",
|
|||
|
" <td>0.205362</td>\n",
|
|||
|
" <td>1.115825</td>\n",
|
|||
|
" <td>0.066736</td>\n",
|
|||
|
" <td>0.445206</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.354830</td>\n",
|
|||
|
" <td>0.089333</td>\n",
|
|||
|
" <td>6.120055</td>\n",
|
|||
|
" <td>0.073566</td>\n",
|
|||
|
" <td>0.223237</td>\n",
|
|||
|
" <td>0.052594</td>\n",
|
|||
|
" <td>0.097485</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.264610</td>\n",
|
|||
|
" <td>-0.121081</td>\n",
|
|||
|
" <td>5.759406</td>\n",
|
|||
|
" <td>0.150827</td>\n",
|
|||
|
" <td>4.964984</td>\n",
|
|||
|
" <td>0.027120</td>\n",
|
|||
|
" <td>0.393687</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.344280</td>\n",
|
|||
|
" <td>0.215829</td>\n",
|
|||
|
" <td>6.033364</td>\n",
|
|||
|
" <td>0.110495</td>\n",
|
|||
|
" <td>0.239996</td>\n",
|
|||
|
" <td>0.054074</td>\n",
|
|||
|
" <td>0.262612</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>1849-060319-3</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1849</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>baseline ii</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.342799</td>\n",
|
|||
|
" <td>0.218967</td>\n",
|
|||
|
" <td>5.768170</td>\n",
|
|||
|
" <td>0.054762</td>\n",
|
|||
|
" <td>0.524990</td>\n",
|
|||
|
" <td>0.144702</td>\n",
|
|||
|
" <td>0.133677</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>5 rows × 45 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" action baseline entity frequency i ii session \\\n",
|
|||
|
"0 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"1 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"2 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"3 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"4 1849-060319-3 True 1849 NaN False True 3 \n",
|
|||
|
"\n",
|
|||
|
" stim_location stimulated tag ... p_e_peak t_i_peak p_i_peak \\\n",
|
|||
|
"0 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"1 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"2 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"3 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"4 NaN False baseline ii ... NaN NaN NaN \n",
|
|||
|
"\n",
|
|||
|
" border_score_threshold gridness_threshold head_mean_ang_threshold \\\n",
|
|||
|
"0 0.332548 0.229073 6.029431 \n",
|
|||
|
"1 0.354830 0.089333 6.120055 \n",
|
|||
|
"2 0.264610 -0.121081 5.759406 \n",
|
|||
|
"3 0.344280 0.215829 6.033364 \n",
|
|||
|
"4 0.342799 0.218967 5.768170 \n",
|
|||
|
"\n",
|
|||
|
" head_mean_vec_len_threshold information_rate_threshold \\\n",
|
|||
|
"0 0.205362 1.115825 \n",
|
|||
|
"1 0.073566 0.223237 \n",
|
|||
|
"2 0.150827 4.964984 \n",
|
|||
|
"3 0.110495 0.239996 \n",
|
|||
|
"4 0.054762 0.524990 \n",
|
|||
|
"\n",
|
|||
|
" speed_score_threshold specificity \n",
|
|||
|
"0 0.066736 0.445206 \n",
|
|||
|
"1 0.052594 0.097485 \n",
|
|||
|
"2 0.027120 0.393687 \n",
|
|||
|
"3 0.054074 0.262612 \n",
|
|||
|
"4 0.144702 0.133677 \n",
|
|||
|
"\n",
|
|||
|
"[5 rows x 45 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"action_columns = ['action', 'channel_group', 'unit_name']\n",
|
|||
|
"data = pd.merge(statistics, quantiles_95, on=action_columns, suffixes=(\"\", \"_threshold\"))\n",
|
|||
|
"\n",
|
|||
|
"data['specificity'] = np.log10(data['in_field_mean_rate'] / data['out_field_mean_rate'])\n",
|
|||
|
"\n",
|
|||
|
"data.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Statistics about all cell-sessions"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"stimulated\n",
|
|||
|
"False 624\n",
|
|||
|
"True 674\n",
|
|||
|
"Name: action, dtype: int64"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"data.groupby('stimulated').count()['action']"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 11,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"data['date'] = data.apply(lambda row: row.action.split('-')[1], axis=1)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Find all cells with gridness above threshold"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Number of gridcells 226\n",
|
|||
|
"Number of animals 4\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"query = 'gridness > gridness_threshold and information_rate > information_rate_threshold'\n",
|
|||
|
"sessions_above_threshold = data.query(query)\n",
|
|||
|
"print(\"Number of gridcells\", len(sessions_above_threshold))\n",
|
|||
|
"print(\"Number of animals\", len(sessions_above_threshold.groupby(['entity'])))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"columns = [\n",
|
|||
|
" 'average_rate', 'gridness', 'sparsity', 'selectivity', 'information_specificity',\n",
|
|||
|
" 'max_rate', 'information_rate', 'interspike_interval_cv', \n",
|
|||
|
" 'in_field_mean_rate', 'out_field_mean_rate', \n",
|
|||
|
" 'burst_event_ratio', 'specificity', 'speed_score'\n",
|
|||
|
"]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"once_a_gridcell = data[data.unit_id.isin(sessions_above_threshold.unit_id)]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Number of gridcells in baseline i sessions 83\n",
|
|||
|
"Number of gridcells in stimulated 11Hz ms sessions 72\n",
|
|||
|
"Number of gridcells in baseline ii sessions 73\n",
|
|||
|
"Number of gridcells in stimulated 30Hz ms sessions 58\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"baseline_i = once_a_gridcell.query('baseline and i')\n",
|
|||
|
"stimulated_11 = once_a_gridcell.query('stimulated and frequency==11 and stim_location==\"ms\" and i')\n",
|
|||
|
"\n",
|
|||
|
"baseline_ii = once_a_gridcell.query('baseline and ii')\n",
|
|||
|
"stimulated_30 = once_a_gridcell.query('stimulated and frequency==30 and stim_location==\"ms\" and ii')\n",
|
|||
|
"\n",
|
|||
|
"print(\"Number of gridcells in baseline i sessions\", len(baseline_i))\n",
|
|||
|
"print(\"Number of gridcells in stimulated 11Hz ms sessions\", len(stimulated_11))\n",
|
|||
|
"\n",
|
|||
|
"print(\"Number of gridcells in baseline ii sessions\", len(baseline_ii))\n",
|
|||
|
"print(\"Number of gridcells in stimulated 30Hz ms sessions\", len(stimulated_30))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Plotting\n",
|
|||
|
"## TODO select units that are grid in baseline i"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 17,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"max_speed = 1, # m/s only used for speed score\n",
|
|||
|
"min_speed = 0.02, # m/s only used for speed score\n",
|
|||
|
"position_sampling_rate = 100 # for interpolation\n",
|
|||
|
"position_low_pass_frequency = 6 # for low pass filtering of position\n",
|
|||
|
"\n",
|
|||
|
"box_size = [1.0, 1.0]\n",
|
|||
|
"bin_size = 0.02\n",
|
|||
|
"smoothing_low = 0.03\n",
|
|||
|
"smoothing_high = 0.06"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 18,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"data_loader = dp.Data(\n",
|
|||
|
" position_sampling_rate=position_sampling_rate, \n",
|
|||
|
" position_low_pass_frequency=position_low_pass_frequency,\n",
|
|||
|
" box_size=box_size, bin_size=bin_size\n",
|
|||
|
")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 19,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"neuron_ids = once_a_gridcell.unit_id.unique()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 20,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"results_corr = [[], [], []]\n",
|
|||
|
"results_gridness = [[], [], []]\n",
|
|||
|
"results_unit_name = [[], [], []]\n",
|
|||
|
"results_unit_id = [[], [], []]\n",
|
|||
|
"results_id_map = {}\n",
|
|||
|
"nuid = 0\n",
|
|||
|
"for nid in neuron_ids:\n",
|
|||
|
" unit_sessions = once_a_gridcell.query(f'unit_id==\"{nid}\"')\n",
|
|||
|
" base_i = unit_sessions.query(\"baseline and i\")\n",
|
|||
|
" base_ii = unit_sessions.query(\"baseline and ii\")\n",
|
|||
|
" base = unit_sessions.query(\"baseline\")\n",
|
|||
|
" stim_i = unit_sessions.query(\"stimulated and i\")\n",
|
|||
|
" stim_ii = unit_sessions.query(\"stimulated and ii\")\n",
|
|||
|
" dfs = [(base_i, base_ii), (base_i, stim_i), (base_ii, stim_ii)]\n",
|
|||
|
" for i, pair in enumerate(dfs):\n",
|
|||
|
" for (_, row_1), (_, row_2) in zip(pair[0].iterrows(), pair[1].iterrows()):\n",
|
|||
|
" rate_map_1 = data_loader.rate_map(\n",
|
|||
|
" row_1['action'], row_1['channel_group'], row_1['unit_name'], smoothing_low)\n",
|
|||
|
" rate_map_2 = data_loader.rate_map(\n",
|
|||
|
" row_2['action'], row_2['channel_group'], row_2['unit_name'], smoothing_low)\n",
|
|||
|
" results_corr[i].append(np.corrcoef(rate_map_1.ravel(), rate_map_2.ravel())[0,1])\n",
|
|||
|
" results_gridness[i].append((row_1.gridness, row_2.gridness))\n",
|
|||
|
" results_unit_name[i].append((\n",
|
|||
|
" f'{row_1.action}_{row_1.channel_group}_{row_1.unit_name}', \n",
|
|||
|
" f'{row_2.action}_{row_2.channel_group}_{row_2.unit_name}'))\n",
|
|||
|
" assert row_1.unit_id == row_2.unit_id\n",
|
|||
|
" uid = row_2.unit_id\n",
|
|||
|
" if uid not in results_id_map:\n",
|
|||
|
" nuid += 1\n",
|
|||
|
" results_id_map[uid] = nuid\n",
|
|||
|
" results_unit_id[i].append(results_id_map[uid])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 21,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:14: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
|||
|
" \n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"def session_id(row):\n",
|
|||
|
" if row.baseline and row.i:\n",
|
|||
|
" n = 0\n",
|
|||
|
" elif row.stimulated and row.i:\n",
|
|||
|
" n = 1\n",
|
|||
|
" elif row.baseline and row.ii:\n",
|
|||
|
" n = 2\n",
|
|||
|
" elif row.stimulated and row.ii:\n",
|
|||
|
" n = 3\n",
|
|||
|
" else:\n",
|
|||
|
" raise ValueError('what')\n",
|
|||
|
" return n\n",
|
|||
|
" \n",
|
|||
|
"once_a_gridcell['session_id'] = once_a_gridcell.apply(session_id, axis=1)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 24,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"plt.rc('axes', titlesize=12)\n",
|
|||
|
"plt.rcParams.update({\n",
|
|||
|
" 'font.size': 12, \n",
|
|||
|
" 'figure.figsize': (6, 4), \n",
|
|||
|
" 'figure.dpi': 150\n",
|
|||
|
"})"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 58,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# exclude = [i for i, n in results_id_map.items() if n in [25,41]]\n",
|
|||
|
"exclude = [\n",
|
|||
|
" '751d2de8-faf1-4048-82db-34cbd64a7c1d',\n",
|
|||
|
" '9f6eb181-321a-4ef7-8e2d-870bac6ceb37'\n",
|
|||
|
"]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 52,
|
|||
|
"metadata": {
|
|||
|
"scrolled": true
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecbVV5//HvOWfa7RfupYNcij4iNlBjCbZgNCZiSYwaW7ChJpKoCbaoURN7NNjR2IlRMCoYI7/YTUBJjMGC5ZEiCEi/de7c6fP7Y+3jHGY9M7Nm9pm5c+Hzfr3ua2bW3WWdXdbZZ529v6sxNTUlAAAAAAAAYLGae7sCAAAAAAAA2LfRwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqKVnb1cAAADse8zsW5IeWv35and/Y+F875X059WfR7n7Vd2vHUqYWZ+k/5N0vKQHuvvFe7lKAABgH8YdTAAAoK7XmNlxe7sSWLA3K3UuAQAA1EYHEwAAqKtf0kfMjOuKfYSZvVLSS/d2PQAAwO0Hj8gBAIBueKCkv5B05t6uCGZXPRb3Lkkv2Nt1AQAAty980wgAAOqYlDRe/f5GMzt6b1YGszOz35J0kaY7lyb2YnUAAMDtDB1MAACgjjFJb69+Xy3pn/ZiXTALM3uLpIsl3bcqOl/cbQYAALqIR+QAAEBdr5f0BEl3lfQ7ZvY8d6/V0VSFhr9I0smSDpfUkHSNpG9Keo+7/3SW+b6lNLrdiLsPzLH8S5UCrq929y0z/m+q+vUlkv5d0nslnaTUmXa5pFe4+9c6pl8v6bmSHifp7pLWSbpV0iWSPivpbHcf1wxmtkXSL6s/nyDpi5JOlfTMqm7rJF0n6T8kvcPdr5jt9RR4gNI23CrpZe7+ETN7XY3lAQAA3AZ3MAEAgFrcfUSpg2WyKnq7mR222OWZ2Wsk/VjSn0kySWuU7o4ypce7fmxmrzOzRq2Kz+8IpUfKHlmtf4OkE5U6mdp1fbikn0t6h6SHSNpfUq+kgyU9WtJHJV1iZsfMs67Vkr4m6SNKHWSblcLTj5b0Qkk/MbPfr/Fatkl6q6Rj3f0jNZYDAAAQooMJAADU5u4XSXpf9ecGSWctZjnVXTVvkNSS9COlDqUHKd1B9JeSrlC6fvnb6t9SerFSR8/bJD1Y0h9LepO7X1XV9YFKdzgdImlK0j9Leqyk+0t6iqSvVMu5u6T/MrND5ljXOyQ9XOkxtmdUy3i8pK9W/98v6eNmtnaRr+WP3P0V7r5tkfMDAADMiUfkAABAt7xS0imStkh6jJk91d3/pXRmMztR0muqP8+W9OwZj5ZdZGYfkfQlSQ+T9FozO3e2x+W6oKnUofQ3HWX/WtW1pXR30iqlO7ee7O7/2jHd/0g6x8xeq/QI4SGSPqjUARU5WOk1n+ru7TvBZGZfVHq9vy/pAEl/IOmchb6QzmUCAAAsBe5gAgAAXeHuuyWd1lH0LjM7YAGL+Cula5NbJb0gyi2q1vFspTuGGpJOX3yNi3xglvJTlDKnJOkDMzqXfsPd3yDpW+15zOxusyxvWNKLZ3YEufuUbhucfq+SSgMAACw3OpgAAEDXuPtXJX2s+nOzpPeUzFflKT26+vMidx+aYx2/lPSz6s+TF1nVEte5+7Wz/N+jOn7/4DzLeX/H7783yzTfd/ets/xfZ7j3unnWBQAAsFfwiBwAAOi2lyp1pBwi6clm9ml3P3+eebZI2q/6/bEdI7nN56jFVbHINXP8392rn4OSLp1nORd3/H6PWaa5ao75Bzt+59oNAACsSNzBBAAAusrdt0v6846iD5jZxnlm27zI1fWY2VLd1bNzjv/bVP28pXqMbS43dvy+/yzTDM5SLqXHAduWeuQ8AACAReFbMAAA0HXu/gUz+6zSyGuHKI2S9pw5Zum8JvmoCh+tq8z6ON0cSr5km6vjaCEdPa2O3wnbBgAAt0t0MAEAgKXyIkm/o3S3z7PN7DNzTNuZPzTh7j9Y5DrbnULzdQBtWOTy29r13WxmjXnuYjoomA8AAOB2hUfkAADAknD3myS9pKPoQ5LWzDL5lZq+E+kB8y3bzF5uZs83s0fM+K/2yHN9ZtaaOV817ypJCxndLvKj6udaScfPM23n6/l5zfUCAACsSHQwAQCAJePuZ0u6oPpzi6SnzTLdmKRvVn/ew8xOmm2ZZvY7kt4i6SxJr5rx39s7ft8yyyIeIal3rnoX+ErH78+fZ9oXdPz+1ZrrBQAAWJHoYAIAAEvt+ZJ2Vb/P1bHzzo7fP25mR8ycwMwOVLoTqu3dMyb5UcfvpwfzHyTp7XPWtswXJV1e/f5nZvaEaCIze42kh1Z/fr3Go38AAAAr2h01g6l06GMA+yZGWQJWEHe/xsxeLun980z3DTP7gKQXSjpG0g/N7ExJ364mua+kl0o6tPr7C+5+3ozFfFrSa5Wucf6yGmHuM5KGlR5Ve3E1/xXVOhb7mibM7BlV3fok/auZ/bOkz0q6SdKRSqHmj6pmuUXSny52fQAAACvdHbWDCQAALK+zJD1F0kPmme50pc6gF0vaT9LrZ5nu85KePrPQ3S83sxcr3dnUlPTs6l/bpNJjdZsk/dUC6p9x94vN7PcknaOU6fTM6t9M/yfpye5+XZ31AQAArGQ8IgcAAJZcNcracyXtmWe6CXd/qaQTlDqlfi5pUNKYpOskfU7SH7j7H7l7uCx3f5+k+0n6Z0nXShqVdL2kcyWd5O5v7sqLSuv6pqRjJb1C0kVKo8SNSrpK0pckPUnSA9z98tmWAQAAcHvQmJq6Qz4tdod80cAdCI/IAQAAAMAy4g4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFroYAIAAAAAAEAtdDABAAAAAACgFjqYAAAAAAAAUAsdTAAAAAAAAKiFDiYAAAAAAADUQgcTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFroYAIAAAAAAEAtdDABAAAAAACgFjqYAAAAAAAAUAsdTAAAAAAAAKiFDiYAAAAAAADUQgcTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFroYAIAAAAAAEAtdDABAAAAAACgFjqYAAAAAAAAUAsdTAAAAAAAAKiFDiYAAAAAAADUQgcTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFroYAI
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAbwCAYAAAAvbOuuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFVh9/9vLb1O9yzMsMkOwaOoIC5xw6hofPRBjT7KksQFSRSMGnfh0bhB3OL+GEXjT6KioOAajUSNS9yTGFFR4CgwLI4IODPMTE/vVfX7495maup8u/t23+qZHvrzfr3mVdOn73LuUrfOPV33eyqtVksAAAAAAADAYlX3dgUAAAAAAACwb6ODCQAAAAAAAKXQwQQAAAAAAIBS6GACAAAAAABAKXQwAQAAAAAAoBQ6mAAAAAAAAFAKHUwAAAAAAAAohQ4mAAAAAAAAlEIHEwAAAAAAAEqhgwkAAAAAAACl0MEEAAAAAACAUuhgAgAAAAAAQCl0MAEAAAAAAKAUOpgAAAAAAABQCh1MAAAAAAAAKIUOJgAAAAAAAJRCBxMAAAAAAABKoYMJAAAAAAAApdT3dgUAAACwaK29XQEAS6qytysAAEXxDSYAAAAAAACUQgcTAAAAAAAASqGDCQAAAAAAAKXQwQQAAAAAAIBSCPkGAAALFkL4jqRH5T/+XYzxzQXn+0dJL8x/PCrGeGP3awfntttu0yWXXKLvf//7uvnmmzU2NqY1a9bo3ve+t0455RQ9+clPVr1O0xAAACxOpdVi8BEAALAwHR1ME5JOjDFeU2A+Opi6q1BD7qtf/ape+9rXanR0dNZp7ne/++kDH/iADjzwwK5VDkBpjCIHYJ/BI3IAAKCsPkkfDSHQrliGfvSjH+mVr3ylRkdH1dfXp+c+97m66KKLdPnll+vd7363HvzgB0uSrrrqKj3vec/T2NjYXq4xAADYF9EQBAAA3fAwSX+7tyuB3bVaLZ1//vlqNBrq6+vTJz7xCZ133nl6xCMeoeOPP16nnHKKLr74Yp1xxhmSpBijPv7xj+/lWgMAgH0RHUwAAKCMpqTp/P9vDiEcvTcrg91deeWVuuGGGyRJz3rWs3T/+98/maZSqeg1r3mN1q9fL0n64he/uEfrCAAA7h7oYAIAAGVMSXpH/v9BSR/Zi3VBh5/85Cd3/f/kk0+edbq+vj498IEPlCRt3LhRk5OTS143AABw98JQIQAAoKw3SXqapHtJOjmE8LwYY6mOphDCvSW9SNJjJR2qLOj2FknflvT+GOPVs8z3HWXh4xMxxv45lv9LSfeRdFOM8ciO380EZ79M0r9K+kdJJynrTLtO0nkxxn9vm361pL+W9GeS7itpWNJmSVdKulzSxTHGaXUIIRwpaWP+49Mk/YukMyU9O6/bsKRNkr4m6V0xxutn257ZHH/88Tr77LN1++2364gjjphz2vaBXyYmJtTb27vQ1QEAgBWMDiYAAFBKjHEihPDXkr6r7NvR7wghfDXGuGkxywshvE7SGyTVOn+V/3t+COECSW+KMS7lcLiHSfqBpP3byh6grJNppq6PkfQpSQd3zHuQpCfm/14eQnjqPB1Eg5L+XdJjOsqPlvQCSWeFEP5PjPGrC9mAhz70oXroQx8673RTU1P66U9/KkkaHh7W8PDwQlYDAADAI3IAAKC8GOMPJH0g/3GNpA8tZjkhhDdKOl9Z59IvJJ0j6eHKvkH0EknXK2u/vCH/t5ReKmmDpH+Q9EhJp0p6S4zxxryuD1P2DaeDJbUkfVLSUyQ9RNIZkr6eL+e+kr4XQujshGr3LmWdSz+W9Kx8GU+V9I38932SPhZCGOrStu3mc5/7nDZv3ixJOumkk5ZiFQAA4G6ObzABAIBu+b+SnizpSElPCiH8RYzxkqIzhxAeIOl1+Y8XSzqr49GyH4QQPirpK5IeLen1IYTLZntcrguqyjqUXttW9tm8rjVJF0kaUBZ0fnqM8bNt0/2XpM+EEF6v7BHCgyV9WFkHlHOQsm0+M8bYnCkMIfyLsu3938q+SXWKpM+U37RdbrrpJr3rXe+66+ezzjqrm4sHAAArBN9gAgAAXRFj3Cnp+W1F7wsh7D/b9MYrlLVNNks6x+UW5es4S9k3hiqSXrz4Ghdy4SzlT1aWOSVJF3Z0Lt0lxni+pO/MzBNCOG6W5Y1Leml751I+f0u7B6efUKTSRW3evFlnn322tm/fLkk69dRTdfzxx3dzFQAAYIWggwkAAHRNjPEbkv45/3GDpPcXmS+EUFGWVyRJP4gxjs6xjo2Srsl/fOwiq1rEphjjb2f53f9q+/+H51nOB9v+/4RZpvmfGOOWWX7Xnt3UtXCkO+64Q2eeeaY2bsxyxo877jj93d/9XbcWDwAAVhgekQMAAN32cmUdKQdLOj2EcGmM8UvzzHOkpHX5/5/SNpLbfI5aXBULuWWO3903fx2R9Mt5lvPjtv/fb5Zpbpxj/pG2/3el7XbzzTfrr/7qr3TzzTdLko466ih95CMfUX//rAPvAQAAzIlvMAEAgK6KMd4p6YVtRReGENbOM9uGRa6uHkJYqiHPts/xu/X56x8KjGR3W9v/95tlmpFZyqXsccAZlXnWNa8rr7xSp59++l2dS8cee6w+8YlPaMOGxR4CAAAAvsEEAACWQIzxCyGEy5WNvHawslHS/mqOWdrbJBep4KN1uVkfp5tDkT+yzdVxtJCOnlrb/5uzTrUHXHHFFTr33HM1MTEhSTrhhBP04Q9/WOvWrZtnTgAAgLnRwQQAAJbKiySdrOzbPmeFED49x7Tt+UONGOPPFrnOmU6h+TqA1ixy+TNm6rshhFCZ51tMB5r59rhPfepTuuCCC9RqZVV99KMfrfe+970aGBjYW1UCAAB3IzwiBwAAlkSM8XZJL2sr+idJq2aZ/Abt+ibSQ+dbdgjh3BDC2SGEx3X8ambkud4QQq1zvnzeAUkLGd3O+UX+OiTpPvNM274915Zc76JccsklOv/88+/qXDrttNP0wQ9+kM4lAADQNXQwAQCAJRNjvFjSFfmPR0r6y1mmm5L07fzH+4UQTpptmSGEkyW9TdKHJL2m49d3tv3/yFkW8ThJPXPVu4Cvt/3/7HmmPaft/98oud4F++EPf6gLLrhgV2XOOUcXXHCBajXb/wYAALAodDABAICldrakHfn/5+rYeXfb/z8WQjisc4IQwgHKvgk14/91TPKLtv+/2Mx/oKR3zFnbYv5F0nX5//8mhPA0N1EI4XWSHpX/+M0Sj/4tyo4dO3Tuueeq2cyin84880y97GUvm2cuAACAhSODCQAALKkY4y0hhHMlfXCe6b4VQrhQ0gskHSPp5yGE90r6j3ySB0l6uaR75D9/Icb4xY7FXCrp9craOC/JR5j7tKRxZY+qvTSf//p8HYvdpkYI4Vl53XolfTaE8ElJl0u6XdIRykLN/1c+yx8kPWex61usiy++WLfffrsk6ZBDDtGTnvQkXXPNNfPOd8wxx6i3t3epqwcAAO5G6GACAAB7wocknSHpT+aZ7sXKOoNeKmmdpDfNMt3nJT2zszDGeF0I4aXKvtlUlXRW/m9GU9ljdeslvWIB9U/EGH8cQniCpM8oy3R6dv6v008lnR5j3FRmfYtx2WWX3fX/TZs26RnPeEah+b75zW/q0EMPXapqAQCAuyEekQMAAEsuH2XtryWNzTNdI8b4ckknKuuUulbSiKQpSZskfU7SKTHGp8cY7bJijB+Q9GBJn5T0W0mTkm6VdJmkk2KMb+3KRmXr+rakP5J0nqQfKBslblLSjZK+Iuk0SQ+NMV432zKWypYtW3Trrbfu6dUCAIAVqjIzmggAAAD2OTTkgLu3yt6uAAAUxTeYAAAAAAAAUAodTAAAAAAAACiFDiYAAAAAAACUQgcTAAAAAAAASqGDCQAAAAAAAKXQwQQAAAAAAIBS6GACAAAAAABAKXQwAQAAAAAAoBQ6mAAAAAAAAFAKHUwAAAAAAAAohQ4mAAAAAAAAlEIHEwAAAAAAAEqhgwkAAAAAAACl0MEEAAAAAACAUuhgAgAAAAAAQCl
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcJVdd/vHn3tvb7JOQPYRMFviCCYJRQTbZwRAJiyhLBGOi7AoENRJAQVDRyJogyBJWY9gRFDTsCIjwQyIEyIGQlUAymSSz93q7f39UNXPnnqe7a7qqZ3pmPu/Xa17d93Qtp5Z7eu63q55qzczMCAAAAAAAAFis9r7uAAAAAAAAAPZvFJgAAAAAAABQCwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAtFJgAAAAAAABQCwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAtFJgAAAAAAABQCwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAtFJgAAAAAAABQy8C+7gAAANj/RMQXJT24fPmylNJfV5zvYknPK1+ekFK6rvnewYmIkyW9UNIjJd1F0pikayV9VNLbUkob92H3AADAfo4rmAAAQF0vj4h77OtOYG4Rcbak76oo7t1N0oik9ZJ+SdKrJH0vIh6zzzoIAAD2exSYAABAXcOS3hkR/L9iGYqI0yVdoqKoNCrp1ZIeJenRkv5W0rikwyR9OCJO21f9BAAA+zdukQMAAE24n6Q/lvSGfd0R7FIW/S6W1JI0IelBKaVv9UxyeUT8h6QvSFoh6TUqik8AAAB7hL80AgCAOqYlTZXf/3VEnLgvO4PMwyTNHpOL+4pLkqSU0pcl/Xv58pERccje6hwAADhwUGACAAB1TEq6sPx+paS378O+wPs3STdI+td5pvlBz/fHLW13AADAgYhb5AAAQF2vlPQESXeX9LCI+MOUUq1CUxka/nxJD5d0ZxW3eN2o4laui1JK359jvi+qeLrdeEppZJ7lXynpFEnXp5Q29P1spvz2RSqu7LlY0gNVFNOulvTnKaXP9ky/VtIfSHqcpFMlrZF0m6RvS/qQpPellKbUJyI2qHiKm1Tsv09IOlvSM8q+rZF0k6T/lPTalNKP59qeuZT9/OyCE0rH93z/sz1dDwAAAFcwAQCAWlJK4yoKLNNl04URcexilxcRL1fxxLPnSgpJq1RcHRWSni3puxHxioho1er4wo6T9FUVmUQrJa2TdJqKItNsXx8q6SpJr5X065IOlTQo6ShJs+Ha346IkxZY10oVhaB3qiiQHaYiPP1ESc/REj7lLSJ+VdLjy5dfSCnduhTrAQAABzYKTAAAoLaU0lclvbl8uU7SWxeznIh4haS/ktSR9B0VBaX7q7iC6AWSfqzi/y9/Wf5bSi9UUej5e0kPkvTbkv4mpXRd2df7qbjC6WhJM5LeL+lMSfeV9BRJl5fLOVXSf0XE0fOs67WSHirp65KeXi7j8ZI+U/58WNK7I2J13Y2KiFZErImI0yLi9ZK+WC7/DhVXjQEAAOwxbpEDAABNeYmkx0raIOk3I+JpKaVLq84cEadJenn58n2Szum7teyrEfFOFZlCD5H0FxHxwblul2tAW0VB6aU9bR8u+9pRcXXSChVXbj05pfThnum+IekDEfEXKm4hPFrSP6koQDlHqdjms1NKs1eCKSI+oWJ7HyPpcElnSPpAze06q1xXr69K+oOU0lU1lw0AAA5SXMEEAAAakVLaIemZPU1vjIjD92ARL1bxf5PbJD3b5RaV6zhHxRVDLUl/tPgeV/KWOdofqyJzSpLe0ldc+rmU0l+puEJIkh4bEb8wx/LGJL2wt7hUzj+j3YPT71Wl0ws43rTdU9If8QQ5AACwWBSYAABAY1JKn5H0rvLlYZIuqjJfmad0evnyqymlnfOs41rteurZwxfZ1SpuSin9ZI6fPbrn+39aYDn/2PP9b8wxzbdSSrfP8bPecO81C6yrii9JeqSK2/CeruK2vLUqMq++HBFHNLAOAABwkOEWOQAA0LTzVBRSjpb05Ij4l5TSvy4wzwZJs1fPnNnzJLeFnLC4LlZy4zw/O7X8ul3SlQss5+s9399zjmmum2f+7T3f1/6/W0rpKz0vvxERl6q4SuocFdv1DyqeZAcAAFAZVzABAIBGpZQ2S3peT9NbImL9ArMdtsjVDUREE1f1OFvn+dmdyq+bytvY5nNLz/eHzjHN9jnapeJ2wFmNPzmvvC3vuZJuKpueHBErm14PAAA4sFFgAgAAjUspfUzSh8qXR6t4Stp8eq/MuUTSL+3Bvzlvp5tHlf8DzVc42pNCT6fn++k5p9qHUkrjKp6IJ0lD2pUvBQAAUAm3yAEAgKXyfEkPU3G1zzkRcdk80/bmD3VTSlcscp2zRaGFCkDrFrn8WbP9PSwiWgtcxXSkmW+vKEO7T5J0VErp3xaY/Lae74eWrlcAAOBAxBVMAABgSaSUNkp6UU/T2yStmmPya7TrSqRfW2jZEXF+RDwrIh7R96PZJ88NRUSnf75y3hWS9uTpds53yq+rJZ2ywLS923NVzfXuqfdJ+qakT1R4ot9JPd/PFW4OAABgUWACAABLJqX0PkmfLl9ukHTWHNNNSvpC+fKeEfHAuZYZEQ+T9BpJb5V0Qd+PN/d8v2GORTxC0uB8/a7g8p7vn7XAtM/u+f4zNde7p/6r/NpSEeJtRcRRks4oX141z9PzAAAALApMAABgqT1L0rby+/kKO6/r+f7dEXFc/wQRcYSKK6Fmvalvku/0fP9HZv4jJV04b2+r+YSkq8vvnxsRT3ATRcTLJT24fPm5Grf+LdZ7JO0ov78gIrKn2JUh6R/UrqvLXrOX+gYAAA4gB2sGU9VHHwPYPzX+lKVFYqzBAes+97mPvvGNb2hoaGhYC5zrKSVdeumleuUrX7lb++c+97lr+6d7xSteoX/5l3+RpJPWrVt3w8UXX6z73Oc+kqQrr7xSRxxxhDZu3ChJeuQjH6mLL774Y73LuPzyy/WYxzxGU1NTkvSCCy644AVnnHGGhoeHdcUVV/x8/rvc5S664YYbdOyxxx4/V/8f+MAHPnqun6WUWhHxdElfUpFX9OGIeL+KYPONko6XdK6kR5ezbJL0e/Ptp6WQUro5Iv5E0lskrZX0jYh4g6QvqnhK3q+quI1xQznLZZLeu7f7CQAA9n8Ha4EJAADsRU996lP1qU99St/85jfnne7lL3+5hoeH9Z73vEdbtmzRRRddZKd71KMepQsvzC9EOv7443XBBRfo1a9+taanp/WRj3xEH/nIR37+83a7rfPOO0+bN2/WJZdcUmubUkpfj4jfkPQBFZlOzyj/9ftfSU9OKd1Ua4WLlFJ6a0QMq7hya0TSn5f/+r1F0gsWCCwHAACwuEUOAAAsuVarpVe/+tUaGRmZd7pOp6OXvOQl+vjHP66nPOUpOvHEE7Vy5UoNDg7qyCOP1KMf/Wi97W1v00UXXTTnss466yx9+MMf1plnnqmjjjpKg4ODOvzww3X66afr0ksv1bOetVBkUnUppS9IOllFwearKp4SNyHpOkn/Jul3JP1aSunquZaxN6SU3ijpVElvlpQkjZb/rpb0Tkm/klJ6bpmFBQAAsMdaMzMH5R+pDsqNBg4i3CIHYKktl3EGAABgWeAKJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFV99/FvVfU+KzAMm8Cw6EHFNQmuCRpURINbTERRg5rHLe6JRklQUcxG9FFBoybuihsqmkSfuBORGFxAFuEom8MywzDM2nvX8vxxbzk1db7dfWduzdAz/Xm/Xryq6/RdTt2q6Xv41b3fU2m1WgIAAAAAAAB2V/Xe7gAAAAAAAAD2bRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUErfvd0BAACw7wkh/EDSyfnTv40xvqvgehdK+ov86TExxlt73zsUFUJ4mKQrlI0JXxRj/MS92yMAALCv4gomAABQ1jkhhPvf253Argkh9Ev6uPjCEQAA9AAFJgAAUNagpI+GEBhX7FvOlvSQe7sTAABg/8BAEAAA9MKjJL3m3u4EigkhPFjS39zb/QAAAPsPCkwAAKCMpqR6/vO7QgjH3pudwfxCCH3Kbo3rl7TxXu4OAADYT1BgAgAAZcxIOj//eUTSv96LfUExb5L0cEmbJL393u0KAADYXxDqCAAAyjpX0jMlnSDpD0MI/yfGWKrQlIeGv0rSKZLuI6ki6TZJ35d0QYzxl7Os9wNls9tNxRiH5tj+tZIeKOk3McY1Xb9r5T++XtJ/SrpQ0mOVFdNulPTmGON3OpZfLunPJT1d0omSlkm6R9KVkr4k6dMxxrq6hBDWSLolf/pMSV+XdJakF+Z9WybpDkn/JendMcabZns9RYUQHiDprfnTN0gaK7tNAAAAiSuYAABASTHGKWUFlmbedH4I4Yjd3V4I4RxJ10h6paQgaYmyq6OCpJdLuiaE8PYQQqVUx+d3pKQfSXpSvv8Vyq78ubGjr4+XdIOkd0v6A0kHKrv17FBJp0n6mKQrQwjHzbOvEUnfkfRRZQWyVcrC04+V9ApJ14UQnlLmxYQQaspujRuU9F8xxk+W2R4AAEAnCkwAAKC0GOOPJH0gf7pC0od2ZzshhLdLeoekmqSrlRWUHq3sCqLXSrpJ2fjlbfl/e9LrlBV6/knS70v6E0l/F2O8Ne/ro5Rd4XSYpJakz0h6mqRHSDpD0rfy7Zwo6YchhMPm2Ne7JT1e0o8lvSDfxjMkfTv//aCkT4QQlpZ4PW+QdJKkUUkvLbEdAACABLfIAQCAXnmLpNMlrZH0RyGE58UYLyq6cgjh4ZLOyZ9+WtKLu24t+1EI4aOS/kPS4yS9NYTwxdlul+uBqrKCUudsaxfnfa0puzppWNmVW8+JMV7csdwVkr4QQnirslsID5P0YWUFKOdQZa/5rBhj+0owhRC+ruz1PkXSwZKeKukLu/pCQghBWeFOym7xW7ur2wAAAJgLVzABAICeiDGOaecrY94XQjh4Fzbxl8rGJvdIernLLcr38WJlVwxVJL1693tcyL/M0n66sswpSfqXruLSb8UY3yHpB+118gwkZ1LS6zqLS/n6Le0cnP6QIp3uFEKoKiuGDUm6TNIHd3UbAAAA86HABAAAeibG+G1lOT9SdnvZBUXWy/OUTsuf/ijGOD7HPm6RdH3+9JTd7GoRd8QYb5/ld6d2/PzhebbTWdB58izL/CzGuGmW33WGey+bZ1/Oa5TdZjgp6c/zohUAAEBPcYscAADotTcoK6QcJuk5IYTPxRi/Ns86ayQdkP/8tI6Z3OZzzO51sZDb5vjdifnjqKRr59nOjzt+ftAsy9w6x/qjHT/v0tgtDxd/V/703Bhj3JX1AQAAiuIKJgAA0FMxxi2S/qKj6V9CCCvnWW3Vbu6uL4SwO1f1FLFtjt8dlD9uLHBF0F0dPx84yzKjs7RL2e2AbYVnzsuvCvuoshnqrpT0z0XXBQAA2FVcwQQAAHouxvjVEMKXlM28dpiyWdJeMscqnWOSj6ngrXW5WW+nm0ORL9nmKhwVLvQomxGvrTnrUr33Mkkn5z+/X9KJWdb3TtZ0/HxUCOGh+c83xhjnKnoBAADshAITAADYU14l6Q+VXe3z4hDC5+dYtjN/qBFjvGo399kuCs1XAFqxm9tva/d3VQihMs9VTIeY9faGR3b8/PFZl9rh3Pw/SXq8doSTAwAAzItb5AAAwB4RY9wg6fUdTR+RtGSWxW/WjiuRHjnLMr8VQvjrEMLLQghP6PpVe+a5gRBCrXu9fN1hSbsyu51zdf64VNID51m28/XcUHK/AAAACxJXMAEAgD0mxvjpEMJzlc0Qt0bSmbMsNxNC+L6kp0p6UAjhsTHGy9yyIYQ/lPQP+dPvS/pOx6+3dPy8RjvPwNb2BEn9u/AynG9Jenn+88skvXqOZV/e8fO3S+63sBjjWZLOmmuZEMKzJX0pf/qiGOMn9myvAADA/oormAAAwJ72Mknb85/nKuy8p+PnT4QQjuxeIISwWtmVUG3v71rk6o6fk6JPCOEQSefP2dtivi7pxvznV4YQnukWCiGcox05SN8tcesfAADAgsYVTACw5xSdZh3Y55x00km64oorNDAwMKh5PusxRl100UU699xzd2r/7ne/e0v3cm9/+9v1uc99TpKOW7FixdoLL7xQJ510kiTp2muv1erVq7VhwwZJ0hOf+ERdeOGFX+3cxre+9S095SlPUb1el6TXnn322a996lOfqsHBQV111VW/Xf+oo47S2rVrdcQRRxw9W/8f+9jHnjrb72KMlRDCCyRdKmlA0sUhhM8ouxpog6SjlYWan5qvslHSn811nABgAWNMA+zfdmXykllRYAIAAHvcc5/7XH3jG9/QT37ykzmXO+ecczQ4OKhPfvKT2rp1qy64wE8m96QnPUnnn59eiHT00Ufr7LPP1nnnnadms6kvf/nL+vKXv/zb31erVb3hDW/Qli1b9LGPfazUa4ox/jiE8GRJX1CW6fTC/L9uP5f0nBjjHaV2CAAAsIBxixwAANjjKpWKzjvvPA0NDc25XK1W01ve8hZdcsklOuOMM3TsscdqZGRE/f39OuSQQ3TqqafqIx/5iC644IJZt3XmmWfq4osv1tOe9jQdeuih6u/v18EHH6zTTjtNF110kV72spf17HXFGL8v6XhJb5b0I2WzxE1LulXSf0j6U0mPjDHeONs2AAAA9geVVourHQFgD+EPLLD/6sml5ACwj2BMA+zfejKu4QomAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcJGVh//HvdM+9J7AcCwgriI94HxE1knijaESNiXcMmnjF2yRGSVBM0KhEfyh4YBRRvBWPxHjjEY+oREUF4Qk3ci4Le83O3T2/P55qtunnOzM1Uz27w+7n/Xrtq2eeraquqq5+6qlnqr5Pz8zMjAAAAAAAAIDFqu3uFQAAAAAAAMCdGx1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBKenf3CgAAgDufEML3JT2i+PWfYoxvLTnfmZJeXvx61xjj1d1fO3QKITxP0rklJ39BjPGcJVwdAACwB+IOJgAAUNXJIYSjd/dKYE4P2N0rAAAA9mzcwQQAAKoakPSREMKxMcbm7l4ZWPcvXi+U9IJ5pr12idcFAADsgehgAgAA3fAwSa+SdPruXhFY9ytefxpjvHC3rgkAANgj8YgcAACooilpuvj5rSGEI3bnyiAXQriLpP2KX+lcAgAAS4IOJgAAUMWUpNOKn4cl/ftuXBd47flLv9ptawEAAPZoPCIHAACqeoukp0m6h6RHhxBeFGOs1NFUhIa/QtJjJB0qqUfS7yV9T9IZMcbfzTLf95VGt5uIMQ7OsfyLJN1L0jUxxg0d/zdT/PhaSf8l6UxJxyp1pl0u6Q0xxu+0Tb9a0l9Leoqke0taJelWpc6cz0s6N8Y4rQ4hhA2Srip+fZqk/5B0oqTnF+u2StL1kr4p6V0xxitm2555tPKXGpJ+u8hlAAAAzIk7mAAAQCUxxgmlDpZWwPdpIYRDFru8EMLJSh0hfyMpSFqhdHdUkPRSSb8NIZwSQuiptOLzu4ukH0s6rnj/NZIeqNTJ1FrXR0m6VNK7JP2xpH0l9Uk6SNLxks6W9KsQwpHzvNewpO9I+ohSB9k6pfD0IyS9TNLFIYQnLnI7Wh1Ml6ZVDv8eQrgihDARQrg1hPDdEMILQwj1RS4fAACADiYAAFBdjPHHkt5X/LpG0gcXs5wQwimS/llSXdJvlDqU/lDpDqJXS7pCqf3y5uLfUnqNUkfPOyX9kaQ/l/S2GOPVxbo+TOkOp/WSZiR9QtIJkh4i6VmSvlUs596SfhhCWD/He71L0qMk/VTSXxTLeKqkbxf/PyDpnBDCykVsR6uD6XBJv1TqDDxCUr9Sh9ijlDq2fhRCOGARywcAAOAROQAA0DVvlPRkSRsk/UkI4Tkxxk+VnTmE8EBJJxe/nivphR2Plv04hPARSV+V9EhJbwohfG62x+W6oKbUofSPbWVfKNa1rnR30pDSnVvPjDF+oW26n0v6bAjhTUqPEK6XdJZSB5RzkNI2nxhjbN0JphDCfyht7xMl7S/pSZI+W3YDQghrJN21+HWlpJuUHvn7H0njSp1Pr1K6O+yhkr4RQvjDGON42fcAAACQuIMJAAB0SYxxh6QXtxW9J4Sw/wIW8bdKbZNbJb3U5RYV7/FCpTuGeiS9cvFrXMoHZil/slLmlCR9oKNz6XYxxn+W9P3WPCGEe86yvHFJr2nvXCrmn9Edg9PvV2al29y/7ef/lXTfGONbY4zfjTH+JMb4fqUQ8G8U0zxA0hsW+B4AAAB0MAEAgO6JMX5b0keLX9dJOqPMfEWe0vHFrz+OMY7O8R5XSbqk+PUxi1zVMq6PMV43y/89vu3ns+ZZzvvbfn7CLNP8IsZ42yz/1x7uvWqe9+r0Y0l3L973yTHGWzoniDGOSXqupG1F0SvJYwIAAAvFI3IAAKDbXqfUobFe0jNDCJ+OMX5lnnk2SNqn+PmEtpHc5nPX+SdZtN/P8X/3Ll5HJF00z3J+2vbzfWaZ5uo55h9p+3lBbbfiLrDLin9zTXdbCOE8SS9QymV6gNIdTwAAAKVwBxMAAOiqGOMWSS9vK/pACGHtPLOtW+Tb9YYQFnpXT1nb5vi//YrXTcVjbHO5ue3nfWeZZmSWcik9DtiylCPn/brt58OW8H0AAMAeiDuYAABA18UYvxRC+LzSyGvrlUZJ+6s5Zmlvk5ytko/WFWZ9nG4OZf7INlfH0UI6etofN2vOOtXu174f+3fbWgAAgDslOpgAAMBSeYWkRyvd7fPCEMJn5pi2PX+oEWO8cJHv2eoUmq8DaM0il9/SWt91IYSeee5iOtDMt0uEEB6k9BjhOklnzbOeB7T9vHFJVwwAAOxxeEQOAAAsiRjjRkmvbSv6kKQVs0x+pXbeQfPQ+ZYdQviHEMJLQgiP7fiv1shz/bMFVYcQhiQtZHQ75zfF60pJ95pn2vbtubTi+y7UmyR9Xmk0vHvMM+2xxWtT0i+XcqUAAMCehw4mAACwZGKM50r6evHrBqXRytx0U5K+V/x6nxDCsW46SQohPFrS2yV9UNJJHf+9pe3nDbMs4rGS+uZa7xK+1fbzS+aZ9qVtP3+74vsu1A/afn7+bBOFEO4l6bji128WOVoAAACl0cEEAACW2kskbS9+nqtj591tP58TQrhL5wQhhAOU7oRqeW/HJL9p+/mVZv4DJZ0259qW8x+SLi9+/psQwtPcRCGEkyU9ovj1/AqP/i3WJ7Rz3786hPCQzgmKffpZpXZhU9K/7LrVAwAAewoymABg6ZQdZh240znmmGP085//XP39/QOa51iPMepTn/qU3vKWt9yh/Pzzz7+qc7pTTjlFn/70pyXpyDVr1lx75pln6phjjpEkXXTRRTrggAO0cWOKB3rc4x6nM88880vty/jWt76lJz7xiZqenpakV5900kmvftKTnqSBgQFdeOGFt89/2GGH6dprr9Uhhxxy+Gzrf+yxxz5+tv+LMfaEEP5C6Q6hfklfCCF8QulxtI2SDlcKNX98McsmSX85135aCjHGjSGEv5N0lqQhSd8LIZwu6ZtKjxM+VNLfa2dO1Kkxxv/Z1esJAADu/OhgAgAAS+7Zz362vva1r+mCCy6Yc7qTTz5ZAwMD+tjHPqatW7fqjDP8YHLHHXecTjstvxHp8MMP10knnaRTTz1VzWZT5513ns4777zb/79Wq+l1r3udtmzZorPPPrvSNsUYfxpCeILS3T/7Kz2C5h5D+6WkZ8YYr6/0hosUY/xQkTt1mlIn0xuLf+2mJb01xnjKLl49AACwh+AROQAAsOR6enp06qmnanBwcM7p6vW63vjGN+rLX/6ynvWsZ+mII47Q8PCw+vr6dOCBB+rxj3+8PvShD+mMM86YdVnPfe5z9YUvfEEnnHCCDjroIPX19Wn//ffX8ccfr0996lN6yUvmi0wqL8b4PUl3k/QGST9WGiVuUtLVkr4q6RmSHhpjvHy2ZewKMcb3SLq3pDOVgsZHi3+XKQWAP4jOJQAAUEXPzAxPcADAEqGCBfZcPbt7BQAAAJYT7mACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG9CAYAAABZDcySAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecJEdh9vFnZ2bD5TvdoSx0krBKRFtEg8GIYIJtMBlswgvCRBsQwTYOBGGTDSYYBCaDySZjAwYMeg02mNeAQAiVAjpJnNLlsHeb9/2jeri5qWd3a7dn91a63/fzuc/u1vX09HSorq7pfqpvenpaAAAAAAAAwEI1jvQCAAAAAAAA4OaNDiYAAAAAAADUQgcTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC2tI70AAADg5ieE8G1J963+/JsY46sLX/ePkv6k+vO0GOOW3i8dZhJCuJukZ0m6n6QTJE1IipI+I+kfY4z7j+DiAQCAmzHuYAIAAHW9LIRw2yO9EJhZCKEvhPD3kr4v6emSTpe0QtIaSXeV9FpJPwohnHHklhIAANyc0cEEAADqGpT0vhAC7Yrl602SXiypT9K1kp4n6d6SHibpy9U0t5H05RDC4BFZQgAAcLPGI3IAAKAX7inp+ZLecqQXBIcLIdxT0nnVnxdLun+McVvHJF8OIbxf0tMknSXpXEkXLO1SAgCAmzu+aQQAAHVMKeX4SNKrQwinH8mFgfVKpTuXJiQ9uqtzqe0lksar3x+zRMsFAABuQehgAgAAdYxLemP1+0pJ7zmCy4IuIYTjJD2g+vMDMcbL3HQxxp1KOUzvlPRvS7R4AADgFoRH5AAAQF3nS3qk0uNV9w8hPCPGWKujqQoN/1OlzpGTdSg76FuS3h5jvGSG131baXS70Rjj0Czzv1jS7SVdHWPc3PV/09WvL5T0r5L+USmvaFzSFZJeGmP8Rsf0ayX9saQ/kHQHpeDsHZJ+JOnTkj4SY5xQlxDCZklXVX8+UtIXJT1V0lOqZVsjaaukr0l6U4zxypk+zyx+R1Kz+v2Ts00YY3zFAuYPAAAgiTuYAABATTHGUaUOlqmq6I0hhJMWOr8Qwssk/VTScyUFSauU7o4Kkp4t6achhFeGEPpqLfjcTpH0XUkPqt5/naQ7K3UytZf1fpIuVQrR/m1Jx0jql3S8pIdKer/KRmdbKekbkt6n1EG2SSk8/XRJz5H0sxDC7y7gM9yx4/f/17HcrRDC5hDCbQj1BgAAvUAHEwAAqC3G+F1J76j+XCfpXQuZTwjhlZJepXTXzU+UOpTupXQH0QskXanUfnlF9W8xnafU0fMGSfeR9FhJr4kxbqmW9Z5KdzidIGla0j9Lerike0h6gqR/r+ZzB0n/GUI4YZb3epOk+0n6nqQnV/N4hKSvV/8/KOmDIYTV8/wMt6t+7o4x7qk6lT4sabfS3VOXS9oVQvhEQScYAADAjHhEDgAA9MpfKg17v1nS74cQ/ijG+LHSF4cQ7izpZdWfH5F0btejZd8NIbxP0pclnSPp5SGET830uFwPNJQ6lP66o+xfqmVtKt2dtELpzq3Hxxj/pWO6/5H0yRDCy5UeITxB0ruVOqCc45U+81NjjO07wRRC+KLS5/1dSbeS9Hua41G3Lpuqn7tDCL8j6bOSujupVkh6vKTfDSE8qvPxPwAAgFLcwQQAAHoixjgs6ZkdRW8NIdxqHrN4sVLbZIekZ7vcouo9zlW6Y6hP0vMWvsRFLpih/GFKmVOSdEFX59KvxBhfJenb7deEEG7nppM0Ium8zs6l6vXTOjw4/ddLFrpDuzNpvaTPSBqS9HeSzlC6K+pMpbunppUynz4TQrjNPN8DAACADiYAANA7McavS/pA9ecmSW8veV2Vp/TQ6s/vxhgPzPIeV0n6efXnA2aarge2xhh/OcP/Pbjj93fPMZ93dvz+kBmm+d9qJDenM9x7zRzv1W1l9XO9UmfT42KML4sx/iLGOBZjvDzG+BKlQHVJWivpNfN8DwAAAB6RAwAAPfcipY6UEyQ9PoTw8RjjF+Z4zWZJG6rfH94xkttcTlvYIha5dpb/u0P1c7+ki+eYz/c6fr/jDNNsmeX1+zt+n2/b7WDH75+LMX7OTRRjfGcI4ZlKd0g9IoSwqrpbDAAAoAh3MAEAgJ6KMe6W9CcdRReEENbP8bJNc/z/TFohhPne1VNq7yz/t7H6ub16jG02N3b8fswM0+yfoVxKj6+1zXfkvH0dv9vOpQ5fqn72K42WBwAAUIw7mAAAQM/FGD8XQvi00shrJyjl/Dx9lpd0tkner8JH6yozPk43i5Iv2WbrOJpPR0+z4/epGadaHNd3/L51jmk779haaIcfAAA4StHBBAAAFsufSrq/0t0+54YQPjHLtJ35Q5Mxxh8v8D3bnUJzdQCtW+D829rLuymE0DfHXUzHmdctlZ9KemT1+4bZJlQK/W7btTiLAwAAbql4RA4AACyKGONNkl7YUfRPklbNMPkvdOhOpN+ca94hhL8IITwrhPDArv9qjzw3EEJodr+ueu0KSfMZ3c75SfVztaTbzzFt5+e5tOb7zldn/tNc67Xzc2zp/aIAAIBbMjqYAADAookxfkTSV6o/N0t64gzTjUv6VvXnHUMI955pniGE+0t6naR3Sfqrrv/e3fH75hlm8UClnKE6/r3j92fNMe2zO37/es33na9vSNpe/f6kmfKqQgirJD26+vOiGOOWJVg2AABwC0IHEwAAWGzP0qGw6dk6dt7c8fsHQwindE8QQjhW6U6otrd1TfKTjt+fZ15/nKQ3zrq0Zb4o6Yrq9+eGEB7pJgohvEzSfas/v1nj0b8FqTru/qH68wRJ7w0hHLYNQggNpc66du7SBUu3hAAA4JaCDCYAALCoYozXhhD+QtI755juP0IIF0h6jqQzJF0UQniLpAurSe4q6UWSTqz+/lyM8fNds/m4pJcrtXFeUN2x8wlJI0qPiJ1Xvf7K6j0W+pkmQwhPrpZtQNK/hBD+WdKnJd0k6VSlUPMHVy/ZLun/LPT9anqjpIcpff7HSTozhPA2ST+XdLKk50u6TzXtt3V4Bx4AAEAROpgAAMBSeJekJ0j67Tmme55SZ9B5SqHU588w3WclPam7MMZ4RQjhPKU7mxqSzq3+tU0pPVa3UdKL57H8mRjj90IID5H0SaVMp6dU/7r9UNLjY4xzjeK2KGKM4yGEByst50Mk/YbSSH3dvibpCXMElgMAAFg8IgcAABZd1Wnxx5IOzjHdZIzxRZLOVuqUulTSfknjkrZK+oyk34sxPjrGaOcVY3yHpLtJ+mdJv5Q0Jul6SZ+SdO8Y42t78qHSe31L0m0kvVTSd5VGiRtTCsn+stIdQ78ZY7xipnkshRjj3hjjQyU9QtLnJV2ntJxbJX1V0mOV1uvumecCAAAws77pab6kAgAAAAAAwMJxBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFroYAIAAAAAAEAtdDABAAAAAACgFjqYAAAAAAAAUAsdTAAAAAAAAKiFDiYAAAAAAADUQgcTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFroYAIAAAAAAEAtdDABAAAAAACgFjqYAAAAAAAAUAsdTAAAAAAAAKiFDiYAAAAAAADUQgcTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZGld7/FvVXV1mjybE7vsIg9hATEBygURLkElKUmCLqDERZKICURRQRHuIpcoSYLALi4gXBclqyiKEmR32Qd22dmcZid27q6q+8c5zdT079vdZ/rUpJ3P+/WaV3U/fcJz0tNTvz71PY1erycAAAAAAABgrZqHuwMAAAAAAAA4ulFgAgAAAAAAQC0UmAAAAAAAAFALBSYAAAAAAADUQoEJAAAAAAAAtVBgAgAAAAAAQC0UmAAAAAAAAFALBSYAAAAAAADUQoEJAAAAAAAAtVBgAgAAAAAAQC0UmAAAAAAAAFALBSYAAAAAAADUQoEJAAAAAAAAtVBgAgAAAAAAQC1Dh7sDAADg6JNS+rKkB5ff/kHO+U8rzvd/Jb2w/PbOOedtg+8dFqWU3i/p19Yw60Nyzl8ebG8AAMAdGXcwAQCAul6VUrr74e4EBmrucHcAAAAcXbiDCQAA1DUi6T0ppQfmnLuHuzPYz6slXVBhumdK+s3y6w/mnP/t4HUJAADcEVFgAgAAg/AAFQWKKsUMHCI552slXbvSNCml+0h6bvntdyQ952D3CwAA3PHwETkAAFBHV9JC+fWfppTOPpydwYFJKbUl/Y2Ku9DmJP1Kznnm8PYKAAAcjSgwAQCAOuYlvaH8elzSXx/GvuDAvUzSfcqv/yznfNnh7AwAADh68RE5AABQ1x9Jeryku0n6uZTSb+ScaxWaytDw8yU9VNLpkhqSrpP0JUlvyTlfvsx8X1bxdLvZnPPoCsu/VNI9JV2Tcz5ryc965ZcvlfT/JP1fSQ9UUUy7UtLv5Jw/3zf9Rkm/Lumxks6VtEHS7ZK+KekiFZlGC1oipXSWpKvLbx8v6e8lnSfpV8u+bZB0g6R/lPTGnPNVy23PWqSUTpH0qvLbH0h6/SCXDwAAji3cwQQAAGrJOc+qKLAsBny/IaV02lqXl1J6lYosoBdISpLWqbg7Kkl6nqTvpJRek1Jq1Or46s6Q9FVJDy/Xv0nSj6koMi329SGSrpD0RkkPkrRVUlvSyZIeJem9kr6ZUjpnlXWNS/q8pPeoKJAdr+Jja2dLer6ky1JKPz+oDSu9WsW+laRXlMcRAABgTSgwAQCA2nLOX5X01vLbTZLesZblpJReI+mPJbUk/Y+KgtJPq7iD6MWSrlLx/5c/LP8dTC9RUej5C0n/S9ITVXyMbFvZ1weouMPpFEk9SR+S9BhJ95P0FEn/VC7nXEn/Ut4xtJw3SnqIpK9Jeka5jMdJ+lz58xFJ708prR/EhpUFwGeX334r53zxIJYLAACOXXxEDgAADMrvSnq0pLMk/WJK6ak557+tOnNK6ce07yNbH5T0rCUfLftqSuk9kj4j6WclvTqldOFyH5cbgKaKgtLv97V9vOxrS8XdSWMq7tx6cs75433T/aekj6WUXq3iI4SnSHqnigKUc7KKbT4v57x4J5hSSn+vYnt/XtIJkn5B0sfqb5rOV3GnlVQU0AAAAGrhDiYAADAQOedJ7f+I+zenlE44gEW8XMX/TW6X9DyXW1Su41kq7hhqSHrR2ntcyduXaX+0iswpSXr7kuLSD+Wc/1jSlxfnSSndY5nlzUh6SX9xqZy/p/2D0++jmlJKY9p3nH4g6cK6ywQAAKDABAAABibn/DlJ7yu/PV7SW6rMV+YpPar89qs556kV1nG1pO+W3z50jV2t4oac8/XL/OwRfV+/c5XlvK3v60cuM81/55x3LPOz/nDvDausq4qnq8iKkorw8M4AlgkAAI5xfEQOAAAM2stUFFJOkfTklNJHcs6fWmWesyRtKb9+TN+T3FZz57V1sZLrVvjZueXrhKRLV1nO1/q+vtcy02xbYf6Jvq8H8X+3Xylf5yRV/ggjAADASriDCQAADFTOeZekF/Y1vT2ltHmV2Y5f4+qGUkqDuKvH2bPCz44rX7eXH2NbyS19X29dZpqJZdql4uOAi2o9OS+ltEVFYLkk/VN5rAAAAGrjDiYAADBwOedPpJQuUvHktVNUPCXt2SvM0v9/kveq4kfrSst+nG4FVf7ItlLh6EAKPa2+r7vLTnVo/KL27WuylwAAwMBQYAIAAAfL+ZJ+TsXdPs9KKX10hWn784c6OedvrXGdi0Wh1QpAm9a4/EWL/T0+pdRY5S6mk8x8h8svlq9zklb72CIAAEBlfEQOAAAcFDnnWyW9tK/pXZLWLTP5D7TvTqT7r7bslNIrU0rPTSk9bMmPFp88N5xSai2dr5x3TNKBPN3O+Z/ydb2ke64ybf/2XFFzvXUtfjzuWznnlT4CCAAAcEAoMAEAgIMm5/xBSZeU354l6WnLTDcv6Uvlt/dKKT1wuWWmlH5O0uslvUPS7y35cX+m0FnLLOJhktor9buCf+r7+rmrTPu8vq8/V3O9a5ZSOkPFxxUl6b8OVz8AAMAdEwUmAABwsD1X0t7y65UKO2/q+/r9ZUFkPymlE1XcCbXor5ZM8j99X7/IzH+SpDes2Ntq/l7SleXXL0gpPd5NlFJ6laQHl99+ocZH/wbh3n1fU2ACAAADRQYTAAA4qHLO16WUXinpbatM98WU0tslPV/SOZK+nVK6QNJXykl+QtLLJJ1afv+JnPMnlyzmI5JereL/OC8unzD3UUkzKj6q9pJy/qvKdax1mzoppWeUfRuW9PGU0ockXSTpVklnqgg1f0Q5y3ZJv7bW9a1gtSfY/dDv/u7v6nWve50k6d3vfvd7VYSpAziy1Xpy5ABVHmsAHJUGMtZQYAIAAIfCOyQ9RdKDVpnuRSqKQS+RtEXSHy0z3cWSnr60Med8ZUrpJSrubGpKelb5b1FXxcfqjpP08gPof5Bz/lpK6ZGSPqYi0+lXy39LfUPSk3PON9RZX10333zzD7/euHHjYewJAAC4I+IjcgAA4KArn7L265KmV5muk3N+maT7qihKXSFpQtK8pBsk/Z2kX8g5/3LO2S4r5/xWST8p6UOSrlfxxLSbJF0o6YE559cNZKOKdX1J0l0k/Y6kr6p4StycpG2SPiPpSZLun3O+crllHCoTExM//HrDhg2HsScAAOCOqNHrcbcjAADAUYr/yAF3bHxEDsChMJCxhjuYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFV99/FvVfXeszMMy7CDHhHiHo1Rg9tjRIWoCcG4IioSNG6JYlxwiyvRh2hU0CjuCii4JRgUFRXX+LiAhqMgI4vsM8xM79VV9fxxbzk1fb7dfbtvzUxDf96v17yq6vRdzl276zf3fm+l1WoJAAAAAAAAWKzqnu4AAAAAAAAA7tooMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASqHABAAAAAAAgFIoMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASqHABAAAAAAAgFIoMAEAAAAAAKAUCkwAAAAAAAAohQITAAAAAAAASqHABAAAAAAAgFIoMAEAAAAAAKCUnj3dAQAAcNcTQvi2pGPyj6+LMb614Hj/LulF+cdDY4ybut87OCGEVZJOk/QUSUHSoKTbJH1f0gdjjN/ag90DAAB3cVzBBAAAynp9COHIPd0JzC6EcJSkX0h6u6QHS1otqU/SRkknSPpmCOHfQwiVPddLAABwV0aBCQAAlNUv6SMhBP6uWILyK5culnRI3vRfyopKfyHpJZJuzttfJOlNu7t/AADg7oE/BAEAQDc8VFmxAkvPiyUdmL9/f4zxiTHGz8cYvxtjfJ+k+2pHken0EMJ+e6SXAADgLo0CEwAAKKMpaTp//9YQwmF7sjOwjs1fG5JePfOHMcZbJbUztPokPW439QsAANyNUGACAABl1CWdmb8fkvThPdgXeBvy15tijCOzDHNlx3uuYAIAAAvGU+QAAEBZb1L2ZLJ7SXp0COEFMcZShaY8NPzFkh4j6QBJFUnXS/qWpPfFGH89y3jfVvZ0u8kY48Ac079S0lGSfh9jPGTGz1r525dL+k9J/y7p4cqKaVdLenWM8Rsdw6+S9HxJfyXpaEkrJd0h6WeSLpD0yRjjtGYIIRwi6dr841MkfVnSSZKenfdtpaQbJf23pHfHGK+ZbXnm8QdJ95S0fwhhZYxxuxnmiBnDAwAALAhXMAEAgFJijJPKCizNvOnMEMLGxU4vhPB6SVdIOk1SkDSs7OqoIOlUSVeEEN64G554dqCky5XdMjak7MlrD1BWZGr39VGSrpL0bmWh2esk9UraV9mtaR+V9LMQwuHzzGtI0jckfURZgWy9svD0wyT9vaRfhRCesMjl+HL+WpX0LzN/mBfI/jn/OKosBBwAAGBBKDABAIDSYoyXS3p//nG1pLMXM50QwhslvVlSTdIvlRWU/lzZFUQvlXSNsr9f3pD/25VepqzQ8y5Jj1D25LW3xRg35X19qLIrnPaT1JL0KUnHS3qIpKdJuiSfztGSvjtPePa7JT1K0g8lPSufxpMlfT3/eb+kj4UQVixiOc5RViiTpJeEEL4UQvjrEMLDQginSPqFskJWU9KLYoy3L2IeAABgmeMWOQAA0C3/LOk4SYdIelII4ekxxs8UHTmE8ABJr88/flLSyTNuLbs8hPARSV+V9EhJZ4QQzp/tdrkuqCorKL22o+3zeV9ryq5OGlRWmDkxxvj5juF+LOm8EMIZym4h3E9Zoef4Wea1r7JlPinG2L4STCGELytb3idI2lvSEyWdt5CFiDGOhRD+UlnA98vzPszsx88lvSTG+N2FTBsAAKCNK5gAAEBXxBhHJZ3S0fRvIYS9FzCJf1T2t8kdkk51uUX5PE5WdsVQRdI/LL7HhXxwlvbjlGVOSdIHZxSX/ijG+GZJ326PE0K49yzTm5D0ss7iUj5+SzsHp9+3SKeNoyTdT1lBzDlS0tNCCGsXOX0AALDMUWACAABdE2P8uqRz84/rJb2vyHh5ntKx+cfLY4xjc8zjWkn/m398zCK7WsSNMcYbZvnZX3a8P2ee6Xyg4/3jZxnmpzHGzbP8rDPce+U880qEEI6XdJmkJykLDX+2squhBpQVrD6s7Ba80yRdGkLYa6HzAAAA4BY5AADQba9QVkjZT9KJIYTPxhi/NM84h0hqXz1zfMeT3OZz6OK6WMj1c/zs6Px1RNKV80znhx3v/2SWYTbNMf5Ix/sF/e0WQthf0meUFZNukPSQGONNHYP8UtIpIYSfK8vQun/++rSFzAcAAIArmAAAQFfFGO+U9KKOpg+GENbMM9r6Rc6uJ4Sw4Kt6Cto2x8/aV/ncnt/GNpdbOt6vm2WYkVnapex2wLaFPjnvOcqewidJr55RXPqjGOMHJH0n//g3IYR9FjgfAACwzFFgAgAAXRdjvEjSBfnH/ZQ9JW0unVfmfFTZlTRF/816O90civwNNFfhaCGFnlrH++asQ+0af9rx/qvzDHtR/lqT9KBd0x0AAHB3xS1yAABgV3mxpEcru9rn5BDC5+YYtjN/qBFj/Pki59kuCs1XAFq9yOm3tfu7PoRQmecqps6rgWbLWdpVVuSvTUnb5xn21o73ZdcPAABYZriCCQAA7BIxxlslvbyj6UPacbvWTL/TjiuR/my+aYcQTg8hvDCE8NgZP2o/ea4vhFCbOV4+7qCykOsyfpm/rlD2hLa5dC7PVSXnu1C35a9VZTlXc9nY8f7WWYcCAAAwKDABAIBdJsb4SUkX5x8PkfSMWYarS/pW/vFPQggPn22aIYRHS3qHpLMlvWbGj+/seH/ILJN4rKTeufpdwCUd7184z7Cndrz/esn5LtR3O94/a7aB8qf4tYO9pyT9aFd2CgAA3P1QYAIAALvaC7Xj9qy5Cjvv6Xj/sRDCgTMHCCFsUHYlVNt7Zwzyy473/2DG30fSmXP2tpgvS7o6f39aCOEpbqAQwuslHZN/vLTErX+L9VntuC3vn0MIj5hluLdJekD+/uMxxvlupwMAANgJGUwAAGCXijFeH0I4XdIH5hnumyGED0r6e0mHS/pFCOEsSZflgzxI0isk7Z9/vijG+MUZk/mspDOU/Y3z0vwJc5+TNKHsVrWX5eNfk89jscvUCCE8K+9bn6TPhxA+pSzY/FZJB0t6nqS/zEe5XdkT3bptzifYxRj1ta99TS972cvUarX6e3t7v3PGGWfo0Y9+tNatW6cbbrhB559//h+HP+igg3T++ee/QNILdkFfASzcQp8cuavM97RMAHdtXTnXUGACAAC7w9nKbsH6i3mG+wdlxaCXSVor6U2zDHehpGfObIwxXh1CeJmyK5uqkk7O/7U1ld1Wt5ekf1xA/xMxxh+GEB4v6TxlmU7Pzv/N9P8knRhjvLHM/Bbr8Y9/vM4880y9/vWv1/j4uM477zydd955yXBHHXWU3ve+92nt2rV7oJcAAOCujlvkAADALpc/Ze35ksbnGa4RY3yFpPsrK0pdJWlEUl3SjZK+IOmJMca/jjHaacUY3y/pTyV9StINyjKFbpJ0vqSHxxjf3pWFyub1LUlHSHq1pMuV3Y42JWmTpK9K+ltJfxZjvHq2aewOxx13nC655BKdeuqpOuqoo7Ry5Ur19vZq77331iMf+Ui9853v1AUXXKCNGzfOPzEAAACj0mpxtSMAAMBdFH/IAXdv3CIHYHfoyrmGK5gAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKVQYAIAAAAAAEApFJgAAAAAAABQCgUmAAAAAAAAlEKBCQAAAAAAAKV
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYHVdh/vF3927XSivJTbJlLNs4B4INthNCM2BKIHQICRBaTMehGSfUBDCdQAi9hvozMSY4EBMCCaaXYELAofvYxl22Jatre/39ceZ6r+557+7szq60Rt/P8+hZ7dlpd+7MmXPPnXlP28zMjAAAAAAAAIDFaj/YGwAAAAAAAIDbNzqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACVdBzsDQAAALc/IYRvS7p/8evfxRjfXHK+90t6QfHr8THGa5d+6+CEEI6S9FJJj5B0vNIXjVdJ+rKk98QYtx7EzQMAALdz3MEEAACqek0I4c4HeyPQWgjhUZKulPQKSSdLWiWpV9Ipkl4l6YoQwkMP3hYCAIDbOzqYAABAVd2SPh5CoF2xAoUQzpT0RUmri6KLJT1W0j0lPUvS5ZLWSPpyCOExB2MbAQDA7R8NQQAAsBTuJenFB3sjsL8QQoekT0qqFUUvizE+NsZ4cYzxRzHGT0j6A0nfUYpO+FAIYXWLxQEAALREBxMAAKhiWtJk8f83hxBOOJgbg8yjJW0u/n9xjPEfmieIMQ5LepqkCUkbJZ17wLYOAAD8zqCDCQAAVDEh6R3F//sk/dNB3BbkHtjw/3e3mijGeIOkrxe/PnFZtwgAAPxOYhQ5AABQ1eslPU7SnSQ9MITwnBhjpY6mIjT8hZIeJGmTpDZJN0j6lqT3xRh/3WK+byuNbjcWY+yZY/m/lHQXSdfFGDc3/W2m+O9LJf2HpPdLOkOpM+0qSa+MMX69Yfo1kp4t6TFKAdqrJe2QdJmkz0s6P8Y4qSYhhM2Sril+fZykL0k6S9LTi21bLWmLpP+S9M4Y429bvZ45HNfw/x/NM+2vJT1M0p1CCGtjjLsXsT4AAHCI4g4mAABQSYxxTKmDZbooekcI4ZjFLi+E8BpJv5D0V5KC0ohnfcX/ny/pFyGE80IIbZU2fH7HSvqBpIcU6x+QdLpSJ1N9Wx+gFJL9Tkn3k7ReUqekDUqdNZ+QdFkI4cR51tWndAfRx5U6yA5XCk8/QdLZkn4VQnj4Il5DV/FzKsY4Ms+0E8XPNkknLWJdAADgEEYHEwAAqCzG+ANJHyh+HZD04cUsJ4RwnqQ3KIVS/1ypQ+neSncQvUTSb5XaL68r/i2nc5Q6et4u6b6S/lzSW2KM1xbbei+lO5w2SpqR9BmlzKN7SHqSpK8VyzlZ0vdCCBvnWNc7JT1A0qVKeUj3UBrp7ZLi792SPhVC6F/ga9he/KyFEDbMM+2xDf+fb1oAAID98IgcAABYKq+S9CilUOlHhhCeHGO8oOzMIYTTJb2m+PV8Sc9serTsByGEj0v6sqQzJb02hPAvrR6XWwLtSh1Kf9tQdlGxrTWlu5N6le7cemKM8aKG6f5H0udCCK9VeoRwo6SPKHVAORuUXvNZMcb6nWAKIXxJ6fU+XNIRkh4h6XMLeA0/kvTk4v+Pk/QhN1EIoVvpTq26VQtYBwAAAHcwAQCApRFjHJL03Iai94QQjljAIv5aqW2yQ9LzXW5RsY5nKt0x1CbpRYvf4lJsh4xSR9qd6tM0dS7dJsb4Bknfrs8TQvj9FssblXROY+dSMf+M9g9Ov1uZjW7weUljxf9fH0I4vsV0b1TqwKrrXOB6AADAIY4OJgAAsGRijJdI+mTx6+GS3ldmviJP6WHFrz+IMQ7PsY5rJP2m+PVBi9zUMrbEGG9s8beHNvz/I/Ms54MN//+TFtP8JMa4s8XfGsO9V8+zrv3EGG+W9Nbi1yMk/TCE8OwQwpEhhK4Qwt1CCOdLeplSoHjd+ELWAwAAwCNyAABgqZ2r1JGyUdITQwifjTFePM88myWtK/7/6IaR3ObT6o6cpXDDHH87ufg5KOmX8yzn0ob/n9JimmvnmH+w4f+Labu9USlf6VmSjlK6I6p5lL+fSnqTpC8Uvw8tYj0AAOAQxh1MAABgSRXD27+goehDIYS188x2+CJX1xFCWNBdPQuwd46/HVb83F48xjaXrQ3/X99imsEW5VJ6HLBuwSPnxRinY4zPlvQXki5r+vO1StlZ92paz1YBAAAsAHcwAQCAJRdj/GII4fNKI69tVBol7VlzzNLYJvmESj5aV2j5ON0cynzJNlfH0UI6emoN/59uOdUyizFeKOnCEMJhko6UtCPGuK3+9xDCnRomv+ZAbx8AALh9o4MJAAAslxdKeqDS3T7PDCFcOMe0jflDUzHG/1vkOuudQvN1AA0scvl19e09PITQNs9dTEeZ+Q6aGOMOpSD1Zvcsfm6JMW4/gJsEAAB+B/CIHAAAWBbF3TEvbSj6qKRVLSa/WrN3It2zxTS3CSG8IoTwvBDCg5v+VB95riuEUGuer5i3V/uPmLYYPy9+9ku6yzzTNr6eyyuud0FCCHcMIbwphPBPIYRT55hulaQ/Ln695MBsHQAA+F1CBxMAAFg2McbzJX21+HWzpKe0mG5C0reKX08JIZzRapkhhAdKepukD0t6ddOfdzf8f3OLRTxYUudc213C1xr+/7x5pn1+w/8PdOdNt6S/lfRsSU+cY7oXSeor/n/+cm8UAAD43UMHEwAAWG7Pk7Sv+P9cHTv/2PD/T4UQjm2eIIRwpNKdUHXvbZrk5w3/f5GZ/yhJ75hza8v5kqSriv//VQjhcW6iEMJrJN2/+PUbFR79W5QY468kxeLXs0MIxzVPE0J4gKTzil+/G2P85gHaPAAA8DuEDCYAALCsYow3hBBeIemD80z3zRDChySdLelEST8LIbxb0neKSf5Q0rmSji5+/2KM8d+aFvNZSa9VauO8pBhh7kJJo0qPqp1TzP/bYh2LfU1TIYSnFdvWJemiEMJnJH1e0jZJxymFmj+0mGW7pL9c7PoqerWkf1XKnbo0hPBWST9Velzx0ZKeq7S/dmruIHYAAICW6GACAAAHwoclPUnS/eaZ7kVKnUHnSFon6fUtpvuCpKc2F8YYrwohnKN0Z1O7pGcW/+qmlTpcDpP01wvY/kyM8dIQwp9I+pxSptPTi3/NfirpiTHGLVXWt1gxxi+EEF4t6c2SNkh6j5nsWkmPjTFeZf4GAAAwLx6RAwAAy64YZe3ZkkbmmW4qxniupNOUOqUulzQoaULSFqU7cR4RY3x8jNEuK8b4AUl3l/QZSTdKGpd0s6R/kXRGjPGtS/Ki0rq+JemOkl4p6QdKdwGNK3XYfFnSEyTd82B33BSv+T5KnWE3KYWh75X030p3hd0lxvizg7eFAADg9q5tZmauUXUBAAAAAACAuXEHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjq
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XuYHGWZ9/Ffdc85MzlNQhIOBsLhQcXDAouwqCAighhwFVYOgngCXFl3QdTFXQEPsC68Ki7Ci4ggRhFQEMUFVwT0ZUVEEVQOPqCCgSBJSCaHyWRmerr7/aN6wmTue2Z6UjWThHw/1zVXd9/9VNVT1TVzkZuqXyfValUAAAAAAADApips7gkAAAAAAABg60aDCQAAAAAAAJnQYAIAAAAAAEAmNJgAAAAAAACQCQ0mAAAAAAAAZEKDCQAAAAAAAJnQYAIAAAAAAEAmNJgAAAAAAACQCQ0mAAAAAAAAZEKDCQAAAAAAAJnQYAIAAAAAAEAmNJgAAAAAAACQCQ0mAAAAAAAAZEKDCQAAAAAAAJk0bO4JAACALU8I4aeSDqq9/PcY4wV1LvdlSR+qvdwlxvhU/rNDPUIITZJ+I+nlkg6IMd5XxzKzJJ0l6ShJCyQNSHpS0s2SLo0xrpy4GQMAgK0ZVzABAICxfDKE8NLNPQmM238obS7VJYSwr6RHJJ1TW65VUoekV0o6X9JvQwh75z9NAADwYkCDCQAAjKVZ0tdCCPx3w1YihHCO0iuR6h0/T9JtkraT1C/pP5VewXaIpMskVSTtKOnWEMKc3CcMAAC2etwiBwAA6nGApA9LumRzTwQjq90W9yVJp49z0c9Jml17/vYY438Pee/uEMI9kr4taXtJ50n6x6xzBQAALy78n0gAADCaitIcHkm6IISwYHNOBiMLIewn6ed6oblUrnO5uZJOqL28dVhzSZIUY7xB0vdqL98XQpiRcboAAOBFhgYTAAAYTUnSxbXnbZK+uhnnghGEED4n6T5J+9ZK31f9V5st1AtXtX9jlHFfqz02STp6vHMEAAAvbtwiBwAAxvIpSX8vaU9Jh4QQPhBjzNRoqoWGnyHpjUqzfRJJT0u6W+m3lT06wnI/VZoN1BdjbBll/Q8rDar+S4xx52HvVWtPz5T035K+LOm1Sptpf5T0rzHGnwwZP1XS+5U2VfZSGny9QtKDkr4jaVGMcUDDhBB2VvoNbFJ6/H4g6RRJJ9fm1iFpiaT/kfT5GOOfRtqfOuyv9BiulPSxGOPXQgjn17nsgUOe/3SUcfdIqta2c4ikr497lgAA4EWLK5gAYOJU+eFna/3Zb7/9DpKkpqam5hhj73XXXbdnoZD+Z0NHR8eVS5cudZc78cQTP6SaO++880lvzGWXXVYtFouPKs3xCZKmKL06Kkg6vVAoPHLppZdWq9XqqPMabf677777yyVphx12mO+8L0l6z3ve88WZM2c+Lumw2vanJUmyz5133nnH4Nj77ruvOnv27NWSPi/p9ZJmSmqUNFfSEZKulvRgCGFXja5N0k+UXgV0kKRZSsPTF0j6oKRHQghvGWMdnqqk6qGHHnrQBz7wAd1///0zY4xXSaqeccYZ5w0OuuGGG34x0rF65Stf+W5Jmjp1qmKMy0caF2Nc09nZmUjSXnvtddJI4/jhh59cf7YUm/s48MMPPxP7kwuuYAIAAGPaZ599dOKJJ2rRokVau3atzjvvPF1xxRXjXs+ll16qL3/5y5KkEIJOOOEEhRBUqVT0yCOPaNGiRVq8ePGGMf/0T/+U634Mde2116parer973+/3vCGN+j555/XY489ph133FGS9OCDD+q0005Tb2+vkiTRwoULdcQRR2jWrFk69thjj5P0XqXNqb0k3RNC2CfG+NcRNvd5pU2p+5R+K9vjkuZJ+pCkNyltNn09hLAgxtg93n259NJLNdgAHK+lS5dKkubNmzfm2Llz52rFihUblgEAABhEgwkAANTlrLPO0l133aUlS5bo7rvv1q233qqFCxfWvfwjjzyiyy+/XJJ09NFH68ILL1RDwwv/KbLPPvvomGOO0Wmnnab7779fl112mY444gjttttuue+LJFUqFZ1++uk688wzN9QOP/xwSVK5XNYnPvEJ9fb2qlAo6Itf/OKG96QNodc3hBDOVXoL4TxJX5F01AibmytpkaRTYoyVwWII4QeSfijpLUq/xe1ISTeMd182tbkkSatXr5YkTZkyZcyxbW1tkqS1a9du8vYAAMCLE7fIAQCAurS1tekzn/nMhtcXXHCBVq5cWffyV199tSqViqZPn65PfepTGzWXhm7jwgsvVJIkqlarWrRoUS5zH8nxxx/v1u+++279+c9/3jBmaHNpqBjjp/VCbtHCEMLLRthUr6R/Gdpcqi1f1cbB6a+qd+556e/vlyQ1NzePOXZwzOAyAAAAg2gwAQCAuh144IF6+9vfLknq6uraqOE0mmq1qnvuuUeStPfee6u1tXXEsTvttJN23TWNNLrvvvsyznhkc+bM0dy5c933BucqSe985zvHWtXlQ577nSjpgRjjSN24oeHeHWNtLG/FYlGSlCRJ3cuMZywAANg2cIscAAAYl3POOUf33HOPli9frttuu01HHnmkDj300FGXeeaZZzbcinXXXXcphFDXtp555pnM8x3JaJlDTzzxhKT0iqo99thjrFUN7YK9YoQxT42y/NDMpUn/b7O2tjatXr1afX19Y44dHFPP1U4AAGDbwhVMAABgXKZOnarzzjtvw+vzzz9fa9asGXWZrq6uTdrWwMCAurvHnXldl/b29hHfW7VqlSRpxowZ9VytMzTxeuYIY0bbiaHf3jLplwYNZi+tX79+zLE9PT2SpGnTpk3onAAAwNaHK5gAAMC4velNb9Lhhx+uH/3oR1q+fLk+97nP6cILLxxxfLlc3vD8He94h0466aS6tzXa7XQjqVQqYw8aRbU6rm/sLQ7ddKYNbwbbb7+9nn32Wf31ryN9Ad4LnnvuOUnSdtttN9HTAgAAWxkaTAAAYJOce+65uu+++7Rq1SrddNNNOvLII0ccO/SKl2KxqJe+9KWZtj1WAyjrt5wNzrerq0vVanWsq5jmDHlef+r5FmK33XbTr3/9a3V1dWnt2rXq6PBjoLq7uzeEug9mZAEAAAziFjkAALBJOjs7dc4552x4/clPfnLE26x22mmnDVciPfTQQ2Ou+8orr9T111+ve++9d6P64DfPlUqlja6KGqq3t3eTb8kbNJgR1dPTsyGPaRT7D3n+h0wb3gxe/epXb3j+wAMPjDjugQce2NDY23fffSd8XgAAYOtCgwkAAGyyt73tbXr9618vSVqyZIluvfVWd1xjY6Ne85rXSJIef/xx/frXvx5xnb/4xS/0+c9/Xuedd56uuOKKjd4benXNkiVL3OXvvfdelUqlce3HcK997Ws3PL/hhhvGGn76kOd3ZNrwZvDGN75RjY2NkqSbb755xHHf/e53JaWf5cEHHzwZUwMAAFsRGkwAACCTT3/60xuCokdr7Jxyyikbnp9zzjlu5s+KFSt07rnnbnh98sknb/T+0G+fW7RokVn++eef10UXXVT33EdyyCGHaP78+ZKk6667Tnfc4feNQgiflHRQ7eWdMcaxL8/awkydOlULFy6UJP34xz/WbbfdZsbcdtttG47BwoUL1dnZOalzBAAAWz4ymAAAQCbz5s3T2WefrU996lOjjjvggAN0/PHH69vf/rYWL16so48+WieffLL2228/SdLDDz+sa665RsuWLZOUBokfeuihG63jrW99qy6//HINDAzoG9/4htatW6cjjzxSzc3Neuihh3Tttddq2bJleslLXqLFixdv8j4Vi0VddNFFete73qVSqaQPf/jDOuqoo3T44Yers7NTxx577LGS3ifpzbVFnpf07k3e4GZ29tln66677tKqVav0kY98RL/5zW/0pje9SZJ0xx136Fvf+paq1ao6Ozt15plnbubZAgCALRENJgAAkNnxxx+v2267Tb/61a9GHffJT35Szc3Nuvbaa7V69Wpdeuml7rjDDjtMF198san
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecbVdB9vHnnDN9bsm96SEhhcAyIdKkiIBIEUFE4eUFeVWKKCBNmhAECUUFFBFQqb4UgRekSbGgFMGCIIIgJWSRhCQkuWm3zZ1+6vvH2sNMznpmZt/ZZ+6dm/y+n8/9nJl1d1l7n73X2bPO3s+q9Xo9AQAAAAAAABtVP9oVAAAAAAAAwLGNDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCVDR7sCAABg6wkhfFHS/Ytffy/G+Icl5/sLSc8sfj07xnjl4GuHMkIII5L+W9IdJd07xviVDSzjfEnfkDQfYzxuwFUEAAC3INzBBAAA1vOyEMJ5R7sSOGyvUepc2pAQwoSk90gaGVSFAADALRcdTAAAYD2jkt4ZQuC64RgRQvhdSc+vMP+opE9IusfAKgUAAG7ReEQOAACUcW9Jvy3pjUe7Ilhd8VjcmyT9VoVlnC7po5LuNah6AQCAWz6+iQQAAGvpSmoXP/9hCOGco1kZrC6EcE9JX9Jy51LnMOevhRAer5TbtNS5dFjLAAAAt150MAEAgLW0JL2u+HlC0l8exbpgFSGE10r6iqS7F0Wf1GHcbRZCGJL0VUnvlXSiUsfSiyV9bbA1BQAAt1Q8IgcAANbzSkmPkvRjkh4YQnhKjLFSR1MRGv4sSQ+SdLqkmqSrJX1B0p/HGC9eZb4vKo1utxhjHFtj+d9RCri+KsZ4Vt//9Yofnyfp7yX9haT7KnWmXSbpxTHGz62Yfoek35T0S5IukLRd0j6l0dU+Iul9Mca2+oQQzpJ0RfHroyR9StKTJD2hqNt2SddK+idJr48xXr7a9pTwk0r7cL+kF8UY3xlCeMVhzD+k5c6pb0v6zRjjV0MIj6pQJwAAcCvCHUwAAGBNMcZFpQ6WblH0uhDCbTa6vBDCy5Q6MZ4hKUiaVLo7Kig93vXtEMIrQgi1ShVf3xlKj5Q9pFj/Tkl3U+pkWqrrAyRdIun1kn5a0m5Jw5JOkfQwSe+S9I0Qwu3WWdeEpM9JeqdSB9kJSuHp50h6uqTvhhB+vsK2HJD0R5LOjTG+c4PLuFTpfb5rjPGrFeoCAABuhehgAgAA64oxfknSm4tfd0p620aWU9xV8ypJDUnfUupQ+imlO4ieI+lypeuTlxf/NtNzlTp6/ljS/SQ9RtKrY4xXFnW9t9IdTqdK6kl6v6RfVMonepykzxTLuUDSv4UQTl1jXa+X9AClx9geXyzjkZI+W/z/qKT3hBC2bXBbHh1jfHGM8cBGZo4xLkgKMcZ3xhjJXQIAAIeNR+QAAEBZvyvpEZLOkvQLIYRfiTF+oOzMIYS7SXpZ8ev7JD2579GyL4UQ3inp7yT9jKSLQggfXu1xuQGoK3UovXRF2UeLujaU7k4aV7pz65djjB9dMd1XJX0ohHCR0iOEp0p6u1IHlHOK0jY/Kca4dCeYQgifUtren1fKPnq4pA8d7oasXOZGxRh7608FAADgcQcTAAAoJcY4K+mpK4reFEI48TAW8QKla499kn7L5RYV63iy0h1DNUnP3niNS3nrKuWPUMqckqS39nUu/UiM8VWSvrg0Twjh/FWWtyDpuf0dQUWnzso8qzuXqTQAAMBWQwcTAAAoLcb4WUnvLn49QdKfl5mvyFN6WPHrl2KMc2us4wpJ3yt+fdAGq1rGtTHGa1b5v59b8fPb11nOW1b8/NBVpvl6jHH/Kv+3Mtx7+zrrAgAA2JJ4RA4AAByu5yt1pJwq6ZdDCB+MMX5ynXnOkrSr+PkXV4zktp6zN1bFUq5e4/8uKF5nJH1nneV8ZcXPP77KNFeuMf/Mip+5NgMAAMck7mACAACHJcZ4UNIzVxS9NYRw3DqznbDB1Q2FEDbrrp5Da/zf8cXr3hLZRDes+Hn3KtPMrFIupccBl2z2yHkAAACbgm/JAADAYYsxfjyE8BGlkddOVRol7TfWmGXlNce7VPLRusKqj9OtocyXaGt1HB1OR09jxc+Vw7YBAACORXQwAQCAjXqWpAcq3e3z5BDCX68x7cr8oU6M8ZsbXOdSp9B6HUA7N7j8JUv1PSGEUFvnLqaTzXwAAAC3KjwiBwAANiTGeKOk560oeoekyVUm/4GW70T6yfWWHUK4MITwtBDCg/v+a2nkuZEQQqN/vmLecUmHM7qd863idZukO64z7crtuaTiegEAAI5JdDABAIANizG+T9Kni1/PkvSrq0zXkvSF4tcfDyHcd7VlhhAeKOm1kt4m6SV9/31wxc9nrbKIB0saXqveJXxmxc9PW2fa31rx82crrhcAAOCYRAcTAACo6mmSpouf1+rY+dMVP78nhHBG/wQhhJOU7oRa8md9k3xrxc/PNvOfLOl1a9a2nE9Juqz4+RkhhEe5iUIIL5N0/+LXz1d49A8AAOCYdmvNYCo7NDKAYxOjMAFHUIzx6hDChZLess50/xxCeKukp0u6naT/CSG8UdK/FJPcXdLzJZ1W/P7xGOMn+hbzQUkXKV3DPKcYYe6vJS0oPar23GL+y4t1bHSbOiGExxd1G5H00RDC+yV9RNKNks5UCjX/uWKWvZKeuNH1AQAAHOturR1MAABgsN4m6XGSfnqd6Z6t1Bn0XEm7JL1ylen+RtKv9RfGGC8LITxX6c6muqQnF/+WdJUeqzte0gsOo/6ZGONXQggPlfQhpUynJxT/+v23pF+OMV5bZX0AAADHMh6RAwAAlRWjrP2mpPl1puvEGJ8v6a5KnVKXSJqR1JJ0raSPSXp4jPHRMUa7rBjjmyXdQ9L7JV0jqSnpOkkflnTfGONrBrJRaV1fkHSupBdL+pLSKHFNSVdK+jtJj5X0kzHGy1ZbBgAAwK1Brde7VT4tdqvcaOBWhEfkAAAAAOAI4g4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYZVddL/xvVXV1dzqEKYwyBMOw9OKAgEguyCwzBAUEDCCgTDJ4Qa4I72UIQ2SQQQMIyCDkFYyKcgWBe5nFN+SKAl6JZDGFIZEpEEKm7q6uqvePczp0av+663Sf09Wd8Pk8Tz2nzjpr77X2kHroH2t/z9zq6moAAAAA4EDNH+oJAAAAAHD5psAEAAAAwFQUmAAAAACYigITAAAAAFNRYAIAAABgKgpMAAAAAExFgQkAAACAqSgwAQAAADAVBSYAAAAApqLABAAAAMBUFJgAAAAAmIoCEwAAAABTUWACAAAAYCoKTAAAAABMZdOhngAAcPhprX0syR3Hb/9H7/3FE273miRPGr/9yd77V2c/OybRWtuc5NNJbp7kuN776RNsc8skT0hyhyTXT7KQ5NtJTkvyxt77xw7ahAGAyzUrmACA9TyntfbTh3oS7Lc/zKi4tK7W2lxr7WVJ/iXJY5O0JEcm2ZrkmCQPS/LR1tpbx4UrAIDLUGACANazJcmbW2v+d8PlRGvtWUmevh+bPDfJf08yl+Q/x7//cpL/muQpSb4y7veoJK+b2UQBgCsMj8gBAJM4LslTk7z6UE+EvRuvLvrjjB5zm3SbY5I8e/z2C0lu33v/7h5dPtlae3uSDye5dZLfaq29pfd+2oymDQBcAfh/IgGAfVlJsmv8+4tba8ceysmwd6212yT5//Kj4tLyhJuekGT3Y2//bU1xKUnSe/9hksfv0fTIA50nAHDFpMAEAOzLUpKXj3/fluTPDuFc2IvW2kuSnJ7RCqMk+Z+ZfLXZL49fL0nywb116r1/Osn3x29//gCmCQBcgXlEDgBYz4lJfjXJTyW5S2vtsb33qQpN49DwJye5a0bfVjaX5BtJPprk5N77f+xlu49l9O12O3rvW/ex/89lFHD9td77jdZ8tjr+9WlJ/iHJa5LcPqNi2peS/EHv/UN79L9ykt9OcnySn0lyVJLvJflMkr9OckrvfVfWaK3dKMlZ47e/muTvM8oweuR4bkclOSfJ/0ryit77l/d2PBO4bUbn8PtJfr/3/ubW2vMn3PbUJGckWayOY4258etezz0A8OPpx3UF06ofP36u0D+Hi0N9Hvz4OeCf29zmNndMks2bN2/pvW9/xzve8VPz86P/2XDUUUe98dvf/na53QknnPCkjH34wx8+q+rz2te+dnVhYeE/kvxOfvRtZdvGvz9hfn7+jJNPPnl1dXV1n/Pa1/xvetOb3jxJrne96x1TfJ4kefSjH/2qq1/96l9Icvfx+FeZm5u71Yc//OEP7u57+umnr17zmtc8P8krktwhydWTLCa5TpJ7JXlLks+01m6cfduW5ENJ3pxRgewaGYWnH5vkiUnOaK3de519VFaTrN7tbne742Mf+9j88z//89V7729KsvrkJz/5ebs7nXrqqZ/c27nqvb+19/57vfen7q1PktUzzzxzNcnVkuSud73rLfbV148fPzP7AbjcsIIJAFjXrW51q5xwwgk55ZRTcsEFF+R5z3teXv/61+/3fk4++eS85jWvSZK01vIbv/Ebaa1lZWUlZ5xxRk455ZR8/etfv7TPU57ylJkex57e9ra3ZXV1Nb/927+dO9/5zjn33HPz+c9/Pte//vWTJJ/5zGfy+Mc/Ptu3b8/c3Fzud7/75V73uleucY1r5MEPfvBDkzwmo+LUzyT5RGvtVr33b+5luFdkVJQ6PclrMwrTvm6SJyX5lYyKTX/eWju2937h/h7LySefnN0FwIPljW9846W/3/72tz+oYwEAlz8KTADARJ7+9KfnIx/5SM4555x89KMfzXve857c7373m3j7M844I6973egb7o8//vicdNJJ2bTpR/9T5Fa3ulUe9KAH5fGPf3z++Z//Oa997Wtzr3vdKze5yU1mfixJsrKykic84Ql52tOedmnbPe95zyTJ8vJynv3sZ2f79u2Zn5/Pq171qks/S5Le+6lJTm2tPTejRwivm+QNSe6/l+Guk+SUJI/qva/sbmyt/X2S9ya5d5JrJrlPRo+s7ZeDXVx6//vfn3/4h39Ikhx99NE5/vjjD+p4AMDlz4/rI3IAwH7atm1bXvjCF176/sUvfnG+//3v72OLy3rLW96SlZWVXPWqV82JJ554meLSnmOcdNJJmZuby+rqak455ZSZzH1vHvawh5XtH/3oR/OVr3zl0j57Fpf21Ht/QZKPjd/er7X2X/Yy1PaMvqFtZc/G3vtqLhucftiFZ3/605/Os571rEvf/8Ef/EGOPPLIQzgjAOBwpMAEAEzsdre7XX7t134tSXLeeeddpuC0L6urq/nEJz6RJLnlLW+ZI444Yq99b3CDG+TGNx5FGp1++ulTznjvrn3ta+c617lO+dnuuSbJQx7ykPV29bo9fq8rUcm/9t73Vo3bM9z7qPUG20j/+q//msc97nG55JJLkiQPfehDc//7722RFgDw48wjcgDAfnnWs56VT3ziE/nud7+b973vfbnPfe6Tu93tbvvc5uyzz87555+fJPnIRz6S1tpEY5199tlTz3dvrnvd6+71sy9+8YtJRiuqbnazm623qz2rYD+7lz5f3cf2e2YuHTb/2+zjH/94fvd3f/fS4tI97nGPPPe5zz3EswIADldWMAEA++XKV75ynve85136/vnPf35++MMf7nOb884774DG2rVrVy68cL8zrydypStdaa+f/eAHP0iSXO1qV8vc3Nx6u/r2Hr9ffS999nUQe35T1LqDbYR3vvOdeeITn3hpcene9753XvnKV2ZhYeEQzwwAOFwdNv8vGQBw+fErv/Iruec975kPfOAD+e53v5uXvOQlOemkk/baf3l5+dLfH/jAB+YRj3jExGPt63G6vVlZWVm/0z6sru7Xt4PvWXWZbuBDbHV1NS972cvylre85dK2hzzkIXn+859/0IPEAYDLNwUmAOCAPPe5z83pp5+eH/zgB3nXu96V+9znPnvte5WrXOXS3xcWFvLTP/3TU429XgHoggsumGr/u+d73nnnZXV1db1VTNfe4/fJU88PM8vLy3nmM5+Z97znPZe2PeUpT8mTn/zkQzgrAODywv8VBQAckKOPPvoy3y72nOc859JHqta6wQ1ucOlKpM9+9rPr7vuNb3xj/vIv/zKnnXbaZdp3f/Pc0tLSZVZF7Wn79u0H/Ejebrszoi6++OJL85j24bZ7/H7mVAMfIqurq/n93//9S4tLmzZtykknnaS4BABMTIEJADhgD3jAA3KHO9whSXLOOedcZvXLnhYXF/NLv/RLSZIvfOEL+Zd/+Ze97vOTn/xkXvGKV+R5z3teXv/611/ms6OO+tGXrJ1zzjnl9qeddlqWlpb26zjWuv3tb3/p76eeeup63Z+wx+8fnGrgQ+RP/uRP8t73vjdJsmXLlrzmNa/JAx/4wEM8KwDg8kSBCQCYygte8IIceeSRSbLPws6jHvWoS39/1rOelW9+85uDPt/73vcu801lj3zkIy/z+Z7fPnfKKacMtj/33HPzspe9bOK5781d7nKXHHPMMUmSd7zjHfngB+u6UWvtOUnuOH774d77+suzDjOf/exn84Y3vCFJMjc3l1e+8pW5853vfIhnBQBc3shgAgCmct3rXjfPeMYzcuKJJ+6z33HHHZeHPexheec735mvf/3rOf744/PIRz4yt7nNbZIkn/vc5/LWt7413/nOd5KMgsTvdre7XWYf973vffO6170uu3btytvf/vZcdNFFuc997pMtW7bks5/9bN72trflO9/5Tm54wxvm61//+gEf08LCQl72spfl4Q9/eJaWlvLUpz4197///XPPe94zRx99dB784Ac/OMlvJbnHeJNzk/zmAQ94CL361a++9HHDu971rrne9a6Xz3/
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYZGdZ/vG7q3rvWZJMyAYJQxLyEkLYXRCQyCayKSCIiJFNEAyyiISfsi8RCCggOwJBRDYBQdwICC5AEEVkS54AISEEMpl9672qf3+c03RNvXd3n+5T09OT+X6ua67qevss71lr6ulz7tM3NzcnAAAAAAAAYLUaR7oDAAAAAAAAOLpRYAIAAAAAAEAtFJgAAAAAAABQCwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAtFJgAAAAAAABQCwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAtFJgAAAAAAABQCwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAt/Ue6AwAAYP1JKX1B0n3Kty+MiFdVHO/Nkn6/fHubiLi2971DFSmlQUlfk3SepHtExBUVxrlA0jMk/YKkW0jaLek7kj4o6X0RMX3YOgwAAI5qXMEEAACW86KU0rlHuhNYsT9VUVxaVkqpkVJ6i6TPS3q0pFtKGpR0sqRfkvROSV9NKd32MPUVAAAc5SgwAQCA5QxJendKif83HCVSSv9P0nNXMMqrVFy5JEk/knSRpF+U9EgVVy9J0h0lfTqltKlX/QQAADcf3CIHAACquIekP5D0hiPdESyuvC3ujZJ+bwXjnCXpj8q310i6a0Ts7RjkEymlb0t6paRzVBSfLulNjwEAwM0Ff4kEAABLaUuaLX9+VUrpzCPZGSwupfSzkr6oheJSq+KoT5TULH9+dldxad6fStpT/vyYVXcSAADcbFFgAgAAS5mRdGn586ikdx3BvmARKaVXS7pC0t3Lpk+q+tVmN6rIXrpe0uVugIhoS7q6fHvG6nsKAABurrhFDgAALOdlkh4h6XaS7ptS+t2IqFVoKkPDL5J0P0m3ktSnosDxeUl/ERHfWWS8L6h4ut1URAwvMf1vqQi4vi4itnb9bq788TmS/kHSmyXdS0Ux7XuSXhARn+0YfpOkp0j6VUl3kLRR0k5J/yvpo5LeHxGz6pJS2irpB+XbR0j6lKQnSLqw7NtGSTdI+hdJr4+I7y+2PBX8vIp1uEvS8yPi3Smll1YZMSLerGIdLCql1KeFwtJPavQTAADcTHEFEwAAWFJETKkosLTLpktTSrdc7fRSSi+S9E0VodJJ0piKq6OSitu7vplSemlZ1DicTldxS9kDy/lvlnRXFUWm+b7+kqSrJL1eRej1CZIGJJ0i6VckvUfS/5Y5RksZlfRZSe9WUSA7UUV4+pmSni7p2ymlB9dYlt2SXiPp7Ih4d43pLOaZKpZZkj58GKYPAACOclzBBAAAlhURXywfY/9MFYWYt0t62EqnU15V85Ly7TckvbV8bUi6m4og8bM6hnlpnX4v49kqrvp5raS/V1FAuXNEXFv29R4qrnAakTQn6QOSPiJpm6TbSHqSiuLUHST9R0rpbhGx2NU9ry+nf4Wkt6i43exUSb8v6QEqik2XpZTOjIgDq1iWR5W3sfVEWdw7UdL5ZR8fWf7qfyT9Wa/mAwAAbj4oMAEAgKr+n4qi0lZJD00pPS4i/qbqyCmlu0p6Ufn2/ZKe1HVr2RdTSu+W9GlJF0h6cUrpI4vdLtcDDUmXRMSfdLT9bdnXpoqrk0ZUXLn1GxHxtx3D/ZekD6eUXqziFsJTJb1D0sMXmdcpKpb5CZ2FoJTSp1Qs74Ml3ULSQ7SKK4R6WVwqvUvSk7va3i3peassgAEAgJs5bpEDAACVRMRBSU/taHpjSukWK5jEH6r4v8dOSb/ncovKeTxJxRVDfSqumDqc3rZI+8NUZE5J0tu6iks/FREvl/SF+XFSSrdfZHqTKp7QdkghKCLmdGhw+p2qdHoN3Nq03V/S76aU+P8jAADI8B8EAABQWURcLum95dsTJf1FlfHKW65+pXz7xYgYX2IeP5B0Zfn2fqvsahU3RMSPFvndL3f8/I5lpvPWjp8ftMgw/xMRuxb5XWe498Zl5rVW3irp3pLuKem5KgLYb63idsIPUGQCAADduEUOAACs1HNVFFJOlfQbKaUPRsQnlxlnq6Tjy58f3vEkt+XcZnVdrOT6JX53h/L1gKRvLTOdKzp+Pn+RYa5dYvzOW87Wxf/NIuITHW+/lFJ6n4qQ8rtIeqyky1XcQggAACCJK5gAAMAKRcQeFcHP896WUjpumdFOXOXs+lNKh+uqnn1L/G5L+bqjvI1tKds6fj5hkWGWyi3qnP7hfnLeqpRXX13Y0fSkI9UXAACwPlFgAgAAK1Ze4fLR8u2pKp6StpTOK3Peo+JKmKr/Fr2dbglV/o+zVOFoJYWeZsfPvQ7bXjci4lsqnn4nSXc8kn0BAADrz7q4DBsAAByVLpJ0XxVX+zwppfShJYbtzB9qRcTXVznP+aLQcgWgzauc/rz5/p6YUupb5iqmk814R42U0mmSzlKxXb60zOA7y9fBw9srAABwtOEKJgAAsCoRcZOk53Q0vVPS2CKDX6OFK5F+frlpp5QuTik9LaV0/65fzT95bjCl1Owerxx3RNJKnm7nfKN83SDpvGWG7Vyeq2rOd02V4etXSfp3FdtvuWHPLN8uFo4OAACOURSYAADAqkXE+yX9U/l2q6TfWmS4GUmfL9+en1K612LTTCndV9KrJb1d0h93/XpPx89bF5nE/SUNLNXvCj7T8fPTlhn29zp+vrzmfNdUeWXWF8u356WUfm6JwR+ihau1jqrlBAAAhx8FJgAAUNfTJO0vf16qsPNnHT9fllI6vXuAlNJJOvRKmjd1DfKNjp+facY/WdKlS/a2mk9J+l758zNSSo9wA6WUXiTpPuXbz9W49e9IemvHz29PKWW3F6aUkqS/LN/O6NBtCQAAQAYTAACoJyKuTyldrEMLFW64f00pvU3S01Vk/vxfSukNkv6tHOTukp4r6bTy/Sci4u+6JvNBSS9W8X+YZ5VPmPuQpEkVt6o9uxz/++U8VrtMrZTSb5d9G5T0tymlv1YRbH6TpFtLerKkXy5H2SHpd1Y7vxoWzYa66KKL9OY3v1mS9OEPf/jLiw0XEXrOc56jf/zHf5SkO5900kl73ve+9+n2t7+9Wq2WvvSlL2lsbEwHDx6UJL3kJS8ZeNzjHnf1YtMD0FPr5cmSyz1NE8DRrSfnGgpMAACgF94u6bGSfnGZ4Z6pohj0bEnHS3rZIsN9XNLjuxsj4nsppWeruLKpIelJ5b95bRW31W2R9Icr6H8mIq5IKT1I0odVZDpdWP7r9jVJvxERN9SZ35H0mte8Rv39/frUpz6lm266SZdcckk2zNDQkF70ohfp0Y9+9BHoIQAAWO+4RQ4AANRWZvk8RdLEMsO1IuK5ku6ioih1laQDKm67ukHSxyQ9JCIeFRF2WhHxFkk/I+mvVYRNT0v6iaSPSLpXRPxpTxaqmNfnJZ0t6QUqsop2lfO7VtKnJT1G0s9HxPcWm8bRYHBwUJdeeqkuu+wyPfjBD9Ypp5yigYEBbdiwQeeee66e+tSn6vLLL6e4BAAAFtU3N8fVjgAAAEcp/iMH3LxxixyAtdCTcw1XMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAAAAAAAgFooMAEAAAAAAKAWCkwAAAAAAACohQITAAAAAAAAaqHABAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8ZFd5//HvFEkrbXVZe40xuACPCZgWOg6dJPReTcBgqm3AQEIJoYdqSAAbMITiYDqEFvhBANMhJARMMcYPuBv39RZvU5uZ3x/3jlc755F0pDvSaq3P+/Xa10hHt5y55Wjn0b3fW+t0OgIAAAAAAADmq763OwAAAAAAAIB9GwUmAAAAAAAAVEKBCQAAAAAAAJVQYAIAAAAAAEAlFJgAAAAAAABQCQUmAAAAAAAAVEKBCQAAAAAAAJVQYAIAAAAAAEAlFJgAAAAAAABQCQUmAAAAAAAAVEKBCQAAAAAAAJVQYAIAAAAAAEAlFJgAAAAAAABQCQUmAAAAAAAAVNLc2x0AAABLj5n9QNL9ym//yd3fkjnf6ZJOKr89wt0v6X/vkMPMBiX9StLtJN3L3X8+z+W8SNL7ym/ZpwAAIMQVTAAAYDavNbPb7u1OYM7epqK4NG9mdkS5HAAAgBlRYAIAALMZkvRRM+P/DfsIM3u1pJdVXEZN0kclrexLpwAAwE0at8gBAIAc95L0Yknv2dsdwfTK2+LeK+kFfVjc8yU9oA/LAQAAywB/iQQAADNpS5osv36LmR25NzuD6ZnZ3SX9VLuLS60Ky7qFpHeW326s2DUAALAMUGACAAAzmZB0avn1iKR/24t9wTTM7O2Sfi7prmXTV1XtarN/k7Ra0k8kfb5a7wAAwHLALXIAAGA2b5T0WElHS3qgmT3X3SsVmsrQ8JMlPUjSzSXVJF0u6fuSTnP386aZ7wcqnm435u4rZlj+uSoCri9198N7ftYpv3yppG9IOl3SsSqKaRdIepW7f3fK9GskPUfSoyXdXkXh5XpJ50j6gqSz3H1SPczscEkXl98+VtLXJB0v6Rll31ZLukLSf0l6t7tfON37yXBPFdtwk6RXuPtHzewN81mQmZ0g6a8ljap43y+q0C8AALBMcAUTAACYkbuPqSg0tMumU83s0Pkuz8xeK+l3kk6UZCpCpEfKr18g6Xdm9oYyZHohHabilrK/Lte/VtJdVBSZun19gKTzJb1b0n0l7S9pQNIGSQ+V9DFJ55jZUbOsa0TSd1WEZt9P0oEqwtOPlPRCSb83s4dVeC+bJb1D0q3c/aPzXUi5X99dfvtGd/cKfQIAAMsIBSYAADArd/+ppPeX366VdMZ8llNeVfMmSQ1Jv1VRULq3iiuIXiLpQhX/P3l9+W8hnaKi0PNOSX8l6YmS3urul5R9vZeKK5wOkdSR9ElJj5J0D0lPkfTtcjm3l/RjMztkhnW9W0Vg9s8l/V25jMdI+k758yFJZ5rZqnm+l8e7+6vcffM85+/6sIr9e46kd1VcFgAAWEa4RQ4AAOR6taRHSjpc0iPM7Gnu/uncmc3sLpJeW357lqRn99xa9lMz+6ikr0u6v6TXmdnnp7tdrg/qKgpKr5nS9sWyrw0VVycNq7hy68nu/sUp0/2vpM+Z2etU3EJ4iKQPqShARTaoeM/Hu3v3SjCZ2ddUvN+HSVov6eGSPjfXNzJ1mfNlZs8o+zGpdN8AAADMiCuYAABAFnffIel5U5rea2br57CIl6v4v8f1kl4QFTDKdTxbxRVDNS18/s8Hp2l/pIrMKUn6YE9x6Ubu/iZJP+jOY2Z/Mc3yRiWd0lsIcveO9gxOv2NOp/vNzDZodyj4O93913ujHwAAYN9FgQkAAGRz9+9I+nj57YGSTsuZr8xTemj57U/dfecM67hY0h/Kbx80z67muMLd/zzNz/5mytcfmmU5H5jy9d9OM80v3X3TND+bGu69epZ1LZQzJO2nIm/qTXupDwAAYB/GLXIAAGCuXqaikHKIpCeb2Wfc/auzzHO4igKGJD1qypPcZnPE/LqY5fIZfnb78nW7pHNnWc7Pp3x9zDTTXDLD/NunfL3o/zczs6eqeEJeW9IJZag7AADAnHAFEwAAmBN33yLppClNHzSzdbPMduA8V9c0s4W6queGGX52QPm6sbyNbSbXTPl6/2mm2T5Nu1TcDti10E/O24OZHSTpfeW373f3ny3m+gEAwE0HVzABAIA5c/cvm9kXVDx57RAVT0k7YYZZpv6f42PKvLWuNO3tdDPI+SPaTIWjuRR6GlO+rhy2vcjep6L4t1XS583sTsE0U4uDf9EtJpLTBAAApqLABAAA5utkSQ9UcbXPs83sszNMOzV/qFWhONEtCs1WAFo7z+V3dft7oJnVZrmK6eBgvn3FPcvXtZJ+nDH9N6Z8vahXWwEAgKWNW+QAAMC8uPu1kl46penDklZOM/lF2n0l0j2nmeZGZvZKM3u+mT2450fdJ88Nmlmjd75y3mFJc3m6XeS35esqSbebZdqp7+f8iusFAADYJ3EFEwAAmDd3P6sMiX6oiiDv46aZbsLMvi/p4ZKOMbNj3f0n0bRm9kBJby+//b6k70758ZYpXx+uPZ/A1vVgSQNzeBuRb0t6Qfn18yW9aIZpXzDl6+9UXO+icvfDZ5vGzE7X7sytI9z9koXsEwAA2DdxBRMAAKjq+ZK2lV/PVNj5lylfn2lmh/VOUIZOf3hK0/t6JvntlK+Too+ZHSzp1Bl7m+drki4ovz7RzB4bTWRmr5V0v/Lbs8klAgAAyxVXMAEAgErc/XIze6WkD8wy3ffM7IOSXijpKEm/MbP3SPphOcldJb1M0s3K77/s7l/pWcxnJL1Oxf9hXlI+Ye6zkkZV3Kp2Sjn/heU65vueWmb2d2XfBiV90cw+KekLkq6VdEsVoeZ/U86yUdIz57u+CqbNhjr55JN1+umnS5I+97nP/fd8V3DcccfpU5/6lCTp7LPPvni+ywEwL0sl62y2p2kC2Lf1ZayhwAQAAPrhDElPkXTfWaZ7kYpi0CmS9pP0xmmm+5Kkp/c2uvsFZnaKiiub6pKeXf7rakv6RxXB4y+fQ/8T7v5zM/tbSZ9Tken0jPJfr19JerK7X1FlfQAAAPsybpEDAACVlU9Ze46kXbNM13L3l0m6s4qi1PmStkuakHSFpP+Q9HB3f7y7h8ty9/dLupukT0r6s6RxSVdJ+rykY939bX15U8W6vi/pVpJeJemnKp4SNy7pEklfl/QkSfd09wumWwYAAMByUOt0uNoRAABgH8V/5ICbNm6RA7AY+jLWcAUTAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKASCkwAAAAAAACohAITAAAAAAAAKqHABAAAAAAAgEooMAEAAAAAAKA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4ZVWZ7/HfGXMyp0aGKmZhoYitqC3OKNjdDtduWlsUJ0SwHZCL0tehbQcQxSvX64AD9kUFxQEVbWkaL1dQnFocaVCRpYxCUdRcqcw5OefcP/YOlcr7JjnJPpUKVd/P89STZGUPa08rlTd7/3au0WgIAAAAAAAAWKj8nu4AAAAAAAAAHt4oMAEAAAAAACATCkwAAAAAAADIhAITAAAAAAAAMqHABAAAAAAAgEwoMAEAAAAAACATCkwAAAAAAADIhAITAAAAAAAAMqHABAAAAAAAgEwoMAEAAAAAACATCkwAAAAAAADIhAITAAAAAAAAMqHABAAAAAAAgEwoMAEAAAAAACCT4p7uAAAAWHpCCDdKemb65b/EGD/Q5HyflPSm9MvDYoz3tL53aEYIoSzpN5KOkfTkGONNc0x/qaTXNrl4ji0AANgFdzABAIC5vDuE8Mg93QnM24VKikvNetzu6ggAANj7cQcTAACYS5ukz4UQnhZjrO/pzmBuIYR3SnrrPKYvamcx6lJJn5pjlgcW2DUAALCXosAEAACa8WRJZ0v62J7uCGaWPhb3cUmvn+esj1RSSJSk62OM/9XSjgEAgL0ej8gBAIDZ1CVNpJ9/IIRw+J7sDGYWQvhLST/VzuJSbR6zP3bK5xSXAADAvFFgAgAAs6lKuij9vEPS/9mDfcEMQggfknSTpCekTd/R/O42m8xfGpL0pxZ2DQAA7CN4RA4AAMzlPEknSzpa0rNDCGfGGDMVmtLQ8LMknShpraScpPsk/UDSxTHG22aY70Ylb7cbizFWZln+75RkCt0bYzx02vca6advkfQfkj4p6WlKiml3SHpHjPH6KdP3SDpD0t9KerSkbklbJN0s6RuSvhRjnNA0IYRDJd2dfnmypKslnSbpVWnfuiWtk3SdpI/EGO+caXuacLySfbhV0ttijJ8LIbxvHvNP3sF0CzlbAABgISgwAQCAWcUYx0IIZ0j6kZK7ny8KIVwbY1y3kOWFEN4t6b2SCtO/lf57XQjh/ZLOizE2ps/fQgcpeaRs1ZS245QUmSb7+ixJX5Z0wLR595f03PTfW0MIfzdHgahD0vWSnjWt/XBJb5B0egjh72OM185zGxqSdNJJJ+mwww7TmWeeuby3t/dSSZeeddZZ+uQnPylJuvLKK38220L6+vq0fft2nXrqqU+54YYbGldddZVuueUW9ff3q6+vT8cdd5xOPfVUHX/88fPsHoCMcnu6A6ndORYD2PNaMtZQYAIAAHOKMf40hPApSW+W1CvpEkn/bb7LSe+qeW/65a2SPp1+zEt6vJIg8SOmTPO+LP2ewzlK/kP1YUn/rqRo9NgY4z1pX5+s5A6ndiW/XH1Z0tclbZB0mKTTJf2VkruafhxCeHyMcf0M6/pIuvyblLyh7Y9KilZvkvQcJQHbl4UQDo8xDs53Qy6++GLl8wtLPnjggQe0fft2SdLVV1+tr3zlK7t8f9OmTbruuut03XXX6ZRTTtF73vMeFYv8FxIAAOyK/x0AAIBmvVNJUelQSS8IIZwaY/zK7LPsFEI4TtK70y+/JOn0aY+W/TSE8DlJ10g6QdJ7Qghfn+lxuRbIS/pgjPFdU9q+mfa1IOnzSopLdUmnxBi/OWW6X0i6MoTwHiWPEB4g6bOSXjjDuvZXss2nTX0ELYRwtZLtfZ6SO6meL+nKeW/IAotLknTbbTt37+DgoI4++mideuqpOvLIIzU+Pq5f/OIXuuKKK9Tf368rr0y6dv755y94fQAAYO9EyDcAAGhKjHFI0uumNH08hLBqpukd5yr5v8cWSa/3covSdZyu5I6hnJI7pnanz8zQ/t+UZE5J0memFZceEmM8X9KNk/OEEB41w/JGJZ0zPd8ofQRwap7VXzTT6Va6/fbbH/r8xS9+sa666iqdcsopOu6443T88cfr7LPP1re//W2tWbNGknTllVfq5z//+WJ3EwAALHEUmAAAQNNijN+T9IX0y5WSLm5mvhBCTklekST9NMY4PMs67pb0h/TLExfY1WasizHeP8P3/nrK55+dYzmfnvL538wwza9jjFtn+N7U7KbuOdbVcq997Wv1ne98R5dcconOO+889/G3NWvW6IILLnjo68svv3wxuwgAAB4GeEQOAADM11uVFFIOkHRKCOGrMcbvzDHPoZKWpZ+/cMqb3OZy2MK62JT7Zvneo9OPg5J+N8dybpry+bEzTHPPLPNPzVxa9P+btbe36+ijj9bRRx8963RPecpTtHbtWt1///266aab1Gg0lMstlfxhAACwp3EHEwAAmJcY43Yl4dSTPhNC6JtjtpULXF0xhLC77urZMcv3VqQfNzfxJrsNUz5fPsM0swV3T13+kq7YTBahhoaG1N/fv4d7AwAAlhLuYAIAAPMWY/x2COEbkv5ByZ1MH5H02llmmfp/js+ryUfrUjM+TjeLZv6INlvhaD6FnsKUz+szTrUXqFQqD31erVb3YE8AAMBSQ4EJAAAs1FmSnq3kbp/TQwhfm2XaqflDtRjjfy1wnZNFobkKQL0LXP6kyf6uDCHk5riLaT9nvoeFer2um266SVu3blVbW5ue85znzDr91q3J5hUKBfX2Zt3FAABgb0KBCQAALEiMcWMI4S2Svpg2/at2vlFturuU3InUIen4uZYdQni7pO2S7owxXj/lW5NvniuHEAoxxpozb7uk+bzdznOrpKdI6pJ0jGbPYZq6PbfPONUSlM/ndfbZZ2tgYECrVq3SSSedNGOu0vj4uH77299KkkIIKpfLi9lVAACwxJHBBAAAFizG+CVJ302/PFTSy2eYrirpB+mXx4YQnjbTMkMIz5b0IUmXSPrnad/ePuXzQ2dYxEmSSrP1uwn/b8rn/zjHtK+f8vn3Mq530T3hCU+QJG3atEk/+clPZpzum9/8pgYGBiRJz3ve8xalbwAA4OGDAhMAAMjqHyUNpJ/PVtj531M+vyyEcND0CUIIq5XcCTXpE9MmuXXK52925t9P0kWz9rY5V0u6I/38jSGEk72JQgjvlvTM9MsbMjz6t8eceuqpD31+wQUXPPQY3FS33HKLLroo2a2rVq3SKaecsmj9AwAADw88IgcAADKJMd6XPtL26Tmm+34I4TOS3iDpCEm3hBA+JumH6SRPkPRWSQemX387xvhv0xbzVUnvUfJ/mP+evmHua5JGlTyqdk46/53pOha6TbUQwivTvpUlfTOEcIWkb0jaKOkQJaHmf53OslnSqxe6vj3pGc94hl7wghfommuu0T333KOTTz5ZZ5xxho499liNjIzoxhtv1Je//GVVq1WVSiVdeOGF6unp2dPdBgAASwwFJgAA0AqXSHqppGfMMd2blRSDzpG0TNJ5M0z3LUmvmN4YY7wjhHCOkjub8pJOT/9Nqit5rG6FpHPn0X8jxnhTCOFvJF2pJNPpVem/6X4j6ZQY47os69uTLrzwQuXzeV199dV68MEHdcEFF5hp+vr69MEPflBPf/rT90APAQDAUscjcgAAILP0LWtnSBqZY7pajPGtkh6npCh1u6RBSVVJ6yRdJen5McYXxRjdZcUYPyXpiZKukHS/pHFJ6yV9XdLTYowXtmSjknX9QNIjJL1D0k+VvCVuXNI9kq6R9BJJx8cY75hpGQ8H5XJZF110kS677DI973nP0wEHHKBSqaSenh496lGP0llnnaVrr71WJ5544p7uKgAAWKJyjcZsb90FAADAEsZ/5IC9m/9ax8XHWAPs3Voy1nAHEwAAAAAAADKhwAQAAAAAAIBMKDABAAAAAAAgEwpMAAAAAAAAyIQCEwAAAAAAADKhwAQAAAAAAIBMKDABAAAAAAAgEwpMAAAAAAAAyIQCEwAAAAAAADKhwAQAAAAAAIBMKDABAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8JVd9/vFH90pX0hbvrtcVY7M25dBb6JhgGxIgBIgDBEw1BhMwzXQIgVBCD2BagGA6AUwAA6H8AJsaEgjFdPgSbIzNYntddr1F/er+/piR967OI2lWc7WrtT7v12tfV/doypm5M0err2ae6et0OgIAAAAAAAAWq7G/OwAAAAAAAIADGwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAtFJgAAAAAAABQCwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAtFJgAAAAAAABQCwUmAAAAAAAA1EKBCQAAAAAAALVQYAIAAAAAAEAtFJgAAAAAAABQCwUmAAAAAAAA1NK/vzsAAACWn5TSNyXdu3z7jxHx6orzvUPS08q3x0bExb3vHapIKbUk/VjSrSTdPSK+V3G+h0l6jKQ7STpU0g5JF0j6gKSPR0RnaXoMAAAOZFzBBAAAFvLSlNIt9ncnsNdeq6K4VElKaV1K6TxJ/yHpIZKOktSStFHSfSX9u6QvppSGlqCvAADgAEeBCQAALGRQ0vtSSvy/4QCRUnqxpOfsxfQDkr4i6T5l0/ckPUrS3SQ9VtIvy/YHSHpX73oKAACuL/iPIgAAqOLukp65vzuB+aWUWimld0l6zV7O+lxJdy2//rik4yPi4xHx/Yj4aPm9n5ffPzWldMve9BgAAFxfUGACAADzmZY0VX796pTScfuzM5hbSukukr4r6SllU7vifEOSXly+vVDS4yNij3kjYpekl3Q1PbRebwEAwPUNBSYAADCfSUlvLL9eJem9+7EvmENK6XUqbmu7U9n0OUlnVZz9gZIOKr9+WURMzjHdVyV9WNJbJf1ikV0FAADXUzxFDgAALOQVkk6WdHNJJ6WUTo+IWoWmMjT86Soyf24oqU/SpZK+IentEfGrOeb7poqn241HxJxh0ymlX6gIuP5DRGya9b2Zp6A9W9IXJb1D0vEqimm/k/SiiDiva/qDJD1JRfD1rSWtlXS1iier/Yekj0TElGZJKW2S9Pvy7cmSPi/pVEmPK/u2VtJmFdlHb4qIC+fangrupmIfXiPpBRHxvpTSyyvO+4DydULSuXNNFBHjkh5fo48AAOB6jCuYAADAvMrCwpNU3C4nSW9MKR212OWllF6qIs/nDElJ0moVV0clFbd3/Tyl9PKUUl+tji/saBW3lP1luf51ku6oosg009cTJf1G0psk/bmkgyUNSDpCRWHm/ZIuSCndeIF1rZJ0nqT3qSiQHaIiPP04SU+V9MuU0l/V2Jatkl4v6SYR8b69nPc25esvI2J0pjGltCqldLOU0jEEvAMAgIXwnwUAALCgiPiupHeWb9dJevdillNeVfNKSU1JP1NRULqHiiuInqUiA6gh6Z/Kf0vpTBWFnjdIupekh0t6TURcXPb17iqucDpSUkfSRyU9WEXg9SNV3DImFVc1fSeldOQ863qTpBNV3Mb22HIZfyPpa+X3ByV9MKW0ZpHb8tCIeFFEbF3EvDOB3X+QpJTSvVNKX5W0XVKU7ZenlF5fXs0FAACQ4RY5AABQ1YslPUjSJkl/nVJ6VER8rOrMKaU7Snpp+fYjkk6bdWvZd1NK75P0BUknSHpZSumTc90u1wMNFQWl7vDqT5V9baq4OmlYxZVbj4iIT3VN97+SzkkpvUzFLYRHSnqPigKUc4SKbT41ImauBFNK6fMqtvevJB2qIg/pnL3dkO5l7o2U0qCkmaLWtpTSP0j6ZxW323U7VNILJD04pXS/iLhkMesDAADXX1zBBAAAKimfJPbkrqa3ppQO3YtFPFfF/z2ulvQUl1tUruM0FVcM9Ul6xuJ7XMm75mh/kIrMKUl616zi0nUi4pWSvjkzT0rplm46SWOSzpxdCIqIjvYMTr9dlU73UPcVUydJerWkKyWdLukwSUMqrrb6cjnNzSV9tixMAQAAXIcCEwAAqCwivibpA+XbQyS9vcp8ZZ7STJj0dyNiZJ51/F7Sr8u391lkV6vYHBF/nON79+v6+j0LLOdfu76+/xzT/Cgirpnje93h3msXWFevrer6+hgVxb97RMTZEXFlRIxHxP9qzyur7iDpifu4nwAAYJnjFjkAALC3nqOikHKkpEeklD4eEZ9bYJ5NkjaUXz+460luCzl2cV2s5NJ5vnfr8nWnpF8ssJzvdX19mzmmuXie+Xd2fb2v/282Ouv9K9zT7CKik1J6loqn4bUkPUZ7FtYAAMAKxxVMAABgr0TENklP62p6V0pp/QKzHbLI1fWnlJbqqp7t83xvY/l6VXkb23yu6Pr64Dmm2TlHu1TcDjhjqZ+cN9uOWe/PnWvCiLhCRfaUJN15HzzlDwAAHEAoMAEAgL0WEedK+o/y7ZEqnpI2n+4rc96v4jarqv/mvJ1uHlX+jzNf4WhviifNrq8XFba9v0TEuKTuJ8/9aYFZZq766pe0UFERAACsINwiBwAAFuvpKoKhN0o6LaX0iXmm7c4fakfETxa5zpmi0EIFoHWLXP6Mmf4eklLqW+AqpsPNfAeSn0v68/Lr9Zp/G2bCvdua/wowAACwwnAFEwAAWJSI2CLp2V1N/yZp9RyTX6TdVyLdbaFlp5RemFL6+5TSfWd9a+bJc62UUnP2fOW8w5L25ul2zs/K1zWSbrXAtN3b85ua690fujOkFvpsZvbFHyOivUT9AQAAByAKTAAAYNEi4iPa/Qj7TZIePcd0k5K+Ub69TUrp+LmWmVI6SdLrJL1b0j/M+va2rq83zbGI+0oamK/fFXy16+u/X2Dap3R9/bWa690fuq88O2OuiVJKd5GUyrefXdIeAQCAAw4FJgAAUNffa3dY9HyFnTd3ff3BlNLRsydIKR2m4kqoGW+bNcnPur5+hpn/cElvnLe31Xxe0u/Kr89IKZ3sJkopvVTSvcu359e49W+/iYgLtLsw9sDyaXF7SCkdLOl95dspSe/dR90DAAAHCDKYAABALRFxaUrphVrgsfUR8fWU0rskPVXSjSX9NKV0lqRvlZPcSdJzJN2gfH9uRMy+Uubjkl6m4v8wzyqfMPcJSWMqbu86s5z/wnIdi92mdkrpsWXfWpI+lVL6qIpg8y2SbiTpiZLuV85ylaTHL3Z9NcyZDfX0pz9d73jHOyRJ55xzzv/Mt5DzzjtPD3/4w7V161ZJOuuMM8446+STT9Zhhx2m3/zmNzrqqKO0efPmmeX2P+MZz/hF7zYBwDyWy9MaF3qaJoADW0/GGgpMAACgF94t6ZHaHRY9l2eoKAadKWmDpFfMMd1nJD1mdmNE/C6ldKaKK5sakk4r/82YVnFb3UZJz92L/mci4nsppftLOkdFptPjyn+z/VjSIyJic5317U9HH320PvrRj+qMM87QH/7wB51//vk6//zzs+lOP/10Pe1pT9sPPQQAAMsdt8gBAIDayqesPUnS6ALTtSPiOZLuoKIo9RtJOyVNStos6dOSHhgRD40Iu6yIeKekO0v6qKQ/SpqQdJmkT0o6PiJe25ONKtb1DUk3kfQiSd9V8YS1CUkXS/qCpL+TdLeI+N1cyzhQ3OQmN9EXvvAFvfSlL9Wd73xnbdiwQa1WS8ccc4we8pCH6JxzztHznvc8NRr89xEAAOT6Oh2udgQAADhA8R854PqNW+QA7As9GWv4ExQAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG9CAYAAABZDcySAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJEdh/vF3ZmdzuCzpFFACSkSTjAGDiTZgDJgfSSQjg0kmCTDBBkSwMQYMBmwyEkkgEMnYGGwTBBhZYAxYSIAKEJIQAuXTpc078/ujerjR1Lu7vdO7d3u67+d57tm93g41Pd3VNTXdb9VarZYAAAAAAACAXtUPdAEAAAAAAABwcKODCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQSeNAFwAAAKw/IYSvSbp38d9XxBhfV3K5f5L07OK/x8cYL1390qGMEMKApO9Juo2ku8cYv7XIfJdKOnal648x1qqUDwAA3LRwBxMAAFjOK0MItzrQhcCKvV6pc2ktzK3RegEAwEGKO5gAAMByBiWdHkK4Z4yxeaALg+WFEP5S0gtLzv6HkgZKzPcOSfcofn9mL+UCAAA3XXQwAQCAMu4u6XmS3nqgC4LFFY/FvU0r6ACKMf6oxHqfoX2dS++LMZ7RWwkBAMBNFY/IAQCApTQlzRe/vy6EcMKBLAwWF0K4q6Rzta9zaWGV1nuCpDcX//2ppFNXY70AAOCmhQ4mAACwlDlJbyp+H5H0vgNYFiwihPB3kr4l6S7FpM9p9e42e4ek0eL3p8cYJ1dpvQAA4CaER+QAAMByXiPpEZJOknS/EMLTYoyVOpqK0PDnSLq/pKMl1SRdLukcSf+42GNbHaPbzcQYh5ZY/4VKAdeXxRiP6/pbq/j1BZL+TdI/SbqnUmfazyS9LMb45Y75JyT9maSHS7qtpHFJ10n6vqRPSvpIjHFeXUIIx0m6pPjvIyT9i6RTJP1JUbZxSVdI+g9Jb44xXrzY6ynhbkr78HpJL4kxnh5CeHWF9UmSQggPlfSg4r8fjTF+reo6AQDATRN3MAEAgCXFGGeUOljaAd9vCiEc1ev6QgivlHSBpD+XFJTujhkpfn+mpAtCCK8OIdQqFXx5xyg9UvYHxfY3SLqTUidTu6z3lXSR0iNivydps6R+SUdIerCkMyR9P4Rw4jLbGpH0ZUmnK3WQbVUKTz9B0rMk/TCE8IcVXssOSW+QdPMY4+kV1vMbIYS60kh0kjQl6WWrsV4AAHDTRAcTAABYVozxXKVHpaTUEfPuXtZT3FXzWkl9kn6g1KF0D6U7iJ4v6WKl9smrin9r6VSljp43SrqXpEdL+tsY46VFWe+udIfTdkktSWdKepik35F0sqT/LNZzW0n/FULYvsS23izpvkqPsT2pWMcfS/pS8fdBSR8MIYz1+FoeGWN8WYxxR4/LO49SutNKkt4bY/zlKq4bAADcxPCIHAAAKOsvJT1U0nGS/iiE8PgY48fKLhxCuJOkVxb//Yikp3Q9WnZuCOF0SZ+XdB9Jp4UQzi4zylmP6kodSi/vmPapoqx9SncnDSvdufXYGOOnOub7H0mfCCGcpvQI4XZJ71HqgHKOUHrNp8QY23eCKYTwL0qv9w8lbZP0EEmfWOkL6VznKnpB8XNO0lvWYP0AAOAmhDuYAABAKTHGvZKe3jHpbSGEbStYxYuU2h7XSXqmyy0qtvEUpTuGapKe23uJS3nXItMfqpQ5JUnv6upc+o0Y42slfa29TAjh1ousb1rSqd0dQTHGlm4cnP5bZQq91ooR6e5W/PesGOMvDmR5AADA+kcHEwAAKC3G+CVJHyj+u1XSP5ZZrshTenDx33OXGoksxniJpB8X/71/j0Ut44olHvt6YMfv71lmPe/s+P1Bi8zz3Rjj9Yv8rTPce3yZbe0vz+/4/Y0HrBQAAOCgwSNyAABgpV6o1JGyXdJjQwhnxRg/t8wyx0naVPz+sI6R3JZzfG9FLOXyJf522+LnHkkXLrOeb3X8frtF5rl0ieX3dPx+wNtmIYRhpXwoSfpOjPGHB7I8AADg4MAdTAAAYEVijDdIenbHpHeFEDYus9jWHjfXCCGs1V09u5b425bi57XFY2xLuarj982LzLNnkelSehywba1HzivjAUqj3kk95EEBAIBD0wH/lgwAABx8YoyfDSF8Umnkte1Ko6Q9dYlFOtscZ6jko3WFRR+nW0KZL9GW6jhaSUdPX8fvaxG2vb+1715qSfrkgSwIAAA4eNDBBAAAevUcSfdTutvnKSGEjy8xb2f+0EKM8f963Ga7U2i5DqANPa6/rV3erSGE2jJ3MR1uljuYPaT4+W3CvQEAQFk8IgcAAHoSY7xa+4ayl6T3ShpdZPafa9+dSHdbZJ7fCCG8NITwjBDCA7r+1B55biCE0Ne9XLHssKSVjG7n/KD4OSbpNsvM2/l6Lqq43QMqhBC0r8PsGweyLAAA4OBCBxMAAOhZjPEjkr5Y/Pc4SU9YZL45SecU/71dCOGei60zhHA/SX8n6d2S/qrrzzd0/H7cIqt4gKT+pcpdwn92/P6MZeZ9ZsfvX6q43QPtrh2//+8BKwUAADjo0MEEAACqeoak3cXvS3XsvKXj9w+GEI7pniGEcJjSnVBtb++a5Qcdvz/XLH+4pDctWdpy/kXSz4rf/zyE8Ag3UwjhlZLuXfz3KxUe/Vsvbt/xOx1MAACgNDKYAABAJTHGy0MIL5X0zmXm+2oI4V2SniXpREnnhxDeKunrxSx3kfRCSUcW//9sjPGfu1ZzlqTTlNowzy9GmPu4pGmlR9VOLZa/uNhGr69pIYTwpKJsA5I+FUI4Uyn0+mpJxyqFmj+wWORaSU/udXvryC07fv/VASsFAAA46NDBBAAAVsO7JZ0s6feWme+5Sp1Bp0raJOk1i8z3GUlP7J4YY/xZCOFUpTub6pKeUvxrayo9VrdF0otWUP5MjPFbIYQHSfqEUqbTnxT/un1P0mNjjFdU2d46cXTxczrGOHNASwIAAA4qPCIHAAAqK0ZZ+zNJU8vMtxBjfKGkOyp1Sl0kaY+kOUlXSPq0pIfEGB8ZY7TrijG+Q9JvSzpT0i8lzUr6taSzJd0zxvj6VXlRaVvnSLq5pJdJOldplLhZSZdK+rykx0i6W4zxZ4ut4yAzUfy8Ycm5AAAAutRaraVG3QUAAAAAAACWxh1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYZFWd//FPdXX39MwwM2RBcBkH8egqq2BEWcWwmFHMLgbMOWdXXcyiq6tiwFXMCTDrz5xQUdQ148IXkKQoeYAZJnVX9e+Pc8uuqfOt7tN17nRXM+/X88xTU6dvOHXr3lO3Tt37OY3p6WkBAAAAAAAAgxpZ7AoAAAAAAABgaaODCQAAAAAAAEXoYAIAAAAAAEAROpgAAAAAAABQhA4mAAAAAAAAFKGDCQAAAAAAAEXoYAIAAAAAAEAROpgAAAAAAABQhA4mAAAAAAAAFKGDCQAAAAAAAEXoYAIAAAAAAEAROpgAAAAAAABQhA4mAAAAAAAAFKGDCQAAAAAAAEVGF7sCAABg+IQQfiTp7tXTV5vZmzLne6+kZ1dPb2pmF9ZfO+QIIYxL+o2kW0k6zMzOyJjnppJeIOlISf8kqSHpL5K+J+ldZnbujqsxAABYyriCCQAAzOU1IYRbLnYlMG9vUexcyhJCeISkMyU9T9ItJK2QtFzSzSU9S9IfQwiP3wH1BAAANwB0MAEAgLksk3RSCIHzhiUihPBKSS+ax/R3lPRpxU6llqQTJN1f0r8pdlRtU9wPPhpC+LfaKwwAAJY8bpEDAAA5DlO8suVdi10R9FfdFvduSc+Y56xvlDRW/f8xZnZq19++F0L4tqQfKP44+Q5J/1JaVwAAcMPCL5EAAGA2bUlT1f/fFEJYt5iVQX/VVUina6ZzqZU53zJJ96ie/rKnc0mSZGanSfpS9fTgEMIBhdUFAAA3MHQwAQCA2UxKenv1/xWSPrSIdUEfIYS3SjpD0u2roq8o/2qz3TVzVfs5s0x3Ztf/951XBQEAwA0et8gBAIC5vE7S0YrBz/cMITzVzIo6mqrQ8OdIupek/TUzWtkPJZ1gZv/XZ74fKY5ut9XMJmZZ/pmKAdcXmdnanr9NV/99oaT/J+m9kg5X7Ew7T9IrzOx7XdOvlvQUSQ+WdGtJqyRdJem3kk6V9Ekzm1KPEMJaSRdUT4+W9FVJx0p6fFW3VZIukfRtSe8wsz/3ez0Z7qy4Da+W9DIzOymEcFzmvFcoXqU2qvge93Ozrv//bZBKAgCAGy6uYAIAALMys62KHSztqujtIYT9Bl1eCOE1kv6oODJZkLRS8eqooHh71x9DCMeFEBpFFZ/bTRRvKTuyWv8aSYcqdjJ16noPSWcr5g7dTfFqnzFJ+0i6n6SPSPptCOHAOda1QtL3JJ2k2EG2p2Jo9jpJz5T0pxDC/Qtey3pJx0u6mZmdNJ8Zq86xb1RPbx9COLp3mhDCIZIeUT39pZldXFBXAABwA8QVTAAAYE5mdnoI4X2SnqvYEXOipAfNdznVVTX/WT39g6T3V48jkm6nGCR+YNc0x5XUew4vULzq522SvqbYaXRbM7uwquthilc4LZc0rTjK2imSLpN0U0lPUuycurWkn4QQbmdmf++zrndUyz9D0vsUb0XbV9KzFUdqWybpYyGEdWa2cYDX8jAza889WV8vlXTHqo6nhBBOkPQdSVsVr+56uaRxxSu3nlawHgAAcANFBxMAAMj1SsVOpbWSHhhC+Hcz+0zuzCGEQyW9pnr6SUlP6rm17PQQwkmSvi7pCEmvDSGc0u92uRqMSHqzmf1HV9nnq7o2Fa9OWq545dajzOzzXdP9UtLJIYTXKt5CuK+kD0o6qs+69lF8zcd2dwSFEL6q+HrvL2kvSQ+QdPJ8X0hh55LM7JwQwp0VR5M7RvH2wRf2TPYFSS81swt65wcAAOAWOQAAkMXMrtf2V6+8O4Sw1zwW8WLFc4+rJD3Dyy2q1vEkxSuGGopXTO1IH+hT/iDN5BF9oKdz6R/M7PWSftSZJ4Twz32Wt0XSC3o7gsxsWtsHp98mp9I7yF0Us6H63Zr4r5IeFkLg/BEAACQ4QQAAANnM7LuSPlo93VPSCTnzVXlK96uenm5mm2ZZxwWSzqqe3mvAqua4xMz+2udv9+n6/wfnWM77u/5/3z7T/NrMru7zt+5w71VzrGuHCCG8WdJnJB0i6WeKt+3tUv27l6TTJO2tOKLgSXQyAQCAXtwiBwAA5utFih0p+0p6VAjhs2b2lTnmWStpt+r/R3WN5DaXmw5WxSx/meVvt64eN0o6c47lnNH1/4P7THPhLPN3Zy4t+LlZCOEoxdsfJelbko4ys8muSX4QQjhN0qckPVpxJLxfKOZwAQAASOIKJgAAME9mdo1iOHXHB0IIu84x254Drm40hLCjruq5bpa/7VE9Xlndxjaby7r+v3ufaWYL7u5e/o4eOc/TeS/bkp7e07kkSTKzluJod51t9pwFqhsAAFgi6GACAADzZmZfknRq9XRfxVHSZtN9Zc5HFG/Fyv3X93a6WeSc48zWcTSfjp5m1/+LwrYXyR2qxz+Y2cX9Jqo6Fn9YPb1VCGGXHV4zAACwZHCLHAAAGNRzJN1T8WqfJ4UQPjfLtN35Qy0z+92A6+x0Cs3VAbRmwOV3dOq7ZwihMcdVTDdy5ltKOh1F12RMe3nX/1dr9iuzAADAToQrmAAAwEDM7HJtP5T9/0ha2Wfy8zVzJdKd51p2COHlIYSnhxDu3fOnzshz4yGEZu981bzLJc1ndDvPH6rHXRRHVptN9+s5u3C9i+GK6nFdxrT7VY9tSVfumOoAAICliA4mAAAwMDP7pKRvVk/XSjqmz3STmrm96uAQwuH9lhlCuKektyqGSL+q58/dV9ms7bOIe0sam63eGb7T9f+nzzHtM7r+/93C9S6Gn1SP/xRCuHu/iUII+0i6R/X0l2a2bYfXDAAALBl0MAEAgFJPl7Sh+v9sHTvv7Pr/x0IIN+mdIISwt+KVUB3v6ZnkD13/f64z/40kvX3W2ub5qqTzqv8/K4RwtDdRCOE1kjqdMt8vuPVvMb2v6/8fCiHs1ztBCGGFpE9LWl4VnbAQFQMAAEsHGUwAAKCImf0lhPBySe+fY7ofhBA+oDga2YGSfh9CeJek06pJbi/pRZJuXD3/kpl9uWcxn5X0WsVzmOdXI8x9TtIWxVvVXlDN/+dqHYO+plYI4XFV3cYlfT6E8CnFYPPLJR0g6cmS7lPNcqWkJwy6vsVkZj8JIbxXMVPrIEm/q57/RNJmSbdV3K43r2b5kuL7AGDnMddomgCWtlpGsaWDCQAA1OFESY+WdLc5pnuuYmfQCyTtJul1fab7oqTH9haa2XkhhBcoXtk0IulJ1b+OtuJtdXtIevE86p8wszNCCPeVdLJiptPjq3+9fiPpUWZ2Scn6FtkLJG1T7ODbU9Jxfab7lKSnzRF6DgAAdkLcIgcAAIpVHQ5PUbziZbbpWmb2IkmHKHZKna04EtmkpEskfUHSA8zsYWbmLsvM3ifpDoqdHX9V7Bj5u6RTJB1uZm+p5UXFdf1Q0s0kvULS6YqjxG2TdKGkr0t6pKQ7m9l5/ZaxFFTvy4slHSrpQ5LOVQxl36L4Wj8l6e5m9rh+7wsAANi5Naan+QEKAAAAANAXXxqBG7ZabpHjCiYAAAAAAAAUoYMJAAAAAAAARehgAgAAAAAAQBE6mAAAAAAAAFCEDiYAAAAAAAAUoYMJAAAAAAAARehgAgAAAAAAQBE6mAAAAAAAAFCEDiYAAAAAAAAUoYMJAAAAAAAARehgAgAAAAAAQBE6mAAAAAAAAFCEDiYAAAAAAAAUoYMJAAAAAAAARehgAgAAAAAAQBE6mAAAAAAAAFCEDiYAAAAAAAAUoYMJAAAAAAAARehgAgAAAAAAQBE6mAAAAAAAAFCEDiYAAAAAAAAUoYMJAAAAAAAARehgAgAAAAAAQBE6mAAAAAAAAFCEDiYAAAAAAAAUoYMJAAAAAAAARehgAgAAAAAAQBE6mAAAAAAAAFCEDiYAAAAAAAAUoYMJAAAAAAAARehgAgA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYJVdB/vG37+29e7bsk3VIgBMWgQTEoPHHKhDBACKyawAVlEU2iUQDAQKCCELCbgibImsMikHZAkpEAgQIAXKQkJCFbJOZ6Zme3u+9vz9O3cyde97urp7qmfRMfz/PM09PV9dyarlVp86tek9Pq9USAAAAAAAAsKdqd3UBAAAAAAAAsH+jgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAAAQCU0MAEAAAAAAKASGpgAAAAAAABQCQ1MAAAAAAAAqIQGJgAAAAAAAFRCAxMAAAAAAAAqoYEJAAAAAAAAldDABAAAAAAAgEpoYAIAAAAAAEAlNDABAAAAAACgEhqYAAAAAAAAUEnvXV0AAACw8oQQvibpocWvfx1jfGPJ6d4l6YXFr3eLMV63/KVDGSGEfklXSLqPpIfEGP+3xDQPkPQSSQ+XtFHSlKQfSvqEpAtijNN7r8QAAGB/xhNMAABgMWeHEO51VxcCS/Y3So1LpYQQzlFqkHqOpE2SBiStk3SqpHdJ+n4I4W7LXkoAAHBAoIEJAAAsZkDSB0MI1Bv2EyGEV0t6+RLGP1vSayX1SJqV9E5Jj1JqXDpL0lZJJ0r6Zgjh+GUvMAAA2O/xihwAACjjIUqvTr3jri4I5le8FvdOSS9YwjRB0jnFr5OSHhtj/K+OUS4LIXxK0jckHSHpPEmPX5YCAwCAAwbfRAIAgIU0Jc0V/38jT6+sXCGEB0u6TLsalxolJ32hdtUJz+pqXJIkxRivkfTS4tfHhRAe2j0OAABY3WhgAgAAC5mV9Nbi/8OS/uEuLAvmEUJ4s6T/lfSgYtDnVP5ps0cUP6ckvX+B8T4jabz4/1OXWkYAAHBg4xU5AACwmNdJepJSBs8jQgh/HGOs1NBUhIa/SNIjJR2tlP1zg6RLJZ0fY/zxPNN9Tal3u+kY4+AC879KKeD6FzHGTV1/axX/fZmkf1cKsD5VqTHtZ5L+Msb45Y7x10r6I0lPkHRfSWsk3SHpe5I+LeljMcY5dQkhbJJ0bfHrkyT9q6QzJP1BUbY1km6S9J+S3lY8JbSnTlHahlskvSrG+MEitLuM44qfV8YYJ+cbKcbYCCFESQ9UemUSAADgTjzBBAAAFlR0Tf9HSq/LSdJbQwhH7en8ikDpH0r6M0lB0ojS01FB6fWuH4YQzgkh9FQq+OKOUXql7NHF8tdJOlmpkald1odLulrS2yT9P0kHSepTyiI6TdKFkr4XQjhhkWUNS/qypA8qNZAdohSefrykP5X0oxDCb1dYl62S3iLp7jHGDy5x2v7i544S484WP++xxGUAAIADHA1MAABgUTHGyyS9u/h1naT37cl8iqdqXi+pLulKpQalX1d6gujPJV2jVD95bfFvb3qpUkPP30r6TUlPkfSmGON1RVkfovSE00ZJLUn/KOl0Sb8m6WmSvljM576S/juEsHGBZb1N0sOVXmN7djGPJ0r6UvH3AUkfDiGM7uG6PDnG+Jcxxq17MO3m4ufRJcY9pvg5EkJYswfLAgAAByhekQMAAGW9WtLvSNok6fEhhGfEGD9eduIQwsmSzi5+/Zik53a9WnZZCOGDkj4v6WGSXhNC+NR8r8stg5pSg9JfdQz7TFHWutLTSUNKT249Ncb4mY7xLpf0yRDCa5ReIdyolF90+jzLOkJpnc+IMbafBFMI4V+V1ve3JR0q6XGSPrnUFemc5x74ltIrfCGEcO8FXk88SVLnk2sjKvfUEwAAWAV4ggkAAJQSY9wp6U86Br0zhHDoEmbxCqW6xx2SXuByi4plPFfpiaEeSS/e8xKX8t55hv+OUuaUJL23q3HpTjHG10v6WnuaEMK955nflKSXdjcExRhb2j04/f5lCr3MPtbx//eHELJsqxDCgKTzugb37dVSAQCA/QoNTAAAoLQY45ckfaj49RBJ55eZrshTOq349bIY48QCy7hW0k+KXx+5h0Ut46YY443z/O0xHf9fqGc1SXpPx/8fO884340xbpnnb53h3nfFa2cXS/pq8f9TlZ4kOy2EMBpCGA4hPErS14u/3dQx3cw+LicAAFjBeEUOAAAs1cuVGlI2SnpqCOGfY4yfW2SaTZI2FP8/vaMnt8Xcbc+KWMoNC/ztvsXPcUlXLTKf/+34/6/MM851C0w/3vH/fV43izG2QghPlXSJpF9VCjq/xIz6IUnXa1c21s59U0IAALA/4AkmAACwJDHGbZJe2DHovSGE9YtMdsgeLq53L4ZJb1/gbwcXPzcXr7Et5NaO/x80zzjj8wyX0uuAbXu75zwrxrhZqZe8v1be8Ha5pN+PMT5XUns/74wxLrROAABgleEJJgAAsGQxxn8JIXxaqee1jUq9pD1vgUk66xwXquSrdYV5X6dbQJkv0RZqOFpKQ0+94/9VwrbvUjHGKUlvlPTGEMJRSq/r/TLG2NkQ186lum4fFw8AAKxwNDABAIA99SJJj1B62ue5IYRPLDBuZ/5QI8b4/T1cZrtRaLEGoHV7OP+2dnkPCSH0LPIU0+Fmuv1ajPGm7mFFz3oPKn7d0/0HAAAOULwiBwAA9kiM8TZJL+sY9AGlruudn2vXk0inLDbvEMKZIYTnFwHTndo9z/UXDR5u2iFJS+ndzrmy+Dkq6T6LjNu5PldXXO4+F0J4ZAjhLSGEDxW9xc3n/2nXq4Nf2gdFAwAA+xEamAAAwB6LMX5M0heKXzdJeuY8481KurT49VdCCKfON88QwiMkvVnS+ySd1fXnbR3/3zTPLB4lqW+hcpfwxY7/P3+RcV/Q8f/9seHlREmvknSGpIctMN6Zxc9xpZ7nAAAA7kQDEwAAqOr5knYU/1+oYeftHf//cAjhmO4RQgiHKT0J1XZe1yhXdvz/xWb6wyW9dcHSlvOvkn5W/P/PQghPciOFEM6W9NDi169UePXvrvQ5SY3i/+eGELJ9GEI4S9Jjil//PsY4tq8KBwAA9g80MAHA3tPiH//2138PfvCDHypJ/f39A4uNG2O8/rWvfW3W09tXvvKVa7vG+8rTn/709p9PWLdu3fXvete7Wpdffnnr8ssvb1144YWtww477FZJJ0jSb/3WbynG+C+d8/jiF7/4+t7eOyMk//yss85qXXbZZa3vfOc7rQsuuKB12GGH3SIpHHvssZKko4466jhTZknSqaee+pgF1mnuk5/85N37+vokqVar1S4688wzW5deemnryiuvbIUQnhJC+A9Jry9mt1nSH3Zvg/1BjPFGSe8pfn2QpG+GEJ4RQjglhPDkEMIlSuHfUupR7k13RTkBAMDKRsg3AACo7OlPf7ouueQSffvb315wvLPPPlsDAwP6yEc+orGxMZ1/vu9M7tGPfrTe+tb8QaTjjjtOZ511ls4991w1m0199rOf1Wc/+9k7/16r1fTyl79c27Zt04UXXlhpnR7wgAfoggsu0Mte9jJt2bJFF198sS6++M43wz7VMeoVkp7qgrH3I6+UdJyk0yU9UNI/mXG+KukpRW9zAAAAu+EJJgAAUFlPT4/OPfdcDQ4OLjhevV7Xq1/9al188cV62tOepuOPP17Dw8Pq6+vT4Ycfrsc85jH6wAc+oPPPP3/eeT3zmc/UZz7zGZ1++uk64ogj1NfXp0MPPVSnnXaaPv7xj+v5z18sMqm8U045RV/60pf0ile8QieffLLWr1+v4qmm6yR9XtLvSzolxvizheaz0sUYZyQ9UdIzJH1Z0lalQPXbJV2itJ6PijEeEL3kAQCA5dfTarUWHwsAsCc4wQIHrp67ugAAAAArCU8wAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAAAQCU0MAEAAAAAAKA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYJEdh/vF3ZzZfTspCQgJKgACBhTEmiOAfIJKNAZEx2YABy2ATbKIfk00wGRtMzljY5CxjDAZkclIZCUmABEh3p7vb2zg7M78/qkc7N/Xubu/27N0KfT/Pc8/u1nX3VKfq3trutwba7bYAAAAAAACA1aod6QoAAAAAAADg2o0OJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJYNHugIAAGD9CSH8p6Szih+fG2N8ccn53iDpL4ofrx9jvLT/tYMTQjhO0pMl3V3SDSRtkLRX0nclfVDS+2KM88ssY6ekp0u6r6RTJM1LukTSeZJeH2Pcu2YrAAAArtV4ggkAACzneSGEGx/pSmBxIYRzJEVJfyfpTElbJQ1JOlrSPSS9U9LXQwjHL7GMMyX9WNJzJN1U0pikTZJuLumFkr4fQrjVmq0EAAC4VqODCQAALGdE0ttDCNw3rEMhhLtKer+kjZJmJL1a0t0k3UbSQyT9VzHprSV9OoQwbpZxrKRPSzpK0pyklys9wXYXSW+U1JJ0gqRPhBCOXsv1AQAA1068IgcAAMq4raSnSXrtka4IFoQQBiS9QVJdqXPpzjHGb3RN8q0QwockvUnSE5WeRjpX0kt6FvUySbuK7/80xviprv87P4TwVUkfkHScpBcovYoHAABwDf4SCQAAltJSyuGRpBeHEE45kpVB5raSTiu+f11P55IkKcbYlvRXkq4sih7Z/f8hhGMkPbT48RM9nUudZXxI0seKHx8bQtjWh7oDAIDfIXQwAQCApTQkvbL4flzSvxzBuiB3h67vP77YRDHGGUn/XfwYQggjXf99Hy081f7uJT7r7cXXYUl/vMJ6AgCA33G8IgcAAJbzIkn3U3pS5i4hhMfHGCt1NBWh4U+RdFelbJ8BSb+UdL7SaGU/WWS+/1TKBpqNMY4usfwfKQVVXxZjPLnn/9rFt38l6VNKr5jdXqkz7SJJz44xfrFr+s2SHqfUqXK6UvD1HqXR2T4i6T1udLYQwslKI7BJaft9XNKjlJ4gummxnMslfU7Sq2KMFy+2Pkv4lqSXKr26dtEy0w50fT8qabb4/nZd5f+5xPxfldQulnMXpeBwAAAASTzBBAAAlhFjnFXqYGkVRa9cajSy5YQQnifph0o5PkHSBqWno4JSTtAPQwgvLPKF1tKJkr6mFIg9LmmLpFupq6MmhHBnSRdKepWkO0rarjQ62zGSzpb0r5K+G0I4dZnPGpf0RaWngM6StFMpPP0USU+S9OMQwj1XugIxxvNjjH8bY3xUjPG3i00XQhjSQkfS/hjj/q7/7owQuC/GuHuJz5qQdFXPPAAAAJLoYAIAACXEGL+mNJqYlDpi3rKa5YQQXijp75VCqX+g1KH0h0pPEP2lpIuV7k9eUPxbS+cqdfS8QulVswdKekmM8dKirrdVesLpWKUnd94r6b5Ko7M9WNLni+WcLumrxUhsi3mVpDtL+oakRxTL+BNJXyj+f0TSO0MIG/u0br0eozRCnJSemOrW6Sz8RYnl/LJnHgAAAEm8IgcAAMp7jlJez8mS7h1CeGiM8f1lZw4h3ErS84of3yPpMT2vln0thPB2SZ+UdCdJzw8hfHix1+X6oKbUofR3XWUfLepaV3o6aUzpya0HxRg/2jXdtyR9KITwfKVXCI+V9FalDijnGKV1flSMsfMkmEIIH1da33sqjeJ2L0kfqr5qC0IIN1AaJa7jVT2TbC++TpRY3GTxdWvVegEAgN8tPMEEAABKiTFOSnpCV9E/hRB2LTa98Qyle489kp7ocouKz3iMFrJ+nrr6Gpfy5kXK76OF0dne3NO5dI0Y499rIbfoPiGEmyyyvBlJ53Z3LhXzt3VocPotylS6rBDCUUodWJ0OobfFGL/VM1kn8HumxCKne+YBAACQRAcTAABYgRjjFyS9o/hxp6TXl5mvyFM6u/jxazHGqSU+4xJJPy1+vOsqq1rG5THGXy3yf3fv+v6tyyznTV3f32ORab4dY9y7yP91h3tvWuazSgshHCPpS0rZVlIKJX+ambRZfG2b/1vMSqYFAADXAbwiBwAAVurpSh0px0p6UAjhAzHG/1hmnpMlbSu+v2/XSG7Luf7qqljKL5f4v9OLrwcl/WiZ5Xyj6/ubLTLNpUvMf7Dr+77cmxWh45+T1Akfj5LOjjFOm8kPKu2bRUfl6zJWfC3ztBMAALgO4QkmAACwIjHGfZL+oqvozSGE5TJ5dq7y4wZDCH17qqfHgSX+b0fxdXfxGttSukdv277INAcXKZcOfRqo8sh5RTj5/2ihc+nHku68xChzneylDSUW35lmsaexAADAdRRPMAEAgBWLMX4shPARpZHXjlUKjn7sErN033P8q0q+WldY9HW6JZT5I9pSHUcr6eipd33fWnSqwyCE8EBJ79bC00jflHSvGOOeJWa7TNL1JJ1Y4iM601yx6koCAIDfSXQwAQCA1XqKpLsoPe3zmBDCB5eYtvuJl2aM8Xur/MxOp9ByHUBbVrn8jk59d4YQBpZ5iuloM99hF0J4sqQ3aGHbfErSOUvlXRV+LOkOSuu6Jca4f5Hlb1Ia6U6S1mpkPwAAcC3FK3IAAGBVYoxXSvqrrqJ/1uKvWf1cC08i/cFyyw4hPCuE8OchhD/q+a/OyHPDIYR673zFvGNa6AhZrR8UXzdKuuky03avz4UVP3dVQghPkvRGLXQu/YukPy7RuSQdmiF1+yWmu0PX8r+64koCAIDfaXQwAQCAVYsxvkfSZ4ofT5b0sEWma0g6v/jxZiGERTsyQgh3kfQySW+R9Lc9/72v6/uTF1nEH0kaWqreJXy+6/s/X2baJ3Z9/4WKn7tiRSfcG7qKXhxjfEKMsbnYPD3+Q1Kj+P7RS0zXeQWyofR0FAAAwDXoYAIAAFX9uRaCopfq2Hl11/fvDCFkmT8hhKOUnoTqeF3PJD/o+v6pZv6jJb1yydqW83FJFxXfPzmEcD83UQjheZLOKn78UoVX/1YlhLBF0ru0cE/3mhjjc1eyjCK0/X3Fj38aQjjHfM6DJHW2wfuKp9cAAACucV3NYCo7NDKAa6fKozABKC/G+MsQwrMkvWmZ6b4cQnizpCcpjXD2/RDCayV9pZjkTElPl3Rc8fPHYoz/3rOYD0h6vtI9zF8WuUAflDSj9KraucX8F2thFLXVrFMzhPCIom7Dkj4aQnivpI9IulLSSUpP9Ny9mGW3pD9b7edV8FQtbK9LJb0/hHBGifl+EmOc6/r5WZLuqzQK3geKJ8zOK/7vT5VGDRxQWvfep8oAAACusx1MAACgv94i6cGS7rjMdE9V6gw6V9I2SS9aZLrzJD28tzDGeFEI4VylJ5tqkh5T/OtoKXWA7JD0jBXUPxNj/EYI4R6SPqSU6fTI4l+v70h6UIzx8iqft0pP6Pr+ZEkXlJzv+kodUpJSnlYI4e6SPq20rk9V/oTYlZLuGWP89WorCwAAfnfxihwAAKisGGXtcZKml5muGWN8uqRbKnVKXSjpoFKuz+WS/k3SvWKM948x2mXFGN8o6daS3ivpV5LmJP1a0ocl3T7G+NK+rFT6rPMl3UDSsyV9TWmUuDmlzplPSjpH0h/EGC9abBlrJYSwU1L2muFqxRj/V9Jpkl4i6UeSJpU6A3+ilIl1eozx2/36PAAA8LtloN2+Tr4tdp1caeA6hFfkAAAAAOAw4gkmAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZXV9//H3vXfqFnbpZUFWLB8LlpCIGo0NY8MSflYiKhp7BU1iV7Dyiz8rGJUYRY1Ysf2ixkISC4noL0oUkW8EpQhI2WV32Z1+7/39cc64w/2+Z/bsnDu7O+zr+XjwmJnvnPI97Tvcz57zPo1utysAAAAAAABgsZq7uwMAAAAAAABY3igwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoJaB3d0BAACw54mIf5f04PLHN6SU3l5xvrMkvaT88fYppSv63zs4EXGYpBdLeqSkO0paKWmjpJ9J+qykT6eUZnZymXeU9HNJzZTSSH97DAAAbku4gwkAAOzIGyPirru7E5hfRDxFUpL0ekl/ImmtpEFJB0t6lKRzJP1HRKzbiWWOSPqEpNF+9xcAANz2UGACAAA7MizpHyOC/2/YA0XEcZLOlbRK0oSk90h6hKT7SjpR0vfLSe8j6RsRsaLCMgclfUHSny5FnwEAwG0Pj8gBAIAq7i/p5ZLet7s7gu0ioiHpLEktFcWlh6aUfjRnkh9HxOck/b2kF0q6p6RTJL1jgWUeqqK49ICl6jcAALjt4V8iAQDAQjqSZnN73h4RR+3OziBzf0l3Kb//QE9xSZKUUupKOlXSDWXTM+dbWEQ8TdJPtb241O5fVwEAwG0ZBSYAALCQaUnvKr9fIekfdmNfkPuzOd9/bb6JUkoTkn5Y/hgRMdw7TUT8p6TPSDpERWHxzXPmAQAAWBCPyAEAgB05XdIJKu6UeVhEPC+lVKvQVIaGv1TScZIOl9SQdLWkf5N0Zkrpknnm+3cVb7ebXOitZhFxsaS7S7oypbS+53fd8ttTJX1dxSNmD1RRTLtM0mtSSt+dM/0+kp4r6QmSjpa0WtIGFW9n+4KkT7m3s0XEekm/LX88QUUB6GQVdxDdvVzONZK+JendKaXL59ueBfxY0jslHVb2fSGNOd+PSJrs+f39yq+/kvS8lNIFEfGwRfQJAADshbiDCQAALCilNKmiwNIpm961M28j6xURb5T0C0kvlhSSVqq4OypU5AT9IiJOK/OFltIRki5QEYi9QtIaScdoTqEmIh4q6VJJ75b0IEn7qXg72yGSHi3pY5J+FhF32MG6Vkj6rqR/VFEgO0BFePpRkl4k6ZcR8Zid3YCU0r+llF6XUjo5pXT9fNOVod2zj71tTiltNpP9RmVOU0rpgp3tCwAA2LtRYAIAADtUFhw+WP64RtKHF7OciDhN0ltUhFL/XEVB409V3EH0CkmXq/j/kzeX/y2lU1QUev5OxaNmT5b0jpTSFWVf76/iDqdDJXUl/ZOkx6t4O9vTJH27XM7Rkn5QhmPP592SHirpR5KeUS7jLyR9p/z9sKRzImJVn7at13MkHVR+/615prlTSukj7m4sAACAHeEROQAAUNVrJT1O0npJj42Iv0wpnVt15og4RtIbyx8/Jek5PcWMCyLiHyX9s6SHSHpTRHx+vsfl+qCpoqD0+jltXyz72lJxd9Koiju3nppS+uKc6X4s6XMR8SYVjxAeKukjKgpQziEqtvnklNLsnWCKiK+p2N7HSDpQ0vGSPld/07aLiDtKOmNO07vddHP7BQAAsLO4gwkAAFSSUtom6flzmt4fEQfuxCJepeL/PTZIeqG7U6Zcx3NU3DHUkPSyxfe4kg/N0/44bX8724d6ikt/kFJ6i6R/n50nIu42z/ImJJ3SW8Qp3/A2N8/qXlU6XVVEHKSigLW2bPpoSunH/VwHAACARIEJAADshJTSdyR9vPzxAElnVpmvzFN6dPnjBSmlsQXW8VsVQdNSEQK+VK5JKf1unt89cs73H9nBcv5+zvePmmea/0opbZznd3PDvVfvYF2VRcQhks5XkW0lFaHkL+/X8gEAAObiETkAALCzXqmikHKopKdGxGdSSl/dwTzrJe1bfv/4OW9y25HbL66LlVy9wO+OLr9ulXTxDpbzoznf32Oeaa5YYP6tc77vy/+blaHj35I0Gz6eJD06pTTej+UDAAD04g4mAACwU1JKmyS9ZE7ThyJi7XzTlw5Y5OoGIqJvd/X02LLA7/Yvv95UPsa2kLlvb9tvnmm2ztMuFY8Dzqr95rwynPw/tb249EtJD13oLXMAAAB1cQcTAADYaSmlL0fEF1S8ee1QFcHRf7XALHP/n+NjqvhoXWnex+kWUOUf0RYqHO1Moac15/vdGpQdEU+W9ElJI2XThZKOTylt2H29AgAAewMKTAAAYLFeKulhKu72eU5EfHaBaefmD7VTShctcp2zRaEdFYDWLHL5s2b7e0BENHZwF9PBZr5dLiJeLOksbd83X5f0lIXyrgAAAPqFR+QAAMCipJRukHTqnKazJa2cZ/LfaPudSPfb0bIj4tUR8YKIeHjPr2bfPDcUEa3e+cp5RyXtzNvtnJ+XX1dJuvsOpp27PZfWXO+iRMSLJH1Q24tL/yDpCRSXAADArkKBCQAALFpK6VOSvln+uF7S0+eZblrSv5U/3iMiHjjfMiPiYZLOkPRhSa/r+fWmOd+vn2cRD5c0uFC/K/j2nO9fsINpXzjn++/UXO9OK4twZ81pentK6fkppfau7gsAANh7UWACAAB1vUDSLeX3CxV23jPn+3Mi4ojeCSLiIBV3Qs36QM8kP5/z/cvM/AdLeteCva3ma5IuK79/cUSc4CaKiDdKenD54/k1Hv1blIhYI+kT2v7/dO9NKb1hV/YBAABA2nszmKq+GhnA8lT7LUx9wliDZevYY4/Vj3/8Yw0NDQ1rB+dySknnnnuuTj/99Fu1n3/++b/tne60007TZz7zGUm6w5o1a64666yzdOyxx0qSLr74Yh100EG64YYbJEl//ud/rrPOOuvLc5fx7W9/W495zGM0MzMjSa943ete94rjjz9ew8PDuuiii/4w/+1udztdddVVWrdu3ZHz9f+BD3zgI+f7XUpJF110kU466SRNT083m83ml1796lfrUY96lPbff389+clPfoqKUPNHlrPcJOlZC+2nJfIySYeV318h6dyIuHeF+S5JKU0tWa8AAMBeZ28tMAEAgD468cQT9Y1vfEM/+clPFpzujW98o4aHh/WJT3xCmzdv1pln+pfJPeIRj9C73pXfiHTkkUfqda97nd72trep0+novPPO03nnnfeH3zebTb3yla/Upk2b9LGPfazWNt373vfWRz/6UZ166qnauHGjvvKVr+grX/nK7K8/P2fSn0p6akrpmlorXJznz/l+vaSFD8B2t1dRkAIAAOgLHpEDAAC1NRoNve1tb9PIyMiC07VaLb32ta/VV77yFT3taU/TUUcdpRUrVmhwcFAHH3ywHvnIR+rss8/WmWeeOe+ynv70p+uLX/yiHv/4x+uQQw7R4OCgDjzwQD360Y/Wueeeqxe8YEeRSdXd737303e+8x296lWv0jHHHKO1a9dqcHBQKooz/yzpKZLul1K6bKHlLIWIOEBS9pghAADA7tDodvfKJzj2yo0G9iI8Igdgqe0p4wwAAMAegTuYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC1UGACAAAAAABALRSYAAAAAAAAUAsFJgAAAAAAANRCgQkAAAAAAAC
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZFld/vGnqjr39ITd2UTagP4OShRFSZKVJAhKRhQXWZJIUBAlSBAUkaCIBJEo4BIFEVSykgQEyRxYNrBs3smdu6vq98e9zdTW9+nu231rZnt2Pu/Xa17dfeaGUzece/v0vc9pdLtdAQAAAAAAAJvVvLYrAAAAAAAAgGMbHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFqGru0KAACArSel9GlJdy5/fE7O+cUV5/s7SU8qfzwz53zh4GsHJ6V0PUlPlHRPST8laVLSXklfk/TPkt6Rc15eZxm3lvR4SXeSdANJLUlXSPq8pDfknD99pOoPAACObTzBBAAA1vPclNLPXNuVwOpSSg+RlCU9W9IvSNopaVjSKZLuJektkj6fUrr+KvM3Ukp/Jekrkh4rKanooBqTdLqkh0v6VErpzSmlkSP7aQAAwLGIDiYAALCeUUn/mFLivmELSindXdI7JW2TNC/pFZJ+VdIvqegY+q9y0ttI+khKacIs5nmSniGpIenS8vtflnR7SU+WdH453aMl/f2R+BwAAODYxityAACgittJ+gNJr7q2K4LDUkoNSX+n4lW2eUl3zTl/sWeSL6WUzlXRKfR4SbeQ9FRJL+lZxumS/rT88fuS7phzvqpnGV9IKb1N0idUPB31mJTSm3LOnz9CHwsAAByD+EskAABYS0fSSm7Pi1NKZ12blUFwO0k3Kb//277OJUlSzrkr6WmSriyLfrtvkkdKWnnt7al9nUsryzgo6XE9Rf3LAAAAxzk6mAAAwFqWJL2s/H5C0j9ci3VB9Ms9339otYlyzvOSPlv+mFJKo2YZc5I+tsYyvqoiNFySbrnxqgIAgOsyXpEDAADreYGkB6p4UuZuKaXH5pxrdTSVoeG/L+nuKkYra0i6WNKnJL065/ydVeb7tIrR7RZyzmNrLP9bkm4q6aKc8xl9/9ctv32apH9T8YrZHVV0pp0n6Vk554/3TL9d0u9J+nVJN5M0JWmPitHZ3iPp7W50tpTSGZIuKH98oIoOoEerePrnpuVyLpH0H5JennP+4WqfZw1fkvQXkq5X1n0tjZ7vxyQtlN+fK+nbkobXG2WuZxmrbnsAAHB8ooMJAACsKee8kFL6PRVh0U1JL0spfSTnfMlmlpdSeq6kP1ORG3SN/yr/nZNSepGkF5Svdx0pN5T0OUkn9ZTdWj0dNSmlu0p6h6TT+uY9VdK9y39PTyk9YJ0OoglJH5d0177ysyQ9QdLZKaXfyDl/ZCMfIOf8KRWdcmtKKQ1LukP544Gc84GeZbylyrpSSreQtKv88aKN1BMAAFz38YocAABYV875c5JeU/64Q9LrNrOclNLzJb1QRefSN1QET99exRNET5H0QxX3J39W/juSnippt6S/UvGa2IMlvSTnfGFZ19upeMLpNEldSf8k6f4qRmd7mKT/LJdzM0n/nVLq74Tq9XIVnUtflPSochkP0OFX0kYlvSWltG1An63f2ZJOLr//j00u4096vt/sMgAAwHUUTzABAICq/kTS/SSdIenXUkqPyDm/s+rMKaVbS3pu+ePbJZ3d90rW51JK/yjpw5LuIul5KaV3r/a63AA0VXQoPbun7L1lXVuS3iRpXEXQ+UNzzu/tme5Lks5NKT1PxSuEp0l6vYoOKOdUFZ/50TnnzkphSulDKj7vfVQ8SXVfFa+sDUxK6ack/WVP0cs3sYwHq+hUk4qw8LcPoGoAAOA6hCeYAABAJTnnGUnn9BT9TUrppNWmN/5Qxb3HHkmPd3k/5TrOVvHEUEPSkzdf40peu0r5/XR4dLbX9nUu/UTO+YWSPr0yT0rpZ1dZ3ryKEdo6vYXlK4C9eVYDDc9OKZ2sogNrZ1n0xpzzlza4jNtLektP0dNzztODqSEAALiuoIMJAABUlnP+mKQ3lz/ulvTqKvOllBoq8ook6XM559k11nGBpO+WP959k1Wt4pKc849X+b979nz/+nWW8/c9399rlWn+N+e8d5X/681umlpnXZWllE6V9AkVuVZSEUr+Bxtcxh0kfURFhpQkvS7n/I5B1REAAFx38IocAADYqKer6Eg5TdJDU0rvyjl/cJ15ztDhgOj794zktp4zN1fFSi5e4/9uVn6dlvStdZbzxZ7vb77KNBeuMX/v00ADuTdLKd1YRU7SjcuiLOneOee5DSzjPipGyVvpXHqfipH/AAAAAp5gAgAAG5Jz3i/pST1Fr00p7Vxt+tLuTa5uKKU0sKd6+hxc4/9OLL9eXWEkuyt6vj9hlWnWeqWsd/mNdda1rjKc/As63Ln0bUl3zTlfsfpcYRmPl/QhHe5cOlfSw3LO7br1AwAA1008wQQAADYs5/yBlNJ7VIy8dpqK4OjHrDFL7z3Hm1Tx1brSqq/TraHKH9HW6jjaSEdPq+f7zqpTHQVlGPfbJI2VRf8j6b455z0V52+oGFXvj3qK3yDpCf35UQAAAL3oYAIAAJv1+5LupuJpn7NTSv+8xrS9+UPtnPP/bXKdK51C63UA7djk8les1Hd3SqmxzlNMp5j5jrqU0hMl/Z0Ob5t/k/SQtfKu+uZvSXqrpEf2FD8/5/yCgVYUAABcJ/GKHAAA2JSc85WSntZT9AZJk6tMfr4OP4l02/WWnVL645TS41JK9+j7r5WR50bKDhE377ikjYxu53yj/LpN0k3Xmbb383yv5no3JaX0BEmv0eHOpX+Q9Osb6FxqSHq7DncuLUs6m84lAABQFR1MAABg03LOb5f00fLHM3TNp196p1uS9Knyx5unlO642jJTSneT9JeSXifpT/v+e3/P92essoh7SBpeq94V/GfP949bZ9rH93z/sZrr3bCyE+7veopenHM+Z4N5SS+Q9PDy+3lJD8w5v3mN6QEAAK6BDiYAAFDX4yQdKr9fq2PnFT3fvyWldMP+CVJKJ6t4EmrF3/ZN8o2e759s5j9F0svWrG01H5J0Xvn9E1NKD3QTpZSeK+nO5Y+fqPHq36aklHaoeK1t5Z7ulTnn52xwGbfV4Y68roow7w8PrpYAAOB4QAYTAACoJed8cUrpjyX9/TrTfTKl9FpJT1AxwtnXU0qvkvSZcpJfkPR0Sdcrf/5Azvlf+hbzLknPU3EP85RyhLl/VvHUzW0lPbWc/4c6PIraZj5TO6X0qLJuI5Lem1L6J0nvkXSlpNNVhJrfs5zlakm/s9n11fBkHd5eF0p6Z0rpVhXm+07OebH8/s91OKj8g5IuqrCMxZzzdzZaWQDHrPVG0wRwbKs9iq1EBxMAABiM10l6mKQ7rTPdk1V0Bj1V0i4Vr2Y575f0W/2FOefzUkpPVfFkU1PS2eW/FR0VT+OcKOkPN1D/IOf8xZTSvSSdqyLT6bfLf/2+KumhOedL6qxvk87p+f4MSV+uON+Zki5MKZ0l6e495Q8o/63nIq3+iiIAADgO8YocAACorRxl7fckza0zXTvn/HRJP6eiU+p7kqYlLUm6RNL7JN035/ybOWe7rJzzayTdRtI/SfqxpEVJl0l6t6Q75pz/YiAfqljXpyT9lKRnSfqcilHiFlU8LfRhSQ+RdNuc83mrLeNISSntlhReM9ygWw+iLgAAAI1ul6cdAQAAAACr4pdG4LptIK/I8QQTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10ME
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8LFd9///37qrdft1wL9gmH4xLwN+QhPILvSWUQMCUEAI23RRjQgyEngAGAqFDiCEQE0ogtBBIYmoocUKoMbY/gI3BGBs3btNVXen3x5m19u75SDpXs9KVfF/Px0MPaY+m78yZ2bMz79OYnZ0VAAAAAAAAsFTNfb0AAAAAAAAAWNtoYAIAAAAAAEAtNDABAAAAAACgFhqYAAAAAAAAUAsNTAAAAAAAAKiFBiYAAAAAAADUQgMTAAAAAAAAaqGBCQAAAAAAALXQwAQAAAAAAIBaaGACAAAAAABALTQwAQAAAAAAoBYamAAAAAAAAFALDUwAAAAAAACohQYmAAAAAAAA1DKwrxcAAACsPmb2FUn3qF6+xN1fXTje2yWdXb28rbtf1f+lQ8TMjpD0TEkPkHSipA2Sbpb0XUkfkfSP7j69yDTuWU3jrpIOkfRrSZdK+rCkD7j75HItPwAAWNu4gwkAACzmpWZ20r5eCMzPzM6Q5JL+QtJvSdoqaVDSoZIeKOn9kr5pZkfOM37TzN4h6cuSHiXpSElD1fj3kvQeSd8ys9st75oAAIC1igYmAACwmGFJ7zUzrhtWITO7j6QPSdooaVzSmyTdX9LvSHqspP+sBr2zpM+Z2fpgMq9WunNJkn4h6VmSfk/SI5TuXpKk0yR91sw2L8NqAACANY5H5AAAQIm7SHqOpDfv6wXBHDNrSHq7pJZS49K93P3irkH+x8w+Kumdkp6u1Eh0jqTXdE3jBEkvqF5eKel0d9/eNY1PmtkPJf2VpN9Qanx6jQAAALrwTSQAAFjIjKRObs+rzez4fbkwyNxF0u2rv9/a07gkSXL3WUnPk3R9VfSEnkGepNRAJUnn9DQudbxW0rbq7zNqLTEAALhVooEJAAAsZErSG6q/10v6u324LMj9f11/f2a+gdx9XNLXq5dmZsNd/75OKXvpakkXzTP+jKQfVS+PWfLSAgCAWy0ekQMAAIt5paSHK90pc28ze4q712poqkLDnyXpPpKOktRQauD4sqS3uful84z3FaXe7SbcfWSB6V8i6WRJP3P343r+N1v9+TxJ/6r0iNndlRrTfiLphe7+ha7hN0t6sqSHSTpF0iZJNyn1zvYxSRdGvbOZ2XGSflq9fLhSA9ATle4gOrmazjWS/l3SG939ivnWZwH/o3R30RHVsi+k0fX3iKQJSXL3tyttg3lVj+J1GpauXcJyAgCAWzkamAAAwILcfcLMnqwUFt2U9AYz+5y7X7OU6ZnZSyW9XHOPZd3yr+rnqWb2l5JeWT3etVyOlvQNSYd0lZ2uroYaM7uXpH+UdHjPuIdJelD1c66Z/eEiDUTrJX1BqUe2bsdLeoakM83sEe7+ub1ZAXf/slKj3ILMbFDS3aqX2+d5DG4hz1ZaZ0n66F6OC2DtW866GMC+11h8kMXxiBwAAFiUu39D0juql1skvXsp0zGzV0h6lVLj0g+UgqfvqnQH0XMlXaF0ffLy6mc5nSPpYEmvV3rU7FGSXuPuV1XLehelO5wOV/pw9UFJD1Xqne0xkv6jms4pkr5mZr2NUN3eqNS4dLGkP6mm8YeaeyRtWNL7zWxjn9at15mSblP9/e+LDWxmDTM7xMzubWb/LOkt1b++rdRLHQAAwB64gwkAAJR6kaSHSDpO0oPN7HHu/qHSkc3sdEkvrV5eKOnMnkfLvmFm75X0WUn3lPQyM/un+R6X64OmUoPSX3SVfbxa1pak90lapxR0/mh3/3jXcP8j6aNm9jKlRwgPl/S3Sg1QkcOU1vmJVZ6Rqvl8Rml9f1/pTqo/UJ/vEDKzEyWd31X0xoLR/k7SWT1l75X0Z+6+q1/LBgAAbj24gwkAABRx91FJT+0qeouZHTLf8IHnK1173CTp6VFuUTWPM5XuGGooPZq1nN41T/lDNNc727t6Gpdu4e6vkvSVzjhmdod5pjeu1EPbTHdh9Qhgd57Vb5YsdCkzu41SA9bWqugCd/+fglGPDcruK+kpZsb1IwAAyHCBAAAAirn7RZL+vnp5sKS3lYxXhUQ/qHr5DXffvcA8firpsurlfZa4qCWucfdfzPO/B3T9/beLTOedXX8/cJ5hvu3uN8/zv+7spk2LzKuYmR0m6YtKuVZSCiV/TuHo71R6bPBuks5VCmA/Vulxwn+kkQkAAPTiETkAALC3zlVqSDlc0qPN7MPu/ulFxjlO0gHV3w/t6sltMbdd2iIWuXqB/51S/d4l6ZJFpnNx19+nzjPMVQuM3/3IWV+uzczsBKWspROqIpf0IHcfKxnf3T/Z9fKbZvYBpZDyOynlT12k9AghAACAJO5gAgAAe8ndt0k6u6voXWa2db7hKwcvcXYDZta3u3p67FjgfwdVv28s6MnuV11/HzjPMAvlFnVPv3YvLlU4+X9prnHph5Lu5e6/mn+shVV3Xz2hq+jMpS8hAAC4NaKBCQAA7LXqDpePVS8P1+LB0d135rxP6U6Y0p95H6dbQMk1zkINR3vT0NPq+ntm3qFWgJk9StKXlALDJem/Jd3D3a+tO213v0TSj6qXp9WdHgAAuHXhETkAALBUz5J0b6W7fc40s48sMGx3/lDb3b+3xHl2GoUWawDassTpd3SW92AzayxyF9OhwXgrzsyeKentmts2/yrpjIXyrqrxjlC626nt7t9cZDY3Vb+H6iwrAAC49eEOJgAAsCTufr2k53UVvUfShnkGv1JzdyL97mLTNrPzzOxpZnbfnn91ep4bMrNW73jVuOs0dwfPUv2g+r1R0smLDNu9PpfXnO+SmNkzJL1Dc41LfyfpYQWNSw2lZf5PpfdvsWGPr17OF44OAAD2UzQwAQCAJXP3CyV9vnp5nKQ/nme4KUlfrl6eamZ3n2+aZnZvSedLerekF/f8e1vX38fNM4n7ShpcaLkL/EfX309bZNind/19Uc357rWqEe7tXUWvdvenunt7sXGrO7O+Ub082cx+Z4HB/0Bzd2ut+HoCAIDVjQYmAABQ19Mk7az+Xqhh501df7/fzI7uHcDMbqM976R5a88gP+j6+9nB+IdKesOCS1vmM5J+Uv39TDN7eDSQmb1U0j2ql1+s8ejfkpjZFkkf0Nw13d+4+0v2cjLv7Pr73dU0e+djki6oXk5pz/cSAACADCYAAFCPu19tZudpz4aKaLgvmdm7JD1DKfPn+2b2ZklfrQb5LUnnSjqiev1Jd/9Uz2Q+LOllStcwz616mPuIpHGlR9XOqca/QnO9qC1lndpm9ifVsg1J+riZfVAp2Px6ScdKOkvSA6pRbpT0p0udXw3P1tz2ukrSh8zsjgXjXeruk5Lk7v9iZh+V9GhJd5R0qZm9XtJ3lQLM76eUt9Xpze+57v7j/q0CAAC4NaCBCQAA9MO7JT1G0u8tMtyzlRqDzpF0gKRXzjPcJyQ9vrfQ3X9iZuco3dnUlHRm9dMxo/RY3UGSnr8Xy59x94vN7IGSPqqU6fSE6qfXdyQ92t2vqTO/JXpq19/HSfpW4Xi3VWqQ6vhTpTuTHq/UYPXmYJxxSc9y9/fu9VICAIBbPR6RAwAAtVVZPk+WNLbIcG13P1fSnZQapS6XtEupceMaSf8s6Q/c/Y/cPZyWu79D0p0lfVApbHpS0rWS/knS3d39tX1ZqTSvL0s6UdILlbKKbq7md5Wkz0o6Q9LvuvtP5pvGcjGzgyVljxkuhbtPuPufSLqPUoPaL5Tekx2SvqeUiXUCjUsAAGA+jdnZhXrdBQAAAADs5/jQCNy6NRYfZHHcwQQAAAAAAIBaaGACAAAAAABALTQwAQAAAAAAoBYamAAAAAAAAFALDUwAAAAAAACohQYmAAAAAAAA1EIDEwAAAAAAAGqhgQkAAAAAAAC10MAEAAAAAACAWmhgAgAAAAAAQC0
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAY3CAYAAAAjgcWiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8ZUdh/v9Humqr7fa627gzdDDg0DtfwARICP1HMyV0EyAhlAQHCC0QCB1CCaaEHggkhOpQgqkh4EDAAxgbV2zvepu06tLvjzkX3b3zXGmkc7WSdz/v12tfkmZPu6fMmTv33Gd65ubmBAAAAAAAACxX72pvAAAAAAAAAG7Y6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANTSt9obAAAA1p4Qwjck3aP6869jjK8unO/tkp5d/XlyjPHS7m8dnBDCsZKeJen+kk6TtF7S9ZJ+LOnjkv45xji9jOWeI+mt1Z8cUwAAYPEEEwAAWMzLQgg3Xe2NQGchhEdKipL+StLtJW2R1C/pKEkPkHSepO+EEI5b4nJPlvTarm4sAAA4KNHBBAAAFjMo6f0hBNoNa1AI4T6SPippg6RxSW+SdD9Jd5D0GEnfqiY9U9J/hBCGC5fbI+n9Sk9CAQAALIivyAEAgBJ3kvRcSW9e7Q3BvKoT6O2SGkqdS/eKMX6vZZIfhBA+Iemdkp4h6VaSnifpNQWLf7qke3V3iwEAwMGKTyIBAMBCZiU1c3teHUI4ZTU3Bpk7SbpJ9ftb2zqXJEkxxjlJz5d0bVX0hMUWGkK4kaTXV39u78J2AgCAgxwdTAAAYCFTkt5Q/T4s6b2ruC3I3a3l9893mijGOC7p29WfIYQwuMhy3ytpYzXPJ2ttIQAAOCTwFTkAALCYV0h6qNKTMvcOIfxpjLFWR1MVGv4cSfeRdLykHkmXS/q6pLfFGH/eYb5vKI1uNxFjHFpg+T+TdHNJv40xntT2f3PVr8+X9AWlr5jdVakz7deSXhxj/FrL9JskPVXSH0m6hVLHyw6l0dk+JenDbnS2EMJJki6p/nyoUgfQ2UpPEN28Ws6Vkr4s6Y0xxos7vZ4F/EAphPvYatsX0tPy+5CkCTdRCOEpShlO40qv+5xlbBcAADjE8AQTAABYUIxxQqmjYbYqesNSRyNrFUJ4maSfSnqWpKAUIj1c/f4MST8NIby8yhdaSSdIukCpM2VY0mZJt1VLR00I4V6SLpL0Rkl3l3SY0uhsR0s6S9I/SfpxCOHURdY1LOlrSqHZ95C0TSk8/RRJz5T0fyGEBy71BcQYvx5jfGmM8ewY4zWdpgsh9Eu6S/Xn7hjj7g7THaf0WiXpFTHGuNRtAgAAhyY6mAAAwKJijBdIekf152ZJ717OckIIL5f0SqVQ6v9V6lC6s9ITRH8m6WKl9snfVP9W0vOUOnper/RVs0dIek2M8dJqW++k9ITTMZLmJH1E0kOURmd7tKSvVMu5haT/CiEcs8C63qgUmP09SY+vlvHHkr5a/f+gpPNCCBu69NraPVnSkdXvX15guvcoHd8fS/r7FdoWAABwEOIrcgAAoNRLJD1Y0kmSHhRC+P9ijB8tnTmEcFtJL6v+/LCkJ7d9teyCEML7Jf27pHtKOjeE8MlOX5frgl6lDqW/ain7dLWtDaWnk9YpPbn1qBjjp1um+4GkT4QQzlX6CuExkv5RqQPKOVrpNZ8dY2w+CaYQwueVXu8DJR0h6Q8lfaL+S5sXQjhN0utait7YYbonVNsxrfzYAAAALIgnmAAAQJEY46ikp7UUvSWEcMQSFvHnSm2PHZKe4TowqnU8WemJoR6tfP7PuzqUP1jzo7O9q61z6fdijK+U9I3mPCGEm3VY3rik57V2LlXzz2n/4PRbl2x0qRDCkUodWFuqovfFGH9gpjta0purP18fY/xJN7cDAAAc/OhgAgAAxWKMX5X0gerPbZLeVjJflad0VvXnBTHGfQus4xJJv6j+vM8yN7XElTHGKzr83/1bfv/HRZbzzpbfH9Bhmh/FGK/v8H+t4d4bF1lXsarT6HylbCspfe3tuR0mf7ekrUp5U6/s1jYAAIBDB1+RAwAAS/UCpY6UYyQ9KoTwsRjj5xaZ5ySlDgxJekjLSG6LOXl5m1jk8gX+7xbVzxFJP1tkOd9r+f2WHaa5dIH5R1p+70rbrAod/7KkZvh4lHRWjHHMTPsYpRHyZiU9pQp1BwAAWBKeYAIAAEsSY9wl6dktRe8KIWzpNH1l2zJX1xdC6NpTPW32LPB/h1c/t1dfY1tI6+hth3WYZqRDuZS+DthUe+S8Kpz8u5rvXPo/Sfdyo8xVX6F7a/XnO2KM36m7fgAAcGjiCSYAALBkMcbPhhA+pTTy2jFKwdFPWWCW1jbHP6nwq3WVjl+nW0DJh2gLdRwtpaOn0fL7bMepDoAQwiMkfUjSUFX0fUl/GGPc0WGWtyp1/u2W9MkQwm3MNK2dgzdrdiaS0wQAAFrRwQQAAJbrOZLurfS0z5NDCB9fYNrW/KGZGp0TzU6hxTqANi9z+U3N7d0WQuhZ5Cmmo8x8B1wI4VmS3q75ffMFSY9cKO9K0h2rn5sl/VfBar7Q8nvtp60AAMDBg6/IAQCAZYkxXivp+S1F75G0vsPkv9H8k0h37DDN74UQXhRCeHoI4b5t/9UceW4ghNBon6+ad52kpYxu5/xv9XODpJsvMm3r67mo5nqXJYTwTEnv0Hynz3sl/dEinUsAAABdwxNMAABg2WKMH65Cos9SCvJ+bIfppkIIX5f0h5JuGUK4a4zx227aEMK9Jb2u+vPrkr7W8t+7Wn4/SfuPwNZ0X0n9S3gZzlckPaP6/emSzllg2me0/P7VmutdsqoT7u0tRa+OMf51ybwxxpMKlv92zWdunRxjvHSp2wgAAA5+PMEEAADqerqkvdXvC3XsvKnl9/NCCCe0T1CFTr+npeitbZP8b8vvWadPCOEoSW9YcGvLfF7Sr6vfnxVCeKibKITwMkn3qP48/0DnEoUQNkv6oObbdP9Q2rkEAADQTTzBBAAAaokxXh5CeJGkdy4y3X+GEN4l6ZlKI5xdGEJ4s6RvVpPcXtILJB1b/f3ZGOO/ti3mY5LOVWrD/Fk1wtzHJY0rfVXtedX8F2t+FLXlvKaZEMLjq20bkPTpEMJHJH1K0rWSTlQKNb9/Nct2SU9c7vpqOEfz++tSSR/tENTd7ucxxskV2yoAAHDIoYMJAAB0w7slPVrS3ReZ7hylzqDnSdoq6RUdpvuMpMe1F8YYfx1CeJ7Sk029kp5c/WualfRSpeDxP1/C9mdijN8LITxA0ieUMp2eUP1r9z+SHhVjvLLO+pbpaS2/nyTph4XznazUIQUAANAVfEUOAADUVo2y9lRJY4tMNxNjfIGkM5Q6pS6SNCJpStKVkv5F0h/GGB8WY7TLijG+Q9KZkj4i6QpJk5KulvRJSXeNMb62Ky8qrevrkk6T9GJJFyiNEjep1Dnz75IeKemOMcZfd1rGSgkhbJOUfc0QAABgNfTMzS006i4AAAAAAACwMJ5gAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtdDBBAAAAAAAgFroYAIAAAAAAEAtdDABAAAAAACgFjqYAAAAAAAAUAsdTAAAAAAAAKiFDiYAAAAAAADUQgcTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAt+CAYAAABqAf/GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZFlBxv2nqzqH6Qk7szsb2GEBj0taQCUIyBIElaC8IiBxQSXp4oKvBAUUVEAQQTIKCiw5w4tkREGikhH27LKJDbMzO6lnOndX1/vHubVTU+fp7tt9u2d6md/385lPT9++4dx06tSpW8/pajabAgAAAAAAAFardqILAAAAAAAAgJs3OpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJV0n+gCAACAjSeE8J+S7lP8+oIY49+VXO71kv64+PWWMcar1r50cEIIp0t6hqQHSbq1pCFJByR9V9L7JL07xji/xPJvlfQHJTfHuQUAAMfgCSYAALCcF4YQzj3RhcDiQgiPlBQl/aWkX5a0WVKPpFMl/Yakt0v6WgjhjCVWc+d1LiYAAPg5RgcTAABYTp+kt4UQaDdsQCGE+0t6j6RhSdOS/lHSAyXdTdLvS/pyMeuvSPpUCGHQrKNb0u2KX9+q1Nm01L/r12l3AADAzRRfkQMAAGXcQ9IzJb3mRBcER4UQuiS9XlJdqXPpvjHGb7TN8q0QwvslvVHS0yTdUdJFkl7asapzlToSJekLMcbvrWvBAQDAzx0+iQQAAEtZkNTK7fm7EMI5J7IwyNxD0i8W/39tR+eSJCnG2JT0LEl7i0lPMOu5U9v/6VwCAAArRgcTAABYypykVxb/H5T0LyewLMjdu+3/n1hsphjjtKT/Ln4NIYS+jlla+UsTki5bu+IBAICTBV+RAwAAy3mxpIcrPSlzvxDCH8UYK3U0FaHhfyLp/pLOlNQl6RpJX5L0uhjjjxdZ7j+VRrebiTH2L7H+HyllCl0dY9zV8bdm8d9nSfp3pa+Y3UupM+2nkp4XY/xC2/ybJP2hpN+WdHtJI5L2K43O9kFJF7vR2UIIuyRdWfz6cKUOoAuUniC6XbGe6yR9VtKrYoyXL7Y/S/iWpJdJOr0o+1K62v7fL2mm7ffWE0zfjzEurKIcAADgJEcHEwAAWFKMcSaE8IdKYdE1Sa8MIXwqxnjdatYXQnihpL9Syg065k/Fv6eEEP5G0ouLr3etl7MkfVXS9rZpd1FbR00I4b6S3i1pZ8eyp0n6zeLfs0MIv7NMB9GgpC9Ium/H9HMkPV3Sk0MI/0+M8VMr2YEY45eUOuWWFELokXTP4texGONYxyznFT+/F0J4mKQnS7q7pK2S9ikdpzcW2wMAAMjwFTkAALCsGONXJb2h+HVU0ptXs54Qwl9LeolS59IPlIKnf1XpCaI/lXS5Uvvkr4p/6+kiSadIeoXSV81+T9JLY4xXFWW9h9ITTjslNSW9S9LDlEZne7SkzxXrub2kr4QQOjuh2r1KqXPpG5IeX6zjdyR9vvh7n6S3hxCG12jfOj1Z0o7i/59t/0MI4RZKHUmS9DhJH1d6WutUST1K+/8ISf8RQnhLMeIcAADAMWggAACAsp4v6aGSdkl6SAjhMTHG95RdOIRwF0kvLH69WNKTO75a9tUQwtskfVLS+ZJeFEL4wGJfl1sDNaUOpb9sm/ahoqx1Sf8qaUAp6PxRMcYPtc33LUnvDyG8SOkrhDslvUWpA8o5TWmfL2j/CloI4RNK+/tbSk9SPVjS+6vv2lEhhFtLennbpFd1zHLntv9vkvR9pVHnfqTU8XW+pAslbZH0FKXOtqetZRkBAMDNH08wAQCAUmKME0odDC3/FELYvtj8xp8ptT32S3qayy0qtvFkpU6MLqWOjfX0pkWmP1RHR2d7U0fn0k1ijC+R9J+tZUIIt11kfdOSLurMNyq+AtieZ3We1lAIYYdSB9bmYtJbY4zf6pitfQS5t0n65RjjP8cYvxZj/FKM8a+UOqGuLuZ5agjh/LUsJwAAuPmjgwkAAJQWY/y8pH8rfj1F0uvKLBdC6FLKK5Kkr8YYJ5fYxpWSflL8ev9VFrWM62KM1y7ytwe1/f8ty6znjW3//41F5vl2jPHAIn9rz24aWWZbpYUQTpP0RaVcKymFkj/TzPpKpY6th2rxjr+rlYLOWy5aq3ICAICfD3xFDgAArNSzlTpSdkp6VAjhvTHGjy+zzC6lr1hJ0sPaRnJbzi1XV8RSrlnib7cvfo4rfVVsKd9o+/8dFpnnqiWWH2/7/5q0zUIIt1LKWrpVMSlK+s0Y41TnvEVn3w+Kf4uKMX4hhHCl0jm5Xwiha51D2AEAwM0ITzABAIAViTEekvTHbZPeFELYvNj8hVNWubnuEMKaPdXT4fASf9tW/NxXohNlT9v/ty4yz/gi06X0dcCWrmW2tawinPzrOtq59H+S7htj3LP4UqV9v/g5oqMdhgAAADzBBAAAVi7G+NEQwgeVRl7bqRQc/QdLLNLe5vhXlfxqXWHRr9MtocyHaEt1HK2ko6fe9v+FRec6DkIIvyfpnZL6i0nflPTgGOP+NdpE+7noXaN1AgCAnwN0MAEAgNX6E0n3U3ra58khhPctMW97/lAjxvi9VW6z1Sm0XAfQ6CrX39Iq7yklvgp2qlnuuAshPEPS63X02Py7pEculXcVQqgpncPtkqZjjB9dZjM7ip8NncB9BQAAGw9fkQMAAKsSY9wr6Vltk/5Z0tAis1+ho0+/3H25dYcQnhtCeGoI4QEdf2oFUPeGEOqdyxXLDih1mFTRyiMalnS7ZeZt359LKm53VUIIT5f0Bh3tXPoXSb+9VOeSJBWj2n1I0nskvbEIY19sG32SfqX49QcxxtnKBQcAAD836GACAACrFmO8WNKni193SXrsIvPNSfpS8esdQgj3WmydIYT7SXq5pDdL+ouOPx9q+/+uRVbxAEk9S5W7hM+1/f+py8z7tLb/f77idles6IR7fdukv4sxPiXG2Ci5ii8XP0+T9MAl5nuyjj4ZttTTagAA4CREBxMAAKjqqZKOFP9fqmPnH9v+//YQwlmdM4QQdig9CdXy2o5Z2kc6u9Asf6qkVy5Z2nI+Iemnxf+fEUJ4uJsphPBCSfcpfv1iha/+rUoIYVTSO3S0TffqGOMLVriaN7b9/7UhhCyQPYRwN0mvKH69QceeIwAAADKYAABANTHGa0IIz9WxHRVuvv8IIbxJ0tOVRjj7fgjhNZL+q5jllyU9W9Lpxe8fjTF+rGM175X0IqU2zJ8WI8y9T9K00lfVLiqWv1xHR1FbzT41QgiPL8rWK+lDIYR3SfqgpL2SzlYKNX9Qscg+SU9c7fYquFBHj9dVkt4TQrhTieV+3PqKW4zxMyGE90h6jKRfkPTdEMIrJP2P0lceH6w0amCvpDlJFxQjCQIAANyEDiYAALAW3izp0ZJ+bZn5LlTqDLpIaZj7Fy8y30ckPa5zYozxpyGEi5SebKopfW3ryW2zLCh9rW6bpD9bQfkzMcZvhBB+Q9L7lTKdnlD86/QdSY+KMV5XZXur9JS2/+9S6hQq45ZKHVItT1Y6do+TdKbyJ8ekFOr9pBjjZ1dcSgAA8HOPr8gBAIDKilHW/lDS1DLzNWKMz5Z0Z6VOqUskjSs9GXOdpA9LenCM8XdjjHZdMcY3KIVNv0vStZJmJe2W9AFJ94oxvmxNdipt60uSbi3peZK+qtTJMqvUOfNJSY+UdPcY408XW8d6Kb7Kln3NcDVijDMxxsdLur9Sh9o1Svt5SNJ3lToCz40xfmIttgcAAH7+dDWbS426CwAAAAAAACyNJ5gAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAAC
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x3000 with 20 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAkzCAYAAABOWPddAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZFWB/v+nujpPZgCJ6wDiQURMqytrDmtYTKxxXVTMWVG/CiYMq4jrumJa0TVgWBV1Rf0prnnd1RV0zSAcRYJkGJjQPdOxun9/nFt0TZ2nq2/17ZnpYT7v12tePX363qpbN5x77ql7n1ObnZ0VAAAAAAAAsFg9u3sBAAAAAAAAsGejgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUEnv7l4AAACw/IQQ/kvSA4tf3xhjfEfJ+T4o6SXFr4fFGK9Y+qWDE0I4SNKLJT1C0h0krZB0i6RfSfqCpH+PMU6XeJ0nSjpR0l9K2k/SSPEan5T0+Rjj7E75AAAAYI/GHUwAAGAhbwoh3Gl3LwTmF0J4sqQo6Q1KHUNrJfVJup2kR0o6W9L/hhAO7vAaa0II35P0JUmPk3SwpH5J6yU9TNK/S/pmCGFw530SAACwp6KDCQAALGRA0sdDCLQblqEQwkMlfU7SSknjkv5F0sMl/ZWkv5f038Wk95J0Xghh2LxGn6RvS3poUXS+pKdJuo+kp0u6qCh/lKQP75QPAgAA9mg8IgcAAMo4TtLLJZ25uxcEc0IINUkflFRX6lx6cIzx/JZJfhZCOEfSv0p6oaRjJZ0s6fS2l3q1UoeUJH1e0tNjjI3i9wtCCOdK+qmku0g6KYTw7hjj73fGZwIAAHsmvokEAACdzEhq5va8I4Rw+O5cGGSOk3RU8f/3t3UuSZKKzKRXSrqxKHpG69+LR95eV/z6J0nPbOlcar7GNqXH75qeUH3RAQDAbQkdTAAAoJMpSe8u/j8s6d9247Igd/+W/399volijOOSflz8GkIIAy1/Pl7S6uL/p8UYp+Z5me9I+rSk90m6cHGLCwAAbqt4RA4AACzkrZJOULpT5iEhhOfFGCt1NBWh4S9Vyvw5RFJN0lWSfijpA/M9ftUyut1EjHHesOkQwoWS7izpyhjjhra/NUdBe6Wkbyo9YnY/pc60SyWdGmP8Xsv0qyU9Vyn4+hhJqyTdrDSy2pckfcaNzhZC2CDp8uLXE5Q6gE5SuoPozsXrXKOUffSeGOOf5vs8HfxM0jslHVQseye1lv8PSpoo/v+o4uekpHPnmznGOCHpmYtYRgAAsBeggwkAAHQUY5wIITxXKSy6R9K7QwjnxRivWczrhRDeJOnNSrlBO/yp+Pf8EMI/Snpr8XjXznKopJ9I2q+l7B5q6agJITxYafS0A9vmPUCpY+ZRkl4VQnj8Ah1Ew5K+J+nBbeWHS3qRpGeHEP4uxnheNx8gxvhDpU65jooQ7/sWv26JMW5p+fNdip8XxRjHWuYZVur8G5d0dYxxpptlAwAAexcekQMAAAuKMf5E0oeKX9dIOmsxrxNCeIuktyl1Lv1WKXj6r5XuIHqFUgZQj1IH1JsrLfTCTpa0r6R/UnrU7EmSTo8xXlEs63FKdzgdKGlW0mclPVYpDPupSo+MSemupv8JIbR3QrV6j1Ln0vlKo7L9laTHS/pu8fcBSWeHEFYu0Wdr92xJ+xf//3bb344ufl4pSSGEB4YQviNpq6RYlF8fQnhXcTcXAABAhjuYAABAWa+T9BhJGyQ9OoTwtBjj58rOHEK4h6Q3Fb9+RtKz2x4t+0kI4eOSviHpQZJOCyF8cSeOVtaj1KHUGl795WJZ65I+IWlIKej8KTHGL7dM9zNJ54QQTlN6hPBASR9R6oByDlD6zCe13gkUQvi60uf9W6U7qY6XdE71jzYnhHAHSWe0FL2n5W8DkpqdWptDCK+X9Hbt+DidimV7raTHhhAeEWP881IuIwAA2PNxBxMAACilGEns+S1F7wsh7Dff9MarldoeN0t6ocstKt7j2Up3DNUkvWzxS1zKh+cpf4zmRmf7cFvn0q1ijG+T9F/NeUIIR7vplB4zO7n9MbPiEcDWPKu7llnoskII+yt1YK0tij4WY/xZyyStd0w9RNI7JN0k6XlKdzwNKt1t9a1imqMkfbUtJBwAAIAOJgAAUF6M8buSPln8uq+kD5SZL4RQ01yY9E9ijNs7vMflki4ufn3oIhe1jGtijFfP87dHtPz/Iwu8zr+2/P+R80zzixjjLfP8rTW7adUC71VaCOEASd9XyrWSUij5y9smG275/18odf79dYzxYzHGm2KME0WHVOudVXeX9JylWk4AAHDbwCNyAACgW69S6kg5UNJTQgifjzF+bYF5NkhaV/z/sS0juS3ksMUtYilXdfjbMcXPUUkXLvA657f8/y7zTHNFh/lHW/6/JG2zEMIRSllLRxRFUdKjWkO8C+2/v9WFlccYZ0MIr1AaDa9f0onasWMNAADs5biDCQAAdCXGuFnSS1qKPhxCWDvf9IV9F/l2vSGEJburp83WDn9bX/zcWGIkuxta/r/PPNOMzlMupccBm9qzj7pWhJP/VHOdSxdJenCM8QYz+Ujb7+fO97rF/M3H6+5V3JUGAAAgiQ4mAACwCDHGcyV9qfj1QLUER8+j9c6cTyg9ZlX237yP03VQpo3TqeOom86Tesv/Z+adahcIITxJ0g+UQrkl6QJJD4wxXuemjzFOSNrUUnTtAm/RvOurV3O5TgAAADwiBwAAFu2lSsHQ6yU9O4TwhQ7TtuYPNWKMv17kezY7hRbqAFqzyNdvai7vviGE2gJ3Md3OzLfLhRBeLOmDmls335T05E55V4XfSXpA8f+16vwZmuHeDXW+AwwAAOxluIMJAAAsSozxRkmvbCn6qKQV80x+mebuRLrPQq8dQjglhPCCEMLD2v7UHHmuP4RQb5+vmHdIc3fwLNZvi58rJd15gWlbP88lFd93UUIIL5L0Ic11Lv2bpMeV6FySdsyQWmjbNNfF1THGRndLCQAAbsvoYAIAAIsWY/yM5oaw3yDpH+aZbkrSD4tf7xJCuN98rxlCeIikMySdJen1bX/e3PL/DfO8xMMk9XVa7hK+0/L/Fyww7Qtb/v/diu/btaIT7oMtRe+IMT6/iw6g1jvPXtzhfe6tuRHpvtrdUgIAgNs6OpgAAEBVL9BcWHSnjp1/afn/2SGEQ9snCCHsr3QnVNP72yb5bcv/X2bmv52kd3dc2nK+LunS4v8vDiGc4CYKIbxJ0gOLX79f4dG/RQkhrJH0Kc216d4bY3xjN68RY/yV5jrGji9Gi2t/n30kfbz4dVrpDikAAIBbkcEEAAAqiTFeFUI4RQsMWx9j/EEI4cOSXqQ0wtlvQghnSvpRMclfSnqVpIOK38+NMbbfKfN5SacptWFeUYww9wVJ40qPd51czP8nzY2itpjP1AghPL1Ytn5JXw4hfFYp2PxGSbeX9BxJjyhm2SjpmYt9vwpeprn1dYWkz4UQ7lZivt/HGCdbfn+B0ghx+0o6M4TwYKWOq2sl3VXS6zR3x9g7YowXVV90AABwW0IHEwAAWApnSXqq5sKi5/Mypc6gkyWtk/TWeab7iqQT2wtjjJeGEE5WurOpR9Kzi39NM0qP1a2X9Ooulj8TYzw/hPBISecoZTo9o/jX7peSnhJjvKbK+y3S81v+v0HSz0vOd5hSh5QkKcZ4eQjhgZK+JukOkh5X/Gv3LklvW8yCAgCA2zYekQMAAJUVo6w9V9LYAtM1YoyvknR3pU6pSySNSpqSdI2k/5B0fIzxCTFG+1oxxg9Jupekz0q6WtKkpOskfVHS/WKM71ySD5Xe64dKHS6nSvqJ0ghrk0qdM9+Q9GRJ94kxXjrfa+wsIYR9JWWPGS5WjPH3ko5R6gT8b6W7siaU7gb7jKT
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x2400 with 16 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAbwCAYAAAAvbOuuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYXGWd9/93VXV1dzoJCRAMa9i9BREZN3AZFx4XFNFZAMVtouCgPuojyjMKI8qijoLb/BgZRv3hAIqAMsPoDDqjuAwOMm44iMstQhCIyB4gSXd6qXr+qErs5P4mKXIqnQDv13X11V3fus8591m6L/LlnE/V2u02kiRJkiRJ0qaqb+kJSJIkSZIk6eHNBpMkSZIkSZIqscEkSZIkSZKkSmwwSZIkSZIkqRIbTJIkSZIkSarEBpMkSZIkSZIqscEkSZIkSZKkSmwwSZIkSZIkqRIbTJIkSZIkSarEBpMkSZIkSZIqscEkSZIkSZKkSmwwSZIkSZIkqRIbTJIkSZIkSarEBpMkSZIkSZIqscEkSZIkSZKkSmwwSZIkSZIkqRIbTJIkSZIkSarEBpMkSZIkSZIqGdjSE5CkR7D2lp6ApM2mtqUn0OXfGemRzb81kmZCX/7WeAeTJEmSJEmSKrHBJEmSJEmSpEpsMEmSJEmSJKkSG0ySJEmSJEmqxJBvSZJUeO1rX8sPfvADAN7xjnfw5je/uaflTj/9dL7whS8AcOWVV7LrrrtutjlqbXfccQcXXXQR3/ve97jlllsYHR1l3rx57Lfffhx++OEcccQRDAyU/+l36KGHsnTp0oe8vZxzP6YtSZIeIbyDSZIkbdA555zDjTfeuKWnoQ244oorOOywwzj33HO5/vrreeCBB5iYmODuu+/mqquu4j3veQ+vfOUrueOOO/qyvWaz2Zf1SJKkRw7vYJIkSRs0Pj7OX//1X3PRRRdRr/v/prY23//+9znxxBOZmppiaGiIV73qVfzxH/8xc+fO5dZbb+WLX/wiP/zhD/nZz37GG9/4Ri655BJmzZq1ZvlPf/rTTExMbHQ7p512Gtdeey0Ap5566ubaHUmS9DBlg0mSJG3UtddeywUXXMDixYu39FQ0Tbvd5vTTT1/TXLrgggs46KCD1rx/4IEH8pKXvIRTTz2Viy++mJwz559/Pm9605vWjNlnn302up2LL754TXPp6KOP5sgjj+z/zkiSpIc1/zekJElar3q9via355Of/CS33nrrFp6Rprv22mu56aabgE5u1vTm0mq1Wo2TTz6Z7bffHoDLL7/8IW3j1ltv5SMf+QgAe+yxByeffHLFWUuSpEciG0ySJGm9BgYGOPbYYwEYHR3lve997xaekab70Y9+tObnQw89dL3jhoaGePKTnwzAkiVLGB8f73kbp512GitXrgQ6Ie7TH6+TJElazUfkJEnSBr31rW/lG9/4BjfddBPXXHMNl156KUcffXSldd544418/vOf5/vf/z533HEH7XabHXfckYMPPpjXvva1631sa/Wn2w0ODvKzn/1svet/6Utfyg033MAuu+zCt771rbXeSykBcNJJJ/Hc5z6XM844gx//+McMDAywaNEiTjzxRJ7xjGesGb98+XK+9KUvceWVV3LDDTewYsUKJiYmbgeuBb4EXJhznlx3DimlPYAl3Zd/CnwFWAy8Dng8MBdYCvw78LGc80NOUj/wwAM5/vjjufPOO9l99903OLbdbq/5edWqVQwODm50/d/61re46qqrADjiiCM4+OCDH+oUJUnSo4QNJkmStEGDg4N84AMf4DWveQ2tVoszzzyT5zznOSxcuHCT1vepT32KT33qU0xNTa1VX7JkCUuWLOHSSy/lLW95C29961up1Wr92IXQ73//e4455hjuvffeNbVf/OIXLFq0aM3ra665hhNPPJG77rpr3cV3BF7c/XpnSulPNtIgGgG+CTxvnfpewJuBN6SU/iznfMVD2YdDDjmEQw45ZKPjJiYm+MlPfgLA3LlzmTt37kaXabVafPzjHwdgeHiYE0888aFMTZIkPcrYYJIkSRv15Cc/mVe/+tVceOGFPPjgg7z//e/n3HPPfcjrOfvss/m7v/s7oHMn0ate9SpSSrRaLX7+859z4YUXcsstt6wZ87a3va2v+zHd+eefT7vd5rjjjuN5z3sed999N7/85S/ZddddgU6+0fHHH8/Y2Bi1Wo0jjjiCF7/4xSxYsICjjjrqlcAbgBcCBwBXpZSenHO+fT2b+xidptQ1wKeAXwM7Af8beAEwBPxjSmmvnPPyfu/rZZddxj333APAs571rJ6W+frXv84NN9wAdIK9d9xxx35PS5IkPYLYYJIkST155zvfybe+9S2WLl3Kt7/9bb761a9yxBFH9Lz8z3/+c8455xwAXv7yl/OhD31oTYA4dJpYRx55JMcffzw/+MEP+NSnPsWLX/zinj7lbFO0Wi3e9KY3ccIJJ6ypHXbYYQBMTU1x8sknMzY2Rr1e5xOf+MSa9wByzpcAl6SU3gecRqdZ9A/Ay9azuR2BC4HFOefW6mJK6SvAvwIvAXYADgcu6d9ewm9/+1s+9rGPrXn9hje8oaflzj//fACazSavf/3r+zklSZL0CGTItyRJ6snIyAhnnHHGmtcf/OAH13q8bGPOO+88Wq0W8+fP57TTTluruTR9Gx/60Ieo1Wq0220uvPDCvsx9fY455piw/u1vf3vNp7Mdc8wxazWXpss5nw58p/vyiJTS/uvZ1BjwjunNpe7ybeAz00pP7HXuvbjnnns4/vjjeeCBBwA46qijOPDAAze63HXXXcdPf/pTAA4//HB23nnnfk5LkiQ9AtlgkiRJPXvmM5/Jn/3ZnwFw3333rdVw2pB2u70mLPpJT3rSBj+JbLfddmPvvfcGOhlIm8vChQvX+9jX6rkCvOIVr9jYqs6Z9nPciYIf55zX142bnt208XCkHt11110sXryYJUs6OeP7779/z58CuPruJYDjjjuuX1OSJEmPYD4iJ0mSHpKTTjqJq666irvuuosrrriCww8/nOc///kbXOa2227j/vvvBzqfTLb6k9w25rbbbqs83/XZaaed1vve6uyhkZERHvvYx25sVdO7YE9Yz5ibN7D89Mylvvy32S233MKxxx7LLbfcAsCee+7JZz7zGYaHhze67NjYGFdeeSUAT3jCE9h33337MSVJkvQI5x1MkiTpIdlmm214//vfv+b1qaeeuuYRrPW57777Nmlbk5OTLF/e98xrAObMmbPe95YtWwbAtttu28sn2d0x7eft1jNmQzvRnvZz5Y/Nu/baa3nFK16xprm07777csEFF7BgwYKelr/66qsZHR0F4CUveUnV6UiSpEcJ72CSJEkP2Qte8AIOO+wwvv71r3PXXXfx4Q9/mA996EPrHT81NbXm5z//8z/nta99bc/b2tDjdOvTarU2PmgD2u32xgf9QWP6pittuKKvfe1rvPvd72bVqlUAPPGJT+Qf/uEf2HbbbXtexze/+U0AarXaerOnJEmS1mWDSZIkbZL3ve99XHPNNSxbtozLLruMww8/fL1j582bt+bnRqPBfvvtV2nbG2sAPfjgg5XWv3q+9913H+12e2N3MS2c9nPvqed99oUvfIEzzjhjzbF57nOfyyc/+cmH3KD77ne/C3SaU4Z7S5KkXvmInCRJ2iTbb789J5100prXp5xyyppHq9a12267rWl0rP50sg359Kc/zcUXX8zVV1+9Vn31J89NTEysdVfUdGNjY5v8SN5qqzOiVq5cuSaPaQMOmfbzrypteBNddNFFnH766WuaS0cffTTnnHPOQ24u3XTTTdx9990APOUpT+n7PCVJ0iOXDSZJkrTJ/uRP/oRnP/vZACxdupSvfvWr4bhms8nBBx8MwK9//Wt+9KMfrXed3//+9/nYxz7G+9//fs4999y13ps79w8fsrZ06dJw+auvvpqJiYmHtB/retaznrXm50suuWRjw9807edvVNrwJrj66qvX+jS/N73pTZxxxhk0Go0NLBW77rrr1vx8wAEH9GV+kiTp0cEGkyR
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAbwCAYAAAAvbOuuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYXFWd//FPVXV1dzrppLOwhASCbEfUCWAYdgQZQBhWRUAgwQg6gIMKyBYQkAQRQUZmFASXkBAStnGZQUXFwPxkCwEMyuYhkIQshuxb77X9/qhK093n293VuTedhLxfz9NPdX3r3HvPXToPfJ97P5UoFAoCAAAAAAAANlVyS08AAAAAAAAA2zYaTAAAAAAAAIiEBhMAAAAAAAAiocEEAAAAAACASGgwAQAAAAAAIBIaTAAAAAAAAIiEBhMAAAAAAAAiocEEAAAAAACASGgwAQAAAAAAIBIaTAAAAAAAAIiEBhMAAAAAAAAiocEEAAAAAACASGgwAQAAAAAAIBIaTAAAAAAAAIiEBhMAAAAAAAAiocEEAAAAAACASGgwAQAAAAAAIBIaTAAAAAAAAIikYktPAAA+xApbegIANpvElp5ACf/OAB9u/FsDoC/E8m8NdzABAAAAAAAgEhpMAAAAAAAAiIQGEwAAAAAAACKhwQQAAAAAAIBICPkGAACBcePGafbs2ZKkyy67TJdccklZy02cOFHTp0+XJM2cOVMjR47cbHNER8uWLdOMGTP07LPPauHChWpqatKgQYO077776qSTTtIpp5yiioru/9Nv0aJFmjp1qp577jktXbpUhUJBO++8sw477DB98Ytf1O677943OwMAALY5NJgAAEC37rnnHh1//PHac889t/RU0IXf/e53uv7669XY2NihvnLlSj3zzDN65plnNH36dN19993aaaedzHU88cQTmjBhgpqamjrUFyxYoAULFui///u/NWnSJJ1++umbbT8AAMC2iwYTAADoVmtrq66//nrNmDFDySRP129tXnjhBV155ZXK5XKqqqrSueeeqyOPPFK1tbVatGiRHnroIb300kt67bXX9JWvfEWPPPKI+vXr12Edf/vb33TVVVcpk8kolUq1rSOdTmvWrFmaPHmyWltbNWHCBO2www46/PDDt9DeAgCArRX/lQgAAHo0Z84cPfDAA1t6GuikUCho4sSJbc2lBx54QNdee60OP/xwjR49WieddJKmTZumL3zhC5Ik772mTp0arOeuu+5SJpORJN1555361re+paOOOkqHHXaYrrjiCk2ePFnJZFL5fF633XZbn+4jAADYNtBgAgAAXUomk225PXfddZcWLVq0hWeE9ubMmaN58+ZJKuZm7b///sGYRCKh6667TkOHDpUk/frXv+7weWtrq1588UVJ0ujRo3XiiScG6zjooIN03HHHSZLefvttLVmyJNb9AAAA2z4aTAAAoEsVFRW68MILJUlNTU361re+tYVnhPZefvnltt+POeaYLsdVVVVpzJgxkqT58+ertbW17bO1a9cqm81KUrch3nvvvXfb7ytWrNjUKQMAgA8pMpgAAEC3Lr30Uj355JOaN2+eZs2apUcffVRnnXVWpHW+++67evDBB/XCCy9o2bJlbd9WdvDBB2vcuHHaa6+9zOU2frtdZWWlXnvttS7Xf/LJJ2vu3LkaMWKEnnrqqQ6fOeckSRMmTNDRRx+tSZMm6ZVXXlFFRYV22203XXnllTrssMPaxtfX1+uxxx7TzJkzNXfuXDU0NCiTySyVNEfSY5Kmee+znefgnNtd0vzS289K+l9J4yWdL+njkmolLZH0B0l3eu/f7fnIdTR69GhddNFFWr58uUaNGtXt2EKh0PZ7S0uLKisrJUlDhgxRRUWFstls291Qlvfee6/t9x133LG3UwUAAB9yNJgAAEC3Kisrdcstt2js2LHK5/O6/fbbddRRR3X5bWQ9ufvuu3X33Xcrl8t1qM+fP1/z58/Xo48+qq9+9au69NJLlUgk4tgF0/vvv69zzjlHq1evbqu9+eab2m233drez5o1S1deeaV1x87Okk4s/VzhnDu9hwZRjaQ/Sfp0p/oeki6RdIFz7nPe+9/1Zh8OOeQQHXLIIT2Oy2Qy+stf/iJJqq2tVW1tbdtnFRUV+tSnPqWnnnpKr7/+up588sm2x+E2evPNN/X73/9eUrGptcsuu/RmmgAAYDtAgwkAAPRozJgxOu+88zRt2jRt2LBBN910k+69995er+eHP/yhfvSjH0kq3kl07rnnyjmnfD6vN954Q9OmTdPChQvbxnzta1+LdT/amzp1qgqFgr785S/r05/+tFauXKm33npLI0eOlFTMN7rooovU3NysRCKhU045RSeeeKKGDRumM8888wuSLpB0vKRPSHrGOTfGe7+0i83dqWJTapakuyW9LWm4pH+XdJykKklTnHN7eO/r497XX/ziF1q1apUk6Ygjjgg+v/rqq/Xaa69pxYoVuuyyyzR27Fgdfvjhqqys1CuvvKKf/exnymQyqqur06RJk+KeHgAA+BCgwQQAAMpyxRVX6KmnntKSJUv09NNP6/HHH9cpp5xS9vJvvPGG7rnnHknSaaedpltvvbUtQFwqNrE+//nP66KLLtLs2bN1991368QTT+zycbmo8vm8Lr74Yl1++eVttRNOOEGSlMvldN1116m5uVnJZFI/+MEP2j6TJO/9I5Iecc7dKOlmFZtF90k6tYvN7SxpmqTx3vv8xqJz7n8l/UbSv0raQdJJkh6Jby+Lj7bdeeedbe8vuOCCYMxHPvIRPfLII7rrrrv0+OOPa8qUKZoyZUqHMZ/5zGd01VVXadddd41zegAA4EOCkG8AAFCWmpqaDnevfOc73+nweFlPJk+erHw+r7q6Ot18880dmkvtt3HrrbcqkUioUCho2rRpscy9K+ecc45Zf/rpp9vyiM4555wOzaX2vPcTJf1f6e0pzrmPdbGpZkmXtW8ulZYvSPppu9J+5c69HKtWrdJFF12k9evXS5LOPPNMjR492hw7Z84cvfPOOx2ymtp7+eWX9cc//lH5fN78HAAAbN9oMAEAgLIdfvjh+tznPidJWrNmTdmPSxUKBT3zzDOSpE9+8pPq169fl2N33XVX7bnnnpKKGUiby0477aSdd97Z/GzjXCXp7LPP7mlV97T73e5ESa9477vqxrXPbqrtYkyvrVixQuPHj9f8+cWc8Y997GNdfgvgf/zHf+ib3/ym3nzzTR1wwAG6//77NWfOHM2ZM0dTpkzRQQcdpFWrVun222/X9ddfT5MJAAAEeEQOAAD0yoQJE/TMM89oxYoV+t3vfqeTTjpJxx57bLfLLF68WOvWrZMkPfXUU23f5NaTxYsXR55vV4YPH97lZ3PnzpVUvKNqn3326WlV7btg/9TFmAXdLN8+cymW/zZbuHChLrzwQi1cuFBS8RG4n/70p6qurg7Gzpw5U/fdd58k6cgjj9SPf/xjpdPpts8PPfRQHXTQQbrqqqv029/+Vr/85S81evToLu/+AgAA2yfuYAIAAL0ycOBA3XTTTW3vv/3tb7c9gtWVNWvWbNK2stms6utjz7yWJA0YMKDLz9auXStJGjx4cDnfZLes3e9DuhjT3U60fyYt8tfmzZkzR2effXZbc2nvvffWAw88oGHDhpnjZ8yYIUlKJpOaOHFih+bSRqlUSt/+9rfbjtn06dOjThMAAHzIcAcTAADoteOOO04nnHCCfv/732vFihW67bbbdOutt3Y5PpfLtf1+xhlnaNy4cWVvq7vH6boS9RGurnKIupBqv+lIG47oiSee0DXXXKOWlhZJ0n777af77rtPgwcP7nKZ1157TVLxW/122WWXLscNHDhQBx98sGbOnKm5c+eqoaFB/fv3j3cHAADANosGEwAA2CQ33nijZs2apbVr1+oXv/iFTjrppC7HDho0qO33VCqlfffdN9K2e2oAbdiwIdL6N853zZo1KhQKPd3FtFO738tPPY/Z9OnTNWnSpLZjc/TRR+uuu+7qsUHX2NgoSaqt7Tn+aejQoW2/19f
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFdB9vGnqnqb7p59JslkskwS4gHZIwi8giGEl0UMi8gmi4ACgoABRRTZRJE9RGQVEGQLIIIsgkBYJSzxlTUCBxOykWWS2aen96p+/zi36Zo6T3ff7lvd6SS/7+czn546fe+tc7dTt0/d+5zazMyMAAAAAAAAgOWq39QVAAAAAAAAwM0bHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEp6buoKAACAtSeE8FVJZxYvXxxjfGXJ+d4s6Y+Ll6fEGK/ofu3ghBCOl/QsSQ+UdBtJQ5L2SfqepA9L+mCMcXqRZdxF0nMlnSVph6RxST8q5n9XjHFixVYAAADcrHEHEwAAWMxLQgi3u6krgfmFEB4tKUr6K0l3k7RJUq+kYyU9SNJ7JX0zhLBzgWW8XNJ3JT1F0i5J/ZI2Srq3pDdL+n4I4ZSVWgcAAHDzRgcTAABYTL+kd4cQuG5Yg0IIZ0v6kKRhpTuOzpP0AEn3kPQ4SV8vJr27pM+GEAbNMl4i6WWSapKmJP29pPsrdS69SNJ+SbeV9K0QwqkruT4AAODmiUfkAABAGfdSenTq/Ju6IpgTQqgp3V3UUOpcOivG+O22SS4OIXxE0lsl/ZGkO0k6V9LftS0jSHp58XJM0oNijF9vW8ZFIYSPSvqGpOMkvUnSb6/ICgEAgJstvokEAAALaUmaze15JXevrDn3UrqzSJLe1NG5JEmKMc5Iep6kG4qiJ3VM8seauyZ8UUfn0uwyLlPqmJKkh4QQzuycBgAA3LrRwQQAABYyJel1xf8HJb3zJqwLcvdp+/+n5psoxjiudAeSlG5a6m/79f2Kn+OS3rHAe31M0kjx/8cssZ4AAOAWjkfkAADAYv5a0iOU7pS5XwjhaTHGSh1NRWj4syWdLekEpeyfqyV9RdI/xBh/PM98X1Ua3W4ixjiwwPIvkXR7SVfGGHd1/G6m+O/zJP270iNm91bqTLtU0l/EGC9sm36DpD+U9DBJd5C0XtJepdHZ/kXS+93obCGEXZIuL14+QqkD6MlKdxDdvljONZI+L+kNxV1CS3WxpFdJOr6o+0Jqbf8fkDQ7ItzJxc8fxhjH5ps5xtgMIURJv6Z05xQAAMAvcQcTAABYUDE0/R8qPS4nSa9baDSyxRSB0j+S9CxJQdKQ0t1RQSkn6EchhJcX+UIr6URJFykFYg8qjZh2hto6akIIZ0n6qaQ3SPpNSVuURmc7TtKDJf2TpO+FEE5b5L0GJV0o6d1KHWTblMLTT5X0TEn/E0L4raWuQIzxKzHGF8UYnxxj3D3fdCGEXkm/Ubw8GGM82PbrvuLn4RJvOVX8PH2pdQUAALdsdDABAIBFxRgvkvSW4uVGSW9fznJCCC+X9AqlUOofKnUo/R+lO4j+RNJlStcnLyv+raRzlTp6Xqv0qNmjJP1djPGKoq73UrrDaYekGUkfkPRQpdHZHivpC8Vy7iDpP0MIOxZ4rzdIOkvStyU9sVjGwyV9sfh9v6T3hhCGu7RunZ4q6Zji/5/v+N2e4ucJJZZzYvFzKISwvhsVAwAAtww8IgcAAMr6S0nnSNol6bdDCL8XY/xQ2ZlDCGdIeknx8v2SntrxaNlFIYR3S/qMpPtKemkI4aPzPS7XBXWlDqW/aiv7WFHXhtLdSeuU7tx6TIzxY23TXSzpIyGElyo9QrhDKb/oofO813FK6/zkGOPsnWAKIXxKaX1/S9J2SQ+R9JHqqzYnhHAbSa9uK3pDxyTfUXqEL4QQfnWBxxPvKqn9zrUhlbvrCQAA3ApwBxMAACglxnhE0tPbiv4+hLB9CYv4U6Vrj72S/sjlFhXv8VSlO4Zqkp6z/BqX8rZ5ys/R3Ohsb+voXPqlGOMrJH11dp4Qwq/Os7xxSee2dy4V88/o6OD0O5epdFkhhGOUOrA2FUXvijFe3DHZ+9v+/44QQpZtVYSCv6mjuLdrFQUAADd7dDABAIDSYoxflPSe4uU2Sf9QZr4iT+nBxcuLYoyjC7zH5ZJ+Urw8e5lVLeOaGOMv5vndA9v+v9DIapL01rb/P2ieaf47xrhvnt+1h3t37bGzEMJxkr6klG0lpVDy55pJ/03Sl4v/31vpTrIHhxCGQwiDIYT7S/pa8btr2uab7FZdAQDAzR+PyAEAgKV6vlJHyg5JjwkhXBBj/OQi8+yStLn4/0PbRnJbzCnLq2IpVy/wuzsUP0ckXbLIcr7d9v87zjPNFQvMP9L2/65cmxWh45+XNBs+HiU92I0SF2OcCSE8RtJnJd1dKej8s2ax75F0leaysY50o64AAOCWgTuYAADAksQYD0j647ait4UQNs03fWHbMt+uZwXDpA8t8Lutxc89xWNsC2kfvW3LPNOMzFMupccBZ1UeOa8IJ/+W5jqX/kfSWQuNMhdj3KM0St6LlXe8XSzp0THGp2ruUbsjMcaF1gkAANzKcAcTAABYshjjJ0II/6I08toOpeDoP1hglvZrjn9SyUfrCvM+TreAMl+iLdRxtJSOnkbb/1vzTrUKQgiPkvQ+SbM5St+R9JAY497F5o0xjkt6paRXhhB2Kj2ud22Msb0jbjaX6oquVRoAANwi0MEEAACW69mS7qd0t89TQwgfXmDa9vyhZozx+8t8z9lOocU6gDYuc/mzZuu7LYRQW+QupmPNfKsuhPAsSW/W3Lb5d6U7j5bcQRdjvKazrBhZ727Fy+XuPwAAcAvFI3IAAGBZYow3SHpeW9E/Kg1d7/xcc3ci3XOxZYcQXhhCeEYRMN1uduS5vqLDw827TtJSRrdzflj8HJZ0+0WmbV+fn1Z832UJITxT0ls017n0TkkPK9O5FEI4O4TwmhDCe4rR4ubzm5p7dPCLlSoMAABucehgAgAAyxZjfL+kzxUvd0l6/DzTTUn6SvHyjiGEe8+3zBDC/SS9WtLbJb2o49cH2v6/a55F3F9S70L1LuELbf9/xiLT/lHb/1e946XohHtzW9ErY4xPjzE2Sy7itpL+XNKTJd13geleWPwcURp5DgAA4JfoYAIAAFU9Q9Lh4v8Ldeyc1/b/94YQTuycIIRwjNKdULPe1DHJD9v+/xwz/7GSXrdgbcv5lKRLi/8/K4TwCDdRCOElks4sXn6pwqN/yxJC2CjpnzV3TffGGOOLl7iYT0qa7Yz62xBCtg9DCC+S9MC29zi4nPoCAIBbrltrBlPZoZEB3DxVHoUJQHkxxqtDCC+U9NZFpvtyCOFtkp6pNMLZD0II50v6WjHJ3SQ9X9LxxetPxBg775S5QNJLla5h/qQYYe7DksaVHlU7t5j/Ms2NoracdWqGEJ5Y1K1P0sdCCB+Q9C+SbpB0slKo+Wynyx5Jv7/c96vgOZrbXldI+lAI4S4l5vtxjHFSkmKMvwghvLVY1t0kfSuEcJ7SY407ldbzwcV8F0v6u+5VHwAA3FLcWjuYAABAd71d0mOVcnoW8hylzqBzJW2W9NfzTPdxSU/oLIwxXhpCOFfpzqa6pKcW/2a1lB6r2yrpT5dQ/0yM8dshhAdJ+ohSptOTin+dvivpMS4YexU8ve3/uyT9V8n5TtHRI8H9mVKn2UMl/ZqkD5p5vizpUcVocwAAAEfhETkAAFBZMcraH0oaW2S6Zozx+ZLuqtQp9VOlTJ8pSddI+ldJD4kxPjLGaJcVY3yLpLtL+oCkX0ialHSdpI9KuneM8VVdWan0Xl+RdBtJfyHpIqVR4iaVOmc+I+nRku4ZY7x0vmWslBDCNknZY4bLUdzN9HBJvyfpQkn
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcJHV9//F3d0/PzM7sye5yHyuoXw/wwCMeeAdQVKLxiEfw5xGjAoqo8YyKihrFWxQ1AaNGvIhXTFQQTTziLURQ+CoCglwL7DE7O3d3//6oarfp73tmaqZ6lx329Xw89jHT367jW9VV39n5TNW7Kq1WSwAAAAAAAMBiVW/vDgAAAAAAAGBpo8AEAAAAAACAUigwAQAAAAAAoBQKTAAAAAAAACiFAhMAAAAAAABKocAEAAAAAACAUigwAQAAAAAAoBQKTAAAAAAAACiFAhMAAAAAAABKocAEAAAAAACAUigwAQAAAAAAoBQKTAAAAAAAACiFAhMAAAAAAABKocAEAAAAAACAUvpu7w4AAIDdTwjhvyU9In/5jzHGtxec70xJJ+Uv7xRjvLr3vYMTQrizpJdLOlrSwZImJF0l6cuSPhFj3FhgGYdIepWkY/NljEm6QtLnJZ0VYxzfOb0HAABLHVcwAQCA+bwxhHD327sTmF0I4bmSLlFW3LurpEFJqyXdV9LbJP0mhHDcPMs4TtKlkk6WdBdJA5LWSHqApPdK+kUIYcPO2QIAALDUUWACAADzGZB0dgiB/zfshkIIj5N0jrKi0rik0yUdo+wqpHdKmpS0TtJ5IYQjZ1nGEZLOk7Rc0jZJr5f0UEmPlfS5fLJ7SPqPEMKynbYxAABgyeIWOQAAUMSDJb1M0gdu745gh7zod6akiqQpSQ+LMf6yY5LzQwjfkvQ9Scsk/ZOy4lO3M/P3JyQ9qmsZ3w4hXCzpXZIOl/RSSe/u9bYAAICljb9EAgCAuTQlzeTfvz2EcOjt2RkkHi2p/Zmc2VUYkiTFGL8v6T/zl0eHENZ0vh9CuJ+kh+cv/3mWZbxbUrv9FVzNBgAAuvGfAwAAMJdpSWfk3w9J+ufbsS/wviHpGklfm2Oayzq+P6jrvb/u+P7TcyzjnPzrPtpRkAIAAJDELXIAAGB+b5H0ZEl3k/ToEMILY4ylCk15aPjJkh4j6UBlt3hdq+xWrg/HGH87y3z/rezpdpMxxsE5ln+ppHtK+mOMcUPXe63821OVXdlzpqSjlBXTrpD02hjjdzqmXynp7yT9lbJbxFZIulXSRZK+JOkzMcYZdckDsa/KXz5Z0tclPVfSc/K+rZB0naRvS3pvjPEPs23PbPJ+fmfeCaVDOr6/oeu9h+Zft0n61RzL+H7H94+W9N8F1gsAAPYQXMEEAADmFGOcVFZgaeZNZ4QQDljs8kIIb1T2xLMTJQVJw8qujgqSXizpkhDCaSGESqmOz+8gST9Slkk0JGmVpCOVFZnafX2UpMuVPUXt4ZL2klSXtK+kdrj2RSGEw+ZZ15CyQtDZygpk65SFpx8q6SUq8JS3xQohPEDSk/KX34sx3tw1SfsJgX+IMTY1u84CGE8VBAAAt0GBCQAAzCvG+CNJH8lfrpL0scUsJ4RwmqS3SqpJ+rWygtJDlF1BdIqyIkZV0pvzfzvTy5UVet4t6WGSnibpHTHGq/O+PljZFU77SWpJ+jdJx0v6C0nPkHR+vpzDJf0ghLDfHOt6r6RHSfqJpBPyZTxJ0gX5+wOS/jWEsLzsRoUQKiGEFSGEI0MI71d2pdGApM3KrhrrnLYuaX3+8pq5lhtjHFd25ZYkLbrACAAA7pi4RQ4AABT1OklPlLRB0hNCCM+KMZ5bdOYQwpGS3pi//Iyk53fdWvajEMLZyjKFHinpTSGEL852u1wPVJUVlN7Q0XZe3teasquTlim7cutvYozndUz3M0lfCCG8SdkthPtJ+riyApSzr7Jtfm7nVUIhhK8r297jlBV6Hi/pCyW369n5ujr9SNLfxRgv72pfo+z2RCm7RW4+2yWtlbS6VA8BAMAdDlcwAQCAQmKM2yX9fUfTB0MI62eb3nilsv973CrpxS63KF/H85VdMVSR9NLF97iQs2Zpf6KyzClJOquruPRnMca3akcW0RNDCPeYZXkTkl7efQtajLGl2wan37tIp+dxiGk7QtJLu58gp+zKps4+zmfczAcAAECBCQAAFBdjvEDSJ/OX6yR9uMh8eZ7S4/KXP4oxjs2xjqu046lnj1lkV4u4Lsb4p1neO7bj+4/Ps5yPdnz/2Fmm+WWMcdMs73VmG62YZ11F/I+ko5XdhneCstvyVirLvPp+CGHvjmkbHd+3VNxCpgUAAHsAbpEDAAAL9QplhZT9JP1NCOFzMcavzTPPBmW3Y0nS8R1PcpvPnRbXxUKuneO9w/Ovo5IunWc5P+n4/ohZprl6jvlHO74v/X+zGOMPO17+LIRwrrKrpJ6vbLveo+xJdt3rnvWpfB2W5V+LXO0EAAD2IFzBBAAAFiTGuEXSSR1NZ4UQ5svkWbfI1fWFEHpxVY8zMsd7a/Ovt+S3sc3lpo7v95plmtFZ2qXbXg3U8yfn5bflnSjpurzpb0IIQx39aq9/uMDi2tPMdjUWAADYQ1FgAgAACxZj/IqkL+Uv91P2lLS5dF6Zc46k+y7g36y3082hyP9x5iocLaTQU+v4vjnrVLejGOOksifiSVK/8nypvPjUvk3woLmWEUJYph2Ft+t3QjcBAMASxi1yAABgsU6W9GhlRYfnhxA+P8e0nVe8NGKMFy9yne2i0HwFoFWLXH5bu7/rQgiVea5i2sfMt0vkod2HSdo3xviNeSa/teP7/o7vf6OsuHToPPMf1vH9znqyHwAAWKK4ggkAACxKjHGjpFM7mj6h2W+zulI7rkR60HzLDiG8JoTwohDCX3a91X7yXH8IodY9Xz7vMkkLebqd8+v863JJ95xn2s7tubzkehfqM5J+LunrBZ7o11kg6gw3b2dI7RVCmGtbH97x/Q+KdxEAAOwJKDABAIBFizF+RtI385cbJD17lummJX0vf3lECOGo2ZYZQni0pH+S9DFJr+96e0vH9xtmWcRfSqrP1e8Czu/4/kXzTPviju8vKLnehWoXeirKQrytEMK+kh6fv7y86+l553V8/7w51tVe/s2SfjjHdAAAYA9EgQkAAJT1Iknb8u/nKuy8r+P7fw0hJJk/IYS9lV0J1fahrkl+3fH9S838+0g6Y87eFvN1SVfk358YQniymyiE8EZJj8hfXlji1r/F+pSk7fn3rw8hJE+xy0PSv6gdV5f9U+f7McbfSPrv/OXJrvgXQni1pPvlLz+SFwwBAAD+bE/NYCr6aGQAS1PPn8K0SIw1WLIe+MAH6mc/+5n6+/sHNM+xHGPUueeeq7e85S23ab/wwguv6p7utNNO0+c+9zlJOmzVqlXXnHnmmXrgAx8oSbr00ku19957a+PGjZKko48+WmeeeeZXOpdx/vnn67jjjtPMzIwknfL617/+lMc//vEaGBjQxRdf/Of5Dz74YF1zzTU64IADDpmt/0cdddSxs70XY9TFF1+sv/3bv9X09HS1Wq1++TWveY0e+9jHau3atXra0572dEkvkHRsPsstkv7fXPtpZ4gx3hhCeJWksyStlPSzEMIHlBWMRiQ9QNltjBvyWT4v6dNmUSdL+qWkAUkXhBDOUHYV15Ck52jHlWmXS3rPztgWAACwtFVarT3y9589cqOBPQgFJqCkE044oV1g0iWXXDLv9K1WSyeccIJ+/vOf/7ntwgsv1IEHHnib6RqNht797nfrU5/6lOb6P8gxxxyjM844Q4ODg8l7n/3sZ3X66aer2Uwf2FatVvXyl79cW7Zs0TnnnKMDDjhA3/3ud28zTQhBknTUUUfp7LPPnnO7fvKTn+jUU0/Vpk1zZnf/StLfxBiv6GwMIWyQ1C6yfTzG+OLuGRcy3VxCCKcou3JrrivIzpJ0ymxXH4UQjpP0BWW5U84Vko6JMV41y/sAAGAPxi1yAACgtEqlotNPP90WhDrVajW97nWv01e/+lU94xn
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcJHV9//F3d889O3uwB4sL7HLoF0WiosEjokaDt6iJRo1HhCTeiVET8YgRFY8EjQd4EQ+UiPFA8YjGK8EzHskPggT5KnLKtbDn3Ff374+qdnv7+56ZmqneZYd9PR+Pfcz0d+r4VnXVd7Y/U/WuSqPREAAAAAAAALBU1Tu7AwAAAAAAAFjeKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACglK47uwMAAODAE0K4RNLD85d/F2N8a8H5zpX00vzlUTHG6zrfOzghhGMl/bWkUyQdKWlC0rWSviDpvBjj1iUs82RJ35X0yxjjcR3sLgAAuIvhCiYAALCQN4QQ7nlndwJzCyE8X9LPlRX37iGpT9JqSfeT9BZJ/xdCePwil3mIpI9KqnS0swAA4C6JAhMAAFhIr6SPhhD4f8MBKITwOEkfU1ZUGpd0lqRHS3qMpLdLmpS0TtLnQwgnFlzmSknfkHT3fdFnAABw18MtcgAAoIgHS/orSe+5szuCPfKi37nKrjKaknRyjPF/Wib5Zgjh3yX9p6R+Se9QVnyab5lB2W1199onnQYAAHdJ/CUSAADMpy5pJv/+rSGEo+/MziDxSEnN9+TctuKSJCnG+D1J/5a/PCWEsMYtKITQFUJ4qaSfaU9xqd7h/gIAgLsoCkwAAGA+05LOzr8fkPTPd2Jf4H1V0g2SvjTPNL9o+f6I9h/mRafLlV0NNaTstro/l3Rj57oJAADuyrhFDgAALORNkp4q6ThJjwwh/EWMsVShKQ8Nf5mkR0k6XNktXjcqu5XrnBjjlXPMd4myp9tNxhj75ln+FZKOl3R9jHFL288a+bevUHZlz7mSHqqsmHa1pNfEGL/dMv1KZcWWJ0u6t7ICzDZJl0r6nKQLYowzahNC2KLsKW5Stv++LOn5kp6X921I0k3Kso7eFWP89VzbM5e8n99ecEJpc8v3t5ifr5LUDHL/L0l/HmO8MoTwhsX2CQAAHJy4ggkAAMwrxti8mqV5u9TZIYRNS11eXrT4uaSXSAqSBpVdHRUkvUjSz0MIZ4YQ9vXTy46Q9ENlmUQDyoosJyorMjX7+vuSrpL0LkkPk3SIpG5JGyU1w7UvDSEcs8C6BpQVgj6qrEC2Tll4+tGSXqwlPOWtqBDC70p6Sv7yP2OMt88x6eWSnhljfMhcBT4AAIC5cAUTAABYUIzxhyGE90v6S2WFmA9JetJilxNCOFPSG/OXl0v6QP61Kun+yoLEj2mZ5swy/V7AXyu7cuofJX1FWdHovjHG6/K+PljZFU79khqSPiXps5Juk3SUpNOVFafuLen7IYT7xxjd1UFSVqDaKOnHkt4v6ZeSDpP0UkmnKCs2nR9CODrGOFJmo/LC3AplT4B7rqQX5MvfoeyqMeeGGON9yqwXAAAc3CgwAQCAol6rrKi0RdITQwh/EmO8sOjMIYQTJTVvubpA0ultt5b9MITwUWWZQo+Q9PchhM/uw6tpqpLeFmN8fUvb5/O+1pRdndSv7MqtZ8QYP98y3U8lfSaE8PfKbiE8TNKHJZ06x7o2Ktvm58cYfxucHUL4srLtfbyk9ZKeIOkzJbfr2fm6Wv1Q2W1vV7kZWvsEAACwFNwiBwAACokxjiq7GqbpvSGE9YtYxKuU/d9jm6QXudyifB2nK7tiqKLsiql96YNztD9JWeaUJH2wrbj0WzHGN0u6pDlPCOFebjpJE5L+ur2QE2NsaO/g9E5cRbTZtJ0g6S/neoIcAABAWRSYAABAYTHGb0n6eP5ynaRzisyX37b1uPzlD2OMY/Os41rteerZo5bY1SJuijH+Zo6fPabl+w8vsJwPtHz/2Dmm+Z8Y4/Y5ftYa7j20wLqK+K6y2+4eqOwWuR9LWqks8+p7IYQNHVgHAADAXrhFDgAALNYrlRVSDpP0jBDCp2OMX1pgni2SmlfPnNryJLeFHLW0LhZy4zw/u3f+dUTSFQss58ct358wxzTXzTN/a+ZS6f+bxRh/0PLypyGEC5VdJXW6su16p7In2QEAAHQMVzABAIBFiTHuVBZO3fTBEMLqBWZbt8TVdYUQOnFVj7N7np+tzb/ekd/GNp/bWr4/ZI5p5gvubl1+x5+cl9+W9xJJN+VNzwghDHR6PQAA4OBGgQkAACxajPGLkj6XvzxM2VPS5tN6Zc7HJN1vEf/mvJ1uHkX+jzNf4WgxhZ5ay/cHZFh2jHFS2RPxJKlHe/KlAAAAOoJb5AAAwFK9TNIjlV3tc3oI4V/nmbY1f2g2xnjZEtfZLAotVABatcTlNzX7uy6EUFngKqZDzXz7RR7afYykjTHGry4w+baW73v2Xa8AAMDBiCuYAADAksQYt0p6RUvTeZIG55j8Gu25EulBCy07hHBGCOGFIYQ/aPtR88lzPSGEWvt8+bz9khbzdDvn8vzrCknHLzBt6/ZcVXK9i3WBpJ9J+nKBJ/od0/L9XOHmAAAAS0KBCQAALFmM8QJJX89fbpH07Dmmm5b0n/nLE0IID51rmSGER0p6h6QPSXpd2493tny/ZY5F/IGk7vn6XcA3W75/4QLTvqjl+2+VXO9ifT//WlEW4m2FEDZKekL+8qp5np4HAACwJBSYAABAWS+UNJx/P19h559avj8/hHBE+wQhhA3KroRqel/bJJe3fP+XZv5DJZ09b2+L+bKkq/PvXxJCeKqbKITwBkkPz19+p8Stf0v1CUmj+fevCyEkT7HLQ9I/qz1Xl71jP/UNAAAcRA7WDKaij0YGsDx1/ClMS8RYg2XrpJNO0k9/+lP19PT0aoFjOcaoCy+8UG9605v2av/Od75zbft0Z555pj796U9L0jGrVq264dxzz9VJJ50kSbriiiu0YcMGbd26VZJ0yimn6Nxzz/1i6zK++c1v6vGPf7xmZmYk6eWve93rXv6EJzxBvb29uuyyy347/5FHHqkbbrhBmzZt2jxX/x/60Ic+Zq6fxRh12WWX6TnPeY6mp6er1Wr1C2eccYYe+9jHau3atXr605/+x5L+TNJj8lnukPSn8+2nfSHGeGsI4W8kfVDSSkk/DSG8R9Ilyp6S97vKbmPcks/yr5I+ub/7CQAA7voO1gITAADooGc961n62te+pp/97GfzTveGN7xBvb29+sQnPqFdu3bpnHPOsdM9+tGP1tlnpxcibd68Wa973et01llnqV6v66KLLtJFF130259Xq1W98pWv1M6dO/Wxj32s1Dbd97731Uc+8hG94hWv0Pbt23XxxRfr4osvbv74sy2T/j9Jz4gx3lRqhUsUY/xQCKFX2ZVbfZJek/9r90FJL18gsBwAAGBJuEUOAACUVqlUdNZZZ6mvr2/e6Wq1ml772tfq4osv1jOf+UwdffTRGhgYUHd3tw499FA95jGP0XnnnadzzjlnzmU9+9nP1uc//3mdeuqp2rhxo7q7u7V+/Xo97nGP04UXXqgXvnChyKTiHvSgB+lb3/qWXvWqV+nEE0/U6tWr1d3dLUnXSfqqpD+W9KAY49XzLWdfizG+V9K9Jb1fUpQ0nv+7WtJHJT0gxviSPAsLAACg4yqNxkH5R6yDcqOBgwi3yAHY1w6UcQYAAOCAwBVMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG9CAYAAABZDcySAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZFWZ//Fv58mBGWTIA4iPAQysYTGBWdcV05p1FzG7BtQ1/AyYXV3XtAaUFQy4ZlFcXVxERcVVMKAIyqMgKA5xEjPTM53798e5RdfUebr7dN2amYb5vF+vefX06Vu3blXde+65p879nq7JyUkBAAAAAAAA7ere0xsAAAAAAACAWzc6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAAAAABQCx1MAAAAAAAAqIUOJgAAAAAAANRCBxMAAAAAAABqoYMJAAAAAAAAtfTu6Q0AAADzj5mdL+m46tc3uvs7Cx/3EUn/XP16mLtf3fmtQ8TMbi/pZEkPk3SIpCFJV0k6S9Jp7n5jwTqOl/RcScdK2r8qXifpR5I+4u4Xd37LAQDAbQEjmAAAwGzeZGZ32tMbgemZ2YmSfqvUuXcHSQskrZB0D0lvl3SZmf3dDI/vN7MzJf1A0jMkHS5pYfXv9pJOkvQrMyvqaAQAAHsfOpgAAMBsBiSdbma0G+YhM3uUpDOUOpV2SHqHpIdLeoSkf5U0LGm1pK+a2THTrOYTkp5Z/f8PSh1V95X0AEmvk3RD9bfXm9kbd8HLAAAAt3LcIgcAAEocK+llkj64pzcEU6pOv49I6pI0IukB7v7LpkXONbPvKI1MWijp3UqdT83rOFbSidWvF0h6pLsPNi1ygZl9VtL/SVqrNKLtc9z+CAAAmvFNJAAAmMmEpLHq/+80s8P35MYg82Cl29mklJH0y9YF3P1Hkr5d/fowM1vZssizm/7//JbOpcY6rpP0qurXfklPrbXVAADgNocOJgAAMJNRSe+t/r9I0n/uwW1B7FuS/iLp7BmW+X3T/w9u+dsDqp9XuPvvNb3vNv3/buWbBwAA9gbcIgcAAGbzVkmPl3RHSQ82s+e5e62Opio0/CWSHiLpIKVbvK5RupXrw+7+u2ked77S7HbD7r5ghvVfKukukv7s7mtb/jZZ/fcVSiN7PiLp/kqdaVdIep27n9e0/DKlmdUeK+koSUslbZB0saSvSDrT3cfUwszWKs3iJqX375tKt6L9Y7VtS5VmaPtfSe9z9yunez3TqbbzvFkXlA5t+v91LX/7hNKtbxtnWUdX0/+nfe8BAMDeiRFMAABgRu4+rNTBMlEVvdfMDmx3fWb2JqUZz14sySQtVhodZZJeKOm3ZvYWM+uafi0dcbCknyhlEi2StFzSMUqdTI1tfZCkyyW9T9IDJe0jqU/SGkmNcO2LzeyIWZ5rkVJH0OlKHWSrlcLTD5f0Is0yy1sdZnYvSY+rfv2Bu9/U/Hd3/6C7n+zub5tlVcc3/f/PHdxEAABwG0AHEwAAmJW7/0TSR6tfl0v6eDvrMbO3SHqbpB5Jlyh1KN1XaQTRyyVdqdQ+eXP1b1c6Wamj59+UbhN7kqR3NcKrq/Drb0vaX9KkpM9JOkHSfZQyiM6t1nOUpB+b2f4zPNf7JD1I0s8kPatax+M0ddvZgKRPm9mSui/KzLrMbKmZHWNmH5B0frX+TUqjxtpap6TXNhX9b93tBAAAty3cIgcAAEr9P0mPUbqd6u/N7Onu/vnSB5vZMZLeVP16pqSTWm4t+4mZna6UKXS8pFPM7MvT3S7XAd1KHUpvaCr7arWtPUqjkxYqjdx6irt/tWm5iyR9ycxOUbqFcH+lW81OmOa51ii95hPdvTESTGb2TaXX+3eS9pX0aElfqvm6nlE9V7OfSHquu1/e5jpfpdQRKEmXig4mAADQghFMAACgSDW72PObij5kZvvOYRWvUmp7bJD0wii3qHqOk5RGDHVJemn7W1zk1GnKH6OUOSVJp7Z0Lt2iuq3s/MZjzOzO06xvSNLJzZ1L1eMntXNweifCsw8Nyo6W9NJgBrlZmdkTJL27+nVc0j+3vg4AAAA6mAAAQDF3/66kT1W/rpb04ZLHVbdYPar69Sfuvn2G57hKU7OePaTNTS2xzt3/Os3fHtH0/0/Msp6PNf3/kdMs80t3ny5Euznce+ksz1Xih5IepnQb3rOUbstbppR59SMzu13piqrOpS8o3dIoSW9w9x91YBsBAMBtDLfIAQCAuXqlUkfK/pKeYmZfcPezZ3nMWkmN0TMnNM3kNpvD2tvEItfM8Lejqp/blG4Jm8nPmv5/9DTLXD3D47c1/b9228zdL2j69SIz+7zSKKmTlF7XvyvNZDcjM3uOUudao3PpQ+7+nrrbBwAAbpsYwQQAAObE3TdL+uemolPNbMUsD1vd5tP1mlknRvVEtszwt1XVz/XVbWwzuaHp//tMs8y2acqldDtgQ8dnzqtuZ3uxpHVV0VPMbNF0y1ch4W+X9ElNdS69391P7vS2AQCA2w46mAAAwJy5+9clfaX6dX+lWdJm0jwy5wxJ95jDv2lvp5tBSRtnpo6juXT09DT9f15mE7n7sNKMeJLUr6l8qZ2Y2YDSbHlvbCp+k7u/atduIQAAuLXjFjkAANCul0h6sNJon5PM7IszLNucPzTu7r9u8zkbnUKzdQAtb3P9DY3tXW1mXbOMYtoveNxuUYV2HyFpjbt/a5bFNzT9vz9Y12JJZ2sq92pMKYz99E5sKwAAuG1jBBMAAGiLu98o6RVNRadJWjzN4n/S1Eikv51t3Wb2WjN7gZk9tOVPjZnn+s2sp/Vx1WMXSprL7HaRS6qfSyTdZZZlm1/P5TWfd67OlPRzSd8smNHviKb/7xRubmYLlEY4NTqXBiWdQOcSAAAoRQcTAABom7ufKemc6te1kp4xzXKjkn5Q/Xq0md1/unWa2YMlvVvSxyW9vuXPm5v+v3aaVTxUUt9M213g3Kb/v2CWZV/Y9P/v1nzeufpx9bNLKcQ7ZGZrJD26+vXyYPa80yQdV/1/o6QHu/s5AgAAKEQHEwAAqOsFkrZW/5+pY+f9Tf//tJkd3LqAmd1OqbOj4T9aFrmk6f8vDR6/n6T3zri1Zb4p6Yrq/y82s8dHC5nZmzTVMfO9Grf+teszSqONJOn1ZpbNYleFpH9ZU6PL3t3y9ydJelb167CkR7r7RbtmcwEAwG0VGUwAAKAWd7/GzF4r6WOzLPd9MztV0ouUbtf6jZl9UNIPq0XuKemVkg6ofv+6u3+jZTVfkHSKUhvm5VXnyRclDSndqnZy9fgrtfMtYXN9TeNm9qxq2/olfdXMPqcUbH6jpEMlPUfSI6qHrJf0T+0+X43tvN7M/kXSqZKWSbqoek/PV5ol715KtzGurR7yRUmfbTzezLolvaNpladLGjWzu8/y1Nvc/YpZlgEAAHsROpgAAEAnfFzSUyU9cJblXqrUGXSypJWS3jrNcmdJemZrobtfYWYnK41s6la6Laz51rAJpdvqVkmqNfOZu//MzB4p6UtKmU7/WP1r9StJT3H3dXWer13u/vFq9rf3Slog6XXVv1anSnp5S2D58ZLu0PT7i6t/s/lh9VgAAABJ3CIHAAA6oOq0eK6kHbMsN+7ur5R0D6VOqcslbZM0KmmdpK9JerS7P9Hdw3W5+0eVRuZ8TimsekTSdUq3gd3f3f+1Iy8qPdcPJN1eqcPmJ0r5RCOSrpb0LUlPlvS3e3o0j7t/SNJRkj4qyZU+hx1Kt/mdLume7v7iKgur2TG7dUMBAMBtVtfk5Eyz7gIAAAAAAAAzYwQTAAAAAAAAaqGDCQAAAAAAALXQwQQAAAAAAIBa6GACAAAAAABALXQwAQAAAAAAoBY6mAAAAAAAAFALHUwAAAAAAACohQ4mAAAAAAAA1EIHEwAAAAAAAGqhgwkAAAAAAAC10MEEAAAAAACAWuhgAgAAAAAAQC10MAEAAAAAAKAWOpgAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG9CAYAAABZDcySAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecJEdh9vFnZzbv5SCdcqbAJItgk0U2YLDBYMCIIIIBASIZkxHhNcEIMMEgjC1yNsYG8xq/JIlkMBhMlFQgoXgKp0t7t7d5Zt4/qoedm3pmd3Z7V7fift/P5z5729vd07G6uqb7qZ5GoyEAAAAAAABgqSqHegEAAAAAAABwy0YDEwAAAAAAAEqhgQkAAAAAAACl0MAEAAAAAACAUmhgAgAAAAAAQCk0MAEAAAAAAKAUGpgAAAAAAABQCg1MAAAAAAAAKIUGJgAAAAAAAJRCAxMAAAAAAABKoYEJAAAAAAAApdDABAAAAAAAgFJoYAIAAAAAAEApNDABAAAAAACglN5DvQAAAGD1CSFcJOmM4tdXxxjf2OV0fy/pucWvJ8UYr1z+pYMTQjhV0gslPUjS8ZImJV0h6fOSPhBj3NHFPB4p6emS7ippk6Qdkn4q6aOSPhtjbKzM0gMAgFs6nmACAAALeU0I4TaHeiHQWQjhLEk/V2rcu5WkQUkbJJ0u6f9I+mUI4WHzTD8YQvhXSf8q6eGSjpTUJ+kYSQ+T9GlJF4YQjljB1QAAALdgNDABAICFDEi6IIRAvWEVCiE8VNIHlRqVJiT9jaQHS/ojSW+WNCVpi6TPhRDu1GE2H5L0yOL/lyg9xXQvSY+T9JVi+BmSPh9C4Al4AACQoYIAAAC6cXdJz5f0zkO9IJhTNPr9vaQeSdOS7h1j/FHLKF8JIfynpAslDUl6i1LjU+s87ivp8cWv35N03xjjdMsonw0hfEDSX0q6p6THSvrk8q8NAAC4JeObSAAAMJ+6pNni/28MIZx8KBcGmftLau6Tv29rXJIkxRi/Jen/Fr8+KISwsW2UZ7T8/1ltjUtNL2/5/2OXurAAAOB3Fw1MAABgPjOSziv+PyzpHw/hssD7kqSrJX1hnnEuafn/cW1/+42k70r6SYzx527iGONupcBvKQWIAwAAHIRX5AAAwEJeL+lRkm4t6f4hhL+MMZZqaCpCw58n6QGSjlV6xesapVe53hNjvLjDdBcpZQFNxRgH55n/LyTdVtJVMcYT2/7W7AntRUpP9vy9Ut7QjKTLJL08xvi1lvHXKT3l86eSbidpraRdkv5X0j9L+liMcVZtQggnKvXiJqXt90VJZ0l6crFsayVtl/T/JL09xnh5p/XppFjOry04onRCy/+vb5vHuZLOnW/iYhs0n3y6fr5xAQDA4YknmAAAwLxijFNKDSz1YtB5IYRjljq/EMJrlHo8e46kIGlE6emoIOnZkn4eQnhdCKGn1IIv7DilJ3ceXHz+ekl3Umpkai7r/SRdKuntku4jaZNS72rbJDXDtf83hHDKAp81rNQQdIFSA9kWpfD0kyWdrQV6eSsjhHBXzQV4XxhjvGkJs3md0npL0meWY7kAAMDvFp5gAgAAC4oxfjeE8F5J5yg1xLxf0iMWO58Qwuskvbb49WeS3lf8rEi6s1KQ+Ckt47yuzHIv4IVKT069VdK/KzUa/X6M8cpiWe+u9ITTkKSGpE9I+qykGyWdJOlpSo1Tt5P07RDCnWOMnZ7ueXsx/+9Leq+kX0k6StJzJT1IqbHpwyGEk2OMY2VWqmiYWyPpNElPkvTMYv57lJ4a62YeFUlHKu2TFyllPUnSf4iAbwAAYNDABAAAuvUKpUalEyU9PITwhBhj140NIYQ7SXpN8evHJD2t7dWy74YQLlDKFLqvpHNDCJ/t9LrcMqhIelOM8VUtwz5XLGtV6emkIaUntx4XY/xcy3g/kPSZEMK5Sq8QHiXpHyT9SYfP2qa0zmfFGJtPgimE8EWl9X2YpK2S/ljlnxA6s/isVt+V9IwY46VdzuMrSq8vNtWVGuJe714HBAAA4BU5AADQlRjjAaWnYZreFULYuohZ/JVS3WOXpGe7horiM56m9MRQj9ITUyvp/A7DH6GUOSVJ57c1Lv1WjPENki5qThNC+L0O85uU9MLWxqVi+oYODk6/YzcLvYATzLDbSzrH9CDX7TwqSo1nTyizYAAA4HcXDUwAAKBrMcavSvpQ8esWSe/pZrrita2HFr9+N8Y4Ps9nXKG5Xs8e0Gm8ZbA9xnhth7/9Ucv//2GB+byv5f8P6TDOj4qe2JzWcO+1C3xWN76p9NrdHyq9Ivd9SeuUMq++FUI4oot5vFbSPZTyos5VahT8PUkXhBDeugzLCAAAfsfwihwAAFisFys1pBwl6XEhhE/FGL+wwDQnaq4Xsj9p6cltISctbRG7cs08f7td8XNM0i8WmM/3W/5/+w7jXDnP9K2ZS6XrZjHG77T8+oMQwieVnpJ6mtJ6vU2pJ7v55tH66uO3QggfkfRtScdL+usQwn/GGL9RdlkBAMDvDp5gAgAAixJj3KsUTt10fghhwwKTbVnix/WGEJbjqR5n3zx/21z83Fm8xjafG1v+v6nDOPMFd7fOf9l7zitey3uOpO3FoMeFEIYXOY+ri3k0PW2ZFg8AAPyOoIEJAAAsWozxXyX9c/HrUUq9pM2n9cmcD0o6fRH/Or5ON49u6jjzNRwtpqGn2vL/esexDqEY45RSj3iS1K+5fKnF+E/N7Ys7LMdyAQCA3x28IgcAAJbqeUrd12+W9LQQwqfnGbc1f6gWY/zJEj+z2Si0UAPQ+iXOv6m5vFtCCD0LPMV0pJnuZlGEdp8iaVuM8UsLjL6r5f/9xfQ9ko4r5rE7xvjTThPHGGshhFFJw83pAQAAmniCCQAALEmMcYekF7UM+oCkkQ6j/0ZzT7/cbaF5hxBeFkJ4VgjhgW1/avY81x9CqLZPV0w7JGkxvds5Pyt+rpF02wXGbV2fS0t+7mJ9TNIPJX2xix79Tmn5fzPcfLOkqyR9Q9Ib55u4eFWx+RmdwtEBAMBhigYmAACwZDHGj0n6cvHriZLO7DDejKQLi19vH0K4V6d5hhDuL+ktkt4v6ZVtf97b8v8TO8zigZL65lvuLnyl5f/PWmDcZ7f8/6slP3exvl387NE8uUghhG2S/rj49dJm73kxxp2aaxR7cAjh2Hk+6ymae/r95l5PAACwytHABAAAynqWpP3F/+dr2HlHy/8/HEI4rn2EEMIRSk9CNb27bZSftfz/HDP9kZLOm3dpu/NFSZcV/39OCOFRbqQQwmsknVH8+vUSr/4t1UckHSj+/8oQQtaLXfHk0Wc193TZW9pGeV/xs0/SP4YQstffQgj3bJlujw7eRwAAAGQwAQCAcmKM14QQXqa5hopO430jhHC+pLOVXtf6aQjhnZK+WYxyF0kvlnR08fu/xhj/rW02n5J0rlId5gVF48mnJU0qvar2wmL6y3XwK2GLXadaCOFJxbL1S/pcCOHjSsHmOySdIOnpkv6omGSn0hM+N6sY4w0hhJdIOl/SOkk/KLbpRUq95N1V6TXGE4tJPi3po22zOV/S4yTdU9JDJP08hPA2SRcrNUo9QtIzlbZDTdKTY4x7Vm6tAADALRENTAAAYDm8X9LjJd1ngfHOUWoMeqGkjZJe32G8z0t6YvvAGONlIYQXKj3ZVFF6Laz11bC60mt1myX91SKWPxNj/H4I4SGSPqOUPfTk4l+7H0t6XIxxe5nPW6oY4/tDCANKT24NSnp58a/d+ZJe0B5YHmOcDSE8XGk9HyzpVvJPKO1RalxaKEwcAAAchnhFDgAAlFY0WjxD0sQC49VijC+WdLpSo9SlksYkzUjaLulfJP1xjPHRMUY7rxjje5WezPm4Utj0tKTrlV4Du1eM8c3LslLpsy6UdKpSg813lXqJm5Z0paQvSXqspLvFGC/rNI+bQ4zxXZJuJ+m9kqLSfphQes3vAkl3iTE+p8jCctPvVXp66dFKrwfeqLRP9kj6vqRXSzqFxiUAANBJT6MxX6+7AAAAAAAAwPx4ggkAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAbwCAYAAAAvbOuuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYXGWZ9/FfVXX1lp2sEEgQkEfcBUbEFRlFEFHcQQYmLjOoowi4YHAAWUSEcdQXdBgXlEUGUObFdXxFQEUgAg5eCsojsgiELXt6q671/eNUJ52+7+6u5Jx00sn3c11c3X3XOed5zqnTTeWuc36VazQaAgAAAAAAALZUfltPAAAAAAAAAJMbDSYAAAAAAACkQoMJAAAAAAAAqdBgAgAAAAAAQCo0mAAAAAAAAJAKDSYAAAAAAACkQoMJAAAAAAAAqdBgAgAAAAAAQCo0mAAAAAAAAJAKDSYAAAAAAACkQoMJAAAAAAAAqdBgAgAAAAAAQCo0mAAAAAAAAJAKDSYAAAAAAACkQoMJAAAAAAAAqdBgAgAAAAAAQCo0mAAAAAAAAJAKDSYAAAAAAACk0ratJ7CNNLb1BABsVbltPYEm/tYAO67t5e8MAEwEXtMAO7ZMXtdwBRMAAAAAAABSocEEAAAAAACAVGgwAQAAAAAAIBUaTAAAAAAAAEhlZw35BgAAYzj++ON15513SpJOPvlkfehDH2ppvXPOOUff/e53JUk33XSTdt999602R2wqhLCPpJMlvV7SIkklSQ9L+m9JX48xPrOF2/2ipFMlKcZIuDkAAHBxBRMAABjT1772NT344IPbehoYQwhhiaQ/SvoXSftK6pQ0U9JLJJ0r6b4Qwhu3YLsHK2laAQAAjIkGEwAAGFO5XNZnPvMZ1ev1bT0VOEIIR0i6TElTaUDSeZIOk/QGSZ+XNChpjqTvhxD234ztdjS3y+tFAAAwLm6RAwAA47rnnnt0xRVXaMmSJdt6KhgmhJCXdImknKSypFfFGH83bJGfhxB+JukWSV2SLlDSfGrF2ZKek+F0AQDADox3pAAAwKjy+bza2pL3o7785S/rscce28YzwgiHStqr+f0lI5pLkqQY468l/aT54+tDCLPG22gI4UBJn2j+uDKLiQIAgB0bDSYAADCqtrY2vf/975ckDQwM6F//9V+38Yzg+LGkRyX9YIxl/jzs+z3G2lgIoV3StyUVJF0t6bdpJwgAAHZ83CIHAADG9JGPfEQ33nijHnroIS1btkzXXXed3vWud6Xa5oMPPqirrrpKd9xxh55++mk1Gg0tWLBABx10kI4//njts88+7npDn27X3t6uP/7xj6Nu/01vepMeeOABLVy4UDfffPMmj4UQJElLly7VIYcconPPPVe/+93v1NbWpkWLFukTn/iEXv7yl29Yvre3V9/73vd000036YEHHlBfX58qlcqTku6R9D1JV8YYqyPnEELYU8mnuEnSWyX9UNISSSdIep6kaZKWS/p/kr4YY9zsJPUY4y8k/aKFRRcP+/7JcZY9Q9LzJa2Q9DFJ39nceQEAgJ0PVzABAIAxtbe367zzzlM+n7xsuPDCC/X0009v8fa++tWv6qijjtLVV1+thx9+WP39/RoYGNDDDz+sa665RkcddZQuvvhiNRqNrHbB9dRTT+nYY4/Vb37zGw0MDKinp0d/+tOftGjRog3LLFu2TIcffrguuOAC3XXXXVq7dq0qlYokLZA0FK59Twhh73GG61bSCPqWpNcoCd3uUHJ724e0hZ/y1ooQwt9JOrr54y0xxhVjLPsSSZ9u/nhSjJHb4wAAQEu4ggkAAIzrgAMO0HHHHacrr7xSPT09Ouuss3TppZdu9nYuvvhiXXLJJZKSK4ne8573KISger2u++67T1deeaUeffTRDct89KMfzXQ/hrv88svVaDT0gQ98QK997Wu1cuVK/fnPf9buu+8uKQk2P/HEE1UqlZTL5XTUUUfpiCOO0Jw5c/TOd77zGEnvUxKY/XxJt4YQDogxjnZ10BeVNKWWSfqqpL9I2lXSv0h6vZJm03dCCHvFGHvT7FcIISdpqqRnSzpe0j83t79G0kfGWK+o5Na4Nkk/ijFek2YeAABg50KDCQAAtOTUU0/VzTffrOXLl+uWW27Rj370Ix111FEtr3/ffffpa1/7miTpLW95i84///wNAeJS0sR6xzveoRNPPFF33nmnvvrVr+qII44Y9Xa5tOr1uj74wQ/qlFNO2VA7/PDDJUm1Wk2nn366SqWS8vm8vvSlL214TJJijNdKujaEcKaST1vbVdJ/SnrzKMMtkHSlpCUxxvpQMYTwQyUZSm+UNFfSkZKuTblrxzXHGu42SR+IMd4/xnpLJb1I0jolV1UBAAC0jFvkAABAS7q7u3Xuuedu+Plzn/ucVq9e3fL6l112mer1umbOnKmzzz57k+bS8DHOP/985XI5NRoNXXnlyD5Jto499li3fsstt+ihhx7asMzw5tJwMcZzJP2y+eNRIYTnjjJUSdLJw5tLzfUbkr4xrPSiVuc+hsVO7QWSPjraJ8iFEF4g6TPNHz8ZY1yewTwAAMBOhAYTAABo2Ste8Qq97W1vkyStWbNmk4bTWBqNhm699VZJ0v7776+urq5Rl91jjz20995JpNGyZctSznh08+fP14IFC9zHhuYqSe9+97vH29TXhn3vd6Kk38UYR+vGDQ/3njbeYC34lZLb7g5ScovcMknTJX1Y0q9DCPOGLxxCaFNya1y7koymbwgAAGAzcYscAADYLEuXLtWtt96qFStW6Kc//amOPPJIve51rxtznccff1zr1q2TJN18880bPsltPI8//njq+Y5m1113HfWxBx54QFJyRdW+++473qaGd8FeMMoyj4yx/vDMpdSvzWKMvxn2450hhKuVXCX1PiV5Uf+m5JPshnxS0gGS+iX9U9rxAQDAzokrmAAAwGaZPn26zjrrrA0/f/azn9X69evHXGfNmjVbNFa1WlVvb6rM61FNnTp11MfWrl0rSZo1a5Zyudx4mxr+kXq7jLLMWDsx/OPyxh1sczVvy/uwpKHb3t4dQuiWpBDCfpKGnswzYowPOpsAAAAYF1cwAQCAzfb6179ehx9+uH72s59pxYoVuuCCC3T++eePunytVtvw/dvf/nYdf/zxLY811u10o6nX6+MvNIZGozH+QhsVhg+dauCtJMY4GEL4iZJPlGuX9BxJ/6vk1rgOJVdY/TKE8GJn9elD3wx7vBxj/NNWnTQAAJhUaDABAIAtcuaZZ2rZsmVau3atrr/+eh155JGjLjtjxowN3xcKBe23336pxh6vAdTT05Nq+0PzXbNmjRqNxnhXMc0f9n3rqecZaIZ27y1pQYzxx+MsvmrY9+3Nrwc1v+4p6XctDHlP8+vfmusAAABI4hY5AACwhWbPnq2lS5du+PmMM87QwMCAu+wee+yx4Uqk3//+9+Nu++tf/7quueYa3X777ZvUhz55rlKpbHJV1HClUmmLb8kbMpQR1d/fvyGPaQwvG/b9/akG3nxXSrpL0g9DCHPHWXbvYd9vvXArAACwU6LBBAAAttjRRx+tV7/61ZKk5cuX60c/+pG7XLFY1EEHJRfL/OUvf9Hdd9896jbvuOMOffGLX9RZZ52lSy+9dJPHpk3b+CFry5cvH7mqJOn2229XpVLZrP0Y6ZWvfOWG76+99trxFv/gsO9vTDXw5hv6uLuckhBvVwhhgaShS8zujzE+Lkkxxtx4/0n6ydB2htX33Dq7AwAAJisaTAAAIJVzzjlHU6ZMkaQxGztLlizZ8P3SpUv15JNPmmVWrVqlM888c8PPJ5xwwiaPD//0uSuvvNKsv3LlSl144YUtz300hx56qBYvXixJuvrqq3XjjX7fKIRwhqTXNH+8KcY4/uVZ2bpcUl/z+9NDCOZT7EII0yRdJ2lKs3TBBM0NAADsRGgwAQCAVHbddVd94hOfGHe5gw8+WMcee6wk6dFHH9Vb3vIWXXLJJbrzzjt155136rLLLtPRRx+tRx99VFISJP66171uk2286U1v2nCb3BVXXKH
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYZFV9//FPV3X1Mvsw7MOOeFwQIioSRVGMCBo1/oyCAorGuEUFNK5xAYNKBLeAaIwYlQhqcA0GRRGjElFEibJ9I8i+zc5svVbX749zyy7qfLv7dN/qmZ6Z9+t55qmp07fuPXXr1r3nnrr3c7oajYYAAAAAAACAmaps7QoAAAAAAABg20YHEwAAAAAAAEqhgwkAAAAAAACl0MEEAAAAAACAUuhgAgAAAAAAQCl0MAEAAAAAAKAUOpgAAAAAAABQCh1MAAAAAAAAKIUOJgAAAAAAAJRCBxMAAAAAAABKoYMJAAAAAAAApdDBBAAAAAAAgFLoYAIAAAAAAEApdDABAAAAAACglO6tXQEAADD3hBB+Iumo4ul7zexDma87X9LfFU/3N7M7Ol87eEIIj5B0mqRnS9pH0qCk2yV9U9LnzGzFFK//kaRn5SzLzLrK1RYAAGxvuIIJAABM5X0hhEdv7UpgYiGEUyT9XrFz75GS+iQtkfR4Sf8o6cYQwnOnmM2fzWYdAQDA9o0rmAAAwFR6JV0YQjjSzMa2dmXwcCGE4yR9QVKXpAFJH5P00+L5MyS9VdLOki4tPsPfOPPYW9Ky4ukHJX1r9msOAAC2J3QwAQCAHH8u6S2SPrm1K4JxIYSKpPMVO5OGJT3NzK5rmeSKEML3JV0lqV/S2ZKOcWbVevXSf5nZ9bNUZQAAsJ3iFjkAADCZMUmjxf8/FEI4YGtWBomjJTU/k/PbOpckSWb2U0nfK54+O4Sw1JlPs4NpTPFWOwAAgGmhgwkAAExmRNI5xf/nSfrXrVgX+C6TdJek70wyzc0t/9/b+fvji0czs82dqhgAANhxcIscAACYypmSXiTpUZKODiH8rZmV6mgqQsPfpDhq2V6Kt3jdrXgr13lmdtMEr/uJ4uh2Q2bWN8n8b5D0WEl3mtl+bX9rFP89XfHKnvMlHanYmXarpHeZ2Y9apl8k6TWSXijpYEkLJa2W9FtJ/yHpIjMbVZsQwn6Ko7hJcf19V9Ipkl5R1G2hpHsl/UDSx8zstonez0SKev5oygmlfVv+f7/z9+YVTL+dbh0AAAAkrmACAABTMLMhxQ6WZsD3OSGE5TOdXwjhfYq3Yb1RUpA0X/HqqCDp9ZJ+H0I4I4TQVariU9tb0tWKmUTzJC2WdJhiJ1Ozrs+UdIticPbTJe0kqSZpd0nNcO3fhhAOnGJZ8xQ7gi5U7CDbWTE8/QBJb1DeKG8zEkJ4kqS/Kp5eZWYr2/6+SNJ+xdPfhRBOCiH8IISwKoQwFEK4K4TwpRDC4wUAADABOpgAAMCUzOxqSZ8uni6W9NmZzCeEcIbiKGVVSb9T7FB6iuIVRKdKuk2xffKB4t9sOk2xo+ejkp4m6SWSPmxmdxR1/XPFK5z2kNSQ9O+SXiDpyZJOkHRFMZ+DJf0shLDHJMv6mKRnSrpG0snFPP5K0g+Lv/dK+mIIYUHZNxVC6AohLAwhHBZC+ISknxTzX6t41Vi7P1O8gkyS3iPpIsVOt2WSehQ74l4h6boQwmx/JgAAYBvFLXIAACDXuyU9X/Fql78MIbzczC7OfXEI4TBJ7yueXiTp1W23ll0dQrhQMVPoGZLeH0L4+kS3y3VARbFD6R9ayi4t6lpVvDqpX/HKrePN7NKW6X4l6WshhPcr3kK4h6R/UeyA8uyu+J5PMbPmlWAKIXxX8f0+V9Iukp4n6Wsl39eJxbJaXS3pNWZ2izN965VJiyT9VNLnJf2heP4cxaus+iWdEUIYMrOzS9YRAABsZ7iCCQAAZDGzTZJe21L0qRDCLtOYxdsU2x6rJb3eyy0qlvFqxSuGuiS9eeY1zvKZCcqfr5g5JUmfaetc+hMz+6DiFUKS9PwQwmMmmN+gpNNaO5eK1zf08OD0Q3MqPYV9nbLHSXrzFCPISdIZZnaUmV1kZteY2RVm9jbFq8zWFdOcFUJ4RAfqCQAAtiN0MAEAgGxm9kNJ/1Y83VnSeTmvK/KUjiueXj3ZSGVmdrvGRz171gyrmuNeM7tngr89p+X//zLFfC5o+f+xE0xznZmtmeBvreHeC6dYVo7/lvRsxdvwTla8LW+RYubVT0MIu7ZNf6qkJ0g6zszO9GZoZtdLenvxtCr/VjsAALAD4xY5AAAwXW9V7EjZQ9LxIYRLzOw7U7xmP0nNq2de0DKS21T2n1kVs9w9yd8OLh43Srphivlc0/L/x00wzR2TvH5jy/9Lt83M7OctT38VQrhY8SqpVyu+r3MVM5Wa06+X9JuMWV+k2KHYJ+kvytYTAABsX7iCCQAATIuZrZP0dy1FnwkhLJniZTvPcHHdIYROXNXjWT/J35YVj6uK29gm82DL/3eaYJqNE5RL8XbApo6PnFfclvdGSfcWRceHEObNYD5DiiPqSdI+HaoeAADYTtDBBAAAps3MviXpP4qneyiOkjaZ1itzvqAYLJ37b8Lb6SaR08aZrONoOh091Zb/j0041VZUdA59r3jao/F8qelqfhY9pSsFAAC2K9wiBwAAZupNko5WvNrn1SGEr04ybWv+UL3I9JmJZqfQVB1Ai2c4/6ZmfXcOIXRNcRXTbs7rtogitPtASbub2WVTTL665f89xev7JT1N0q6SHjCzH00xj2Z+04oZVBcAAGzHuIIJAADMiJmtkHR6S9HnJM2fYPI/avzqlyOmmncI4Z0hhNeFENqzfpojz/WEEKrtryte2y9pOqPbeX5XPC6Q9Ngppm19P7dMONXsuEjStZK+mzGi34Et/2+Gm/dJ+kExnw9N9uIQwu4t8/j19KsKAAC2Z3QwAQCAGTOziyRdXjzdT9KJE0w3Iumq4unjQghHTjTPEMLRks6W9FlJ72n787qW/+83wSz+QlJtsnpnuKLl/6+bYtrXt/z/hyWXO10/Kx67FEO8XUXn0POKp7c0R88zs7WSfl+UPymEMNmtc6dr/Mqxya5WAwAAOyA6mAAAQFmvk7Sh+P9kHTsfb/n/F0MIe7dPEELYVfFKqKZ/bpvkdy3/f7Pz+t0knTNpbfN8V9Ktxf/fGEJ4kTdRCOF9ko4qnl5Z4ta/mfqSpE3F/98TQkhGsStC0r+u8avLzm6b5ILisUvS570A8BDCCyW9rXh6g6Rvlqw3AADYzpDBBACzJ3cYdmDOOfzww/WrX/1KPT09vZpiWzYzXXzxxTrzzDMfVn7llVfe3j7dGWecoUsuuUSSDly8ePFd559/vg4//HBJ0g033KBdd91VK1bEeJ9nP/vZOv/887/VOo8rrrhCz33uczU6OipJp77nPe859XnPe556e3t1/fXX/+n1++yzj+666y4tX75834nqf+SRRz5nor+Zma6//nqddNJJGhkZqVQqlW++853v1LHHHqtly5bpJS95yUsl/Y2k5xQvWSXplZOtp9lgZg+EEP5e0mckLZL0qxDCJyX9RHGUvCcpXnm0X/GSr0r6ctts/lXSyxWzmJ4q6dchhHMVO5J2kvQSSaco/jC5XtLJZjYqAACAFl2NBuc/ADBL2MFim3XyySc3O5j0+9//fsrpG42GTj75ZF177bV/Krvyyiu11157PWy6er2uj370o/rSl76kydogxxxzjM455xz19fUlf/vKV76is846S2Nj6YBtlUpFp512mtatW6cvfOELWr58uX784x8/bJoQgiTpyCOP1IUXXjjp+7rmmmt0+umna82aSbO7fyPpeDO7tbUwhLCfpGYn27+Y2evbXzid6SYTQjhV8cqtya4g+4ykU4vbFdtfv0TS1yQdM8nr71Z8n7+Ybv0AAMD2j1vkAABAaV1dXTrrrLPcDqFW1WpV7373u/Xtb39bJ5xwgg444ADNmzdPtVpNu+22m57znOfoc5/7nM4777wJ53XiiSfq0ksv1Qte8ALtvvv
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYZGV9/v+7qnqfHRgWAUXUfFxADZcSjcQ1uGvcl6/ighr3CKLBJW4JLtEkLuAPNK7B4EYM+vXrjruJcUVF5UlUEKIi2+zTa1X9/jinnaKeu7vPzKkeZqbfr+uaq7qePstTp4o+D586534a3W5XAAAAAAAAwJ5q3tQdAAAAAAAAwP6NAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqocAEAAAAAACAWigwAQAAAAAAoBYKTAAAAAAAAKiFAhMAAAAAAABqGbqpOwAAAPY9EfFVSfcqn/5NSun1Fdc7R9Lzy6e3TCldMfjewYmIW0s6TdLJkm4uaUrS5ZI+IendKaVrKmyjJelpkh4v6XhJB0u6QdJ3JJ2bUvrssnQeAADs97iCCQAALOVVEXG7m7oTWFhEPE3ST1QU9/5I0pik9ZL+WNLfSfppRDx4iW0cJel7kt6jokh1uKRhSYdJepikz0TEeyKC8SMAAMgwQAAAAEsZlfReCgv7poh4kKT3qSgqTUo6S9L9JT1A0hslTUs6RNKFEXHCAttYL+lrku5cNn1W0qMk3V3ScyRdVbY/Q9KrluWFAACA/Rq3yAEAgCruLumvJL3tpu4IdimLfudIakiakfRnKaXv9yzyhYj4nKSvSBqX9CYVxad+b5J0bPnzm1NKZ/b87tsRcZGkS1Rc1fSyiHhHSmnTYF8NAADYn/FNJAAAWExH0lz58+sj4tjFFsZed1/tKgyd01dckiSllL4u6f+VT0+OiA29vy9vjXtW+fTrfcWl+W38XtIbyqdjkh46gL4DAIADCAUmAACwmFlJbyl/npD0zzdhX+B9WtKVkj65yDI/7/n56L7fPV67xoQvX2Qb/ybpfElvlfS/u9lHAABwgOMWOQAAsJTXSXqkpNtKum9EPCulVKvQVIaGv0DS/SQdpeIWr6tU3Mp1dkrpZwus91UVs9tNp5TGFtn+pZLuIOnXKaVj+n7XLX88XcWVPedIOklFMe0Xkl6WUvpSz/JrJT1T0l9IOk7SGknXS/qhpI9LOj+lNKc+EXGMilncpOL4fUrFDG1PKfu2RtJvJH1e0j+mlH650OtZSNnPLy25oHSLnp9/1/e7B5WPV6WU/mORff1WRd8BAAAyXMEEAAAWlVKaVlFg6ZRNb4mII/d0exHxKhUznj1PUkhapeLqqFARKP2TiHhtRDRqdXxpR0v6lopMoglJ6ySdoKLINN/X+0i6TNI/SrqnpINUzKx2uIrCzPsk/TAibrXEviZUFILeq6JAdoiK8PRjJT1XFWZ521MRcVdJjyiffiWldG3fIseXj9/rW29NFG62HP0CAAAHFgpMAABgSSmlb0l6Z/l0naTz9mQ7EfFaSX8rqSXpxyoKSn+q4gqiF0n6pYrxyWvKf8vpNBWFnjdL+jNJj5X0hpTSFWVf767iCqcjJHUlfUjSwyX9iaQnSPpCuZ3jJH0jIo5YZF//KOk+kr4t6ZRyG4+Q9MXy96OSPhARq+u+qIholMWhEyLirZK+Wm5/k4qrxnqXPVjSoeXTX5dtj4qIb0naqqK49puIuDIiXhYRo3X7BwAADkzcIgcAAKp6uaSHSTpG0kMj4v+klC6ounJEnKBdU9yfL+nUvlvLvhUR71WRKXRvSa+OiI8tdLvcADRVFJRe2dN2YdnXloqrk8ZVXLn1+JTShT3LfUfSRyPi1SpuITxC0rtUFKCcw1W85qellOavBFNEfErF632wpI2SHiLpozVf15PKffX6lqRnppQu62s/pOfnzRFxnqRnm20eLemNkh4WEQ9lBjkAANCPK5gAAEAlKaUdkv6yp+ntEbFxNzZxhoqxx/WSnuNyi8p9nKriiqGGpBfueY8rOXeB9oepyJySpHP7ikt/kFL6WxVXCElF8eX2C2xvStJpvcWlcv2ubhycfqcqnV7CLUzb8ZJe2D+DnKTeK6ZOVVFc+pWK4O8NKm5fvJ+KK6+k4mqzDw2gjwAA4ABDgQkAAFSWUvqipPeXTw+RdHaV9co8pfkw6W+llHYuso/LtWvWs/vtYVer+E1KaaHZ0B7Q8/O7ltjO/9fz8wMXWOb7KaUbFvhdb7j3miX2VcXXJJ2s4ja8U1QUh9aqyLz6ekQc2rPsRM/PNy/7cmJK6WMppc0ppZ0ppS+ruKLsm+VyD16uvCgAALD/4hY5AACwu16sopByhKTHR8SHU0qfXGKdY1RcESNJD++ZyW0pt9yzLlZy1SK/O6583C7p0iW28+2en49fYJkrFll/e8/PtcdmKaVv9jz9TkRcoOIqqVNVvK5/0K7Z4Cb7Vj89pXS92eZ0RLxQxcx5kvRkSZ+p21cAAHDg4AomAACwW1JKmyU9v6fp3IhYv8Rqhyzx+4UMRcQgrupxti7yu4PLx+vK29gW8/uenw9aYJntC7RLxe2A8wY+c155W97zJP2mbHp8RMxfubStZ9FJSZ9bZDuXSJq/4utPBt1PAACwf6PABAAAdltK6d8lfbx8eoSKWdIW03tlzvsk/fFu/FvwdrpFVBnjLFY42p1CT6vn586CS92EUkrTKmbEk6QR7cqXurpnsWtTSrNLbGr+qq89LRgCAIADFLfIAQCAPfUCSfdVcbXPqRHxkUWW7c0fapdXw+yJ+aLQUgWgdXu4/Xnz/T0kIhpLXMV0mFlvryhDu28l6fCU0qeXWLz31rcRSUopbYmIK1XkL/UHgDuj5SOzyAEAgBvhCiYAALBHUkrXSDq9p+ndKmYdc36lXVci3W2pbUfEmRHx7Ij4875fzc88NxIRrf71ynXHJe3O7HbOj8vH1ZLusMSyva/nspr73V3nS/qupE9VmNHvVj0/94abz2dIrVlkFjxFxJCkKJ9esZv9BAAABzgKTAAAYI+llM6X9Nny6TGSnrTAcrOSvlI+PT4iTlpomxFxX0lvknSepFf0/Xpzz8/HLLCJP5c0vFi/K/hCz8/PXmLZ5/T8/MWa+91d3ygfGypCvK2IOFzSQ8qnl/XNntd75dnzFtnXo7SrgHjRbvYTAAAc4CgwAQCAup6tXWHRixV2/qnn5w9ExNH9C0TEoSquhJr3jr5Fftzz8wvN+odJesuiva3mU5J+Uf78vIh4pFsoIl4l6V7l04tr3Pq3pz4oaUf58ysiIpvFrgxJ/5h2FYfe1LfIpyX9rPz5uRHxKLONYyS9rXy6VdIF9boNAAAONGQwAcDyqToNO7DPOfHEE/Wd73xHIyMjo1ris5xS0gUXXKDXve51N2q/+OKLL+9f7rWvfa0+/OEPS9Kt1q1bd+U555yjE088UZJ06aWX6tBDD9U111wjSTr55JN1zjnn/HvvNr7whS/owQ9+sObm5iTpRa94xSte9JCHPESjo6O65JJL/rD+zW9+c1155ZU68sgjb7FQ/0866aQHLPS7lJIuueQSPfnJT9bs7Gyz2Wx+4swzz9QDH/hAHXzwwXrsYx/7OEnPkPSAcpXrJD11seO0HFJKV0fESySdK2mtpO9ExNskfVVFIeiuKm5jPKZc5SOS/qVvG7MR8fRynXFJH4+I81UUpTZJ+lNJL9OuYO8XlbdHAlg5GNMAB7aBzGLb6Hb5WwEAy4Q/sNhvnXLKKfMFJv3kJz9Zcvlut6tTTjlF3/3ud//QdvHFF+uoo4660XLtdltvfvOb9cEPflCLjUHuf//76y1veYvGxsay3/3rv/6rzjrrLHU6+YRtzWZTp512mjZv3qz3ve99OvLII/XlL3/5RstEFDFCJ510kt773vcu+rq+/e1v6/TTT9cNNyya3f0DSY9PKf2it7G86me+yPaulNJz+lfcneU
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecbVV99/HvzJmZ2+DSFRThCuiyoZFoDBEVW0y1RGOJoNhiV9Q8UZOA5YklGo0GFZLHjrHFHoyxxRYTo7HGKL9EECWISOeW6TPPH2sf5nD295xZM3vP3Lnweb9e93XurNllnV3W2bPO3t81sri4KAAAAAAAAGC1Rvd2BQAAAAAAALBvo4MJAAAAAAAAjdDBBAAAAAAAgEboYAIAAAAAAEAjdDABAAAAAACgETqYAAAAAAAA0AgdTAAAAAAAAGiEDiYAAAAAAAA0QgcTAAAAAAAAGqGDCQAAAAAAAI3QwQQAAAAAAIBG6GACAAAAAABAI3QwAQAAAAAAoBE6mAAAAAAAANDI2N6uAAAA2HhSSl+UdJ/qxz+LiFcUzvcmSc+sfrx1RFzUfu3gpJSOk3S6pAdKOkrSlKQfS/qIpL+NiF8MmG9xFav7SUTsWGVVAQDAjRB3MAEAgOWckVK6/d6uBAZLKZ0m6T+VO/duK2mzpAMl3VXS/5X0Xyml32pxlTMtLgsAANwIcAcTAABYziZJb0spnRQRC3u7MrihlNJvSnq7pBFJk5JeJ+nL1c8nS3q+pEMlfajah9/qW8RdC1YzJul9ko6TNC/pWa1UHgAA3GjQwQQAAEqcKOk5kt6wtyuCJSmlUUlvUu5MmpF0r4j4Zs8kn0kp/ZOkL0jaIunVkn69dxkR8Z2C9bxKuXNJks6MiM+0UH0AAHAjwiNyAABgmAVJc9X/X5FSOmZvVgY195PU3Sdv6utckiRFxJclfbL68YEppYNWsoKU0omS/rj68SvKnVQAAAA3QAcTAAAYZlbSa6v/b5X0//ZiXeCdJ+mnkj4+ZJof9vz/VqULTimNSfpb5WvGaUlP4TFJAADg8IgcAABYzsskPUzS7STdL6X0lIho1NFUhYY/S9L9JR2p/IjXxcqPcp0VET8YMN8XlUe3m46IzUOW/31Jd5QZ7axn1LTnKd/Z8yZJJyl3pv1I0osi4nM902+X9GRJD5F0J0n7S7pS0rcl/b2kcyNiTn1SSjuUR3GT8vb7hKTTJD2uqtv+ki6R9GlJr4uICwa9n0Gqen5u2Qmlo3v+f+kKVvF05fcsSX8ZEbGCeQEAwE0IdzABAIChImJauYOle+fKa1NKt1zt8lJKZyiPePYMSUnSNuW7o5Kkp0n6z5TSS1NKI40qvrxbSfqqcibRVkkHSDpBuZOpW9f7SjpfOTj73pIOljQu6XBJ3XDtb6eUjl1mXVuVO4LeptxBdqhyePoxyp04bY/ydr2U0t0lPbT68QsRcXnhfPtJOqP68VLxaBwAABiCDiYAALCsiPiqpDdXPx4g6ZzVLCel9FJJL5fUkfQ95Q6lX1O+g+i5ki5Qvj55SfVvLZ2u3NHzGkn3kvT7kl4ZERdVdT1R+Q6nIyQtSnqPpAdLuoekR0vqBl3fSdJXUkpHDFnX6yTdV9LXJJ1aLeOhkj5b/X6TpHdWnTqNpJRGUkr7p5ROSCn9laQvVsu/Wisb/e0Zkg6r/v+aiNjVtG4AAODGi0fkAABAqRdL+l1JOyT9TkrpDyLivaUzp5RO0NIdMedKemLfo2VfTSm9TTlT6GRJZ6aUPjjocbkWjCp3KP1pT9mHqrp2lO9O2qJ859ajIuJDPdN9XdIHUkpnKj9CeISkv1HugHIOV37Pp/VmGKWUPqH8fn9LuTPntyV9oOH7emy1rl5flfTkiDi/ZAFV9lK3M+oqkb0FAACWwR1MAACgSETslvSHPUVvTCkdNmh64wXK1x5XSnqayy2q1vFE5TuGRiQ9e/U1LnL2gPLfVc6ckqSz+zqXrhcRL1e+Q0iSfjeldIcBy5uSdHp/QHZELOqGnTd3Kan0Mo42ZcdLevYKRpB7uJbCwN9U7RcAAICB6GACAADFIuKzkt5R/XiopLNK5qvylH6z+vGrEbFnyDp+rKVRz+6/yqqWuCQi/nfA7x7U8/+/WWY5b+n5/28MmOabEXHVgN/1hnvvv8y6SnxJ0gOVH8M7VfmxvO3Kj7x9OaV0s4JlPKd6nVThPgYAADdtPCIHAABW6vnKHSlHSHpUSul9EfHxZebZIal798yDe0ZyW86tV1fFIhcP+V135LRdkr6/zHK+1vP/4wdMc9GQ+XuzjRpfm0XEv/T8+PWU0nuV75J6ovL7+kvlkeyslNJRyrlYknReRFzRtE4AAODGjzuYAADAikTENZKe2VN0dkrpwGVmO3SVqxtLKbVxV49z3ZDfHVK9XlE9xjbMZT3/P3jANMMCsnuX3/rIedVjec+QdElV9KiU0tYhszyk5/9N86AAAMBNBB1MAABgxSLio5L+vvrxCOVR0obpvTPn7ZLuuoJ/Ax+nG6LkGmdYx9FKOno6Pf9fGDjVXhQR08oj4knShJbypZyHVq+7JP3jWtYLAADcePCIHAAAWK1nSbqf8t0+T0wpvX/ItL35Q/MR8Z1VrrPbKbRcB9ABq1x+V7e+h6aURpa5i+nmZr51UYV2Hyvp8Ig4b5nJr+z5/8SA5W2XdO/qx/MiYrJ5LQEAwE0BdzABAIBViYhfSHpeT9HfSto2YPILtXQn0q8ut+yU0gtTSk9NKT2g71fdkecmUkqd/vmqebdIWsnods73qtf9JN1xmWl738/5Dde7UudK+oakTxSM6Hdsz/8HhZufqKUvIL/csG4AAOAmhA4mAACwahFxrqRPVT/ukPTYAdPNSvpC9ePxKaWTBi0zpXQ/Sa+WdI6kP+n79TU9/98xYBEPkDQ+rN4FPtPz/6cuM+3Tev7/2YbrXamvVK8jyiHeVkrpcEm/Xf14/pDR836l5///0bx6AADgpoIOJgAA0NRTJe2s/j+sY+f1Pf9/Z0rpVv0TpJRupnwnVNdf903yvZ7/P9vMf3NJrx1a2zKfkPSj6v/PSCk9zE2UUjpD0n2qHz/f4NG/1XqXpN3V//8kpVQbxa4KSf+glu4ue/WQ5d25ep3VDbc1AADAUDfVDKbSoZEB7JtaH4UJwGARcXFK6YWS3rLMdP+cUjpb0tOVH9f6bkrpDZK+VE1yN0nPl3SL6uePRsTH+hbzPklnKl/DPLfqPHm/pCnlR9VOr+a/QDd8JGyl72k+pXRqVbcJSR9KKb1HOdj8F5KOlvQkSQ+qZrlC0uNXu74G9fx5SumPJJ0tabukr1fb9IvKo+TdXfkxxh3VLO+X9O4hi7xt9XplFQwOAABQ5KbawQQAANp1jqRHaykgepBnK3cGnS7pIEkvGzDdRySd0l8YET9KKZ2ufGfTqPJjYb2Phi0oP1Z3iKQXrKD+NRHxtZTSb0j6gHKm0+Oqf/2+JelREXFJk/WtVkSck1LapHzn1mZJL6r+9Ttb0nOXCSw/snq9Zsg0AAAANTwiBwAAGqs6LZ4saeioYxExHxHPl3RX5U6p8yXtUn4k6xJJH5b02xHx8EEjmEXEm5XvzHmPclj1jKRLlR8DOykiXtXKm8rr+oKk45Q7bL6qPErcjKSLJJ0n6ZGSfjUifjRoGeshIt4o6U6S3iwplPfDpPJjfm+TdLeIeEaVhTXM9uqVDiYAALAiI4uLN8mnxW6Sbxq4CeEROQAAAABYR9zBBAAAAAAAgEboYAIAAAAAAEAjdDABAAAAAACgETqYAAAAAAAA0AgdTAAAAAAAAGiEDiYAAAAAAAA0QgcTAAAAAAAAGqGDCQAAAAAAAI3QwQQAAAAAAIBG6GACAAAAAABAI3QwAQAAAAAAoBE6mAAAAAAAANAIHUwAAAAAAABohA4mAAAAAAAANEIHEwAAAAAAABqhgwkAAAAAAACN0MEEAAAAAACARuhgAgAAAAAAQCN0MAEAAAAAAKAROpgAAAAAAADQCB1MAAAAAAAAaIQOJgAAAAAAADRCBxMAAAAAAAAaoYMJAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYZFWd//FPV3WanjxDGoIMyYOSBNOqrKBijqyR1XUBc0BRfy6GVRQVWTGgouAuKIgBw2JY1oRxFXV1UVEEvkoUhzjAxM7h98e5ZdfU+Xb36bpV3T3M+/U889TU6ZvDqVun7v2cjomJCQEAAAAAAADNqsz3AgAAAAAAAGD7RgMTAAAAAAAASqGBCQAAAAAAAKXQwAQAAAAAAIBSaGACAAAAAABAKTQwAQAAAAAAoBQamAAAAAAAAFAKDUwAAAAAAAAohQYmAAAAAAAAlEIDEwAAAAAAAEqhgQkAAAAAAACl0MAEAAAAAACAUmhgAgAAAAAAQCk0MAEAAAAAAKCUzvleAAAAsPCEEH4s6aji7b+a2fsyxztb0muKt/uY2U2tXzp4Qgj7SzpZ0uMl3U/SoKQbJV0i6d/N7M6MaRwq6XWSHiNpd0ljxTS+JemjZnZre5YeAABs77iDCQAAzOQdIYQHzPdCYGohhOMl/UGxce/+knolrZB0uKT3SPpjCOEpM0zj9ZJ+I+klkvYtprFY0sGS/qWYxhPbtAoAAGA7RwMTAACYSY+k80MIXDcsQCGEJ0v6tGKD0ICk90p6gqQnSnq/pCFJO0n6agjhiCmmcayksyRVFe98eq+kYyQ9VdI5ksYVG6wuCSEc3M71AQAA2ycekQMAADkeofjo1FnzvSCYVDT6nS2pQ9KwpL83syvqBvleCOE7kn4kaZGkMxQbnxqdUbyOSnqsmf2i7m/fCiH8QtJnJfVJOl3SM1q6IgAAYLvHL5EAAGA644qNDpL0vhDCvvO5MEg8VvFxNkk6u6FxSZJkZv8j6b+Lt48PIays/3sIYT/Fx+ok6ZKGxqXaNC6SVJv2E0MIXa1YeAAAcN9BAxMAAJjOiKQzi//3SfqPeVwW+C6V9BdJ35hmmGvq/r9Xw992qfv/n6aZxlXFa7ek1dlLBwAAdgg8IgcAAGbybknHSjpQ0mNDCC8zs1INTUVo+GslPU7SnoqPeN2i+CjXx83s6inG+7Fi73ZDZtY7zfSvknSQpJvNbG3D3yaK/75B8c6esyUdqdiYdp2kt5jZ9+uGXybppZKeqRh4vVTS3ZJ+K+krki4ys1E1CCGsVeyBTYrb75uSjpf04mLZlkpaJ+m7kj5kZtdPtT5TKZbz+zMOKO1d9//bGv5W3zPcgdNMY//idUTSXRnzBAAAO5Ad9Q6mCf7xj3/36X8AWsjMhhQbWMaLojNDCHs0O70QwjsUezx7taSg2FNZX/H/V0r6QwjhXSGEjlILPrO9JF2umEnUJ2m5pCMUG5lqy/oYSddK+pCkR0taJalL0m6SauHavy0eM5tOn2JD0PmKDWQ7KYan7yvpVcro5a1ZIYSHSnpW8fZHZrZN45CZ3SzpyuLts4rhG6fxVEmPKt5+zczG2rGsAABg+8UdTAAAYEZmdnkI4ROSTlJsiDlX0tNnO50QwrsknVq8/b2kTxavFUkPVgwS369umHeVWe4ZnKx459QHJP2XYqPRg8zspmJZH6F4h9Mixcbrz0v6sqQ7JO0j6UTFxqmDJf00hPBgM2u8O6jmQ8X0fynpE4qPoq2R9BpJj1dsbLoghLCvmW0ps1JFw9wSSQdI+idJLy+mf6/iXWOe10j6TjHej0MIZ0r6qWKvco+X9PpiuBslvbnM8gEAgPsmGpgAAECutyo2Kq2V9LQQwj+a2RdyRw4hHCHpHcXbiySd2PBo2eUhhPMVM4WOlvTOEMKXp3pcrgUqkk43s7fXlX21WNaq4t1JixTv3Hq+mX21brhfSfpSCOGdio8QrpH0KU3du9puiut8vJnV7gRTCOGbiuv7FEk7S3qqpC+VXK8XFvOqd7mkl5rZtd4IRQPiIxV7k3uKJhv46p0r6VQzu7Pk8gEAgPugHfUROQAAMEtmtlXxbpiaj4YQdp7FJN6keO1xt6RXerlFxTxOVLxjqEPxjql2OmeK8qdrMo/onIbGpb8xs9Mk/bg2TgjhgVNMb1DSyfWNS8X4E9o2OP2wnIWewd5O2SGSTmrsQa6muOvp0ZrsTc7zJMXGJwAAgAQNTAAAIJuZXSbpM8XbnSR9PGe8ogHjycXby82sf5p53KjJXs8e1+Si5lhnZn+d4m9PrPv/p2aYzifr/v+kKYa5wszumeJv9eHeS2eYV46fKD7W9nDFR+R+KWmZYubV/4QQ6nuNq92tdaFi2Pn+indUPVLx7q0ViuHmVyreufaZEMJpLVhGAABwH8MjcgAAYLbeqNiQskbS80MIXzSzb8wwzlpJtbtnnlHXk9tM9mluEbPcMs3fDi5et0i6aobp/LLu/4dMMcxN04xfn7lU+trMzH5W9/ZXIYQvKN4ldaLien1QsSe7mtcoNkRJ0nlm9rK6vw1K+mYI4TLFjKZHS3pHCOHnZvadsssKAADuO7iDCQAAzIqZbVBslKg5J4SwYobRdmpydp0hhFbc1ePZNM3fVhev64vH2KZzR93/V00xzHTB3fXTb3nPecVjea+WtK4oen4Ioa9ukNq+vFfSG6aYxoBiA1XtEb+pwsIBAMAOigYmAAAwa2b2NUlfKd6uUewlbTr1d+Z8WtLhs/g35eN008i5xpmu4Wg2DT3Vuv+PTznUPDKzIcUe8SSpW0W+VAhhmSZzl34yXQ92Zna9pD8Ubx/epkUFAADbKR6RAwAAzXqtpMcq3u1zYgjh4mmGrc8fGjOz3zU5z1qj0EwNQMubnH5NbXl3CiF0zHAX067OeHOiCO3eT9JuZnbpDIPfXff/7uJ1SV3ZhoxZ1nqQK7t9AQDAfQx3MAEAgKYU3dXXP1L175IWTzH4DZq8E+nvZpp2COGUEMIrQgjHNPyp1vNcdxFO7Y27SNJserfz/L54XSLpoBmGrV+fa0vOd7YukvRrxZykmdZ5v7r/18LN79bkXVf7aWZ7FK93TjsUAADY4dDABAAAmmZmF0n6dvF2raQXTjHciKQfFW8PCSEcOdU0QwiPlXSGpHMlva3hz/V32aydYhLHSOqabrkzfK/u/6+YYdhX1v3/spLzna2fFq8dihlJrhDCbpKeWry9ttZ7XvHo3K+L8keFEPadZhqHSXpgw3wBAAAk0cAEAADKe4WkzcX/p2vY+XDd/y8IIezVOEAIYRfFO6FqPtYwyO/r/n+SM/6uks6cdmnzfFPSdcX/Xx1CONYbKITwDklHFW9/UOLRv2ZdKGlr8f+3hRCSXuyKkPQva/LusjMaBvlE8VqRdFEIIXn8LYSwk6TP1RV9vMxCAwCA+x4ymAAAQClmdksI4RRJn5xhuB+GEM6R9CrFx7GuDCGcJeknxSAPkfRGSbsX779mZl9vmMwXJb1T8Rrm9UXjycWSBhUfVTu5GP965T3yNdWyjoUQ/qlYtm5JXw0hfE4x2PxOSXtLeomkJxajrJf0z83Or8Ry3h5C+H+SzpG0TNKvim36Y8Ve8h6q+Bjj2mKUiyV9tmEyn5P0HEnPkPRIxf3yccU7m8aKstp2laSzzOznbVolAACwnaKBCQAAtMK5kl4g6dEzDHeSYmPQyZJWSnr3FMNdIulFjYVmdl0I4WTFO5sqio+F1T8aNq74WN1qSW+axfInzOyXIYQnSfqSYqbTi4t/jX4j6flmtq7M/JplZueGEHoU79zqlfSW4l+jcyS9vjGw3MwmQgjHSTpP0nGKjWcfdMafUOwt8JQWLj4AALiP4BE5AABQWtFo8VJJAzMMN2Zmb5R0uGKj1LWStkgakbRO0n9KeqqZPdvM3GmZ2ScU78z5nGJY9bCk2xQfAzvSzN7fkpWK8/qRpP0VG2wuV+wlbljSTZIulfQ8SX9nZtdNNY25YGYflXSw4uNuprgfBhQf8ztf0kPM7NVFFpY3fr+Z/aOkx0j6vOL6DSoGs/9
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYJVV9//F3r7MvbDpEEAThYAQ3jIoaV1QQFaKiIi5oVNyiAVc0iLggblEDIvJTFDHEDcVg1IjgAhriBklEPIKKKCL7DLP1TPft/v1RdWcut77dXTN1p6dneL+eZ57ue7qq7qm6dU/P/XbV5/RNTEwgSZIkSZIkba7+rd0BSZIkSZIkbdssMEmSJEmSJKkRC0ySJEmSJElqxAKTJEmSJEmSGrHAJEmSJEmSpEYsMEmSJEmSJKkRC0ySJEmSJElqxAKTJEmSJEmSGrHAJEmSJEmSpEYsMEmSJEmSJKkRC0ySJEmSJElqxAKTJEmSJEmSGrHAJEmSJEmSpEYsMEmSJEmSJKmRwa3dAUmSNPuklL4PPLZ8+E855/fWXO904DXlw/vknK/rfe8USSndF/hH4EnAvYER4PfAV4Gzcs4319jGY4FXAY8G7gGsBH4OfA44L+c8vmV6L0mStnVewSRJkqZzYkrpflu7E5pcSukY4P8oinv7AnOBpcCDgXcDV6WUnjrF+kMppbOA7wPPBe4FDAE7UhSszgUuTSnttOX2QpIkbcssMEmSpOnMAT6dUvL/DbNQSulQ4GyKotJa4D3Ak4GnAO8D1gE7A19JKT1kks18Anh5+f0qiqLUY4HHAaeW230k8OOU0tItsiOSJGmb5i1ykiSpjoOA1wEf3dod0UZl0e90oA9YD/xtzvnnHYt8J6X0beB7wDyKYtGTu7ZxMPD35cObgcfnnH/VscgPUkpfpbi6aV+KAtZre783kiRpW+ZfIiVJ0lTGgbHy+/emlPbamp1RxROA9mtyeldxCYCc8w+B/ygfPimltEPXIq/r+P7YruJSexs/Bd5VPnyl54EkSepmgUmSJE1lFPhg+f184P9txb4o9g3geuDrUyxzdcf3u7e/SSn1UdwGB3BdzvmCKbbx2fLrAPDsTe6lJEnarnmLnCRJms7JwN8B+wFPSCm9POfcqNBUhoa/FngisBvFLV5/pLiV67ToKppyve9TZAOtyznPnWL7vwTuD/wh57xn188mym+Po7iy53SKWdNGgWuBt+acv9ux/GLgZcDhwP7AIuA24Argy8C5OecxuqSU9qSYxQ2K4/fvwDHAi8q+LQJuAP4T+HDO+beT7c9kyn5+d9oFYY+O72/s+H7Hsh8AP5nmuW5KKd0G7ERxy6QkSdIGd9crmCb85z//bdf/ZoutfRz857/N/vewhz3ssQDDw8Nzcs4j55133n79/cV/GxYtWnTWTTfdFK539NFHv4bSxRdf/PtomY9//OMTAwMDvwJeDSRgAcXVUQl4ZX9//1WnnXbaxMTExJT9mqr/++yzz/0B7nWve+0R/ByAl7zkJR/Zcccdf0ORSTQfWNLX13fgxRdffFF72csvv3xil112WQF8GHgMRUFmCFgGtMO1r0gp7c3U5lMUgj5NUSDbmSI8fS/gVUwzy1sTKaW/AY4oH34v53xLx4+HO75fWWNzo+XXfXvRN0mStP3wCiZJkjStAw88kKOPPppzzz2XlStXctJJJ3HmmWdu8nZOO+00Tj/9dABSSjz/+c8npcT4+DhXXXUV5557Ltdff/2GZf7hH/6hp/vR6ZxzzmFiYoKXvexlPP7xj+fWW2/l6quvZrfddgPgiiuu4Nhjj2VkZIS+vj6e/vSnc+ihh7Lzzjtz5JFHPg94KUVxan/g0pTSgTnnGyd5ug9TFKUuBz4O/AbYFXgN8CSKYtNnU0p75ZxXNdmv8ra3hcA+wAuBV5Tbv4NqOPftFMW0Pooryaba7jyKwhjlvkiSJG1ggUmSJNVy/PHHc8kll3DDDTfwve99jwsvvJCnP/3ptde/6qqrOOOMMwA4/PDDOeWUUxgc3PhfkQMPPJBnP/vZHHvssfzkJz/h4x//OIceeij3ve99e74vAOPj47zyla/kuOOO29B2yCGHANBqtXjb297GyMgI/f39fOQjH9nwM4Cc8xeBL6aU3kFxC+GuwCeBZ0zydMuAc4Fjcs7j7caU0r9TZCg9FdgFOAz4YsNdO7p8rk4/Al6Wc/51Z2POeV1K6UrgwcDfppR2yjnfNsl2D2Hj/x0XNOyjJEnaztxdb5GTJEmbaP78+bz73e/e8Pi9730vt99+e+31zz77bMbHx1m6dCknn3zyXYpLnc9xyimn0NfXx8TEBOee210n6a2jjjoqbP/e977H7373uw3LdBaXOuWc3wV8v3z49JTSX0/yVCPAP3YWl8r1J7hrcPoD6/Z9CnsEbQcA/xDMIAcbi1HzgTNSSpX/H6aUlgLv72gaatxLSZK0XbHAJEmSanvUox7FM5/5TADuuOOOuxScpjIxMcGll14KwEMe8hDmzZs36bK77747e+9dRBpdfvnlDXs8uXve854sWxbf6dXuK8Bzn/vc6TZ1Rsf3cSUKfp5znqwa1xnuvWiSZTbFDyhuu3s4xS1ylwOLKTKvfphSukfX8mcC7VD15wDfSSk9JqU0L6W0OKV0RLmNfShCyQHW96CfkiRpO+ItcpIkaZOccMIJXHrppdxyyy1885vf5LDDDuPggw+ecp0//elPrFixAoBLLrmElFKt5/rTn/7UuL+T2XXXXSf92TXXXAMUV1Ttu++0edadVbADJlnmuinW78xcavx/s5zzZR0Pf5JSOo/iKqmXUuRFfYhiJrv28mtTSs+gmM1ub4qZ/Z7YtdkJ4F3AvSlmwlvdtJ+SJGn74hVMkiRpkyxevJiTTjppw+N3vvOd3HnnnVOuc8cdd2zWc42NjbFqVaPM60ktXLhw0p8tX74cgB122IG+vr7pNnVTx/c7TrLMVDsx0fH9tE+2qcrb8l7NxquPnptSmt+1zG+Bh1IUnzpnmZsALgGelHM+CWjfYte5z5IkSV7BJEmSNt2TnvQkDjnkEL797W9zyy23cOqpp3LKKadMunyr1drw/bOe9Sxe+MIX1n6uqW6nm8z4+Pj0C01hYmJi+oU2Guh86kZPvIWUYd7/QTGj3DCwH/CLrmWWA29KKb2FYka5ecAfc85rOhbbr/z6+y3fa0mStC2xwCRJkjbLO97xDi6//HKWL1/O+eefz2GHHTbpskuWLNnw/cDAAPe73/0aPfd0BaCVK1c22n67v3fccQcTExPTXcV0z47v66ee90AZ2r03sCzn/I1pFu+cHW54soXKK56uD55rR4ocJoArN7GrkiRpO+ctcpIkabPstNNOnHDCCRsen3jiiaxduzZcdvfdd99wJdKVV05fmzjrrLP4whe+wI9//OO7tLdnnhsdHb3LVVGdRkZGNvuWvLZ2RtSaNWs25DFN4REd3/+60RNvunOBnwL/nlLaZZpl9+74fkO4VUrpWSmlD6WUTp9m/cPZ+H/Hiza5p5IkabtmgUmSJG22I444gsc85jEA3HDDDVx44YXhckNDQzz84Q8H4De/+Q0/+9nPJt3mf/3Xf/HhD3+Yk046iTPPPPMuP1u0aOMkazfccEP3qgD8+Mc/ZnR0dJP2o9ujH/3oDd9/8YtfnG7xV3Z8P9OFl/Z0d30UId6hlNIyoH2J2a9zzp3p6Y8A3gC8Jk2Svp5SGiyXgSKw/LJoOUmSdPdlgUmSJDXyrne9iwULFgBMWdg55phjNnx/wgkncOONN1aWue2223jHO96x4fGLXvSiu/y8s/5x7rnnVta/9dZb+cAHPlC775N5whOewB577AHAeeedx0UXxXWjlNKJwGPLhxfnnGf61rFz2Dij29tSSpVZ7FJKi4AvAQvKplO7Fjm/4/vun5FS6gdOA+5fNr075xxfPiZJku62zGCSJEmN7LrrrrzxjW/k5JNPnnK5gw46iKOOOop/+7d/4/rrr+fwww/nRS96EQ972MMA+OUvf8lnPvMZbr75ZqAIEj/44IPvso2
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZGWZ9/9vVXWY6WFmGGbIGYFLFhBB1MWIrLomDOsaHiOwCuiqIPqAEUHFuK5pjauIggFYsy6PomtAFNOPFVG5lDwEmcTE7ulQVb8/zimnp++ru0/3OdPTPfN5v17zqu67TrjPqarT01ff53vX2u22AAAAAAAAgOmqb+8OAAAAAAAAYG6jwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSurZ3BwAAwOxjZj+W9Nj827e4+0UF1/sPSf+af3uwu99efe9QlJkdK+lXyv7Pd6q7XzLJ8ssknSPp6ZIOkTQi6TZJX5P0UXdfs007DAAA5ixGMAEAgMm81cyO2N6dwNSYWbekz6ngHxTN7HhJf5D0RklHSpovaaGkB0m6QNLvzOy4bdJZAAAw51FgAgAAk+mV9Fkz4/8Nc8ubJB1TZEEz21vSf0vaQ9KQpPcqG8F2kqSPSWpJ2k/St81sz23SWwAAMKdxixwAACjiBEmvkfSh7d0RTM7MHiTpzVNY5T2Sds+//id3/+6o535kZtdI+rKkfSS9TdIrK+koAADYYfCXSAAAMJGWshweSbrIzA7Znp3B5MysS9mtcd2SVhVYfi9JL8i//faY4pIkyd0vl/T1/Nt/MbMlFXUXAADsICgwAQCAiQxLen/+dZ+k/9yOfUEx50o6TtIaZdlJkzlZW0a1f2GC5T6bP/ZIesZ0OwcAAHZM3CIHAAAmc6GkZ0l6oKSTzOzl7l6q0JSHhr9K0j8oy/apSVou6UfKZiv74zjr/VhZNtCgu8+bYPs3KguqvsPdDxrzXDv/8rWSvivpPyQ9Slkx7WZJb3D3H4xafpGklykrqhylLPh6taTrJV0p6VJ3H9EYZnaQshnYpOz8fUvSKZJekvdtoaS7JX1P0gfc/ZbxjqcoM/s7Sefn354jaVOB1R456usfT7DcNZLayl6rkyRdMvUeAgCAHRUjmAAAwITcfVBZgaWVN73fzPad7vbM7K2Sfq8sx8ckLVA2OsoknSnp92Z2gZnVSnV8cvtLulbSE/P9L1Y28ufmUX19nKSbJH1A0mMk7abs1rO9JD1Z0sWSrjezB0yyrz5JP1A2CuixkpYpC08/RNIrJP3BzJ5S5mDMrKHs1rheSd9z988XXLUzQ+Badx/3ljp33yBp5Zh1AAAAJFFgAgAABbj7tcpmE5OyQswnp7MdM7tA0tslNSTdoKyg9AhlI4jOknSLsv+fvC3/ty2drazQ8z5Jj5b0HEnvcvfb876eoGyE097KRu5cJunpkh4u6fmSvp9v5yhJ1+QzsY3nA5IeJ+k6SS/Ot/FMSVfnz/dKusTMdilxPOdIepikjZJOn8J6nWLhnQWWXT5mHQAAAEncIgcAAIp7o7K8noMkPc3MXuDuXyq6spkdJ+mt+beXSjptzK1l15rZZyV9R9KJks43syvGu12uAnVlBaXRs639V97XhrLRSfOVjdx6nrv/16jlfiXpcjM7X9kthHtL+pSyAlRkL2XHfIq7d0aCycy+pex4n6JsFrenSrp8qgdiZqascCdlt/gVKRZ17JY/biiwbOeWu12nsH0AALATYAQTAAAoxN03aeuRMR82s93HWz7wOmX/91gt6cwotyjfx2nakvXz6un3uJBPjNN+srLMKUn6xJji0t+4+9u1Jbfo5DwDKbJZ0tmji0v5+m1tHZx+TJFOj2ZmdWXFsHmSfibp41PcRO+oPk5mYMw6AAAAkigwAQCAKXD3q5Xl/EjZ7WUfLbJenqf05Pzba929f4J93CbpT/m3/zDNrhZxt7vfNc5z/zjq609Nsp3RBZ0njbPMb919zTjPjQ73XjjJviKvUXab4WZJL8uLVlPRzB+nst5U9wEAAHZw3CIHAACm6hxlhZS9JT3PzL7s7t+cZJ2DJC3Jv376qJncJnPw9LpYyPIJnjsqf9wo6cZJtnPdqK+PHmeZ2ydYf+Oor6f0f7M8XPyi/NsL3d2nsv6o/S9RNgJqMvPzxyKjnQAAwE6EEUwAAGBK3H2tpH8d1fQJM5ssk2fZNHfXZWbTGdVTxPoJnluaP64qMCLovlFf7zbOMhvHaZe2Hg1UeOa8fFTYZ5XNUHe9pH8ruu4YneylBQWW7Swz3mgsAACwk2IEEwAAmDJ3/7qZXals5rW9lc2S9i8TrDL6/xwXq+Ctdblxb6ebQJE/ok1UOCpc6FE2I15Ha9ylqneGpMfmX39E0lFZ1vdWDhr19QFm9uD865vdvVP0ukPSAZL2L7DPzjL3TLm3AABgh0aBCQAATNerJJ2kbLTPaWb2lQmWHT3ipenu/zvNfXaKQpMVgBZPc/sdnf4uM7PaJKOY9gzWmwl/P+rrz4271BYX5v8k6XHaEk7+B0mPVnasi919XbRyPpKsE+q+rWb2AwAAcxS3yAEAgGlx9xWSXjuq6dMa/zarW7VlJNLfj7PM35jZeWZ2hpk9fsxTnZnnesysMXa9fN352lIIma4b8sddJB05ybKjj+emkvvdHkZnSD1qguUerS2FvWu2XXcAAMBcxAgmAAAwbe5+qZn9H2UzxB0k6YXjLDdsZj+S9FRJR5vZo9z9Z9GyZnaSpPfk3/5I0g9GPb121NcHaesZ2DoeL6l7CocR+b6kM/Ovz5D06gmWPXPU11eX3G9h7n6KpFMmWsbM/lnSlfm3p7r7JcFi35Q0rOycnSrpu+NsrnML5PAEywAAgJ0UI5gAAEBZZ2hLUPREhZ1/H/X1JWaWZP6Y2R7KRkJ1fGTMIjeM+jop+pjZnpLeP2Fvi/mWpJvzr19pZs+KFjKzt2pLDtIPS9z6t93koe1fzL/9JzN77thlzOx5kjrn4Iv56DUAAIC/YQQTAAAoxd2Xm9l5kj4+yXL/Y2afkPQKSQ+Q9Dsz+5Ckn+SLHC/pHEn75N9/3d2/MWYzX5Z0vrL/w5yV5wJ9RdJmZbeqnZ2vf0u+j+keU9PMXpz3rUfSf5nZZcpGA62QdKCyET3/mK+yStJLp7u/Eiac4e7DH/6wzjrrLEnSu9/97s9pnKymn//853rKU56itWvX1ur1+uXvfOc7L3/CE54gSbr66qtVr9fVarW0dOlSfeMb3zhFk4ycAlCZqUw4sC1NNpsmgLmtkmsNBSYAAFCFT0p6vqTHTLLcq5UVg86WtERbQqfH+pqkF41tdPebzexsZSOb6pJOy/91tCS9SVnw+Oum0P+Eu19nZk+SdLmyTKeX5P/G+v8kPc/d7y6zv+1p6dKl+sxnPqPTTz9da9as0aWXXqpLL700WebTn/609thjj+3USwAAMJtxixwAACgtn2XtZZIGJlmu6e7nSDpWWVHqJkkbleX63C3pq5Ke6u7PdvdwW+7+MUkPlXSZpLskDUm6V9IVkh7l7u+u5KCyff1I0qGS3iDpWmWzxA1Jul3SdyQ9V9Lfu/vN421jrjj66KN11VVX6cwzz9Thhx+uvr4+9fb26tBDD9Xpp5+u73znOzrqqKO2dzcBAMAsVWu3Ge0IAAAwR/EfOWDHxi1yAGZCJdcaRjABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcJVdB9vGn7+19ZjLJTEIWEhISwklMIICIBEHZFQER0QAKGJB9k+WVgEhYfAEV2XeEAMIbQBRENtkXE0EFImE9EEhCCDHJTGbp9Xbf5f3j1HXu3PN0d3XX7Z5O8vt+PvPp6epaTm2n6p5b9ZyhTqcjAAAAAAAAYK1qh7oAAAAAAAAAuHGjgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAAAQCU0MAEAAAAAAKASGpgAAAAAAABQCQ1MAAAAAAAAqIQGJgAAAAAAAFRCAxMAAAAAAAAqoYEJAAAAAAAAldDABAAAAAAAgEpoYAIAAAAAAEAlNDABAAAAAACgEhqYAAAAAAAAUMnwoS4AAADYfEIIX5b0G8WvfxFjfHnJ6d4k6WnFr7eOMV4x+NKhrBDCHSX9p9I932NjjO9Z5fS3kXSppFqMcXzwJQQAADcVPMEEAABW8qIQwumHuhBYnRDCiKR3a41fKIYQxiW9V9LEIMsFAABummhgAgAAKxmT9K4QAvcNNy5/LumstUxYNE59WNLdBloiAABwk8WNIgAAKONsSc881IVAOSGE20t64RqnPVbSlyQ9aKCFAgAAN2k0MAEAgOW0JTWL/788hHDyoSwMVhZCGFZ6NW5E0q5VTvsISd+S9GvFoNZgSwcAAG6qaGACAADLWZT0quL/k5L+7hCWBeU8T9KdJN0g6SVlJwohfE3SByQdo9Sw+GJJF61D+QAAwE0QvcgBAICVvFTSQyWdJuneIYQnxBgrNTQVoeFPl3QfScdLGpJ0ldKrWW+MMX5/iem+rNS7XWO5Xs1CCN+VdIakK2OMJ/X9rVP899mSPinpTZLurtSYdpmk58cYP98z/mGSHi/pIZLOlLRN0m5JlyjlFL0vxthUnxDCSZIuL359qKR/kXSupMcUZdsm6WpJn5H06hjjT5Zan7JCCL8k6fzi1+dImlnF5Hctfv5A0hNijBeHEO5dtUwAAODmgSeYAADAsmKMDaUGlnYx6FUhhFuudX4hhBdJ+o6kp0oKkrYoPR0VJD1Z0ndCCC8JIQxVKvjKTpB0saT7F8vfrvTkz2U9Zb2XpB9KerWkX5e0Q+nVs2MkPUDSBZIuCSGcssKyJiV9XtK7lBrIjlQKTz9Z0lMkfS+E8NtVViaEUFd6NW5M0mdijO9d5Sx+qrT9bx9jvLhKWQAAwM0PDUwAAGBFRYPDm4tft0t621rmE0J4iaSXSapLulSpQeNuSk8Q/amknyjdn7y4+LeenqXU0PM3ku4h6Q8kvSLGeEVR1rOVnnA6VlJH0vsl/Y6kX5X0CEmfLeZzpqR/K8Kxl/JqSfeS9HVJjy7m8buSPlf8fUzSe0IIWyusz3Mk3UXStKQnrmH6U2OMb3dPYwEAAKyEV+QAAEBZL5D0YEknSXpQCOEPY4wXlp04hHAnSS8qfn2fpMf1NWZcHEJ4l6RPSLqnpPNDCP+w1OtyA1BTalDq7W3tH4uy1pWeTppQenLr4THGf+wZ7z8lfSiEcL7SK4THSnq7UgOUc4zSOp8bY+w+CaYQwr8ore9vSzpK0gMlfWi1KxJCCEoNd1J6xe9nq51Hb7kAAABWiyeYAABAKTHGGR38ZMzrQwhHrWIWz1W699gt6cnuSZliGY9TemJoSNIz1l7iUt66xPAHK2VOSdJb+xqX/leM8WWSvtydpshAcuYlPau/ESfG2NHBwelnlSl0rxBCTakxbFwplPstq50HAABAVTQwAQCA0mKMn1PK+ZHS62VvLDNdkaf0gOLXi2OMs8ss43KloGkphYCvl6tjjD9f4m+/2fP/t68wn94Gnd9aYpxvxhhvWOJvveHe21ZYlvNMpdcM5yU9vmi0AgAA2FC8IgcAAFbrOUoNKcdKengI4QMxxo+tMM1Jko4o/v87PT25reTWaytiKVct87czi5/Tkr67wny+3vP/2y0xzhXLTD/d8/9V3ZsV4eIvL359aYwxrmZ6AACAQeEJJgAAsCoxxr2SntYz6K0hhMNXmOzINS5uOISwlqd6yti/zN92Fj93lXgi6Nqe/+9YYpzpJYZL6XXArtI95xVPhb1LqYe6SyT9bdlpAQAABo0nmAAAwKrFGD8aQviwUs9rxyr1kvYny0zSe89xgUq+WldY8nW6ZZT5Em25hqPSDT1KPeJ1bWRQ9pMk/Ubx/zdIOjNlfR/kpJ7/3yqEcIfi/5fFGJdr9AIAAFgVGpgAAMBaPV3SvZWe9nlcCOGDy4zbmz/UijH+9xqX2W0UWqkBaPsa59/VLe+RIYShFZ5iOtpMtxHu2vP/dy851gEvLf5J0r10IJwcAACgMl6RAwAAaxJjvE7Ss3sGvUPSliVG/6kOPIl01yXG+V8hhPNCCE8KIdy370/dnudGQwj1/umKaSckraZ3O+fS4udWSWesMG7v+vyw4nIBAABulHiCCQAArFmM8X0hhEcq9RB3kqQ/WmK8xRDClyQ9UNLtQgh3jzFe5MYNIdxb0l8Vv35J0ud7/ry35/8n6eAe2LruK2lkFavhfFbSk4v/P0nSM5YZ98k9//9cxeWWFmM8V9K5y40TQvh9SR8ufn1sjPE961sqAABwc8UTTAAAoKonSZoq/r9cw85rev7/nhDCCf0jhBBuofQkVNcb+ka5tOf/WaNPCOFoSa9atrTl/Iuky4r/PzWE8FA3UgjhRTqQg/SFCq/+AQAA3KjdXJ9gKts1MoAbp9WE8wKoKMZ4VQjhPElvWWG8L4YQ3irpKZJOkfTtEMLrJH2lGOXOkp4j6bji94/GGP+5bzYfkHS+0j3MnxY9zH1Q0rzSq2rPKqb/SbGMta5TK4Tw6KJso5L+MYTwfqWnga6TdKJSqPlvFpPskvTHa10eAADAjd3NtYEJAAAM1tskPULSr68w3jOUGoOeJekIHQid7vcRSY/qHxhjvCyE8CylJ5tqkh5X/OtqS/pzpeDx566i/JkY49dDCL8l6UNKmU6PKf71+5akh8cYr66yPAAAgBszXpEDAACVFb2sPV7S3ArjtWKMz5F0R6VGqR9Kmpa0KOlqSf8k6YExxofFGO28YoxvlvQrkt4v6eeSFiRdI+kfJN09xvjKgaxUWtaXJN1G0vMlXazUS9yCpCskfULSOZLuGmO8bKl5AAAA3BwMdTo3y7fFbpYrDdyM8IocAAAAAGwgnmACAAAAAABAJTQwAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAAAQCU0MAEAAAAAAKASGpgAAAAAAABQCQ1MAAAAAAAAqIQGJgAAAAAAAFRCAxMAAAAAAAAqoYEJAAAAAAAAldDABAAAAAAAgEpoYAIAAAAAAEAlNDABAAAAAACgEhqYAAAAAAAAUAkNTAAAAAAAAKiEBiYAAAAAAABUQgMTAAAAAAAAKqGBCQAAAAAAAJXQwAQAAAAAAIBKaGACAAAAAABAJTQwAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAAAQCU0MAEAAAAAAKASGpgAAAAAAABQCQ1MAAAAAAAAqIQGJgAAAAAAAFRCAxMAAAAAAAAqoYEJAAAAAAAAldDABAAAAAAAgEpoYAIAAAAAAEAlNDABAAAAAACgEhqYAAAAAAAAUAkNTAAAAAAAAKiEBiYAAAAAAABUQgMTAAAAAAAAKqGBCQAAAAAAAJXQwAQAAAAAAIBKaGACAAAAAABAJTQwAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcJVV99/HvXXqZnn2YgRm2GVA8LqDI44YS475GjTEuRB+DK2o0isaoGBUU9yUqGJUogrjEBUWj5hE0atSYuIGKy1H2VZi1Z3p6erv3Pn9UtX2559vd1V13Zujpz/v14tXdp6vqnqpb03X43arvqbRaLQEAAAAAAADzVd3fHQAAAAAAAMDCRoEJAAAAAAAApVBgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApVBgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApVBgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApdT3dwcAAMAdTwjhu5L+PP/xn2KMby243jmS/i7/8agY47Xd7x2KCiHcW9KPlY35nhNjPH+W5U+Q9CJJD5Z0uKSapFsl/bekc2OM392b/QUAAAsXdzABAIDZvCGEcLf93QnMTQihR9InVOADxRBCJYTwLkk/lfQCSUHSUkn9kjZKOlnSd0IInwgh9O69XgMAgIWKAhMAAJhNn6SPhxAYNywsp0u6V8Fl3yjp1ZIqkm7Ov/8zSQ+U9DJJV+fLnSLpX7raSwAAcEDgETkAAFDEiZL+XtL793dHMLsQwj0lvb7gshuVFaMk6feSTooxbm5b5EchhE9K+rak+0h6XgjhvBjjf3ezzwAAYGHjk0gAADCTpqSJ/Pu3hhCO3p+dwexCCHVlj8b1SNpSYJVnSpp87O0VHcUlSVKMcaekU9uanl22nwAA4MBCgQkAAMxkXNK78+8HJP3rfuwLivlHSSdI2ibpjALL/1n+dY+kS6dbKMb483ybUvFH7wAAwCLBI3IAAGA2Z0p6sqS7SnpYCOEFMcZShaY8NPylkh6ubLayiqQbJH1H0tkxxt9Ms953lc1uNxpj7J9h+1dIuoek62KMmzp+18q/PU3S1yWdI+kkZcW0KyW9Nsb4rbblV0h6vqQnSTpW0nJJWyVdJukLki6MMU6oQwhhk6Rr8h+fLOmryjKMnp33bbmkmyR9U9J7Y4xXTbc/RYUQ7q4sT0mSXilpd4HVPifp15J63H50qORfpz32AABgceIOJgAAMKMY46iyAkszb3p3COGw+W4vhPAGSb+S9BJNzVY2kH//Ikm/CiGcEUKoTL+VrjhC0g8lPSp//ZXK7vy5sq2vD5X0O0nvlfRgSWuUPXq2XtJjJZ0n6bIQwp1mea0BSd+S9HFlBbK1ysLTj5b0Ykm/DiE8rszOhBBqyh6N65P0zRjjBUXWizGeH2P8hxjjy2fZ/j0lrc5/vK5MXwEAwIGHAhMAAJhVjPGHkj6U/7hS0kfms50QwhmS3iypJumXygpKD1R2B9HLJV2lbHzypvy/vekVygo971L2mNhTJb0txnht3tcTld3htEFSS9KnJD1R0v0lPUPSJfl2jpX0/RDChhle672SHirpfyT933wbf6mpR9L6JJ0fQlhWYn9eKel+koYkvbDEdqbzurbvv7kXtg8AABYwHpEDAABFvU7SEyRtkvQXIYS/iTF+pujKIYQTJL0h//FCSc/teCTrhyGEj0v6mqSHSHpjCOHz0z0u1wVVZQWl9tnWvpj3tabs7qQlyu7cenqM8Ytty/1Y0udCCG9U9gjhBkkfVVaActYr2+dTYoyTd4IphPBVZfv7OEnrJD1e2SNrcxJCCMoKd1L2iN/1c93GLNt/qrKimiTdpmxfAAAA/oQ7mAAAQCExxt26/Z0xHwghrJvDJl6lbOyxVdKLXN5P/hrPVXbHUEXSy+bf40I+PE37E5RlTknShzuKS38SY3yzpO9OrpNnIDkjymZoa7Y3xhhbun1w+pzDs0MIVWXFsH5JP5D0L3Pdxizbf6Ck89uaXhljHOrmawAAgIWPAhMAACgsxnipspwfKXu87Owi6+V5So/Nf/xhjHF4hte4RtJv8x8fPs+uFnFTjPHGaX736LbvPzrLdtoLOo+ZZpmfxRi3TfO79nDv5bO8lvP3yh4zHJH0/Lxo1RUhhAdJ+oayDClJ+kiM8dPd2j4AADhw8IgcAACYq1cqK6RskPT0EMJnY4xfmWWdTZoKiH5i20xuszlqfl0s5IYZfnds/nVI0hWzbOd/2r4/bpplrp1h/fa7geY0NsvDxd+a/3hmjDHOZf1Ztv04ZbPkTRaXLlI28x8AAECCO5gAAMCcxBh3SPq7tqYPhxBWzbLa2nm+XD2EMJ+7eorYOcPvDsq/bilwR9Ctbd+vmWaZmR4pa99+4Znz8rvCPq6sAHSZpPcUXbfAtl8k6auaKi59TtIzYoyNbr0GAAA4sHAHEwAAmLMY45dDCF9QNvPaBmWzpD1vhlXaxxznqeCjdblpH6ebQZEP0WYqHBUu9CibEW9Sc9qluu9USX+ef/9BScdmWd+3s6nt+yNDCMfn31/pcpTyotW7JP1DW/O5kl7cmR8FAADQjgITAACYr5dKepiyu32eG0L4txmWbc8fasQYL5/na04WhWYrAK2c5/YnTfZ3bQihMstdTIeY9faFB7R9/4lpl5pyZv6fJD1UU+Hkkv40c94Fkp7Z1nxGjPFMAQAAzIJH5AAAwLzEGG+TdFpb07mSlk6z+NWauhPpAdMs8ychhNeEEE4NITyi41eTM8/15gURt+4SSXOZ3c75Zf51maR7zLJs+/78ruTr7hf5nUsXaqq4NCHpuRSXAABAUdzBBAAA5i3GeGEI4WRlM8Rt0u3vfmlfbjyE8B1Jj5d0XAjhpBjjD9yyIYSHSXpH/uN3JH2r7dc72r7fpNvPwDbpEZJ65rAbziWSXpR/f6qkl82w7Ivavr+05OsWFmM8RdIpMy0TQvhrZUHdkvScGOP50yx6pqST8+9HJD01xvi18r0EAACLBXcwAQCAsk6VtCv/fqbCzvvavj8/hHBE5wIhhIOV3Qk16YMdi/yy7fuk6BNCOETSu2fsbTFflXRl/v1LQghPdguFEN6gqRykb5d49G+/CSE8QNLp+Y8tZWHeFJcAAMCccAcTAOw9RadhB+5w7ne/++nHP/6xent7+zTLuRxj1Gc+8xmdeebtn6b69re/fU3ncmeccYY++9nPStKdVq5cef0555yj+93vfpKkK664QgcffLBuu+02SdIjH/lInXPOOV9u38Yll1yixz3ucZqYmJCkl59++ukvf/zjH6++vj5dfvnlf1r/yCOP1PXXX6/DDjts43T9P+mkkx493e9ijLr88sv1rGc9S+Pj49Vqtfql17zmNXrMYx6jgw46SE996lOfpizU/NH5Klsk/e1Mx+kO7CxNBZV/RdJ1bWHg0xmLMf5m73YLwB0IYxrgwDaXyU2mRYEJAACUdvLJJ+sb3/iGfvKTn8y43Bve8Ab19fXpggsu0ODgoM4+208m96hHPUrvfnd6I9LGjRt1+umn66yzzlKz2dRFF12kiy666E+/r1areuUrX6kdO3bovPPOK7VPxx9/vD72sY/ptNNO07Zt23TxxRfr4osvnvz159sW/bmkp8cYbyr1gvtBCOFoSQ9va/rL/L/ZXKfbz1AHAAAWOR6RAwAApVUqFZ111lnq7++fcblarabXve51uvjii/WMZzxDRx99tAYGBtTT06NDDjlEj370o3Xuuefq7LPPnnZbz3zmM/XFL35RT3ziE7V+/Xr19PRo3bp1euxjH6vPfOYzOvXUU7u2Xw94wAN06aWX6lWvepVOOOEErVq1Sj09PZJ0raSvSXqapAfEGK+caTt3YCfs7w4AAIADQ6XV4m5HANhL+AMLHLi6cis5ACwQjGmAA1tXxjXcwQQAAAAAAIBSKDABAAAAAACgFApMAAAAAAAAKIUCEwAAAAAAAEqhwAQAAAAAAIBSKDABAAAAAACgFAp
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYJVdB/vG3+95eZ3omk8xkIQSSQDggSwQVZPmxiyAIIggiBBJAFgmyiYBKBGSTzbAJImGXfRFEkc2gEAkgAkJCDklIQjJZZu+Z3vsuvz9OXebOPW93V3f1zPRkvp/nmaenT9dyajtV99yqt/ra7bYAAAAAAACAleo/3BUAAAAAAADAkY0OJgAAAAAAAFRCBxMAAAAAAAAqoYMJAAAAAAAAldDBBAAAAAAAgEroYAIAAAAAAEAldDABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJfXDXQEAALD2hBC+Iel+xa9/FWN8Tcnx3iHpOcWvp8UYr1792qGsEMJdJX1X6ZrvnBjjB5YY/v6S/kTSvSRtkbRb0qWSPibpgzHGuYNZXwAAcOTiDiYAALCUl4cQ7nC4K4HlCSEMSHq/SnyhGELoDyG8U9KFkv5A0smSBiWdIOkBkt4j6XshhDMOXo0BAMCRjA4mAACwlCFJF4QQuG44svyFpDNLDvsapTuXJOk6SedKuq+k31e6e0mS7iLpiyGEDatZSQAAcPPAI3IAAKCMe0r6U0nnH+6KYGkhhLtI+suSw95G0ouLX38u6W4xxvGuQT4XQrhE0qsl3U6p8+m1q1hdAABwM8A3kQAAYDEtSY3i/68JIZx+OCuDpYUQ6kqPxg1I2lFilHMk1Yr/P7+nc6njdZL2FP9/XOVKAgCAmx06mAAAwGLmJb2x+P+opH88jHVBOX8u6W6Sdkl6RYnhb1TKXrpW0lfdADHGlqSfFb/eqnoVAQDAzQ2PyAEAgKW8UtKjJd1e0gNDCH8cY6zU0VSEhp8r6UGSbimpT6mD40JJb48xXrrAeN9QervdbIxxeJHp/0TSHSVdE2M8tedv7eK/L5D0r5LeIek+Sp1pV0h6aYzxa13Db5D0dEmPknQnSWOSdkr6gaRPSfpwjLGhHiGEUyVdVfz6aElfkHS2pCcXdRuTtFXSlyW9OcZ45ULLU1YI4VcknVf8+kJJk0uNE2N8h9I6WGy6fdrfsXRDlToCAICbJ+5gAgAAi4oxzip1sLSKojeGEE5e6fRCCC+X9GOlUOkgaZ3S3VFB0rMk/TiE8IqiU+NgOkXSRZIeUsx/o9KdP1d01fUBki6T9Gal0OtjlR49O1HSwyS9T9IPihyjxYxK+pqkC5Q6yDYrhaefLunZki4JIfxOlYUJIdSUHo0bkvTlGOMHq0yvx3OVllmSPrGK0wUAADcTdDABAIAlxRgvkvTO4teNkt69kumEEF4h6VVKmT//p9ShdC+lO4ieJ+lKpeuTvy7+HUzPV+roeYOk/yfpDyS9NsZ4dVHXeyrd4XSSpLakj0h6pKR7SPpDSV8ppnMnSd8MIZy0yLzeLOkBki6WdFYxjd/T/kfShiR9IISwvsLyvFDS3SVNSHpGhekohNAXQtgSQnhgCOEzkt5a/On7kt5SZdoAAODmiUfkAABAWS+T9LuSTpX0iBDCH8UYP1p25BDC3SS9vPj1w5Ke2vNo2UUhhAskfVHS/SWdF0L45EKPy62CfqUOpe63rX26qGtN6e6kEaU7tx4fY/x013DflfSJEMJ5So8QniTpH5Q6oJwTlZb57CLPSMV8vqC0vL8jaYukh2sFdwiFEIJSx52UHvH7xXKn0eMfJT2tp+wCSX8WY5yoOG0AAHAzxB1MAACglBjjpA68M+atIYQty5jEi5SuPXZKepbLLSrm8VSlO4b6lB7NOpjetUD57yplTknSu3o6l34pxvgqSd/ojFNkIDkzSm9oa3UXxhjbOjA4/cwyle4WQuhX6gwblvQtSX+/3GkYtzZlD5b0x8X8AAAADsAFAgAAKC3G+FWlnB8pPV729jLjFXlKDyt+vSjGOLXIPK6S9NPi1wetsKplbI0xXrfA33676///sMR0ujt0HrrAMN+PMe5a4G/d4d5jS8zL+VOlxwxnJD296LSq6u+VHhu8t9Kjd9cqdTq9QdI/0ckEAAB68YgcAABYrhcqdaScJOnxIYSPxRg/v8Q4p0raVPz/kV1vclvKaSurYinXLvK3OxU/JyT9ZInpXNz1/zsvMMzVi4zf/cjZsq7NinDx1xS/vjLGGJcz/kJijJ/r+vW/QwgfVAopv6tS/tRXle6aAgAAkMQdTAAAYJlijHskPaer6F0hhGOWGG3zCmdXDyGs5K6eMvYu8rfjip87StwRdFPX/49dYJjFcou6p1/6zXnFXWEXKL2h7geS3lR23OUq7r56clfRUw/WvAAAwJGJO5gAAMCyxRg/F0L4lNKb105Sektabyh0t+5rjvep5KN1hQUfp1tEmS/RFus4Kt3Ro/RGvI7WgkOtvmdKul/x/7dJulPK+j7AqV3/v1UI4VeL/1+x3LDuGONPQgg/k3Q7SXdZfnUBAMDNGR1MAABgpc6V9EClu32eGkL4+CLDducPNWOMP1zhPDudQkt1AG1c4fQ7OvXdHELoW+IuphPMeIfCb3b9//0LDrXfK4t/kvQAFeHkIYRbSLqN0nb57yWmsbP4OVi+mgAA4GjAI3IAAGBFYozbJL2gq+g9ktYtMPjPtf9OpN9cYJhfCiG8JITwzBDCg3v+1Hnz3GAIodY7XjHuiKTlvN3O+b/i53pJd1xi2O7luazifA+p4jG7yyT9l9L2W2rY04tfFwpHBwAARyk6mAAAwIrFGD8s6UvFr6dKeuICw81LurD49c4hhPssNM0QwgMlvV7SuyX9Rc+f93T9/9QFJvFgSQOL1buEr3T9/5lLDPusrv9/teJ8S4sxnh1j7Fvsn9IjjB3ndP3tG8U02pIuKv5+xxDCPRaZ5cO1/26tQ7acAADgyEAHEwAAqOqZkvYV/1+sY+ctXf//QAjhlN4BQgjH68A7ad7WM8j/df3/uWb8EyS9cdHalvMFSVcU//+TEMKj3UAhhJdrfw7S1ys8+nc4/X3X/98dQsgeLwwp3Om9xa/zOnBbAgAAkMEEAACqiTFeG0J4iQ7sqHDD/UcI4V2Snq2U+fOjEML5kv6zGOTXJb1Q0i2K3z8XY/znnsl8TNJ5StcwzyveMPdxSTNKj6o9vxj/ymIeK12mZgjhrKJug5I+HUL4iKRPSdom6dZKoea/XYyyQ9JTVjq/wynG+C8hhE9IerykX5V0aQjhDUpvpqtJ+i2lvK3O2/yeF2O8/LBUFsDhstTbNAEc2ZbzcpMF0cEEAABWw7sl/aGk+y4x3HOVOoOeL2mT9odO9/qspCf1FsYYrwghPF/pzqZ+SU8t/nW0lB6rO07Si5ZR/0yM8eIQwkMlfUIp0+nJxb9e/yvp8THGrVXmd5g9RenOpCcpddCdb4aZkXRujPGCQ1kxAABwZOAROQAAUFmR5fN0SdNLDNeMMb5Q0l2VOqUukzSh1LmxVdJnJD08xviYGKOdVozxnZJ+Q9JHlMKm5yTdIOmTku4TY3zdqixUmteFkm4r6aVKWUW7ivldLemLkh4n6TdjjFcsNI0jQYxxNsZ4lqQHKXWoXae0TfZK+qFSJtZt6FwCAAAL6Wu3udsRAAAAALAgPjQCN2+r8ogcdzABAAAAAACgEjqYAAAAAAAAUAkdTAAAAAAAAKiEDiYAAAAAAABUQgcTAAAAAAAAKqGDCQAAAAAAAJXQwQQAAAAAAIBK6GACAAAAAABAJXQwAQAAAAAAoBI6mAAAAAAAAFAJHUwAAAAAAACohA4mAAAAAAAAVEIHEwAAAAAAACqhgwkAAAAAAACV0MEEAAAAAACASuhgAgAAAAAAQCV0MAEAAAAAAKASOpgAAAAAAABQCR1MAAAAAAAAqIQOJgAAAAAAAFRCBxMAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecJEdh9vFnZnY23t7pgnQ6CSUkXAQRbZLBiPSabIMTYAMWGZMMOIBtTHpJBgeCCMYEgQAbEY0Rtom2ETaGFyRAgApJoBxPFzfvzs77R/Vwo6lnd3u35+720O/7+dxnd+s6h+qemu6nau12WwAAAAAAAMBa1Q/3AgAAAAAAAODIRgMTAAAAAAAAKqGBCQAAAAAAAJXQwAQAAAAAAIBKaGACAAAAAABAJTQwAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAAAQCU0MAEAAAAAAKCSgcO9AAAAYP0JIfyHpDOKP18eY3xdyfHOkvS84s9TYoyX93/pUFYI4e6Svql0z/fUGOPZa5jGCyS9rfiTfQoAACyeYAIAACv5yxDCHQ73QmB1QghNSR9QhS8UQwinSHpD3xYKAAD83KKBCQAArGRI0vtCCNw3HFn+XNJd1zpyCKEm6X2Sxvq2RAAA4OcWN4oAAKCM+0p64eFeCJQTQriLpL+oOJlnS3pQHxYHAADcCtDABAAAlrMoaaH4/XUhhNsezoXBykIIA0qvxjUl7VzjNE6U9KbizzVNAwAA3LrQwAQAAJYzL+nNxe+jkv7hMC4LyvlTSfeQtEvSq9Y4jX+QNC7pfEnn9mexAADAzzN6kQMAACt5taTHSbq9pAeHEJ4ZY6zU0FSEhj9f0kMk3UZSTdJVkr4q6e0xxh8uMd5/KPVuNxtjHF5m+hdJupOkK2KMJ/f8X7v49cWSzpN0lqT7KzWmXSrpZTHGL3UNv1HSMyT9uqTTlRpebpZ0gaSPSzonxrigHiGEkyX9tPjzcZI+K+lMSU8plm1c0jWS/l3S38QYL1tqfcoKIdxR0iuKP18iaXIN03i6pF+VNKO03i+oulwAAODnH08wAQCAZcUYZ5UaGhaLojeHEI5f6/RCCH8p6fuSnispKIVIjxa/P0fS90MIrypCpg+mEyR9XakxZVTSJqUnfy7tWtYHSbpY0t9IeoCkLUqvnh0r6RGS3i/pghDCqSvMa1TSl5RCs8+QtE0pPP22kv5A0g9CCI+ssjIhhIbSq3FDkv49xvjBNUzjeKV1laRXxxhjlWUCAAC3HjQwAQCAFcUYvy7pHcWfmyS9ey3TCSG8StJrJDUkfU+pQemXlZ4g+kNJlyndn7yy+HcwvUipoedNkn5F0m9Len2M8fJiWe+r9ITTDkltSR+W9GuS7i3pCZK+UEzndElfCyHsWGZef6MUmP0NSU8upvFYSV8s/n9I0tkhhA0V1uclku4laULSs9Y4jfco7d8LJP11hWUBAAC3MrwiBwAAyvozSY+RdLKkR4cQfjfG+NGyI4cQ7iHpL4s/z5H0tJ5Xy74eQnifpM9JeqCkV4QQzl3qdbk+qCs1KHX3tvaJYlkbSk8njSg9ufX4GOMnuob7pqSPhRBeofQK4Q5Jf6/UAOUcq7TOZ8YYO0+CKYTwWaX1faSkoyU9StLHVrsiIYSg1HAnpVf8rlzDNJ5SLMeC8n0DAACwLJ5gAgAApcQYJ3XLJ2PeGkI4ehWT+COle4+bJT3HNWAU83ia0hNDNR38/J93LVH+GKXMKUl6V0/j0s/EGF8j6T864xQZSM6MpBd1Ny4V47d1y+D0u5ZZ6G4hhLpSY9iwUij3O9cwjWMlvaX4800xxgtXOw0AAHDrRgMTAAAoLcb4RaWcHym9Xvb2MuMVeUqPKP78eoxxapl5/FTSj4o/H7LGRS3jmhjj1Uv838O6fv/7FabT3aDz8CWG+XaMcdcS/9cd7j2+wrycFyq9Zjgj6RlFo9VqvVvSZqW8qdesMCwAAECGV+QAAMBqvUSpIWWHpMeHEP4xxvjPK4xzslIDhiT9WldPbis5ZW2LWMpVy/zf6cXPCUkXrTCdb3T9fuclhrl8mfEnun5f1b1ZES7+uuLPNYVyhxCeqNRD3qKkpxeh7gAAAKvCE0wAAGBVYox7JD2vq+hdIYSjVhht2xpnNxBCWMtTPWXsW+b/thY/d5Z4IuiGrt+3LDHMxBLlUnodsKN0z3nFU2HvU+qhbk2h3CGEYyS9rfjzHTHG/17tNAAAACSeYAIAAGsQY/x0COHjSj2v7VDqJe3py4zSfc/xfpV8ta6w5Ot0yyjzJdpyDUelG3qUesTrWFxyqP57tqQzit/fJun0lPV9Cyd3/X5iCOFuxe+XxhgnivG2Sdor6dyu/+/W3Th4x05jIjlNAACgGw1MAABgrZ4v6cFKT/s8LYTwT8sM250/1KrQONFpFFqpAWjTGqff0VnebSGE2gpPMW034x0K9+n6/QNLDnXAq4t/kvQgpXDyzjQ2SfpaiWmc1/X7ahrhAADAzzlekQMAAGsSY7xR0ou7it4jaWyJwX+iA08i3WeJYX4mhPDSEMKzQwgP7fmvTs9zgyGERu94xbgjklbTu53zveLnBkl3WmHY7vW5uOJ8AQAAjkg8wQQAANYsxnhOERL9CKXXsX5vieHmQwhflfQoSXcOIdw/xni+GzaE8GBJbyz+/KqkL3X9956u30/WLXtg63iopOYqVsP5gqTnFL8/W9ILlhn2OV2/f7HifEuLMZ4p6czlhgkh/Jakjxd/PjXGeHbPNE5eaT4hhLN0IHPrlBjj5atbUgAAcGvAE0wAAKCqZ0vaX/y+XMPO33b9fnYI4YTeAYrQ6fd0Fb2tZ5Dvdf2eNfqEELZLevOyS1vOZyVdWvz+3BDC49xAIYS/1IEcpC+TSwQAAG6teIIJAABUEmO8KoTwUknvXGG4r4QQ3iXpDySdKum7IYS3SPrPYpBfkvQSSccVf386xviZnsn8o6RXKN3D/GHRw9w/SZpRelXtRcX4lxXzWOs6tUIITy6WbVDSJ0IIH1Z6GuhGSScphZo/rBhlp6TfX+v8AGCdW6k3TQBHtr7kKtLABAAA+uHdkp4g6QErDPcCpcagF0narAOh070+JelJvYUxxktDCC9SerKpLulpxb+ORUl/rhQ8/kerWP5MjPEbIYSHS/qYUqbTU4p/vb4j6fExxmuqzA8AAOBIxityAACgsqKXtWdIml5huFaM8SWS7q7UKHWxpAlJ85KukfRJSY+KMf5mjNFOK8b4Dkn3lPRhSVdLmpN0naRzJd0/xviGvqxUmtdXJZ0m6WWSvq7US9ycpMslfU7S70i6T4zx0qWmAQAAcGtQa7d52hEAAAAAsCQ+NAI/3/ryihxPMAEAAAAAAKASGpgAAAAAAABQCQ1MAAAAAAAAqIQGJgAAAAAAAFRCAxMAAAAAAAAqoYEJAAAAAAAAldDABAAAAAAAgEpoYAIAAAAAAEAlNDABAAAAAACgEhqYAAAAAAAAUAkNTAAAAAAAAKiEBiYAAAAAAABUQgMTAAAAAAAAKqGBCQAAAAAAAJXQwAQAAAAAAIBKaGACAAAAAABAJTQwAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAAAQCU0MAEAAAAAAKASGpgAAAAAAABQCQ1MAAAAAAAAqIQGJgAAAAAAAFRCAxMAAAAAAAAqoYEJAAAAAAAAldDABAAAAAAAgEpoYAIAAAAAAEAlNDABAAAAAACgEhqYAAAAAAAAUAkNTAAAAAAAAKiEBiYAAAAAAABUQgMTAAAAAAAAKqGBCQAAAAAAAJXQwAQAAAAAAIBKaGACAAAAAABAJTQwAQAAAAAAoBIamAAAAAAAAFAJDUwAAAAAAACohAYmAAAAAAAAVEIDEwAAAAAAACqhgQkAAAAAAACV0MAEAAAAAACASmhgAgAAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZXV9//H3LVN2trOdpawgfkUhKlFsRLHXmPiLXWOwl9iNvQQsMRFNVLDGgpJgiURiEguCokZjiYKK5YMgsLAsbC+z0+7ce39/nDPs7Hw+M3Nmzt1lZ+f1fDz2MXO/c8r3nnuY8+Uz57y/lXa7LQAAAAAAAGC2qnd0BwAAAAAAADC3UWACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKfU7ugMAAODwk1K6QtKD85dvNbN3F1zvfEl/nb+8k5nd0PneoaiU0r0k/UTZmO85ZnbBFMt+UtLzCm6azxYAAByAO5gAAMB03pZSOvmO7gRmJqXUJekzKv4HxXsdxO4AAIAjHHcwAQCA6fRI+lRK6Qwza93RnUFhb5Z0jyILppTqku6ev/ykpA9Ps8otJfoFAACOQBSYAABAEfeX9ApJH7ijO4LppZT+SNJbZrDKycoKiZJ0mZld1fleAQCAIxmPyAEAgKm0JI3m3787pXTCHdkZTC+/G+kzkrokbSu42j3HfU9xCQAAzBgFJgAAMJWGpHPz7/sk/fMd2BcU83pJp0naIensguuM5S/tk/T7g9AnAABwhOMROQAAMJ1zJD1R0l0lPTSl9AIzK1VoykPDXybpYZKOkVSRdJOk70g6z8x+M8l6Vyib3W7YzHqn2P7VyjKFbjSzDRN+1s6/fbWk/5Z0vqQzlBXTrpX0RjO7bNzySyQ9X9KfSTpF0mJJ2yVdKenfJF1oZqOaIKW0QdL1+csnSvqqpLMkPTvv22JJmyR9U9L7zey6yd5PUSmlu0l6e/7yNcoKRkWM3cH0C3K2AADAbHAHEwAAmJKZDSsrsIwVHs5NKa2f7fZSSm+T9CtJL5WUJC1UdndUkvRiSb9KKZ2dUqqU6vj0jpX0A0mPzPe/VNmdP9eO6+tDJP1O0vslPUjSUcoePVsr6TGSPi3pypTSidPsq0/SZZI+paxAtlJZ5tEJkl4i6dcppceWeTMppZqyR+N6JH3TzD47g9XHwsCvSik9IaV0SUrp1pTSSErplpTSv+XHAgAAIESBCQAATMvMfqD9M4stlfSx2WwnpXS2pHdIqkn6pbKC0gOU3UH0SknXKRuf/G3+72B6lbJCz3sl/YmkJ0v6OzO7Ie/r/ZXd4bROUlvSv0h6gqT7SnqapEvz7Zwi6fsppXVT7Ov9kh4i6UeS/jLfxp9L+lb+8x5JF6SUFpV4P6+RdLqkfkkvLLpSSuk4ZYUzSXqWpP9QdrfWGmXFtHWSniTp2ymlj+cZTwAAAAdggAAAAIp6k6Q/lbRB0uNTSs8ws4uKrpxSOk3S2/KXF0p67oRHy36QUvqUpP+SdKakt6eUvjTZ43IdUFVWUBo/29qX877WlN2dtEDZnVtPNbMvj1vuJ5K+mFJ6u7JHCNdJ+riyAlRkrbL3fNb4R9BSSl9V9n4fK2mVpMdJ+uJM30hKKSkr3EnZI34bZ7D6vcZ9v0TSLyR9RNLVygpfZ0p6uaTlygpXbWWFQQAAgNtxBxMAACjEzPbpwDtjPphSWjWDTbxW2dhju6QXR7lF+T6eq6yIUVFW2DiYPjpJ+58qy5ySpI9OKC7dzszeIemKsXXyDKTIkKRXTcw3MrO2DgxOv4dmKKVUVVYM65X0P8qKQzMxfga5T0m6t5l9wsx+aGbfMbO/VVaEujFf5kUppTNn2k8AAHBko8AEAAAKM7NvKcv5kbLHy84rsl6ep/SY/OUPzGxgin1cL+m3+cuHzbKrRWwys5sn+dmjxn3/8Wm2M76g8+hJlvmZme2Y5Gfjw70XT7OvyCuUPWY4JOn5edFqJs5VVtj6U01e+LtRWQ7XmFfNop8AAOAIxiNyAABgpl6jrJCyTtJTU0qfN7P/mGadDcoesZKkJ4ybyW06d5pdFwu5aYqfnZJ/7Vf2qNhUfjTu+1MnWeaGKdbvH/f9jMZmebj4u/OX55iZzWR9ScqLfb/M/0213GUppeuVfSYPTSlVZlHMAgAARyjuYAIAADNiZrsk/fW4po+mlJZNs9rKWe6unlKazV09ReyZ4mcr8q/bChRRbhv3/VGTLNM/SbuUPQ44pvDMefldYZ9SNkPdlZLeV3TdEn6Rf12s/QVDAAAA7mACAAAzZ2ZfSSn9m7KZ19YpmyXteVOsMn7M8WkVfLQuN+njdFMo8ke0qQpHhQs9ymbEG9OadKnOe5GkB+fff0jSKVnW9wE2jPv+uJTSWN7StWY2VdFrMuM/i+5ZrA8AAI5QFJgAAMBsvUzSQ5Xd7fPclNIXplh2fP5Q08yumuU+x4pC0xWAls5y+2PG+ruywKNga4L1DoX7jfv+M5Mutd85+T9JeoikK/KA8Icqm8FuyMy+Ms02Vudfmzq07xUAABzmeEQOAADMipltkfTqcU2fkLRwksX/oP13v9xvkmVul1J6Q0rpRSmlh0/40VgAdXdKqTZxvXzdBcoKJmWM5REtknT3aZYd/35+V3K/h1Q+q92XJV0k6SP5Y3ehlFKPpPvkL39pZiOHoIsAAGCOoMAEAABmzcwulPT1/OUGSc+cZLmGpO/kL09NKZ0x2TZTSg+V9PeSPibpzRN+vGvc9xsm2cTDJXVN1e8CLh33/YumWfbF477/Vsn9FmZmZ5lZZap/yh5hHPOccT+7Ylz79/KvayU9copdPlf77wyb6m41AAAwD1FgAgAAZb1I0t78+6kKO/847vsLUkrHTlwgpbRa2Z1QYz40YZHxM529PFh/jaRzp+xtMV+VdG3+/UtTSk+MFkopvU37c5AuL/Ho3x3pI+O+/1BKyQWyp5TuK+m9+ctbdeBnBAAAQAYTABxETN+NOev000/XT37yE3V3d/domnPZzHTRRRfpnHPOOaD98ssvv37icmeffbY+//nPS9KJS5cu3Xj++efr9NNPlyRdffXVWr16tbZs2SJJesQjHqHzzz//gEygSy+9VI997GM1OjoqSa9885vf/MrHPe5x6unp0VVXXXX7+scdd5w2btyo9evXHz9Z/88444xHTfYzM9NVV12lZz3rWWo0GtVqtfrvb3jDG/ToRz9aK1as0JOf/OSnKAs1f1S+yjZJfzXVcTpcmdk3UkoXSXqGpLtIujKl9F5JP1X2yOPjlM0a2C2pIemsfCZBAPMHYxrgyDaTyU0mRYEJAACU9vSnP11f+9rX9NOf/nTK5d72trepp6dHn/3sZ7V7926dd148mdwjH/lInXuuvxHp+OOP15vf/Ga9613vUqvV0sUXX6yLL7749p9Xq1W95jWv0a5du/TpT3+61Hu65z3vqU9+8pN69atfrR07duiSSy7RJZdcMvbjL41b9OeSnmpmm0rt8I71XGUz4D1L0jHyd45JWaj3c8zsm4eyYwAAYG7gETkAAFBapVLRu971LvX29k65XK1W05ve9CZdcskletrTnqYTTjhBfX196urq0po1a/SoRz1Kn/jEJ3TeeedNuq1nPvOZ+vKXv6wnPOEJWrt2rbq6urRq1So95jGP0UUXXaQXvWi6yKTi7ne/++lb3/qWXvva1+q0007TsmXL1NXVJUk3SPovSU+RdD8zu3aq7RzuzGzYzP5S0sMkfVHSTZJGlGVeXals9rmTzeyrd1wvAQDA4azSbnO3IwAcJPyCBY5cHbmVHADmCMY0wJGtI+Ma7mACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGACAAAAAABAKRSYAAAAAAAAUAoFJgAAAAAAAJRCgQkAAAAAAAClUGA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecZXV9//H3vXdm7rTd2QYsRUBQvxo7MYiJiRoLorGk2DFiiyUaW9SIgYBRY0JiVEzs2KIYK8b2sxBLbEENKqB+FGTpsGzf6bf9/jjnunfn85mZO3Pu7s7A6/l47OPOfO8p31Nn7+ee8z6lVqslAAAAAAAAYLnKh7oDAAAAAAAAWN0oMAEAAAAAAKAQCkwAAAAAAAAohAITAAAAAAAACqHABAAAAAAAgEIoMAEAAAAAAKAQCkwAAAAAAAAohAITAAAAAAAACqHABAAAAAAAgEIoMAEAAAAAAKAQCkwAAAAAAAAohAITAAAAAAAACqHABAAAAAAAgEIoMAEAAAAAAKCQvkPdAQAAsPKklL4h6UH5r39rZm/ocry3S/rL/Nc7mtmW3vcO3Uop3VfSJcr+z/dMM/tAF+P8maTTJd1P0mGS9kq6VNL7JV1oZq0D1mEAALBqcQUTAABYzFkppbsd6k5gaVJK/cqKQl19oZhSGkspfU3SJyQ9TtLRkgYkbZT0MEkfkfSFlNLggekxAABYzSgwAQCAxVQlvS+lxP8bVpczJd27mwHzYtSXJT00b/q+pKdKOkXS0yVdkbefJukdve0mAAC4LeA/igAAoBsPkPRXh7oT6E5K6V6SXruEUV4h6f75zxdKeqCZXWhm/2tm/5G/d1n+/hkppd/qXW8BAMBtAQUmAACwkKakev7zG1JKJxzKzmBxKaU+ZbfG9Uva1sXwg5Jek/96laRnmFmjcxgzm9D+Bas/7U1vAQDAbQUFJgAAsJCapPPyn4clvecQ9gXdeZWkkyTtkHROF8M/WtLa/Oezzaw2z3BfkfQhSW+VdHnBPgIAgNsYniIHAAAWc66kP5Z0V0l/mFJ6rpkVKjTloeEvUpb5c4ykkqTrJH1d0vlm9rN5xvuGsqfbzZjZvGHTKaXLJd1d0jVmdvyc99pPQXuZpC9IerukByorpl0p6W/M7Gsdw6+V9Bxlwdf3kLRG0nZlT1b7hKQPm1ldc6SUjpd0df7rH0v6L0lnSPrzvG9rJN2gLPvoX8zsqvmWp1v5rWtn57++XNJEF6Odlr/OSvrMfAOZ2YykZxTqIAAAuM3iCiYAALCgvLDwHGW3y0nSeSmlo5c7vZTSWcryfF4oKUkaUXZ1VJL0fEmXpZTOSSmVCnV8cXeQ9B1Jj8jnP6bsyp8rO/r6EEm/kPQvkv5A0gZlt55tVlaYuUDSpSmlExeZ17Ckr0l6n7IC2SZl4eknSHqBpCtSSo8qsjAppYqyW+Oqkr5sZh/sctR75q9XmNlUx/SGU0p3SSkdS8A7AABYDP9ZAAAAizKz70j6t/zXMUnvXM50UkrnSHqdpIqknyorKP2usiuIXqIsA6gs6e/yfwfSS5UVev5J0u9LeoKkN5rZlryvD1B2hdORklqS/kPSY5UFXj9Z2S1jUnZV0/+klI5cYF7/Iukhyp7O9vR8Go+X9NX8/aqkD6SURgssz8slnSxpXNJfLGG8dmD3NZKUUnpQSukrkvZIsrz95pTSP+ZXcwEAADjcIgcAALr1GkmPkXS8pD9KKT3VzD7a7cgppZMknZX/+mFJz5pza9l3Ukrvk/R5SQ+WdHZK6ePz3S7XA2VlBaXO8OpP5n2tKLs6aUjZlVtPMrNPdgx3iaT/TCmdrewWwiMlvUtZASqyWdkyn2Fm7SvBlFL6L2XL+yhJhynLQ/rPpS5ISikpK9xJ2S1+13Y5XlVSu6i1K6V0pqTXK7tlsdNhyrKdHptSOrXb6QMAgNsPrmACAABdyZ8k1nllzFtTSoctYRKvUPZ/j+2Snh/lFuXzeJayK4ZKkl68/B535R3ztD9GWeaUJL1jTnHpN8zsdZK+0R4nz0CKTEt6aWdxKR+/pf2D0+/dTac75bevXSBpUNK3Jf37EkbvvGLqDyW9QdKtkp4r6fB8mveX9KV8mLtKuigvTAEAAPwGBSYAANA1M/uqspwfKbu97PxuxsvzlNph0t8xs8kF5nG1pJ/nvz50mV3txg1mdv08753a8fO7FplOZ0HnkfMM8yMz2zHPe53h3msWmVfkr5TdZjgt6Tl50apbwx0/H6us+Pe7ZvZeM7vVzGbM7BLtf2XVfSU9exn9BAAAt2HcIgcAAJbq5coKKUdKelJK6UIz++wi4xwvaX3+82M7nuS2mDsur4tduW6B9+6Rv45LunyR6Xy/4+d7zjPMlgXGH+/4eUn/N8vDxd+Q/3qumdlSxpc0Nef3c6On2ZlZK6X0EmVPwxuQdLqWdqUUAAC4jeMKJgAAsCRmtkvSX3Y0vSOltG6R0TYtc3Z9KaXlXNXTjT0LvLcxf93WxRVBt3T8vGGeYcbnaZey2wHbun5yXn5V2PuUXYV0qaR/7nbcDnvn/P6Z+QY0s1uUZU9J0u8chKf8AQCAVYQrmAAAwJKZ2WdSSp9Q9uS1I5U9JW2h26Y6/89xgbq8tS437+10C+jmS7SFCkdLKZ5UOn5uzjtU7z1P0oPyn98m6R5Z1vd+ju/4+diU0n3yn680s3Ezm0kp7dS+q8tuXGSe7au++iStk7RzOR0HAAC3PRSYAADAcr1IWTD0RknPSil9bIFhO/OHGmb242XOs10UWqwANLbM6be1+7sppVRa5CqmI4LxDoZTOn5+/7xD7XNu/k+SHqJ94eSXSfqD/Od1WngZ2uHeDS18BRgAALid4RY5AACwLGa2VdLLOpreLWlknsF/rX1XIp0yzzC/kVJ6dUrpeSmlh815q/3kuYGUUmXuePm4Q5KW8nS7yE/z11FJd19k2M7l+UXB+R4KnRlSi22b9rq43swaB6g/AABgFaLABAAAls3MPqx9j7A/XtLT5hmuJunr+a/3TCk9cL5pppT+UNKbJL1T0plz3t7V8fPx80ziYZL6F+p3F77S8fPzFhn2+R0/f7XgfLtmZmeYWWmhf8puYWx7Zsd73+ho77zy7IXzzS+ldLKk9j14F/VsQQAAwG0CBSYAAFDU87QvLHqhws6bO37+QErpDnMHSCkdruxKqLa3zRnkpx0/vzgY/whJ5y3Y2+78l6Qr859fmFL642iglNJZ2peDdHGBW/8OGTO7VPsKY4/Onxa3n5TSBmWB4lJ2Fdl7DlL3AADAKnF7zWDq9tHIAFanlfJkI841WLVOPvlkXXLJJRoYGKhqkX3ZzPTRj35U55577n7tF1988dVzhzvnnHN04YUXStKJY2Nj17797W/XySefLEm6/PLLdfjhh2vr1q2SpIc//OF6+9vfvt9Tzb7yla/oUY96lOr1uiS95Mwzz3zJox/9aFWrVf34xz/+zfjHHnusrr32Wh199NHHzdf/Bz7wgafO956Z6cc//rFOP/101Wq1crlc/vSrX/1qPfKRj9TGjRv1hCc84YnKQs1PzUfZJukZC62nFe55yp4Qt0nSW1JKD5H0QWWh3/eW9Brtu2LsDWZ2xaHoJAAAWLlurwUmAADQQ095ylP0xS9+UT/4wQ8WHO6ss85StVrVBz/4Qe3evVvnnx8/TO4Rj3iEzjvPX4h03HHH6cwzz9TrX/96NZtNfepTn9KnPvWp37xfLpf18pe/XLt27dIFF1xQaJnuc5/76L3vfa9e9rKXaceOHbrooot00UW/uTPs4x2D/p+kJ5nZDYVmeAiZ2dUppQdJ+qykO0l6XP5vrn+U9LqD2TcAALA6cIscAAAorFQq6fWvf70GBwcXHK5Sqeg1r3mNLrroIj35yU/WCSecoOHhYfX39+uII47Qqaeeqne/+906//zz553W0572NH3yk5/UYx/7WG3evFn9/f067LDDdNppp+mjH/2onve8xSKTunfKKafoq1/9ql7xilfopJNO0rp169Tf3y9JWyR9XtITJZ1iZlcuNJ3VwMx+Jukeym49/Ja
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJPCAYAAAAwv24dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8JVWd9/HvvTd7eqVZmh1BOTgiIOMuDu6Kjoz6uICogzqC66j4KIrjhsuMw7jvDiK4o4K4jIy4oA64gD46isoRkGaHpvfOntx7nz+qYsI93ySVrtvdSffn/XrlleSkbtWp7dzkl6pvVZrNpgAAAAAAAIBtVd3ZHQAAAAAAAMDiRoEJAAAAAAAApVBgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApVBgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApVBgAgAAAAAAQCkUmAAAAAAAAFAKBSYAAAAAAACUQoEJAAAAAAAApXTs7A4AAICFJ4TwY0nH59/+S4zx3QVf91FJr8i/vVeMcU37e4eiQggPkHSVst/5XhhjPN9Ms0bSwfOdd4yxUrJ7AABgF8IVTAAAYC5vCSHcd2d3AvMTQuiU9Fltn38ojm+HeQIAgEWMK5gAAMBcuiV9JoRwXIyxsbM7g8LOknR0gemeLKmrwHQfk/Tw/OuXbmunAADArokCEwAAKOJhkv5Z0gd3dkcwtxDCUZLeXGTaGOMfC8zvdE0Vl/4zxnheie4BAIBdELfIAQCA2TQkTeRfvzuEcOjO7AzmFkLoUHZrXKekdW2Y36GS3pd/e52k15SdJwAA2PVQYAIAALMZl3RO/nWfpP/ciX1BMW+QdKykDZLe3ob5fUxSf/71aTHGoTbMEwAA7GK4RQ4AAMzlHZKeLukISY8JIbwkxliq0JSHhr9S0mMlHSCpIukWSZdL+shMt21Ne7rdaIyxZ5b5XyPpfpJuijEe0vKzZv7layX9l6SPSjpOWTHteklvjDH+YNr0yyT9k6R/kHSkpKWS1kv6jaSvSfp8jHFCLUIIh0i6Mf/26ZK+JelUSS/I+7ZU0m2SvifpfTHGG2Zan6JCCH8j6a35t2dIGiw5v6dKelL+7RdjjD8uMz8AALDr4gomAAAwqxjjqLICy2TA9zkhhP23dX4hhLdI+r2kl0sKyq6O6cu/fqmk34cQ3h5CqJTq+NwOlHSlpCfky1+u7Mqf66f19dGSrlV2i9jfSdpD2a1nqyWdIOk8Sb8JIRw2x7L6JP1A0meUFcj2VBaefqikl0n6QwjhyWVWJoRQU3ZrXLek78UYLyg5v6qkf82/HZb0xjLzAwAAuzYKTAAAYE4xxiuV3SolZYWYT27LfEIIb5d0tqSapN8pKyg9XNkVRK+WdIOy30/eln9sT69RVuj5d0mPlPQsSe+JMa7J+/owZVc47SupKekLkk6U9BBJJ0m6LJ/PkZL+J4Sw7yzLep+kR0v6haTn5/N4mqTv5z/vlnR+CGFJifU5Q9KDJQ1IOq3EfCY9U9mVVpL06RjjrW2YJwAA2EVxixwAACjqTZKeKukQSX8fQnhujPFLRV8cQjhW0lvybz8v6UUtt5ZdGUL4jKTvSHqUpLeGEL5a5Cln26iqrKA0/WlrX8/7WlN2dVKvsiu3nhNj/Pq06a6SdGEI4a3KbiHcV9KnlBWgnNXK1vnUGOPklWAKIXxL2fo+WdJekp4i6cL5rkgIISgr3EnZLX43z3cexmvzz+OS3t+G+QEAgF0YVzABAIBCYoyDuueVMR8KIew1j1m8TtnvHuslvdTlFuXLeJGyK4Yqkl617T0u5BMztD9VWeaUJH2ipbj0VzHGsyX9ePI1eQaSMyLpNdOLS/nrm7pncPrRRTo9XX4r23mSeiRdIenj852HmeeDJT00//bLbSpYAQCAXRgFJgAAUFiM8fvKcn6k7PayjxR5XZ6ndEL+7ZWzPYksxnijpD/l3z52G7taxG2z3Pb1xGlff2qO+Uwv6Dxphml+HWPcMMPPpod7L51jWc4/K7vNcETSP+VFq7JePe3rf2/D/AAAwC6OW+QAAMB8naGskLKvpOeEEL4cY/zmHK85RNLK/OsTpz3JbS732rYuFnLLLD87Mv88IOmaOebzi2lf33+GadbM8vqBaV/P63ezPFz83fm374gxxvm8foZ59irLh5Kkq2OMfyg7TwAAsOvjCiYAADAvMcZNkl4xrekTIYQVc7xsz21cXEcIYVuu6iliyyw/W5V/XlfgiqC7pn29xwzTDMzQLmW3A04q/OS8/Kqwzyh7Qt1vJP1H0dfO4XH5PKVtyIMCAAC7J65gAgAA8xZj/EYI4WvKnry2r7KnpL14lpdM/53jPBW8tS434+10syjyT7TZCkeFCz3Knog3qTHjVO13uqTj868/LOnILOv7Hg6Z9vVBIYRj8q+vjzHOVPSavHqpKelrbegnAADYDVBgAgAA2+qVkh6j7GqfF4UQvjLLtNPzh+oxxt9u4zIni0JzFYCWb+P8J032d88QQmWOq5j2Ma/bER467evPzjjVlHfkH5L0aE2Fk7d6Sv75l4R7AwCAorhFDgAAbJMY41pNPcpekj4tqX+Gyf+iqSuRHjrDNH8VQjgzhHB6COFxLT+afPJcVwih1vq6/LW9kubzdDvnd/nnJZLuN8e009fn2pLL3alCdgnUZMHspzuzLwAAYHHhCiYAALDNYoyfDyGcrOwJcYdIOmWG6cZDCJcruzrm/iGE42KMV7hpQwiPkfRv+beXS/rBtB9vmvb1IbrnE9gmPU5S5zxWw7lM0kvzr0+X9KpZpn3ptK+/X3K5hcUYT5V06mzThBCeqanb3F4YYzx/jtk+eNrXv9rWvgEAgN0PVzABAICyTpe0Nf96tsLO+6d9fX4I4cDWCUIIeyu7EmrSh1sm+d20r5OiTwhhH0nnzNrbYr4l6fr865eHEJ7uJgohvEVTOUg/LHHr30Jx1LSvKTABAIDCdtcCU5MPPvjYpT8Wip29HfjgY5s/HvzgBx8vSV1dXd1zTRtjvPltb3tb8qS3H/7whze2TPfDk08+efLHhy1fvvzmj370o82rrrqqedVVVzXPO++85t57732XpMMk6fGPf7xijN+YPo/LLrvs7I6Ov16A/eqzzjqreeWVVzZ/9atfNc8999zm3nvvfaekcNBBB0mS9t9//4NNnyVJxx133BNnWaeJCy+88N6dnZ2SVK1WqxefeeaZzcsvv7z5u9/9rhlCeFYI4b8lnZ3Pbp2kf2zdBovQ4dO+vn2n9QIAACw63CIHAABKO/nkk/Xd735XV1999azTveUtb1F3d7cuuOACbd68WR/5iH+Y3BOe8ASdc056IdLBBx+ss846S+9617vUaDR00UUX6aKLLvrrz6vVqs444wxt2rRJ5513Xql1OuaYY3Tuuefqta99rTZs2KBLLrlEl1xyyeSPvzpt0v8n6TkxxttKLXBhOCD/PBJjHN2pPQEAAIvK7noFEwAAaKNKpaJ3vetd6unpmXW6Wq2mN73pTbrkkkt00kkn6dBDD1VfX586Ozu1zz776IlPfKI+/elP6yMf+ciM8zrllFP09a9/XSeeeKJWr16tzs5O7bXXXjrhhBP0pS99Saeffnrb1uuhD32ovv/97+t1r3udjj32WK1YsUL5VU1rJH1H0rMlPTTGeP1s81lEluWfN806FQAAQItKs9mce6pdz2650sBuZK7Hl+8ojDXArmuhjDMAAAALAlcwAQAAAAAAoBQKTAAAAAAAACiFAhMAAAAAAABKocAEAAAAAACAUigwAQAAAAAAoBQKTAAAAAAAACiFAhMAAAAAAABKocAEAAAAAACAUigwAQAAAAAAoBQKTAAAAAAAACiFAhMAAAAAAABKocAEAAAAAACAUigwAQAAAAAAoBQKTAAAAAAAACiFAhMAAAAAAABKocAEAAAAAACAUigwAQAAAAAAoBQKTAAAAAAAACiFAhMAAAAAAABKocAEAAAAAACAUigwAQAAAAAAoBQKTAAAAAAAACiFAhM
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAASbCAYAAADawAUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFV9/vGnqrp6nZ6ZnoWZYRfU475AohKNuEEkRJQICuGngjGiwQ2ICyQsoqJxCRrAEFRURolLUBL3uKAhEkJIMCrqAQUEh23Wnt67uqp+f9xqpqfP0901c2uG6enP+/WaV3efvsu591b3PfPtW88p1Ot1AQAAAAAAADur+Eh3AAAAAAAAAPMbBSYAAAAAAADkQoEJAAAAAAAAuVBgAgAAAAAAQC4UmAAAAAAAAJALBSYAAAAAAADkQoEJAAAAAAAAuVBgAgAAAAAAQC4UmAAAAAAAAJALBSYAAAAAAADkQoEJAAAAAAAAuVBgAgAAAAAAQC4UmAAAAAAAAJALBSYAAAAAAADk0vZIdwAAAOx5Qgg/lHRk48u/iTG+r8n1LpN0RuPLR8UY725979CsEMLTJd2sbMx3WozxM3Ms/yhJb5N0tKQDJRUk3Svpe5I+GmO8Y5d2GAAAzFs8wQQAAOZyXgjh8Y90J7BjQghlSZ9Wk39QDCGcKOnnkt4i6XGSuiV1SXqspL+U9LMQwqt3TW8BAMB8R4EJAADMpUPSp0IIjBvml3MlPbWZBUMIz5D0eWVFpaqkSyX9saSjJL1f0riy18GnQwhH7ZLeAgCAeY23yAEAgGYcoezJlo8+0h3B3EIIT5H01zuwynsllRufnxxj/PKU730vhPAdST9Q9sfJj0h6Sks6CgAA9hr8JRIAAMymJmmi8fn7QgiHPJKdwdxCCG3K3hpXlrShieU7JD2/8eXN04pLkqQY448kfbXx5ZNDCAe1qLsAAGAvQYEJAADMpiLpQ43PuyV94hHsC5rzDkmHSdok6cImll+mbU+13z7Lcj+f8vmaneoZAADYa/EWOQAAMJd3SzpeWfDzC0IIfxFjzFVoaoSGv0nSCyXtr22zlV0v6dIY4y9mWO+Hyma3G4sxds6y/Z9LeqKk38YYD572vXrj0zMlfUPSZZKeo6yY9mtJ74oxfm/K8oslvU7SSyU9SVKvpI2SbpX0ZUlrY4wTmiaEcLCkuxpfHi/pXyWdKunVjb71Slon6TuSPhJj/M1Mx9OsEMITJJ3f+PIsSUNNrLZe2VNqbcqu8UwePeXz+3aqgwAAYK/FE0wAsOvU+ce/+frvGc94xpGS1N7e3hFjHL3mmmseVyxmw4be3t4rH3zwQbveKaeccoYavv/979/llrn88svrpVLpF8pmJguSepQ9HRUkvaFYLN526aWX1uv1+qz9mq3/j3nMY54oSfvtt99B5vuSpNNOO+2SZcuW3S7p6Mb+lxQKhcO///3vf3dy2Ztuuqm+cuXKfmW5Q89V9rRPWdJqScdIukrSrSGEQzW7bknfk/QpZQWyFcpCsw+R9EZJt4UQ/niObcwqhFBS9ta4DknfiTF+tpn1GsWxbza+/L0QwvFm20+XdGLjy5tjjPfk6SuAeecRvy/xj3/826X/WoInmAAAwJwOP/xwnXLKKVq7dq0GBgZ0wQUX6Iorrtjh7Vx66aW67LLLJEkhBP3Zn/2ZQgiq1Wq67bbbtHbtWt1zzz0PL/PmN7+5pccx1Wc/+1nV63W97nWv0/Of/3xt2LBBv/zlL7X//vtLkm699VadfvrpGh0dVaFQ0Ete8hIdc8wxWrFihU488cSTJL1WWXHqSZJuCCEcHmO8f4bdfURZUeomSZcreyvaGklnKJuprUPSZ0IIh8QYB3fykM6S9AxJg5Jev4Prvr2x7mpJXwohXCrp3ySNKXu6652S2pU9ubWj2wYAAAsABSYAANCUs846Sz/4wQ+0bt06XX/99fra176ml7zkJU2vf9ttt+njH/+4JOmlL32pLr74YrW1bRuKHH744TrhhBN0+umn6+abb9bll1+uY445Ro9+9KNn2mQutVpNb3jDG3TmmWc+3PbiF79YklStVnXuuedqdHRUxWJRl1xyycPfk6QY4xclfTGEcL6ytxCukfSPko6bYXerJa2VdGqMsTbZGEL4V0lfl/THklZKOlbSF3f0WEIIQdJFjS/ftaNPGMUYbw8hPEvZbHKnKHv74JnTFrtW0ttjjHftaP8AAMDej7fIAQCApnR3d+s973nPw1+/733v06ZNm5pe/6qrrlKtVtPSpUv17ne/e7vi0tR9XHzxxSoUCqrX61q7dm1L+j6Tk08+2bZff/31uvPOOx9eZmpxaaoY40WSftj48iWNDCRnVNLbphaXGuvXtX1w+lOb7fukEEJR2Vv1OiX9h6SP7+g2Gv5AWTZUYYbv/6Gklzf2BwAAsB0GCAAAoGnPfvaz9ad/+qeSpM2bN29XcJpNvV7XDTfcIEk67LDD1NXVNeOyBxxwgA49NIs0uummm3L2eGarVq3S6tWr7fcm+ypJr3zlK+fa1NSCjq9ESf8TY5ypGjc13Lt3rp0Zb1FWHBqV9LpG0WqHhBAulnSNpKdLulHZ2/YWNf69UNKPJO2jbEbBT1FkAgAA0/EWOQAAsEPOOecc3XDDDVq/fr2++c1v6thjj9WLXvSiWdf53e9+p/7+fknSD37wA2Xv6Jrb7373u9z9ncmaNWtm/N4dd9whKXui6rGPfexcm5paBXvyDMvcPcv6UzOXdmhs1ggXf1/jy3fHGOOOrN/YxnGSzml8+W1Jx8UYK1MW+UEI4UeSPifpJGUz4f2XpB0P4QIAAHst/voEAAB2yOLFi3XBBRc8/PWFF16orVu3zrrO5s2bd2pfExMTGhzc2czr2S1atGjG723ZskWS1NfXp0JhpneMPezBKZ8vm2GZ2Q5i6hNHc+5sUgihoGxWum5Jt0r6cLPrTjM5819N0unTikuSpBhjVdlsd5MX+k07uS8AALCX4gkmAACww4466ii9+MUv1re//W2tX79eH/jAB3TxxRfPuHy1Wn3485e//OV61ate1fS+Zns73UxqtdrcC82iXt+hd5mVpu461453zOmSjmx8/veSnmSeDDt4yucHhhCe1vj811Nmq/v9xsefzhYOHmPcEkK4XtJLJT0xhLAox4x3AABgL0OBCQAA7JTzzz9fN910k7Zs2aJrr71Wxx577IzLLlmy5OHPS6WSHv/4x+fa91wFoIGBgVzbn+zv5s2bVa/X53qKadWUz5tPPc/vWVM+/3QTy7+78U+Snq9t4eSTj3JtaWIbD035fLFmfzILAAAsILxFDgAA7JTly5frnHPOefjr8847TyMjI3bZAw444OEnkX7yk5/Mue0rr7xSX/jCF3TjjTdu1z4581ylUtnuqaipRkdHd/oteZMmnwQaHh5+OI9pFlMLPb/KteNHxvrGx0OaWHa/xseapA27pjsAAGA+osAEAAB22ste9jI997nPlSStW7dOX/va1+xy5XJZz3zmMyVJt99+u2655ZYZt/mf//mf+shHPqILLrhAV1yxfY50b++2SdbWrVtn17/xxhtVqSQxQjvkOc95zsOff/GLX5xr8TdM+fy7uXa8A2KMp8YYC7P9k3TilFVOm/K9H05pn5wy78AQwpGaQQhhtbInnyTp5hjjeEsPCAAAzGsUmAAAQC4XXXSRenp6JGnWws6pp5768OfnnHOO7r///mSZjRs36vzzz3/461e/+tXbfX9qxtDatWuT9Tds2KAPfvCDTfd9Ji94wQt00EEHSZKuueYaffe7vm4UQjhP23KQvh9jnPvxrD3P5VM+/0QIYb/pC4QQuiV9XtJkINalu6NjAABg/qDABAAAclmzZo3+6q/+as7ljjjiCJ188smSpHvuuUcvfelLddlll+nmm2/WzTffrKuuukove9nLdM89Wc70UUcdpRe96EXbbeNP/uRPHn6b3NVXX61zzz1XP/7xj3XLLbfok5/8pI4//njdddddOvDAA3MdU6lU0gc/+EGVy2XVajW95S1v0Tvf+U5df/3
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"for unit_id, id_num in results_id_map.items():\n",
|
|||
|
" sessions = once_a_gridcell.query(f'unit_id==\"{unit_id}\"')\n",
|
|||
|
" n_action = sessions.date.nunique()\n",
|
|||
|
" fig, axs = plt.subplots(n_action, 4, sharey=True, sharex=True, figsize=(8, n_action*4))\n",
|
|||
|
" sns.despine(left=True, bottom=True)\n",
|
|||
|
" fig.suptitle(f'Neuron {id_num}')\n",
|
|||
|
" if n_action == 1:\n",
|
|||
|
" axs = [axs]\n",
|
|||
|
" waxs = None\n",
|
|||
|
" for ax, (date, rows) in zip(axs, sessions.groupby('date')):\n",
|
|||
|
" entity = rows.iloc[0].entity\n",
|
|||
|
" ax[0].set_ylabel(f'{entity}-{date}')\n",
|
|||
|
" for _, row in rows.iterrows():\n",
|
|||
|
" action_id = row['action']\n",
|
|||
|
" channel_id = row['channel_group']\n",
|
|||
|
" unit_name = row['unit_name']\n",
|
|||
|
" rate_map = data_loader.rate_map(action_id, channel_id, unit_name, smoothing_low)\n",
|
|||
|
" idx = row.session_id\n",
|
|||
|
" ax[idx].imshow(rate_map)\n",
|
|||
|
" ax[idx].set_title(f'{row.gridness:.2f} {row.max_rate:.2f}')\n",
|
|||
|
" ax[idx].set_yticklabels([])\n",
|
|||
|
" ax[idx].set_xticklabels([])\n",
|
|||
|
" plt.tight_layout()\n",
|
|||
|
" fig.savefig(output_path / 'figures' / f'neuron_{id_num}_rate_map.png', bbox_inches='tight')\n",
|
|||
|
" fig.savefig(output_path / 'figures' / f'neuron_{id_num}_rate_map.svg', bbox_inches='tight')\n",
|
|||
|
" \n",
|
|||
|
" # waveforms\n",
|
|||
|
"# template = data_loader.template(action_id, channel_id, unit_name)\n",
|
|||
|
"# if waxs is None:\n",
|
|||
|
"# wfig, waxs = plt.subplots(1, template.data.shape[0], sharey=True, sharex=True)\n",
|
|||
|
"# for i, wax in enumerate(waxs):\n",
|
|||
|
"# wax.plot(template.data[i,:]) \n",
|
|||
|
"# if i > 0:\n",
|
|||
|
"# ax.set_yticklabels([])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 51,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8W+d95/svAAIEuO/7JonioTZLsiVLtuXYSdskzdLc3qZNt5mbLpmmiWNn6TRtb5JOepuZTD1tnT1zJ2nT5baJm7ZJbtzUcZw4tiRLlrUv5BEpcZG4L+KOjQDmDwAnAAlwAyVK8uf9evFFEjgAHpDAwTnf5/c8jy0SiQgAAAAAAABYK/tGNwAAAAAAAAB3NgImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZCRroxsAAADuPIZhvCDpkdivHzNN81MrvN3nJb0/9usm0zS71791WAnDMFySTknaIekB0zSPbXCTAADAHYwKJgAAkKmPG4axbaMbgVX7b4qGSwAAABkjYAIAAJnKlvRVwzA4rrhDGIbxh5I+vNHtAAAAdw+GyAEAgPXwgKTHJT210Q1BerFhcZ+R9N6NbgsAALi70NMIAAAyEZY0H/v5U4ZhbN7IxiA9wzDul3REPwmXQhvYHAAAcJchYAIAAJkISnoy9nOOpP+1gW1BGoZhfFrSMUn7Yhd9W1SbAQCAdcQQOQAAkKlPSvp5Sa2S3mAYxntM08woaIpNGv6YpJ+SVCfJJumapB9J+pxpmpfS3O4FRVe385um6V7i/i8oOsF1j2maTQuui8R+/JCkZyR9XtIhRcO0Tkl/YJrmDxK2L5D025LeIWmnpHxJY5JOS/onSX9nmua8FjAMo0lSV+zXn5f0HUnvlvQfY23Ll9Qn6VlJf26a5pV0z2cFDir6NxyX9PumaX7VMIz/ksH9AQAAJKGCCQAAZMQ0Tb+iAUs4dtGThmHUrvX+DMP4uKTzkt4nyZCUq2h1lKHo8K7zhmH8F8MwbBk1fHn1ig4pe2Ps8Qsl3atoyBRv6+sltUv6c0mvk1QiySmpStLPSvorSacNw9iyzGPlSPqBpK8qGpCVKTp5+mZJvyvpomEYb8ngudyQ9N8lNZum+dUM7gcAACAlAiYAAJAx0zSPSPpC7NdCSV9ey/3Eqmr+RJJD0jlFA6UHFa0gekLSFUWPX/449nUzfVDRoOfPJD0s6Rcl/VfTNLtjbX1A0QqnakkRSX8v6eckHZD0y5K+H7ufnZJeMgyjeonH+nNJr1d0GNt/iN3H/yHpudj12ZK+ZhhG3hqfyy+YpvkHpmneWOPtAQAAlsQQOQAAsF7+UNLbJTVJepthGL9qmuY/rPTGhmHcK+njsV//TtJvLhhadsQwjK9K+q6kRyV9wjCMp9MNl1sHdkUDpf874bJvxtrqULQ6yaNo5da7TNP8ZsJ2r0j6hmEYn1B0CGG1pP+paACVSpWiz/ndpmnGK8FkGMZ3FH2+b5FULumtkr6x2ieSeJ8AAAA3AxVMAABgXZimOSvpPyVc9BnDMMpXcRcfUfTYZEzSe1PNWxR7jN9UtGLIJukDa2/xinwpzeVvV3TOKUn60oJwyWKa5p9IeiF+G8Mwtqe5P5+kDy4MgkzTjCh54vTdK2k0AADArUbABAAA1o1pms9J+uvYr2WSPreS28XmU/rZ2K9HTNOcW+IxuiS1xX79qTU2dSX6TNO8nua6NyX8/D+XuZ8vJvz85jTbnDRNczzNdYmTe+cv81gAAAAbgiFyAABgvX1Y0SClWtK7DMP4R9M0v73MbZokFcd+/rmEldyWs2ltTVyRa0tctzP2fUbShWXu51jCz7vSbNO9xO1nEn7m2A0AANyWqGACAADryjTNCUnvT7joS4ZhFC1zs7I1PlyWYRg3q6pnaonrSmPfR2PD2JYylPBzSZptZtJcLkWHA8bd7JXzAAAA1oReMAAAsO5M0/xXwzD+SdGV16oVXSXtt5a4SeIxyV9phUPrYtIOp1vCSjrZlgqOVhP0OBJ+ZrJtAABwVyJgAgAAN8tjkt6gaLXPbxqG8fUltk2cfyhkmuaZNT5mPBRaLgAqXOP9x8XbW2YYhm2ZKqbKFLcDAAC4qzBEDgAA3BSmaQ5L+lDCRf+vpNw0m1/VTyqRDi5334ZhfNQwjN8xDOOnF1wVX3nOZRiGY+HtYrf1SFrN6napnIt9z5O0Y5ltE59Pe4aPCwAAcFsiYAIAADeNaZp/J+l7sV+bJP1amu2Ckn4U+3WXYRiH0t2nYRhvkPRpSV+W9EcLrp5I+LkpzV38tCTnUu1ege8n/Pw7y2z73oSfn8vwcQEAAG5LBEwAAOBm+x1J07Gflwp2/iLh568ZhlG/cAPDMCoUrYSK++yCTc4l/PyBFLevlPTkkq1dme9I6oz9/D7DMH4+1UaGYXxc0iOxX5/PYOgfAADAbY05mAAAwE1lmuY1wzA+KumLy2z3Q8MwviTpdyVtkXTWMIynJP04tsk+SR+WVBP7/V9N0/zWgrv5R0mfUPQY54nYCnNfl+RTdKjaB2O3vxJ7jLU+p5BhGP8h1jaXpG8ahvH3kv5J0rCkRkUnNX9T7Cajkv6vtT4eAADA7Y6ACQAA3ApflvTLkl63zHYfUDQM+qCkYkmfTLPdv0j69YUXmqbZaRjGBxWtbLJL+s3YV1xY0WF1pZI+sor2L2Ka5jHDMN4s6RuKzun0H2NfC52S9C7TNPsyeTwAAIDbGUPkAADATRdbZe23JXmX2S5kmuaHJe1VNJRqlzQjKSipT9I/S3qraZq/YJpmyvsyTfMLkvZL+ntJ1yUFJA1IelrSIdM0/9u6PKnoY/1IUrOkP5B0RNFV4gKSuiV9V9IvSTpommZnuvsAAAC4G9gikaVW1QUAAAAAAACWRgUTAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEwAAAAAAADICAETAAAAAAAAMkLABAAAAAAAgIwQMAEAAAAAACAjBEw
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAYXCAYAAAAkLcCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8XNWB9//vzEijZkm2iiVZVnM7tmyDbTCEXpaWDUlI8iQku2F/2ZQN4aGl7JNsIIQlhGRDQgIhDdgQAiG0xClAQnNoBoOL3O2LLKv3ZvUy7ffHFM9II1n2tS0bPu/XSy/NzC1z5s7MnXO/95xzHYFAQAAAAAAAAMDhck53AQAAAAAAAHBiI2ACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANiSMN0FAAAAJx5jzMuSzgvdvdmyrO9Ocbl7Jf3f0N0yy7JqjnzpEI8xZo6kayRdKmmBpDRJXZIqJD0m6XeWZXmnr4QAAOBERgsmAABg17eMMUumuxCYmDHmE5IsSTdJOlXSTEmJkvIkXSbpN5LeMMYUTlcZAQDAiY2ACQAA2JUk6X+NMdQrjkPGmH+S9KikGZKGJd0l6RJJp0v6lKRXQ7OulvSsMSZ1OsoJAABObHSRAwAAR8IZkq6X9JPpLggOMMY4JN0ryaVguHSBZVnro2Z52xjzuKSfS7pa0kmSbpR0x7EuKwAAOLFxphEAANjhlxQet+e7xph501kYjHOGpMWh2/eMCZckSZZlBSR9WVJb6KF/O0ZlAwAA7yIETAAAwA6PpDtDt1Ml3T+NZcF450Td/stEM1mWNSzp9dBdY4xJOqqlAgAA7zp0kQMAAHb9t6SPKNhS5kJjzBcsy7IVNIUGDb9W0j9JmivJIale0j8k/dSyrF0TLPeygle3G7EsK3mS9e+QtFRSrWVZpWOmBUI3vyzpGQW7mJ2tYJi2V9I3LMt6MWr+DEmfl/RhScskpUvqVPDqbE9Kejje1dmMMaWSqkN3P6JgAPQZBVsQLQ2tp1HSc5J+ZFlW1USvZxJvS/qepDmhsk/GEXU7WdLIYTwfAAB4j6IFEwAAsMWyrBEFAxZ/6KE77VyNzBjzLUnbJV0jyUhKU7B1lFFwnKDtxphbQ+MLHU1FktYpOCB2qqRMSasUFdQYYy6QtEfSjySdKylLwauz5Ut6v6RfS6owxsw/yHOlSnpR0v8qGJDlKDh4+jxJX5K00xjzz4f6AizL+odlWd+0LOszlmW1TjSfMSZR0lmhuz2WZfUc6nMBAID3NgImAABgm2VZ6yT9LHQ3U9IvD2c9xphbJd2m4KDU2xQMlM5UsAXRDZKqFKy/fDv0dzTdqGDQ8wMFu5p9XNIdlmXVhMp6hoItnAokBSQ9IulDCl6d7ZOSng+tZ5mk14wxBZM8148kXSBpvaSrQuu4QtILoelJkn5jjJlxhF7bWJ+VNDt0+7mj9BwAAOBdjC5yAADgSPkvSR+UVCrpcmPMv1iW9ehUFzbGrJL0rdDdhyV9dkzXsnXGmP+V9LSk8yXdYox5YqLuckeAU8FA6aaox54KldWlYOukFAVbbl1pWdZTUfO9LelxY8wtCnYhLJD0KwUDqHjyFXzNn7EsK9wSTMaYvyj4ev9ZUq6kD0h63P5LO8AYs0DS96Me+tGRXD8AAHhvoAUTAAA4IizLGpD0H1EP3W2MyT2EVXxVwbpJp6Sr441bFHqOzyrYYsgh6brDL/GU/GKCxz+oA1dn+8WYcCnCsqzbJL0cXsYYUz7B+oYl3RgdLoWWDyh24PSTp1LoqTLGzFYwwJoZeugBy7LePpLPAQAA3hsImAAAwBFjWdYLkh4M3c2R9NOpLBcaT+n9obvrLMsanOQ5qiXtDt39p8Ms6lQ0WpbVMMG0S6Nu/+og6/l51O3LJphnk2VZXRNMix7cO/0gzzVlxph8SS8pOLaVFByU/PojtX4AAPDeQhc5AABwpH1FwSClQNKVxpjfW5b154MsUyppVuj2h6Ku5HYwZYdXxCmpn2TastD/fkk7DrKe9VG3l08wT80ky/dH3T4idbfQoOPPSQoPPm5Jer9lWUNHYv0AAOC9hxZMAADgiLIsa7+k/xv10C+MMTMnmj8k5zCfLsEYc8Ra9YzRO8m07ND/jlA3tslEX70ta4J5+id4XAp2BwyzfeW80ODkb+pAuLRT0gWTXWUOAADgYGjBBAAAjjjLstYYY55U8MprBQoOHP25SRaJrpP8WlPsWhcyYXe6SUzlJNtkwdGhBD2uqNv+Cec6BowxH5f0W0nJoYfekvQBy7I6p69UAADg3YCACQAAHC3XSrpQwdY+nzXGPDbJvNHjD/ksy9pymM8ZDoUOFgBlHub6w8LlzTHGOA7SiikvznLHnDHmGkn36sC2eUbSJyYb7woAAGCq6CIHAACOCsuy2iR9Oeqh+ySlTTD7Ph1oifS+g63bGPN1Y8wXjTEXjZkUvvKc2xjjGrtcaNkUSYdydbt4toX+z5C09CDzRr+ePTaf97AYY74k6Wc6EC7dL+nDhEsAAOBIIWACAABHjWVZD0v6W+huqaR/nWA+j6R/hO4uN8acPdE6jTEXSvq+pF9K+uaYyfujbpdOsIqLJCVOVu4peD7q9hcPMu/VUbdfsPm8hywUwt0b9dB3Lcv6D8uyfMe6LAAA4N2LgAkAABxtX5TUF7o9WbBzV9Tt3xhjisbOYIyZrWBLqLB7xsyyLer2dXGWz5N056SlnZq/SNobun2NMeYj8WYyxnxL0nmhuy/Z6Pp3WIwxmZIe0oE6348ty7r5WJYBAAC8NzAGEwAAOKosy6o3xnxd0s8PMt9aY8wvJH1JwSucbTXG/ETSK6FZTpX0FUlzQvfXWJb1pzGr+b2kWxSs49wQusLcY5KGFeyqdmNo+SoduIra4bwmnzHmqlDZ3JKeMsY8IulJSW2SShQc1PzS0CIdkv6/w30+G67Tge1VI+lRY8yKKSy3y7Ks0aNWKgAA8K5DwAQAAI6FX0r6pKRzDzLfdQqGQTdKmiXpvyeY74+SPj32Qcuy9hpjblSwZZNT0mdDf2F+BbvVZUv66iGUfxzLstYbYy6T9LiCYzr9W+hvrM2SrrQsq9HO8x2m/4i6XSppwxSXK1MwkAIAAJgSusgBAICjLnSVtc9LGjrIfD7Lsr4iaaWCodQeSf2SPJIaJf1B0gcsy/qYZVlx12VZ1s8krZb0iKQGSaOSmiU9Ielsy7K+d0ReVPC5/iFpgaRvSFqn4FXiRhUMZ56W9AlJ77Msa+9E6zhajDE5ksZ1MwQAADgaHIHAZFfVBQAAAAAAACZHCyYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgAAAAAAgC0ETAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgAAAAAAgC0ETAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAAD
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8W3ed7/+3JEved8eOl3hJ0pw4ztakSUpDW5jCZRjovcAs5fcbGGb4DT+Y3pa2DFMYYPhdGAYYGKClUGCAYRgYaNnmFtpboDOUpG3IvjWJc+I43mIntuXdsmTJkn5/SDqVZMlLlMZN8no+Hn1Yko90vlp8mvPW5/v52sLhsAAAAAAAAIBLZV/qAQAAAAAAAODqRsAEAAAAAACAjBAwAQAAAAAAICMETAAAAAAAAMgIARMAAAAAAAAyQsAEAAAAAACAjBAwAQAAAAAAICMETAAAAAAAAMgIARMAAAAAAAAyQsAEAAAAAACAjBAwAQAAAAAAICMETAAAAAAAAMgIARMAAAAAAAAyQsAEAAAAAACAjGQt9QAAAMDVxzCM30q6PXr1Y6Zp/sMC7/cVSf8zerXJNM3Oyz86pGIYxmpJ90t6vaR6ST5JHZJ+JumfTdMcWMLhAQCAqxwVTAAAIFN/ZxhG81IPAukZhvHnkl5UJNxbIylHUomkGyX9vaSThmH8wZINEAAAXPUImAAAQKayJX3bMAz+XfEKZBjGGyX9iyKhklfSpyT9N0lvkPQZSdOSKiT9xDCMLUs1TgAAcHVjihwAALgcXiXp/ZIeWuqB4CXR0O8rkmyS/JJuNU3zUNwmvzYM45eSnpWUK+mzioRPAAAAi8I3jQAAIBMhSTPRy/9gGMbKpRwMZvk9SbH35CtJ4ZIkyTTN3ZKeil59vWEYpVdqcAAA4NpBwAQAADIRkPT56OU8Sd9cwrEgtScldUt6Yo5tWuMur3h5hwMAAK5FTJEDAACZ+oSkt0paK+n3DMN4j2maGQVN0abh90i6Q1KdIlO8ehSZyvWIaZqn0tzvt4qsbjdtmmbOHI9/QlKLpC7TNBuTfheOXnxAkcqer0h6tSJh2llJHzZN8z/jti+S9JeS/oek9ZIKJQ1JOiLpx5K+Z5rmjJIYhtGoyCpuUuT1+7mkP5f0Z9GxFUrqlfQrSV8wTbM93fNJJzrO/5x3Q6kh7vKFxe4HAACACiYAAJAR0zSnFQlYQtGbPm8YRu2lPp5hGH+nyIpnd0syJOUrUh1lSHqfpBcNw/hfhmHYMhr4/FZIekGRnkR5koolbVEkZIqN9bWSTkv6gqTbJJVJckpaLinWXPuIYRir5tlXniJB0LcVCcgqFGmevlLSX+llXOXNMIxtkt4SvfqsaZqDL8d+AADAtY2ACQAAZMw0zRckfTV6tVjS1y/lcQzD+F+SPinJIem4IoHSLYpUEN0nqV2Rf7/8f9H/Xk73KxL0fE7SrZL+WNKnTdPsjI71VYpUOFVLCkv6vqT/LmmHpLdL+nX0cdZLes4wjOo59vUFSa+VtFfSO6OP8RZJz0R/ny3pXw3DKMj0SRmGYTMMo9AwjC2GYXxJ0m+jjz+iSNUYAADAojFFDgAAXC5/K+lOSY2S3mwYxv9tmuYPFnpnwzC2SPq76NXvSXp30tSyFwzD+LYiPYVeI+njhmH8KN10ucvArkig9NG4234SHatDkeqkXEUqt+4yTfMncdvtl/S4YRgfV2QKYbWkbygSQKWyXJHn/OemacYqwWQYxs8Veb5/IGmZpDdJejzD5/Wn0X3Fe0HSX5qmeTrDxwYAANcpKpgAAMBlYZqmR9L/G3fTw4ZhLFvEQ/y1Iv82GZL0vlR9i6L7eLciFUM2Sfde+ogX5Gtpbr9TkZ5TkvS1pHDJYprmJxWpEJKkOw3DWJfm8XyS7o8Pl6L3DyuxcfqmhQx6Hg0pbtsg6V5WkAMAAJeKgAkAAFw2pmk+I+k70asVkh5ZyP2i/ZTeGL36gmmaU3Pso0MvrXp2xyUOdSF6TdM8n+Z3b4i7/I15HufRuMu/n2abQ6ZpDqf5XXxz78J59rUQuyS9XpFpeO9UZFpekSI9r3YbhlF5GfYBAACuM0yRAwAAl9sHFAlSqiXdZRjGD03TfGKe+zRKilXP/Pe4ldzm03RpQ1yQnjl+tz76c1LSiXkeZ2/c5Q1ptumc4/6TcZcz/rebaZrPx13dbxjGDxSpknq3Is/rnxRZyQ4AAGDBqGACAACXlWmao5L+Z9xNXzMMo2Seu1Vc4u6yDMO4HFU9qYzP8bvy6E93dBrbXPrjLpel2WYyze1SZDpgzGVfOS86Le9uSb3Rm+4yDCPvcu8HAABc2wiYAADAZWea5n9I+nH0arUiq6TNJb4y518k3biI/9JOp5vDQv4NNFdwtJigxxF3OZR2qyVkmua0IiviSZJLL/WXAgAAWBCmyAEAgJfLPZJ+T5Fqn3cbhvHYHNvG9x8KmqZ59BL3GQuF5guAii/x8WNi460wDMM2TxVTVYr7XRHRpt2rJC03TfPJeTYfirvsevlGBQAArkVUMAEAgJeFaZoDkh6Iu+mfJeWn2fycXqpEunm+xzYM40OGYbzXMIzXJf0qtvKcyzAMR/L9ovfNlbSY1e1SOR79WSCpZZ5t45/P6Qz3u1jfk3RA0s8XsKLfqrjL6ZqbAwAApETABAAAXjamaX5P0tPRq42S/jTNdgFJz0avbjAM49XpHtMwjN+T9FlJX5f0kaRfj8ZdbkzzEK+T5Jxr3Avw67jL751n2/fFXX4mw/0u1nPRnzZFmninZBjGcklvil49PcfqeQAAACkRMAEAgJfbeyVNRC/PFex8Me7yvxqGsSJ5A8MwKhWphIr5ctImx+Mu35vi/lWSPj/naBfm55LORi/fbRjGW1NtZBjG30m6PXr1vzKY+nepvivJE738EcMwZq1iF22S/iO9VF322Ss0NgAAcA2hBxMAAHhZmabZYxjGhyQ9Os92vzEM42uS/kqR6VrHDMN4SNKu6CY3SfqApJro9f8wTfN/Jz3MDyV9XJF/49wXDU8ek+RTZKra/dH7tytxSthin1PQMIx3RsfmkvQTwzC+r0hj8wFJDZL+H0lviN7FLeldl7q/DMZ50TCMD0r6mqQiSfujr+lvFVklb5si0xgbo3d5TNK/XelxAgCAqx8BEwAAuBK+Luntkm6bZ7t7FQmD7pdUKukTabb7maR3JN9omuZZwzDuV6Syya7ItLD4qWEhRabVlUv660WMfxbTNPcahvH7kh5XpKfTn0X/S3ZY0l2mafZmsr9LZZrm1w3DyFakcitH0oej/yX7mqT75mlYDgAAkBJT5AAAwMsuGlr8pSTvPNsFTdP8gKQbFQmlTkualBSQ1Cvpp5LeZJrmH5qmmfKxTNP8qiKVOd9XpFm1X9IFRaaBvdo0zc9clicV2dezklYrEti8oMgqcX5JnZKelPQnkm42TfNsuse4EkzTfFjSeklflWQq8j54FZnm921JN5mmeXe0FxYAAMCi2cJhvqQCAAAAAADApaOCCQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAI
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XGd97/HvzGhGo12WtViydls+3rcQZyFxApSGNBfKUi60BJpCKIEmzQLtpdw0DdzQhUAhpA1LA4TQEgK5KbdA6kDIQhJix6sc29KxLWtfrd1aZj/3j5k5mZFGizNO5ITP+/Xyy6PRmTPPjPXSPP6e3/N7HJZlCQAAAAAAAHilnEs9AAAAAAAAALy+ETABAAAAAAAgLQRMAAAAAAAASAsBEwAAAAAAANJCwAQAAAAAAIC0EDABAAAAAAAgLQRMAAAAAAAASAsBEwAAAAAAANJCwAQAAAAAAIC0EDABAAAAAAAgLQRMAAAAAAAASAsBEwAAAAAAANJCwAQAAAAAAIC0EDABAAAAAAAgLRlLPQAAAPD6YxjG05KuiH15u2maX1zk4/5F0l/EvqwzTbPt3I8Oi2UYxjZJLyo6J/wz0zQfWNoRAQCA1ysqmAAAQLr+1jCMdUs9CJwdwzDckr4nLjgCAIBzgIAJAACkK1PSdwzDYF7x+vI5SVuWehAAAOCNgYkgAAA4Fy6R9JdLPQgsjmEYmyX976UeBwAAeOMgYAIAAOmISArFbn/RMIz6pRwMFmYYRoaiS+PckgaXeDgAAOANgoAJAACkIyjp7tjtbEn/toRjweL8taTtkoYl3bm0QwEAAG8UNHUEAADp+ryk90haK+mthmF83DTNtIKmWNPwGyW9TVKlJIekTklPSbrXNM1jczzuaUV3t/Obpumd5/xHJG2Q1G6aZu2M71mxm7dK+oWkf5F0maJh2klJnzVN84mE4/MlXS/pDyVtlJQnaUjSQUk/kfQD0zRDmsEwjFpJrbEv3yPpvyRdJ+kjsbHlSeqW9Likr5im2TLX61kswzDWS7oj9uVtkibTPScAAIBEBRMAAEiTaZp+RQOWSOyuuw3DWPlKz2cYxt9KeknSpyQZknIUrY4yJN0g6SXDMO40DMOR1sAXViXpeUm/H3v+AkUrf04mjPUtkpolfUXSTklFii49WyHpaknflXTQMIxVCzxXtqQnJH1H0YCsWNHm6fWSPinpqGEYf5DOizEMw6Xo0rhMSY+bpvn9dM4HAACQiIAJAACkzTTN5yX9a+zLAknffCXnMQzjTklfkOSSdFjRQOlSRSuIbpbUouj85e9if15Ntyga9HxJ0uWS3i/p703TbIuN9RJFK5zKJVmS/l3SuyRdJOmDkn4ZO89GSc8ahlE+z3N9RdJbJO2W9OHYOd4t6Vex72dKesAwjNw0Xs9tknZImpD052mcBwAAYBaWyAEAgHPlbyS9U1KtpP9hGMafmKb5w8U+2DCM7ZL+NvblDyR9dMbSsucNw/iOpJ9LulLSHYZh/Hiu5XLngFPRQClxt7VHYmN1KVqdlKVo5dYHTNN8JOG4FyU9bBjGHYouISyX9C1FA6hUVij6mq8zTTNeCSbDMP5L0df7B5JKJF0j6eGzfSGGYRiKBndSdIlfx9meAwAAYD5UMAEAgHPCNM1JJVfG3GMYRslZnOLTis5NhiTdkKpvUew5PqpoxZBD0k2vfMSL8o057n+noj2nJOkbM8Ilm2maX5D0dPwxsR5Iqfgk3ZIYLsUebym5cfqWxQw6kWEYTkXDMK+k5yTdd7bnAAAAWAgBEwAAOGdM0/yVon1+pOjysnsX87hYP6WrY18+b5rm1DzP0SqpKfbl217hUBej2zTNrjm+d1XC7W8tcJ7EQOcdcxyz3zTN4Tm+l9jcO2+B50rlLxVdZuiTdH0stAIAADinWCIHAADOtdsUDVLKJX3AMIyHTNP8fws8plbSstjtdyXs5LaQulc2xEXpnOd7G2N/T0g6ssB5difc3jTHMW3zPH4i4fZZzd1izcW/GPvy86ZpmmfzeAAAgMWiggkAAJxTpmmOSvqLhLu+YRhG4QIPK36FT5dhGMYrqepZjPF5vrc89vfgIiqC+hNuF81xzMQc90vR5YBxi945L1YV9h1Fd6g7KOnLi30sAADA2aKCCQAAnHOmaf6nYRg/UXTntXJFd0n72DwPSZyTfFeLXFoXM+dyunks5iLbfMHRooMeRXfEi4vMedS59wlJV8Ruf13Sxmiv7yS1CberDcPYGrt90jTN+UIvAACAJARMAADg1XKjpLcqWu3zUcMwfjTPsYn9h8KmaR56hc8ZD4UWCoAKXuH54+LjLTYMw7FAFVNZise9Fi5OuP29OY962edjfyTpLXq5OTkAAMCCWCIHAABeFaZpDki6NeGub0vKmePwU3q5EuniOY6xGYbxvwzD+IRhGL8341vxnec8hmG4Zj4u9tgsSWezu10qh2N/50rasMCxia+nOc3nBQAAOC9RwQQAAF41pmn+wDCMP1Z0h7haSR+a47igYRhPSbpG0ibDMC4zTfO5VMcahvFWSf8Y+/IpSU8kfHs04Xatkndgi/s9Se6zeBmp/FLSDbHbn5B00zzH3pBw+1dpPu+imaZ5naTr5jvGMIw/kvST2Jd/ZprmA6/uqAAAwBsVFUwAAODV9glJZ2K35wt2/jnh9gOGYVTNPMAwjFJFK6Hivj7jkMMJt2eFPoZhlEm6e97RLs5/SToZu/0pwzDek+ogwzD+Vi/3Qfp1Gkv/AAAAzmtUMAEAgFeVaZqdhmH8L0n3LXDck4ZhfEPSJyWtktRoGMbXJD0TO+RNkm6TVBH7+j9N0/zpjNM8JOkORec4N8d2mPuRJJ+iS9VuiT2+JfYcr/Q1hQ3D+HBsbB5JjxiG8e+KVgMNSKpRtKn5VbGHDEr601f6fAAAAOc7AiYAAPBa+KakD0raucBxNykaBt0iaZlebjo906OSrp15p2maJw3DuEXRyianpI/G/sRFJH1O0cbjnz6L8c9imuZuwzDeIelhRXs6fST2Z6YDkj5gmmZ3Os8HAABwPmOJHAAAeNXFdlm7XtL0AseFTdO8TdI2RUOpZkkTkoKSuiX9X0nXmKb5PtM0U57LNM1/lXShpH+X1CUpIKlX0o8lXWaa5j+ckxcVfa6nJK2W9FlJzyu6S1xAUpukn0v6n5IuNk3z5FznAAAAeCNwWNZ8u+oCAAAAAAAA86OCCQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8W/d97/83ABIEuMQ9xSFqHIla1rAs2/LqtZ22iXvTprfJ47ZpM5u08cpok7ZJbprZJk1ix42btL82bnaaxE2b0XjFI7YlWyI1LemIlMQ9wT0AYv7+AHAMcEugSEl+PR8PPggQBwdfguAZ7/P5fr+2SCQiAAAAAAAA4GLZV7oBAAAAAAAAuLIRMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlaSvdAAAAcOUxDOMZSbfE7n7UNM3PLPJ5/yjpfbG7a0zTbFn61mE6wzD+SNK3Frn4203TfOQSNgcAAFyFqGACAACp+phhGJtWuhGY146VbgAAALi6UcEEAABSlSHpXw3D2GeaZnilG4NZXRP7fkTS2xdYtu0StwUAAFyFCJgAAMBSuF7SvZIeWOmGYFbbY98PmKZ5ZEVbAgAArkp0kQMAAKkISwrGbn/GMIy6lWwMZjIMo0pSYewu4RIAALgkCJgAAEAqApK+ELudKelfVrAtmF3i+EuHV6wVAADgqkYXOQAAkKq/lfS7kjZK+g3DMN5tmmZKQVNs0PC7Jf0vSasl2SS1S3pa0kOmaZ6c43nPKDq73ZRpmq551n9C0mZJraZp1k57LBK7+X5JP5f0j5L2KRqmNUv6iGmaTyYsnyvpXZL+t6QtknIkDSga5vxQ0rdM0wxqGsMwaiWdj939XUn/Leltkv441rYcSZ2SHpP0RdM0z871+ywgPv5SSNLxi1wHAADAvKhgAgAAKTFNc0rRgCU+wPcXDMOovNj1GYbxMUWDkD+XZEjKUrQ6ypD0XknHDcP4hGEYtpQavrAqSS9IujP2+qsk7VQ0ZIq39TZJpyV9UdLNkgokpUsqk/Rbkv5N0mHDMNYu8FqZkp6U9K+KBmRFig6eXifpzyS9YhjGb1/k7xEPmE5Hm2z8i2EYZw3DmDIMY8AwjF8ZhvEOwzAcF7l+AAAAAiYAAJA60zRfkPTV2N1Vkr52MesxDOMTkj4pySHpmKKB0g2KVhDdJ+msoscv/y/2dSndr2jQ83lJN0n6P5I+a5pmS6yt1yta4VQuKSLp25J+R9J1kt4i6fHYerZI+rVhGOXzvNYXJd0m6YCkt8bW8UZJT8Qez5D0iGEY2Rfxe8QDphpJjYqGgXWSnIoGYrcpGmw9bxhGyUWsHwAAgC5yAABgyfyVpLsk1Up6g2EY/9c0ze8u9smGYeyU9LHY3W9Jese0rmUvGIbxr5J+JulWSR83DOM/5uoutwTsigZKf5Pwsx/F2upQtDrJrWjl1ptN0/xRwnIvS/qBYRgfV7QLYbmkrysaQM2mTNHf+W2macYrwWQYxn8r+vv+tqRiSa+X9IPF/gKGYayStCZ2N1tSj6Jd/vZL8ikaPt2raHXYXkm/NAzjBtM0fYt9DQAAAIkKJgAAsERM05yQ9KcJP3rQMIziC1jFBxU9NhmQ9N7Zxi2KvcY7FK0Yskm65+JbvCj/NMfP71J0zClJ+qdp4ZLFNM1PSnom/hzDMOrnWJ9P0v2J4VLs+RElD5y+fTGNTnBNwu1DkraZpvkZ0zR/ZZrmi6ZpPqzoIOC/jC2zQ9JHLvA1AAAACJgAAMDSMU3zCUnfiN0tkvTQYp4XG0/pt2J3XzBNc3Ke1zgv6VTs7v+6yKYuRqdpmh1zPPa6hNtfX2A9Dyfc/s05lmkwTXNwjscSB/fOWeC1pntB0obY695lmmb/9AVM0/RK+kNJo7Ef3cN4TAAA4ELRRQ4AACy1DygaaJRLerNhGN8zTfO/FnhOraT82O3fSZjJbSFrFl7korXP89iW2PdxSScWWM+BhNtb51imZZ7njyfcvqBjt1gVWFPsa77lBg3D+LGktys6LtMORSueAAAAFoUKJgAAsKRM0xyW9L6EH/2TYRh5Czyt6CJfLs0wjAut6lms0XkeK4x998S6sc2nN+F2wRzLjM/xcynaHTDuUs6cdzThdvUlfB0AAHAVooIJAAAsOdM0/9MwjB8qOvNauaKzpL1znqckHpP8mxbZtS5mzu5081jMRbb5gqMLCXoSu5uF51xq5SW+j84VawUAALgiETABAIBL5W5Jv6Fotc87DMP4/jzLJo4/FDJN88hFvmY8FFooAFp1keuPi7e3yDAM2wJVTKWzPG9ZGIaxS9FuhEWSvr5AO0sSbvdd0oYBAICrDl3kAADAJWGaZp+k9yf86J8lZc2x+Dm9WkGzd6F1G4bxYcMw3mMYxu3THorPPOeca6BqwzDcki5kdrvZHIt9z5a0eYFlE3+f0ym+7oX6uKQfKjob3sYFlt0X+x6W1HgpGwUAAK4+BEwAAOCSMU3zW5L+J3a3VtHZymZbLiDp6djdrYZh7JttOUkyDOM3JP2dpK9J+utpDw8n3K6dYxW3S0qfr92L8HjC7fcssOx7E24/keLrXqhnE27/8VwLGYaxWdKdsbuPxcbRAgAAWDQCJgAAcKm9R9JY7PZ8wc6XEm4/YhhG1fQFDMMoUbQSKu4r0xY5lnD7nlmeXyrpC/O2dnH+W1Jz7PafG4bxu7MtZBjGxyTdErv7VApd/y7Wt/Xqe3+fYRjXTV8g9p7+QNHjwrCkTy1f8wAAwNWCMZgAAMAlZZpmu2EYH5b08ALL/cowjH+S9GeS1ko6ahjGA3q1Cme3pA9Iqojd/0/TNH8ybTXfU7RbWJqigUqOpO9L8inaVe3+2PPPxl7jYn+nkGEYb421zSnpR4ZhfFvR7mh9kmoUHdT8dbGneCT9ycW+Xgrt7DMM40OSvi7JLenp2Hv6mKLdCfdK+gu9Ok7Up03T3L/c7QQAAFc+AiYAALAcvibpLZJuXmC5exQNg+6XlC/pb+dY7lFJfzT9h6ZpNhuGcb+ilU12Se+IfcWFFe1WVyjpgxfQ/hlM0zxgGMZvKlr9U6xoF7TZuqE1SnqzaZqdqbzexTJN859j4059QdGQ6a9iX4mCkj5jmuYnlrl5AADgKkEXOQAAcMnFZi97lyTvAsuFTNP8gKQdioZSpyWNSwpI6pT0Y0mvN03zTaZpzrou0zS/KulaRbuHdUjyS+qW9B+S9pmm+bkl+aWir/W0pHWSPiLpBUVnifNLapH0M0l/IGmvaZrNc61jOZim+aCkLZL+UdH3dDL21aToAOC7CJcAAEAqbJHIfLPVAgAAAAAAAPOjggkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgiYAAAAAAAAkBICJgAAAAAAAKSEgAkAAAAAAAApIWACAAAAAABASgi
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XGl95/tvValKS2lXafUieT2WZcvtDWzsBpqZhKUhCSET8hoycwkhCUloQpa5JHMhIbkMkwsXJiEhkDtJYEheSQghyUDTdDdNuzd3u2237bYsy8fyIsna912qKlXV/aOqDlVSlVTS0eLl83699FItp6qekqrOec7v+T2/xxGJRAQAAAAAAACslHOjGwAAAAAAAIB7GwEmAAAAAAAA2EKACQAAAAAAALYQYAIAAAAAAIAtBJgAAAAAAABgCwEmAAAAAAAA2EKACQAAAAAAALYQYAIAAAAAAIAtBJgAAAAAAABgCwEmAAAAAAAA2EKACQAAAAAAALYQYAIAAAAAAIAtBJgAAAAAAABgCwEmAAAAAAAA2JK10Q0AAAD3HsMwnpP0ltjVT5qm+d8yfNyfS/r12NVtpmm2rX7rkI5hGEcl/YqkRyRVS5qTZEr6tqQ/N01zcgObBwAA7mFkMAEAALs+ZRhG/UY3AukZhuEwDOP/lfSqpF+UtF1SrqQCSUck/XdJFw3D2LFxrQQAAPcyAkwAAMCubEl/bRgG/Yq71xck/bYkh6Q7kh6TdFLSeyQ9Httmp6THDcPI3pAWAgCAexpT5AAAwGo4Luljkv5koxuCZIZhHJf08djVK5LeZprmQMImjxuG8TeSfkHSHkkfkvSV9W0lAAC41zHSCAAA7AgrWsdHkv6bYRjbN7IxSOnTimYuzUl637zgUtzvSArGLv/MOrULAADcRwgwAQAAO4KSPh+7nCfpf25gWzCPYRiVkv5d7OrXTNO8nmo70zSHFa3D9BeSnlin5gEAgPsIU+QAAIBdfyjpvYpOr3qbYRi/ZJqmrUBTrGj4RxUNjmzWj2oHnZL0Z6ZpXk3zuOcUXd3Ob5pmziLPf0VSg6R20zTr5t0XiV38TUnfk/TnitYrCkq6Iel3TdN8JmH7QkkflvSTkvYpWjh7SNJFSd+S9Lemac5pHsMw6iTdjl19r6TvSPqgpP8ca1uBpC5JT0n6gmmaN9O9n0X8mCRX7PI3F9vQNM0/WMHzAwAASCKDCQAA2GSapl/RAEs4dtPnDcPYtNLnMwzjU5KaJP2aJEOSV9HsKEPSRyQ1GYbxacMwHLYavrQtkk5L+vHY6xdJOqRokCne1kckXVO0iPabJZVKckuqkvROSX+jzFZny5P0jKS/VjRA5lO0ePp2Sb8qqdkwjHet4D3sT7h8PqHdWYZh1BmGsZOi3gAAYDUQYAIAALaZpnla0pdjV4skfXUlz2MYxqcl/ZGiWTeXFQ0ovUnRDKLfkHRT0f7LH8R+1tLHFQ30fE7Sw5L+g6TPmqbZFmvrcUUznKolRST9naSfkPRGST8n6enY8+yT9KJhGNWLvNYXJD0i6Yyk/xR7jp+S9IPY/dmSvm4YRv4y38Pe2O9R0zTHYkGlb0gaVTR7qlXSiGEY/5hBEAwAACAtpsgBAIDV8nuKLntfJ+ndhmH8R9M0/z7TBxuGcUjSp2JX/1bSh+ZNLTttGMZfS3pc0lsl/b5hGP+UbrrcKnAqGlD6vxJu++dYW12KZiflKpq59X7TNP85Ybuzkr5pGMbvKzqFsFrSXyoagEqlStH3/EHTNOOZYDIM4zuKvt93SSqX9KiWmOo2jy/2e9QwjB+T9C+S5gepciW9X9K7DMP46cTpfwAAAJkigwkAAKwK0zSnJP1ywk1/ahhG+TKe4rcV7ZsMSfpIqrpFsdf4kKIZQw5Jj628xRn5Sprb36NozSlJ+sq84JLFNM0/kvRc/DGGYexNtZ2kWUkfTwwuxR4fUXLh9AOZNDpBPJhULOnbknIkfUbSDkWzonYrmj0VUbTm07cNw9i5zNcAAAAgwAQAAFaPaZo/kPS12FWfpD/L5HGxekrvjF09bZrm9CKvcVtSS+zqv0u33SroMk2zM819b0+4/JdLPM9fJFx+R5ptXout5JZKYnHvgiVea7682O9iRYNNP2ua5qdM07xlmmbANM1W0zR/R9GC6pJUKOmzy3wNAAAApsgBAIBV91uKBlKqJb3fMIx/ME3zfy/xmDpJJbHLP5GwkttStq2siRm5s8h9+2K/JyVdWeJ5ziRc3p9mm7ZFHj+ZcHm5fbeZhMv/aprmv6bayDTNvzAM45cVzZD6KcMwvLFsMQAAgIyQwQQAAFaVaZqjkn494aavGIZRvMTDfEvcn06WYRjLzerJ1Pgi95XFfg/GprEtpi/hcmmabSbT3C5Fp6/FLXflvImEyymDSwm+G/vtVnS1PAAAgIyRwQQAAFadaZr/ahjGtxRdea1a0To/v7jIQxL7JH+jDKfWxaSdTreITAbZFgscLSfQ40q4HE671droSbjctcS2iRlbKw34AQCABxQBJgAAsFY+Kultimb7fMgwjH9cZNvE+kMh0zQvrfA140GhpQJARSt8/rh4e32GYTiWyGKqTPG49dIk6b2xyyWLbaho0e+4kbVpDgAAuF8xRQ4AAKwJ0zT7Jf1mwk3/nyRvms1v6UeZSMeWem7DMD5hGMavGIbx7+fdFV95zmMYhmv+42KPzZW0nNXtUrkc+50vqWGJbRPfzzWbr7tcifWflvq7Jr6PttVvCgAAuJ8RYAIAAGvGNM2/lfT92NU6SR9Is11Q0qnY1f2GYZxM95yGYbxN0h9L+qqk/zrv7tGEy3VpnuLfK1pnyI6nEy7/yhLbfiTh8g9svu5yPSNpMHb559PVqzIMwyvpfbGrr5um2bYObQMAAPcRAkwAAGCt/Yp+VGx6scDOFxMuf90wjC3zNzAMo0LRTKi4L83b5HLC5cdSPL5S0ucXbW1mviPpRuzyrxmG8d5UGxmG8SlJb4ld/aGNqX8rEgvc/Y/Y1WpJf2UYRtL/wDAMp6LBunjdpa+sXwsBAMD9ghpMAABgTZmmeccwjE9I+osltnvWMIyvSPpVSTskvW4Yxp9Iej62yRFJvyWpJnb9X03T/Ld5T/MPkn5f0T7Ob8Qydv5R0qyiU8Q+Hnv8zdhrrPQ9hQzD+E+xtnkk/bNhGH8n6VuS+iXVKlrU/O2xhwxK+j9W+no2fV7SexR9/z8rabdhGF+S1CJps6SPSXo4tu1zSg7gAQAAZIQAEwAAWA9flfRzkt68xHaPKRoM+riiRan/MM12/yLp5+ffaJrmDcMwPq5oZpNT0odiP3FhRafVlUn67WW0fwHTNM8YhvEOSd9UtKbTf479zHdB0vtN01xqFbc1YZpm0DCMtyvazndIekjRlfrme0rSzy1RsBwAACAlpsgBAIA1FwtafFjSzBLbhUzT/C1JBxUNSl2TNCkpKKlL0rclPWqa5vtM00z5XKZpflnSUUl/J6lTUkBSj6R/knTSNM3/vipvKvpapyTtlPS7kk4rukpcQNEi2Y8rmjF0zDTNG+meYz2YpjlumuY7Jf2UpH+T1K1oO7skPSnpPyj6dx1N/ywAAADpOSIRBqkAAAAAAACwcmQwAQAAAAAAwBYCTAAAAAAAALCFABMAAAAAAABsIcAEAAAAAAAAWwgwAQAAAAAAwBYCTAAAAAAAALCFABMAAAAAAABsIcAEAAAAAAAAWwgwAQAAAAAAwBYCTAAAAAAAALCFABMAAAAAAABsIcAEAAAAAAAAWwgwAQAAAAAAwBYCTAAAAAAAALCFABMAAAAAAABsIcAEAAAAAAAAWwgwAQAAAAAAwBYCTAAAAAAAALCFABMAAAAAAABsIcAEAAAAAAAAWwgwAQAAAAAAwBYCTAAAAAAAALCFABMAAAAAAABsIcAEAAAAAAAAWwgwAQAAAAAAwBYCTAAAAAAAALCFABMAAAAAAABsIcAEAAAAAAAAWwgwAQAAAAAAwBYCTAAAAAAAALCFABMAAAAAAABsIcAEAAAAAAAAWwgwAQAAAAAAwBYCTAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHd97//3zEij0S5rtSRr8aZjy3Ycb7GBEJYQIATS8msvKYUuP9peIMQE0keB3tK0pZQlEMoSAtxAoZdcmo0SlrCEQFYnthNv2uxjSdZm7aN9GWmkmbl/zMzxjKSRZB/bcpLX8/Hww7Occ+Z7RtKRvu/5fj9fRygUEgAAAAAAAHChnCvdAAAAAAAAALy8ETABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGxJWukGAACAlx/DMJ6S9IbI3U+bpvlvy9zvHkkfidxda5pm68VvHaIMw/iBpL+4gF3fZJrmUxe3NQAA4JWMEUwAAMCufzQMY/NKNwIXlX+lGwAAAF5eGMEEAADsSpH0PcMwrjVNM7jSjUGcOyV9dRnb/f+SPhq5/UPTNJ+/dE0CAACvRARMAADgYniNwgHFcsIMXCamabZLal9sG8Mwtkv6YORuraT/eanbBQAAXnmYIgcAAOwISpqN3P43wzDWrWRjcH4Mw0iW9J8Kj0LzS3qvaZpTK9sqAADwckTABAAA7JiR9KXI7TRJ961gW3D+7pC0PXL7c6Zp1q9kYwAAwMsXU+QAAIBd/yLp3ZI2SXqzYRh/Y5qmraApUjT8NknXS1ojySGpQ9KTkr5hmmZDgv2eUnh1u2nTND2LHL9O0hZJbaZpVs55LhS5+XFJj0m6R9K1CodpTZI+ZZrmEzHbZ0n6a0l/IGmrpExJA5KOSXpY4ZpGs5rDMIxKSS2Ru++W9DNJfynpzyNty5TUKek3ku42TbM50flcCMMwiiX9Y+TuGUlfuJjHBwAAry6MYAIAALaYpjmtcMASLfD9JcMwSi/0eIZh/KPCtYBulWRISld4dJQh6UOSag3D+GfDMBy2Gr60MkkHJL018vrZknYqHDJF2/omSack3S3pOkm5kpIlrZZ0o6T/kHTMMIz1S7xWmqQnJH1P4YAsX+Fpa+skfVhSvWEY77hYJxZxp8LvrST9XeTrCAAAcEEImAAAgG2maR6Q9M3I3WxJ376Q4xiG8c+SPiPJJalG4UDptQqPILpdUrPCf7/8U+TfpfQxhYOeuyS9XtL/UHgaWWukra9ReIRTsaSQpPsl3Sxpr6Q/kfR45DhbJT0bGTGUyN2S3iTpoKQ/ixzjDyX9NvJ8iqQfGIaRcTFOLBIA/lXk7nHTNP/7YhwXAAC8ejFFDgAAXCx/L+ldkiolvdMwjD81TfNHy93ZMIydOjdl64eSPjBnatkBwzC+J+kXkt4o6U7DMB5KNF3uInAqHCj9Q8xjj0Ta6lJ4dFKqwiO3bjFN85GY7Q5LetAwjDsVnkJYLOk7CgdQC1mt8Dn/pWma0ZFgMgzjZwqf7zskFUi6SdKD9k9Ntyk80koKB2gAAAC2MIIJAABcFKZpTih+ifuvGYZRcB6H+FuF/zYZkPShheoWRV7jAwqPGHJI2n/hLV6WbyV4/F0K15ySpG/NCZcspml+RtJT0X0Mw6hOcLwpSR+LDZci+4cUXzh9u2wyDCNV575OZyQ9ZPeYAAAABEwAAOCiMU3zt5K+H7mbL+kby9kvUk/pxsjdA6ZpTi7yGi2STkbuXn+BTV2OTtM0zyZ47m0xt7+zxHHujbn99gTbHDFNczDBc7HFvTOXeK3leL/CtaKkcPHwwEU4JgAAeJVjihwAALjY7lA4SCmWdIthGP9lmuZPl9inUtKqyO2bY1ZyW8raC2visnQs8tzWyP/jkuqWOM7BmNvbEmzTusj+4zG3L8bfbu+N/O+XtOwpjAAAAIthBBMAALioTNMclvSRmIe+ZRhGzhK75V/gyyUZhnExRvUsZHSR5/Ii/3sj09gW0xtzOzfBNuMJHpfC0wGjbK2cZxjGKoULlkvS45GvFQAAgG2MYAIAABedaZo/MQzjYYVXXitWeJW0v1pkl9i/Sf5Dy5xaF5FwOt0ilvMh22LB0fkEPa6Y28GEW10e79S595raSwAA4KIhYAIAAJfKbZLerPBonw8YhvHAItvG1h8KmKZ5/AJfMxoKLRUAZV/g8aOi7c03DMOxxCimogX2WynvjPzvl7TUtEUAAIBlY4ocAAC4JEzT7JP08ZiH/rek9ASbn9G5kUj7ljq2YRifNAzjg4ZhvGXOU9GV59yGYbjm7hfZN1XS+axut5CayP8ZkrYssW3s+Zyy+bp2RafHHTdNc7EpgAAAAOeFgAkAAFwypmn+UNKvIncrJb0vwXYzkp6M3N1mGMa1iY5pGMabJX1B0rcl/a85T8fWFKpMcIi3SEperN3L8HjM7Q8use2HYm7/1ubrXjDDMMoUnq4oSS+tVDsAAMArEwETAAC41D4oaSxye7Fg5ysxt38QCUTiGIZRqPBIqKivz9mkJub2/gX2L5L0pUVbuzw/k9QUuX2rYRjvXmgjwzD+UdIbInd/Z2Pq38VwVcxtAiYAAHBRUYMJAABcUqZpdhiG8UlJ9y6x3e8Nw/iWpA9LWi/phGEYX5X0dGST3ZLukFQSuf8T0zQfnXOY/5J0p8J/49weWWHuAUlTCk9V+1hk/+bIa1zoOQUMw/izSNvckh4xDON+SQ9L6pNUoXBR87dFdvFK+osLfb2LpCrmdteKtQIAALwiETABAIDL4duS/kTSdUtst1/hMOhjklZJ+pcE2/23pPfPfdA0zSbDMD6m8Mgmp6QPRP5FBRWeVpcn6W/Po/3zmKZ50DCMt0t6UOGaTn8e+TfXUUm3mKbZaef1LoI1MbeHE24FAABwAZgiBwAALrnIKmt/Lcm3xHYB0zTvkLRD4VDqlKRxSTOSOiX9WNJNpmn+kWmaCx7LNM1vStoj6X5JZxVeMa1b0kOSrjVN8/MX5aTCr/WkpA2SPiXpgMKrxPkltUr6haT3SNpnmmZTomNcRlkxtwmYAADAReUIhRZbVRcAAAAAAABYHCOYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgAAAAAAgC0ETAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgAAAAAAgC0ETAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgAAAAAAgC0ETAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHW9//H3zCSTTHbSNE3SZmna9HSnFArILiiLIFdFZRGQ670iS9kURa8giAhe+YlCRZQrKohaBAShsoMUKG2he5ump2mz7/s+yUxm5vfHzJzOJOk6bVPg9Xw88sgsZ875nknP6Zz3fL+fry0QCAgAAAAAAAA4UPbxbgAAAAAAAAA+2giYAAAAAAAAEBMCJgAAAAAAAMSEgAkAAAAAAAAxIWACAAAAAABATAiYAAAAAAAAEBMCJgAAAAAAAMSEgAkAAAAAAAAxIWACAAAAAABATAiYAAAAAAAAEBMCJgAAAAAAAMSEgAkAAAAAAAAxIWACAAAAAABATAiYAAAAAAAAEJO48W4AAAD46DEM421Jp4fu3m6a5k/38XW/lnR96O5U0zSrDn7rMBbDMNIkXSfpi5IMSS5JrZLel/SIaZr/HsfmAQCAjzh6MAEAgFjdYRjGrPFuBHbPMIw5kjZKuk/S8ZLSJTklTZb0FUlvGYbxa8MwbOPXSgAA8FFGwAQAAGKVIOkxwzD4XHEECvVcellSUeihlxQMlU6TdKOkptDj10v68eFuHwAA+HjggyAAADgYPqVgWIEjz2JJ+aHbD5umeb5pms+YpvmuaZpLJB2tXSHTbYZh5I5LKwEAwEcaARMAAIiFX9Jw6PZPDcMoHs/GYEznhX77JH1/5JOmabZICtfQcko6+zC1CwAAfIwQMAEAgFh4Jd0fup0k6f/GsS0YW3bod6Npmn27WWZLxG16MAEAgP3GLHIAACBWP1ZwZrKZks40DOObpmnGFDSFioYvlnSWpCmSbJJqJf1b0hLTNLfu5nVvKzi73ZBpmol7WP8WSXMkVZumWTTiuUDo5i2S/iXp15JOUTBM2yHp+6ZpvhGxfJqk/5b0H5LmSkqV1C5pvaSnJf3ZNM1hjWAYRpGkytDdL0p6QdJVkq4MtS1VUr2kVyX9wjTNnbvbn71okDRDUp5hGKmmafaOscz0EcsDAADsF3owAQCAmJimOaRgwOIPPXS/YRiTD3R9hmHcIWmzpOskGZKSFewdZUi6RtJmwzDuOgwznuVLWqHgkLEkBWdeW6hgyBRu66clbZP0CwWLZmdKipeUo+DQtD9IWm8YxrS9bCtJ0huSHlMwIMtSsHh6saRrJZUahvG5A9yPF0K/7ZLuGflkKCD7Qehuv4JFwAEAAPYLARMAAIiZaZorJD0cupsu6bcHsh7DMO6SdLckh6RNCgZKJynYg+gmSTsV/PxyZ+jnULpZwaDn55JOVXDmtXtN06wKtfVTCvZwypUUkPSkpAslnSDpEkmvhdYzV9K7eyme/QtJn5a0StIVoXV8QdLroecTJP3JMIyUA9iP3ykYlEnSjYZh/NMwjIsMwzjZMIyrJW1UMMjyS7reNM22A9gGAAD4hGOIHAAAOFh+IOnzkookXWAYxmWmaf51X19sGMZCSXeE7v5Z0jdGDC1bYRjGY5KWSTpD0o8Mw/j77obLHQR2BQOlH0Y89kyorQ4Feye5FAxmLjZN85mI5T6Q9JRhGD9ScAhhroJBz4W72VaOgvt8lWma4Z5gMgzjBQX393OSJko6X9JT+7MTpmkOGIZxjoIFvm8JtWFkOzZIutE0zXf3Z90AAABh9GACAAAHhWma/ZKujnjoQcMwJu7HKr6j4GeTdknXjFW3KLSNbyjYY8gm6YYDb/E+eWQ3j39ewZpTkvTIiHDJYprm3ZLeDr/GMIzZu1nfoKSbI8Ol0OsDii6cfvS+NHoMcyQtUDAQG8ssSZcYhnHUAa4fAAB8whEwAQCAg8Y0zdcl/TF0N0vSkn15Xaie0nmhuytM0xzYwzYqJZWF7p51gE3dF/Wmadbt5rlzIm7/bi/r+U3E7XN3s8xa0zQ7dvNcZHHv1L1saxTDMC6UtFzSBQoWDb9Swd5QiQoGVv+n4BC86yS9aRjGhP3dBgAAAEPkAADAwfZtBYOUXEkXG4bxN9M0/7mX1xRJCveeuTBiJre9mXpgTdwntXt4bm7od5+kLXtZz6qI2/N2s0zVHl7fF3F7vz67GYaRJ+mvCoZJdZJOME2zMWKRTZKuNgxjg4I1tI4J/b5kf7YDAABADyYAAHBQmabZJen6iIceMQwjYy8vyzrAzcUZhrHfvXr2Uc8engv38mkLDWPbk+aI25m7WaZvN49LweGAYfs7c97XFZyFT5K+PyJcspim+RtJ74TuftkwjEn7uR0AAPAJR8AEAAAOOtM0n5P0dOhuroKzpO1JZM+cPyjYk2Zff3Y7nG4P9uUz0J6Co/0JehwRt/27XerQWBRxe9leln0u9Nsh6bhD0xwAAPBxxRA5AABwqCyWdKaCvX2+YRjG0j0sG1l/yGea5oYD3GY4FNpbAJR+gOsPC7c3yzAM2156MUX2BtpdnaVDJSX02y+pdy/LtkTcjvX9AQAAnzD0YAIAAIeEaZotkm6JeOhR7RquNVKFdvVEOnFv6zYM4zbDML5lGMZnRjwVnnnOaRiGY+TrQq91KVjkOhabQr9TFJyhbU8i92dbjNvdX62h33YF61ztyeSI2y27XQoAAGAMBEwAAOCQMU3zz5JeDt0tkvS13SznlfTv0N15hmGcsrt1GoZxpqSfSfqtpP8Z8XRXxO2i3aziM5Li99TuffBaxO1v7WXZayJuvx7jdvfXuxG3r9jdQqFZ/MKFvT2SVh/KRgEAgI8fAiYAAHCofUu7hmftKdh5IOL2nwzDyB+5gGEY2Qr2hAp7aMQimyJu3zDG6ydJun+Prd03L0jaEbp9nWEYXxxrIcMw7pB0eujumzEM/TtQf9OuYXk/MAzj1N0sd6+khaHbj5umubfhdAAAAFGowQQAAA4p0zRrDcO4TdJv9rLcW4ZhPCLpWknTJG00DONXkpaHFjlO0rcl5YXuP2ea5vMjVvM3ST9S8DPOTaEZ5pZKGlRwqNrNodfvDG3jQPfJZxjGFaG2OSU9YxjGkwoWNm+RVCjpvySdE3pJm4Izuh1Wpml2G4bxLUl/l5Qg6U3DMP4g6UUFh89NlfRNSWeFXrJT0g8OdzsBAMBHHz2YAADA4fBbSe/sw3I3SPqlgsW6j5L0Y0lvh37+n3aFS//QGMPtTNPcoWCIFJ6t7RsKDmd7R9LPJeUoOKxuZDC130zTXCXpXAWDGrukKxUMblYrGOiEw6V1kj5lmmZ9rNs8wHY+I+lyBWtcxSvYo2xZqJ1LtStcWifpLNM028ejnQAA4KONgAkAABxyoVnW/luSey/L+UzT/LakYxQMpbZJ6pPklVQv6VlJ55umeZFpmmOuyzTNhyUtkvSkpDoFawo1Khj6nGKa5n0HZaeC2/q3pOmSvi9phYLD0TySqhQMcb4q6cRQ8DVuTNP8q4LtvFfBIKlbwfe0SdK/FAzHjjdNs3rcGgkAAD7SbIHAnmbVBQAAAAAAAPaMHkwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAAAACAmBEwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAAAACAmBEwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAAAACAmBEwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAAAACAmBEwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAAAACAmBEwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAAAACAmBEwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAAAACAmBEwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAAAACAmBEwAAAAAAACICQETAAAAAAAAYkLABAAAAAAAgJgQMAEAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAPZCAYAAABd95D3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8HOWB//HPqqyaJRtbrrIt2cYMBtNCb7+QCrlwKZf8AimXdkkuuUDalZRLIaRDwgU4Uo67JASOlkpCOIgvJPmRgMEYCGCbwUXNsnqxVVZaaXd/f+xqkWTJbY2Fzef9eum1s7uzM8/uamee+T7PPBNJpVJIkiRJkiRJBypvugsgSZIkSZKkw5sBkyRJkiRJknJiwCRJkiRJkqScGDBJkiRJkiQpJwZMkiRJkiRJyokBkyRJkiRJknJiwCRJkiRJkqScGDBJkiRJkiQpJwZMkiRJkiRJyokBkyRJkiRJknJiwCRJkiRJkqScGDBJkiRJkiQpJwZMkiRJkiRJyokBkyRJkiRJknJSMN0FkCRJh58gCP4AvDRz97NhGH5lH1/378CHM3eXhWFYd/BLp8kEQTAf+DjwWmAZ6YbGLcDdwLVhGLZOY/EkSdJhzh5MkiQpV58LgmDVdBdCUwuC4K+BzcAngdVAGVACnAB8Gng2CIILp6+EkiTpcGfAJEmSclUE/FcQBNYrXoCCILgA+AVQnnnoLuANwFnA3wHPABXA3UEQvH46yihJkg5/VgQlSdLBcDbwkekuhMYLgqAA+CGQn3non8MwfEMYhneFYfhwGIY/AE4F/kh66ITvBkFQPsXiJEmSpmTAJEmScpEERjLTXwmCYPl0Fka7eR1Qk5m+KwzDb06cIQzDAeBvgWFgIfCJQ1Y6SZJ0xDBgkiRJuRgGrs5MlwI3TmNZtLuXj5n+9lQzhWHYCPxv5u4lz2uJJEnSEcmryEmSpFx9EXgjcCzw8iAI3h+GYU5BU2bQ8MuAVwCLgQjQCPweuD4Mw41TvO4PpK9uNxSGYfEelv80cDxQH4ZhzYTnUpnJjwO/Af4dOI90mLYF+FQYhv87Zv4K4H3A60kPoF0OdAKPAz8Bbg7DcIQJgiCoAWozd98I/Ap4N/DOTNnKgSbgPuBbYRhuner97EH1mOmH9zLvRuA1wLFBEMwKw7DnANYnSZJepOzBJEmSchKG4RDpgCWZeejqIAiqDnR5QRB8DngK+AcgIH3Fs9LM9AeBp4IguCIIgkhOBd+7JcCfgVdn1j8TeAnpkGm0rC8jPUj2t4D/A8wGCoEFpMOaHwCPB0GwYi/rKiXdg+i/SAdklaQHT18OfAjYEATBXx3Ae4hmbhNhGMb2Mu9w5jYCrDyAdUmSpBcxAyZJkpSzMAz/DNyQuTsT+N6BLCcIgiuAK0kPSv0k6UDpHNI9iD4KbCVdf/lC5u/59DHSQc9VwPnA/wW+GoZhXaasZ5Pu4bQQSAG3kB7z6EzgUuC3meWsBh4IgmDhHtb1LeBlwFrS4yGdSfpKb2syzxcBPwqCYMZ+voeOzG1+EAQL9jLvkjHTe5tXkiRpHE+RkyRJB8ungb8mPaj0xUEQvC0Mw1v39cVBELwE+Fzm7s3AeyecWvbnIAj+C7gbuAD4fBAEd051utxBkEc6UPrXMY/9NFPWfNK9k0pI99y6JAzDn46Z7xHgjiAIPk/6FMKFwPdJB1CTWUD6Pb87DMPRnmAEQfAr0u/3r4C5wGuBO/bjPTwMvC0z/Ubgu5PNFARBEemeWqPK9mMdkiRJ9mCSJEkHRxiG/cAHxjx0bRAEc/djEf9Ium7SCXxwsnGLMut4L+keQxHg8gMv8T6ZNJAhHaQdOzrPhHApKwzDK4E/jL4mCILjpljeIPCxseFS5vUpxg+cftK+FHqMnwBDmekvBkGwbIr5vkQ6wBpVuJ/rkSRJL3IGTJIk6aAJw3AN8MPM3Urg+n15XWY8pddk7v45DMOBPayjFtiUufuKAyzqvmgKw3D7FM9dOGb6+3tZznfGTF80xTzrwzDsmuK5sYN7l+9lXeOEYdgMfC1zdy7wUBAE7wuCYF4QBNEgCE4KguBm4J9JDyg+Kr4/65EkSfIUOUmSdLB9gnSQshC4JAiC28IwvGsvr6kBjspMv27Mldz2ZqoeOQdD4x6eW5257QOe3sty1o6ZPmGKeer28Pq+MdMHUnf7Eunxlf4OmE+6R9TEq/w9BnwZ+Hnmfv8BrEeSJL2I2YNJkiQdVJnL2394zEPfDYJg1l5eVnmAqysIgmC/evXsh117eG5O5rYjcxrbnrSOmZ49xTx9UzwO6dMBR+33lfPCMEyGYfg+4K3A4xOeriM9dtbZE9bTiiRJ0n6wB5MkSTrowjD8RRAEPyF95bWFpK+S9nd7eMnYOskP2MdT6zKmPJ1uD/alkW1PwdH+BD35Y6aTU871PAvD8Hbg9iAI5gDzgM4wDNtGnw+C4Ngxs9ce6vJJkqTDmwGTJEl6vlwGvJx0b5/3BkFw+x7mHTv+UCIMwycOcJ2jodDeAqCZB7j8UaPlrQyCILKXXkzzJ3ndtAnDsJP0QOoTnZW5bQrDsOMQFkmSJB0BPEVOkiQ9LzK9Yz4+5qH/AMqmmH0bz/VEOmuKebKCIPhkEAR/HwTBKyc8NXrluWgQBPkTX5d5bQnjr5h2IJ7M3M4Ajt/LvGPfzzM5rne/BEFwdBAEXw6C4MYgCE7ew3xlwKsyd9ccmtJJkqQjiQGTJEl63oRheDPwP5m7NcDbp5hvGPh95u4JQRCcN9UygyB4OfB14HvAZyY83TNmumaKRbwSKNxTuffBb8dM//1e5v3gmOlDHd4UAf8KvA+4ZA/zXQ6UZqZvfr4LJUmSjjwGTJIk6fn290BvZnpPwc41Y6Z/FATBkokzBEEwj3RPqFHXTZjlyTHTl0/y+vnA1Xss7b75FbAlM/0PQRC8cbKZgiD4HPDSzN3f5XDq3wEJw3ADEGbufigIguqJ8wRB8DLgiszd/xeG4f2HqHiSJOkI4hhMkiTpeRWGYWMQBJ8EvrOX+e4PguC7wIeAFcBfgiD4NvDHzCynAZ8AFmXu/yIMw19OWMxtwOdJ13E+mrnC3O3AIOlT1T6Wef3WzDoO9D0lgiD420zZosBPgyC4BfgJ0AZUkx7U/MLMSzqAdx3o+nL0GeBnpMedWhsEwdeAx0ifrvg64AOkP68u9jwQuyRJ0pQMmCRJ0qHwPeBS4P/sZb7LSYdBHwOOAr44xXw/B94x8cEwDLcEQfAx0j2b8oD3Zv5GJUkHLnOAf9yP8u8mDMO1QRBcBNxBekynd2b+JnoMuCQMw6Zc1negwjD8eRAEnwG+AiwArp1ktjrgDWEYbpnkOUmSpL3yFDlJkvS8y1xl7X1AbC/zJcIw/ARwCulQ6hmgDxgGmkj3xHltGIZvCsNw0mWFYXgDcDpwC7AdiAPNwJ3AeWEYfu2gvKn0un4PHA18Cvgz6V5AcdKBzd3AW4Czpju4ybznc0mHYTtID4a+C3iQdK+w48Mw/Mv0lVCSJB3uIqnUnq6qK0mSJEmSJO2ZPZgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJODJgkSZIkSZKUEwMmSZIkSZIk5cSASZIkSZIkSTkxYJIkSZIkSVJ
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAPZCAYAAABd95D3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4XHXd///XzCSTyZ6mk6RJSSZJU05XpMgiyKKieAtutwuIivetggtQEdEfiOCCiGJlX/R7K654U6SiwA0iCFQQKJS2UNqkp0mz72ubbZbM8vtjJpOZ7O0Bu/B8XFevzJw558znnAy5khfvz/tji0QiAgAAAAAAAA6U/WAPAAAAAAAAAIc3AiYAAAAAAABYQsAEAAAAAAAASwiYAAAAAAAAYAkBEwAAAAAAACwhYAIAAAAAAIAlBEwAAAAAAACwhIAJAAAAAAAAlhAwAQAAAAAAwBICJgAAAAAAAFhCwAQAAAAAAABLCJgAAAAAAABgCQETAAAAAAAALCFgAgAAAAAAgCUpB3sAAADg0GMYxkZJZ8SeXmOa5o/medydki6JPa0wTbPxjR8d5sMwDKekrZJWSjrZNM1N8zjGLekbkj4sqVJSUFKDpAcl3WGaZv+bN2IAAHA4o4IJAADM5VrDMJYf7EFgv/1Y0XBpXgzDOF7STknfjh2XLilb0jGSvi/pNcMwjnvjhwkAAI4EBEwAAGAuaZLuMQyD3xsOE4ZhfFvRSqT57l8s6TFJhZICkm5UtILtPZLukhSWdJSkRwzDKHrDBwwAAA57TJEDAADzcbKkr0m69WAPBDOLTYu7TdJX9vPQn0gqiD3+mGmajya89oxhGM9Juk9SiaTvSbrY6lgBAMCRhf8TCQAAZhNWtA+PJP3IMIzKgzkYzMwwjBMlPa+JcCk0z+MWSfp07Okjk8IlSZJpmvdL+kvs6RcNw1hgcbgAAOAIQ8AEAABmMyZpXexxhqRfHsSxYAaGYfxE0iZJx8c2PaT5V5t9SBNV7b+fZb97Yl+dkj6yv2MEAABHNqbIAQCAufxA0n9KWibpPYZhXGSapqWgKdY0/FJJZyra28cmqUXSM4quVlY9w3EbFe0N5DdN0zXL+Xco2qi6yTTN8kmvRWIPL5f0qKQ7JZ2qaJhWJ+kq0zT/kbB/jqQLFQ1VVina+LpP0jZJD0j6g2maQU1iGEa5oiuwSdH797Ck/5b0udjYsiW1Sfq7pJtM09wz0/XMwzsUvYf9kv4/0zTvMQzj+/M89p0JjzfOst9zkiKx93mPpN/u9ygBAMARiwomAAAwK9M0/YoGLOHYpnWGYSw+0PMZhnGtpNcV7eNjSMpUtDrKUHR61+uGYXzfMAybpYHPrVTRKWVnxd4/V9JxioZM42N9t6Rdkm6SdLqkfEmpkhZJ+oCkX0vaZhjGkjneK0PSPxStAjpDklvR5umVkr4qaadhGGdbuJYBRRtzV5mmec9cO08yvkLgXtM0e2fayTTNIUk9k44BAACQRMAEAADmwTTN5xVdTUyKBjG/OJDzxKpqrpPkkLRd0UDpFEUriC6TtEfR30++F/v3Zvq6okHPTyWdJumTkm4wTbMxNtaTFa1wKla0cudeSR+WdJKkT0l6InaeVZKei63ENpObJL1b0WlsF8TO8VFJT8ZeT5P0W8Mwsg7wWj5umuZVpmkOHMCx42Fh8zz2bZl0DAAAgCSmyAEAgPn7tqL9esolfdAwjE+bpvm/8z3YMIzjJF0be/oHSV+YNLXsecMw7pH0f5LeJem7hmH8aabpcm8Au6KB0ncStm2IjdWhaHVSuqKVW+eZprkhYb+XJd1vGMZ3FZ1CWCzp/ykaQE1nkaLX/N+maY5XgskwjIcVvd6zFV3F7RxJ9+/vhSSe8wDkx74OzWPfkdjXPAvvBwAAjkBUMAEAgHkxTXNE0pcSNt1mGEbBTPtP4wpFf/fok/SV6foWxd7jC5ro9bP2wEc8Lz+fYfuHFO05JUk/nxQuxZmmeZ0m+hZ9yDCMFTOczyfp65ODINM0I0punP62+Qz6DZYW++qbx77eSccAAABIImACAAD7wTTNJyX9JvbULemO+RwX66f0gdjT503THJ3lPRok1cSennmAQ52PNtM0W2d47f0Jj//fHOe5O+Hxf8ywzxbTNPtneC2xuXf2HO/1ZgjFvkZm3SvZ/uwLAADeApgiBwAA9tc3FA1SiiWdZxjGfaZpPjTHMeWSFsQefzhhJbe5VBzYEOelZZbXVsW+DkvaMcd5NiU8Xj3DPo2zHD+c8Phg/G42rOj3ZsZV+RKkx77Op9oJAAC8hVDBBAAA9otpmnslXZKw6eeGYczVk8d9gG+XYhjGm1XVMzjLawtjX3tj09hm05XwOH+GfYZn2C4lVwO92SvnTWe891LmPPYd32emaiwAAPAWRQUTAADYb6Zp/sUwjAcUXXmtWNFV0r44yyGJv3P8WvOcWhcz43S6Wcznf6LNFhztT9DjSHhspdn2wdIkqUxS6Tz2Hd+n/c0bDgAAOBwRMAEAgAN1qaT3KFrt8wXDMNbPsm9ixUvINM1XD/A9x0OhuQKg3AM8/7jx8boNw7DNUcVUNM1xh5Odkk5T9FpzTdPcN91OsUqy8abub9bKfgAA4DDFFDkAAHBATNPslnR5wqb/0czTrOo1UYn0jrnObRjGlYZhfNkwjPdOeml85TmnYRiOycfFjk3XRBByoLbHvmZJWjnHvonXs8vi+x4MiT2kTp1lv9M0Eew99+YNBwAAHI4ImAAAwAEzTfMPkv4We1ou6TMz7Dcm6ZnY09WGYcwYZBiG8R5JP5H0C0lXT3p5b8Lj8hlO8V5JqbONex6eSHj85Tn2/UrC4yctvu/B8JCksdjjz8+y3/gUyDFJj76pIwIAAIcdAiYAAGDVlzXRKHq2YOfmhMe/NQxjSs8fwzAKFa2EGnf7pF22JzxeO83xRZLWzTra+XlYUl3s8cWGYfzndDsZhnGtpDNiT5+yMPXvoIk1bf9j7OnHDMM4d/I+hmGcJ2n8HvwxVr0GAAAQRw8mAABgiWmaLYZhXCnp7jn2e9owjJ9L+qqkJZJeMwzjVkn/jO1yvKRvSCqJPf+LaZp/nXSa+yR9V9HfYS6L9QVaL8mn6FS1r8eO3xN7jwO9ppBhGBfExuaUtMEwjHslPSCpW5JH0Yqe98cO6ZX0Xwf6foeAKyV9WNFV8O6LVZg9GHvtY4quGmhT9NonV5UBAABQwQQAAN4Qv5D07Dz2WyvpFkWbdS+Q9ANJG2P/fqaJcOlBTTPdzjTNOkVDpPHV2r6g6HS2ZyX9VNIiRQOQycHUfjNNc5Ok/5DUo+jvTJ+T9IiklyT9SRPh0lZJJ5um2Wb1PQ+WWEXS+zVxrWsVndL4TOyxXdFw6WzTNDsO1jgBAMChi4AJAABYFltl7UJJ3jn2C5mm+Q1JaxQNpXZJGla0r0+bpD9LOsc0zY+bpjntuUzTvEvSCZLuldQqKSCpQ9HQ51TTNH/8hlxU9L2ekVQl6SpJzyu6SlxAUqOk/5N0rqR3xIKvw5ppmq9IWibpBkk7JI0oWhlWrWhPrFWmaW45eCMEAACHMlskMtuquwAAAAAAAMDsqGACAAAAAACAJQRMAAAAAAAAsISACQAAAAAAAJYQMAEAAAAAAMASAiYAAAAAAABYQsAEAAAAAAAASwiYAAAAAAAAYAkBEwAAAAAAACwhYAIAAAAAAIAlBEwAAAAAAACwhIAJAAAAAAAAlhAwAQAAAAAAwBICJgAAAAAAAFhCwAQAAAAAAABLCJgAAAAAAABgCQETAAAAAAAALCFgAgAAAAAAgCUETAAAAAAAALCEgAkAAAAAAACWEDABAAAAAADAEgImAAAAAAAAWELABAAAAAAAAEsImAAAAAAAAGAJARMAAAAAAAAsIWACAAAAAACAJQRMAAAAAAAAsISACQAAAAAAAJYQMAEAAAAAAMASAiYAAAAAAABYQsAEAAAAAAAASwiYAAAAAAAAYAkBEwAAAAAAACwhYAIAAAAAAIAlBEwAAAAAAACwhIAJAAAAAAAAlhAwAQAAAAAAwBICJgA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8W+Wd7/GvJEu2bMe7HS+J7SzOSZwEyEaAUApt59KVTqczQDtDt0vLlLLNcgu0lDtlKO1ANyil7XAZ6EAp0My0MAVKS9kTQkISsjk+sZPYTuJ9XyVZ0rl/SDqRvGVRgknyeb9eflnL0TmPZFk653t+z/M4LMsSAAAAAAAAcLyc090AAAAAAAAAnNoImAAAAAAAAJAUAiYAAAAAAAAkhYAJAAAAAAAASSFgAgAAAAAAQFIImAAAAAAAAJAUAiYAAAAAAAAkhYAJAAAAAAAASSFgAgAAAAAAQFIImAAAAAAAAJAUAiYAAAAAAAAkhYAJAAAAAAAASSFgAgAAAAAAQFIImAAAAAAAAJCUlOluAAAAeO8xDOMVSe+PXr3NNM3vHOXj7pf0tejVOaZpNpz41uFoGIbhkbRF0mJJ55umueE41lEtaaukEdM0c05wEwEAwGmECiYAAHAk3zIMY9F0NwLH7LuKhEvHxTCMdEmPSPKcqAYBAIDTFwETAAA4klRJDxmGwX7DKcIwjFsl/WMSj0+V9DtJq05YowAAwGmNLnIAAOBonC/pBkk/nu6GYHLRbnH3Svr7JNYxS9JaSatPVLsAAMDpjzORAABgKmFJwejl7xiGMXc6G4PJGYZxrqR1OhwuhY7x8Q7DMK5SZNymWLh0TOsAAABnLgImAAAwlVFJ90Qvp0t6cBrbgkkYhvE9SRskrYze9LSOodrMMIwUSRsl/aekQkWCpVskvX1iWwoAAE5XdJEDAABH8m1Jn5K0UNIHDMP4smmaSQVN0UHDr5P0QUmzJDkkHZD0sqSfmKZZM8njXlFkdju/aZppU6x/pyIDXDeaplk55j4revEfJD0r6X5JFyoSptVLusU0zRfjls+SdLWkT0paImmGpC5FZlf7jaRHTdMMagzDMCol7Y9e/ZSkZyR9QdLnom2bIemQpBck/cA0zb2TPZ+jcJ4ir2G3pK+bpvmQYRj/cgyPT9HhcGqHpKtN09xoGMankmgTAAA4g1DBBAAApmSapl+RgCUcvekewzDKjnd9hmF8S5EQ41pJhqQMRaqjDEW6d+0wDONfDMNwJNXwI5utSJey/xXdfrak5YqETLG2XiKpVtIPJF0kKU+SW1KxpI9I+g9JWw3DmHeEbaVLelHSQ4oEZAWKDJ4+V9JXJe0yDOOjSTyXHkn/Jmm+aZoPHec66hT5Oy8zTXNjEm0BAABnIAImAABwRKZprpP00+jVbEk/P571RKtq7pDkkrRdkUDpAkUqiG6UtFeR/ZP/G/05mW5SJOi5W9L7JP2NpLtM02yItvV8RSqcSiRZkh6TdJki4xNdKemP0fUskfS6YRglU2zrB5IuUaQb21XRdfylpD9F70+V9IhhGJnH+Vw+bZrmLaZp9hzPg03T9EkyTNN8yDRNxl0CAADHjC5yAADgaN0q6ROSKiV93DCMz5qm+fjRPtgwjOWSvhW9+qikL43pWrbOMIyHJP1e0sWSbjcM46nJusudAE5FAqVvxt22NtpWlyLVSV5FKreuME1zbdxyGyU9aRjG7Yp0ISyR9AtFAqiJFCvynL9gmmasEkyGYTyjyPP9qCJjH31M0pPH+kTi13m8TNO0jrwUAADAxKhgAgAAR8U0zSFJX4m76V7DMAqPYRX/pMi+R5ekv59o3KLoNr6kSMWQQ9L1x9/io/KzSW7/hCJjTknSz8aESzbTNO+Q9ErsMYZhVE+yPp+km8YGQdFQJ348q7OPptEAAADvNQRMAADgqJmm+SdJD0evFkj6ydE8Ljqe0keiV9eZpjk8xTb2S9odvfrB42zq0ThkmubBSe67NO7yL46wngfiLn94kmU2m6bZPcl98YN7zzjCtgAAAN6T6CIHAACO1T8qEqSUSLrCMIxfm6b59BEeUykpN3r5sriZ3I5kzvE18agcmOK+JdHfg5J2HmE9G+IuL51kmYYpHj8Yd5l9MwAAcEqiggkAABwT0zR7JX0t7qafGYaRc4SHFRzn5lIMwzhZVT39U9yXH/3deRRjE7XFXc6bZJnBSW6XIt0BY072zHkAAAAnBWfJAADAMTNN87eGYfxGkZnXShSZJe1/T/GQ+H2O/9BRdq2LmrQ73RSO5iTaVMHRsQQ9rrjLSQ+2DQAAcCoiYAIAAMfrOkkfUKTa50uGYTwxxbLx4w+FTNN85zi3GQuFjhQAZR/n+mNi7S0wDMNxhCqmmRM8DgAA4IxCFzkAAHBcTNNsl/QPcTf9u6SMSRbfp8OVSOcdad2GYdxsGMY1hmF8aMxdsZnnPIZhuMY+LvpYr6Rjmd1uItujvzMlLT7CsvHPpzbJ7QIAAJySCJgAAMBxM03zUUnPR69WSvrbSZYblfRy9OpSwzAunGydhmF8QNL3JP1c0jfG3N0bd7lyklV8SJJ7qnYfhT/GXb7mCMv+fdzlPyW5XQAAgFMSARMAAEjWNZIGopenCnZ+GHf5EcMwZo9dwDCMIkUqoWLuG7PI9rjL10/w+JmS7pmytUfnGUn10cvXGobxqYkWMgzjW5LeH7365yS6/gEAAJzSGIMJAAAkxTTNA4Zh3CzpgSMs95JhGD+T9FVJ8yRtMwzjx5JejS6yUtI/SiqNXv+taZq/G7OaX0u6XZF9mBujM8w9IcmnSFe1m6KP3xvdxvE+p5BhGFdF2+aRtNYwjMck/UZSu6QKRQY1vzT6kE5Jnz/e7QEAAJzqCJgAAMCJ8HNJV0q66AjLXa9IGHSTpFxJ355kuf+W9HdjbzRNs94wjJsUqWxySvpS9CcmrEi3unxJ/3QM7R/HNM0NhmF8WNKTiozp9Lnoz1hbJF1hmuahZLYHAABwKqOLHAAASFp0lrWrJY0cYbmQaZr/KGmZIqFUraRBSaOSDkn6L0kfM03z06ZpTrgu0zR/KmmVpMckHZQUkNQi6SlJF5qm+d0T8qQi23pZ0nxJt0hap8gscQFJDZJ+L+lySeeZplk/2ToAAADOBA7LmmrWXQAAAAAAAGBqVDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAPZCAYAAABd95D3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl83FW9//HXzCSTrU23dElLm7Sl/dKWpYAsIlcBUdlUvCJevFfvVVERBAHxp3ARARGuoICCIAKCgGwtgmwqILK2bIUWWsq3G0m6p+nebJNk5vfHTNMkzdoplMrr+Xj00ZnvfM/5nu9Mmkfy7jmfE0mlUkiSJEmSJEk7KrqrByBJkiRJkqTdmwGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSspKzqwcgSZI+eIIgeAb4RObphWEY/ryX7a4Hzsg8HRuGYcXOH516IwiCOPA6MAX4aBiGL/WizQHAacDHgT2AGLAamAH8PgzDZ96zAUuSpN2aM5gkSVJPfhIEwaRdPQj12RWkw6UeBUEQCYLgSuA14FtAABQB+UAZcArwzyAIbssEV5IkSe0YMEmSpJ7kAbcGQeDPDbuJIAjOB87tQ5OLgB8CEWBF5vG/AYcBZwJLMuf9D3DDThuoJEn6l+ESOUmS1BsfBc4Crt3VA1HXMrOLfk16mVtv25QBF2SeLgAOD8NwTZtTZgZBcAfwD+AjwDeDIPhDGIYzdtKwJUnSvwD/J1KSJHUnCTRnHv88CIJxu3Iw6loQBAcDL7ItXGrpZdP/BLYuezu7Q7gEQBiGm4DvtDn0tR0dpyRJ+tdkwCRJkrrTBFyVeVwI3LwLx6IuBEHwf8BLpGcYAfyF3s82+7fM3/XAk12dFIbh68C6zNP9dmCYkiTpX5hL5CRJUk8uAb4A7AUcFQTBt8IwzCpoyhQN/x7wSdK7lUWApcA/gevCMHy7i3bPkN7drjEMw/xu+p9LusB1ZRiG5R1eS2UengM8BlwPHE46TFsE/DgMw6fanF8MnAp8Htgb6A+sBd4ApgF3hmHYTAdBEJQD72aefgF4mHQNo69lxtYfWA78HfhVGIaLu7qfXjiU9Hu4Dvh/YRjeGgTBxb1sex8wD8jt7D46iGT+7vK9lyRJH07OYJIkSd0Kw7CRdMCSzBy6KgiCUTvaXxAEPwHeAk5n225lhZnHpwFvBUFwcRAEka572SlGk15S9unM9QcAB5AOmbaO9UjgHeBXwMeBwUAuMAI4FvgD8EYQBON7uFYh8BRwK+mArIR08fRxwHeBeUEQHJfFvawHfgHsGYbhrX1pGIbh7WEYnheG4fe7Oy8Ign2BQZmnlTs2TEmS9K/KgEmSJPUoDMMXgd9mng4Afrcj/WRm1VwKxIA3SQdKh5GeQfR9YDHpn09+mvnzXjqbdNBzJellYl8CLg/DsCIz1o+SnuFUCqSAu4DPAYcA/wE8kelnb+D5IAhKu7nWr4AjSS9j+2qmjxPZtiQtD7g9CIJ+O3gvXwzD8MdhGK7fwfa9cX6bx39/D68jSZJ2Qy6RkyRJvXU+8FmgHDghCIKvhGF4d28bB0FwAPCTzNM7gW90WJL1YhAEtwKPAkcAFwVBcH9Xy+V2gijpQOl/2xybnhlrjPTspALSM7e+HIbh9DbnvQLcFwTBRaSXEJYCN5EOoDozgvQ9/08YhltnghEEwcOk7/c4YChwPOkla33Sts/3QhAEXyIdqgFUk74XSZKkVs5gkiRJvRKGYS3w7TaHfh0EwdA+dPED0j97rAVO66zeT+Ya3yA9YygCnLnjI+6VG7s4/lnSNacAbuwQLrUKw/BS4JmtbYIgmNxFfw2kd2hrFwSFYZiifeH0D1zx7CAIDgNub3Po3DAMt+yi4UiSpA8oAyZJktRrYRg+CdyWeVoCXNebdpl6Ssdmnr4YhmFdN9d4F5ifefrJHRxqbywPw3BZF699ps3jm3ro54Y2j4/p4pxZYRiu6+K1tsW9+/dwrfdVEAQfAx4nXUMK4HdhGP5pFw5JkiR9QLlETpIk9dW5pIOUUuDLQRDcE4bhX3poU862AtGfa7OTW0/G7tgQe2VpN6/tnfl7CzC3h35eavN4ny7OqeimfdvZQB+Yn80yRcensS1ceoD0zn+SJEnbcQaTJEnqkzAMNwBntDl0YxAEA3toVrKDl8sJguC9mtWzqZvXhmT+rsksY+vO6jaPB3dxTndLytr2/17vnNcrQRCcBjzMtnDpPuA/wjBs2XWjkiRJH2QfmP8lkyRJu48wDB8MgmAa6Z3XSknvkvbNbpq0/ZnjD/RyaV1Gl8vputGb/0TrLjjqS9ATa/P4PS22/V7LLGW8EjivzeHfA999rwuJS5Kk3ZsBkyRJ2lHfA44iPdvnG0EQ3NvNuW3rD7WEYTh7B6+5NRTqKQAasIP9b7V1vCVBEER6mMU0vJN2u53Mznl/BP6zzeGLwzC8ZBcNSZIk7UZcIidJknZIGIbVwDltDv0eKOri9CVsm4l0aE99B0HwoyAIvhMEwdEdXtq681w8E4h01rYA6Mvudp15M/N3P2BKD+e2vZ93srzuLpGZuXQn28KlZuAbhkuSJKm3DJgkSdIOC8PwTuCvmafltJ/90va8JuCfmaf7BEFweFd9BkFwFPB/wO+ACzq8vKHN4/IuujgayO1u3L3wRJvH3+nh3NPaPH4yy+vuKpcAp2QeNwBfCMPwtm7OlyRJaseASZIkZes7wObM4+6CnavbPL49CILRHU8IgmAY6ZlQW/2mwylvtnl8ZifthwNXdTva3nkYWJR5fHoQBF/o7KQgCH4CfCLz9B9ZLP3bZYIgOJRtQV6KdDHvR3fhkCRJ0m7IGkySJCkrYRguDYLgR8ANPZz3dBAENwLfBcYDc4IguBZ4NnPKR4BzgZGZ5w+GYfhQh27uAS4i/TPM9zM7zN1LetbNocDZmfaLM9fY0XtqCYLgq5mxxYHpQRDcBUwDqoEy0kXNP5NpUgP8945ebxe7jG2Fyv8CVAZBMLWHNokwDN9+b4clSZJ2JwZMkiRpZ/gd8B/Ax3s470zSYdDZwCDSS7M682fgvzoeDMNwURAEZ5Oe2RQFvpH5s1WS9GycIcAP+jD+7YRh+FIQBMcA95Gu6fS1zJ+OXge+HIbh8myutysEQTAO+GSbQydm/vSkkq6XKEqSpA8hl8hJkqSsZXZZOxWo7+G8ljAMzwX2Jx1KvQNsAZqA5cADwPFhGH4xDMNO+wrD8LfAQcBdwDIgAawE7gcOD8Pwip1yU+lr/RPYE/gx8CLpXeISQAXwKHAycGgYhou66uMD7oBdPQBJkvSvIZJKdbfrriRJkiRJktQ9ZzBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyoo
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcW3d97/+3ltFo9sWa8XgWz3jL8Ro7dpyQjZgAJRDoLe0lpBS4FNIWQoCQ/lpuKYE0DYXEt72BBMotS4EWmpCyBxIIZLdjx/EysT328Xg8+75qNs1II+n3h6RjSSPNYjkZJ3k9Hw8/rOVI+kqjOaPz1uf7+drC4bAAAAAAAACAc2Vf6gEAAAAAAADg1Y2ACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABkhYAIAAAAAAEBGCJgAAAAAAACQEQImAAAAAAAAZISACQAAAAAAABlxLvUAAADAhccwjKckXRs9+znTNL+4wNs9IOnj0bOrTNNsOf+jw0IYhuGSdEjSJklXmKa5bwG32SXpFklXSiqTNCypQdJ/SfqeaZr+l23AAADgVY0KJgAAMJ87DMPYsNSDwKJ9SZFwaV6GYdgNw/iapCclvUdSlSSXpOWS3iTp3yQdMAxj3cs0VgAA8CpHwAQAAOaTLenbhmHwueFVwjCMv5N0+yJu8kVFKpckqUPSrZLeKOmPFalekqSLJT1iGEbh+RonAAB47WCKHAAAWIgrJH1S0n1LPRCkF50W9xVJH13EbdZI+pvo2TOStpum6Y3b5KeGYRyXdLekixQJn/7p/IwYAAC8VvBNJAAAmEtI0kz09BcNw1i9lINBeoZhXCZpj86GS8EF3vTPJTmip29LCpdiviRpJHr6xnMeJAAAeM0iYAIAAHMJSNodPZ0r6ZtLOBakYRjGlyXtk3Rp9KKfa+HVZj2K9F5ql/R4qg1M0wxJOhU9u/LcRwoAAF6rmCIHAADm8w+S3i1pvaTrDMP4C9M0Mwqaok3Db5X0ZknVkmyKBBxPSrrfNM2GNLd7SpHV7aZN03TPcf/HFGlw3WqaZl3SdeHoyU9L+pWkByRdrUiYdlrS/zZN83dx2xdKulnS/5C0WVKBpEFJhyU9LOk/TNOcURLDMOokNUfPvlvSLyR9SNIHo2MrkNQp6TeS/tk0zaZ0z2cB3qDIazgk6W9N0/y2YRh3LuSGpmk+oMhrkJZhGDadDZa6MxgnAAB4jaKCCQAAzMk0zWlFApZQ9KLdhmFUnev9GYZxh6SjijSVNiTlKVIdZSgyveuoYRh3RkONl1ONIlPK/iD6+EWStisSMsXG+iZJJyX9syJNr0slZUmqkPR2Sd+RdDjax2guuZJ+J+nbigRkHkWap6+W9DFJxw3DeEcGz2VY0j2S1pqm+e0M7iedTyjynCXpoZfh/gEAwKscFUwAAGBepmnuiS5j/wlFgphvSHrXYu8nWlXzhejZlyR9Pfq/XdIORRqJr4nb5s5Mxj2P2xSp+rlX0i8VCVC2mabZEh3rFYpUOOVICkv6gaQfSeqVtErShxUJpzZLetYwjB2maaar7vnn6P3vk/Q1RaabrZD0cUlvVSRs+q5hGKtN0xw/h+fyJ9FpbOdFNNzzSNoSHeMfR686KOlfztfjAACA1w4CJgAAsFB/p0ioVCfpnYZhvM80zR8u9MaGYWyXdEf07H9I+nDS1LI9hmF8W9IjknZJ+rxhGD9KN13uPLBL+ifTNP8+7rL/jo7VoUh1Uo4ilVvvNU3zv+O2e0HSQ4ZhfF6RKYQrJP0/SX+Y5rEqFHnOH4oPggzD+IUiz/cdksok3aBzqBA6n+FS1DclfSTpsm9L+v/OMQADAACvcUyRAwAAC2Ka5oSkv4y76CuGYZQt4i7+WpHPHoOSPpqqb1H0MT6sSMWQTZGKqZfTv6a5/F2K9JySpH9NCpcspmneJemp2G0Mw9iY5v6mFFmhLSEIMk0zrMTG6VsXMuhXQG2Ky94i6S8Mw+DzIwAAmIUPCAAAYMFM03xc0r9Hz3ok3b+Q20WnXL09enaPaZqTczxGs6QT0bNvPsehLkSnaZodaa57W9zp/zfP/Xw97vT1abY5aJrmUJrr4pt7F8zzWK+Ur0u6RtJVkm5XpAF7rSLTCX9AyAQAAJIxRQ4AACzW7YoEKSskvdcwjP8yTfPn89ymTlJJ9PQfxq3kNp9V5zbEBWmf47rN0f/HJR2b5372xZ3ekmabljluHz/l7IL4bGaa5k/jzu41DON7ijQpv0TSTZIeV2QKIQAAgCQqmAAAwCKZpjmiSOPnmH81DKN4npt5zvHhnIZhvFxVPaNzXLcs+v9AdBrbXHrjTpem2WauvkXx9/9yr5x3TqLVVx+Mu+jDSzUWAABwYSJgAgAAixatcHk4enaFIqukzSW+Muc7ilTCLPRf2ul0c1jIZ5y5gqPFBD2OuNPnu9n2BcM0zWOKrH4nSRcv5VgAAMCF54IowwYAAK9Kt0q6TpFqnw8bhvHgHNvG9x8KmqZ55BwfMxYKzRcAFZ3j/cfExusxDMM2TxXT8hS3e9UwDKNS0hpFfi5759l8MPq/6+UdFQAAeLWhggkAAJwT0zT7JH067qJ/k5SXZvMzOluJ9Ib57tswjM8YhvFXhmG8Jemq2MpzLsMwHMm3i942R9JiVrdL5aXo//mSNs2zbfzzOZnh476ios3XT0p6RpGf33zbro6eTdccHQAAvE4RMAEAgHNmmuZ/SHo0erZO0p+l2S4g6cno2S2GYVyd7j4Nw7hO0pclfUPSZ5OuHok7XZfmLt4iKWuucS/Ab+NO/9U823407vTjGT7uKypambUnenaTYRiXz7H5DTpbrfWqep4AAODlR8AEAAAy9VeSxqKn5wp2/iXu9HcNw6hJ3sAwjHIlVtJ8NWmTl+JOfyLF7ZdL2j3naBfmF5JOR0/fYhjGu1NtZBjGHZKujZ79fQZT/5bS1+NOf8MwjFnTCw3DMCR9K3o2oMSfJQAAAD2YAABAZkzTbDcM4zNKDCpSbfeEYRj/KuljivT8qTcM4z5JT0c3uVTS7ZIqo+d/aprmz5Lu5r8kfV6RzzCfiq4w96CkKUWmqt0WvX1T9DHO9TkFDcP4QHRsLkn/bRjGfyrS2LxPUq2kj0h6W/QmA5L+17k+3lIyTfOXhmE8JOm9krZJajAM415JhxVpYP5WRfptxVbz+5Rpmo1LMlgAAHDBImACAADnwzck3STpjfNs9wlFwqDbJJVI+oc02/1E0vuTLzRN87RhGLcpUtlkl/Th6L+YkCLT6pZJ+utFjH8W0zT3GYZxvaSHFOnp9MHov2SHJL3XNM3OTB5vif0vRSqT3q9IQHdfim2mJN1qmua3X8mBAQCAVwemyAEAgIxFe/ncLMk3z3ZB0zRvl3SJIqHUSUnjioQbnZJ+LOkG0zT/xDTNlPdlmubXJO2U9J+KNJv2S+qW9CNJV5um+aXz8qQij/WkpLWS/rcivYqGoo/XIukRSTdKeoNpmqfT3cergWma06ZpfkDSmxUJ1DoU+ZmMSjqiSE+sNYRLAAAgHVs4PNequwAAAAAAAMDcqGACAAAAAABARgiYAAAAAAAAkBECJgAAAAAAAGSEgAkAAAAAAAAZIWACAAAAAABARgiYAAAAAAAAkBECJgAAAAAAAGSEgAkAAAAAAAAZIWACAAAAAABARgiYAAAAAAAAkBECJgAAAAAAAGSEgAkAAAAAAAAZIWACAAAAAABARgiYAAAAAAAAkBECJgAAAAAAAGSEgAkAAAAAAAAZIWACAAAAAABARgiYAAAAAAAAkBECJgAAAAAAAGSEgAkAAAAAAAAZIWACAAAAAABARgiYAAAAAAAAkBECJgAAAAAAAGSEgAkAAAAAAAAZIWACAAAAAABARgiYAAAAAAAAkBECJgAAAAAAAGSEgAkAAAAAAAAZIWACAAAAAABARgiYAAAAAAAAkBECJgAAAAAAAGSEgAkAAAAAAAAZIWA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8W/Wd7/+3JEuW932NbSXOcpI4CSQhbIVSukwXoDNzp9NOe5leZrulDJRCe0vv/Gg7bZk7bWfoo0BLe7s/bjdaKJ2W0hZKgQAJgQQSstg58e7Yifddsqz194fkE8mWl0QJScjr+Xj4ES1HR19J9nHO25/v52uLRqMCAAAAAAAATpX9bA8AAAAAAAAA5zcCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKQl42wPAAAAnHsMw3hW0jXxq3ebpvlvS3zc1yX9c/zqCtM0O07/6LAUhmG4JL0qqUHSFaZp7jrF/dwm6f74VT5TAACQEhVMAABgMZ8xDGPd2R4ETtq/KxYunTLDMFbE9wMAALAgAiYAALCYTEnfMwyD/zecJwzD+N+S7kxzHzZJ35OUc1oGBQAA3tCYIgcAAJbiCkkfk/S1sz0QzC8+Le4+STefht19RNK1p2E/AADgAsBfIgEAwEIikkLxy/9mGEb92RwM5mcYxqWSduhEuBROY191kr4SvzqY5tAAAMAFgIAJAAAsJCjpP+KXsyV95yyOBfMwDONLknZJuiR+06+VXrXZdyTlSXpB0i/SGx0AALgQMEUOAAAs5vOS/lLSWklvNQzjn0zTTCtoijcNv1XS2yTVSLJJOirpGUkPmKbZOM/jnlVsdbtp0zTdC+z/oGINrjtN01w+675o/OIdkh6X9HVJVykWprVI+rRpmk8lbJ8v6R8l/bmkDYoFL0OS9kp6WNKPTNMMaRbDMJZLao9f/UtJv5F0k6QPx8eWJ6lH0hOS7jVNs3W+17MElyv2Hg5L+pRpmt8zDONfT2VHhmH8g6Q/k+RX7HXflsa4AADABYIKJgAAsCDTNKcVCxoi8Zv+wzCMZae6P8MwPiPpgKRbJBmKNZHOjl++WdIBwzD+Nd5k+kyqVWxK2Z/Fn79A0hbFQqaZsV4r6bCkeyW9WVKxJKekSknvlvR9SXsNw1i5yHNlS3pKsabZ10gqVax5er2kj0o6ZBjGe9J4LSOSvixplWma3zvVncQ/13vjVz9vmqaZxpgAAMAFhIAJAAAsyjTNHZK+Eb9aIOlbp7KfeFXNFyQ5JO1XLFC6UrEKotsltSr2/5PPxb/OpI8rFvR8RdLVkv5a0v8xTbMjPtYrFKtwqpIUlfRjSe+VdJmkv5H0ZHw/GyQ9bxhG1QLPda9iDbN3Sfrb+D7+QtIf4/dnSvqhYRi5p/ha/so0zU+bpjlyio+f8W3FPt+9kv4zzX0BAIALCFPkAADAUv1vSTdIWi7pesMwPmSa5k+X+mDDMLZI+kz86o8k/f2sqWU7DMP4nqTfSnqLpM8ahvGL+abLnQZ2xQKl/y/htkfiY3UoVp2UpVjl1gdM03wkYbuXJf3cMIzPKjaFsErS/1UsgEqlUrHXfJNpmjOVYDIM4zeKvd73SCqTdJ2kn5/sC0nc56kyDOPD8XGENPezAQAAWBAVTAAAYElM0/RK+p8JN91nGEbZSeziE4r932NI0s2pAoz4c/y9YhVDNp35/j/fnOf2GxTrOSVJ35wVLllM0/yCpGdnHmMYxvp59ueX9PHZQZBpmlElN06/aCmDPt0Mw6jUiabgXzFNc9/ZGAcAADh/ETABAIAlM03zj5J+EL9aKumBpTwu3k/p3fGrO0zT9C3wHO2SmuJX33aKQ12KHtM0u+e5750Jl//vIvt5MOHyu+bZ5hXTNIfnuS+xuXfeIs91pnxLUpFi/aa+cJbGAAAAzmNMkQMAACfrTsWClCpJHzAM42emaf56kccsVyzAkKT3JqzktpgVpzbEJTm6wH0b4v9OSjq4yH52JVzeOM82HQs8fjLh8uv+fzPDMD6o2Ap5EUn/EG/qDgAAcFKoYAIAACfFNM1RSf+ccNM3DcMoXORhpaf4dBmGYZypqp7xBe4rif87GJ/GtpC+hMvF82wzOc/tUmw64IwzvXJeEsMwyiXdH7/6DdM0d76ezw8AAN44qGACAAAnzTTNXxmG8bBiK69VKbZK2j8s8JDE/3N8X0ucWhc373S6BSzlj2gLBUcnE/Q4Ei6n3Wz7dXa/YuHfmKRfGIZxcYptEsPB9TNhIn2aAABAIgImAABwqm6V9FbFqn3+3jCMhxbYNrH/UDiNcGImFFosACo4xf3PmBlvqWEYtkWqmCpSPO58cXn83wJJzy9h+8cTLr+u1VYAAODcxhQ5AABwSkzT7Jd0R8JN35aUM8/mbTpRiXT5PNtYDMO4yzCMjxiG8fZZd82sPOcyDMMx+3Hxx2ZJOpnV7VLZH/83V1LDItsmvp7DaT4vAADAeYkKJgAAcMpM0/xRvEn0uxVr5P3f59kuaBjGM5Kuk7TRMIyrTNN8IdW2hmG8VdKX4lefkfRUwt2jCZeXK3kFthlvl+Q8iZeRypOSbo5f/oik2xbY9uaEy39M83lfV6ZpLl9sG8Mwvq4TPbdWmKbZcSbHBAAAzk9UMAEAgHR9RNJE/PJCwc5XEy7/0DCM2tkbxJtOfzvhpvtnbbI/4fKc0McwjApJ/7HgaJfmN5Ja4pdvMQzjL1NtZBjGZyRdE7/6J/oSAQCACxUVTAAAIC2maR41DOMuSQ8ust3ThmF8U9JHJa2U9JphGF+TtD2+ySWS7pRUHb/+K9M0/2vWbn4m6bOK/R/m9vgKcw9J8is2Ve3j8ce3xp/jVF9T2DCMv42PzSXpEcMwfizpYUn9kjyKNTV/Z/whg5L+x6k+HwAAwPmOgAkAAJwO35L0N5LevMh2tykWBn1cUpGkz8+z3aOSbpx9o2maLYZhfFyxyia7pL+Pf82ISPoXxRqPf+Ikxj+HaZq7DMN4l6SfK9bT6cPxr9lelfQB0zR70nk+AACA8xlT5AAAQNriq6z9o6SpRbYLm6Z5p6TNioVShyVNSgpK6pH0S0nXmab5V6ZpptyXaZrfkLRN0o8ldUsKSDou6ReSrjJN899Py4uKPdczklZJ+rSkHYqtEheQ1CHpt5LeL+ly0zRb5tsHAADAhcAWjS606i4AAAAAAACwMCqYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAAAAAAAkBYCJgAAAAAAAKSFgAkAAAAAAABpIWACAAAAAABAWgiYAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAPZCAYAAABd95D3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4G+W99vF7JFneHcd2nMXxko1JQoAsJFAKlAIttBRaTjnQw0t7OHSBUihLW0r7Au3hQLewNCcspYW2vAXK1kJpCfu+BbLvmTheZMeO4z2ObcmSLL1/SB4kb3EyASfh+7muXNZIM6NnRvbEc/t5fo8RjUYFAAAAAAAA7C/XaDcAAAAAAAAAhzYCJgAAAAAAADhCwAQAAAAAAABHCJgAAAAAAADgCAETAAAAAAAAHCFgAgAAAAAAgCMETAAAAAAAAHCEgAkAAAAAAACOEDABAAAAAADAEQImAAAAAAAAOELABAAAAAAAAEcImAAAAAAAAOAIARMAAAAAAAAcIWACAAAAAACAI57RbgAAADj4mKb5uqTPxBdvsCzr1hFud5ek78UXp1iWVX3gW4eRME3TK2m1pCMlfcqyrOV7Wf9+Sd8c4e75bAEAQBJ6MAEAgL250TTNWaPdCOyzXyoWLo3UvI+qIQAA4PBHDyYAALA3qZIeME3zRMuyIqPdGOydaZo/kXTtPqzv0Ydh1P2S7t7LJvX72TQAAHCYImACAAAj8SlJ35f029FuCIYWHxa3RNJl+7jpLMWCREl62bKstQe0YQAA4LDHEDkAADCciKRw/PGtpmlOHc3GYGimaS6S9I4+DJd692HzuQmPCZcAAMA+I2ACAADDCUlaHH+cIekPo9gWDME0zV9JWi7p2PhT/9C+9Tbrq7/UJan8ADYNAAB8QjBEDgAA7M1/SzpX0kxJp5qm+W3LshwFTfGi4VdIOk3SZEmGpFpJr0laalnW5iG2e12x2e16LMtKG2b/GxWrKeSzLKus32vR+MNrJD0r6S5JJyoWpm2XdL1lWS8nrJ8j6VuSvixpjqRsSS2S1kh6QtJfLMsKqx/TNMskVcUXz5X0jKSLJX0j3rZsSXWSXpB0u2VZFUMdzwgcr9g5bJV0nWVZD5im+fN92L6vB9M66mwBAID9QQ8mAAAwLMuyehQLWPqCh8WmaRbt7/5M07xR0gZJl0syJWUq1jvKVGx41wbTNH9umqbhqOF7V6zYkLLPx99/jKT5ioVMfW39rKStkm6XdLKkPEkpkiZI+oKkP0paY5rmtL28V4aklyU9oFhAVqBYzaOpkr4raZNpml90cCxtkn4tabplWQ/sx/bHxL+uNU3zHNM0nzZNs8E0zaBpmvWmaT4RPxcAAACDImACAAB7ZVnWO/pwZrExkn63P/uJ96q5WZJb0nrFAqUTFOtBdJWkCsV+P/lZ/N9H6WrFgp7fSDpJ0r9L+oVlWdXxtn5KsR5OEyVFJT0k6RxJx0n6mqQX4/uZI+kt0zQnDvNet0v6rGLD2L4e38dXJL0Ufz1V0p9N08zaz2P5qmVZ11uW1bavG5qmWaJYcCZJFyk2vO7LksYrFqZNlHSepFdN07wvPuMcAABAEn5BAAAAI/UTSWdLKpP0JdM0L7Qs65GRbmya5nxJN8YX/yLpkn5Dy94xTfMBSf+SdIqkm0zTfHyo4XIHgEuxQOn/Jjz3ZLytbsV6J6Ur1nPrAsuynkxY7wNJj5mmeZNiQwgnSrpPsQBqMBMUO+aLE4egmab5jGLH+0VJ4ySdJemxfT0Qh8Pa5iU8zpG0TtI9kjYqFnydIulKSWMlfUexsG1fZ6kDAACHOXowAQCAEbEsq0uxgKHPEtM0x+3DLn6g2O8eLZIuG6xuUfw9LlEsxDAUCzY+SvcO8fzZitWckqR7+4VLNsuybpb0et82pmnOHmJ/AUlX9w+CLMuKKrlw+jH6+CXOIPeApGMty/q9ZVnvWpb1mmVZP1MshPLF17nUNM1TPu5GAgCAgxsBEwAAGDHLsl6S9Kf4YoGkpSPZLl5P6QvxxXcsy+oe5j2qJG2JL562n00diTrLsnYM8doZCY/v28t+7kl4fOYQ66yyLKt1iNcSi3tn7+W9PgqLFQu2ztbQwZ9PsTpcfa7+mNoGAAAOEQyRAwAA++paxYKUiZIuME3zr5Zl/WMv25QpNsRKks5JmMltb6bsXxNHpHaY1+bEv3YqNlRsOMsTHh81xDrVw2zfmfD4Y//dLB72rY//G269l03TrFLsMznVNE0j3gMLAACAHkwAAGDfWJbVLul7CU/da5pm7l42K9jPt/OYpvlR9erpGOa1/PjX5hGEKLsSHucNsU7nEM9LseGAfT7qmfOcWhf/mq0PA0MAAAB6MAEAgH1nWdZTpmk+odjMaxMVmyXtm8Nskvg7xx81wqF1cUMOpxvGSP6INlxwtC9BjzvhsZNi24eCxM/CO2qtAAAABx0CJgAAsL+ukHSqYr19LjFN89Fh1k2sP9RrWdba/XzPvlBobwHQmP3cf5++9haMYCjY+EG2OySYpulS7DMcJylgWdZTe9mkMP61V4fYsQIAgI8WQ+QAAMB+sSyrUdI1CU/9XlLmEKtX6sPeL8fvbd+maf7YNM1LTdM8vd9LfQWovaZpuvtvF982XbHAxIm+ekRZko7cy7qJx7PV4ft+rOKz2j0p6RFJ98SLsQ/KNM1USQvji+stywp+DE0EAACHCAImAACw3yzL+ouk5+KLZZL+zxDrhSS9Fl88yjTNE4fap2map0r6laTfSfppv5fbEx6XDbGL0yWlDNfuEXgx4fGle1n3soTHLzl839HwZvzrBEmfH2a9S/Rhz7DheqsBAIBPIAImAADg1KWS9sQfDxfs3JHw+M+maRb3X8E0zULFekL1+d9+qyTOdHblINuPl7R42NaOzDOStscfX26a5rmDrWSa5o2SPhNffMXB0L/RdE/C4/81TXNAQXbTNI+T9Jv4YoOSPyMAAABqMAEAAGcsy6o1TfPHSg4qBlvvVdM075X0XUnTJK0zTfO3kt6Ir3KspGslTYovP2VZ1tP9dvNXSTcp9jvMVfEZ5h6VFFBsqNrV8e0r4u+xv8fUa5rm1+Nt80p60jTNhyQ9IalRUqliRc3PiG/SLOk/9/f9RpNlWc+bpvmIpAslHSFpjWmav5G0QrEhj2cpNmugV1JI0sXxmQQBAABsBEwAAOBA+J2kr0k6eS/rXalYGHS1YtPc//cQ6/1d0kX9n7Qsa7tpmlcr1rPJpdiwrUsSVokoNqwuX9IP9qH9A1iWtdw0zTMlPaZYTadvxP/1t1rSBZZl1Tl5v1F2iWLn7iJJkzWw55gUK+r9X5ZlvfBxNgwAABwaGCIHAAAci8+y9i1J/r2s12tZ1rWS5ikWSm2V1KlYz5g6SX+TdJZlWV+1LGvQfVmWdbdixaYfkrRDUlDSTkmPSzrRsqxfHpCDir3Xa5KmS7pe0juKhSxBSdWS/iXpfEnHW5a1fah9HAosy+qxLOvrkk5TLFCrVew42yWtUSwInGVZ1jOj10oAAHAwM6LR4WbdBQAAAAAAAIZHDyYAAAAAAAA4QsAEAAAAAAAARwiYAAAAAAAA4AgBEwAAAAAAABwhYAIAAAAAAIAjBEwAAAAAAABwhIAJAAAAAAAAjhAwAQAAAAAAwBECJgAAAAAAADhCwAQAAAAAAABHCJgAAAAAAADgCAETAAAAAAAAHCFgAgAAAAAAgCMETAAAAAAAAHCEgAkAAAAAAACOEDABAAAAAADAEQImAAAAAAAAOELABAAAAAAAAEcImAAAAAAAAOAIARMAAAAAAAAcIWACAAAAAACAIwRMAAAAAAAAcISACQAAAAAAAI4QMAEAAAAAAMARAiYAAAAAAAA4QsAEAAAAAAAARwiYAAAAAAAA4AgBEwAAAAAAABwhYAIAAAAAAIAjBEwAAAAAAABwhIAJAAAAAAAAjhAwAQAAAAAAwBECJgAAAAAAADhCwAQAAAAAAABHCJgAAAAAAADgCAETAAAAAAAAHCFgAgAAAAAAgCMETAAAAAAAAHCEgAkAAAAAAACOEDA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeUXHd9///X9Nnem7arXa2qVWzZcgMbYlOSwOEb4BdSCJBv8gVMPd8kEAKEEOrhdzAkQH6BkJAQG+yEQDCxMcVNtiVZslZltVfa1fbe+87s7Mzvj5m5mpmdrSN5VZ6Pc3Q05d6Zz8zu3t37mvfn/bGFQiEBAAAAAAAAa2Vf7wEAAAAAAADg2kbABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQ413sAAADg6mMYxlOS7o5c/YRpmn+7wv3+TtL7IldrTdNsvfyjw0oYhuGWdELSDkm3mab54gr3+1+Sfk/SAUlFkiYkvSzpu5IeMk0zdGVGDAAArmVUMAEAgOX8lWEYdes9CKza5xUOl1bEMIwcwzB+IekRSb8tqVySW1KBpNdI+r6kxwzD8F6BsQIAgGscARMAAFiOR9J3DMPg74ZrhGEYH5P0kVVs75L0hKR7Ize9KOl3Jd0q6fclnY3c/jpJ37x8IwUAANcL/lAEAAArcZukD6z3ILA0wzDchmF8U9LnVrnrRyUdjFx+SNIdpmk+ZJrmEdM0/y1y3+nI/e80DGP75RkxAAC4XhAwAQCApQQlBSKX/9YwjI3rORgszjCMWyQdlvSnkZvmV7ifV9LHIlebJf2haZpx+5qmOSXpL2NuektqowUAANcbAiYAALCUOUlfjlxOl/SP6zgWLMIwjC8oPK3tQOSmH0v66gp3f4Ok7MjlT5qmObfIdj+X9D1JD0o6s8ahAgCA6xSryAEAgOX8taQ3S9om6R7DMP7YNM2UgqZI0/D3K9zzp0KSTVKHpF9L+rppmg2L7PeUwqvb+UzTXLTZtGEYZxRucN1mmmZNwn3RVdA+LOkxSX8n6Q6Fw7QmSX9hmuYvYrbPlvQehRtf75SUJWlI4ZXVHpH0r6ZpBpTAMIwaSS2Rq2+W9BNJ75T0B5GxZUnqUrj30VdM02xe7PWswK0Kv4fDkv7MNM3vGIbx6RXu+7rI/35JP1psI9M0fZL+MIUxAgCA6xgVTAAAYEmRYOE9Ck+Xk6QvG4ZRvtbHMwzjrxTu5/NeSYakDIWrowyFp3edNgzj04Zh2FIa+PIqFZ5S9huR58+RtE/hkCk61ldLapT0FUl3ScqX5JJUqnAw80+SXjYMY9Myz5Uu6ReSvqNwQFaocPP0jZL+j6SzhmG8PoXXMiLpi5I2m6b5nVXuuyvy/1nTNGeiNxqGkW4YxlbDMKpo8A4AAJbDHwsAAGBZpmkelvT3kas5kr61lseJVNV8RpJD0imFA6VDClcQfVDhHkB2SZ+K/LuSPqRw0PMlSXdK+h1JnzNNszUy1tsUrnAqkxSS9G+SfkvhhtdvV3jKmBSuanrWMIyyJZ7rK5JerfA0tt+PPMabJD0Zud8j6Z8Nw8hc42t5i2maf2Ga5sga9o027G6TJMMw7jYM4+eSxiWZkdt7DcP4YqSaCwAAYAGmyAEAgJX6mKTflFQj6Y2GYfyuaZr/vtKdDcPYJ+mvIlf/VdK7EqaWHTYM4zuSfirpVZI+aRjGDxebLncZ2BUOlGKbVz8aGatD4eqkNIUrt95mmuajMdsdlfQDwzA+qfAUwjJJ/6BwAJVMqcKv+Z2maUYrwWQYxk8Ufr2vl1SkcD+kH6z2hcQ+5moYhuGRFA21Rg3D+Likzyo83S5WkaQ/k/RbhmHcZ5pm+1qeDwAAXL+oYAIAACsSWUnsf8fc9KBhGEWreIiPKvy3x5CkP03WtyjyHO9SuGLIJumBtY94Rb65yO2/qXDPKUn6ZkK4ZDFN8zOSnoruYxjG9mTbSZqV9KHEIMg0zZDiG6fvWcmgL6PYiql7JP2tpAFJfyypWJJX4Wqr/4lss03Sf0WCKQAAAAsBEwAAWDHTNJ+U9N3I1UJJX1/JfpF+StFm0odN05xe4jlaJJ2LXL13jUNdiS7TNDsXue++mMv/sMzjfCPm8v2LbHPcNM3hRe6Lbe6dtcxzXW7pMZerFA7/Dpmm+W3TNAdM0/SZpnlU8ZVVeyW9+xUeJwAAuMoxRQ4AAKzWRxQOUsokvc0wjIdM0/zxMvvUSMqLXP6tmJXcllO7tiGuSMcS9+2M/D8p6cwyj/NizOVdi2zTusT+kzGXX+m/zWYSrv91stXsTNMMGYbxQYVXw3NL+j3FB2sAAOAGRwUTAABYFdM0RyW9L+ambxqGkbvMboVrfDqnYRhXqqpnfIn7CiL/D0amsS2lL+Zy/iLbTC5yuxSeDhh1pVfOSzSRcP1Hi21ommafwr2nJOnmV2CVPwAAcA0hYAIAAKtmmuaPJD0SuVqm8CppS4mtzPknhadZrfTfotPplrCSv3GWCo5WE544Yi6vqdn2ejFN0ycpduW57mV2iVZ9OSUtFyoCAIAbCFPkAADAWr1f4cbQBZLeZRjGw0tsG9t/aN40zZNrfM5oKLRcAJSzxsePio630DAM2zJVTCVJ9ruWnJZ0V+RyrpZ+DdHm3vNaugIMAADcYKhgAgAAa2KaZr+kD8fc9P9Jylhk84u6VIl063KPbRjGnxuG8SeGYbwm4a7oynNuwzAciftF9k2TtJrV7ZI5Ffk/U9KOZbaNfT2NKT7veojtIbXc1yb6XnSapjl/hcYDAACuQQRMAABgzUzT/FddWsK+RtI7FtluTtKvI1d3GYZxx2KPaRjGPZK+IOlbkj6ecPdozOWaRR7iNZJcS417BX4ec/lPltn2T2MuP5ni866H2Mqz9y62kWEYt0gyIlf/64qOCAAAXHMImAAAQKr+RJeaRS8V7Py/MZf/2TCMysQNDMMoVrgSKuprCZucirn8QJL9SyR9ecnRrsxPJDVFLr/XMIw3J9vIMIy/knR35OovU5j6t25M03xZl4KxN0RWi4tjGEa+pO9ErgYk/eMrNDwAAHCNoAcTAABIiWmaHYZh/LmWWbbeNM1fGYbxTUn/R9ImSfWGYXxV0tORTQ5I+oikDZHrPzJNM7FS5iFJn1T4b5gPRlaYe1jSrMLTuz4U2b858hxrfU3zhmH8fmRsbkmPGobxbwo3Nu+XVC3p3ZLui+wyKOkP1/p8V4E/UXiFuEJJXzUM49WS/kXhpt97JH1MlyrG/tY0zbPrMUgAAHD1ImACAACXw7ckvV2XmkUv5gGFw6APScqT9NeLbPefkn4v8UbTNJsMw/iQwpVNdknvivyLCio8ra5A0kdXMf4FTNN80TCM+yX9QOGeTn8Q+ZfohKS3mabZlcrzrSfTNFsMw7hb0o8lbZb025F/ib4o6TOv5NgAAMC1gSlyAAAgZZFV1t4jaWaZ7eZN0/yIpL0Kh1KNkiYlzUnqkvQfkt5gmuZbTNNM+limaf69pJsl/ZukTkl+ST2SfijpDtM0P39ZXlT4uX6tcODyF5IOK7zCml9Sq6SfSnqrpFtN02xa7DGuFaZpNkjaqXAI+IzCVVk+havB/lXSbaZp/oVpmsH1GyUAALha2UKhpVbdBQAAAAAAAJZGBRMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmUXGWd//FPVXVVb+l9TXfS3UknuUlnIRB2ZdXBFR2OChx0/IkyM67goOM4IyAyiAgHEVHUQRSVYRMdFWEGVBQEEgjZ00luupPe904v1V3dtdfvj6q6qeotna4kTcL7dU5O13ZvPVWpunWfz/0+z7VFIhEBAAAAAAAAc2Wf7wYAAAAAAADg5EbABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJSkzXcDAADAm49hGH+VdFHs6k2maX5zlst9X9LnYleXmKbZfOxbh9kwDMMlaauk1ZLOM01z0zSPa5ZUfbTrN03Tlkr7AADAqYUKJgAAcCQ3G4axar4bgaP2LUXDpeMhcJzWCwAATlJUMAEAgCNJl/SQYRhvN00zPN+NwZEZhvHvkm6c5cPfK8k1i8f9QNL5scufnku7AADAqYuACQAAzMZ5kq6X9N35bgimFxsWd5+OIgAyTXPPLNb7zzocLj1omuZP59ZCAABwqmKIHAAAmElYUjB2+ZuGYSydz8ZgeoZhnC3pFR0Ol0LHaL1LJd0Tu9og6YvHYr0AAODUQsAEAABmEpB0d+xylqQH57EtmIZhGHdK2iTpzNhNv9Oxqzb7gaTs2OV/Mk1z7BitFwAAnEIYIgcAAI7kG5KukLRS0qWGYfyjaZopBU2xScM/L+kdkhZJsklqk/QXSfdPN2wr4ex2PtM0M2ZY/25FJ7huMU2zZsJ9kdjFf5H0jKTvS3q7omFao6Svmqb5p4TH50q6TtIHJa2RlCPpkKRtkn4l6ZemaQY1gWEYNZKaYlevkPR7SZ+Q9PFY23IkdUh6TtI9pmkemO71zMK5ir6HA5K+YprmQ4Zh3JrC+iRJhmFcLundsav/bZrmX1NdJwAAODVRwQQAAGZkmqZP0YAlPsH33YZhVM51fYZh3Cxpl6TPSjIUrY7Jil3+tKRdhmHcahiGLaWGH9liRYeUXRZ7/jxJZygaMsXbeomkfYoOEbtQUqEkp6RySe+R9FNJ2wzDqD3Cc2VJ+pOkhxQNyIoVnTx9qaTPSKo3DOO9KbyWQUnflrTMNM2HUliPxTAMu6JnopOkcUlfPRbrBQAApyYCJgAAcESmab6i6FApKRrE/Ggu64lV1dwmySFpp6KB0vmKVhDdIOmAovsnX4/9O56+qGjQc5ekCyR9RNIdpmk2x9p6nqIVTgslRSQ9IukDks6RdLWk52PrWSPpb4ZhLJzhue6RdImiw9j+IbaOv5f0x9j96ZIeNgxjwRxfy4dM0/yqaZqDc1x+Kh9WtNJKkv7LNM32Y7huAABwimGIHAAAmK1/l3S5pBpJ7zcM4xrTNB+d7cKGYZwh6ebY1V9K+uSEoWWvGIbxkKQ/SLpY0i2GYTw5m7OczZFd0UDpawm3PRVrq0PR6qRMRSu3rjJN86mEx70u6QnDMG5RdAjhQkk/VjSAmkq5oq/5E6ZpxivBZBjG7xV9ve+VVCLpfZKeONoXkrjOY+hfYn8Dkr5zHNYPAABOIVQwAQCAWTFN0yPpnxJuus8wjJKjWMWXFN33OCTp01PNWxR7jk8qWjFkk/SFubd4Vn44ze2XKzrnlCT9cEK4ZDFN8zZJf40vYxhG3TTr80r64sQgyDTNiJInTj9tNo0+3mJnpDs3dvUx0zRb57M9AADgzY+ACQAAzJppmn+U9LPY1WJJ989mudh8Su+JXX1lpjORmabZJGlv7Oo75tjU2eiYYdjXuxIu//gI63kg4fK7p3nMFtM0B6a5L3Fy75wjPNeJckPC5bvmrRUAAOCkwRA5AABwtG5UNEhZKOkqwzAeM03zd0dYpkZSQezyBxLO5HYkS+bWxFlpm+G+NbG/o5J2H2E9mxIur53mMc0zLD+acHne980Mw8hUdH4oSdpsmmb9fLYHAACcHKhgAgAAR8U0zSFJn0u46YeGYeQfYbHiOT5dmmEYx6uqxz3DfUWxv/2xYWwz6Um4XDjNY0anuV2KDgeMO95nzpuNdyp61jtpDvNBAQCAt6Z5P0oGAABOPqZp/o9hGL9S9MxrCxU9S9qnZlgkcZ/jp5rl0LqYaYfTzWA2B9FmCo6OJuhxJFw+HpNtn2jx6qWIpF/NZ0MAAMDJg4AJAADM1eclXapotc8nDcN4fIbHJs4/FDJNc/scnzMeCh0pAMqb4/rj4u0tNgzDdoQqprIpljuZvS/29zUm9wYAALPFEDkAADAnpmn26vCp7CXpvyRlT/PwgzpciXTuNI+xGIbxb4Zh/LNhGO+ccFf8zHMuwzAcE5eLLZsp6WjObjeVnbG/CyStPsJjE1/PvhSfd14ZhmHocGD20ny2BQAAnFwImAAAwJyZpvlLSf8bu1oj6aPTPC4g6S+xq2sNw3j7dOs0DONSSXdK+pGk/5hw91DC5ZppVvFOSc6Z2j0Lzydc/ucjPPbTCZf/mOLzzrezEy6/MW+tAAAAJx0CJgAAkKp/ljQSuzxTsPOdhMsPG4axeOIDDMMoVbQSKu57Ex6yM+HyF6ZYvkzS3TO2dnZ+L6kxdvmzhmFcMdWDDMO4WdJFsat/TmHo35vFuoTLBEwAAGDWmIMJAACkxDTNNsMw/k3SA0d43AuGYfxQ0mck1UraYRjGdyW9GHvImZJulFQRu/4/pmn+dsJqHpN0i6L7MDfEzjD3uCSvokPVvhhb/kDsOeb6mkKGYfxDrG0uSU8ZhvGIopNe90qqVnRS83fFFumX9P/m+nxvIisSLnfOWysAAMBJh4AJAAAcCz+SdLWkC4/wuC8oGgZ9UVKBpG9M87jfSPrYxBtN02w0DOOLilY22SV9MvYvLqzosLoiSV86ivZPYprmJsMw3i3pCUXndPp47N9EWyVdZZpmRyrP9yaxKPbXa5qmb15bAgAATioMkQMAACmLnWXtOknjR3hcyDTNGyWdrmgotU/SqKSApA5Jv5b0PtM0P2Sa5pTrMk3zB5LOkvSIpHZJfkldkp6U9HbTNL91TF5U9Ln+ImmZpK9KekXRs8T5JTVL+oOkKyWda5pm43TrOMnkxv4OzfgoAACACWyRyExn3QUAAAAAAABmRgUTAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAE
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4XPld5/tPrdola9+sxfJyvEh22922u9170pBA0hkyXEgYGJZctgnhJiRAgEtCmBsSQgaGJCQwN4SBh5ClCZOFhEl3hyS9u223d8k6lmzti7XvtVfNH1V1ukqqkkoqudW236/n8eMq1amqX2mpOudzvr/vzxaJRAQAAAAAAABslH2rBwAAAAAAAIBbGwETAAAAAAAAskLABAAAAAAAgKwQMAEAAAAAACArBEwAAAAAAADICgETAAAAAAAAskLABAAAAAAAgKwQMAEAAAAAACArBEwAAAAAAADICgETAAAAAAAAskLABAAAAAAAgKwQMAEAAAAAACArBEwAAAAAAADICgETAAAAAAAAsuLc6gEAAIDXH8Mwfijp4djVPzRN808yvN9fSfqN2NUdpmn2bv7okAnDMNySzko6IOk+0zRPZnCfHZLeJ+lHJTVKskkakPQ9SX9pmmbXzRsxAAC4lVHBBAAA1vIhwzD2bfUgsG4fVzRcyohhGD8l6bKk/0fSXkn5kvIk7ZH0bkmXDMP4+ZswTgAAcBsgYAIAAGvJkfQFwzDYb7hFGIbx+5Lev47tj0n6J0VDpZCkz0j6cUk/omhQ5Vf09+B/GobxI5s+YAAAcMtjihwAAMjEfYpWtvzlVg8E6cWmxX1K0q+v864fleSKXf4Z0zT/OeG27xmG8aSk7yt6cvLPJR3MdqwAAOD2wplIAACwmrCkYOzynxiG0bKVg0F6sSqkF/RquBTK8H45kh6NXT21LFySJJmm+Yykr8euthmG0ZTlcAEAwG2GgAkAAKwmIOmTscv5kj6/hWNBGoZh/Kmkk5LuiX3pm8q82qxMr1a1X11lu8sJl2vXNUAAAHDbY4ocAABYyx9LeruijZ/fYBjGr5immVXQFGsa/h5Jb5S0Xa+uVvYDSZ8xTbMjzf1+qOjqdj7TNHNXefzLija47jNNs3nZbZHYxd+S9B1JfyXpAUXDtG5Jv2ea5vcSti+W9MuS/oOkVklFkiYlnZP0z5L+0TTNoJYxDKNZUk/s6tslfUvSL0r6+djYiiQNSXpS0p+bpnkt3evJwL2Kfg+nJP2uaZpfMAzjIxned1zRKjWnoj/jdHYlXB7eyCABAMDtiwomAACwKtM0fYoGLOHYlz5pGEb9Rh/PMIwPSbqk6MpkhqQCRaujDEWnd10yDOMjhmHYshr42hoUnVL2o7HnL5F0RNGQKT7WRyV1Ktp36CFFq31ckmok/Zikv5N0zjCMnWs8V76k70n6gqIBWYWiTbNbJP0XSe2GYfx4Fq9lWtInJO0yTfML67ljLBz7t9jVewzDePvybQzDOCzpp2JXT5mm2Z/FWAEAwG2ICiYAALAm0zRfMAzjs5J+U9Eg5m8kPb7ex4lV1fxR7OpFSZ+L/W+XdLeijcR3JmzzkWzGvYb3KVr182eS/lXR0Ogu0zR7Y2O9T9EKpzxJEUVXWXtC0g1JOyS9S9FwqlXSc4Zh3G2a5kia5/rz2OOflPRZRaei1Ur6DUVXasuR9PeGYbSYprmwgdfyk6ZphtfeLK3fkXQsNsYnDMP4jKSnJPkUre76oCS3opVbv5rF8wAAgNsUARMAAMjU7ysaKjVLeqthGP/JNM0vZXpnwzCOSPpQ7Oo/SnrXsqllLxiG8QVJ35b0iKQPG4bxRLrpcpvALuljpmn+vwlf+1psrA5Fq5PyFK3ceodpml9L2O6UpK8ahvFhRacQ1kr6H5Lelua5ahR9zb+YGAQZhvEtRV/vj0uqlPQWSV9d7wvJMlySaZpXDcO4V9HV5H5W0emDv7Vss3+R9DumafYsvz8AAABT5AAAQEZM01xUcvXKpwzDqFzHQ3xA0X2PSUm/nqpvUew53qVoxZBN0Yqpm+mv03z9cb3aj+ivl4VLFtM0/6ukH8bvYxjG/jSP55X0vuVBkGmaESU3Tj+UyaBvkhOK9oZKNzXxQUk/aRgG+48AAGAFdhAAAEDGTNN8WtL/jF2tkPSZTO4X66f0Y7GrL5imubTKc/RIuhK7+sYNDjUTQ6ZpDqa57U0Jl//HGo/zuYTLb06zzSumaU6luS2xuXfRGs91UxiG8TFJX5J0WNKLik7bK4z9e6OkZyRVKbqi4BcImQAAwHJMkQMAAOv1fkWDlFpJ7zAM48umaX5zjfs0SyqNXX5bwkpua9mxsSFmZGCV21pj/y9IurzG45xMuNyWZpveVe6f2HPpNd83MwzjbYpOf5Sk70p6m2magYRNvm8YxjOSvijpnYquhPeyon24AAAAJFHBBAAA1sk0zRlFm1PH/bVhGNvWuFvFBp/OaRjGzarqmVvltvLY/xOxaWyruZFwuSzNNqs17k58/Ju9cl4q8Z9lWNKvLQuXJEmmaYYUXe0u/j17z2s0NgAAcIsgYAIAAOtmmubXJf1z7GqtoqukrSaxMufvFJ2Klem/tNPpVpHJPs5qwdF6gh5HwuWsmm1vkaOx/y+aptmfbqNYsPiD2NUDhmEU3vSRAQCAWwZT5AAAwEa9R9IbFK32eZdhGF9ZZdvE/kMh0zTPb/A546HQWgFQyQYfPy4+3grDMGxrVDFVp7jfrSQeFM1ksO1YwuVirV6ZBQAA7iBUMAEAgA0xTXNMyUvZ//+SCtJsfl2vViLdu9ZjG4bxQcMwfs0wjMeW3RRfec5tGIZj+f1i982TtJ7V7VK5GPu/UNGV1VaT+Ho6s3zerTAe+78lg23rY/+HJU3cnOEAAIBbEQETAADYMNM0/1HS/45dbZb0s2m2C+jV6VVthmE8kO4xDcN4g6Q/VbSJ9B8suzmxyqY5zUM8Jsm12rgz8FTC5V9bY9tfT7j8dJbPuxWei/3faBjGw+k2MgyjRtKjsaunTNP03/SRAQCAWwYBEwAAyNavSZqPXV4t2PmLhMt/bxhGw/INDMOoUrQSKu7Tyza5mHD5N1Pcv1rSJ1cdbWa+Jak7dvndhmG8PdVGhmF8SFI8lPn3LKb+baXPJlz+vGEY9cs3MAwjX9I/ScqLfekzr8XAAADArYMeTAAAICumaQ4YhvFBSZ9bY7vvG4bx14quRrZT0gXDMP5S0jOxTe6R9H5JdbHrXzdN8xvLHubLkj6s6D7Me2MrzH1FklfRqWrvi93/Wuw5NvqaQoZh/OfY2NySvmYYxhcVbWw+JqlJ0v8t6U2xu0xI+oWNPt9WMk3zOcMw/krRnlq7JZ2PXX9OkkfSXYp+X/fE7vJ1RX8OAAAAFgImAACwGf5G0jslPbTGdr+paBj0Pkmlkv44zXb/S9LPLf+iaZrdhmG8T9HKJrukd8X+xYUVnVZXLukD6xj/CqZpnjQM482SvqpoT6efj/1b7qykd5imOZTN822x90nyKxrwVUj6SJrtvijpV9doeg4AAO5ATJEDAABZiwUOv6xoxctq24VM03y/pMOKhlKdiq5EFpA0JOlfJL3FNM2fNE0z5WOZpvlZSUcVDTsGFQ1GRiQ9IekB0zQ/vikvKvpcP5C0S9LvSXpB0VXi/JJ6JX1b0k9Lutc0ze50j3EriP1cPiDpiKTPS+pStCm7V9HX+kVJD5um+Z/T/VwAAMCdzRaJcAIKAAAAAAAAG0cFEwAAAAAAALJCwAQAAAAAAICsEDABAAAAAAAgKwRMAAAAAAAAyAoBEwAAAAAAALJCwAQAAAAAAICsEDABAAAAAAAgKwRMAAAAAAAAyAoBEwAAAAAAALJCwAQAAAAAAICsEDABAAAAAAAgKwRMAAAAAAAAyAoBEwAAAAAAALJCwAQAAAAAAICsEDABAAAAAAAgKwRMAAAAAAAAyAoBEwAAAAAAALJCwAQAAAAAAICsEDABAAAAAAAgKwRMAAAAAAAAyAoBEwAAAAAAALJCwAQAAAAAAICsEDABAAAAAAAgKwRMAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4XHeB7//3qBcXSZYsy7YslzjHdnohhAAJJEDCAlm4LISlL7u0hCSU328pl7a51M2SJYUECCGEQEII3AAbYFMIJZvYpNhxXI+7JMuyqmXZajOamfvHjMaSLMtlHMsO79fz+Jk5Z075zox85pzP+ZZIMplEkiRJkiRJOlI5E10ASZIkSZIkndgMmCRJkiRJkpQVAyZJkiRJkiRlxYBJkiRJkiRJWTFgkiRJkiRJUlYMmCRJkiRJkpQVAyZJkiRJkiRlxYBJkiRJkiRJWTFgkiRJkiRJUlYMmCRJkiRJkpQVAyZJkiRJkiRlxYBJkiRJkiRJWTFgkiRJkiRJUlYMmCRJkiRJkpSVvIkugCRJOv4EQfAn4KL05OfDMPzqIa53C3BVenJeGIbbjn7pdCiCICgAlgOnAC8Lw3DZIaxzJnAN8GqgBugHVgE/A34QhuHAC1diSZJ0IrMGkyRJOpgvBEGweKILocP2dVLh0iEJguDLpAKpfwLmAoXAVOAVwC3Ac0EQzDvqpZQkSS8KBkySJOlgCoE7giDwvOEEEQTBZ4FPHsbyXwC+BESAGHAj8BpS4dLngF3AImBpEATzj3qBJUnSCc8mcpIk6VC8jFTTqW9PdEF0YOlmcTcCHzmMdQLgy+nJPuCyMAz/MmyRJ4Ig+DnwP8AM4CbgjUelwJIk6UXDO5GSJGk8CWAw/fyr1l45fgVBcB7wBPvCpfghrnoV+84JPzcqXAIgDMPNwMfTk28IguCi0ctIkqS/bQZMkiRpPDHg+vTzEuD2CSyLDiAIgm8Ay4Bz07N+zaHXNrs4/dgPfG+c5X4B7E0/v+JwyyhJkl7cbCInSZIO5t+At5Dqg+fiIAg+GIZhVkFTutPwjwGXALNJ9f3TCPwRuDkMw7UHWO9PpEa3GwjDsGic7a8m1cF1fRiGc0e9lkw//QTwW1IdWL+CVJi2CfhMGIaPDlt+CvAvwN8DpwKTgQ5gBXA/cHcYhoOMEgTBXGBrevItwG+A9wPvTZdtMtAEPAR8K11L6EidT+oz7AT+NQzDO9Kddh+KuvTj82EY9h1ooTAM40EQhMA5pJpMSpIkZViDSZIkjSs9NP2/kGouB3B9EASzjnR76Q6lVwFXAgFQSqp2VECqedeqIAi+HARBJKuCH1wtqSZlr0vvfypwNqmQaaisrwbWA98CLgQqgHxSfRG9HvghsCIIggUH2VcJ8ChwB6mArJJU5+nzgY8Ca4Ig+Lss3ssu4JvASWEY3nGY6xakH/ccwrKx9OPCw9yHJEl6kTNgkiRJBxWG4RPAd9KTU4HvHsl20rVqrgNygedJBUoXkKpBdC2wmdT5yZfS/15IHycV9Pw78ErgbcDXwjDcli7ry0jVcKoBksBPgMuBlwLvAB5Ob+dU4PEgCGrG2de3gFeTasb2nvQ23gw8kn69EPhREASTjvC9vDUMw8+EYbjrCNZtTz/OPoRla9OPpUEQTD6CfUmSpBcpm8hJkqRD9VngTcBc4I1BELwzDMN7DnXlIAjOBr6Qnrwb+MCopmVPBEFwB/Ag8Crgi0EQ/PxAzeWOghxSgdL/HjbvF+my5pKqnVRMqubWFWEY/mLYck8B9wVB8EVSTQhrSPVfdPkB9jWD1Ht+fxiGQzXBCILgN6Te798BVcAbgPsO940M3+YR+CupJnxBEARLxmmeeBYwvOZaKYdW60mSJP0NsAaTJEk6JGEY9gAfGjbrxiAIqg5jE58ide7RAXxkrH6L0vv4AKkaQxHg6iMv8SG57QDz30SqzymA20aFSxlhGF4H/GlonSAIlhxge/3Ax0cHQWEYJhnZcfoZh1Loo+zuYc+/FwTBfn1bBUFQCNw0anb+C1oqSZJ0QjFgkiRJhywMw0eAO9OTlcDNh7Jeuj+l16cnnwjDsHecfWwF1qUnLznCoh6KpjAMtx/gtUuHPR9vZDWAW4c9v+wAyzwbhmHnAV4b3rn3RDQ7+xXwWPr5K0jVJHt9EASTgiAoCYLgNcCf0681DVsveozLKUmSjmM2kZMkSYfrk6SClBrgiiAI7g3D8NcHWWcuUJ5+fvmwkdwOZt6RFfGQNI7z2qnpx73A6oNsZ9mw56cdYJlt46y/d9jzY35uFoZhMgiCK4DfAS8h1dH578ZY9E6ggX19Y/UcmxJKkqQTgTWYJEnSYQnDsAu4atis24IgKDvIapVHuLu8F7Az6e5xXpuWfmxPN2MbT8uw5xUHWGbvAeZDqjngkBd65LwxhWHYTmqUvM+zf/D2FPD2MAw/AAx9zz1hGI73niRJ0t8YazBJkqTDFobhA0EQ3E9q5LUaUqOk/fM4qww/5/ghh9i0Lu2AzenGcSg30cYLjg4n6Mkd9jybzrYnVBiG/cBXga8GQTCLVHO9HWEYDg/ihvql2naMiydJko5zBkySJOlIfQy4mFRtnw8EQfCzcZYd3v9QPAzD545wn0Oh0MECoKlHuP0hQ+WtDIIgcpBaTNVjrHdCC8OwafS89Mh656Ynj/T7kyRJL1I2kZMkSUckDMNW4BPDZn2f1ND1Y9nCvppI5x9s20EQfDoIgg+nO5gebmjkuYJ04DHWusXA4YxuN5bn04+TgFMOsuzw97M+y/0ec0EQXBIEwTeDILgzPVrcgVzIvqaDjxyDokmSpBOIAZMkSTpiYRjeDfw+PTkXeNcBlosBf0xPnhYEwSsOtM0gCC4GvgF8F/jcqJe7hj2fe4BNvAbIH6/ch+DhYc8/fJBlPzLs+YkYvCwC/hV4P/CqcZb7dPpxL6mR5yRJkjIMmCRJUrY+DOxJPx8v2Llh2PMfBUFQO3qBIAimk6oJNeSmUYs8P+z51WOsXw1cP25pD81vgE3p51cGQfCWsRYKguALwEXpyT9k0fRvIv0aiKeffyUIgv2+wyAIPgdcmp78zzAMdx+rwkmSpBODfTBJkqSshGHYGATBp4FbD7LcY0EQ3AZ8FFgArAyC4NvAn9OLnAt8EpiZnn4gDMPRNWXuBb5I6hzm2vQIcz8D+kk1Vft4ev3N6X0c6XuKB0HwnnTZCoBfBEHwE+B+oBWoI9Wp+VDo0g6870j3N5HCMNweBMGtpAK7c4GlQRDcQKpZ4yxS7/P16cWfAr42IQWVJEnHNQMmSZJ0NHwXeAepfnrGczWpMOjjQDnwbwdY7v8C7x49MwzDTUEQfJxUzaYc4APpf0MSpJrVTQM+dRjl308YhsuCILgMuI9Un07vTf8bbTlwxVgdY59A/j9SodnlwDnAT8dY5jHgbenR5iRJkkawiZwkScpaepS1fwH6DrJcPAzDTwJnkQql1pPq0ycGNAG/BN4QhuFbwzAcc1thGH4HeAnwE2A7EAWagZ8DrwjD8OtH5U2l9vVH4CTgM8ATpEaJiwLbgAeBtwPnh2G46UDbOBGEYRgF3gy8E3gU2EWqQ/U24Hek3udrwjB8UYySJ0mSjr5IMjneqLuSJEmSJEnS+KzBJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEmSpKwYMEmSJEmSJCkrBkySJEmSJEnKigGTJEmSJEmSsmLAJEmSJEm
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XFd9///3zGhmNFqsXZZka/N2bTmbk5gkbWgJIYSlbOVXAoVvS1jKErJAFygllLahhAQCacCkpUAogYQSwk5KEiAkJDGEJN6ta1u7JWvfRzOa7f7+uDNXM9rtcSzHfj0fDz00y507Z0ajO/e+7+ec47IsSwAAAAAAAMCJcq90AwAAAAAAAPDiRsAEAAAAAACArBAwAQAAAAAAICsETAAAAAAAAMgKARMAAAAAAACyQsAEAAAAAACArBAwAQAAAAAAICsETAAAAAAAAMgKARMAAAAAAACyQsAEAAAAAACArBAwAQAAAAAAICsETAAAAAAAAMgKARMAAAAAAACyQsAEAAAAAACArOSsdAMAAMDpxzCMxyT9afLqJ0zT/PQyH/clSdclrzaaptl+8luH+RiGUSPpg5KulrRBUr6kYUnPS7pf0rdN04wtsY5ySR+R9HpJ6yTFJLVJelDSXaZpDr9gLwAAALyoUcEEAACWcrNhGFtWuhFYmGEYb5FkSvonSRdLKpbklbRa0qsk3SPpKcMw1iyyjosl7Zf0j5K2SgpIKpR0nqRPSdptGMaFL9iLAAAAL2oETAAAYCl+SV8zDIP9htOQYRhXSvqOpAJJYUl3SHqlpEskvU3S48lFt0v6uWEYefOso1rSzyVVSopI+qzsCraXS/qypISktZJ+YhjG6hfy9QAAgBcnusgBAIDluEzSDZK+uNINwQzDMFySviTJIztcusI0zZ1pi/zeMIzvStoh6f2yq5FukvTvs1Z1q6SK5OU/N03zZ2n3/dowjCck3SepRtI/y+6KBwAA4OBMJAAAWExC9jg8kvRpwzDWrWRjMMdlkjYnL//HrHBJkmSapiXpw5L6kzf9Vfr9hmFUSfrL5NWfzAqXUuv4rqQfJK++2zCMkpPQdgAAcAYhYAIAAIuJSro9eTlP0ldXsC2Y66Vpl3+80EKmaYYl/TZ51TAMw5929+s0U9X+P4s819eSv32S3nCc7QQAAGc4usgBAICl/IukN8mulHm5YRjvNU0zq6ApOWj4hyRdKXtsH5ekLkm/lj1b2YEFHveY7LGBpk3TzF1k/ftkD1TdYZpmw6z7rOTFD0v6mewuZpfLDtOOSPqYaZqPpi2/StJ7ZIcq58ge+HpI9uxs35P0rflmZzMMo0H2DGyS/f79WNI7ZVcQbU2up1vSLyR93jTNloVezyJ+L+kzsruuHVliWVfa5VxJ08nLf5x2+2OLPP4JSVZyPS+XPXA4AACAJCqYAADAEkzTnJYdsCSSN92+2GxkSzEM42ZJe2WP42NIypddHWXIHidor2EYn0qOL/RCqpX0pOwBsfMkFUm6UGlBjWEYV0hqlvR5SX8iqVT27GxVkl4t6euSnjcMY/0Sz5Un6VHZVUB/Kqlc9uDp6yR9QNJ+wzBec7wvwDTNX5um+XHTNN9pmmbfQssZhuHVTJA0ZprmWNrdqRkCR03THFzkuSYkDcx6DAAAgCQCJgAAsAymaT4pezYxyQ5i7j6R9RiG8SlJ/yp7UOo9sgOlP5JdQXSjpBbZ+yf/nPx5Id0kO+i5TXZXs7+Q9O+mabYn23qZ7AqnatmVO/dKer3s2dneKunh5HrOkfREcia2hXxe0hWSdkr6f8l1vFHSI8n7/ZLuMQyj4CS9ttneJXuGOMmumEqXCgs7l7GerlmPAQAAkEQXOQAAsHz/KHu8ngZJf2YYxl+apvmd5T7YMIwLJd2cvPotSe+a1bXsScMwvibpp5JeJumThmH870Ld5U4Ct+xA6Z/Sbnsg2VaP7OqkgOzKrWtM03wgbbnfS/quYRiflN2FsFrSf8oOoOZTJfs1v9M0zVQlmAzD+LHs1/sa2bO4vVbSd7N/aTMMw9gge5a4lM/PWqQ0+XtiGasLJn8XZ9suAABwZqGCCQAALItpmkFJf5N2052GYVQstPw8/lb2vseQpPfPN25R8jnepZmxfq4/8RYvy1cWuP11mpmd7SuzwiWHaZr/qplxi15nGEbTAusLS7opPVxKPt5S5sDp5y+n0ctlGEal7AArFQj9t2mav5+1WGrA7/AyVhma9RgAAABJBEwAAOA4mKb5iKRvJK+WS7prOY9Ljqf06uTVJ03TnFrkOdokHUxevfIEm7oc3aZpHl3gvqvTLv/nEuvZkXb5VQss86xpmsML3Jc+uHfhEs+1bIZhVEn6peyxrSR7UPIb5lk0nvxtzXPfQo5nWQAAcBagixwAADheH5EdpFRLusYwjPtM0/zREo9pkFSSvPz6tJncltJ4Yk1clq5F7jsn+XtS0r4l1rMz7fK5CyzTvsjjJ9Mun5R9s+Sg47+QlBp83JT0atM0Q/MsPin7b7PgrHxpAsnfy6l2AgAAZxEqmAAAwHExTXNU0nVpN33FMIylxuQpP8GnyzEM46RV9cwyvsh9Zcnfg8lubItJn72tdIFlJhe4XcqsBsp65rzk4ORPayZc2i/pikVmmUuNvZS/jNWnllmoGgsAAJylqGACAADHzTTNHxiG8T3ZM69Vyx44+t2LPCR9n+PrWmbXuqQFu9MtYjkn0RYLjo4n6PGkXU4suNQpYBjGX0j6H81UI/1O0mtN0xxa5GEdkuok1S7jKVLL9JxwIwEAwBmJgAkAAJyoD0l6uexqn3cZhnH/IsumV7zETdPcdYLPmQqFlgqAik5w/Smp9pYbhuFaoopp9TyPO+UMw/igpC9p5r35maS3LDbeVdJ+SS+V/VqLTNMcW2D9hbJnupOkF2pmPwAA8CJFFzkAAHBCTNPsl/ThtJv+Swt3s2rVTCXSpUut2zCMjxqG8T7DMF4x667UzHM+wzA8sx+XfGxAM0HIidqT/F0gaesSy6a/nuYsn/eEGIbxAUlf1ky49FVJb1hGuCRljiF1+SLLvTRt/U8cdyMBAMAZjYAJAACcMNM0vyXpoeTVBklvX2C5qKRfJ6+eaxjGgkGGYRgvl3SrpLslfXzW3aNplxsWWMUrJHkXa/cyPJx2+X1LLPv+tMuPZPm8xy0Zwn0p7aZPm6b5N6Zpxhd6zCw/khRNXr52keVSXSCjsqujAAAAHARMAAAgW+/TzEDRiwU7d6RdvscwjDlj/hiGUSm7EirlP2Ytsift8vXzPH61pNsXbe3y/FjSkeTlDxqG8ab5FjIM42ZJf5q8+sssuv6dEMMwiiR9UzP7dF8wTfMTx7OO5KDt305e/XPDMN4yz/NcIyn1Hnw7Wb0GAADgYAwmAACQFdM0uwzD+KikHUss9yvDML4i6QOyZzjbbRjGFyX9JrnIxZI+Iqkmef0Hpmn+cNZq7pP0Sdn7MDcmxwW6X1JYdle1m5KPb9HMLGon8prihmH8v2TbfJIeMAzjXknfk9QvqV52Rc/VyYcMSvrrE32+LFyvmferXdJ3DMO4YBmPO2CaZiTt+kclvV72LHj3JSvMHkze9+eyZw10yX7ts6vKAAAACJgAAMBJcbekt0r6kyWWu152GHSTpBJJ/7LAcg9KesfsG03TPGIYxk2yK5vckt6V/ElJyA5AyiT97XG0fw7TNHcahvEqSd+VPabTXyV/ZntO0jWmaXZn83wn6G/SLjdIemaZj2uUHUhJssfTMgzjakk/l/1ar9fcCrF+Sa8xTfPYiTYWAACcuegiBwAAspacZe09kkJLLBc3TfMjkrbJDqWaJU3KHtenW9L3Jb3WNM03m6Y577pM0/yypO2S7pV0VFJE0jFJ/yvpctM0P3NSXpT9XL+WtEHSxyQ9KXuWuIjscOankt4i6VLTNI8stI4XimEY5ZLmdDM8UaZp/kHSZkn/LmmfpKDsMPCA7DGxzjFN89mT9XwAAODM4rKsxWbdBQAAAAAAABZHBRMAAAAAAACyQsAEAAAAAACArBAwAQAAAAAAICs
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4W+Wd/v9bkiVblrd4t4O3JObgBAghCUtpgWZaKC3MtL8uQLcZOkOnhbD215nSaSntRTcYWtZ2WoaBshUKpdBthqVACwmEEBJC7OTEibck3u14kyzLlvT9Q9KJJMvOooAheb+uK5dl+ejo0Xbic/vzfB5bOBwWAAAAAAAAcKjscz0AAAAAAAAAvLcRMAEAAAAAACAtBEwAAAAAAABICwETAAAAAAAA0kLABAAAAAAAgLQQMAEAAAAAACAtBEwAAAAAAABICwETAAAAAAAA0kLABAAAAAAAgLQQMAEAAAAAACAtBEwAAAAAAABICwETAAAAAAAA0kLABAAAAAAAgLQQMAEAAAAAACAtGXM9AAAA8O5jGMaLks6Kfvst0zS/f4C3u1PS5dFv60zTbDv8o0MqhmFUSrpM0rmSFknySBqUtFHSI5IeMk1z6iD3uUjSZkl20zSzDu+IAQDAkYQKJgAAsD/fNgyjYa4HgZkZhvEZSaak/5C0QlKBJKekMkkfkXSfpLWGYcw/iH1mSfqVJPfhHi8AADjyEDABAID9yZR0j2EY/N7wLmQYxt9JelhSjiS/pJ9IOkfSqZIulvS36KYrJf3ZMIzsA9inU9Jjkt73dowZAAAceZgiBwAADsTpkq6UdOtcDwT7GIZhk3SnJIci4dIHTdN8NW6T1wzDeFTSzyR9RdKJkq6W9INZ9lmhSLh0xts1bgAAcOThL5EAAGA2IUmxvj3fNwxjwVwOBtOcLum46OXbk8IlSZJpmmFJ10jqjV71xZl2ZhjGRZLe0L5wKXj4hgoAAI5kBEwAAGA2k5Jujl7OlnT3HI4F030g7vLvZ9rINE2/pJej3xqGYWQmb2MYxiuSfi2pXJFg8TtxtwEAAJgVU+QAAMD+fFfSJxSplFllGMalpmmmFTRFm4avlvR3ko6RZJO0S9ILku4wTbNphtu9qMjqdhOzrWpmGMYWSUsktZumWZv0s3D04jWS/qTIFLP3KxKm7ZD0DdM0n4vbPk/Sv0j6B0nHS8qVNKDI6myPSXog1epshmHUSmqNfvsJRQKgf1KkgmhJdD97JD0t6RbTNHfO9Hhm8ZqkH0qqjI59Nra4y1mSJpJ+flr061ZJl5qmucYwjFWHMCYAAHAUooIJAADMyjTNCUUCllD0qpsPZjWyZIZhfFvSW5Iuk2RI8ihSHWUo0ifoLcMwboj2F3o7VUlao0hD7GxJ+ZJOVlxQYxjGByVtk3SLpDMlFSqyOlu5pPMk/Y+kjYZhLNzPfWVLek7SPYoEZMWKNE9fIOmrkhoNw/jowT4A0zRfME3zm6Zp/pNpmj0zbRdt2h2b9jZsmuZwis1aFO3TZJrmmoMdCwAAOLoRMAEAgP2KBg53Rb/Nl/Rfh7IfwzBukPQ9RZpSb1Yk0HifIhVEV0naqcjvJ9+J/ns7Xa1I0HOTIlPNPi3pB6ZptkXHeroiFU4VksKSHpT094qsznaRpGei+zle0kvR5tgzuUXSByW9KukL0X18XNKz0Z9nSrrPMIycw/TYkn1JUmn08tMzbFNvmuYvUlVjAQAA7A9T5AAAwIG6TtIFkmolnW8YxmdN03z4QG9sGMbJkr4d/fYBSV9KCjPWGIZxj6Q/Sjpb0vWGYfxmpulyh4FdkUDpP+Kuezw6Voci1UluRSq3LjRN8/G47V6T9KhhGNcrMoWwQtIvFAmgUilX5DH/k2masUowGYbxe0Ue70cllUj6mKRH039o+xiGsUjSj+KuuiXVdvHjAgAAOFhUMAEAgANimqZX0pfjrrrNMIySg9jF1xT53WNA0ldSVcpE7+NLilQM2SRdcegjPiA/n+H6C7RvdbafJ4VLFtM0vyfpxdhtDMNYPMP+/JKuTg5xoiu8xfezWnoggz5QhmGUKhJgFUSv+m/TNF87nPcBAAAgETABAICDYJrms5LujX5bLOmOA7ldtJ/SedFv15im6ZvlPloVaTQtRZqAv132mKa5e4afnRt3+Rf72c/P4i5/ZIZtNpimOTjDz+Kbe+fu574OmGEY5ZL+okhvKynSlPzKw7V/AACAeEyRAwAAB+taRYKUCkkXGobxa9M0n9rPbWolzYte/vu4ldz2p+7QhnhAds3ys+OjX8ckbdnPfl6Nu3zCDNu0zXL7sbjLh+V3s2jT8aclxZqPm5LOM01z/HDsHwAAIBkVTAAA4KCYpjkk6fK4q35uGEbBTNtHFR/i3WUYhnHYqnqSjMzys6Lo1/7oNLbZxK/eVjjDNmMzXC9FpgPGpL1yXrQ5+SvaFy41SvrgbKvMAQAApIsKJgAAcNBM0/ydYRiPKbLyWoUijaP/eZabxP/O8T86wKl1UTNOp5vFgfwRbbbg6GCCHkfc5TltlG0Yxqcl3S8pK3rVOkkfM01zYO5GBQAAjgYETAAA4FCtlrRKkWqfLxmG8cgs28b3HwqaprnpEO8zFgrtLwDKP8T9x8TGW2wYhm0/VUxlKW73jjMM4zJJd2rfc/MnSZ+Zrd8VAADA4cIUOQAAcEhM0+yVdE3cVb+U5Jlh8xbtq0Q6bX/7Ngzj3w3D+FfDMD6U9KPYynMuwzAcybeL3tYt6WBWt0tlc/RrjqQl+9k2/vFsS/N+D4lhGF+VdJf2hUt3S/oHwiUAAPBOIWACAACHzDTNByT9b/TbWkmfm2G7SUkvRL89wTCM98+0T8MwVkn6kaT/kvTNpB8PxV2unWEXH5LknG3cB+CZuMv/up9tvxJ3+dk07/egRUO4O+Ou+r5pml82TTP4To8FAAAcvQiYAABAuv5V0mj08mzBzk/iLt9nGEZV8gaGYZQqUgkVc3vSJpvjLl+R4vZlkm6edbQH5veSdkQvX2YYxidSbWQYxrclnRX99i9pTP07JIZh5Ev6lfb9TvdT0zS/9U6OAQAAQKIHEwAASJNpmrsMw/h3ST/bz3bPG4bxc0lfVWSFszcNw7hV0l+jm6yQdK2kyuj3vzNN88mk3fxa0vWK/A5zVXSFuUck+RWZqnZ19PY7tW8VtUN5TEHDML4QHZtL0uOGYTwo6TFJvZJqFGlqfm70Jv2S/vFQ7y8NV2jf89Um6WHDME46gNs1maYZeNtGBQAAjjoETAAA4HD4L0kXSTpzP9tdoUgYdLWkeZK+O8N2T0j6fPKVpmnuMAzjakUqm+ySvhT9FxNSZFpdkaSvHcT4pzFN81XDMD4i6VFFejp9Mfov2RuSLjRNc08693eIvhx3uVbS+gO8XZ0igRQAAMBhwRQ5AACQtugqa/8iaXw/2wVN07xW0jJFQqltksYkTUraI+m3kj5mmuYnTdNMuS/TNO+StFLSg5J2SwpI6pL0G0nvN03zh4flQUXu6wVJiyR9Q9IaRVaJCygSzvxR0mcknWaa5o6Z9vF2MQyjWNK0aYYAAABzwRYOz7bqLgAAAAAAADA7KpgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEB
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHBCAYAAAAl7QEoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4XHXd///nTJLJ1ixt06b7QlsOLWuRHRRBxQUU0J+C2y0qICj7/fXnBtyIyK0iILLcKHh/i8omelMQudkXWSyUtkDpcrpmadOmSdu0abZJMvP9Y6ZpkibdptBSno/rypUz55w58zmT5OTM67w/nxNJJpNIkiRJkiRJuyq6pxsgSZIkSZKk9zcDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGUke083QJIk7X2CIHgBODH98MowDH++g8+7Dfhe+uH4MAwrdn/r1JcgCEYA3wU+CUwECoF1wBzgAeDeMAw7trONw4ELgI8Ao4AsoBZ4Ffh9GIYvvFvtlyRJ729WMEmSpO25KgiCyXu6EepfEARfAkLgJ8ARQCmQA5QDnwKmAa8GQTCyn+dHgiD4FfAGcB4QkAqo8oCxwJeB54Mg+L9BEMTe3b2RJEnvRwZMkiRpe3KBPwRB4HnDXigIgo8B9wEDgFbgJuAU4GhSwdA/06seCTweBEFBH5u5Gvg+EAFq0tMfBo4DLgaWpdc7B7jj3dgPSZL0/mYXOUmStCOOBS4BfrOnG6ItgiCIALeR6srWCpwUhuGMbqu8HgTBg6RCoQuAQ4DLgOu7bWMs8OP0w0XACWEY1nXbxr+CIPgj8Cyp6qhvB0Hw32EYvvou7ZYkSXof8kqkJEnalgSwedyenwdBsN+ebIy2cixwQHr6t73CJQDCMEwClwNr0rP+rdcqXwU2d3u7rFe4tHkbG4HvdJvVexuSJOkDzoBJkiRtSztwQ3q6ALhrD7ZFW/twt+lH+1spDMNW4OX0wyAIgtw+ttECPL2NbcwmNWg4wKE731RJkrQvs4ucJEnanp8CZ5KqlDk5CILzwjDMKGhKDxp+EfAxUncriwDVwPPArWEYzu/neS+QurtdWxiGedvY/jvAgUBlGIbjei1LpicvB/5BqovZCaTCtCXAD8MwfKbb+sXAucDpwEFAEbCW1N3ZHgL+1Nfd2YIgGAcsTz88k1QAdA6p6p8D09tZCTwJ3BiG4dL+9mcbXgf+ExiRbvu2RLpN5wFt6ekHgXlAzvbuMtdtG/2+95Ik6YPJgEmSJG1TGIZtQRCcS2qw6ChwQxAEj4dhuHJXthcEwVXAf5AaN6jHovTX+UEQ/Az4abp717tlNPAKMKTbvMPpFtQEQXAScC8wvNdzhwGfTn9dEQTBGdsJiAqAZ4CTes3fD7gQ+FYQBJ8Pw/DxndmBMAyfJxXKbVMQBDnA8emHG8Iw3NBtG9N25LWCIDgEGJh+WLkz7ZQkSfs+u8hJkqTtCsPwFeD29MMS4M5d2U4QBNcA15IKl94mNfD0caQqiC4FlpI6P/mP9Ne76TKgDPgVqW5iXwSuD8OwIt3WY0lVOA0HksCfgc+Rujvb2cBT6e0cBLwUBEHvEKq7G0mFSzOAr6e3cQZbuqTlAtOCIBiwm/att28BQ9PTT+7iNn7UbXpXtyFJkvZRVjBJkqQd9SPgs8A44LQgCL4ShuF9O/rkIAgOB65KP/wT8K1eXbJeCYLgD8BjwEeBq4Mg+Et/3eV2gyipQOkn3eb9Nd3WLOC/gXxSA52fFYbhX7ut9zrwYBAEV5PqQjgc+B2pAKovw0jt8zlhGCY2zwyC4FFS+/sZUpVUp5LqsrbbBEEwEfhFt1k37sI2vkgqVIPUYOF/2g1NkyRJ+xArmCRJ0g4Jw7AJOL/brFuCIBjS3/p9+HdS5x5rgQv6Gu8n/RrfIlUxFAEu3vUW75D/6mf+Z9lyd7b/6hUudQnD8Frghc3PCYJgSj/bayV1h7ZE95npLoDdx7ParYNnB0EwlFSAVZqedXcYhq/v5DaOA6Z1m3VFGIabdk8LJUnSvsKASZIk7bAwDJ8G/m/6YRlw6448LwiCCKnxigBeCcOweRuvsRxYkH74sV1s6o5YGYbhin6WfbLb9O+2s507uk1/qp91ZoVhuK6fZd3HbirazmvtsCAIhgHPkhrXClKDkl+yk9s4Hnic1BhSAHeGYXjv7mqjJEnad9hFTpIk7awrSAUpw4GzgiC4PwzDR7bznHFsGSD6c93u5LY943etiTukehvLDkp/3wS8s53tzOg2fXA/61Rs4/ndq4F2y7lZEAQTSI2TNCE9KwQ+HYZhy05s4zOk7pK3OVz6G6k7/0mSJG3FCiZJkrRTwjBsAL7XbdZ/BUFQ2t/6aWW7+HLZQRDstqqeXjZuY9ng9Pf6HbiTXW236UH9rLOtLmXdtx/ZzmttV3pw8n+xJVyaB5wUhmFt/8/aahsXAI+yJVx6EDg7DMPOTNsnSZL2TVYwSZKknRaG4cNBEDxE6s5rw0kNHP3tbTyl+znHf7ODXevS+u1Otw07chFtW8HRzgQ9Wd2mE/2u9R5ID8b9RyAvPes14NQwDNfu4PMjpO6q93+6zf49cGHv8aMkSZK6M2CSJEm76iLgZFLVPt8KguCBbazbffyhzjAM39zF19wcCm0vACrZxe1vtrm9ZUEQRLZTxVTex/Pec0EQfBe4jS3vzT+AL21rvKtez88C7gG+2m32NWEY/nS3NlSSJO2T7CInSZJ2SRiGa4DLu836PVDYz+rL2FKJdMz2th0EwQ+CIPhOEAQf77Vo853nYulApK/n5gM7c3e7vryd/j4AOHA763bfn4UZvu4uCYLgQuB2toRLdwGn70S4FAH+xJZwqQP4luGSJEnaUQZMkiRpl4Vh+Cfgf9MPx9Gz+qX7eu3A8+mHBwdBcEJ/2wyC4GTgF8CdwI97LW7oNj2un018HMjZVrt3wFPdpr+znXUv6Db9dIavu9PSIdxt3Wb9PAzD83dyvKSfAl9OT7cCZ4Zh+H+3sb4kSVIPBkySJClT3wEa09PbCnZu6jY9LQiC0b1XCIJgKKlKqM1+22uVt7tNX9zH88uBG7bZ2h3zKLAkPf3dIAjO7GulIAiuAk5MP3w2g65/uyQIghJS3do2n9PdHIbhlTu5jWPYEuQlSQ3m/djua6UkSfogcAwmSZKUkTAMq4Mg+AFwx3bWey4Igv8CLiR1h7O3giD4DfBiepUjgCuAEenHD4dhOL3XZu4HriZ1DnNp+g5zD5CqujkGuCz9/KVsuYvaruxTZxAEX0+3LQb8NQiCPwMPAWuAsaQGNf9k+in1wDd29fUycDFb3q8K4L4gCA7bgefND8Mwnp6+ji0DlT8CVO7ANuJhGM7f2cZKkqR9lwGTJEnaHe4EzgY+sp31LiYVBl0GDCTVNasv/wN8rffMMAyXBEFwGanKpijwrfTXZglS1TiDgX/fifZvJQzDGUEQfAp4kNSYTv+W/uptNnBWGIYrM3m9XXR+t+lxwMwdfN54oCIIgv2Aj3Wbf0b6a3sq6b+LoiRJ+gCyi5wkScpY+i5r5wIt21mvMwzDK4CppEKphcAmoB1YCfwNODUMwy+EYdjntsIwvB04EvgzsAKIA6uAvwAnhGH4n7tlp1Kv9TwwEfgh8Aqpu8TFSVULPQZ8CTgmDMMl/W3j3RIEQRmwVTfDnXT47miLJElSJJnc1l13JUmSJEmSpG2zgkmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEk
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAPZCAYAAABd95D3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4XFd9//HPzGhGGu2SJduSLMl2rBxvsbGzELIQkqZAGqCllBBoSyk/KDQkJGEpFEIbaCiUPCnZSFNoChSakABlaSB1SInrxCSO7djxIvtasrXvuyzNaGY0M78/ZvGMNFrsa1uJ8349jx/Ncu+dM2Ppzr2f+z3nOKLRqAAAAAAAAIBT5VzoBgAAAAAAAOC1jYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgAAAAAAgC0ETAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGBL1kI3AAAAvPoYY7ZKuip+9w7Lsr46z/UelPSJ+N0VlmU1n/7WIRNjTKWkmyS9TdIqSXmSBiXtkfQjSf9pWdbkHNt4S3wbl0kqlzQkqV7SY5K+b1lW8Ey1HwAAvLZRwQQAAObyJWPMmoVuBGZmjLlBkiXpi5IuklQsyS1piaS3S/qepN8ZY6pmWN9pjPmWpGclvVdSlSRPfP2rJX1b0k5jTN2ZfScAAOC1ioAJAADMJVvSI8YYjhtehYwxvyfpUUn5kiYk/bOkt0p6o6T3S9oWX/RiSb82xuRm2MxXFatckqR2STdLerOkP1asekmSNkh60hhTeAbeBgAAeI2jixwAAJiPN0n6pKR7F7ohOMEY45D0oCSXYuHS1ZZlvZiyyEvGmMclPSTp44qFRLdJ+seUbZwn6bPxu8ckbbYsayRlGz8zxhyUdJek8xULn/5RAAAAKbgSCQAAZhORlBi356vGmJUL2RhM8yZJq+O3758SLkmSLMuKSrpdUm/8oQ9OWeQvFQuoJOm2KeFSwtckDcdv32CrxQAA4JxEwAQAAGYTknR3/HaupO8sYFsw3ZUpt38500KWZU1Iej5+1xhjslOe7lZs7KU2Sb+ZYf2IpCPxuzWn3FoAAHDOooscAACYy5clvVuxSplrjDEftSzLVtAUHzT8Zkm/J2mZJIdiAcezkh6wLKt+hvW2Kja7XcCyrJxZtn9A0jpJLZZlLZ/yXDR+83ZJv1Ksi9kVioVpjZI+b1nWMynLF0r6iKQ/lLReUoGkAcVmZ/uxpB9kmp3NGLNcUlP87rsVC4A+pFgF0br4djokbZF0j2VZR2d6P7N4SbHqosp422fjSLmdIykgSZZlPajYZzCjeFe8RLDUdQrtBAAA5zgqmAAAwKwsywooFrBE4g/dPdNsZPNhjPmSpP2KDSptJOUpVh1lFBsnaL8x5s54qHEmVUvartiA2LmSiiRtVkpQY4y5WtJhSfcoNuh1qWKzsy2VdJ2kf5e0Jz6O0WxyJT0j6RHFArIyxQZPXynpryUdNMb8wcm+AcuynrUs6wuWZX3IsqyemZYzxrglXR6/OzJDN7jZ3KLYe5akx0+2nQAA4NxHwAQAAOZkWdZ2Sd+K3y2S9PCpbMcYc6ekryg25s8+xQKlyxSrILpV0lHFjk/+Pv7vTLpNsaDnG4p1NXuvpH+0LKs53tY3KVbhVCEpKumHkt6l2OxsN0p6Or6d9ZKeM8ZUzPJa90i6WtKLkv48vo0/0okuadmSvmeMyT9N722qD0taHL+9Za6FjTEOY0y5MeYaY8xPJd0Xf2q3YrPUAQAApKGLHAAAmK+/lfROScslvcMY8wHLsh6d78rGmM2SvhS/+wNJH57StWy7MeYRSU9KeoukvzPGPDFTd7nTwKlYoPTFlMd+Em+rS7HqJK9ilVvvsyzrJynLvSTpcWPM3ynWhbBC0r8qFkBlslSx9/yh+HhGir/OLxV7v38gqVzS9TrNFULGmFWSvp7y0D3zWO07kv7flMcekfQZy7LGTlfbAADAuYMKJgAAMC+WZY1L+quUh+4zxpSfxCY+rdixx4Ckj2catyj+Gh9WrGLIoVjXrDPpX2Z4/J06MTvbv0wJl5Isy/qKpK2JdYwxa2fY3oRiM7RFUh+Mz/CWOp7Vxvk0er6MMYsVC7CK4w/9m2VZL81j1doMj10r6aPGGI4fAQDANBwgAACAebMs6zeSvhu/WybpgfmsFx9P6br43e2WZflmeY0mSYfid3/vFJs6Hx2WZbXP8NzbUm7/6xzbeSjl9ttnWGa3ZVmDMzyXOrh3wRyvNW/GmKWS/lexsa2k2KDkn5zn6g8p1m3wckmfUmwA9lrFuhP+JyETAACYii5yAADgZH1KsSClQtL7jDGPWZb1iznWWS6pJH77XSkzuc1lxak1cV7aZnluffznmKQDc2znxZTbF8ywTPMs66d2OTstx2bxQce3SEoMPm5Jus6yLP981rcs62cpd39njPm+YoOUb1Js/KnfKNaFEAAAQBIVTAAA4CRZljUs6RMpD/2LMaZ4puXjyk7x5bKMMaetqmeK0VmeWxT/2R/vxjab1NnbSmdYZrZxi1K3b3vmvPjg5C/oRLh0UNLVs80yN5d49dUHUx768Km3EAAAnIsImAAAwEmLV7j8OH63QnMPHJ1amfPvilXCzPffjN3pZjGfY5zZgqOTCXpcKbcjMy51Fhhj3ivpt4oNGC5JOyRdZVlWl91tW5Z1QNKR+N0NdrcHAADOLXSRAwAAp+pmSdcoVu3zYWPMj2ZZNnX8obBlWXtP8TUTodBcAVDRKW4/IdHeMmOMY44qpiUZ1jvrjDE3SXpQJz6bX0m6YbbxruLrVSpW7RS2LOt3c7zMQPynx05bAQDAuYcKJgAAcEosy+qVdHvKQ9+WlDfD4sd0ohLp0rm2bYz5nDHmY8aYa6c8lZh5zmOMcU1dL76uVycqeE7VvvjPfEnr5lg29f0ctvm6p8QY89eSvqUT4dJ3JP3hPMIlh2Jt3qbY/99cy66M351pcHQAAPA6RcAEAABOmWVZP5D0VPzuckl/OsNyIUnPxu9eYIy5YqZtGmOukfR1SQ9L+sKUp4dTbi+fYRPXSnLP1u55eDrl9sfmWPbjKbd/Y/N1T1o8hHsw5aGvWpb1V5ZlhedaN16ZtT1+d50x5o2zLH69TlRrnfX3CQAAXt0ImAAAgF0fk3Q8fnu2YOefU25/zxhTPXUBY8xipVfS3D9lkX0pt2/JsP4SSXfP2tr5+aWkxvjtm4wx7860kDHmS5Kuit/9Xxtd/06JMaZI0vd14pjum5Zl3XGSm3ko5fbD8W1OfR0j6d/id0NK/78EAABgDCYAAGCPZVltxpjPKT2oyLTcb40x/yLprxUb8+cVY8y9kv4vvshFkj4lqTJ+/2eWZf18ymYek/R3ih3D3BqfYe5HkiYU66p2W3z9ozoxi9qpvKewMebP423zSPqJMeaHig1s3iupVtL/k/S2+Cr9kv7iVF/Phlt04vNqlvSoMeYN81iv3rKsoCRZlvXfxpjHJb1P0hsk1RtjviFpj2IDmP++YuNtJWbzu9WyrIbT9xYAAMC5gIAJAACcDg9LulHSm+dY7hbFwqDbJJVI+vIMy/2XpD+b+qBlWY3GmNsUq2xySvpw/F9CRLFudYskffok2j+NZVkvGmPeLulxxcZ0+mD831QvS3qfZVkddl7vFP1Vyu3lknbOc70VigVSCX+hWGXSnykWWN2bYZ0JSTdblvXISbcSAACc8+giBwAAbIuP5fMRSf45lgtblvUpSZsUC6UOSxpTLNzokPRTSddblvUey7IybsuyrG9JuljSDxUbbDooqUvSE5KusCzra6flTcVe61lJqyR9XrGxigbjr9cs6UlJN0i61LKsxpm2caYYY8okTetmeCosywpYlvXnkn5PsUCtXbH/k1FJexUbE+s8wiUAADATRzQ626y7AAAAAAAAwOyoYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAYXCAYAAAAkLcCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XWWB//HvXXJzk7TZmqVJ2yR0e7oCZR8VEEQGRdzGGR3HmXHXQVB03H6KiAzigCIChWEEFZRBBRcUcGFRKVJLKV1om/SQZmuafV9ulrv+/rhLb5abpadtunzer1deucs55z735uac53zPszgikYgAAAAAAACAw+Wc6wIAAAAAAADgxEbABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwxT3XBQAAAMcfY8xfJF0cu3u9ZVnfnOF6GyV9Knb3NMuy6o986TAZY0yppKsl/b2k5ZKyJHVL2iHpZ5L+z7Ks4GFs91pJd8Xu8jcFAACTogUTAACYzteMMavnuhBIzRjzT5IsSV+VdI6kXElpkoolXSHpQUmbjTGLZrnd0yR964gWFgAAnJQImAAAwHTSJf3AGEO94ThkjHmTpEckzZM0Ium7ki6XdL6kf5a0KbbouZJ+Z4zJnOF2HZJ+oGhLKAAAgCnRRQ4AAMzE30n6tKTvzXVBcEgsBNooyaVouHSJZVlbkhbZaoz5uaR7JX1S0umSrpN0yww2/wlJlxzZEgMAgJMVVyIBAMBUwpLi4/Z80xizdC4Lgwn+TtKq2O27xoVLkiTLsiKSPiupPfbQv023UWNMmaTbYnc7j0A5AQDASY6ACQAATCUg6dux25mS7p/DsmCiC5Nu/zbVQpZljUj6a+yuMcakT7Pd+yXNj63zqK0SAgCAUwJd5AAAwHS+IeldiraUudQY8zHLsmwFTbFBw6+R9CZJiyU5JDVK+rOkuy3Lqkyx3l8Und1u1LIs7xTb3yNpraQGy7Iqxj0Xid38rKSnFO1i9gZFw7T9kr5sWdazSctnS/qopHdIWqdo8NKl6Oxsj0n6yWSzsxljKiTVxe6+S9EA6IOKtiBaG9tOk6Q/SrrdsqyaVO9nClsVHYS7NFb2qTiSbnsljU62kDHmI4qO4TSi6Pu+9jDKBQAATjG0YAIAAFOyLGtU0aAhHHvo27OdjSyZMeZrknZLulqSUXQQ6czY7U9K2m2MuTE2vtDRtETSi4qGKZmSciSdpaSgxhhziaR9km6XdJGkfEVnZ1so6S2SfihphzFm2TSvlSnpWUUHzb5YUoGig6cvlfQfkvYaY9462zdgWdafLcv6imVZH7Qsqy3VcsaYNEmvj93tsyyrL8VyixR9r5L0DcuyrNmWCQAAnJoImAAAwLQsy3pR0j2xuzmS7juc7RhjbpR0k6KDUr+qaKD0OkVbEH1GUo2i9ZOvx36OpusUDXpuU7Sr2T9KusWyrPpYWf9O0RZOJZIikh6W9HZFZ2d7n6SnY9tZJ+kFY0zJFK91u6IDZm+R9K+xbbxT0jOx59MlPWiMmXeE3tt4H5ZUFLv9xymW+76if98dkr5zlMoCAABOQnSRAwAAM/X/JF0lqULS24wx77cs65GZrmyMOUvS12J3fyLpw+O6lr1ojPmBpCclvVHSDcaYR1N1lzsCnIoGSl9NeuwXsbK6FG2dlKFoy633Wpb1i6Tltkr6uTHmBkW7EJZI+l9FA6jJLFT0PX/Qsqx4SzAZY36r6Pt9q6RCSVdK+rn9t3aIMWa5pP9Oeuj2FMv9W6wcQU382wAAAEyJFkwAAGBGLMvySfp40kN3GmMKZ7GJ/1S07tEl6ZOTBRix1/iwoi2GHDr64//8T4rHr9Kh2dn+Z1y4lGBZ1k2S/hJfxxizJsX2RiRdlxwuxdaPaOzA6WfMpNAzZYwpUjTAyo099IBlWVsnWW6hpO/F7t5mWdbOI1kOAABw8iNgAgAAM2ZZ1jOSfhS7WyDp7pmsFxtP6S2xuy9aljU0xWvUSaqK3X3TYRZ1JposyzqY4rm/T7r9v9Ns596k21ekWOYVy7K6UzyXPLj3/Glea8ZiodFzio5tJUW7vX06xeL3ScpTdLypm45UGQAAwKmDLnIAAGC2PqdokFIi6b3GmJ9alvWbadapUDTAkKS3J83kNp3TDq+IM9I4xXPrYr8HJe2ZZjtbkm6vT7FM/RTrDybdPiJ1s9ig43+UFB983JL0FsuyhidZ9p8VnSEvLOkjsUHdAQAAZoUWTAAAYFYsy+qV9Kmkh/7HGJObavmYgsN8Obcx5oi16hmnf4rnFsR+d8a6sU0lefa2/BTLDKZ4XIp2B4yzPXNebHDyv+lQuLRX0iWTzTIX60J3V+zuPZZlbbb7+gAA4NRECyYAADBrlmX92hjzmKIzr5UoOnD0R6ZYJbnO8UPNsGtdTMrudFOYyUW0qYKj2QQ9rqTb4ZRLHQPGmH+U9GNJ3thDL0m60rKsrhSr3KVo+Ncn6VFjzJmTLJMcDq6Jh4mM0wQAAJIRMAEAgMN1jaRLFW3t82FjzM+mWDZ5/KGQjXAiHgpNFwDlHOb24+LlLTDGOKZpxVQ8yXrHnDHmakkbdeizeUrSP0013pWkC2K/cyS9MIOXeSrptu3WVgAA4ORBFzkAAHBYLMtql/TZpIe+LykrxeK1OtQS6YIUyyQYY75kjPmEMeaycU/FZ57zGGNc49eLrZshaTaz203m1djveZLWTrNs8vvZZ/N1D4sx5j8k3aNDoc/9kt4xTbgEAABwxNCCCQAAHDbLsn4SGyT6LYoO5P0vKZYLGGP+LOlKSeuNMW+wLOuvky1rjLlU0n/H7v5Z0rNJT/cm3a7Q2BnY4i6TlDaLtzGZpyV9Mnb7E5KunWLZTybdfsbm685aLITbmPTQNy3Lun4m61qWVTGD7W/UoTG3TrMsq362ZQQAACc/WjABAAC7PiFpIHZ7qmDnu0m3HzTGLBm/QGzQ6e8nPXTXuEVeTbo9IfQxxhRL+vaUpZ2Z30raH7t9tTHmXZMtZIz5mqSLY3efO9bjEhljciQ9pEN1ujtmGi4BAAAcSbRgAgAAtliW1WiM+ZKke6dZ7k/GmP+R9B+KznC2yxjzPUnPxxY5R9LnJJXG7v/asqzHx23mp5JuULQO85nYDHM/kzSiaFe162Lr1+jQLGqH855Cxph/jZXNI+kXxpiHJT0mqV1SuaKDmv99bJVOSf9+uK9nw7U69HnVS3okxUDd41ValuU/aqUCAACnHAImAABwJNwn6X2SLppmuWsVDYOuk5Qn6RsplvuVpA+Mf9CyrP3GmOsUbdnklPTh2E9cWNJXFB14/D9nUf4JLMvaYoy5QtLPFR3T6d9iP+Ntl/Rey7Ka7LzeYfp40u0KSS/PcL3TFA2kAAAAjgi6yAEAANtis6x9VNLwNMuFLMv6nKQNioZS+yQNSgpIapL0S0lXWpb1D5ZlTboty7LukXSupIclHZTkl9Qi6VFJb7As61tH5E1FX+vPkpZL+rKkFxWdJc6vaDjzpKR/knSBZVn7U23jaDHGFEia0M0QAABgLjgikalm3QUAAAAAAACmRgsmAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgAAAAAAgC0ETAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQR
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAqnCAYAAAD5R7mVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4HNWh9/HvrqRVsS3bcje2XDCMTSehBUIogdBuLmkQkpDGhUDyBhLITYHQAoQUAqEEklzIBS6EEiCUUEIgGNOrccUe3CS5ybYsWVbXrnbfP3YlS7IlG6+xwP5+nkfP7uy0M7ur2ZnfnHMmkkqlkCRJkiRJkrZWtK8LIEmSJEmSpI82AyZJkiRJkiRlxYBJkiRJkiRJWTFgkiRJkiRJUlYMmCRJkiRJkpQVAyZJkiRJkiRlxYBJkiRJkiRJWTFgkiRJkiRJUlYMmCRJkiRJkpQVAyZJkiRJkiRlxYBJkiRJkiRJWTFgkiRJkiRJUlYMmCRJkiRJkpQVAyZJkiRJkiRlJbevCyBJkj58giB4HjgiM3hxGIa/3ML5/gD8v8zghDAMy7Z96bQpQRCMBr4HHAdMAvoB1cA7wH3AX8MwTPQy/23Af23h6vxsJUlSF9ZgkiRJm3NJEART+roQ6lkQBKcCIfBz4ABgEJAHjACOB+4AXgmCYJdeFrP/B1xMSZK0AzNgkiRJm5MP/CUIAo8bPoSCIPg0cA/QH2gGrgM+AxwMfAV4ITPpgcCTQRAUbWIZucCemcHbSIdNvf2t+IA2R5IkfUTZRE6SJG2JTwDnAdf3dUG0QRAEEeAPQA7pcOmoMAxf6zTJG0EQ3A/cApwD7AP8ELi626KmkA4SAZ4Nw3DGB1pwSZK0w/FKpCRJ6k0SaO+355dBEEzsy8JoI58AJmee39gtXAIgDMMUcD6wOvPSNzaxnP06PTdckiRJ75sBkyRJ6k0cuCbzvAi4tQ/Loo0d3un5Yz1NFIZhM/BSZjAIgiC/2yTt/S81AAu2XfEkSdLOwiZykiRpc34BfJ50TZmjgyA4KwzDrIKmTKfh3wc+DYwBIsBSYCpwUxiG7/Yw3/Ok727XEoZhQS/Ln0O6T6HyMAzHdxuXyjw9H3iCdBOzT5IO0xYCPwvD8NlO0xcDZwInA3sBA4C1pO/O9gBw16buzhYEwXhgSWbw86QDoG+RrkG0Z2Y5y4GngWvDMFzU0/b04g3gV8DoTNl7E+n0vABo6TTcXoNpZhiGya0ohyRJ2skZMEmSpF6FYdgSBMGZpDuLjgLXBEHwZBiGy7dmeUEQXAJcRrrfoC6jMn/fCYLgSuAXmeZdH5SxwMvAsE6vfYxOQU0QBEcBfwVGdZt3JHBC5u+CIAg+t5mAqAh4Fjiq2+sTge8CZwRB8IUwDJ98PxsQhuFU0qFcr4IgyAMOywzWhmFY222SfTOPM4Ig+E/gDOAQoASoIv0+3ZJZnyRJ0kZsIidJkjYrDMOXgZszgwOBP23NcoIguBy4gnS4NIt0x9OHkq5B9ANgEenjk8syfx+kHwJDgd+Sbmp2CnB1GIZlmbJ+gnQNp1FACrgb+E/Sd2c7DfhXZjl7AS8GQdA9hOrsWtLh0mvA1zPL+BzwTGZ8PnBHEAT9t9G2dXcGMDzz/OnOI4IgKCUdJAGcDjxKurbWCCCP9PZ/CXguCII/Z+44J0mS1IUHCJIkaUtdCHwWGA/8RxAEXw3D8J4tnTkIgo8Bl2QG7wLO6Na07OUgCP4CPA4cCVwaBMHfemoutw1ESQdKP+/02oOZsuYA/wsUku7o/MthGD7Yabo3gPuDILiUdBPCUcCfSQdQmzKS9DZ/q3MTtCAIHiO9vSeSrkl1EnB/9pu2QRAEk4Bfd3rp2m6T7N/peTEwk/Rd5+aQDr6OBM4FBgPfIR22nbMtyyhJkj76rMEkSZK2SBiGDaQDhnY3BEEwrKfpN+FHpI891gLnbKrfosw6ziAdYkRIBxsfpD/28Ppn2XB3tj92C5c6hGF4BfB8+zxBEOzRw/KagR92798o0wSwc39W+7INBUEwnHSANSjz0m1hGL7RbbLOd5D7C3BAGIb/E4bhK2EYTg3D8DLSIVR5ZpqzgyA4cluWU5IkffQZMEmSpC0WhuEzwO2ZwaHATVsyXxAEEdL9FQG8HIZhYy/rWALMywx+eiuLuiWWh2G4rIdxx3V6/ufNLOeWTs+P72Gat8MwrO5hXOe+mwZsZl1bLAiCkcC/SfdrBelOyc/bxKTXkA62PkvPwV856Y7O2/1wW5VTkiTtGGwiJ0mS3q8LSAcpo4AvB0FwbxiGj25mnvGkm1gB/GenO7ltzoStK+IWWdrLuL0yj/Wkm4r15rVOz/fuYZqyXuav7/R8mxybBUGwK+m+lnbNvBQCJ4Rh2NR92kzYNyvz16MwDJ8NgmAJ6c/k6CAIIh9wJ+ySJOkjxBpMkiTpfQnDcB3w/zq99McgCAb1NH3G0K1cXW4QBNusVk8363sZNyTzWLUFIcqqTs9LepimvofXId0csF1kM+varEzn5K+yIVyaCxwVhuGqnufaYjMzjwPYEBhKkiRZg0mSJL1/YRg+HATBA6TvvDaKdMfR/9XLLJ2POf6XLWxal9Fjc7pebMlFtN6Co/cT9OR0ep7scartIAiCU4D/AwoyL70OnBSG4dpttIrOn0VsGy1TkiTtAAyYJEnS1vo+cDTp2j5nBEFwXy/Tdu5/qC0Mwxlbuc72UGhzAdDArVx+u/byDt2CpmAjNjHfdhcEwfeAP7DhvXkCOLW3/q6CIIiS/gyHAc1hGD68mdUMzzy20YfbKkmSPnxsIidJkrZKGIargfM7vfQ/QL8eJl/Mhtovh2xu2UEQ/DQIgrODIDim26j2DqhjQRDkdJ8vM28h6cAkG+39EfUH9tzMtJ23Z36W690qQRB8F7iZDeHSrcDJvYVLAJm72j0I3APckumMvad15AMHZgZnhWHYmnXBJUnSDsOASZIkbbUwDO8CnsoMjge+1sN0cWBqZnDvIAg+2dMygyA4Gvg18Cfgom6j13V6Pr6HRRwD5PVW7i3wr07Pz97MtOd0ev5Mlut93zIh3B86vfTLMAy/E4Zh2xYu4oXM40jgM71MdwYbaob1VltNkiTthAyYJElSts4G6jLPewt2ruv0/I4gCMZ2nyAIguGka0K1u7HbJJ3vdHbuJuYfAVzTa2m3zGPAwszz7wVB8PlNTRQEwSXAEZnBf2fR9G+rBEEwELiTDcd0vw/D8OL3uZhbOj2/MQiCjTpkD4LgYOC3mcFKun5GkiRJ9sEkSZKyE4bh0iAIfkrXoGJT0z0XBMEfge+SvsPZzCAIrgemZSY5ALgAGJ0ZfjgMw0e6LeZe4FLSxzA/yNxh7j6gmXRTtR9m5l/Ehruobc02tQVB8PVM2WLAg0EQ3A08AKwGxpHu1Py4zCxVwDe3dn1ZOJcN71cZcE8QBPttwXzvtjdxC8Pwn0EQ3AN8FdgdeCcIgt8Cb5Ju8ngS6bsGxoA48K3MnQQlSZI6GDBJkqRt4U/AacCnNjPduaTDoB+Svs39L3qY7u/A6d1fDMNwYRAEPyRdsylKutnWGZ0mSZJuVjcE+NH7KP9GwjB8LQiC44H7Sffp9I3MX3fTgS+HYbg8m/Vtpe90ej6edCi0JSaQDqTanUH6vTsdGMPGNccg3an3t8MwfPp9l1KSJO3wbCInSZKylrnL2plA02amawvD8AJgf9Kh1HygnnTNmOXAQ8BJYRh+MQzDTS4rDMObSXc2fTewDGgFVgJ/Az4ZhuGvtslGpdc1FZgE/Ax4mXTI0ko6nHkcOBU4JAzDhT0t44OSacq2UTPDrRGGYUsYhl8HPk06UFtKejvXAe+QDgKnhGH42LZYnyRJ2vFEUqne7rorSZIkSZIk9c4aTJIkSZIkScqKAZMkSZIkSZKyYsAkSZIkSZKkrBgwSZIkSZIkKSsGTJIkSZIkScqKAZMkSZIkSZKyYsAkSZIkSZKkrBgwSZIkSZIkKSsGTJIkSZIkScqKAZMkSZIkSZKyYsAkSZIkSZKkrBgwSZIkSZIkKSsGTJIkSZIkScq
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x3000 with 20 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAheCAYAAABcReBtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XGWh//HPJJN9adN9TUuhHFr2fd8UFEHA7SrqdfmpoCjgdhUVr9tFr8pFL4ugXjdEWQQFRauIUEBZC5Sl2+lCm7Rp2jRJ0+yZTGZ+f8wknaRJmnZKA+Xzfr3ymjnLnPPMZOYs3/M8z4kkk0kkSZIkSZKk3ZUz2gWQJEmSJEnSa5sBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrJiwCRJkiRJkqSsGDBJkiRJkiQpKwZMkiRJkiRJyooBkyRJkiRJkrISHe0CSJKkV58gCB4GTk8PfjUMw2+P8HU3Ap9KD+4XhuG6PV86DSYIgmnAJ4E3AwcAJUAjsBi4A/htGIbxESznXcC/A8cAE4GW9DJ+CdwehmHyFXkDkiTpNc0aTJIkaWf+MwiCeaNdCA0tCIJ3AyFwFalgaCyQB0wGzgF+BTweBMH0YZYxJgiCfwB3ARcC04F8YDxwFvBb4C9BEBS+cu9EkiS9VhkwSZKknSkAfh4EgccNr0JBELwRuA0oBTqBHwBvAo4H3gs8mp71WGBBEATFgywjD7gfeGN61JPA+4ATgA8AS9Pj3wLc/Iq8EUmS9JpmEzlJkjQSJwJXAP872gXRdkEQRIAbgVxS4dKZYRg+mTHL00EQ3AncBHwCOAz4DPCdAYv6PKlACuB24ANhGPakh58KguAe4AngUODDQRBcE4bhslfiPUmSpNcmr0RKkqThJIDefnu+HQTBnNEsjHZwInBQ+vn1A8IlANJ9Jn0WqEuP+mDm9HSTty+nB9cAH8oIl3qX0Uaq+V2vd2ZfdEmStC8xYJIkScPpBq5JPy8G/m8Uy6IdnZrx/E9DzRSGYSfwr/RgEARBQcbk84Dy9POvhWHYPcRi/g78GrgOWLJ7xZUkSfsqm8hJkqSd+SbwdlI1Zd4QBMHFYRhmFTSlOw2/jFSfPzOACLAeWAjcMFTzq4y723WFYThkZ9NBECwBDgaqwjCcPWBa713QPgv8hVQTs1NIhWmrgS+FYfiPjPnLgY+R6vj6EKAMaCB1Z7W7gFsHuztbEASzgbXpwbeTCoA+TKoG0cHp5dSQ6vvo2jAM1wz1fobxNPDfwLR02YcTyXheCHSln78l/RgD7hnqxWEYdgEf2o0ySpKk1wEDJkmSNKwwDLuCIPgYqc6ic4BrgiBYEIZhze4sLwiC/wS+TqrfoH6T0n+XBEHwX8A30827XikzgceAiRnjjiIjqAmC4ExSd0+bOuC1U0gFM28BPhcEwdt2EhAVA/8Azhwwfg5wKfCRIAjeEYbhgl15A2EYLiQVyg0r3Yn3yenBbWEYbsuYfGj6cWkYhh0ZrykmFf51AhvCMEzsStkkSdLri03kJEnSToVh+Bjwo/TgGODHu7OcIAi+AXyLVLj0IqmOp08iVYPo06T6AMohFUB9PatC79xngAnA90k1Nfs34DthGK5Ll/VEUjWcpgJJ4DfABaQ6w76IVJMxSNVq+mcQBANDqEzXkgqXniR1V7bjgbcBD6SnFwC/CoKgdA+9t4E+AkxKP79/wLT56ccqgCAITg+C4O9AMxCmx28KguB76dpckiRJO7AGkyRJGqkvA+cDs4G3BkHwvjAMbxvpi4MgOAr4z/TgrcBHBjQteywIgp8DfwbOAL4WBMHvXsG7leWQCpQyO6++O13WXOAXQBGpjs7fE4bh3RnzPQ3cGQTB10g1IZwK/IRUADWYKaTe84czawIFQfAnUu/3XFI1qc4D7sz+rW0XBMEBwHczRl2bMa0A6A21moIg+ApwNf2b05Eu2xeBC4IgeHMYhtV7soySJOm1zxpMkiRpRNJ3ErskY9R1QRBMHGr+QXye1LFHA/CJwfotSq/jI6RqDEWAy3e/xCNy8xDjz2f73dluHhAu9QnD8FvAw72vCYJg/mDzkWpm9pmBzczSTQAz+7M6fCSFHqkgCCaRCrDGpkf9LAzDpzNmyawx9Qbg28AW4GJSNZ4KSdW2+mt6noOAewd0Ei5JkmTAJEmSRi4MwweAX6YHJwA3jOR1QRBE2N6Z9GNhGLYPs461wPL04Bt3s6gjUROG4YYhpr054/lPdrKcmzKenzPEPM+GYdg4xLTMvpvKdrKuEQuCYArwIKl+rSDVKfkVA2YrznheSSr8OykMw5+FYbglDMOudCCVWbPqSOCje6qckiRp32ATOUmStKs+RypImQq8JwiC28Mw/ONOXjMbqEg/vyDjTm47s9/uFXFE1g8z7ZD0YyuwZCfLeTLj+aFDzLNumNe3ZjzfI8dmQRDsT6qvpf3To0LgLZmdeKcNHP7mYJ2Vh2GYDILg06TuhpcP/Dv9gzVJkvQ6Zw0mSZK0S8IwbAI+lTHq5iAIxg41f9qE3VxdNAiCPVarZ4DmYaaNTz/Wj+BOdpszno8bYp7WIcZDqjlgr4F9H+2ydOfkT7A9XFoKnBmG4eZBZm8ZMHzPUMtNv763ed2x6VppkiRJgAGTJEnaDWEY3gPclR6cSkbH0UPIrJnzC1LNrEb6N2RzumGM5BhnuOBoV8KT3IzniSHn2guCIPg34CFSnXIDPAWcHoZh7WDzh2HYBWzNGLVxJ6vorfUVZXu/TpIkSTaRkyRJu+0yUh1Djwc+EgTBHcPMm9n/UE8Yhs/v5jp7Q6GdBUBjdnP5vXrLOyEIgshOajFNHuR1e10QBJ8EbmT7Z/MX4N3D9XeV9hJwWvr5WIZ/D72de/cwfA0wSZL0OmMNJkmStFvCMKwDPpsx6qdAyRCzv8z2mkgn7GzZQRBcGQTBx4MgOGvApN47z+UHQZA78HXp1xaxvQbP7nox/VgKHLyTeTPfz4os17tbgiC4FPgR28Ol/wMuHEG4BP37kNrZ/6b3s9gQhmHPrpVSkiTtywyYJEnSbgvD8Fa238J+NvD+IebrBhamBw8NguCUoZYZBMEbgO8CPwa+MmByU8bz2UMs4iwgb7hyj8DfM55/fCfzfiLj+QNZrneXpUO4GzNGfTsMw0t2IQDKrHn2yWHWcxzb70h3766VUpIk7esMmCRJUrY+zvbOoocLdn6Q8fxXQRDMHDhDEASTSNWE6nX9gFlezHh++SCvnwxcM2xpR+ZPwOr0808GQfD2wWYKguA/gdPTgw9m0fRvtwRBMAa4he3HdD8Mw/Cru7KMMAwXsz0YOy99t7iB6xkH/Dw9GCdVQ0qSJKmPfTBJkqSshGG4PgiCK9nJbevDMHwoCIKbgUtJ3eHshSAI/hd4JD3LMcDngGnp4XvCMBxYU+Z24GukjmE+nb7D3B1AJ6nmXZ9Jv34N2++itjvvqScIgg+ky5YP3B0EwW9IdWxeB8wCPgq8Of2SeuBDu7u+LFzO9s9rHXBbEARHjOB1y8IwjGUMf5zUHeImAP8bBMGZpIKrjcDhwJfZXmPs22EYLs2+6JIkaV9iwCRJkvaEHwMXsb2z6KFcTioM+gxQAXxziPn+APz7wJFhGK4OguAzpGo25QAfSf/1SpBqVjce+PwulH8HYRg+GQTBOcCdpPp0+mD6b6DngPeEYViTzfp20yUZz2cDi0b4uv1IBVIAhGG4NgiC04E/AgcAF6b/Bvoe8K3dKagkSdq32UROkiRlLX2XtY8BHTuZrycMw88BR5IKpVYArUA3UAP8HjgvDMN3hmE46LLCMPwRcCzwG2ADEANqgd8Bp4Rh+N975E2l1rWQVODyJeAxUndYi5EKZ/4MvBs4IQzD1UMt45USBMEEYIdmhrsrDMNlwCGkQsBHSdXK6iJVG+xW4MQwDL8UhmFiT61TkiTtOyLJ5HB33ZUkSZIkSZKGZw0mSZIkSZIkZcWASZIkSZI
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x2400 with 16 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAYXCAYAAAAkLcCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcXHWd7/93VXVVdXX1ll7T3ek1y0lCVEJIANlERxARlesCc2ec8eqMIiOLjDP6c3C5Dq5c+bEoOqKjCMMI6LggOAwq4lxICNmAbCfp7vS+L+m1qqu6qu4fVXVSVV29JCcaSF7PxyOPPlV1lu+pavrR/ebz/XwdsVhMAAAAAAAAwIlynuoBAAAAAAAA4LWNgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYEvOqR4AAAB49TEM4/eSLk08vM00zS8t8bhvSvq7xMNG0zTbTv7okI1hGNWSbpB0haRVkvySRiTtlvRjSf9mmuZsluPaJNUf7/VM03TYGC4AADjNUMEEAAAW81nDMNad6kFgfoZhvF+SKemfJJ0rqViSW1KlpLdJ+qGk5w3DqDlJlwyfpPMAAIDTBAETAABYjFfS9w3D4PeGVyHDMN4i6WFJ+ZKCku6UdLmk8yT9uaQ/JHbdLOlJwzDyMk7xdkkbl/Dv+ZRjrv9j3AsAAHjtYoocAABYigsk3STprlM9EBxjGIZD0jcluRQPly4zTXNbyi7bDcN4RNJ9iodCr5d0i6QvJ3cwTXP/Eq7zUUlvTDy83zTNfz05dwAAAE4X/J9IAACwkKikZN+eLxmG0XQqB4M5LpC0NrF9T0a4JEkyTTMm6ROSBhJP/dXxXCDxmX8j8fCw4gEVAABAGgImAACwkLCkOxLbeZLuP4VjwVwXp2z/cr6dTNMMSvq/iYeGYRje47jGtxRvGC5JHzFNc/r4hggAAM4ETJEDAACL+d+SrlG8UubNhmH8rWmatoKmRNPwj0t6i6QVkhySOiU9I+ne+aZtpaxuN2OaZu4C598r6SxJ7aZpNmS8FktsfkLSE4pPMbtI8TCtWdKnTdP8Tcr+hZL+RtK7JG2QVCBpWPHV2R6T9OA8q7M1SDqSeHiN4gHQBxWvIDorcZ5uSU9J+oZpmi3z3c8Ctkv6iqTqxNgXkrrqW66kmcVObhjG1Yo3CZfiq9D9/gTGCAAAzgBUMAEAgAWZpjmjeMASTTx1h53VyAzD+KykVyTdIMlQvDomL7F9vaRXDMP4QqK/0B9TraTnFG+InSepSNI5SglqDMO4TNJBxaeIXSKpRPHV2ZZLulLSv0rabRjGykWulSfpN5K+r3hAVqZ48/QmSR+TtM8wjLcf7w2YpvmMaZqfMU3zg6Zp9s+3n2EYbkkXJh6OmaY5tti5E03dv5J4GJD06eMdHwAAOHMQMAEAgEWZpvmc4lOlpHgQ850TOY9hGF+Q9EXFm1K/rHig9EbFK4hultSi+O8nn0/8+2O6RfGg5+uKTzV7n6Qvm6bZlhjrBYpXOFVJikl6SNI7FV+d7TpJ/5U4zwZJ/20YRtUC1/qGpMskbZP0gcQ53i3p6cTrXkk/NAwj/yTdW6YPSapIbD+1xGPeq3illSR91zTNrpM+KgAAcNpgihwAAFiq/0/S1ZIaJL3DMIz/aZrmw0s92DCMcyR9NvHwQUkfypha9pxhGN+X9CtJb5L0OcMwHl3KKmcnyKl4oPRPKc/9JDFWl+LVST7FK7euNU3zJyn7bZf0iGEYn1N8CmGVpH9RPIDKZrni9/xB0zSTlWAyDOOXit/v2yWVS7pK0iP2b+0YwzBWSfpqylPfmG/fDJ9IfA1LuvNkjgkAAJx+qGACAABLYprmlKSPpDx1t2EY5cdxir9X/HePYUnXZ+tblLjGhxSvGHJIuvHER7wk357n+at1bHW2b2eESxbTNL8o6ffJYwzDWD/P+YKSbkkNlxLHx5TeOP0NSxn0UhmGUaF4gFWceOp7pmluX8JxWySdn3j476ZpdpzMcQEAgNMPARMAAFgy0zSflvSDxMMySfcu5bhEP6UrEw+fW2glMtM0j0g6kHj4lhMc6lJ0LzDt64qU7X9Z5Dz3pWy/bZ59dpqmOTLPa6nNvQsWudaSGYaxXNJvFe9tJcWbkt+0xMNvTtn++skaEwAAOH0xRQ4AAByvWxUPUqokXWsYxr+bpvmLRY5pkLQssf3OlJXcFtN4YkNcks4FXtuQ+Dopae8i59mWsv26efZpW+D4yZTtk/K7WaLp+FOSks3HTUlXmqYZWMKxPsX7Q0nSi6Zp7jsZYwIAAKc3KpgAAMBxMU3zqKS/S3nq24ZhFM+3f0LZCV4uxzCMk1bVk2F8gddKE1+HEtPYFpK6elvJPPtMzvO8FJ8OmGR75bxEc/KtOhYu7ZN02UKrzGX4M8VXvZNOcj8oAABw+qKCCQAAHDfTNH9mGMZjiq+8VqV44+gPL3BI6u8c/6olTq1LmHc63QKW8j/RFgqOjifocaVsR+fd60/AMIz3SfqRpNzEUy9Iuso0zeHjOE2yeikm6bGTODwAAHAaI2ACAAAn6uOS3qx4tc+HDMP48QL7pvYfipimuecEr5kMhRYLgIpO8PxJyfGWGYbhWKSKqTLLcX9yhmHcIOmbOvbePCHp/Qv1u5rHVYmvL9DcGwAALBVT5AAAwAkxTXNAx5ayl6TvSvLPs3urjlUinT/PPhbDMD5lGMZHDcP4s4yXkivPeQzDcGUelzjWJ+l4VrfL5uXE13xJZy2yb+r9HLR53RNiGMbHJH1Lx8Kl+yW963jDJcMwDB0LzP5w8kYIAABOdwRMAADghJmm+aCkXyceNkj6i3n2C0t6JvHwdYZhXDTfOQ3DeLOkr0r6jqTPZLx8NGW7YZ5T/Jkk90LjXoL/Stn+6CL7Xp+y/bTN6x63RAj3zZSnvmSa5kdM04ycwOm2pGzvsDcyAABwJiFgAgAAdn1U0kRie6Fg586U7R8ahlGbuYNhGBWKV0Il3ZOxy8sp2zdmOb5S0h0LjnZpfimpObF9g2EY12TbyTCMz0q6NPHwtzam/p0QwzCKJD2gY7/T/f+mad5m45SvT9kmYAIAAEtGDyYAAGCLaZqdhmF8StJ9i+z3O8Mwvi3pY4qvcPaSYRh3SXo2scu5km6VVJ14/DPTNH+ecZp/l/Q5xX+HuTmxwtyPJQUVn6p2S+L4Fh1bRe1E7iliGMYHEmPzSPqJYRgPKd70ekBSveJNza9IHDIk6a9P9Ho23Khj71ebpIcNwzh7CcftN00zlOX5NSnbPTbHBgAAziAETAAA4GT4jqTrJF2yyH43Kh4G3SJpmaT/Pc9+/yHpLzOfNE2z2TCMWxSvbHJK+lDiX1JU8Wl1pZL+/jjGP4dpmtsMw3ibpEcU7+n0V4l/mXZJutY0zW471ztBH0nZbpD04hKPa1Q8kMq0IvE1aJrmzIkPCwAAnGmYIgcAAGxLrLL2N5ICi+wXMU3zVkkbFQ+lDkqalBSW1C3pp5KuMk3zPaZpZj2XaZrfkrRZ0kOSuiSFJPVKelTSRaZpfuWk3FT8Ws9IWiXp05KeU3yVuJDi4cyvJL1f0vmmaTbPd44/FsMwyiTNmWZoU2Hi69EF9wIAAMjgiMUWWnUXAAAAAAAAWBgVTAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAYXCAYAAAAkLcCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcXHWd7/93VXVV9ZZO72vS3Vk6J+uYEFAEBgRlRP3NqA9H1J8jenXQuSyCoM78uDpXuUHnDiMji7ig1wVQEP2hMqIIBh0GWROBLJ2TTtJbet873V1dVV117h+n6nRVdfWSHCCEvJ6PRx6p5dQ533Oq0o+udz7fz9djWZYAAAAAAACAE+U92QMAAAAAAADAqY2ACQAAAAAAAK4QMAEAAAAAAMAVAiYAAAAAAAC4QsAEAAAAAAAAVwiYAAAAAAAA4AoBEwAAAAAAAFwhYAIAAAAAAIArBEwAAAAAAABwhYAJAAAAAAAArhAwAQAAAAAAwBUCJgAAAAAAALhCwAQAAAAAAABXCJgAAAAAAADgSs7JHgAAAHjtMQzjD5IuSNz9gmmaNy3xdXdIujJxd5Vpmm0v/+iQjWEYtZKukPR2SWslFUgalvRnSfdJutc0zZlF9rFK0rWS/kpSvSSPpE5Jj0n6ummaLa/YCQAAgFMaFUwAAGAxXzQMY8PJHgTmZxjGpZJMSf9D0pmSiiX5JVVJukTSDyT9yTCMugX28X5JeyV9WtJ6SfmS8iStkx1c7TEM47JX7iwAAMCpjIAJAAAsJijpe4Zh8HvDa5BhGG+V9GNJhZKmJd0iuwLpTZI+JOk/E5ueJelhwzDys+zjjZLulR0qxSTdLumdki6W9FVJEdmfg+8bhnHxK3k+AADg1MQUOQAAsBRvll3Z8vWTPRDMMgzDI+kOST7Z4dKFpmk+nbLJs4Zh3C/pTkn/IOkvZE+B+0rGrnbIrniSpA+ZpvlAynOPGYbxiKSdsv9z8muJ/QAAADj4n0gAALCQuKRk356bDMNYfTIHgzneLHs6myTdlhEuSZJM07QkfUZSf+KhtGluhmEEJV2YuPtsRriU3McfJT2YuLvFMIyGl2HsAADgdYSACQAALCQq6ebE7XxJd53EsWCuv0y5/av5NjJNc1rSfyXuGolQKalUs1XtBxc41t6U2zXHM0gAAPD6xxQ5AACwmC9Leq/sSpmLDMO43DRNV0FTomn4VZLeKmmFZlcre1zS7aZp7p/ndX+Qvbpd2DTN3AX2v1fSJkntpmk2ZjxnJW5+RtKvZU8xO092mHZI0j+ZpvlYyvZFkv5e0rslbZa0TNKQ7NXZHpB0d7bV2QzDaJTUmrj7XtkB0MdkVxBtSuynS9Ijkr5mmubh+c5nAc/K7pFUmxj7Qjwpt3MlhRO3B2RXqeVothoqm7Upt7uPb5gAAOD1jgomAACwINM0w7IDlnjioZsXWo1sMYZhfFHSHtkrkxmSCmRXRxmy+wTtMQzjS4n+Qq+klZKelN0QO1/ScklnKCWoMQzjQkkHZPcdOl92tY9fUrWkd0j6P5L+bBjGmkWOlS/pMUnfkx2Qlctumr1a0n+XtM8wjHce7wmYpvm4aZo3mKb5MdM0++bbzjAMv6RzE3fHTNMcS9nHjKSHE3fPNAzjvVlev03S+xN3nzVNs+N4xwoAAF7fCJgAAMCiTNN8UtI3EneXS/rWiezHMIwvSbpRdlPql2QHSufIriC6RtJh2b+f/M/En1fStbKDnn+VPdXs/ZK+YppmW2Ksb5Zd4VQjyZJ0j6S/kb062wcl/S6xn82SnjAMY6FpY1+T3efoaUkfSezjPZIeTTwflPQDwzAKX6Zzy/RxSZWJ249kef5zknoTt39qGMYthmFcYhjGhYlA8AlJAdmVW598hcYIAABOYUyRAwAAS/X/SfprSY2S/h/DMP5f0zR/vNQXG4ZxhqQvJu7eLenjGVPLnjQM43uS/kPSWyT9s2EYP51vutzLwCs7UPofKY/9LDFWn+zqpDzZlVsfME3zZynbPSvpfsMw/ln2FMIaSd+WHUBlUy37nD9mmmayEkyGYfxK9vm+U1KFpHdJut/9qc0yDGOtpH9JeehrmduYpnnQMIyzZa8m92HZ0wc/k7HZzyV9zjTN1szXAwAAUMEEAACWxDTNSaVXr9xqGEbFcezietm/ewxJ+odsfYsSx/i47Iohj6SrT3zES/LNeR7/a832I/pmRrjkME3zRkl/SL7GMIyN8+xvWtK1qeFS4vWW0hunv2Epg14qwzAqZQdYxYmHvmua5rPzbH6O7N5Q801N/EtJ7zMMg98fAQDAHPyCAAAAlsw0zUclfT9xt1zS7Ut5XaKf0jsSd580TXNqgWO0SmpO3H3rCQ51KbpM0zw6z3NvT7n97UX2c2fK7Uvm2WaXaZrD8zyX2tx72SLHWjLDMKol/V52byvJbkr+6Xm2/YqkH0vaJulPki6WVJj481ZJf5Q9xe5mSd8jZAIAAJmYIgcAAI7XdbKDlBpJHzAM4yemaf5ykdc0SipJ3P6blJXcFrPqxIa4JJ0LPLc58feEpL2L7OfplNtb5tmmbYHXT6Tcfll+N0s0HX9EUrL5uCnpHaZphrJs+zeypz9K0m8l/Y1pmtGUTXYahvFH2T2oPih7JbxndIJ9uAAAwOsT//sEAACOi2mao5KuTHnom4ZhFM+3fUL5CR4uxzCMl62qJ8P4As+VJf4eTExjW0jq6m2l82wzMc/jkj0dMMn1ynmJ5uRPaTZc2ifpwgVWmUu+l3FJn8oIlyRJpmnGZK92l7xmV7kdJwAAeH0hYAIAAMfNNM0HJT2QuFujLI2jM6RW5vwf2VOxlvpn3ul0C1jK7zgLBUfHE/T4Um7H593qVWAYxvsl7ZTdMFyyK40uME2zZ4GXnZX4+yXTNDvm2ygRLD6euLvpFVzxDgAAnIKYIgcAAE7UVZIukl3t83HDMO5bYNvU/kMx0zRfOMFjJkOhxQKg5Se4/6TkeMsNw/AsUsVUleV1rzrDMK6QdIdmr82vJV26UL+rhGRQNLqEw/Sn3C7SwpVZAADgNEIFEwAAOCGmafYrfSn770gqmGfzI5qtRDp7sX0bhvGPhmF8yjCMt2U8lVx5LmAYhi/zdYnX5mm2gudEvZT4u1D2ymoLST2fAy6Pe0IMw/jvkr6h2XDpLknvXkK4JEkDib9XL2HbusTfcUmDxzVIAADwukbABAAATphpmndL+k3ibqOkD8+zXVSz06u2GIZx3nz7NAzjIkn/IruJ9A0ZT6dW2TTOs4u3SfIvNO4l+F3K7U8tsu0/pNx+1OVxj1sihLsj5aGbTNP8ZKJv0lI8kfi73jCMCxY4TrWkCxN3nzVNM3L8owUAAK9XBEwAAMCtT0k6lri9ULBzS8rtHxiGsTJzA8MwKmVXQiXdlrHJSym3r87y+ipJNy842qX5laRDidtXGIbx3mwbGYbxRUnJUOb3Lqb+nRDDMJZL+qFmf6f7d9M0v3Ccu/lGyu27DMOoy9zAMIx8SfdKyks8dPvxjhUAALy+0YMJAAC4Yppmp2EY/yjpzkW222kYxjdlr0a2RtKLhmF8XdIfE5ucKek6SbWJ+w+apvmLjN38RNI/y/4d5prECnP3SZqWPVXt2sTrD2t2FbUTOaeYYRgfSYwtIOlnhmHcI7uxeb+kBkmfkPT2xEsGJX30RI/nwtWavV5tkn5sGMbWJbxuf7ICyTTNJwzDuEN2T60mSS8k7j8hKSRpq+zrui7x2gdlvw8AAAAOAiYAAPBy+JakD0o6f5HtrpYdBl0rqUTSl+fZ7v+X9HeZD5qmecgwjGtlVzZ5JX088ScpLntaXZmk649j/HOYpvm0YRiXSLpfdk+nyxJ/Mu2W9AHTNLvcHO8EfTLldqOk55b4ulWyA6mkayVFZAd85ZK+NM/r7pH0yUWangMAgNMQU+QAAIBricDh72VXvCy0Xcw0zeskbZMdSh2QvRJZVFKXpJ9Lepdpmu8zTTPrvkzT/Iaks2SHHUdlByM9kn4q6TzTNL/6spyUfazHJa2V9E+SnpS9SlxEdjjzH5IulXS2aZq
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHd97//XaN8sy9osr7Id28dbHNtJgGxAoOxQ6K/3Fn7wa6FcLlsTCL2UstPSlEIpYQ20UEopyyUsZQ0kJc0GsZM4dhInXo53y7ZkyZJs7ctoZn5/zGg8o82yx7ET5/V8PPTQLGeOvjOaOXPO+3y/n28kkUggSZIkSZIkna28C90ASZIkSZIkPbMZMEmSJEmSJCknBkySJEmSJEnKiQGTJEmSJEmScmLAJEmSJEmSpJwYMEmSJEmSJCknBkySJEmSJEnKiQGTJEmSJEmScmLAJEmSJEmSpJwYMEmSJEmSJCknBkySJEmSJEnKiQGTJEmSJEmScmLAJEmSJEmSpJwYMEmSJEmSJCknBRe6AZIk6eknCIJ7gRekrn40DMO/n+bjvgL8Rerq4jAMD5771mkiQRDMBd4NvAxYCpQDncCjwA+A74VhOHKadawD3gNcD8wBBoEnUo//1zAMh56yJyBJkp7R7MEkSZJO52NBEKy80I3Q5IIg+BMgBD4CXAFUAYXAbODlwL8DG4MgmDfFOv4G2Ar8ObAIKAZmAtcCXwEeC4Jg8VP1HCRJ0jObAZMkSTqdYuCbQRC43/A0FATBi4HvAxUkexzdArwUeC7w/wL3pxa9Evh1EARlE6zjY8AngAgQBb4I/AHJcOnDwAlgBbApCIIlT+XzkSRJz0wOkZMkSdNxFcmhU1+40A3RKUEQREj2LsonGS5dH4bhgxmLPBwEwW3AV4F3AmuBm4BPZawjAP4mdXUAeHkYhvdnrOOBIAh+CPweaAC+BLz6KXlCkiTpGcszkZIkaSpxYLRuz9/be+Vp5yqSPYsAvjQmXAIgDMME8D6gLXXTn41Z5C84tU/44THh0ug69pEMpgBeFQTBC8YuI0mSnt0MmCRJ0lSiwGdTl8uAb1zAtmi86zIu/2KyhcIwHCTZAwmSnZaKM+5+Uer3IPAvU/ytHwO9qcuvP8N2SpKki5xD5CRJ0un8LfBHJHvKvCgIgv8dhmFOQVOqaPgNwIuB+SRr/xwG7gG+HIbhjkkedy/J2e2GwjAsmWL9TwKrgUNhGC4ac18idfF9wO0kh5hdSzJM2wt8MAzDuzKWrwTeBrwWWAPMADpIzs72I+A7E83OFgTBIuBA6uofkQyA3kKyB9Hq1HqOAncCn0v1EjpTDwP/AMxNtX0qkYzLJcDojHCNqd/bwjAcmOzBYRjGgiAIgctJ9pySJElKsweTJEmaUmpq+reRHC4H8NmpZiM7nVRB6SeAdwMBUE6yd1RAsk7QE0EQ/E2qvtBTaQHwAMmC2GUkZ0zbQEZQEwTB9cAu4HPA84FqkrOzNQCvAP4NeDQIgktO87fKgLuAb5IMyGpJFk9fArwL2B4EwSvP9AmEYXhPGIYfDsPwLWEYtk62XBAEhcA1qatdYRh2ZdxdlPrdM40/GU39XnambZUkSRc3AyZJknRaYRg+ANyaujoT+OezWU8QBH8DfJJkUeptJAOlq0n2IHovsI/k/sknUj9PpZtIBj3/SHKo2f8EPhWG4cFUW68i2cNpDpAAvgv8IcnZ2d4A/FdqPWuA3wVBMGeKv/U54HrgQeBPU+t4HfDb1P3FwL8HQVBxjp7bWG8F6lOX7xxzX3vq9/xprGdB6nd5EAQzzkXDJEnSxcEhcpIkabo+BLwGWAS8OgiCN4Zh+P3pPjgIgg3Ax1JXvwO8dczQsgeCIPgm8CvghcDHgyD44WTD5c6BPJKB0kcybvtxqq35JHsnlZLsufX6MAx/nLHcw8BtQRB8nOQQwjkk6xf94SR/q4Hkc35LGIajPcEIguAXJJ/vK4E64FXAbbk/tVOCIFgKfDrjps+NWeQhkkP4giAIVk0xPHE9kNlzrZzp9XqSJEnPAvZgkiRJ0xKGYR/w9oybvhgEQd0ZrOL/kNz36ADeOVHdotTfeCvJHkMR4Mazb/G0fG2S21/DqdnZvjYmXEoLw/CTwL2jjwmCYNUk6xsEbsoMl1KPT5BdOP2y6TR6uoIgqCcZYFWlbvrXMAwfHrPYdzIu/0sQBONqW6WKgn9pzM2F56yhkiTpGc+ASZIkTVsYhr8FvpW6Wgt8eTqPS9VTekXq6gNhGPZP8TcOADtTV198lk2djqNhGB6Z5L6XZVyeamY1gK9mXH75JMtsCcOwc5L7Mot7n7NhZ0EQNAD/TbK2FSSLkr9ngkV/BtydunwtyZ5krwiCoCIIgrIgCP4AuC9139GMxw2fq7ZKkqRnPofISZKkM/WXJIOUOcDrgyD4v2EY/vw0j1kEzEpd/sOMmdxOZ/HZNXFaDk9x35rU717gydOs58GMy5dOsszBKR7fm3H5nOybpYqO3wmMFh8PgVdMNEtcGIaJIAheD/wauJJkofNfT7DabwFNnKqN1Xcu2ipJki4O9mCSJElnJAzDk8BfZNz0tSAIqiZbPqX2LP9cwVNYTLp7ivtqUr/bU8PYppI5e1v1JMv0TnI7JIcDjsp55rxUcfJNnAqXtgPXTzXLXBiG7SRnyfso44O3h4E/CcPwrZwaatcXhuFUz0mSJD3L2INJkiSdsTAMfxoEwY9Izrw2h2Th6P81xUMy9zn+jWkOrUuZdDjdFKZzEm2q4OhMgp78jMvxSZc6D4Ig+J/AfwCjdZQeAl4VhmHH6R4bhuEg8PfA3wdBMI/kcL3mMAwzg7jRulQHz1mjJUnSRcGASZIkna0bgBeR7O3z1iAIfjDFspn1h2JhGD52ln9zNBQ6XQA08yzXP2q0vbVBEERO04tp9gSPO++CIHg38BVOvTa3k+x5dMYBXRiGR8felppZ74rU1bP9/0mSpIuUQ+QkSdJZCcOwDXhfxk1fJzl1/UT2c6on0vNOt+4gCP46CIJ3pApMZxqdea4oFXhM9NhS4Exmt5vIttTvCmD1aZbNfD67cvy7ZyUIgncBt3IqXPoG8NrphEtBELw4CILPBEHwrdRscZN5PqeGDv42pwZLkqSLjgGTJEk6a2EYfgf4TerqIuBNkywXBe5JXb00CIJrJ1tnEAQvAj4N/DPw4TF3n8y4vGiSVfwBUDhVu6fhvzIuv+M0y74z4/J5D15SIdxXMm76+zAM3x6GYWyaq1gBfAB4C/DCKZb769TvXpIzz0mSJKUZMEmSpFy9A+hJXZ4q2Lkl4/K/B0GwYOwCQRDUk+wJNepLYxbZlnH5xgkePxv47JStnZ5fAHtTl98dBMEfTbRQEAQfA16QuvrfOQz9OytBEMwEvs2pfbrPh2H40TNczc+B0TDq5iAIxv0PgyD4MPCyjL/RdTbtlSRJFy9rMEmSpJyEYXg4CIK/Br56muXuDoLga8C7SM5w9ngQBF8A7kstcgXwl8Dc1PWfhmE4tqfM/wU+TnIf5r2pGeZ+AAySHKp2U+rx+zg1i9rZPKdYEAR/mmpbEfDjIAi+C/wIaAMaSRY1Hw1d2oE3n+3fy8GNnHq9DgLfD4Jg3TQetyMMw2GAMAyPBEHw1dS6rgA2BUFwC8lhjfNIPs9XpB73MPCpc9d8SZJ0sTBgkiRJ58I/A28gWadnKjeSDINuAmYBfzvJcv8J/H9jbwzDcG8QBDeR7NmUB7w19TMqTnJYXQ3wf86g/eOEYfhgEAQvB24jWdPpz1I/Y20FXj9RYezz4O0ZlxcBm6f5uMVkzwT3fpKh2R8ClwPfm+AxdwP/MzXbnCRJUhaHyEmSpJylZll7GzBwmuViYRj+JbCeZCi1i2RNnyhwFPgJ8KowDP84DMMJ1xWG4a3AlcB3gSPAMNAC/BC4NgzDfzgnTyr5t+4BlgIfBB4gOUvcMMlw5lfAnwDPC8Nw72TreKoEQVALjBtmeDZSvZleB7wRuAs4QbKg+nHg1ySf5x+EYXjBZsmTJElPb5FEYqpZdyVJkiRJkqSp2YN
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4XGed9//3qHfbkqtsS7Id57ilkoRkIQub0DssS1keWJaH/QHZFNrzUJaEZdl9KKGTALvAkgUCgWTpYSFACCHFKbYTO459IjdJlm11WbLaSDPz+2NG4xk1Ox6IYvv9ui5fnnLmzD0j6UjnM9/7e0cSiQSSJEmSJEnSicqb7QFIkiRJkiTp5GbAJEmSJEmSpJwYMEmSJEmSJCknBkySJEmSJEnKiQGTJEmSJEmScmLAJEmSJEmSpJwYMEmSJEmSJCknBkySJEmSJEnKiQGTJEmSJEmScmLAJEmSJEmSpJwYMEmSJEmSJCknBkySJEmSJEnKiQGTJEmSJEmScmLAJEmSJEmSpJwUzPYAJEnS008QBHcBz0ld/UgYhv92nI+7AfjH1NUVYRju+9OPTlMJguAM4N3A84E6YBjYC/wI+I8wDNuPYx/1wPuBF6b2MQjsAm4BvhqG4dCfZ/SSJOlkZwWTJEk6lmuDIFg724PQ9IIgeCuwjWS4dyZQAswFzgM+DmwPguAlx9jHS4DHgCuB1UAxMA+4EPgs8HAQBA1/nlcgSZJOdgZMkiTpWIqBbwZB4N8NT0NBELwY+E+SodIQ8K/AC0hWIX0CGAHmA7cFQXD+NPs4C7gNqAD6gQ8DzwJeBHw/tdk64OdBEJT+2V6MJEk6aTlFTpIkHY9LgKuBL8z2QHRUKvS7AYgAUeDSMAw3ZWxyRxAEvwJ+D5QCnyQZPk10Q+r+YeCvJuzj10EQPAJ8CtgAXAV8+k/9WiRJ0snNTyIlSdJM4sBY6vK/BUGwcjYHo0kuA8a/JjdMCIYACMPwbuD21NXnB0EwL/P+IAieAfxl6urXp9nHp4Hx299rNZskSZrIPw4kSdJMRoHrU5fLgK/P4lg0tV8AzcBPZ9hmR8bl5RPue03G5W/PsI//TP2/iKOBlCRJEuAUOUmSdGwfA14NrAEuC4LgH8IwzCloSjUNvxK4HFhGcopXC8mpXF8Ow/DxaR53F8nV7UbCMCyZYf+PAeuBpjAMGybcl0hdfA/Jyp4bgGeTDNN2AR8Mw/C3GdtXAW8HXklyilgl0AVsAW4FvhOG4RgTpBpi701dfTXwM+CtwFtSY6sEWoFfA58Nw3D3dK9nOqlx/vaYG0J9xuWDE+57Vur/fmDzDPu4O+PyZcBdx/G8kiTpNGEFkyRJmlEYhiMkA5Z46qbrgyBYeqL7C4LgWpIrnl0BBEA5yeqoAHgnsC0Ign8OgiCS08CPbTlwL8meRGXAHOB8kiHT+Fj/CthJchW1vwSqgUJgMTDeXHtLEASrjvFcZSSDoG+SDMjmk2yevhJ4F8exytuJCoLgQuBVqau/D8OwY8Im4ysE7g7DMM70MgMwVxWUJElZDJgkSdIxhWF4L3Bj6uoc4Gsnsp8gCP4Z+BcgH9hKMlD6C5IVRNeQDDHygI+m/v05vZtk0PNp4FLgb4D/F4bhvtRYLyFZ4bQESADfBV4BPBN4A3BHaj8bgD8GQbBkhuf6LPBXwEbgzal9vAr4Ter+YuCmIAgqcn1RQRBEgiCoDILg/CAIPk+y0qgY6CFZNZa5bSGwIHW1eab9hmE4RLJyC+CEA0ZJknRqcoqcJEk6Xh8CXg40AC8LguBvwzD83vE+OAiC84FrU1e/A7xtwtSye4Mg+CbJnkLPBa4LguCH002X+xPIIxko/VPGbbelxppPsjqplGTl1uvDMLwtY7sHgR8EQXAdySmES4B/JxlATWUxydf81swqoSAIfkby9b6EZNDzUuAHOb6uN6WeK9O9wNvDMNw54fZ5JKcnQnKK3LEMADXA3JxGKEmSTjlWMEmSpOMShuEA8P9l3PTFIAgWTLf9FN5H8m+PLuCdU/UtSj3H20hWDEWAq058xMflq9Pc/nKSPacAvjohXEoLw/BfONqL6OVBEKybZn/DwLsnTkELwzBBduP0c45n0MdQP8VtZwFXTVxBjmRlU+YYj2VoisdJkiQZMEmSpOMXhuFvgG+lrs4Hvnw8j0v1U3px6uq9YRgOzvAcezm66tnlJzjU49EahuH+ae57Ycblfz/Gfr6ScflF02yzKQzD7mnuy+xtVHmM5zoefwCeT3Ia3ptJTsurItnz6u4gCBZmbBvLuJzg+D2ZbSVJ0mnAKXKSJOnJei/JIGUJ8PogCL4fhuFPj/GYBpLTsQBekbGS27GsOLEhHpeWGe7bkPr/CPDYMfazMePyWdNss2+Gxx/JuJzz32ZhGN6TcfXBIAi+R7JK6m0kX9dnSK5kN/G5p12VL0Np6v/jqXaSJEmnESuYJEnSkxKGYS/wjxk3fTUIgmP15Jl/gk9XEATBn6KqZyp9M9xXk/q/MzWNbSZtGZerp9nmyDS3Q3Y10J985bzUtLwrgNbUTa8PgqAsY1zjz19+HLsb32a6aixJknSaMmCSJElPWhiGPwZuTV1dQnKVtJlkVub8J3Dek/g37XS6GRzP3zgzBUdPJujJz7gcn3arWRSG4QjJFfEAikj1l0qFT+PTBJfPtI8gCEo5Grwd+DMMU5IkncScIidJkk7UlcBlJEOHtwVBcMsM22ZWvMTCMHzkBJ9zPBQ6VgA05wT3P258vPODIIgco4pp0RSPe0qkmnavAhaHYfiLY2zelXG5KOPydpLh0spjPH5VxuU/18p+kiTpJGUFkyRJOiFhGLYD78m46T+YfprVHo5WIl18rH0HQfCBIAjeEQTB8ybcNb7yXFEQBPkTH5d6bCnwZFa3m8rW1P8VwPpjbJv5enbm+LxP1neAh4CfHceKfpkBUWZz8/EeUtVBEMz0Wv8y4/Ifj3+IkiTpdGDAJEmSTlgYht8B/id1tQF40zTbjQK/T109KwiCZ0+3zyAILgM+CXwN+PCEu3szLjdMs4vnAYUzjfs43JFx+R3H2PadGZd/k+PzPlnjQU+EZBPvKQVBsBh4aerqzgmr592WcfnvZ3iu8f13APfMsJ0kSToNGTBJkqRcvQPoT12eKdj5XMblm4IgmNTzJwiChSQrocZ9acImWzMuXzXF4xcB18842uPzM2BX6vIVQRC8eqqNgiC4FnhO6urvcpj6d6L+CxhIXf5wEASTVrFLNUn/IUeryz6ZeX8YhtuBu1JXr5wq/AuC4P8Cz0hdvTEVGEqSJKXZg0mSJOUkDMOWIAg+AHzlGNvdGQTBV4F3kZyu9WgQBF8A/pDa5ALgvUBt6vqPwzD8yYTdfB+4juTfMNekwpNbgGGSU9XenXr8brKnhD3Z1xQLguDNqbEVAbcFQfBdko3N24F64H8DL0w9pBP4uxN9vhzGeSgIgvcDXwWqgAdT7+ldJFfJu5DkNMaG1ENuAb49xa6uBDYBxcBvgiC4nmQVVxnwFo5Wpu0EPvPneC2SJOnkZgWTJEn6U/gacPdxbHcV8HmSzbrnAR8jGYbcRTK4GA+XfsQU0+3CMNxFMkQaX63tbSSDkLuBTwOLSU6rmxhMPWlhGG4EXkRySlgeyaDl58ADJCuCxsOlzcAlYRi25vqcJzjOr5F8T0aBEuCDwK+A+4AvcjRc+irwlqkalqeqmF4DHEnt41qS0+9+zdGvwy7gJWEYDkx8vCRJkgGTJEnKWSq0eDswdIztYmEYvhc4j2QotZNkqDEKtAL/Dbw0DMO/DsNwyn2FYXgjycqc75JsVh0FDpIMfZ4dhuEn/iQvKvlcvwfOIBna3EtylbgosA/4BfA64OJU8DVrwjD8IrABuBEISX4dhkiGQt8ELgjD8IqZpraFYfhLYB3JUOqJ1OMHgS3APwHnhmG498/5OiRJ0skrkkjMtOquJEmSJEmSNDMrmCRJkiRJkpQTAyZJkiRJkiTlxIBJkiRJkiRJOTFgkiRJkiRJUk4MmCRJkiRJkpQTAyZJkiRJkiTlxIBJkiR
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8XOWd7/HPqIya5SLLclVx47hgwEBIAqQsgeRuluymQtqmZ5PQyd4kd7OES0g2IQQSWgg32RTSILRAQsimEUrAVPd2XCXZkm0VW8Xq0sz9Y0ZjVdt4DALzeb9eemnKmTPPOTNzpPOd5/k9kXg8jiRJkiRJknSkMsa6AZIkSZIkSXplM2CSJEmSJElSWgyYJEmSJEmSlBYDJkmSJEmSJKXFgEmSJEmSJElpMWCSJEmSJElSWgyYJEmSJEmSlBYDJkmSJEmSJKXFgEmSJEmSJElpMWCSJEmSJElSWgyYJEmSJEmSlBYDJkmSJEmSJKXFgEmSJEmSJElpMWCSJEmSJElSWrLGugGSJOnlJwiCR4A3Ja9eEYbhfx3m424BLkxenR2GYeXRb51GEgTBPOAy4BygDOgEtgP3AT8Iw7DuCNb5BuBRYFMYhguOYnMlSdIxxh5MkiTpUL4SBMHCsW6ERhcEwceANSTCveOAXGAisBT4GrAuCIK3v8B1FgE/AiJHtbGSJOmYZMAkSZIOJQf4URAE/t/wMhQEwT8CPyYRKnUAXwfeCrwN+CbQBRQD9wRBcPJhrnM88Edg/ovRZkmSdOxxiJwkSTocrwcuAW4Y64bogGTodwuJXkbdwBvCMHx+wCJ/CoLgf4C/AXnANSTCp4OtMyAxrG7Ri9JoSZJ0TPKbSEmSdDAxoDd5+b+CIJgzlo3RMGcB/a/JLUPCJQDCMHwM+H3y6jlBEEwaaUVBEGQFQXAh8CwHwqXYUW6vJEk6RhkwSZKkg+kBvp28nA/8cAzbopE9CFQDDxxkmQ0DLpcOvTMZOq0m0RuqkMSwuk8BO45eMyVJ0rHMIXKSJOlQvgq8C1gAnBUEwafDMEwraEoWDb8IeAswi8QQrx0khnLdHIbh+lEe9wiJ2e26wjDMPcj61wKLgaowDCuG3BdPXrycRM+eW4AzSYRpW4D/E4bhXwYsP55E2PIvwPEkAphGYAVwN/DzMAx7GSIIggoSs7hBYv/9FvgY8JFk2wqBGhK1jq4Pw3DraNszmmQ7/3LIBaF8wOVdI9w/Aegv5L4M+FQYhuuDIPjKC22TJEl6dbIHkyRJOqgwDPt7s/QPl/p2EAQzj3R9ydBiDXABEAAFJHpHBcBngTVBEFwVBMGLPXtZKfAEiZpE+SRClpNJhEz9bf0HYCNwPfBGoAjIBqYB/cW1VwRBMPcQz5VPIgj6EYmArJhE8fQ5wOc4glneDlcQBK8B3pm8+rcwDOtHWXQ18P4wDE8fLeCTJEkajT2YJEnSIYVh+EQQBN8DLiYRxNwGvOOFricIgquA/5u8uhq4Nfk7AziFRCHxuQOWuSqddh/CZSR6Tl0L/I5EaHRSGIaVyba+nkQPpzwgDvwSuAvYA8wGPkEinDoeeDwIglPCMBypdxAkAqppwFPA94BNwHTgQuAcEmHTT4MgmBOG4f50NioZzI0jMQPcvwL/llz/PhK9xkZSHYbhiek8ryRJenUzYJIkSYfrP0iEShXAuUEQfDAMw18d7oODIDgZ6B9y9XPgE0OGlj0RBMGPSNQUejNwZRAEd72IvWkygG+EYfifA267J9nWTBK9k/JI9Nw6PwzDewYs9wzw6yAIriQxhHA68P+Afx7luaaR2OaPhWGYKpwdBMFvSWzv24EpwD8Bv05zuz6UfK6BniAx7G3jSA8Y2CZJkqQj4RA5SZJ0WMIwbCPRG6bfjUEQTHkBq/h3Ev97NAKfHaluUfI5PkGix1CERI+pF9P3R7n9HSRqTgF8f0i4lBKG4dXAI/2PCYJg0UjLAZ3AZUODnDAM4wwunH40ehGVj3DbEuDi0WaQkyRJSpcBkyRJOmxhGP4Z+EnyajFw8+E8Ljls6x+TV58Iw7D9IM+xnQOznr3lCJt6OGrCMNw5yn1vG3D5/x1iPbcOuPy/Rlnm+TAM945y38Di3oWHeK7D8SiJYXevJTFE7ilgPImaV48FQVByFJ5DkiRpEIfISZKkF+rzJIKU6cD5QRDcEYbhA4d4TAXQ33vmnwfM5HYos4+siYdlx0HuOz75ez+w9hDreWrA5SWjLFN5kMcPrLmU9v9mYRj+fcDVZ4Ig+BWJXlKfILFd15GYyU6SJOmosQeTJEl6QcIwbCJRnLrf94MgmHiIhxUf4dNlBUFwNHr1jKTlIPdNTv5uSA5jO5g9Ay4XjbLMwQp3D1z/UZ85Lzks7wKgJnnT+UEQ5B/t55EkSa9uBkySJOkFC8PwN8DdyavTScySdjADe+b8GFj6An5GHU53EIfzP87BgqMXEvRkDrj8siyWHYZhF4kZ8QCiHKgvJUmSdFQ4RE6SJB2pi4CzSPT2+UQQBHceZNmB9Yf6wjBceYTP2R8KHSoAmnCE6+/X397iIAgih+jFNHWEx70kkkW75wLTwjB88BCLNw64HH3xWiVJkl6N7MEkSZKOSBiGdcDlA276AVAwyuLbONAT6XWHWncQBF8KguAzQRCcPeSu/pnnokEQZA59XPKxecALmd1uJKuTv8cBiw+x7MDt2Zjm875QPweeBX57GDP6zR1webTi5pIkSUfEgEmSJB2xMAx/DvwhebUC+NAoy/UAf0teXRIEwZmjrTMIgrOAa4DbgC8PubtpwOWKUVZxNpB9sHYfhj8NuPyZQyz72QGX/5zm875Qjyd/R0gU8R5REATTgH9KXt14kNnzJEmSjogBkyRJStdngNbk5YMFO98ZcPmnQRCUDl0gCIISEj2h+t00ZJHVAy5fPMLjpwLfPmhrD89vgS3JyxcEQfCukRYKguArwJuSV/+axtC/I3U70Ja8/OUgCIbNYpcskn4XB3qXXfMStU2SJL2KWINJkiSlJQzDHUEQfAm49RDLPRwEwfeBz5EYrrUqCIIbgEeTi5wKfB6Ykbz+mzAM7x+ymjuAK0n8D3NpMjy5E+gkMVTtsuTjtzJ4SNgL3aa+IAj+Ndm2KHBPEAS/IFHYvA4oBz4JvC35kAbgo0f6fGm0c3cQBP8b+D4wHngmuU8fITFL3mtIDGOsSD7kTuBnL3U7JUnSsc+ASZIkHQ23Ae8H3niI5S4mEQZdBkwCvjrKcvcBHx56YxiGW4IguIxEz6YMEsPCBg4Ni5EYVjcZ+PcX0P5hwjB8KgiC/wX8mkRNp48kf4ZaDpwfhmFNOs93pMIwvC0IghwSPbdygf+T/Bnq+8ClhyhYLkmSdEQcIidJktKWDC0+BXQcYrm+MAw/DywlEUptBPYDPUANcC/wT2EYvicMwxHXFYbh90j0zPkFiWLV3cAuEsPAzgzD8JtHZaMSz/U3YB6JwOYJErPEdQOVwIPAecDrwjDcMto6XgphGN4IHA98DwhJvA4dJIb5/Qg4NQzDC5K1sCRJko66SDzul1iSJEmSJEk6cvZgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQWAyZJkiRJkiSlxYBJkiRJkiRJaTFgkiRJkiRJUloMmCRJkiRJkpQ
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHd97//3jPbFkixLsqzd1vK1YzuO7TibQwgtbUiBttxeCPdC+QGXUhq2FO4tywW6AbesJZe0bKWlhdtC2S4klJBwszixszje5PVYsqx937fZZ35/zMzJjHb5yJYtv56Phx6a5cyZ74w0Z855n8/3+3VFIhEBAAAAAAAAl8q92g0AAAAAAADAtY2ACQAAAAAAAI4QMAEAAAAAAMARAiYAAAAAAAA4QsAEAAAAAAAARwiYAAAAAAAA4AgBEwAAAAAAABwhYAIAAAAAAIAjBEwAAAAAAABwhIAJAAAAAAAAjhAwAQAAAAAAwBECJgAAAAAAADhCwAQAAAAAAABHCJgAAAAAAADgSOpqNwAAAFx9jDFPSXpl7OonLMv6zBIf95Ck98aubrYsq3XlW4e5GGPqJD0g6bckVUnySroo6SeSvmlZVv8S1nG3pHdJul3SptjNXZIOSHrIsqxjK99yAACwFlDBBAAAFvNJY8y21W4E5meMebukk4qGew2SMiUVSNot6a8lnTbG/M4Cj083xnxX0pOS3iJpi6Ss2E+dpHdKOmqMWVLQCAAArj8ETAAAYDEZkr5tjGG/4SpkjLlX0j8qGip5JH1a0m9LukfS/5Lkk1Qk6UfGmD3zrOYbkt4au3xe0aDqDkmvkPRRSX2x+z5ujPnEZXgZAADgGkcXOQAAsBS3S/qApK+sdkPwsljo95AklyS/pFdYlnUkYZHHjDGPKlqZlCXpbxQNnxLXcbukt8euPivpNZZlTSUs8qwx5l8kHZJUo2hF2/fo/ggAABJxJhIAACwkLCkYu/wZY8yW1WwMZvkNRbuzSdExko7MXMCyrAOSfhG7+lvGmPUzFnlHwuV3zwiX4uvokfTh2NV0SW921GoAALDmEDABAICFBCR9IXY5W9K3VrEtmNsjktol/WyBZc4mXK6ccd8rYr+bLcs6q/k9nnB519KbBwAArgd0kQMAAIv5S0lvkLRV0m8YY/7IsixHQVNs0PD3SfpNSRWKdvHqULQr11ctyzozz+OeUnR2O59lWZkLrP+UpO2S2izLqplxXyR28U8Vrex5SNKdioZpzZI+alnWrxOWz1N0ZrXfk7RD0jpJQ5KOSfqhpO9alhXUDMaYGkVncZOi79/PFe2K9rZY29YpOkPbryR9ybKsC/O9nvnE2vnrRReUqhMu98y47xuKdn0bXmQdroTL8773AADg+kQFEwAAWJBlWT5FA5Zw7KYvGGPKL3V9xphPKjrj2f2SjKQcRaujjKT3SDppjPkLY4xr/rWsiEpJBxUdkyhbUr6kPYqGTPG2vkrSOUlfknSXpEJJaZJKJcUH1z5mjKld5LmyFQ2Cvq1oQFak6ODpWyT9iRaZ5c0JY8w+Sb8fu/qkZVkDifdblvUVy7IesCzrrxZZ1d0Jl9tWsIkAAGANIGACAACLsizroKS/i13Nl/T1S1mPMeYvJP2VpBRJjYoGSncoWkH0QUkXFN0/+fPYz+X0gKJBz+cV7Sb2RkmfjQ9eHRv8+heSNkmKSPqepN+VdKuiYxA9FlvPDknPGGM2LfBcX5L0KknPS/rD2Dp+Xy93O8uQ9B1jTK7TF2WMcRlj1hlj9hhj/lbSU7H1jyhaNXZJ65T0kYSbfuW0nQAAYG2hixwAAFiqj0l6vaLdqV5njPmvlmX961IfbIzZI+mTsavflfTOGV3LDhpjvq3omEJ3S/qUMebf5+sutwLcigZK/zPhth/F2pqiaHVSlqKVW/dZlvWjhOVelPQDY8ynFO1CuEnRrma/O89zlSr6mt9uWVa8EkzGmJ8r+np/R1KxpNdK+oHD1/WW2HMlOijpXZZlnbvEdX5Y0SBQkk6JgAkAAMxABRMAAFiS2Oxi70646UFjTPEyVvFhRfc9hiS9Z65xi2LP8U5FK4Zckt5/6S1ekq/Nc/vrFR1zSpK+NiNcssW6lT0Vf4wx5oZ51ueV9EBiuBR7fETJA6evxODZ1XPctlPS++eYQW5Rxpj/JOlvYldDkt4783UAAAAQMAEAgCWzLOtxSf8Uu1ok6atLeVysi9W9sasHLcuaXuA5LurlWc9+8xKbuhRdlmV1znPfPQmXv7HIev4+4fJr5lnmiGVZ8w2inTi497pFnmspnpb0W4p2w/tDRbvl5Sk65tUBY0zJUlcUC5f+TdEujZL0Py3LOrACbQQAAGsMXeQAAMByfUjRIGWTpPuMMf9mWdbPFnlMjaR49czvJszktpjNl9bEJelY4L4dsd+TinYJW8jzCZd3zrNM6wKPn0y47HjfzLKsZxOuvmiM+VdFq6Teqejr+qKiM9ktyBjz3xQN1+Lh0oOWZX3OafsAAMDaRAUTAABYFsuyRiW9N+GmrxljChZ5WNElPl2qMWYlqnrmMr7AfRtivwdj3dgW0pdwuXCeZSbnuV2KdgeMW/GZ82Ld2e6X1BW76T5jTPZ8y8cGCf9rSf+gl8OlL1uW9cBKtw0AAKwdBEwAAGDZLMv6qaQfxq5uUnSWtIUkVub8o6Tdy/iZtzvdApayj7NQcLScoCcl4fJVOTaRZVk+RWfEk6R0vTy+VBJjTIais+V9IuHmT1qW9eHL20IAAHCto4scAAC4VO+T9BuKVvu80xjz/QWWTRx/KGRZ1vFLfM54KLRYAJR/ieuPi7e3yBjjWqSKaeMcj7siYoN210oqtSzrkUUWH0q4nD7HunIk/Uwvj3sVVHQw9m+vRFsBAMDaRgUTAAC4JJZl9Uv604SbvikpZ57FW/RyJdJti63bGPMRY8wfG2NePeOu+Mxz6caYlJmPiz02S9JyZrebS2Psd66k7Yssm/h6zjl83uX6rqTDkn6+hBn9ahMuJw1ubozJVLTCKR4uTUn6XcIlAACwVARMAADgklmW9V1Jv4xdrZH0lnmWC0h6MnZ1pzHmzvnWaYz5DUl/I+nrkj4+4+7RhMs186zi1ZLSFmr3EjyWcPmPF1n2PQmXH3f4vMv1TOy3S9FBvOdkjCmV9NrY1XNzzJ73TUmvjF0elvQblmX9UgAAAEtEwAQAAJz6Y0kTscsLBTtfTrj8HWNM5cwFjDElioYdcf97xiKNCZffP8fjN0r6woKtXZqfS2qOXb7fGPOGuRYyxnxSLwcz/89B179L9c+KVhtJ0seNMbNmsYsNkv7verm67G9m3P9GSX8Yu+qT9BrLsl68PM0FAABrFWMwAQAARyzL6jDGfETS3y+y3BPGmK9J+hNFu2udMMZ8RdLTsUVulvQhSWWx6z+1LOv/zljNv0n6lKL7MB+MhSffl+RVtKvaA7HHX1Byl7DlvqaQMeYPY21Ll/QjY8z3FB3YvF9StaT/Jume2EMGJf1/l/p8DtrZa4z575K+JilP0oux9/QpRWfJ26doN8aa2EO+L+lf4o83xrglfTphld+WFDDG3LTIU09altW8yDIAAOA6QsAEAABWwtclvVnSXYss935Fw6AHJK2X9JfzLPcTSW+deaNlWc3GmAcUrWxyK9otLLFrWFjRbnUbJDma+cyyrOeNMa+R9ANFx3R6W+xnpqOS7rMsq8vJ810qy7K+Hpv97QuSMiV9NPYz09ckfXDGgOV3S2pIuH5/7GcxT8ceCwAAIIkucgAAYAXEQot3SfIsslzIsqwPSdqtaCh1TtKkpICkLkk/lvRay7L+wLKsOddlWdbfKVqZ8z1FB6v2S+pRtBvYnZZl/a8VeVHR53pSUp2igc1BRccn8ktqlfSIpDdJum21q3ksy3pQ0g5JfyfJUvTv4FG0m9+3Jd1sWdb9sbGwEu25og0FAABrlisSWWjWXQAAAAAAAGBhVDABAAAAAADAEQImAAAAAAAAOELABAAAAAAAAEcImAAAAAAAAOAIARMAAAAAAAAcIWACAAAAAACAIwRMAAA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XXWd//HXzb50TfeGJt0PLQUKtCyigP5GZVxwHYVhxlHGmXEQ3H76k1FwcEYdR8cFwWWGUUCFYVEQBxVRQZbKUqAtXU+TNk3SJE2afV/v/f1xb26TNElbbmlK+3o+HnnkLuec+73buee8z+f7PZFYLIYkSZIkSZL0cqVNdAMkSZIkSZL06mbAJEmSJEmSpJQYMEmSJEmSJCklBkySJEmSJElKiQGTJEmSJEmSUmLAJEmSJEmSpJQYMEmSJEmSJCklBkySJEmSJElKiQGTJEmSJEmSUmLAJEmSJEmSpJQYMEmSJEmSJCklBkySJEmSJElKiQGTJEmSJEmSUmLAJEmSJEmSpJRkTHQDJEnS8ScIgj8CFyeuXh+G4ZcPc75bgI8mri4Kw3DP0W+dRhMEwVLgE8AbgSKgGygD7gf+KwzDusNYxjuBvwXWAgVAHbAJ+DFwbxiGsVem9ZIk6dXOCiZJknQoNwRBsGKiG6GxBUHwQWAz8XBvOZADTAPOAv4V2BoEwVvGmT8nCIIHgAeAtwFzgEygEHgLcDfwWBAEs1/BpyFJkl7FDJgkSdKhZAM/DILA7YbjUBAEfw78iHio1AV8CXgT8Gbg34AeYCbwsyAIzh5jMbcB70xc3k68ium1wPuBRxK3XwzcHwSBFfCSJOkgbiBIkqTDcQHwMeDbE90QHZAI/W4BIkAv8LowDF8YMskjQRA8DDwG5AJfJR4+DV3GJcDliatPA5eEYdg7ZJJ7gyD4L+DvgAuB9wF3Hf1nI0mSXs08EilJksYTBfoTl78cBMHiiWyMDvIGYPA9uWVEuARAGIZPAL9KXH1jEATTR0zy4SGX/2FEuDTouiGX3/dyGytJkk5cBkySJGk8fcDXE5fzgFsnsC0a3UNABfDgONNsH3J5wYj7dgPrgI1hGG4ebeYwDBuJD/gN8QHEJUmShrGLnCRJOpQvAu8CTgXeEATB34VhmFLQlBg0/Brg/wCnEO/iVUm8K9fNYRhuG2O+PxIfC6gnDMOccZa/BTgNKA/DcOGI+wbPhPZJ4pU9txAfb6gPKAWuC8Pw90Omn0K8yucdwCpgMtAAbADuA34ShmE/IwRBsJD4Wdwg/vr9Evgg8IFE2yYDVcBvgW+EYbhrrOczlkQ7f3/ICaF4yOWaEcv4AvCF8WZOvAaDlU81400rSZJOTlYwSZKkcYVh2EM8YIkmbvp6EASFL3d5QRDcQPyMZ1cDAZBPvDoqAD4CbA6C4MYgCCIpNfzQFhCv3HlT4vGnAmcTD5kG2/p6YAfwDeAioID42dXmAoODa28IgmDJIR4rj3gQ9EPiAdlM4oOnLwb+kUOc5S0VQRCs5cAA3o+FYbj/ZSzmRuLPG+Ceo9EuSZJ0YrGCSZIkHVIYhuuCIPgucC3xIOYHwNuPdDlBENwI/HPi6kvA9xL/04BziA8kvmTINDem0u5D+ATxyqmvAf9LPDRaHYbhnkRbLyBe4ZQLxIA7gXuBWmARcBXxcGoV8GQQBOeEYThWdc83Est/BvgusBOYB3wUeCPxsOn2IAgWh2HYnsqTSgRzk4BlwF8Df59YfhPxqrHDWUYaMIf4e/JJ4mM9AfwaB/iWJEmjMGCSJEmH65+Ih0oLgbcFQfCXYRgedtgQBMHZwA2Jqz8BrhrRtWxdEAQ/JD6m0CXAF4IguHes7nJHQRrwlTAMPz/ktp8l2ppOvDopl3jl1vvDMPzZkOmeA+4JguALxLsQzgP+E7hsjMeaS/w5fzAMw8FKMIIg+CXx5/sWYBbwVlKvELoy8VhDrQM+HIbhjsNcxiPEuy8OihIP4r44WndASZIku8hJkqTDEoZhB/FqmEE3BUEw6wgW8X+Jb3s0AB8ZLahIPMZVxCuGIsQrpl5J3x/j9rcTH3MK4PsjwqWkMAz/Bfjj4DxBEKwcY3ndwCeGhkuJ+WMMHzj9zMNp9CEUj3Lb6cC1o5xB7nCXkUY8PPvLVBomSZJOXAZMkiTpsIVh+DvgtsTVmcDNhzNfotvWnyeurgvDsHOcxyjjwFnP/s9Y0x0FVWEY7h3jvjcPufyfh1jO94ZcvnSMaV5InIltNEMH9558iMc6HI8T73Z3HvEucs8AU4iPefVEEASzD2MZ/wy8hvh4UV8gHgquBH4YBMHXjkIbJUnSCcYucpIk6Uh9iniQMg94fxAE/xOG4YOHmGchB85CdtmQM7kdyqKX18TDUjnOfasS/9uBLYdYzjNDLp8+xjR7xpl/6JhLKW+bhWH41JCrzwVBcBfxKqmriD+v/yB+JrvxljG06+MTQRDcATwJFAGfCYLg4TAMH021rZIk6cRhBZMkSToiYRg2Ex+cetD3gyCYdojZZr7Mh8sIguBoVPWMpnWc+2Yk/tcnurGNp3bI5YIxphlv4O6hyz/qZ85LdMu7GqhK3PT+IAjyjnAZFYllDLrqKDVPkiSdIAyYJEnSEQvD8AHgvsTVecTPkjaeoZU5PwLOOoK/MbvTjeNwtnHGC46OJOhJH3I5OuZUEygMwx7iZ8QDyOLA+FJH4mEOvBdnHI12SZKkE4dd5CRJ0st1DfHT188ArgqC4O5xph06/tBAGIYbX+ZjDoZChwqApr7M5Q8abO/MIAgih6himjPKfMdEYtDuJcDcMAwfOsTkDUMuZyXmjwALEstoDMNw01gzh2E4EARBC5A3OL8kSdIgK5gkSdLLEoZhHfDJITf9F5A/xuS7OVD9cv6hlh0EwWeDIPiHIAj+bMRdg2eeywqCIH3kfIl5c4EjObvdaF5K/J8EnHaIaYc+nx0pPu6R+gmwHvjlYZzRb8mQy4ODm88AyoFHgS+PN3Oiq+LgY4w1OLokSTpJGTBJkqSXLQzDnwC/SVxdCFw5xnR9wGOJq6cHQfDasZYZBMEbgK8CPwA+N+Lu5iGXF46xiD8DMsdr92F4ZMjlfzjEtB8Zcvl3KT7ukXoy8T/COOMiBUEwF3hr4uqOwbPnhWFYz4FQ7E1BEJwyzmP9DQeq34/185QkScc5AyZJkpSqfwDaEpfHC3a+OeTy7UEQLBg5QRAEs4lXQg36zohJXhpy+dpR5p8DfH3c1h6eXwKlictXB0HwrtEmCoLgBuDixNU/pND17+W6A+hIXP5cEAQHncUuUXl0Lweqy746YpLvJf5nArcGQXBQ97cgCC4cMl8Tw98jSZIkx2CSJEmpCcOwMgiCz3IgqBhrukeDIPg+8I/Eu2ttCoLg28DjiUnWAJ8C5ieuPxCG4S9GLOZ/gC8Q34b5eCI8uRvoJt5V7ROJ+XcxvEvYkT6ngSAI/jrRtizgZ0EQ/JT4wOZ1QDHwt8CbE7PUE6/wOabCMNwXBMGnge8DU4DnEq/pH4mfJW8t8W6MCxOz3A38eMRivg+8H7gQuBTYHATBfwDbiIdSbwf+nvjrMAB8IAzDplfuWUmSpFcjAyZJknQ0/AC4HLjoENNdSzwM+gQwHfjiGNPdD/zVyBvDMCwNguATxCub0oh3CxvaNSxKvFvdDOD/HkH7DxKG4TNBEFwK3EN87KEPJP5GehF4fxiGVak83ssVhuEPgiDIJl65lQNcl/gb6fvAx0cOWB6GYX8QBG8j/jzfBCxn9AqlJuLh0qEGE5ckSSchu8hJkqSUJUKLDwNdh5huIAzDTwFnEQ+ldgDtQB9QBfwceGsYhu8Jw3DUZYVh+F3ilTk/JT7YdC9QQ7wb2GvDMPy3o/Kk4o/1GLCUeGCzjvhZ4nqBPcBDwPuA88MwLB1rGcdCGIY3AauA7wIh8fehi3g3vx8Ca8IwvDoxFtZo8zcTr156D/HugbXE35Mm4BngemCJ4ZIkSRpLJBYb76y7kiRJkiRJ0visYJIkSZIkSVJKDJgkSZIkSZKUEgMmSZIkSZIkpcSASZIkSZIkSSk
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAYXCAYAAAAkLcCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHW9//H3rNnT7GnaZmlKOF1oobSC3Moii6DA1Xu9l4so4O+KiOyLigsoKheURTZBrhuIyHKpVaBKAZXSUpbWttD9NGmafV+bTCaZZGZ+f8zkdCZr24ME29fz8eDRWb7nnO+ZKXm0736+n68jHA4LAAAAAAAAOFTOqZ4AAAAAAAAA/rkRMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAIAAAAAAIAtBEwAAAAAAACwhYAJAAAAAAAAthAwAQAAAAAAwBYCJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbHFP9QQAAMCHj2EYqyWdGn16i2ma/3OAx/1U0lXRp7NN06x6/2eHsRiGcZSk6yWdJalIUr+kvZJWSPq5aZoth3jeeyXdKEmmaTren9kCAIDDDRVMAABgMrcahjFvqieB8RmG8UVJWxUJ946WlCgpQ9JiST+UtN0wjE8dwnlPUiS0AgAAmBABEwAAmEyCpF8ZhsGfGz6EDMP4pKRfKxIq+SXdLukTks6WdKekAUk5kpYbhnH8QZw3IXpevncAADAplsgBAIADcZKkayXdP9UTwX7R0O+nkhySApJONk1zY8yQVwzDWCXpNUlJkn6kSPh0IL4vae77OF0AAHAY41+kAADAREKShqKP/8cwjNKpnAxGOV3S8Hfy0xHhkiTJNM01kv4UfXqWYRiZk53UMIylkr4Wfdr2fkwUAAAc3giYAADARAYl3R19nCzpF1M4F4xtpaQaSc9PMGZnzOPCiU5mGIZX0mOSXJKekvSO3QkCAIDDH0vkAADAZL4v6d8UWS51umEYXzZN01bQFG0afrWkMyTNUmSJV60iS7keMk1zxzjHrVZkd7sB0zQTJzj/NkkLJFWbplky4r1w9OENilT2/FTSxxQJ0yokfdM0zb/EjE+XdJmkT0s6RlKapHZJmyU9J+m3pmkOaQTDMEoU2cVNinx+L0j6oqRLonNLk1Qv6WVJ95qmuWe8+xlPdJ5/mXSgVBzzuHGSsbcqcp+tkq6T9PjBzgsAABx5qGACAAATMk1zQJGAJRR96W7DMGYe6vkMw7hVkR3PrpRkSEpRpDrKkHSFpK2GYdxmGIbD1sQnVyhpnSI9iZIlTZN0vCIh0/BcPy5pl6R7JZ0iKUuSR9J0ScPNtTcbhjFnkmslKxIE/UqRgCxHkebppZK+qkPc5e1AGIbxEUmfiT59zTTN1gnGLpb0zejTa03TZHkcAAA4IARMAABgUqZprpP0cPTpNEmPHsp5DMO4TdIPFFl+tUWRQOlfFKkguk7SHkX+fPK96H//SNcrEvTcJelkSf8p6Q7TNKuicz1JkQqnAklhSU9K+ldJJ0q6UNIr0fMcI2mtYRgFE1zrXkkfl/S2pIuj5/iMpFej7ydIetwwjFS7N2UYhsMwjDTDMI43DOM+Sauj5+9UpGpsvOM8iiyNc0t60TTNZ+zOBQAAHDlYIgcAAA7UtySdL6lE0nmGYVxkmuZTB3qwYRjHK7L8SpJ+K+m/RywtW2cYxq8U6Sl0mqTvGobxf+Mtl3sfOBUJlL4T89ry6FxdilQnJSlSufVfpmkujxm3XtKzhmF8V5ElhAWS/leRAGos0xW55y+apjlcCSbDMF5Q5H4/JSlX0rmSnrV5X5+PXivWOkmXmaa5a4LjviXpWEndilRVAQAAHDAqmAAAwAExTdMn6fKYlx4wDCP3IE5xkyJ/9miXdMVYfYui1/hvRSqGHJKuOfQZH5CfjfP6+Yr0nJKkn40Ilyymaf5AkQohSTrfMIz545yvX9L1seFS9Piw4hunH3sgk55E8RivLZR0zXg7yBmGsVDScND2ddM069+HeQAAgCMIARMAADhgpmm+qsgyKimyvOyhAzku2k/pk9Gn60zT7JvgGnu1f9ezMw5xqgei3jTNunHeOzvm8f9Ocp5HYh6fM86YjaZpdozzXmxz77RJrnUgXpd0liLL8C5WZFleuiI9r9YYhpEXO9gwDLci36lXkR5N7BQIAAAOGkvkAADAwbpRkSClQNJ/GYbxtGmaz09yTImk4eqZf43ZyW0ysw9tigekdoL3jon+2itp2yTneTvm8cJxxlRNcHxvzGPbfzYzTfONmKfrDcN4SpEqqf9W5L7uUWQnu2Ffl7REUp+kL9u9PgAAODJRwQQAAA6KaZpdkq6KeelnhmFkTHJYziFezm0YxvtR1TOWfRO8lx39tS26jG0izTGPs8YZ0zvO61JkOeCw933nvOiyvCslDS97+y/DMJIlyTCMedrfTP1W0zT3jHEKAACASVHBBAAADpppmn8wDOM5RXZeK1Bkl7QvTXBI7J85fq0DXFoXNe5yugkcyD+iTRQcHUzQ44p5HBp31BQyTXPAMIw/KdJDy6tIf6lNiiyNS1Ckwmq1YRjHjXF4+vCDmPcD/8Dm6wAA4J8QARMAADhUV0s6XZFqn/82DGOibe1j+w8FTdN89xCvORwKTRYATTvE8w8bnm+OYRiOSaqY8sc47gMRbdo9R9J00zRXTjK8PeaxN/rridFfSyRtPIBLbo7+Wh09BgAAQBJL5AAAwCEyTbNF0g0xL/1cUso4wyu1vxLpo5Od2zCMmw3D+IphGGeOeGt45zmvYRiukcdFj02SdDC7241lS/TXVEkLJhkbez+7bF73YP1W0gZJLxzAjn5zYh6P19wcAADgkFDBBAAADplpmr81DONziuwQVyLp8+OMGzQM4zVJ50paaBjGx0Y0o7YYhnG6pB9Fn74m6S8xb3fFPC5R/A5sw86U5DmI2xjLK5KuiD7+iqRrJhh7RczjV21e92CtVeQzdSjSxPvHYw0yDGN6dJwk7RrePc80zUmXAhqGsXL42AMZDwAAjkxUMAEAALu+Iqkn+niiYOcnMY8fNwyjcOQAwzDyFKmEGvbgiCFbYh6PCn0Mw8iXdPeEsz0wL0iqiD6+0jCMfxtrkGEYt0o6Nfr0rzaW/h2q30jyRR9/2zCMUbvYRZuk/5/2V5f9aOQYAAAAu6hgAgAAtpimWWsYxs2SHplk3N8Mw/iZpK8qslzrPcMw7pf0enTIUkk3SpoRff4H0zT/OOI0T0v6riJ/hrkuGp48I6lfkaVq10eP36P4JWEHe09BwzAujs7NK2m5YRhPSnpOUoukYkWamp8dPaRN0qWHej0b82wyDONrkn6mSDPu9dHPdLUiu+R9RJFljCXRQ56R9MQHPU8AAHD4I2ACAADvh0clXSjplEnGXaNIGHS9pExJ3x9n3ApJXxj5ommaFYZhXK9IZZNTkWVh/x0zJCTp24o0Hr/pIOY/immabxuGcY6kZxXp6XRJ9L+RNkn6L9M06+1c71CZpvmoYRgJilRuJUr6ZvS/kX4m6bpJGpYDAAAcEpbIAQAA26KhxWWS/JOMC5qmeaOkxYqEUrsk9UoalFQv6feSzjVN87OmaY55LtM0H1akMudJRZpVByQ1KrIM7GOmad75vtxU5FqvSTpKkcBmnSK7xAUkVUlaKekCSR81TbNivHN8EEzTfEDSMZIelmQq8j34FVnm9ytJS03TvNI0zcGpmyUAADicOcJh/hELAAAAAAAAh44KJgAAAAAAANhCwAQAAAAAAABbCJgAAAAAAABgCwETAAAAAAAAbCFgAgAAAAAAgC0ETAAAAAAAALCFgAkAAAAAAAC2EDABAAAAAADAFgImAAAAAAAA2ELABAAAAAAAAFsImAAAAAAAAGALARMAAAAAAABsIWACAAAAAACALQRMAAAAAAAAsIWACQAAAAAAALYQMAEAAAAAAMAWAiYAAAAAAADYQsAEAAAAAAAAWwiYAAAAAAAAYAsBEwAAAAAAAGwhYAI
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1800 with 12 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4HPl95/lPB4RGIxA5g2AsxmGcGXGiNCOtpJVlrx97V/usk9Ynn8NKlmzvnr0+J+3ZPp+13mDJltdhba+8DlqffZZGsjWSpcnDGaYhh6kIEiAAIpGIDTS60fH+aFSpGx2BAgiS8349Dx50qK7+NdBdXfWp3+/7cyWTSQEAAAAAAABr5d7sBgAAAAAAAOD+RsAEAAAAAAAARwiYAAAAAAAA4AgBEwAAAAAAABwhYAIAAAAAAIAjBEwAAAAAAABwhIAJAAAAAAAAjhAwAQAAAAAAwBECJgAAAAAAADhCwAQAAAAAAABHCJgAAAAAAADgCAETAAAAAAAAHCFgAgAAAAAAgCMETAAAAAAAAHDEu9kNAAAA9x7DMF6Q9PTy1V8wTfPXSnzc5yT9m+Wr20zTvLn+rUMuhmHslPQpSe+T1CMpLGlA0t9I+n3TNG8Xefw3JD1bynOZpuly1loAAPCgoQcTAAAo5hcNw9i72Y1AfoZhfFTS20qFe7slVUraIumIpP9L0iXDMP5pkdUc3sg2AgCABxs9mAAAQDEVkv7IMIwnTNNMbHZjkMkwjA9K+u+SXJJCkn5L0kvL198t6aclNUn66+X/4dkc6+iW1Lh89T9I+tuNbzkAAHiQEDABAIBSnJD0k5L+y2Y3BN9mGIZb0ueUCpMikp40TfNM2iLPG4bxD5K+Jckn6Tck/ZMcq0rvvfRV0zTf2qAmAwCABxRD5AAAQCEJSbHly79mGMb2zWwMsjwjyfqffG5FuCRJMk3zJUlfWb76PsMw6nOsxwqYEkoNtQMAAFgVAiYAAFBIVNJnli9XSfqDTWwLcntO0pCkvyuwzJW0y9057j+y/Ns0TXNxvRoGAADeORgiBwAAivm0pO+WtEfSM4Zh/Ihpmo6CpuWi4R9XatayLqWGeA0rNZTrs6ZpXs7zuBeUmt1uyTTNygLrvyhpv6RB0zR7V9yXXL74U0r17PmcpCeUCtOuS/o50zS/kbZ8raSPSfouSQck1UiaknRO0v+S9AXTNGNawTCMXqVmcZNSf78vSfqopB9cbluNpBFJX5P0W6Zp3sj3evJZbuc3ii4obU27PJbjfqsH07nVtgEAAECiBxMAACjCNM0lpQIWq8D3ZwzD6Fzr+gzD+EWlhmH9hCRDkl+p3lGGpB+T9LZhGL9iGIbLUcOL65b0qlI1iaok1Uk6qlTIZLX1PZKuKlU4+ylJDZLKJLVJsoprnzMMY0eR56pSKgj6I6UCsialiqdvl/TjKm2WtzUxDONhSf9s+eq3TNO8s+L+Wkm9y1cvGIbx/YZhfM0wjEnDMJYMwxgyDONPDcM4IgAAgDwImAAAQFGmab4q6XeWr9ZJ+r21rMcwjF9RapYyj6QLSgVKjynVg+iTkm4otX/yy8s/G+lTSgU9vynpSUn/XNKvm6Z5c7mtJ5Tq4dQuKSnpzyR9p6RHJf1LSc8vr+eApJcNw2gv8Fy/Jek9kk5K+oHldfwzSV9fvr9C0p8YhlHt9EUZhuEyDKPGMIyjhmH8Z0kvLK9/RqleYysdVqoHmST9vKQvKBW6NUoqVyqI+0FJZwzD2Oj/CQAAuE8xRA4AAJTq30v6sFK9Xb7DMIx/ZZrmn5f6YMMwjkr6xeWrX5D0wyuGlr1qGMYfKVVT6N2SfskwjC/mGy63DtxKBUr/Z9ptf73cVo9SvZN8SvXc+ohpmn+dttybkv7KMIxfUmoIYbuk/6ZUAJVLm1Kv+aOmaVo9wWQYxpeUer3/VFKzpA9J+iuHr+v7lp8r3auSPmaa5tUcy6f3TKqV9JKkP5TUt3z9/Ur1svJJ+hXDMJZM0/wNh20EAAAPGHowAQCAkpimGZT0v6fd9F8Nw2hexSp+Rql9jylJP5arbtHyc/ywUj2GXJI+sfYWl+TzeW7/sFI1pyTp8yvCJZtpmv9BqR5CkvRhwzD25VlfWNKn0sOl5ccnlVk4/VApjS5ia47bDkr6RJEZ5CTpV0zTfNo0zS+YpnnSNM3nTdP8GaV6mc0uL/OrhmHsXId2AgCABwgBEwAAKJlpml+X9MfLV5skfbaUxy3XU/rg8tVXC81UZprmgL4969mza2xqKUZM07yV5773p13+b0XW87tplz+QZ5kzpmlO57kvvbh3TZHnKsWLkt6n1DC8H1BqWF6tUjWvXjIMo2XF8p+UdEzSB03T/HSuFZqm+Zakf7d81aPcQ+0AAMA7GEPkAADAav20UkFKu6SPGIbxF6Zp/l2Rx/RKsnrPfGfaTG7FbFtbE0syXOC+A8u/FyRdLLKek2mXD+ZZ5maBxy+kXXa8b2aa5itpV980DOPPleol9cNKva7/qFRNJWv5gKSzJaz6C0oFipWS3uu0nQAA4MFCDyYAALAqpmnOSvo3aTd93jCMLUUe1rTGp/MahrEevXpyCRS4r3H59+TyMLZCJtIuN+RZZiHP7VJqOKBl3WfOWx6W9xOSRpZv+ohhGFVrWM+SUjPqSVLPOjUPAAA8IAiYAADAqpmm+beS/tfy1XalZkkrJL1nzn9XqrB0qT95h9MVUMo+TqHgaDVBjyftciLvUptoORz6yvLVcn27vtRqWf+LcseNAgAADxSGyAEAgLX6uKRnlOrt88OGYfxlgWXT6w/Fl2v6rIUVChULgOrWuH6L1d4mwzBcRXoxteZ43F2xXLR7h6Q20zSfK7L4VNrl8uXH+yQ9KalF0rhpmt8osg6rftPtNTQXAAA8wOjBBAAA1sQ0zduSfirtpt+X5M+zeL++3fvlXcXWbRjGzxqG8aOGYays9WPNPFduGIZn5eOWH+uTtJrZ7XK5sPy7WtL+Isumv56reZfaGF+QdErSl0qY0W9H2mWruHmlpK8tr+fXCj3YMIy2tHWcXn1TAQDAg4yACQAArJlpml+Q9PfLV3slfV+e5aKSvrV89aBhGE/kW6dhGM9I+g1Jvyfp51fcPZt2uTfPKt4rqaxQu0vwfNrlHy2y7I+lXf66w+ddrZeXf7uUKuKd03I49KHlq1et2fNM05yR9Pby7Q8bhlFo6NxP6ds9xwr1VgMAAO9ABEwAAMCpH5U0v3y5ULDzn9Iu/4lhGN0rFzAMo0WpnlCW316xyIW0y5/I8fhWSZ8p2NrSfEnS9eXLP2EYxnfnWsgwjF+U9PTy1X90MPRvrf5UUnD58s8bhpE1i91ykfQv6tu9y35jxSK/u/zbJekPcxUANwzjuyT9zPLVi5L+xmG7AQDAA4YaTAAAwBHTNIcNw/hZfTuoyLfcNw3D+LykH1dqqNV5wzD+i6QXlxc5LumnJXUsX/9b0zT/vxWr+QtJv6TUPswnl8OTv5QUVmqo2qeWH39DmUPCVvua4oZh/MBy28ol/bVhGH+mVGHz25K2SvrfJL1/+SGTkn5orc/noJ3jhmH8W0mfl1Qr6c3lv+kLSs2S97BSPY96lx/yl5L+x4rV/IGkf6VULabHJZ02DOM/KhUkNUj655I+qtSJyYCkHzBNMyYAAIA0BEwAAGA9/J6kfynpqSLLfUKpMOhTkuolfTrPcn8j6ftX3mia5nXDMD6lVM8mt1LDwtKHhiWUGlbXqG/3uFkT0zRPGobxAUl/pVRNpx9c/lnprKSPmKY54uT51so0zd8zDKNCqZ5blZJ+bvlnpc9L+uTKguXLYdp3KvU6/4mkvZL+KMfjh5V6nXe7lxYAALgPMEQOAAA4thxafExSqMhycdM0f1rSEaVCqauSFiRFJY1I+n8lfcg0ze8xTTPnukzT/B2leub8mVLFqiOSxpQaBvaEaZr/97q8qNRzfUvSTqUCm1eVmiUuIummpOck/QtJ7zJN83q+ddwNpmn+V0kHJP2OJFOp/0NIqWF+fyTpuGmaP7FcCyvX42clfUDS9yg1PHBcqf/JlKS
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8W/Wd7/+3JMuWvMb7knhL4pw4KwnQNhToBm3pMp1Op8CjHW47TDtDKWmgy22hlKH8uqfQUihw287SH5S97Z2WoS10KFsgbCEJ2U4cx7sTL/EW27JkS+f+caQTSZbtJAoY6Ov5eORhST46+p5j4/PlfT7f79dlWZYAAAAAAACAk+We7wYAAAAAAADgjY2ACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGnJmO8GAACA1x/DMB6X9I7o02tN0/z2cb7vVkmfjz6tN02z9dS3DqkYhrFU0pWSzpdUI2lCUouk30j6mWmavcexD4+kT0u6SNJqScWSBiQ9L+l20zT/8Ko0HgAAvOFRwQQAAObyDcMwGue7EZiZYRiflvSK7HBvmSSfpAWS1kn6/yTtNgzjA3PsY5GkFyX9QnZIVSHJK6lc0oclPWwYxi8Mw6D/CAAApqGDAAAA5pIl6d8IFl6fDMO4QNK/yw6VApK+Jem9kt4n6buSgpJKJD1oGMb6GfaxQNITkk6LvvQHSX8naYOkyyR1RF//J0nfeFUOBAAAvKExRA4AAByPDZK+IOnH890QHBMN/W6V5JIUknSOaZovxW3yiGEYf5T0F0l+Sd+THT4l+56kxdHHPzBN86tx39tqGMb/lbRddlXT1wzD+IlpmoOn9mgAAMAbGXciAQDAbCKSpqKPv20YxuLZNsZr7t06FgzdmhQuSZJM03xS0n9Hn55vGEZh/PejQ+M+G336ZFK4FNtHj6TvRJ/6JH3oFLQdAAC8iRAwAQCA2UxK2hx9nC3p5/PYFqT2kKR2Sf81yzZ74x5XJ33vIh3rE149yz5+LelOST+S1HmCbQQAAG9yDJEDAABz+aakj0paLundhmF81jTNtIKm6KThV0h6j6RFsod4dcgeynWLaZp7Znjf47JXtwuapumbZf+7JK2U1GaaZl3S96zow6tkV/bcKuls2WHaAUlfM03zz3Hb50v6jKSPSFolKU/SEUkvS3pA0p2maU4piWEYdbJXcZPs8/c72Su0/a9o2/IkdUn6k6QbTdNsnul4ZhJt55/n3FCqjXt8KOl7F0S/dpim+cwsn9Utu+0AAADTUMEEAABmZZpmUHbAEom+tNkwjIUnuz/DML4he8WzyyUZknJkV0cZsieUfsUwjOsNw3Cl1fC5VUvaIntOomxJBZLWyw6ZYm19l6R9km6UdK6kItkrq1XIDmb+XdLLhmEsmeOzsmUHQf8mOyArkT15+mJJn9NxrPJ2sgzDOFPS30af/sU0zb6kTVZHv76Y9L48w1b1arQLAAC8uRAwAQCAOZmmuUXST6NPCyTdcTL7MQzjekk3SPJI2ik7UDpLdgXRJknNsvsn/xr992q6UnbQ8wNJ50j6uKTvmKbZGm3rBtkVTpWSLEl3SfobSW+VdLGkR6L7WSXpKcMwKmf5rBslvUvSVkmXRPfxt5IejX4/S9J/GoaRm+5BGYbhioZD6w3D+JGkx6P7H5RdNRa/bbGksujTtuhrf2cYxhZJI7LDtS7DMNoNw/iaYRhZ6bYPAAC8OTFEDgAAHK+rJX1YUp2kDxmG8QnTNO8+3jcbhrFex5a4v1PSpUlDy7YYhvFvsucUeqek6wzDuH+m4XKngFt2oPT1uNcejLbVI7s6yS+7cusi0zQfjNvueUn3GYZxnewhhJWS/o/sACqVCtnH/GnTNGOVYDIM43eyj/cDkkolfVDSfWke1yejnxVvi6TPmKa5L+n1krjHQ4Zh3CHpX1Lss1rSdyV92DCMD7GCHAAASEYFEwAAOC6maY5J+ue4l242DKP0BHbxJdl9jyOSLks1b1H0My6VXTHkkrTx5Ft8XG6f4fUPy55zSpJuTwqXHKZp3iC7Qkiyw5cVM+xvQtKV8eFS9P2WEidOX3s8jZ5DbYrXVkvamLyCnKT4iqlLZYdLB2VP/F0oe/jie2RXXkl2tdldp6CNAADgTYaACQAAHDfTNB+V9B/RpyWSbjme90XnU4pNJr3FNM3xWT6jRcdWPXvPSTb1eHSZpjnTamjvi3v8f+bYz21xj98/wzYvmaY5MMP34if3zpvjs47HE5LOlz0M7xLZ4VC+7DmvnjQMoyxu2+y4xzXRtrzFNM37TdMcMk1z3DTNx2RXlD0d3e4Dr9Z8UQAA4I2LIXIAAOBEfVF2kFIp6SLDMO4xTfO/5nhPneyKGEn6m7iV3OZSf3JNPC4ds3xvVfTrqKRdc+xna9zj1TNs0zrL+0fjHqfdNzNN8+m4p88bhnG37CqpS2Uf1w91bDW4QNLbrzJN80iKfQYNw9goe+U8SfoHSQ+n21YAAPDmQQUTAAA4IaZpDkn6fNxLtxuGsWCOt5XM8f2ZZBiGcSqqelIZmeV7xdGv/dFhbLPpiXtcNMM2ozO8LtnDAWNO+cp50WF5l0vqir50kWEYscqlo3GbBiT9cZb9bJcUq/h666luJwAAeGMjYAIAACfMNM3fSnog+rRS9ipps4mvzPl3SetO4N+Mw+lmcTx9nNmCoxMJejxxjyMzbjWPTNMMyl4RT5IydWx+qcNxm/WZpjk5x65iVV8nGxgCAIA3KYbIAQCAk3WFpHfLrva51DCMe2fZNn7+oXC0GuZkxEKhuQKggpPcf0ysvSWGYbjmqGIqT/G+10R00u4lkipM03xojs3jh75lSpJpmsOGYbTLnn8peQLwVLKiX1lFDgAAJKCCCQAAnBTTNHslXRX30s9krzqWykEdq0R621z7Ngzjq4Zh/IthGOclfSu28lymYRie5PdF3+uXdCKr26WyM/o1V9LKObaNP559aX7uibpT0guSfnccK/otiXscP7l5bA6pvFlWwZNhGBmSjOjT1hNsJwAAeJMjYAIAACfNNM07Jf0h+rRO0idn2G5S0l+iT1cbhnH2TPs0DOPdkr4n6Q5J1yR9eyjucd0MuzhPkne2dh+HR+Ie/8sc214W9/jRND/3RD0V/eqSPYl3SoZhVEj6YPTpvqTV8+Irzy6f5bP+TscCxP97gu0EAABvcgRMAAAgXf+iY5NFzxbs3BT3+D8Nw6hO3sAwjDLZlVAxP0naZGfc440p3l8uafOsrT0+v5N0IPr4csMwPppqI8MwviHpHdGn/5PG0L+T9UtJY9HH1xiGMW0Vu+gk6ffrWDj0vaRNHpK0J/r4c4Zh/F2KfdRJ+nH06Yiku9NrNgAAeLNhDiYAAJAW0zQ7DMP4qqTb5tjuMcMwbpf0OdnDtXYYhvFjSU9ENzlD0hclVUWf/9Y0zeRKmXskXSe7D7MpGp7cK2lC9lC1K6Pvb1bikLATPaawYRiXRNuWKelBwzDukj2xea+kWkn/JOl90bf0S/rUyX5eGu08bBjGlyXdLilf0vPRc/q47CDoTNnDGOuib7lX0v+ftI9JwzD+Mfoev6QHDMO4U3YoNSjpLElf07GJvTdFh0cCAAA4CJgAAMCpcIekiyWdO8d2G2WHQVfKnlT6mzNs9xtJ/5D8ommaBwzDuFJ2ZZNb9rCw+KFhEdnD6oolfekE2j+NaZpbDcN4v6T7ZM/p9L+i/5Jtk3SRaZpd6XzeyTJN8w7DMLJkV275ZIdBX0ux6e2yw6FpE5abpvm8YRjvkx0qVcgOy5IDsylJXzJN8z9PYfMBAMCbBEPkAABA2qKhxWckBebYLmya5hclrZMdSu2TNCppUlKXpF9L+qBpmh8zTTPlvkzT/Knsypy7ZE9WHZJ0SHY4crZpmt89JQdlf9ZfJC2VHdhskb1KXEj
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4W+Wd/v9bki1L3mI7XmI73uKEk50lCdsX2gCllELbYWaAdmj7azt0o+ydlplOSwfaTlugLZQy0IWhLAOkpZRSoJSylTULIWTPieM4tuN9X2VJlvT740iKZMtLohBD8n5dly9tR9IjWTo65z6f53lsoVBIAAAAAAAAwKGyz3QDAAAAAAAA8P5GwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkEDABAAAAAAAgKQRMAAAAAAAASAoBEwAAAAAAAJJCwAQAAAAAAICkpMx0AwAAwHuPYRgvS/pg+OK3TdP8wTTv9wtJXwtfrDJNc9/hbx0SMQxjvqRrJZ0rqVzSiKQ6SY9L+pVpmu0T3C90CE9Xb5pm5SE2FQAAHIWoYAIAAFP5jmEYi2a6EZiYYRifk7RVVrh3nCSXpBxJJ0r6nqTthmF89DA+pe8wPhYAADgKUMEEAACmkibpXsMwzjBNMzjTjUE8wzDOl/S/kmySPJJ+IumV8OXVkq6XlC/psfD/8O0xD3HiNJ4mRdIjkuZLCki68rA0HgAAHDUImAAAwHScJulqSbfPdENwgGEYdkm/kBUm+SSdaZrmxphFnjMM41lJL0lyS/qRpA/HPoZpmu9M43l+KCtckqQbTdN87jA0HwAAHEXoIgcAACYTlDQaPv8DwzDmzWRjMM7ZkiL/k1+MCZckSaZpviLp6fDFcw3DyD2YJzAM4zRJ3wxffFVWSAUAABCHgAkAAEzGL+nW8Pl0Sb+ewbYgsackNUj60yTL7Iw5XzbdBzYMI0XSr2RtM3olfZFukgAAIBG6yAEAgKncJOkiSQslnW0YxhdN00wqaAoPGn6lpHMkzZXVxatRVleuO03T3DHB/V6WNbud1zRN1ySPv03SEiWY7Sxm1rTrZFX2/ELSGbLCtD2S/t00zedjls+WdLmkT0haKilLUpekTZJ+L+lB0zRHNYZhGJWyZnGTrPfvSUmfk/TZcNuyJDVJ+qukn5imWTvR65lIuJ3PT7mgVBFzvuUgnuKrsl6zJN1mmqZ5EPcFAADHECqYAADApEzT9MoKWCKVK7cahlF6qI9nGMZ3ZM14doUkQ1KGrOooQ9JXJG01DOO/DMOwJdXwqZVJel3WmETpkmZJOklWyBRp61mSdskaOPsDkvIkpUqaIykyuPYmwzCqp3iudFlB0L2yArJ8WYOnz5MV4hzuWd6iDMNYJekfwhdfMk2zY5r3y5T0nfDFFtE1DgAATIKACQAATMk0zdcl3RW+OEvSPYfyOIZh/JekmyU5JG2RFSidLquC6BpJtbK2T74b/ns3XSsr6LlF0pmSLpb036Zp7gu39TRZFU7FkkKSHpL0cUmnSPqkpMhA10slvWoYRvEkz/UTSWdJWivpM+HH+AdJfwvfnibpt+FQJymGYdgMw8gyDOMkwzB+Junl8OP36OBmf7tCUkH4/C2maQ4m2zYAAHD0ooscAACYrv+Q9DFJlZIuNAzjX0zTfHi6dzYM4yQdqIh5UNIXxnQte90wjHtljSm0WtKNhmH8bqLucoeBXVag9J8x1z0WbqtDVnWSW1bl1qWmaT4Ws9x6SWsMw7hRVhfCYkm/lBVAJTJH1mv+XOwYRoZhPCnr9X5UVphzgaQ1Sb6uy8LPFet1SZebprlrOg8QHnspEkZ1i7G3AADAFKhgAgAA02Ka5pCkL8VcdYdhGAUTLZ/A12Vte3RJ+kqicYvCz/EFWRVDNklXHXqLp+XuCa7/mKwxpyTp7jHhUpRpmjfLqhCSpI8ZhrF4gscbkXTt2AGyTdMMKT68OX46jZ5CRYLrlkm66iBmkPsnHRgM/Bfh/wsAAMCECJgAAMC0mab5N0n3hS/mS7pzOvcLj6d0fvji66ZpDk/yHHU6MOvZOYfY1OloMk1z/wS3nRdz/pdTPM7/xJz/yATLbDRNs3uC22IH986a4rmm4++SzpXVDe8zsrrlZcvq8vaKYRiF03iMq8OnHk3zfwwAAI5tdJEDAAAH63pZQUqxpEsNw3jENM0/TXGfSkmR6pmPx8zkNpWqQ2vitDROcltk5rRBSdumeJy1MeeXTbDMvknuHzu2UdLbZqZpvhZzcb1hGA/LqpL6gqzXdZusmewSMgyjXNa4WJL0lGmancm2CQAAHP2oYAIAAAfFNM1eSV+LuepuwzByprhb/iE+XYphGIejqieR/klumx0+7Qx3Y5tMW8z5vAmWmWyA7NjHP+wz54W75V0hqSl81aWGYaRPcpdPxJxPdjwoAABwjCBgAgAAB800zT9K+n34YrGsWdImE1uZ87+STjyIvwm7001iOts4kwVHBxP0OGLOBydcagaZpumVNSOeJDl1YHypRP4hfDoo6Zl3s10AAODoQRc5AABwqK6UdLasap8vGIbx6CTLxo4/FDBN851DfM5IKDRVADTrEB8/ItLefMMwbFNUMRUluN8RER60u1rSHNM0n5pi8a6Y884JHi9b0gfCF58yTdOTfCsBAMCxgAomAABwSEzTbJd0XcxVv5KUMcHie3WgEunUqR7bMIwbDMP4smEYHxpzU2TmOadhGI6x9wvf1y3pYGa3S2RL+DRT0pIplo19PbuSfN6D9aCkDZKenMaMftUx5yca3Pw0HTgA+UqSbQMAAMcQAiYAAHDITNN8UNJfwhcrJV02wXJ+SS+FLy4zDOOMiR7TMIyzJf1I0j2SvjXm5t6Y85UTPMSHJKVO1u5peC7m/JenWPYrMef/luTzHqxXw6c2WYN4J2QYxhxJF4Qv7ppk9ryTY86/lXzzAADAsYKACQAAJOvLkgbC5ycLdn4ac/63hmGUjV3AMIxCWZVQET8fs8iWmPNXJbh/kaRbJ23t9DwpaU/4/BWGYVyUaCHDML4j6YPhiy8k0fXvUN0vaSh8/luGYYybxS48SPrvdKC67EeTPN7y8Klf8e81AADApBiDCQAAJMU0zUbDMG6Q9D9TLPeiYRh3S/qqrO5amw3DuF3S38OLrJR0vaSS8OU/mqb5xJiHeUTSjbK2Ya4JhyePShqR1VXt2vD9axXfJexgX1PAMIzPhNvmlPSYYRgPyRrYvF1ShaR/lXRe+C6dkv6/Q32+JNrZahjGv0m6W1K2pPXh9/RlWbPkrZLVjbEyfJdHJT0wyUMeFz7tCg8MDgAAMC0ETAAA4HC4R9IndWCA6IlcJSsMulZSrqSbJljucUmfHnulaZp7DMO4VlZlk11Wt7DYrmFBWd3qZkv6+kG0fxzTNNcahvERSWtkjen02fDfWG9LutQ0zaZknu9QmaZ5j2EYabIqt1yS/j38N9bdkq6ZYsDyueHT3kmWAQAAGIcucgAAIGnh0OJySZPOOmaaZsA0zeslnSgrlNolaVBWl6wmSX+QdIFpmv800QxmpmneJasy5yFZg1X7JLXI6gZ2hmmaPzwsL8p6rpckzZcV2Lwua5Y4n6R9kp6SdImkU03T3DPRYxwJpmneIWmppLskmbL+Dx5Z3fzulbTSNM0rwmNhTSY7fErABAAADootFJrsIBYAAAAAAAAwOSqYAAAAAAAAkBQCJgAAAAAAACSFgAkAAAAAAABJIWACAAAAAABAUgiYAAAAAAAAkBQCJgAAAAAAACSFgAkAAAAAAABJIWACAAAAAABAUgiYAAAAAAAAkBQCJgAAAAAAACSFgAkAAAAAAABJIWACAAAAAABAUgiYAAAAAAAAkBQCJgAAAAAAACSFgAkAAAAAAABJIWACAAAAAABAUgiYAAAAAAAAkBQCJgAAAAAAACSFgAkAAAAAAABJIWACAAAAAABAUgiYAAAAAAAAkBQCJgA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAPZCAYAAABd95D3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8XGed7/HvNEkjWcVq7pbl9rgmcWKnAAkJhASWsv1SFnYDl3sXAiywXJZLy5abm90Nl14CS1/6EljasoFkSXBI4p7ERdaxLEuyrd7LaEaadv84Myczo1Hzsa3Y/rxfL72mnTnzTNGZOd/ze57Hk0wmBQAAAAAAAJwr70I3AAAAAAAAAJc2AiYAAAAAAAC4QsAEAAAAAAAAVwiYAAAAAAAA4AoBEwAAAAAAAFwhYAIAAAAAAIArBEwAAAAAAABwhYAJAAAAAAAArhAwAQAAAAAAwBUCJgAAAAAAALhCwAQAAAAAAABXCJgAAAAAAADgCgETAAAAAAAAXCFgAgAAAAAAgCv+hW4AAAB4/jHGPCbpxamLH7Es6//O8X6fk/SO1MV6y7Jaz3/rkI8xZr2k90h6maTVkiKSWiT9WNK/WJbVM4d1XCXpryTdJmm5pHhqHb+U9GnLsjouTOsBAMCljgomAAAwm48aYzYvdCMwPWPMXZKOyA73NkoqklQhaYek/yPpmDHm92ZZx7slHZL03yWtTa2jRNI2SX+TWsedF+gpAACASxwBEwAAmE2hpK8aY/jd8DxkjHmFpK/JDoTCku6VdIekOyX9o6QJSdWSHjTGXDvNOv5Q0qck+WRXPt0r6XZJr5T0gKSE7MDqx8aYbRfy+QAAgEsTXeQAAMBc3CS769SnFroheE4q9PucJI+kSUk3W5Z1MGORXxtjHpL0qKSgpH+SHT7l+qfUaUzSSyzLeirjtl8aY56S9K+SiiXdJ+k15/WJAACASx5HIgEAwEwSskMHSfq/xpi1C9kYTPES2d3ZJOlzOeGSJMmyrN2S/iN18WXGmMWZtxtj1snuVidJP84Jl9Lr+Jak9LrvNMYEzkfjAQDA5YOACQAAzCQq6WOp88WSvryAbUF+v5B0WtJPZ1jmeMb5VTm31WacPzHDOo6mTgskVc25dQAA4IpAFzkAADCbv5f0h5I2SXqJMeZ/WJblKmhKDRr+TkkvlbRSdhevM7K7cn3WsqyGae73mOzZ7SYsyyqaYf1HJW2V1GZZ1pqc25Kps++VXdnzOUkvkh2mnZT0vy3LeiRj+TJJb5X0+7IHvC6V1C/paUk/lPQty7JiymGMWSN7BjbJfv1+JukuSX+ealuppHZJv5L0ccuymqd7PtNJtfORWReU6jLOd+bcljkz3KYZ1rE+dRqV1DuHxwQAAFcQKpgAAMCMLMuakB2wJFJXfcwYs+Jc12eM+ajsGc/ulmRkz1RWnDr/NklHjDF/Z4zxuGr47FZJekL2mETFksolXSs7ZEq39TZJjZI+LukWSZWSApKWSkoPrv10qpvZTIplB0FflR2QVcsePH2tpLdrDrO8nStjzC5Jf5C6+KhlWVnhkGVZbZKeTV38g9Tyuet4paQXpi7+u2VZ8QvRVgAAcOmiggkAAMzKsqwnjDGfl/Qu2UHMFyW9er7rMcb8naS/TV08LOkLqVOvpOtkDyS+LmOZv3PT7lm8R3bl1P2Sfi47NLrGsqzWVFtvkl3hFJSUlPQdSf8mqVtSvaS3yA6ntkl63BhznWVZudVBaR9PrX+PpM/L7oq2TNI7JL1Mdtj0DWPMWsuyxtw8qVQwt0jSBklvkvQ/U+sflF01ls87JD2Uut9jxpiPSXpc9qxyL5P07tRyLZLe76Z9AADg8kTABAAA5uqDskOlNZJeZYx5g2VZ353rnY0x10r6aOrityS9Jadr2RPGmK/KHlPoVkn3GGP+bbrucueBV9J9lmV9OOO6B1Nt9cmuTgrKrtx6rWVZD2Yst0/SD4wx98juQrhM0pc0/exqS2U/57ssy0pXgskY8zPZz/f3JNVIeqWkH7h8Xn+WeqxMT0h6q2VZjfnukAoQXyB7Nrnf03MBX6YvSvpby7J6XLYPAABchugiBwAA5sSyrJDsapi0TxtjauaxivfJ/u3RL+lt+cYtSj3GW2RXDHlkV0xdSA9Mc/2r9dx4RA/khEsOy7L+QdJj6fsYY7ZMs76IpPdkhkup+yeVPXD61XNp9Czq8ly3XdK7cmeQS0tVPd2i52aTy+flssMnAACAKQiYAADAnFmW9bCkr6cuVkv67FzulwowXpG6+IRlWeMzPEaLnpv17KXn2NS5aLcs6+w0t92Zcf5Ls6znCxnnXz7NMgctyxqY5rbMwb1LZ3msufit7G5tN8juIrdHUpnsMa92G2MyZ41LV2t9U/Zg5+tlV1S9QHb1VoXswc2flV259nVjzD+chzYCAIDLDF3kAADAfP217CBlmaTXGmO+Z1nWT2e5zxpJ6eqZ12TM5Dab+nNr4pycmeG2banTMUlHZ1nPnozz26dZpnWG+2eOueT6t5llWb/LuLjPGPNd2VVSb5H9vP6f7Jns0t4hO4iSpK9YlvU/Mm6LSPqZMeZh2WM03SLpo8aYJy3LeshtWwEAwOWDCiYAADAvlmUNyQ4l0h4wxlTMcrfqc3w4vzHmfFT15DMyw21VqdO+VDe2mXRnnK+cZpmZBu7OXP95nzkv1S3vbkntqatea4wpzlgk/V4OSnrvNOsIyw6o0l38phssHAAAXKEImAAAwLxZlvXvkn6YurhM9ixpM8mszPmapB3z+Ju2O90M5vIbZ6bgaD5Bjy/jfGLapRaQZVkTsmfEk6QCpcaXMsaU6blxl3470wx2lmU1SzqSunjDBWoqAAC4RNFFDgAAnKt3SnqJ7Gqftxhjvj/DspnjD8Uty3rmHB8zHQrNFgCVn+P609LtrTbGeGapYlqS534XRWrQ7nWSllqW9YtZFu/POF+QOl2Ucd3QHB4yPYOc29cXAABcZqhgAgAA5yQ1XX1ml6p/kVQyzeKn9Fwl0o2zrdsY8wFjzF8aY27PuSk981xBanDqfPcNSprP7Hb5HE6dLpK0dZZlM59Po8vHna9vSdove5yk2Z7zuozz6cHN+/Vc1dU6zW5F6rRnxqUAAMAVh4AJAACcM8uyviXpP1MX10j6s2mWi0p6NHVxuzHmRdOt0xjzEkn/JOmLkj6Uc3Nmlc2aaVZxu6TATO2eg19nnP/LWZZ9W8b5h10+7nw9njr1yB4jKS9jzFJJr0xdbEzPnpfqOrc/df0LjTFrZ1jH1ZK25DwuAACAJAImAADg3l9KGk2dnynY+UTG+W8YY1blLmCMqZVdCZX2mZxFDmecf1ee+y+R9LEZWzs3P5N0MnX+bmPMH+ZbyBjzUUkvTl38Lxdd/87VNyWFUuc/ZIyZMotdapD0f9Nz1WX/lLPI51OnXknfMsZM6f5mjKmW9O2Mqz7rptEAAODywxhMAADAFcuyzhhjPiDpC7Ms9xtjzAOS3i67O9azxphPSfptapGdkv5a0vLU5X+3LOsnOav5nqR7ZP+GeXcqPPm+pIjsrmrvSd2/WXPr8jVdW+PGmDel2lYg6UFjzLdlD2zeI6lO0n+XdGfqLn2S/uJcH89FO7uMMf9L0gOSyiTtS72mj8meJW+X7G6Ma1J3+b6kf81Zzbcl/Ymk10h6gez35bOyK5viqevSr6skfcqyrCcv0FMCAACXKAImAABwPnxR0usk3TLLcu+SHQa9R9JiSX8/zXI/lvTG3CstyzppjHmP7Momr+xuYZldwxKyu9VVSXrfPNo/hWVZe4wxL5f0A9ljOv156i/XIUmvtSyr3c3jnSvLsr5ojCmUXblVJOl/p/5yPSDp3bkDlluWlTTGvF7SVyS9XnZ49v/y3D8pe7bAD5zH5gMAgMsEXeQAAIBrqdDirZLCsywXtyzrryXtkB1KNUoakxSV1C7pR5JeaVnWH1uWlXddlmV9XnZlzrdlD1Y9KalTdjewF1mW9Y/n5UnZj/WopPWyA5snZM8SNympVdIvJP03STdalnVyunVcDJZlfVrSNtn
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAPYCAYAAACWq0NSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHd97//3LBpptNmWZK22JFuWv5bteE3i7AlpgAYabrj9ldCFttBStoRQ2tLSBQq39weB0hJIA7dQoGw3aQOF0hRCIImTOHYcO4l3H8uWtVibta8jabb7x8wcz0ij9chW7Lyej4cfmhmdOfM9I2k85z2f7+frikajAgAAAAAAABbKvdQDAAAAAAAAwOWNgAkAAAAAAACOEDABAAAAAADAEQImAAAAAAAAOELABAAAAAAAAEcImAAAAAAAAOAIARMAAAAAAAAcIWACAAAAAACAIwRMAAAAAAAAcISACQAAAAAAAI4QMAEAAAAAAMARAiYAAAAAAAA4QsAEAAAAAAAARwiYAAAAAAAA4Ih3qQcAAABee4wxz0i6NX71ry3L+t9zvN9Dkj4Uv7rGsqzGxR8d0jHGrJP0EUlvlFQpaUzSWUk/lPTPlmWdn8M+bpX0AUk3SSqWNCTpoKRvS/q+ZVmRizN6AABwuaOCCQAAzOZvjDF1Sz0ITM8Y8/uSjigW7q2XlCVpuaTtkv6XpGPGmLfMcP8MY8w/S3pG0j2SKiRlSCpQLLD6jqTnjDGFF+8oAADA5YyACQAAzCZT0r8YY3jf8BpkjLlT0jcUC5UCkv5O0pskvVnSZySNSyqS9JgxZsc0u/mKpPfGLw8rFkrdKuk2SZ+N7/cGSS8YY5ZflAMBAACXNabIAQCAubhe0oclfXGpB4IL4qHfQ5JckiYk3WxZ1sGkTX5ujPmZpKcl+RULi940aR93SPqD+NXzkt5gWdbxpE12G2N+qFh103rFAqx7F/9oAADA5YxPIgEAwEwikkLxy//bGLN2KQeDKW6XlPiZPDQpXJIkWZb1rKTH41ffaIxZMWmTDyddft+kcCmxj5ckfTp+9f38HgAAgMkImAAAwEyCkj4fv5wt6WtLOBak91+SmiX9eIZtTiRdXp24YIxxKTYNTpIaLcv60Qz7+Fb8q0fS/zfvUQIAgCsaU+QAAMBsPiXp7ZI2SLrdGPNey7IcBU3xpuH3SvoVSasUm+LVothUri+nq6KJ3+8ZxXoDjVuWlTXD/o9K2iSpybKs6knfi8Yv/rFilT0PKbZqWlDSaUl/YVnWL5K2z5f0h5L+h6TNkvIk9Uh6RdK/S/qOZVkhTWKMqVZsFTcp9vz9p6Tfl/S78bHlSWqV9ISkL1iWdWa645lOfJy/mHVDqSrpcnvS5YL4OCRp/yyP1WmM6ZFUqNiUSQAAABsVTAAAYEaWZY0rFrAklqj/vDGmYqH7M8b8jWIrnn1QkpGUo1h1lJH0fklHjDF/G6+uuZhWS9qjWE+ibEnLJO1QLGRKjPUNkk5K+oKkWxQLZDIklUpKNNd+xRhTM8tjZSsWBP2LYgFZkWLN09dK+oBmWeXNCWPMNZLujl992rKsrqRv+5IuD81hd8H41/WLMTYAAHDlIGACAACzsixrj6R/il9dJumrC9mPMeZvFevl45F0WLFA6QbFKojul3RGsfcnn4z/u5g+oljQ8zlJN0v6DUn/v2VZjfGxXq9YhVOZpKik70p6m6Rdkt4p6efx/WyW9JwxpmyGx/qCpDdI2ifpXfF93C3pyfj3MyV9yxiT6/SgjDEuY0yeMWaHMeYfFWvOnSmpT1Obc/cqdmxSrJJspv36FXu+pFjABgAAYGOKHAAAmKuPS7pLUrWkXzPG/JZlWd+f652NMTsk/U386nckvWfS1LI9xph/Uayn0G2SPmGM+bfppsstArdigdJfJd32WHysHsWqk/yKVW7dY1nWY0nb7Zf0qDHmE4pNISyT9H8UC6DSKVXsmH/fsqxEJZiMMf+p2PG+RdJKSW+V9KjD4/rt+GMl2yPpDy3LOpl8o2VZ48aYVyVtl3SzMabQsqyeafb7q7rw3jHH4RgBAMAVhgomAAAwJ5ZljUj6o6SbHjTGrJzHLv5EsfcePZLen65vUfwx3qNYVY1L0n0LH/GcfGWa2+9SrOeUJH1lUrhksyzr04pVCEnSXcaYjdPsb0zSR5LDpfj9o0ptnL51LoOeRVWa266SdF+aFeSkC2FUtqSHjTFT3h8aY5ZLeiDppgzHowQAAFcUAiYAADBnlmU9Kemb8atFkr48l/vF+yndGb+6x7Ks0Rke46wurHr2Kwsc6ly0WpZ1bprvvTnp8v+ZZT8PJ13+1Wm2OWhZVu8030tu7p03zTbzsVvSGxWbhvcuxabl5SvW8+pZY0zxpO2/KilRJfYOST83xtxijPEbY/KNMXfH91GrWFNySZpYhHECAIArCFPkAADAfH1UsSClTNI9xpj/a1nWj2e5T7WkRPXM25JWcpvNmoUNcU5aZvje5vjXYUlHZ9nPvqTLV02zTeMM9x9Ouuz4vZllWc8nXd1vjPm+YlVS71HsuP5esZXsEtsHjDFvU2w1uxrFQr3JwV5Usd5ZlYqthDfidJwAAODKQgUTAACYF8uy+iV9KOmmr8SnUM2kaJbvT8drjFmMqp50Bmf4XmH8a3d8GttMOpMuF0yzzfA0t0sXmmxLsWmBiyo+Le+DulB9dI8xJnvSNmckXa1Y+JS8ylxU0lOS3mhZ1id1ISRMPmYAAAAqmAAAwPxZlvUfxph/V2zltTLFVkn7gxnukvye4xua49S6uGmn081gLh+izRQczSfo8SRdjky71RKKN/N+XLEeWj7F+ku9PGmbfkl/Zoz5c8VWlPNLapk0nTHRl+rsxR81AAC4nBAwAQCAhbpX0u2KVfu8xxjzyAzbJvcfCluW9eoCHzMRCs0WAC1b4P4TEuMtMsa4ZqliKklzv0si3rS7RlKpZVn/NcvmyavD+abbKF7x1JzmsQoU68MkSQv9+QEAgCsUU+QAAMCCWJZ1XtIfJ930z5p++foGXahEum62fRtj/twY8z5jzB2TvpVYec5njPFMvl/8vn5J81ndLp3D8a+5kjbNsm3y8Zx0+Ljz9R1JL0n6zzms6FeTdNlubm6M+XVjzN8bYx6a5f7/QxfeOz4575ECAIArGgETAABYMMuyviPpp/Gr1ZJ+e5rtgpKejl+9yhhz03T7NMbcLumziq1u9peTvt2fdLl6ml3cISljpnHPwc+TLr9vlm3fn3T5Ugcvz8W/uhRr4p2WMaZU0lvjV09OWj3vOkl/IulDxhgzzf298W2kWMPy59NtBwAAXr8ImAAAgFPvkzQUvzxTsPMPSZe/ZYxZPXkDY0yxYpVQCV+atMnhpMv3pbl/iaTPzzjauflPSafjlz9ojHl7uo2MMX8j6db41V86mPq3UP+qCyu6/aUxZsoqdvEm6f+mC9Vln520yQ+SLk/+nowxbsV6ZiUquf6XZVlhJ4MGAABXHnowAQAARyzLaok3hn54lu2eMsZ8RdIHFJuudcgY80VJu+ObXC3po5LK49f/w7KsH03azf+V9AnF3sPcHw9PHpE0plglzkfi9z+j1Clh8z2msDHmXfGx+SQ9Zoz5rqR/l3ReUpViTc3fHL9Lt6TfW+jjORhnhzHmTyV9RVK+pP3x5/QZxVbJu0axaYzV8bs8Iunbk/axzxjzE0l3SbrbGPOkYtVjrYo9hx+SdH188x9L+uZFPCQAAHCZImACAACL4auS3inpllm2u0+xMOgjii15/6lptvuhpN+ZfKNlWaeNMR9RrLLJrdi0sOSpYRHFptUV6sKUrgWJBy+/KulRxXo6/W7832QvS7rHsqxWJ4+3UJZlfdUYk6lY5VaWpL+I/5vsK5Lun6Zh+e8qNtXxOsWmGE7ufSXFwql3z9LwHAAAvE4xRQ4AADgWDx3+UFJglu3ClmV9VNJ2xUKpk5KGJQUVq5j5gaS3Wpb165Zlpd2XZVn/pFhlzncVa1Y9IaldsWlgN1mW9ZlFOajYYz0taZ1igc0exVaJm1CsD9F/SXq
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG+CAYAAADfmb48AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4W/d95/sPFoIgwX1fxEUS5SPJkiXZlm3Zsq04SbO3t02X3Pa2TTJd0iapm/S2zfQmadpnMu00yW2Tpksmt53MbSepu6Sb0yzebTmRLFmWRGo5FCXu+76AAAECmD8AHAMkAIIEJUrW+/U8fAgS5xwcgOAhz+d8f9+fLRKJCAAAAAAAANgo+1bvAAAAAAAAAG5tBEwAAAAAAADICQETAAAAAAAAckLABAAAAAAAgJwQMAEAAAAAACAnBEwAAAAAAADICQETAAAAAAAAckLABAAAAAAAgJwQMAEAAAAAACAnBEwAAAAAAADICQETAAAAAAAAckLABAAAAAAAgJwQMAEAAAAAACAnBEwAAAAAAADIiXOrdwAAANx8DMN4XtKjsS8/aZrmZ7Nc78uSPhz7crtpmj2bv3fIlmEYhyS9ouj/fB8wTfNrayxfJenjkn5Y0g5Jy5K6JX1T0p+apjl1XXcYAADcsqhgAgAAa/mUYRh7tnonsD6GYeRJ+h/K8oKiYRj3Srog6T9LulNSgaRiSXdJ+oykc4Zh3H1ddhYAANzyCJgAAMBa8iX9lWEY/N9wa/kdSQeyWdAwjHpJ/yGpRlJA0n9TtILtMUl/JiksaZukfzcMo/a67C0AALilMUQOAABk44ikX5P0J1u9I1ibYRh3Sfp/1rHKH0qqjt3+MdM0v5Vw33OGYbwk6RuSGiT9rqRf3ZQdBQAAbxhciQQAAJmEFe3DI0mfNQxjx1buDNZmGIZT0aFxeZImsli+TtJPx7789xXhkiTJNM0nJP1z7Mv/ZBhG+SbtLgAAeIMgYAIAAJkEJX0udrtQ0le3cF+Qnd+SdLekKUV7J63lPXq9qv3/z7DcX8U+uyT9yEZ3DgAAvDExRA4AAKzl9yT9qKTdkh4zDOMXTdPMKWiKNQ3/iKQ3K9rbxyapX9Jzis5WdjHNes8r2htoyTRNd4btdyjaqLrXNM3WFfdFYjc/Julbkr4s6aiiYVqXpE+Ypvl0wvIlkn5B0VBln6KNryclvSbpHyT9jWmay1rBMIxWRWdgk6Kv379Jer+kn4vtW7GkQUnflfQF0zSvpns+2TIMY6+kT8e+/LgkbxarPZRw+/kMy70kKaLoz+oxSV9b/x4CAIA3KiqYAABARqZpLikasIRj3/qcYRiNG92eYRifktSuaB8fQ5JH0eooQ9KHJLUbhvEZwzBsOe342pokvSzph2KPX6po5U9Xwr6+SdJlSV+Q9IikCkWHntVJeoekv5b0mmEYO9d4rEJJTytaBfSopCpFm6fvkPQrki4YhvHOXJ6MYRgORYfG5Uv6rmma/zPLVeMzBM6Yppl2SJ1pmvOSxlesAwAAIImACQAAZME0zZcVnU1MigYxf7mR7RiG8RlJvy/JIem8ooHSg4pWED0u6aqi/5/8buzjevp1RYOeP5L0sKSfkPRfTdPsie3rEUUrnOoVrdz5W0k/LOl+Se+T9L3YdvZJeik2E1s6X5D0JkknJP1sbBv/h6SnYvfnS/qaYRhFOTyfj0u6T9KCpF9ax3rxsLAvi2X7V6wDAAAgiSFyAAAge/9Z0X49rZLebRjGT5um+fVsVzYM425Jn4p9+TeSPrhiaNnLhmH8laQnJR2T9GnDMP4+3XC5TWBXNFBKnG3tH2P76lC0OqlA0cqtnzJN8x8TlntF0hOGYXxa0SGE9ZK+omgAlUqdos/5/aZpxivBZBjGvyn6fN+p6Cxu75L0xHqfiGEYhqLBnRQd4pdNWBRXEfs8n8Wy8SF3ZevYPgAAuA1QwQQAALJimqZXyZUxXzQMozrd8in8hqL/e0xK+lCqvkWxx/igXu/189GN73FW/iLN99+jaM8pSfqLFeGSxTTN39frfYveE+uBlIpf0q8nhkux9SNKbpx+IJudTmQYhl3RMMwt6bikP1/nJvIT9nEtvhXrAAAASCJgAgAA62Ca5lOK9vmRosPL/jSb9WL9lN4R+/Jl0zQXMzxGt6RLsS/fvMFdzcagaZoDae57W8Ltr6yxncRA5+1plnnVNM2pNPclNvcuXuOxUvk1RYcZ+iX9Qiy0Wo9Q7PN61lvvYwAAgDc4hsgBAID1+riiQUq9pJ8yDOMbpmn+6xrrtEoqj93+4YSZ3NayfWO7mJX+DPfti31ekNSxxnZOJNzen2aZngzrLyTcXtf/ZrHm4p+Nffl7pmma61k/4fHLFa2AWktB7HM21U4AAOA2QgUTAABYF9M0ZyR9OOFbf2EYxlo9eao2+HBOwzA2UtWTjbkM91XGPk9kURE0mnC7Is0yC2m+LyVXA2U9c16sKuyvFJ2h7jVJn8923RXivZc8WSwbXyZdNRYAALhNUcEEAADWzTTNfzYM4x8UnXmtXtFZ0v5ThlUS/+f4a2U5tC4m7XC6DLK5iJYpOMo66FF0Rry4cNqlNt8vS3o0dvtLkvZFe30naU243WwYxsHY7S7TNOOhV6+kZklNWTxmfJmhde8tAAB4QyNgAgAAG/URSY8pWu3zQcMw/i7DsokVLyHTNM9u8DHjodBaAVDpBrcfF9/fKsMwbGtUMdWmWO9GeCDh9v9Iu9Trfi/2IUlv0uvNyS9IeljR51pqmuZsqpVjlWTxpu7Xa2Y/AABwi2KIHAAA2BDTNMckfSzhW/9d6YdZXdPrlUgPpFnGYhjGbxuG8cuGYbxlxV3xmedchmE4Vq4XW7dArwchG3U+9rlI0p1rLJv4fC7n+LhbIbGH1NEMyz2s14O9l67f7gAAgFsRFUwAAGDDTNP8G8Mw/k9FZ4hrlfQzaZYLGobxnKR3SdpvGMZR0zSPp1rWMIzHJP1h7MvnJD2dcPdMwu1WJc/AFvcWSXnreBqpfE/Sh2K3f1nSRzMs+6GE20/l+LhZM03z/ZLen2kZwzB+XNI/xL78gGmaX0ux2L9KCir6mn1A0rfSbC4+BDKYYRkAAHCbooIJAADk6pf1eqPoTMHO/5tw+2uGYazq+WMYRo2ilVBxX1qxyPmE26tCH8MwaiV9LuPeZuffJHXFbv+qYRg/mmohwzA+pdf7ID2Tw9C/LRNr2v6/Yl/+mGEYP7lyGcMwfkpS/DX4X7HqNQAAAAsVTAAAICemafYbhvHbkv58jeWeNQzjLyT9iqSdks4ZhvEnkl6ILXKvpI9Laoh9/c+maf7Lis18Q9KnFf0f5vFYX6C/k+RXdKjar8fWvxp7jI0+p5BhGD8b2zeXpH80DONvFa0GGpPUomhFz9tiq0xI+vmNPt5N4Lcl/bCis+B9wzCMo5K+GbvvxxSdNdCm6HP/nS3ZQwAAcFOjggkAAGyGv5T0YhbLfVTSHyvarLtc0abTz8c+Pq/Xw6VvKsVwO9M0uxQNkeKztX1Q0eFsL0r6I0l1igYgK4OpdTNN84Skt0saV/R/pp+T9O+STkr6e70eLp2RdMQ0zcFcH3OrxCqS3qbXn+tHFR2e+Fzstl3RcOmdpmkOb9V+AgCAmxcBEwAAyFlslrVfkORbY7mQaZofl3RI0VDqsqQFRfv6DEr6J0nvMk3zvaZpptyWaZp/JumwpL+VNCApIGlY0dDnqGmaf7ApTyr6WM9JapP0CUkvKzpLXEBSj6QnJf2kpAdiwdctzTTN05J2S/qvkjokeRWtDLuoaE+sfaZpvrp1ewgAAG5mtkgk06y7AAAAAAAAQGZUMAEAAAAAACAnBEwAAAAAAADICQETAAAAAAAAckLABAAAAAAAgJwQMAEAAAAAACAnBEwAAAAAAADICQETAAAAAAAAckLABAAAAAAAgJwQMAEAAAAAACAnBEwAAAAAAADICQETAAAAAAAAckLABAAAAAAAgJwQMAEAAAAAACAnBEwAAAAAAADICQETAAAAAAAAckLABAAAAAAAgJwQMAEAAAAAACA
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHW9//HXTPakKW26pkuSrqctBaSAqLhw0esV8aooKHrdl/sDBUSu1xXBBe9VEUQRQb0IqMiqiCLIInspW1sobcNp2pKkTdKkSdMkzTaTZH5/zGSapHunUCiv5+ORx2znnPnOJDlz5n0+3+83kkgkkCRJkiRJkvZX9GA3QJIkSZIkSa9uBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKSPbBboAkSXrlCYLgIeBtqZsXhGH4g71c7xfAF1M3Z4RhWH3gW6e9FQTB0cBTJI/5Ph2G4XX7uP5sYAUQDcMw/8C3UJIkHSqsYJIkSXvy7SAI5h/sRmjfBEGQA1zLfp5QDIIgH7geKDiQ7ZIkSYcmAyZJkrQnecA1QRB43PDq8k3gqP1ZMRVO3Qq86YC2SJIkHbI8UJQkSXvjjcC5B7sR2jtBEBwJfGs/1y0FHgTec0AbJUmSDmkGTJIkaXcGgL7U9R8EQTDzYDZGexYEQTbJrnE5QPM+rnsGsAw4IXVX/4FtnSRJOlQZMEmSpN2JA5ekrhcCvzmIbdHe+SqwCNgCfGdvVwqCYAlwIzCZZLB4EfDYS9A+SZJ0CHIWOUmStCffBU4F5gEnBUHw+TAMMwqaUoOGnw28HZgGRIANJLtmXRGG4epdrPcQydntenc3q1kQBCuBw4GaMAwrRjyWSF39MvB34BfAm0mGaWuBr4dheP+Q5UcDnwPeBywEioEWYDnJcYp+H4ZhHyMEQVABvJi6eSrwV+BTwCdSbSsG6oB7gEvDMFy3q9ezt4IgWABcmLp5PtC5D6u/IXVZCXw+DMPFQRCclGmbJEnSa4MVTJIkabfCMOwlGbAMpO66JAiCqfu7vSAIvg08D3wBCIAiktVRAXAm8HwQBN8JgiCSUcP3bDqwGHhn6vkPI1n5s3ZIW/8FeAG4FHgrUEKy69lk4GTgt8DyIAhm7eG5CoH7gWtIBmTjSQ6ePhM4C1gVBMG7M3kxQRBkkewalwfcE4bh9fu4ifUk3/8jwzBcnElbJEnSa48BkyRJ2qNU4HBl6uZhwNX7s50gCL4DfA/IAlaQDDTeRLKC6EvAOpLHJxelfl5K55EMen4MvAU4HfifMAyrU219I8kKp1IgAfwBeC9wPHAGcG9qOwuBR1ODY+/KpcC/AE8AH09t4/3AfanH84DrgiAYlcHrOR94PbAN+M/9WH9OGIa/2lk1liRJ0p7YRU6SJO2tbwD/DlQA7wmC4KNhGP5xb1cOgmAR8O3Uzd8DnxkRZiwOguAa4E7gRODCIAhu2VV3uQMgSjJQGjrb2m2ptmaRrE4qIFm59eEwDG8bstxTwM1BEFxIsgthKfArkgHUzkwm+Zo/FYbhYCUYQRD8leTrfTcwATgFuHlfX0gQBAHJ4A6SXfxq93UbQ9slSZK0r6xgkiRJeyUMw06GV8b8LAiCCfuwif8ieezRApy5s0qZ1HN8hmTFUAQ4Z/9bvFeu2sX9/05yzCmAq0aES2lhGH4PeGhwndQYSDvTA5w3MsQJwzDB8IHTj9qbRg8VBEGUZBiWT3JQ7l/u6zYkSZIyZcAkSZL2WhiG95Ec5weS3cuu2Jv1UuMpnZy6uTgMw67dPMeLJAeahuQg4C+VujAMN+7isX8bcv1Xe9jO0EDnXbtYZmkYhlt28djQwb2L9/BcO3MuyW6GPcDnUqGVJEnSy8oucpIkaV+dTzJIKQU+HATBjWEY3rGHdSqAsanr7x0yk9uezNi/Ju6VDbt5bGHqchuwcg/beWLI9SN2sUz1btbfNuT6Ph2bpQYX/0Hq5nfDMAz3ZX1JkqQDxQomSZK0T8Iw3Ap8cchdVwVBMGYPq43fz6fLDoJgf6p69kb7bh4bl7ps3ouKoMYh10t2scy2XdwPye6Ag/Z65rxUVdg1JGeoWw78ZG/XlSRJOtCsYJIkSfssDMPbgyC4leTMa6UkZ0n77G5WGXrM8Vv2smtdyi670+3G3pxE211wtNdBD8kZ8Qa9nANl/z/gbanrPwcWJsf6HqZiyPWyIAhel7q+NgzD3YVekiRJ+8SASZIk7a+zgZNIVvt8JgiCm3az7NDxh/rDMHx2P59zMBTaUwB02H5uf9Bge8cHQRDZQxXTpJ2s93J4w5Dr1+5yqe2+m/oB+Be2D04uSZKUMbvISZKk/RKGYRPw5SF3/Roo2sXi69leifSGXSyTFgTB14Ig+H9BELxjxEODM8/lBkGQNXK91LoFwL7MbrczK1KXo4DD97Ds0NfzQobPK0mS9KpkBZMkSdpvYRj+PgiCj5CcIa4C+I9dLBcPguBB4BTgiCAI3hyG4WM7WzYIgpOAH6ZuPgjcP+ThrUOuVzB8BrZB7wBy9uFl7My9wJmp6/8POGc3y5455Pp9GT7vXgvD8FPAp3a3TBAEpwG3pm5+OgzD617aVkmSpNcqK5gkSVKm/h/Qkbq+u2DnsiHXrwuCYPrIBYIgmEiyEmrQz0cssmLI9R1CnyAIJgGX7La1e+evwNrU9S8EQXDqzhYKguDbbB8H6Z8ZdP2TJEl6VbOCSZIkZSQMww1BEHwN+OUelnsgCIKrgLOAWcBzQRBcDjycWuRY4HxgSur27WEY/mXEZm4ELiR5DPOl1AxzNwE9JLuqnZdaf13qOfb3NfUHQfDxVNtygduCIPgDyWqgJqCc5KDm/5ZapRn45P4+nyRJ0qudAZMkSToQrgbOAN66h+XOIRkGnQeMZfug0yP9GfjYyDvDMFwbBMF5JCubosBnUj+DBoBvkhx4/L/2of07CMPwiSAI3gXcTHJMp0+kfkZaBnw4DMO6TJ5PkiTp1cwucpIkKWOpWdY+B3TvYbn+MAzPB44mGUq9AGwD4kAd8CfglDAMPxiG4U63FYbhlcBxwB+AjUAMaABuAd4chuH/HpAXlXyuB4HZwNeBxSRniYsB1cCdwIeAN4RhuHZX25AkSXotiCQSu5t1V5IkSZIkSdo9K5gkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZI
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHW9//H37NmapFmbplnaNJyudIGC7CJ4UUC94sXlerl4FRURBLlerwsqIrghqMDFhevCdSuKv6teFNlkE7qEtkDX0zZJkzT7vk4yk5nz+2NmTmeSydJOIQVez8ejj85y5sz3TEPmy/v7/X6+DsuyBAAAAAAAABwr51w3AAAAAAAAAK9tBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABIiXuuGwAAAE48hmE8Jem86N2bTNO8bZavu0fSJ6N3F5umeej4tw6zZRjGOklbFenz/Ztpmj+f4fj1kq6WdK6kRZJcktolPS/px6ZpPvVKthcAALx2MYMJAADM5EuGYSyf60bg6BiG4ZH0M81iQNEwDIdhGN+W9IKkj0oyJGVKSpNUIekDkp40DONnhmF4X7lWAwCA1yoCJgAAMBOfpJ8YhkG/4bXlC5LWzPLYL0v6D0kOSS3R2+dIOlPSdZLqosd9SNK9x7WVAADgdYElcgAAYDbOkPQpSd+b64ZgZoZhnCzpi7M8tkKRMEqS9ks62zTNzrhDNhmG8T+SnpB0qqSPGIbxU9M0nz+ebQYAAK9tjEQCAIDphCWNR2/fZhjGkrlsDGZmGIZbkaVxHklds3jJByXFlr3dMCFckiSZpjkg6eNxD/1rqu0EAACvLwRMAABgOkFJt0dvZ0i6bw7bgtn5rKT1knok3TyL48+J/u2X9NhUB5mmuT16Tmn2S+8AAMAbBEvkAADATL4q6d2Slkl6i2EYHzVNM6WgKVo0/FpJFyiyW5lDUpOkJyXdbZrmnile95Qiu9uNmaaZNs35d0laKanBNM3KCc9Z0ZuflvRnSfdIOluRMO2gpM+Zpvl43PHZkq6S9C5JqyTNk9QtaYek30n6hWma45rAMIxKSfXRu++W9CdFahj9a7Rt8yQ1S3pE0h2madZOdT2zZRjGCkXqKUnSjZKGZ/GyByTtluRJdh0TOKJ/T/nZAwCANyZmMAEAgGmZpjmmSMASjj50u2EYpcd6PsMwviRpp6RrdGS3sozo7asl7TQM42bDMBxTn+W4KJP0nKR/iL5/jiIzfw7GtfV8Sfsk3SHpXEl5iiw9WyDp7ZJ+KmmHYRhVM7xXhqTHJf1EkYCsQJHi6UskfULSbsMwLk7lYgzDcCmyNM4n6RHTNO+fzetM0/y5aZqfMU3z+hnOf7Kk+dG7Dam0FQAAvP4QMAEAgBmZpvmcpP+K3s2R9MNjOY9hGDdLukWSS9LLigRKZyoyg+h6SbWK9E++Ev3zSrpBkaDn24osE7tc0tdN0zwUbesZisxwKpFkSfqlpHdKOl3S+yU9Gj3PKknPGoZRMs173SHpfEmbJV0RPcc/6siSNJ+knxuGkZXC9dwo6TRJQ5I+lsJ5pvL5uNuPvALnBwAAr2EskQMAALP1eUnvkFQp6VLDMP7ZNM1fz/bFhmGsl/Sl6N1fSPrwhCVZzxmG8RNJD0l6s6QvG4bx26mWyx0HTkUCpfjd1h6MttWlyOykdEVmbr3PNM0H447bKukBwzC+rMgSwhJJP1IkgEpmgSLX/CHTNGMzwWQYxp8Uud6LJRVKukSRJWtHxTAMQ5HgToos8Ws82nPMcP7LFQnVJKlDkWsBAACwMYMJAADMimmaw0qcGfN9wzAKj+IU/65I36Nb0tXJ6v1E3+PDiswYcki67thbPCs/mOLxdyhSc0qSfjAhXLKZpnmLpKdir4nWQEpmVJEd2sLxD5qmaSmxcPpRF882DMOpSBiWJunvku492nPMcP4zJf087qEbTdMcOp7vAQAAXvsImAAAwKyZpvmYInV+pMjysrtn87poPaW3R+8+Z5rmyDTvUS9pb/TuBcfY1NloNk3z8BTPXRR3+0cznCc+0HnbFMdsM02zZ4rn4ot7z5vhvZL5lCLLDEclXRUNrY4LwzDOkvQXRWpISdIPTdP81fE6PwAAeP1giRwAADhaNyoSpJRIep9hGL8xTfOPM7ymUkcKRL8zbie3mSw+tibOStM0z62K/j0kadcM59kcd3v1FMccmub18bOBjqpvFi0uflv07ldN0zSP5vUznPtiRXbJi4VLv1dk5z8AAIBJmMEEAACOimmafZI+GffQDwzDyJ3hZQXH+HZuwzCOZVbPbAxM81x+9O+uWcwIao+7nTfFMdMtKYs//6x3zovOCvuJIgHQDknfme1rZ3HuqyX9SUfCpQckvd80zdDxeg8AAPD6wgwmAABw1EzT/F/DMH6nyM5rJYrskvaRaV4S3+f4qWa5tC5qyuV005jNINp0wdGsgx5FdsSLCU951PH3cUnnRW/fJWlVpNZ3gsq42+WGYayN3j6YrI5SNLT6tqTPxD38Y0mfmFg/CgAAIB4BEwAAOFbXSnqLIrN9PmwYxsZpjo2vPxQyTfPFY3zPWCg0UwCUc4znj4m1t8AwDMcMs5iKk7zu1fCmuNs/m/KoI74a/SNJ5+tIcXJJ9s5590v6YNzDN5um+VUBAADMgCVyAADgmJim2SHp03EP/VhS5hSH1+nITKQ3TXGMzTCM/zQM4+OGYVw44anYznPeaCCS7LXpko5md7tkXo7+nSVp5QzHxl/PvhTfd05EZy79QkfCpXFJHyZcAgAAs8UMJgAAcMxM0/yFYRgfUGSHuEolzn6JPy5oGMaTki6RtNowjLNN0/x7smMNw3iLpG9G7z4p6fG4p/viblcqcQe2mAsleY7iMpJ5VNLV0dsfl3TdNMdeHXf7sRTfd9ZM0/yQpA9Nd4xhGP+kSKFuSfo30zR/PsWhX5X0gejtUUmXm6b5UOqtBAAAbxTMYAIAAKn6uKTB6O3pgp07427/3DCMsokHGIZRpMhMqJi7JhzyctztSaGPYRjFkm6ftrWz8ydJB6O3rzEM493JDjIM40s6UgfpiRSW/s0ZwzDeJOkL0buWIsW8CZcAAMBRYQYTAABIiWmaTYZh/Keke2c47m+GYfxA0ickVUl6yTCM70l6OnrIqZJulLQwev9/TdP8w4TT/EbSlxXpw1wf3WFuoyKzbt4k6Ybo62uj73Gs1xQyDOOKaNu8kh40DOOXiswG6pBUoUhR84uiL+mSdOWxvt8cu1VHCpX/UVJDXDHwqQRM09zzyjYLAAC8lhAwAQCA4+GHkt4v6dwZjrtOkTDoBknzdaTo9ET/T9K/THzQNM2DhmHcoMjMJqekD0f/xIQVmY2TL+nfj6L9k5imudkwjLdJekCRmk7/Gv0z0XZJ7zNNszmV95sLhmEskXRB3EP/GP0zkwYl7lAHAADe4FgiBwAAUhbdZe0qSf4ZjguZpnmjpHWKhFL7JA1JCkpqlvR7SZeYpvke0zSTnss0zf+StEHSLyUdlhSQ1Crpt5LONk3zG8floiLv9aSkpZI+J+k5RXaJC0g6JOkhSe+V9CbTNA9OdY4T3Pq5bgAAAHh9cFjWdLvuAgAAAAAAANNjBhMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEg
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcXFWd//93VXVXd3Wn13R3ku6ku7OebAYChrCjKMKIjoPLgDODIqMjw2IQ/Q7OdxSZyKjIb5TN7Ys4boBBAUVANgFhgISQhGzduemk1/S+r7VX/f6oJVW9JxXSkLyej0c/upZbt05Vdd+6933P+RxbOBwWAAAAAAAAcLTsM90AAAAAAAAAvLsRMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlBEwAAAAAAABICQETAAAAAAAAUkLABAAAAAAAgJQQMAEAAAAAACAlaTPdAAAA8M5jjHlJ0gXRq1+3LOu/pvm4eyVdF7260LKs+mPfOkyXMWatpDcU2ef7nGVZv5hi+fdJulbS2ZKKJfVKqpL0kKRfWpblezvbCwAA3r3owQQAAKbyDWPMipluBI6MMSZd0v9oGicUjTF2Y8wPJb0o6VOSyiQ5Jc2R9H5J/0/SVmPM0revxQAA4N2MgAkAAEwlQ9L9xhj2G95d/q+kU6a57H8p0nNJkg5Jul7S+ZI+rkjvJUlaI+kJY0zusWwkAAA4MTBEDgAATMdZkr4k6c6ZbgimZoxZI+k/prnsYkn/J3q1VtJplmX1JyzymDFmr6TbJC1TJHz69jFsLgAAOAFwJhIAAEwmJCkQvfxfxphFM9kYTM0Yk6bI0Lh0SV3TeMjnJDmil28cFS7FfEdSX/Ty36fcSAAAcMIhYAIAAJPxS7ojejlL0n0z2BZMz79JOk1Sj6Rbp7F8myK1l5okPTfeApZlhSTtj14tT72JAADgRMMQOQAAMJX/lHSZpOWSLjTGfMGyrJSCpmjR8OslfUDSfEk2RQKOFyXdY1lW1QSPe0mR2e28lmVlTrL+PZJWSWqwLKty1H3h6MUvS3pS0r2SzlUkTDsg6WuWZT2fsHyupM9L+pik1ZJyJHVL2iHpd5J+bVlWQKMYYyol1UWvXibpcUlXSfpMtG05kpolPSPpvy3LOjjR65kuY8xKSbdEr94kaXiqx1iWda8i78Fk67XpcLDUmkobAQDAiYkeTAAAYFKWZXkVCVhC0ZvuMMaUHe36jDHfkLRbkaLSRlK2Ir2jjKRrJO02xtwaDTXeTgskvSrpQ9Hnz1Ok58+BhLa+X9I+Sf+tSNHrQkWGns2V9DeSfi5pR7SO0WSyJD0v6X5FArIiRYqnL5L0r5L2GmM+nMqLMcY4FBkalyHpGcuyfpnK+ka5QZHXLEmbjuF6AQDACYKACQAATMmyrFcl/TB6NU/ST45mPcaYWyVtVKTmzy5FAqWzFelBtEHSQUX2T74Z/Xk73ahI0PM9SedJ+pSkb1uWVR9t61mK9HCaJyks6TeS/lbSeklXSHo2up7Vkl4xxsyb5Ln+W9L7JW2WdGV0HX+nw0PSMiT9whgzK4XXc5OkMyQNSfqXFNYjY4zNGFNsjLnQGPOIpLuid22T9P1U1g0AAE5MDJEDAADT9e+SPiqpUtJHjDH/YFnWg9N9sDHmNEnfiF79taSrRw0te9UYc7+kJyS9T9ItxpiHJxoudwzYFQmUEmdb+320rQ5Feie5FOm5dbllWb9PWO4NSZuMMbcoMoRwnqSfKhJAjWeuIq/5qmg9I0Wf53FFXu+HJRVLulRH0UPIGGMUCe6kyBC/xiNdxyj3SfrnUbfdL+mrlmUNpbhuAABwAqIHEwAAmBbLsoaV3DPmLmNM8RGs4iuK7Ht0S7pmvLpF0ee4WpEeQzZFhma9nX48we0fVaTmlCT9eFS4FGdZ1kZJL8UeE62BNB6PIjO0hRJvtCwrrOTC6adMp9GJjDF2RcKwTEn/K+lHR7qOcVSMc9sHJX0h+nwAAABJ2EEAAADTZlnWc4rU+ZEiw8vumc7jovWU/iZ69VXLskYmeY46SdXRqx84yqZOR7NlWYcmuO/ihMs/nWI9iYHOJRMss82yrJ4J7kss7p0zxXON50uKDDP0SPp8NLRK1Y8UGTZ4jiJD75oUCZ2+J+kBQiYAADAaQ+QAAMCRukmRIGWepMuNMQ9ZlvXHKR5TKakgevlvE2Zym8rCo2vitDRNct/q6O8hSXumWM/mhMvvmWCZ+kkenzjk7Ij2zaLFxf8revU/LcuyjuTxE7Es67GEq68ZY36pSJHytYrUn3pOkV5TAAAAkujBBAAAjpBlWX2Srku46cfGmPwpHlZ0lE+XZow5ml490zEwyX2zo7+7ptEjqD3hcuEEy0xWtyhx/dOeOS/aK+x+RWao2yHp/5vuY49UtPfVZxJuuvrtei4AAPDuRA8mAABwxCzLeswY8ztFZl6bp8gsaaOLQidK3Of4uaY5tC5qwuF0k5jOSbTJgqNpBz2KzIgXE5pwqWPvi5IuiF6+W9LqSK3vJJUJl8uNMadGLx840mLdlmXtMcbsl7RM0pojby4AADiRETABAICjdb2kCxXp7XO1Mea3kyybWH8oaFnWW0f5nLFQaKoAKO8o1x8Ta2+RMcY2RS+mOeM87ng4M+Hy/0y41GH/Gf2RpPcrWpzcGFMqabEin8trU6yjO/rbOf1mAgCAkwFD5AAAwFGxLKtD0pcTbvp/krInWLxWh3sinTnBMnHGmJuNMV80xnxw1F2xmeecxhjH6MdFH+uSdCSz241nV/T3LEmrplg28fXsS/F5j6voMLt9kl5W5PObatlF0asTFUcHAAAnKQImAABw1CzL+rWkP0evVkr6xwmW80t6MXr1PcaYcydapzHmQknflfQTSf931N19CZcrJ1jFByWlT9buaXg24fIXp1j2moTLz6X4vNNmWdZVlmXZJvtRZAhjzOcS7nspuo6wpFej968yxqyf5Ckv1eHeWsftdQIAgHcHAiYAAJCqL0oajF6eLNj5fsLlXxhjFoxewBhTouSeNHePWmRXwuUbxnn8HEl3TNra6Xlc0oHo5WuNMZeNt5Ax5hs6XAfpLykM/ZtJP0q4/BNjzJjhhSZS3Oln0at+JX+WAAAA1GACAACpsSyryRhzs5KDivGWe8EY82NJ/6pIzZ+dxpg7Jf01ush7Jd0kqTR6/THLsv4wajUPSbpFkX2YDdEZ5n4ryaPIULUbo48/GH2Oo31NQWPMldG2OSX93hjzG0m/k9QhqUKRouYXRx/SJemzR/t8M8myrD8ZYzZJulzSqZKqjDHfU2RmOoekixSptxWbzW+DZVk1M9JYAADwjkXABAAAjoWfSLpC0vlTLHeDImHQjZIKdLjo9GiPSvqn0TdalnXAGHOjIj2b7JKujv7EhBQZVjdb0leOoP1jWJa12RhziaRNitR0+kz0Z7Ttki63LKs5leebYZ9VpGfSPykS0N05zjIeSddblnX/8WwYAAB4d2CIHAAASFm0ls/nJbmnWC5oWdZNktYqEkrtkzSkSLjRLOkRSZdalvUJy7LGXZdlWT+UtE7SbxQpNu2T1CrpYUnnWpb1nWPyoiLP9aKkJZK+pkitop7o89VLekLS30s607KsAxOt493AsiyvZVlXSvqAIoHaIUU+kwFJbylSE2sx4RIAAJiILRyebNZdAAAAAAAAYHL0YAIAAAAAAEBKCJgAAAAAAACQEgImAAAAAAAApISACQAAAAAAACkhYAIAAAAAAEBKCJgAAAAAAACQEgImAAAAAAAApISACQAAAAAAACkhYAIAAAAAAEBKCJgAAAAAAACQEgImAAAAAAAApISACQAAAAAAACkhYAIAAAAAAEBKCJgAAAAAAACQEgImAAAAAAAApISACQAAAAAAACkhYAIAAAAAAEBKCJgAAAAAAACQEgImAAAAAAAApISACQAAAAAAACkhYAIAAAAAAEBKCJgAAAAAAACQEgI
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XHW9//H3zGQma5M0TdImTTppS3q62UKLgIqyeBEUlwv3gl6v3qtXVBa5LNeL9yqg9lcBwY3FFbjirV5AQBFQKaBQZClL6d70NM3eNNskzT77zO+POTOdyd5MIdC+no9HHpnlnDPfM5OcOed9Pt/vsUWjUQEAAAAAAADTZZ/pBgAAAAAAAOCdjYAJAAAAAAAAaSFgAgAAAAAAQFoImAAAAAAAAJAWAiYAAAAAAACkhYAJAAAAAAAAaSFgAgAAAAAAQFoImAAAAAAAAJAWAiYAAAAAAACkhYAJAAAAAAAAaSFgAgAAAAAAQFoImAAAAAAAAJAWAiYAAAAAAACkhYAJAAAAAAAAacmY6QYAAIC3H8MwnpN0hnX3etM0vzPF+e6SdIV1d6Fpmo1Hv3WYKsMwTpL0qmL7fJ83TfO+aSzjSkl3WHf5TAEAwJioYAIAAJO5wTCMZTPdCBwZwzCckn6pNE4oGoaxUNLNR61RAADgmEXABAAAJpMp6V7DMNhveGf5uqTV053ZMAybpHsl5R61FgEAgGMWO4oAAGAq3iPp32e6EZgawzBWSfpGmov5sqSzjkJzAADAcYCACQAATCQiKWTd/o5hGItmsjGYnGEYGYp1jXNK8kxzGQsk3WrdndYyAADA8YWACQAATCQo6Tbrdo6ku2ewLZia6yStkdQj6VvTXMbdkmZJekHSb49OswAAwLGMq8gBAIDJfFvSBZKWSjrbMIwvmqaZVtBkDRr+FUkflFQhySapRdKzku40TXPPOPM9p9jV7fymaWZNsPxdklZIajJNs2rEc1Hr5jWS/ijpLkmnKxam7Zf0X6ZpPpM0fb6kSyR9QtJKxYKXbklbJT0kaYNpmiGNYBhGlaQG6+4Fkh6T9DlJ/2K1bZakVkkbJX3fNM268dZnqgzDWC7pRuvutZKGprGML0j6kCSfYut9ZbrtAgAAxz4qmAAAwIRM0/QrFjRErIduMwxj/nSXZxjGDZJ2SrpckqHYINI51u1LJe00DONb1iDTb6ZKSS8qFqbkSCpQrPJnf1Jbz5K0V9L3JX1AUpFiXc/mSfqwpP+RtNUwjMWTvFaOpGcUGzT7DEnFig2evkjSZZJ2G4bxkXRWxjAMh2Jd4zIlbTRN81fTWMZ8xdZVkr5tmqaZTpsAAMDxg4AJAABMyjTNFyX92LpbIOln01mOYRjfkrROkkPSDsUCpfcqVkF0laQ6xfZPvmn9vJmuVizouVXS+yVdJOkm0zQbrba+R7EKpzJJUUm/lvRxSadK+pSkp6zlrJT0N8MwyiZ4re8rNmD2ZkmftZbx95Ketp7PlHSfYRh5aazPtZJOkTQo6UvTXMYvFPt8t0r6XhptAQAAxxm6yAEAgKn6b0kfk1Ql6aOGYXzaNM3/m+rMhmGskXSDdXeDpH8b0bXsRcMw7pX0hKQzJd1oGMZvx+sudxTYFQuUkq+29rDVVodi1UnZilVufdI0zYeTpntV0oOGYdyoWBfCMkk/VyyAGss8xdb5c6ZpxivBZBjGY4qt70cklUg6X9KDR7oihmEYigV3UqyLX/M0lvEvVjtCGv3ZAAAATIgKJgAAMCWmaQ4ptTLmdsMwSo5gEf+h2L5Ht6RLxwowrNf4N8Uqhmx688f/+ek4j39MsTGnJOmnI8KlBNM010l6Lj6PNQbSWHySrk4Ol6z5o0odOH31VBqdzDAMu2JhWJZig3L/ZBrLmCfpR9bdW03T3HakywAAAMc3AiYAADBlpmk+rdg4P1Kse9mdU5nPGk/pw9bdF03THJ7gNRok1Vh3PzjNpk5Fq2maB8Z57tyk2z+fZDnJgc5540yzxTTNnnGeSx7ce9YkrzWWf1esm6FP0iVWaHWkfiZptmLjTa2bZFoAAIBR6CIHAACO1LWKBSllkj5pGMb9pmn+YZJ5qhQLMCTp40lXcpvMwuk1cUpaJnhupfV7UNKuSZazOen2u8aZpnGC+QeTbh/Rvpk1uPh3rLvTGpTbMIx/UuwKeRFJX7AGdQcAADgiVDABAIAjYppmr6Qrkh76qWEYhZPMVjzNl8swDGM6VT1T0T/Bc3Os354pVAR1JN0uGmeawXEel2LdAeOmfOU8qyrsXsWuUDetQbkNwyiVdId198emab50pMsAAACQqGACAADTYJrm7w3DeEixK6+VKXaVtC9MMEvyPsf/aIpd6yzjdqebwFROok0UHE056FHsinhxkXGnOvq+LOkM6/YdklbGxvpOUZV0e4FhGCdat/ebpjlozVcsqU/Sb5OeT5YcDi6Ph4mM0wQAAJIRMAEAgOn6iqSzFav2+TfDMB6YYNrk8YfCaYQT8VBosgCoYJrLj4u3t9gwDNskVUxzx5jvrXBa0u1fjjvVYd+2fiTpLMUGJ48vo0DS36awjD8m3T6SEA4AABzj6CIHAACmxTTNTknXJD30C0m540xer8OVSKeNM02CYRhfMwzjy4Zh/N2Ip+JXnnMZhuEYOZ81b7akI7m63Vh2WL/zJK2YZNrk9dmb5usCAAC8I1HBBAAAps00zQ3WINEfVqw71j+PM13QMIxnJZ0v6V2GYZxumuYLY01rGMbZkm6x7j4r6Zmkp3uTblcp9QpscX8nyXkEqzGWpyRdat3+sqQrJ5j20qTbT6f5ulNmmubnJH1uomkMw/hHSQ9Zdz9vmuZ9I5ZRNdnrGIZxlw6PubXQNM3GI2spAAA4HlDBBAAA0vVlSQPW7YmCnR8k3b7PMIzKkRNYg07/IumhO0ZMsiPp9qjQxzCMuZJum7C1U/OYpP3W7csNw7hgrIkMw7hBh8dB+gvjEgEAgOMVFUwAACAtpmm2GIbxNUk/mWS6vxqG8VNJl0laLGm7YRg/krTJmuRkSddKKrfu/940zUdHLOZ+STcqtg9zlXWFuQck+RTrqna1NX+d9RrTXaewYRiftdrmkvSwYRi/VqwaqFOSW7FBzc+1ZvFI+tfpvh4AAMA7HQETAAA4Gn4m6VOSPjDJdFcqFgZdLWm2Dg86PdLvJH1m5IOmae43DONqxSqb7JL+zfqJi0j6umIDj//HEbR/FNM0NxuGcZ6kBxUb0+lfrJ+R3pD0SdM0W9N5PQAAgHcyusgBAIC0WVdZu0SSd5LpwqZpXivpJMVCqb2SBiUFJbVKekTS+aZp/oNpmmMuyzTNH0t6t6RfSzogKSCpTdJvJZ1umubNR2WlYq/1rKQTJP2XpBcVu0pcQFKjpCckXSzpNNM094+3DAAAgOOBLRqd6Kq7AAAAAAAAwMSoYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGkhYAIAAAAAAEBaCJgAAAAAAACQFgImAAAAAAAApIWACQAAAAAAAGk
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAHACAYAAADusdKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4XFd9//HPrNp3Wau12LJ9LS9JbMdOMCEhpW2AsDTtr8CPJexNG7IA7VNogTSBkBTSBEIotA20BFpImrDlFyghQIiJUxPbsRUv8rVka5esfdeMZv39MTM3M9JoHdtykvfrefRoRnPnzpmRH93jz/mec2zhcFgAAAAAAADActlXugEAAAAAAAB4eSNgAgAAAAAAQEoImAAAAAAAAJASAiYAAAAAAACkhIAJAAAAAAAAKSFgAgAAAAAAQEoImAAAAAAAAJASAiYAAAAAAACkhIAJAAAAAAAAKSFgAgAAAAAAQEoImAAAAAAAAJASAiYAAAAAAACkhIAJAAAAAAAAKSFgAgAAAAAAQEqcK90AAABw4TEM47eSrore/axpml9c5PO+Lulj0btrTNNsPfutw2IZhrFN0vOK9Pk+aJrmd+Y59luSPrzIU/O7BQAACahgAgAAC/mcYRj1K90ILI1hGC5J/6HFDyhuO4fNAQAAr3BUMAEAgIWkSfq2YRhXmKYZWunGYNH+XtLFiznQMAynpM3Ru9+S9M8LPKU7hXYBAIBXIAImAACwGK+RdIukr650Q7AwwzAukvSZJTylXpEgUZJ+ZZrm4bPfKgAA8ErGFDkAADCfkKRA9PYXDcNYu5KNwcKi1Uj/IcklaWCRT7sk7jbhEgAAWDICJgAAMB+/pHuitzMlPbiCbcHi/K2k7ZKGJN2+yOfE1l+alNR0DtoEAABe4ZgiBwAAFnKHpOskbZT0B4ZhfNQ0zZSCpuii4TdJeoOk1ZJskjokPS3pAdM0j8/xvN8qsrvdtGma6fOc/6giawq1maZZO+OxcPTmJyT9TNLXJV2hSJjWLOnTpmn+Ku74XEkfkfR2SVsk5UgalHRI0qOSvmeaZkAzGIZRK6klevc6SY9L+oCk66Nty5HUJelJSfeapnlqrvezWIZhbJJ0W/TuJxUJjBYjVsHUwDpbAABgOahgAgAA8zJNc1qRgCUWPNxjGEblcs9nGMbnJB2RdKMkQ1KWItVRhqS/lHTEMIzbDcOwpdTwhVVJ2ivpj6Ovn6dI5U9zXFuvlnRC0r2SrpRUqMjUszJJb5L075IOGYZRt8BrZUr6laRvKxKQFSuy5tFaSX8l6ZhhGG9O5c0YhuFQZGpcmqQnTdN8aAlPjy0GftgwjLcZhvETwzDOGIbhMwyj2zCMR6OfBQAAQFIETAAAYEGmae7VSzuL5Un6l+WcxzCM2yV9XpJD0ouKBEq7FakgulXSKUX6J/8Q/TqXPq5I0PNlSa+T9OeS7jJNszXa1tcoUuFULiks6T8lvU3SZZLeJemX0fNskfQ7wzDK53mteyVdLWmfpPdFz/Enkp6KPp4m6TuGYWSn8H4+KWmXpAlJf7HYJxmGUa1IcCZJ75X0U0WqtUoVCdPKJf0fSb8xDONfo2s8AQAAJKCDAAAAFuvvJL1VUq2ktxiG8W7TNL+/2CcbhrFd0ueid78n6UMzppbtNQzj25KekPR6SbcZhvHfc02XOwvsigRK8butPRZtq0OR6qQMRSq33mma5mNxxz0v6RHDMG5TZAphuaR/VSSASqZMkff8gfgpaIZhPK7I+32zpFWSrpX0yFLfiGEYhiLBnRSZ4te+hKdvi7udK6lB0jckHVUk+Hq9pJslFSgSXIUVCQYBAAAsVDABAIBFMU1zUomVMfcbhrFqCaf4a0X6HoOS/jLZukXR1/iQIiGGTZFg41z65hw/f6sia05J0jdnhEsW0zQ/L+m3sedE10BKxivp4zPXNzJNM6zEhdMv1hIZhmFXJAxLl/SsIuHQUsTvIPdtSZeapvlvpmk+Z5rm06Zp/oMiIVRb9JgbDMN4/VLbCQAAXtkImAAAwKKZpvmUIuv8SJHpZQ8s5nnR9ZTeFL271zTNqXleo0VSY/TuG5bZ1MXoMk2zc47Hrom7/a8LnCc+0HnjHMccNE1zaI7H4hf3zlngtZK5RZFphl5JH4mGVktxjyLB1ls1d/DXpsg6XDEfX0Y7AQDAKxhT5AAAwFJ9UpEgpVzSOw3D+IFpmj9d4Dm1ikyxkqS3xe3ktpA1y2vionTM89iW6PcJRaaKzWdf3O2tcxzTOs/zJ+JuL6lvFl1c/IvRu3eYpmku5fmSFA37Xox+zXfcrwzDaFHkd/IHhmHYlhFmAQCAVygqmAAAwJKYpjki6WNxP/qmYRj5CzyteJkv5zQMYzlVPYsxNs9jRdHvA4sIUXrjbhfOcczEHD+XItMBYxa9c160KuzbiuxQd0jSPy32uSloiH7P0UuBIQAAABVMAABg6UzT/LFhGI8qsvNauSK7pH14nqfE9zn+XYucWhc153S6eSxmEG2+4GjRQY8iO+LFhOY86uy7QdJV0dtfk7QlstZ3gtq429WGYcTWW2o2TXO+0Gsu8b8L9zKeDwAAXqEImAAAwHLdJOkPFKn2+ZBhGA/Pc2z8+kNB0zQPL/M1Y6HQQgFQ3jLPHxNrb/EipoKVJnne+XB53O3/mPOol9wR/ZKkqyX9NrpA+B8osoOd1zTNHy9wjpLo96DO73sFAAAXOKbIAQCAZTFNs0/SJ+J+9G+SsuY4/LReqn65fI5jLIZhfMowjBsMw/jDGQ/FFqB2G4bhmPm86HMzFAlMUhFbjyhb0uYFjo1/PydSfN3zKrqr3WOSvi/pG9Fpd0kZhpEmaWf07oumafrOQxMBAMDLBAETAABYNtM0vyfpf6J3ayW9Z47j/JKejt7dahjGFXOd0zCMP5D0j5L+RdLfz3h4JO527Ryn+ENJrvnavQi/jLt9wwLH/mXc7adSfN1FM03zA6Zp2ub7UmQKY8wH4x77bdzP90S/l0n643le8kN6qTJsvmo1AADwKkTABAAAUnWDpPHo7fmCnfvibn/HMIyqmQcYhlGiSCVUzNdmHBK/09nNSZ5fKumeeVu7OI9Lao7evtEwjOuSHWQYxuf00jpIv05h6t9K+kbc7a8ZhjFrQXbDMC6T9OXo3TNK/B0BAACwBhMAAEiNaZodhmF8SolBRbLjfmMYxjcl/ZWkOkkNhmF8VdIz0UMulfRJSRXR+z82TfMnM07zA0m3KdKHuTW6w9zDkryKTFX7ePT5p6Kvsdz3FDQM433RtrklPWYYxn9KelRSn6QaRRY1vyb6lAFJ71/u660k0zR/YRjG9yW9W9IGSYcMw/iypP2KTHm8VpFdA92S/JI+EN1JEAAAwELABAAAzoZ/kfQuSVcucNzNioRBH1dkm/s75jjuR5LeO/OHpmk2G4bxcUUqm+yKTNv6UNwhIUWm1RVJ+usltH8W0zT3GYbxRkmPKLKm0/XRr5lekPRO0zS7Unm9FfYhRT6790pardmVY1JkUe8Pmqb55PlsGAAAeHlgihwAAEhZdJe1j0jyLHBc0DTNT0rapkgodULShCKVMV2SfijpWtM0/8w0zaTnMk3znxVZbPo/JXVK8knqkfTfkq4wTfPus/KmIq/1tKR1kj4taa8iIYtPUqukJyS9Q9Llpmk2z3WOlwPTNKdN03yfpDcoEqh1KPI+RyQdUiQIrDdN8/GVayUAALiQ2cLh+XbdBQAAAAAAAOZHBRMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEgJARMAAAAAAABSQsAEAAAAAACAlBAwAQAAAAAAICUETAAAAAAAAEg
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYnHW9///nzGzflN1k05PdTb0JIUAoUkSKiujhWDgoWMCCnN85IkU5ni8W4IigIihKU7EBooCAAipKqNJLKAmpd+ruJpu2JZuyfXfm98fMTrYmCwMs5fm4rr12yl0+s7O5s/dr3p/3HUkkEkiSJEmSJEmvVXSoByBJkiRJkqS3NwMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZcSASZIkSZIkSRkxYJIkSZIkSVJGDJgkSZIkSZKUEQMmSZIkSZIkZSRrqAcgSZLeeoIg+BdwTOruhWEYfn+Q610HfDV1d2oYhhWv/+g0WEEQzAOeJ/k335fCMLxpEOt8EjgNOAQYA+wEXgZuBG4LwzDxhg1YkiS9bVnBJEmS9uaiIAhmD/Ug9OoEQZBNMhQa1AeKQRCMDILgIeBO4OPAJCAHGA18EPgjcF8QBHlvzIglSdLbmQGTJEnam1zgt0EQ+HfD28u3gQMGs2AqjJoPfCD10LPAZ4HDgdOBpanHPwL84vUdpiRJeifwD0VJkjQYRwDnDvUgNDhBEOwPfOdVrPI/wGGp27cBR4VheFsYhs+FYfiH1HOLU89/MQiCfV+/0UqSpHcCAyZJkrQncaAjdfv7QRBMG8rBaO+CIMgiOTUuG6gdxPJ5wLdSd9cAXwjDsLP7MmEYNtIzsDr59RmtJEl6pzBgkiRJe9IOXJm6XQD8egjHosH5f8BBQD3w3UEsfyIwInX74jAM2wdY7gHg98DVwJIMxyhJkt5hvIqcJEnam0uAk4B9gPcHQfCfYRhmFDSlmoafTbLnz2QgAqwHHgWuDcNw2QDr/Yvk1e1awzAcsNl0EARLgDlAZRiG5b2e67oK2teB+4DrgKNIhmmrgW+GYfhQt+VHAGeSbHy9HzAcqCN5ZbU7gVvCMOyglyAIyoF1qbsnAX8Fvgh8PjW24UA1yd5HPwnDcM1Ar2ewUlPXLk7dPR9oHMRqH0l9bwPuHmihMAxbgS9kNEBJkvSOZQWTJEnao1SwcCbJ6XIAVwZBMOm1bi8IgotI9vM5CwiAQpLVUQHw38DiIAi+GwRBJKOB790U4CngQ6n9jyRZ+bO621iPA1YAPwGOBkaRnHo2nmQw8zvg5SAIpu9lXwXAQ8BvSQZkJSSbp08DvgIsDYLg3zJ5MUEQxEhOjcsF5odhePMgV52b+r40DMPmbtsrCIJgVhAEpTZ4lyRJe+MfC5Ikaa/CMHwKuD51dyTwy9eynSAIvgt8D4gBr5AMlI4kWUF0HskeQFHg/1Jfb6SvkQx6rgDeB3wK+EEYhhWpsR5BssJpApAA/gB8jGTD60+TnDIGyaqmJ4IgmLCHff0EOI7k1dlOT23jE8CDqedzgZuCIBiWwes5H3gPsAv4/17Fel0NuysBgiA4JgiCB4AdQJh6fHMQBD9KVXNJkiT14RQ5SZI0WN8CPgqUA/8eBMFnwzC8dbArB0FwEHBR6u4twBm9ppY9FQTBb4G/A8cCFwdBcMdA0+VeB1GSgVL35tV3pcYaI1mdlE+ycuvUMAzv6rbc88CfgiC4mOQUwgnADSQDqP6MJ/mavxiGYVclGEEQ/JXk6/03YAzJfkh/erUvJAiCgGRwB8kpflWDXC8X6Aq1GoIg+DZwGckpi92NIdnb6WNBEJww2O1LkqR3DyuYJEnSoKSuJNa9MubqIAjGvIpN/A/Jvz3qgP/ur29Rah9nkKwYigDnvPYRD8ovBnj8oyR7TgH8ole4lBaG4feAf3Wtk+qB1J8W4Gvdw6XU+gl6Nk4/YDCD7i41fe13QB7wJPDzV7F694qp9wPfB2qA/wTGprZ5GPDP1DL7APekgilJkqQ0AyZJkjRoYRg+SLLPDySnl107mPVS/ZS6mkk/FYZh0x72sQ5Ynrr7gdc41MGoDsNwwwDPndDt9g172U73QOfDAyzzYhiG9QM817259/C97Ks/55KcZtgCnJkKrQaroNvtUpLh35FhGP4mDMOaMAxbwzB8np6VVfOAL7+GcUqSpHcwp8hJkqRX63ySQcoE4NQgCG4Lw/DevaxTDhSnbn+s25Xc9mbqaxvioKzfw3P7pb7vApbsZTvPdrs9d4BlKvaw/q5ut1/V32ap5uLfT929JAzD8NWsDzT3un9Jf1ezC8MwEQTBeSSvhpcDnMarq5SSJEnvcFYwSZKkVyUMwwbgq90e+kUQBEV7Wa3kNe4uKwiC11LVMxg79vDc6NT32kFUBG3pdnvUAMvsGuBxSE4H7DLoK+elqsJ+S7IK6WXgx4Ndt5udve7fPdCCYRhuIdl7CuDQN+Eqf5Ik6W3ECiZJkvSqhWF4dxAEd5K88toEkldJ29O0qe5/c/yOQU6tSxlwOt0eDOZDtD0FR68mPIl1ux0fcKnX338Bx6RuXwPsl+z13UN5t9ulQRAcmLq9OgzDXWEYtgZBsI3d1WUb97LPrqqvLKAI2PZaBi5Jkt55DJgkSdJrdTbJxtCjgTOCILh9D8t27z/UGYbhwte4z65QaG8B0MjXuP0uXeMtCYIgspcqpnH9rPdmOLzb7RsHXGq3S1JfAMexuzn5YuDo1O0i9vwaupp7d7LnCjBJkvQu4xQ5SZL0moRhuBX4ereHfgUUDrD4WnZXIh0+wDJpQRBcEATBfwVB8MFeT3VdeS4nCIJY7/VS6+YDr+bqdv15JfV9GDBnL8t2fz0rMtzvUOjeQ2pv703Xz2JDGIadb9B4JEnS25ABkyRJes3CMLyF3ZewLwc+N8By7cCjqbtzgyA4aqBtBkHwfuBy4JfAt3s93dDtdvkAm/ggkL2ncQ/CA91u/9delv3vbrcfzHC/gxaG4RfDMIzs6YvkFMYuX+r23L+6Pd698uysgfYXBMF7gK45ePe8bi9EkiS9IxgwSZKkTP0Xu5tF7ynYuarb7ZuCIJjSe4EgCMaSrITqck2vRV7pdvucftYfB1y5x9EOzl+B1anbZwVBcFJ/CwVBcBG7+yA9nMHUvyEThuHL7A7GTkxdLa6HIAhGkWwoDskqsl+/ScOTJElvE/ZgkiRJGQnDcH0QBBewl8vWh2H4SBAEvwC+AkwHFgVB8DPgsdQihwDnAxNT9+8Ow7B3pcxtwMUk/4Y5L3WFuduBFpLTu76WWn9Nah+v9TV1BkFwempsOcBdQRD8AbgT2AqUkWxqfkJqlVrgC691f28B/0XyCnElwM+CIDgOuJlk0+8DgG+xu2Ls+2EYLh2KQUqSpLcuAyZJkvR6+CXwaXY3ix7IOSTDoK+RvHLZJQMs9xfgtN4PhmG4OgiCr5GsbIoCZ6S+usRJTqsbDfzPqxh/H2EYPhsEwYeBP5Hs6fT51FdvLwGnhmFYncn+hlIYhuuCIDgGuBeYAXw89dXbj4DvvZljkyRJbw9OkZMkSRlLXWXtTKB5L8t1hmF4PjCPZCi1AtgFtAPVwJ+BE8MwPDkMw363FYbh9cChwB+ADUAbsAm4AzgqDMMfvi4vKrmvR0kGLt8EniJ5hbU2oAL4O3AKcHgYhqsH2sbbRRiGy4D9SIaAj5OsymolWQ12C3BEGIbfDMMwPnSjlCRJb1WRRGJPV92VJEmSJEmS9swKJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEkZMWCSJEmSJElSRgyYJEmSJEmSlBEDJkmSJEmSJGXEgEmSJEmSJEk
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAG/CAYAAAAUxW2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XucW3Wd//F3kplMMpfO/d659Ho6vUG5WW4FFkHurqsruuouuKIs98VdVldl0QeLiooIgu6yIi4gBUF/oq4WlIuA9EYv9DJzOtN27vdL55pMMkl+fyQ5TebepnSgvJ6PxzwmmTk5+SaZnPa88/l+vrZQKCQAAAAAAADgaNnnegAAAAAAAAB4byNgAgAAAAAAQEIImAAAAAAAAJAQAiYAAAAAAAAkhIAJAAAAAAAACSFgAgAAAAAAQEIImAAAAAAAAJAQAiYAAAAAAAAkhIAJAAAAAAAACSFgAgAAAAAAQEIImAAAAAAAAJAQAiYAAAAAAAAkhIAJAAAAAAAACSFgAgAAAAAAQEKS5noAAADg3ccwjFcknRe5+lXTNP9zlrf7oaQbI1cXmKZZf+xHh9kyDGONpM0K/5/vWtM0H5tkm3pJFUe6b9M0bQkODwAAnECoYAIAADP5mmEYVXM9CBwZwzCSJf1U78wHiv53YJ8AAOA9jAomAAAwkxRJPzEM4xzTNINzPRjM2r9LOmkW210myTmL7R6SdFbk8vVHOygAAHBiImACAACzcaakWyTdP9cDwcwMw1gt6Suz2dY0zb2z2N8XdDhcesQ0zUcTGB4AADgBMUUOAABMJyhpLHL5Pw3DWDiXg8HMDMNIUnhqXLKk7mOwv4WSvhe5WivptkT3CQAATjwETAAAYDp+Sd+JXE6V9MgcjgWzc4ekUyT1SrrrGOzvIUlpkcufN01z5BjsEwAAnGCYIgcAAGbydUkfkbRM0l8ZhnGdaZoJBU2RpuE3SbpQ0nxJNklNkl6W9OBU07ZiVrcbNU3TNc3+d0taIanBNM3Kcb8LRS7+s6TfSfqhpHMUDtPqJH3JNM0/xmw/T9LnJH1Y0kpJGZJ6JG2X9AtJj5umOaZxDMOolHQwcvUjkp6XdI2kv4+MLUNSi6QNkr5nmub+qR7PbBmGsVzSnZGrt0saTnB/V0q6JHL1SdM0X0lkfwAA4MRFBRMAAJiWaZqjCgcs0Qbf3zEMo/Ro92cYxtck7ZJ0gyRD4eqY1Mjl6yXtMgzjLsMwbAkNfGZlkt6QdHHk/jMVrvypixnrBZJqFJ4itk5SjsJTz4okXSrpUUnbDcNYNMN9pUr6o6SfKByQ5SncPH2hpH+StMcwjMsSeTCGYTgUnhqXImmDaZo/S3B/dknfjFz1SPpSIvsDAAAnNgImAAAwI9M031B4qpQUDmJ+fDT7MQzjLknfkOSQ9LbCgdJZClcQ3Sppv8L/P/mPyNc76TaFg557JZ0r6W8l3WOaZn1krGcqXOFULCkk6QlJV0n6gKRPSHohsp+Vkl4zDKN4mvv6nqQLJG2U9JnIPv5a0ouR36dIeswwjPQEHs/tks6QNCTp8wnsJ+pjCldaSdJ/m6bZfAz2CQAATlBMkQMAALP1ZUlXSqqUdIVhGH9nmubPZ3tjwzBOkfS1yNXHJX123NSyNwzD+Imk30o6X9KdhmE8M5tVzo6SXeFAKXa1tWcjY3UoXJ3kVrhy62rTNJ+N2W6zpKcNw7hT4SmExZL+S+EAajJFCj/ma0zTjFaCyTCM5xV+vJdJypd0uaSnj/SBGIZhKBzcSeEpfo1Huo9J/HPku1/SfcdgfwAA4ARGBRMAAJgV0zSHFV8Z8wPDMPKPYBdfVPj/Hj2Srp+sb1HkPj6rcMWQTdLNRz/iWfnRFD+/UuGeU5L0o3HhksU0zW9IeiV6m0gPpMl4Jd0WGy5Fbh9SfOP0k2Yz6FiRqWyPSnJJel3Sw0e6j0n2eYaktZGrTx2jwAoAAJzACJgAAMCsmab5osJ9fqTw9LIHZ3O7SD+lSyNX35huJTLTNA9Kqo5cvfAohzobLdNM+/pQzOX/mmE/sYHOJVNs85Zpmr1T/C62uXfGDPc1mVsUnmbolfS5SGiVqFtjLt97DPYHAABOcEyRAwAAR+p2hYOUYklXG4bxlGmav57hNpWSsiOXr4pZyW0mC45uiLPSNM3vVka+D0naPcN+NsZcXjXFNvXT3H4o5vIR/d8s0lz8PyNXv26apnkkt59in26F+0NJ0hbTNPckuk8AAHDio4IJAAAcEdM0D0m6MeZHPzIMI2uGm+Ud5d0lGYZxNFU9szEwze9yI9+7Z1ER1BFzOWeKbYam+LkUng4YNeuV8yJVYT9ReIW67ZK+O9vbzuCDkX1KR9EPCgAAvD9RwQQAAI6YaZq/MgzjFwqvvFas8Cpp/zjNTWL/z/GoZjm1LmLK6XTTmM2HaNMFR7MOehReES8qOOVWx94XJJ0XufyApJXhXt9xKmMulxuGcXLkcp1pmlOFXtHqpZCkXxyDcQIAgPcBAiYAAHC0bpL0VwpX+3zWMIz102wb238oYJrmjqO8z2goNFMAlHmU+4+KjjfPMAzbDFVMhZPc7nhYG3P5p1NuddjXI1+SdIEONycf7/LI90009wYAALPFFDkAAHBUTNPs1OGl7CXpvyWlTbH5AR2uRFo7xTYWwzD+zTCMLxiG8cFxv4quPOc0DMMx/naR27olHcnqdpN5O/I9XdKKGbaNfTw1Cd7vnDLCJVDRwOzPczkWAADw3kIFEwAAOGqmaT5uGMYnFV4hrlLSp6bYzm8YxssKV8esMgzjHNM0X59sW8Mw/krStyJXX5b0x5hfH4q5XKn4FdiiPigp+QgexmRekHR95PIXJN08zbbXx1x+McH7nTXTNK+RdM102xiG8TEdnuZ2rWmaj82w2zNiLm892rEBAID3HyqYAABAor4gaTByebpg576Yy48ZhlE2fgPDMAoUroSKemDcJm/HXJ4Q+hiGUSjpO9OOdnael1QXuXyDYRgfmWwjwzC+psN9kP6UwNS/d4vVMZcJmAAAwKxRwQQAABJimmaTYRj/JunhGbZ7yTCMH0n6J0mLJO00DON+Sa9GNjlN0u2SSiLXf2Wa5v8bt5unJN2p8P9hbo2sMLdeklfhqWq3RW6/P3IfR/uYAoZhfCYyNqekZw3DeELhaqBOSRUKNzX/UOQm3ZL+4Wjv711kaczl1jkbBQAAeM8hYAIAAMfCjyV9QtK6Gba7WeEw6DZJ2TrcdHq8X0r69PgfmqZZZxjGbQpXNtklfTbyFRWU9O8KNx7/4hGMfwLTNDcahnGJpKcV7un095Gv8bZJuto0zZZE7u9dYn7ku9c0zdE5HQkAAHhPYYocAABIWGSVtc9J8sywXcA0zdslrVE4lKqRNCTJL6lF0nOSLjdN86OmaU66L9M0H5J0uqQnJDVL8klqk/SMpHNM0/zmMXlQ4ft6WdJiSV+S9IbCq8T5JNVL+q2kj0taa5pm3VT7eI+ZF/l+aNqtAAAAxrGFQtOtugsAAAAAAABMjwomAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJISACQAAAAAAAAkhYAIAAAAAAEBCCJgAAAAAAACQEAImAAAAAAAAJIS
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x600 with 4 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAPYCAYAAACWq0NSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8nGW9///XZN+abumaNunKTaFlq1WEIqKgHhWXo0cQcD0qygFFj+fL+R4Rly9yDj/RA4KiR8ENlR08Hj0g+6ZlKS0tbXp3zdIlTdI2+z4zvz9mMmSSNE07hYK8no9HHpmZe5lrJmnm6vu+rs8VicfjSJIkSZIkSYcq60g3QJIkSZIkSa9tBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKSM6RboAkSXr1CYLgUeD05N3LwzD8zhiPuwH4p+TduWEYVh/+1mmsgiA4EXiGRJ/vU2EY/uIA+88FLgXeAVQAEaAOeBC4NgzDTS9rgyVJ0muWI5gkSdKBfD0IgkVHuhE6OEEQ5AI/Z4wXFIMg+AfgReCLwNFAEVAIHAVcBKwNguDjL09rJUnSa50BkyRJOpB84KYgCOw3vLb8G3D8WHYMguCNwG9IhEpR4Hrg3cBZwL8DvSR+D34eBMFZL0trJUnSa5pT5CRJ0li8mcTIlmuPdEN0YEEQHAd87SAOuRLITd7+aBiGdwza9mAQBPcDD5O4OPk94LjD0lBJkvQ3wyuRkiRpNDGgP3n7O0EQzDuSjdGBBUGQQ2JqXC7QNIb984EzknefGRIuARCG4WPAPcm7S4IgqDxMzZUkSX8jDJgkSdJo+oDvJm8XAT89gm3R2Pwf4CRgL/DNMew/iZdGtW8cZb8XB92ecUgtkyRJf7OcIidJkg7kW8AHSRR+flsQBJ8NwzCjoClZNPxi4O3ALF5arewR4PowDNfv57hHSaxu1xOGYcEo538ROBaoCcNwzpBt8eTNLwN/BG4AlpMI0zYD/xqG4YOD9i8FPgO8H1gMjAP2AKuAO4Bfh2HYzxBBEMwBtiXvfhD4b+CTwMeTbRsH7ADuB74XhuGW/b2esQqC4BjgiuTdrwAdYziskcQotRwSP+P9WTDo9s5DaqAkSfqb5QgmSZI0qjAMe0gELLHkQ98NgqD8UM8XBMHXgbUkViYLgGISo6MC4PMkViv7ZhAEkYwafmCzgaeAdySffzyJkT+bB7X1DGADibpDbyEx2icXmA78HXAzsCoIgvkHeK4i4EHgJhIBWRmJotnzgC8A64IgeHcmLyYIgmwSU+PygfvDMPzlWI5LhmN/St59QxAEHxzh3CcC/5C8+0wYhrWZtFWSJP3tMWCSJEkHFIbhU8APk3fHAz8+lPMEQfBN4NtANrCGRKB0CokRRF8CtpDon3wj+fVyupRE0PP/AaeRCFCuCsOwOtnWN5MY4TQDiAO3AO8D3gScC/w5eZ7FwBNBEIw2bex7JOocrQA+ljzHB4AHktvzgV8EQVCSwev5CvBGoB343EEe+y9AffL27UEQfD8IgncFQXBGMhB8AsgjMXLrYM8tSZJeB5wiJ0mSxur/AmcDc4D3BkFwXhiGvx3rwUEQnAR8PXn318Cnh0wteyoIgpuA/wHeClwRBMHt+5sudxhkkQiUBq+2dmeyrdkkRicVkhi5dU4YhncO2u8Z4LYgCK4gMYVwBvATEgHUSKaTeM2fDMNwYCQYQRD8N4nX+25gCvAe4LaDfSFBEAQkgjtITPE7qBFGYRhuDILgZBKryZ1PYvrgl4fsdhfwL2EYbht6vCRJkiOYJEnSmIRh2EH66JXrgiCYchCn+GcSfY89wOdHqluUfI5PkxgxFAEuOfQWj8mN+3n8bF6qR3TjkHApJQzDbwOPDhyTrIE0km7g0sHhUvL4OOmF048fS6MHC4Igi0QYVgA8CfzoYM+RdAqJ2lD7m5p4GvCh5PNJkiSlsYMgSZLGLAzDB0jU+YHE9LLrx3Jcsp7S3yXvPhWGYecoz7ENqEreffshNnUsdoRhuH0/29456PZPDnCewYHOu/azz8owDPfuZ9vg4t7jDvBcI/kiiXCoG/hMMrQ6KEEQXAX8FjgR+AtwFlCS/Ho78BgwlcSKgjcZMkmSpKGcIidJkg7WV0gEKTOAc4Ig+F0Yhr8/wDFzgInJ2+8btJLbgcw9tCaOSd0o2xYnv7cDLx7gPCsG3V6yn32qRzm+fdDtg+qbJYuLfyd591thGIYHc3zyHO8jMf0R4D7gfWEY9g3a5eEgCB4jUYPqXBIr4T3NIdbhkiRJf5u8+iRJkg5KGIbNwD8NeujGIAgmHOCwskN8upwgCA5lVM9YtI6ybXLye9MYRgTtHnR70n72ad/P45CYDjhgzCvnJUeF3URihbpVwDVjPXaIgZ9lDLhwSLgEQBiGURKr3Q28Zxcf4nNJkqS/UY5gkiRJBy0Mw3uCILiDxMprM0iskvaPoxwyuM9xM2OcWpe03+l0oxjLRbTRgqMxBz0kVsQbENvvXoffhcDpyds/ABYnan2nmTPodkUQBCckb28Ow3Ag9FqW/L5mtOLgYRg2B0HwCPB+4NggCEoGnUOSJL3OGTBJkqRDdTHwNhKjfT4dBMGto+w7uP5QNAzD1Yf4nAOh0IECoPGHeP4BA+0tC4IgcoBRTNNGOO6VcPKg2z/f714v+VbyC+AMXipOXpL83jyGczQMul3K6COzJEnS64hT5CRJ0iEJw7CB9KXs/wso3s/uW3lpJNLJ+9knJQiCy4IguDAIgjOHbBpYeS4vCILsoccljy0EDmZ1u5GsSX4vIbGy2mgGv54NGT7vkdCY/D5vDPuWJ7/HgKaXpzmSJOm1yIBJkiQdsjAMfw38b/LuHOD8/ezXBzySvLskCILl+ztnEARvA/6DRBHpfxuyefAomzn7OcWZQO5o7R6DPw+6feEB9v38oNsPZPi8YxaG4SfDMIyM9kViCuOATw3a9uigx59Ifq8IguB09iMIgukkRj4BPBOGYe9hfUGSJOk1zYBJkiRl6kKgLXl7tGDn+4Nu/yIIgtlDdwiCYCqJkVADfjBklzWDbl8ywvHTgO+O2tqx+W9gc/L2RUEQfHCknYIg+Dov1UF6KIOpf0fSDwfd/mkQBOVDdwiCoAj4DVCYfOhgamhJkqTXAWswSZKkjIRhWBcEwWXAjw6w38NBENxIYjWy+cALQRBcCzyW3OUNwFeAmcn794RheO+Q0/wOuIJEH+ZLyRXmbgW6SUxVuzR5/Jbkcxzqa4oGQfCxZNvygDuDILgFuINEHaJKEkXN35k8pAn4xKE+35EUhuETQRDcQKKm1kJgdfL+E0AXcAKJ9/Wo5CH3kPg5SJIkpRgwSZKkw+HHwLnAWw6w3yUkwqBLgYm8VHR6qLuBC4Y+GIbh5iAILiUxsikL+HTya0CMxLS6ycA/H0T7hwnDcEUQBO8CbiNR0+njya+hngfOCcNwRybPd4RdCvSSCPjKgG/uZ79bgM8doOi5JEl6HXKKnCRJylgycPgMiREvo+0XDcPwK8CJJEKpDSRWIusDdgB3Ae8Jw/BDYRiOeK4wDH8ILCMRdmwnEYzsAm4Hlodh+O+H5UUlnusRYAHwr8BTJFaJ6wWqgf8BPgKcHIbh5v2d47Ug+XP5Z+Ak4KfAJhJF2btJvNZbgNPDMPzY/n4ukiTp9S0Sj3sBSpIkSZIkSYfOEUySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKiAGTJEmSJEmSMmLAJEmSJEmSpIwYMEmSJEmSJCkjBkySJEmSJEnKiAGTJEmSJEmSMmLAJEm
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 8 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from scipy.interpolate import interp1d\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"for unit_id, id_num in results_id_map.items():\n",
|
|||
|
" sessions = once_a_gridcell.query(f'unit_id==\"{unit_id}\"')\n",
|
|||
|
" n_action = sessions.date.nunique()\n",
|
|||
|
" fig, axs = plt.subplots(n_action, 4, sharey=True, sharex=True, figsize=(8, n_action*4))\n",
|
|||
|
"# sns.despine(left=True, bottom=True)\n",
|
|||
|
" fig.suptitle(f'Neuron {id_num}')\n",
|
|||
|
" if n_action == 1:\n",
|
|||
|
" axs = [axs]\n",
|
|||
|
" waxs = None\n",
|
|||
|
" for ax, (date, rows) in zip(axs, sessions.groupby('date')):\n",
|
|||
|
" entity = rows.iloc[0].entity\n",
|
|||
|
" ax[0].set_ylabel(f'{entity}-{date}')\n",
|
|||
|
" for _, row in rows.iterrows():\n",
|
|||
|
" action_id = row['action']\n",
|
|||
|
" channel_id = row['channel_group']\n",
|
|||
|
" unit_name = row['unit_name']\n",
|
|||
|
" idx = row.session_id\n",
|
|||
|
" x, y, t, speed = map(data_loader.tracking(action_id).get, ['x', 'y', 't', 'v'])\n",
|
|||
|
" ax[idx].plot(x, y, 'k', alpha=0.3)\n",
|
|||
|
" spike_times = data_loader.spike_train(action_id, channel_id, unit_name)\n",
|
|||
|
" spike_times = spike_times[(spike_times > min(t)) & (spike_times < max(t))]\n",
|
|||
|
" x_spike = interp1d(t, x)(spike_times)\n",
|
|||
|
" y_spike = interp1d(t, y)(spike_times)\n",
|
|||
|
" ax[idx].set_xticks([])\n",
|
|||
|
" ax[idx].set_yticks([])\n",
|
|||
|
" ax[idx].scatter(x_spike, y_spike, marker='.', color=(0.7, 0.2, 0.2), s=1.5)\n",
|
|||
|
" ax[idx].set_title(f'{row.session}')\n",
|
|||
|
" ax[idx].set_yticklabels([])\n",
|
|||
|
" ax[idx].set_xticklabels([])\n",
|
|||
|
" for a in ax:\n",
|
|||
|
" a.set_aspect(1)\n",
|
|||
|
" plt.tight_layout()\n",
|
|||
|
" fig.savefig(output_path / 'figures' / f'neuron_{id_num}_spike_map.png', bbox_inches='tight')\n",
|
|||
|
" fig.savefig(output_path / 'figures' / f'neuron_{id_num}_spike_map.svg', bbox_inches='tight')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 42,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"plt.rc('axes', titlesize=12)\n",
|
|||
|
"plt.rcParams.update({\n",
|
|||
|
" 'font.size': 12, \n",
|
|||
|
" 'figure.figsize': (6, 4), \n",
|
|||
|
" 'figure.dpi': 150\n",
|
|||
|
"})\n",
|
|||
|
"cmap = ['#1b9e77','#d95f02','#7570b3']"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 60,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAIrCAYAAAA+1yrZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xmc1XXd///HYRGFGIUZRdaQ7SWggoBlrliWJaK5VS4oath1lbl+rS4vM9OfuVSaleWlJihauZYaLnmVGmh6iYQL6kvZRDYDZBEGAfH8/ni/j/PhcGY4M/OZc2aG5/12m9vhfD7vz+f9OgvenBev9+udyWaziIiIiIiIiIiIlFKbcgcgIiIiIiIiIiLbHyWlRERERERERESk5JSUEhERERERERGRklNSSkRERERERERESk5JKRERERERERERKTklpUREREREREREpOSUlBIRERERERERkZJTUkpEREREREREREpOSSkRERERERERESk5JaVERERERERERKTklJQSEREREREREZGSU1JKRERERERERERKTkkpEREREREREREpOSWlRERERERERESk5JSUEhERERERERGRklNSSkRERERERERESq5duQPYnpnZUqAj8G65YxERERERSUlvoNrddy93ICIi0rwpKVVeHXfYYYfOffr0GdKYm2zevBmAtm3bNuk1mktzaS7Npbk0l+bSXJqrZcxVTgsWLGDjxo3lDkNERFoAJaXK690+ffoMmTJlSqNusmbNGgAqKiqa9BrNpbk0l+bSXJpLc2kuzdUy5iqnMWPGMHv2bK0EEBGRbVJPKRERERERERERKTklpUREREREREREpOSUlBIRERERERERkZJTUkpEREREREREREpOSSkRERERERERESk5JaVERERERERERKTklJQSEREREREREZGSU1JKRERERERERERKTkkpEREREREREREpuXblDkBERERERETKy8z6AvNqOZ0FVgILgMeAG9x9WYlCS42ZjQcmAovcvVfi+NPAocBV7n5peaKrm5lNAk4HnnH30eWNpji1vd8tnZmNBp6KT9u7+0fx+CTCZ3S3u59anujqZmaXAz8C3nH3vsWea0pKSomIiIiIiEjSa8DqxPN2QBdgL2A4MMHMPu/ur5YjOBFpPZSUEhERERERaaReE3+QAQYAXYH3gdkLz7gmW96oGuy77v50/kEzqwTuAMYA95vZYHf/uNTBNYHTgI7A8nIHIi3afwHXsGVCV7ZBSSkREREREZEGismoccCFwLDEqZm9Jv7gBmByC05ObcHdV5jZ6cAiYBDwJeDx8kbVeO6+oNwxSMvn7kuAJeWOo6VRo3MREZFmLJvNMm/1CmYuf5e5q5eTzbaK32tERFqFmJD6JaF6aFje6eHx+I1xXKvg7isIy/sgLOcTEWkwVUqJiIg0Q9lslgfmzOCWWdN4bdF8ANrs1IGhXbszYehBHN9/BJlMq/kdR0SkpRoHnLONMd8FpgN3Nn04JdM+Pn6Qf8LM2gEnAV8DRgCVwEfAYuDvwPXu/laB644AvgPsT+hftZqQ/LoXuM3dNxa4pgI4DziOsHSyDTAXeJDQjH1VMS+mUKPzROP394DuwJnA2cCQeNlrwC3AJHff6l+M0oqtoczsR8DlwCvunp8wzY05EJgGVAPd3X1NPH4S4fWOBD4FrAJmAJOBPzRkyaaZ7Uxoon0CsBvh+/AX4Bp3X1xgfAYYS1hauV+8BsLnMRW40d2nF7jus4SqxYPiNWsBB/4M3OTuhb6zHYD/AL5B+Hx3IDT1nwL8NFZAFfMaJ1Gg0bmZ5b4fOwFfAc4F9o3zOOG/Db92901NFVtzpkopERGRZiabzfLDFx7m/Kn38fr7W/6/xqz3l3D+1Pu47IVHVDUlIlJGsfrpwiKHX9BaqqXMrD+hQupj8pbumdlOwF8Jv2QfBWwEXiX02BoIfAuYYWb75l13brzXWGATMJOQ8DoUuAl4wsza5l2zJ/AycAWwNyHJ8TawJ3AZMDOOaawMoeLtNsKSxbcISbb9gduBq/MvKGFsdbmDsGviPmZWW0XbuPj4QCIhdT3we+BwYA3hdWwCjgDuAiY1IJadCMmvCwjfm1lAL0LC9tUC34cMcDfwEHA80JaQBFwC9AZOBf5pZkfmXXdcnOdrhOTNy8Ay4DOEz+mfMVmYvKY78DzwC+CzhO/q60CfGO9rMXmXhisJScn9CAnPDwgVldcTEn5bKHFsZaOklIiISDPzwJwZTHrjn3WOmfjGczwwZ0aJIhIRkQIGsPWSvdoMB/o3YSxNyszamlmlmY0FHiX8Hnm1u7+TN/T7wGGEhuGfcfc93H0/d+9DSAwsAToBlyTuvQtwbXx6krv3jNfsQUiErAdGAycmrukEPAL0JSQu+ri7uftwQtJiCvBp4OGYKGuM3YCTCVVPVe4+klA5dVc8f5GZ7Vqm2Grl7vOBp+LTU/PPm9kOhOQNxESTmQ0mJDs+BA5z977xs+hJqAD6GBhnZvvXM5yuQD/g+HjPkYT3Z1o8d2+sCMo5nVBttx4Y4+69Yhz9gKGEpFY74MeJ19MG+HU8/j1gd3cf5e6DgFGE5NRQ4NuJazLA/YS/n9OAwfE7OxLYnZB07Ar82cx2r+drLuT/EZJjVe6+L9CD0Bgd4OtmNryMsZWNklIiIiLNSDab5ZZZ04oae+usaaqWEhEpn671HF/ZJFE0jafMLJv7IVQGLQceJlQLXQv8sMB1hxMSFz929xeTJ+Lz38aneydOGbAjsBK4J++avxJ+ib+fUHWV801CUnAGIdGxOHHNUkIC6x1Cddb4ol917X7j7r90981xjg+B8wmVSO0ICbdyxVaXifHx5JjkSDqKsExyPjXJq33io+fvvujudxI+vz8AyQRSsc539wcT91sMHEtYGjiARNKR0ED/I8L7/mheHG9Sk8RMfo92JSQLAW7NfVbxmhnAfxOW8K1IXHM0cAChku3L7u6Ja1YTPssXgCpCsq6xHnH3S+L3hxjjpYTvPkCy6qnUsZWNklIiIiLNyLw1K7ZaslebWe8vYf4HK7Y9UEREmsL79Rzfkv6D/RrwbOLneUJ1yoZ4/kLgl/lL6tz9IEKC6eZa7lsdHzsmjs0jJCC6AJPMbIvqM3e/0t1PTCY0CMkMgD8mkw+Ja9YTElkQlgQ21iMF5lhBqL4B2KWMsdXlAcISvN7AIXnnTouPdyR6Yr0dH4eZ2c/MbGDyAnc/x91Pdvdn6hnHB4TlhFtw9+XAn+LTMYnjJxO+R5fkXxPlvkcdYoUUhKRpLrlzt5l9LnEOd7/V3Y9191sT98l9Vn9293UF4stSUxHXVN+jzdS874W+R6WKrWzU6FxERKQZWbWxetuDElZuqGaPJopFRETqNJvQs6aYJXwzgTlNG06qvptfKQOfLPkaT1gmdQ6h18+3k2PcfZOZdYlLvAYRlm0NIjR27haHJZMF/zazawmVLKcBp5nZUuBvhP5Uj8bkRVKuR9IEMzumlteQW9KURu+mRbUcXx8fk79Xlzq2Wrn7ejP7I6FB+6nAMwBmVgkcSaj0uiMxfoaZ3Q2cAlxEWJo4n/BZPAE8XqhReBFmFWpUH70SHwfnxb7ZzHY0s4MJ71M/QnVZbhlkThvg4zj++4Tm80fGn5Vm9hThezTF3RfmzZ37rMbmJ0MTusTHQWaWKdTUvh4a8j0qVWxlo6SUiIhIM7LLDh23PSihS4f6jRcRkXQsPOOabK+JP7ieAhUgBdyw8IxrWuQvjEkxsXBLbMB8OXC2mV3t7u8CmFln4EZCAqR94tKNhOVs/wK+XOC+l5rZS4RE1yGEpM0p8eejmFg5Jy5bAtg5Pg6MP3XZZRvni1FbQiUnuTSu1LFty0RCUuoEMzvH3TcAXyd8Pk+7+7y88eMIuyROIDTX7gucFX8+NLNbgIvrSDIVUlciK3fuk/+hMbP2wFWE70Oy79ZmQuP8/yM0QN+Cu99qZm8TKvm+SEjaHBd/smb2KPAfieRU7rPqzZaJrkLaAp0JlWcN1ZDvUaliKxslpURERJqRPSoqGdK1e1FL+IZ
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 900x600 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"msize = 9\n",
|
|||
|
"fig = plt.figure()\n",
|
|||
|
"ticks = []\n",
|
|||
|
"for i, pairs in enumerate(results_gridness):\n",
|
|||
|
" for j, pair in enumerate(pairs):\n",
|
|||
|
" if results_unit_id[i][j] in [results_id_map[i] for i in exclude]:\n",
|
|||
|
" continue\n",
|
|||
|
" plt.plot(\n",
|
|||
|
" results_unit_id[i][j], abs(np.diff(pair)), \n",
|
|||
|
" color=cmap[i], marker='.', ls='none', markersize=msize)\n",
|
|||
|
"for l in range(nuid):\n",
|
|||
|
" plt.axvline(l, color='k', lw=.1, alpha=.5)\n",
|
|||
|
"\n",
|
|||
|
"from matplotlib.lines import Line2D\n",
|
|||
|
"\n",
|
|||
|
"labels = ['Baseline I vs baseline II', 'Baseline I vs stim I', 'Baseline II vs stim II']\n",
|
|||
|
"custom_lines = [\n",
|
|||
|
" Line2D([],[], color=cmap[i], marker='.', ls='none', label=label, markersize=msize) \n",
|
|||
|
" for i, label in enumerate(labels)\n",
|
|||
|
"]\n",
|
|||
|
"plt.ylabel('Absolute difference in gridness')\n",
|
|||
|
"plt.xlabel('Neuron')\n",
|
|||
|
"plt.legend(handles=custom_lines, bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'neuron_gridness.png', bbox_inches='tight')\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'neuron_gridness.svg', bbox_inches='tight')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 63,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMEAAAIrCAYAAADm247TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecVdX1///XZei9KSKCCgMLFKUrIoodleLX2GLBQCJqjLGk+jHG5JP8NJpiSTQfE41gS+wJICCWACIoQRAUCIvei4D0znB/f+xz4XK5M0y/U97Px2MeZ+45e5+zb5m5c9esvXYsHo8jIiIiIiIiIiJSkVXJ9ABERERERERERERKmoJgIiIiIiIiIiJS4SkIJiIiIiIiIiIiFZ6CYCIiIiIiIiIiUuEpCCYiIiIiIiIiIhWegmAiIiIiIiIiIlLhKQgmIiIiIiIiIiIVnoJgIiIiIiIiIiJS4SkIJiIiIiIiIiIiFZ6CYCIiIiIiIiIiUuEpCCYiIiIiIiIiIhWegmAiIiIiIiIiIlLhKQgmIiIiIiIiIiIVnoJgIiIiIiIiIiJS4SkIJiIiIiIiIiIiFZ6CYCIiIiIiIiIiUuFVzfQApPSY2VqgNrAi02MRERERESlGLYGd7n5cpgciIiJll4JglUvt6tWr12vVqtUpmR6IiIiIiEhR5OTksG3bNvbu3cv27ds5cOBApockIiJlnIJglcuKVq1anTJ69OhMj0NEREREpEjeeustvvzyS6pVq8YHH3zA6tWrNdtBRETypCCYiIiIiIiUC/F4nFgsBkDfvn3Jycnh4osvZsqUKRkemYiIlAcKgomIiIiISJm2f/9+PvroI7Zs2cKVV14JQN26dbn22mszPDIRESlPFAQTEREREZEya8WKFYwcOZL169cD0KNHD0444YQMj0pERMojBcFERERERKTM2bt3L//+97+ZOnUq8XicunXrcvnllysAJiIihaYgmIiIiIiIlCmLFy9m1KhRbNq0CYDOnTvTt29fatWqleGRiYhIeaYgmIiIiIiIlBn79+9nxIgRbNmyhQYNGjBgwACys7MzPSwREakAFAQTEREREZGMS6z8WLVqVfr378+CBQu48MILqVGjRqaHJiIiFYSCYCIiIiIikjHbt29n7NixZGdn06VLFwDatm1L27ZtMzwyERGpaBQEExERERGRUhePx/niiy9499132bVrF0uWLKFjx45Uq1Yt00MTEZEKSkEwEREREREpVVu2bOGdd95hwYIFABx33HFcccUVCoBVMmZ2ErAkl8NxYBOwHBgLPO7u60tpaMXGzAYDw4BV7n5C0v4JQB/gIXd/IDOjy5uZDQe+BUx09/MyO5r8ye3xLu/M7DxgfHSzmrvvj/YPJzxHr7j7TZkZXd7M7JfAL4Bl7n5Sfo+VFAXBRERERESkVMTjcT777DPef/999u7dS9WqVenTpw+9evUiKysr08OTzJoNbEm6XRVoBHQEOgNDzewCd/8yE4MTkYpBQTARERERESkV69atY8yYMcTjcVq1asXAgQNp2rRppodVbp0w7L4YkA00Br4GFq4c8kg8s6MqtO+7+4TUnWbWBHgB6Ae8aWYd3P1AaQ+uBNwM1AY2ZHogUq79D/AIhweQJQ8KgqVhZrcBzwBD3f25QvRvD/wQuABoAewDFgBvA0+6+7Y0faoD24G8csC3uHvDgo5HRERERCRTEqs+Qpj22Lt3b+rVq0ePHj0O7peCiYJfg4AfAJ2SDs08Ydh9jwMvleNg2GHcfaOZfQtYBbQDLgHezeyois7dl2d6DFL+ufsaYE2mx1GeVMn0AMoaM+sB/K4I/a8BZgK3ACcAC4GNhBTeXwOfmVm6uckdCAGwncDkXL4+Key4RERERERK25o1a3j++efZuHHjwX0XXnghZ5xxhgJghRQFwP5IyI7qlHK4c7T/yahdheDuGwnTJSFMjxQRKRRlgiWJis29DdQrZP/WwEtADeBF4C533xId6wz8nRDseh3oldI98Qb2kbtfVpjri4iIiIiUBfv372fixIlMnjyZAwcO8N5773H99ddnelgVxSDgzqO0+T7wGeEzSUWRmDGTblZNVeB64FqgK9AE2A+sBv4NPObu89P06wt8D+hJqD+2hRBsex14zt33pulTH7gb+AZhKmoVYDHhc+Tj7r45P3cmXWH8pIUC1gHNgW8DtwKnRN1mA38Fhrv7EZl+xTW2wjKzXwC/BL5w99QAbaLN2cDHhOSP5u6+Ndp/PeH+dgPqApuBGYTP1/8ozBRYM2tAKLp+NXAs4fXwDvCIu69O0z4GDCBMVe0R9YHwfEwizOr6LE2/MwlZmb2jPtsBB/4FPJ3LTLAawO3ANwnPb3XCIhCjgd9FGV75uY/DSVMY38wSr49awGXAXUCX6DpO+N3wlLvvK6mxlVXKBAPMrGa0KsEHhF9+hXUXIQA2E/h2IgAG4O4zCb+McoCzzKx3St/ELwkVehQRERGRcmv58uU888wzTJo0iQMHDnDKKacwYMCATA+rQoiyu36Qz+b3VpRsMDNrQ8gAO0DKVEgzqwW8R/hQ3x/YS/hM9TXQFrgNmGFmXVL63RWdawChfM1MQoCtD/A0MM7MslL6tAdmAb8CTiMEVRYA7YEHgZlRm6KKETL6niNMAZ1PCOr1BJ4HfpPaoRTHlpcXCKt6nm5muWXsDYq2byUFwB4jJIxcBGwl3I99QF/gZWB4IcZSixBsu5fwuplDmKn1feDLNK+HGPAKMAK4CsgiBB3XAC2Bm4BPzOzylH7fiK5zLSFYNAtYD5xBeJ4+iYKTyX2aA58CTwBnEl6rc4FW0XhnR8HC4vBrQhC0ByHAuo2QMfoYIcB4mFIeW0ZU+iCYmWUTfqn8Itr1ALCskKc7P9q+7u45qQfdfR4wL7rZI+VwIgg2GxERERGRcmbv3r2MHTuWYcOGsWHDBurWrct1113HtddeS926dTM9vIoimyOnQOamM9CmBMdSoswsy8yamNkAYAzhs+tv3D31s9pPCZ/DNgBnuPvJ7t7D3VsRAhFrgDrA/Unnbgg8Gt283t1bRH1OJgRedgHnAdck9akDjAJOIgRKWrm7uXtnQpBkNHAiMDIKzBXFscANhKyupu7ejZAZ9nJ0/IdmdkyGxpYrd18KjI9u3pR6PKqDfW10c3i0rwMhuLIbON/dT4qeixaEDKcDwCAz61nA4TQGWgNXRefsRnh8Po6OvR5lPCV8i5BNuAvo5+4nRONoDZxKCKJVBf436f5UAZ6K9v8EOM7du7t7O6A7IRh2KnBHUp8Y8Cbh5/NjoEP0mu0GHEcIcjYG/mVmxxXwPqfzI0Iwrqm7dwGOJxTSB7gumrGWqbFlRKUPghGiwS0J0c4z3f2hIpzrbkIK54g82iT+G5O6BrQywURERESk3JoxYwZTp04lHo/TpUsXvve979GhQ4dMD6uiaVzA9k1KZBQlY7yZxRNfhMynDcBIQjbUo8DP0/S7iBAo+V93n5Z8ILr9f9HN05IOGVAT2AS8ltLnPULQ4E1CVlnCLYQg5AxCYGV1Up+1hIDZMkL22eB83+vc/dnd/5hIrnD33cA9hEyrqoQAX6bGlpdh0faGKKiSrD9h5tVSDgXLTo+2nro6qLu/SHj+/kGYcVVQ97j720nnWw1cSZhqmU1SkJOw4MJ+wuM+JmUc8zgUNE1+HR1DCE4CPJucCOPuM4CfEaZEbkzqM5BQGmk1cKm7e1KfLYTncirQlBAcLKpR7n5/9PohGuMDhNc+QHJWV2mPLSMUBIOVhEjvWe4+vSgncvcJ7j7M3eemO25mp3JoPvecpP3HE15IOcA2M/uZmY00sw/M7FkzU40wERERESnTevToQfv27Rk0aBBXXHEFtWqVWMJJZfZ1AdtvPHqTMmM2hy8K9inhM9Oe6PgPgD+mTlF0996EgNYzuZx3Z7StnbRvCSHg0QgYbmaHZde5+6/d/ZrkAAoheALwai6zfnYRAmcQplgW1ag019hIyC4CaJjBseXlLcKUxpbAuSnHbo62LyTVNFsQbTuZ2e/NrG1yB3e/091vcPe
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 900x600 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"fig = plt.figure()\n",
|
|||
|
"labels = ['Baseline I vs baseline II', 'Baseline I vs stim I', 'Baseline II vs stim II']\n",
|
|||
|
"for i, pairs in enumerate(results_gridness):\n",
|
|||
|
" for j, pair in enumerate(pairs):\n",
|
|||
|
" if results_unit_id[i][j] in [results_id_map[i] for i in exclude]:\n",
|
|||
|
" continue\n",
|
|||
|
" plt.plot(*pair, color=cmap[i], marker='.', ls='none', markersize=msize)\n",
|
|||
|
"# plt.scatter(*np.array(pairs).T, label=labels[i], color=cmap[i])\n",
|
|||
|
"# plt.legend(bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
|
|||
|
"custom_lines = [\n",
|
|||
|
" Line2D([],[], color=cmap[i], marker='.', ls='none', label=label, markersize=msize) \n",
|
|||
|
" for i, label in enumerate(labels)\n",
|
|||
|
"]\n",
|
|||
|
"plt.legend(handles=custom_lines, bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
|
|||
|
"plt.ylabel('Gridness')\n",
|
|||
|
"plt.xlabel('Baseline gridness')\n",
|
|||
|
"lim = [-.7, 1.35]\n",
|
|||
|
"plt.ylim(lim)\n",
|
|||
|
"plt.xlim(lim)\n",
|
|||
|
"plt.plot(lim, lim, '--k', alpha=.5, lw=1)\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'baseline_gridness_vs_other.png', bbox_inches='tight')\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'baseline_gridness_vs_other.svg', bbox_inches='tight')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 64,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5sAAAJuCAYAAAA+QxYOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXmcHPlZ3/+u6vvuOaS5da12S6tdrbTaw7GxjfFizHpNfBEnBhwciG1OE3PkR4IJhoTg2IQkkJ9jCCG+4IcNbOyAsY0PfLDr9e7qWGm1q5K0OuYezdX3XVW/P6q6p3umey71XJrn/XpJ3V3VVf2dme6u7+f7PM/nUSzLQhAEQRAEQRAEQRDaibrVAxAEQRAEQRAEQRBuP0RsCoIgCIIgCIIgCG1HxKYgCIIgCIIgCILQdkRsCoIgCIIgCIIgCG1HxKYgCIIgCIIgCILQdkRsCoIgCIIgCIIgCG1HxKYgCIIgCIIgCILQdkRsCoIgCIIgCIIgCG1HxKYgCIIgCIIgCILQdkRsCoIgCIIgCIIgCG1HxKYgCIIgCIIgCILQdkRsCoIgCIIgCIIgCG1HxKYgCIIgCIIgCILQdkRsCoIgCIIgCIIgCG3HvdUD2I5omvZe4GPAu3Vd/+N1HH8E+CXgtcAAUAYuA48D/03X9XSTY7xABvAsc+qkruvxtY5HEARBEARBEARhsxGxuQhN0x4CPnILx/8T4FOADyhhi8wwcAK4H3inpmmP6Lo+uujQu7GFZg440+L0S0SqIAiCIAiCIAjCdkTEZh2apr0GO/oYWefxh1gQmp8E3qfretLZdwL4M2xR+VngFYsOP+7cfkvX9UfX8/qCIAiCIAiCIAjbBanZBDRN82ua9kHgq0DHLZzqfdhC8yzwE1WhCaDr+lngrYABvFzTtFcuOrYqNs/fwusLgiAIgiAIgiBsC3a92NQ07TBwCfgNZ9MHgBvrPN33Obef1XXdWLxT1/WLwEXn4UOLdlfF5vPrfG1BEARBEARBEIRtg6TRwiAwBDwF/Jyu66c0TXv3Os/1C8BB4LvLPEdxbl2Ltm94ZFPTtEkgCIxs1GsIgiAIgiAIwhYwBOR0Xe/d6oEIC4jYhFHgMV3X//ZWT6Tr+jeAb7Tar2naPcBR5+GFuu39QDd2im1a07RfA16GLQyvAY/ruv7FWx0fEPR6vZF9+/YdXfmpgiAIgiAIgrAzGB4eplQqbfUwhEXserGp6/oV4MpGv46maS7go87DMeDrdburUU0LO7LpX3T4v9Q07QvAO5q1TVkDI/v27Tv6hS984RZOIQiCIAiCIAjbi8cee4wrV65I9t42Y9fXbG4GmqYp2H07X+1s+iVd14t1T6mKTTfw18CDQADoBX4Wu+XJY8BnNmXAgiAIgiAIgiAIt8iuj2xuNE5E8w+Bn3Q2/YGu64tF4zngfwCTuq7/Vt32AvBRTdPOAd8CHtU07dE2pdQKgiAIgiAIgiBsGCI2NxBN00LYvTX/sbPpfwP/avHznHrRljWjuq7/g6ZpXwVeB7wFELEpCIIgCIIgCMK2RtJoNwjH9OfbLAjN/wL8pK7r5jpPeca5PXirYxMEQRAEQRAEQdhoJLK5AWiadgw7UjkImMD7dV3//RWOcQGKruuVFk+pLgyU2zZQQRAEQRAEQRCEDUIim21G07Sj2E6zg0AeeOsqhOZ1bBH5vmWedtK5feHWRykIgiAIgiAIgrCxiNhsI5qmdWDXU3YDSeD7dV3//CoOfQFQgB/TNG1JtFnTtIeB73Me/nmbhisIgiAIgiAIgrBhiNhcB5qm7dM07YimafsW7fpdYB926uw/1XX9yVWe8j9h99i8H/hjTdOida/1GuDz2GL007quP3ur4xcEQRAEQRAEQdhopGZzfXwS+F7gm8BrADRN6wP+ubM/B/y6pmm/vsw5/kTX9T8B0HX9m5qm/Svg94AfB96uaZoOxFgwBPpb4N1t/jkEQRAEQRAEQRA2BBGb7eMVLPw+w8D3rPD8r9Y/0HX99zVN+w7wfuDVwD1AGrv+838Df6rrutXWEQuCIAiCIAiCIGwQIjaboOv6gRX2v6bJtr/CTnW9ldd9BviRWzmHIAiCIAiCIAjCdkBqNgVBEARBEARBEIS2I2JTEARBEARBEARBaDsiNgVBEARBEARBEIS2IzWbwqYwlytxbjxNslAh5ndzX3+EzqB3q4clCLuKRL7Mhak06WKFiM/NPT0R4gHPVg9LEARBEITbFBGbwoZzbjzFFy9OU2+l+93hBI8e2cN9/dGWxwmC0D5emErz9SszDZ/DM2NJXnu4m6M9kS0blyAIgiAIty+SRitsKHO50hKhCWABX7w4zVyutBXDEoRdRSJfXiI0wf4cfv3KDIl8eSuGJQiCIAjCbY6ITWFDOTeeXjLBrWIBT1yfxzClfaggbCQXppb/HD4/md7M4QiCIAiCsEuQNFphQ0kWKsvuvzCZ4fJ0lsGYn/0dAfZ1BOiJ+FCVW2pZKghCHeni8p/DcxNJDMviyJ4we8NeFPn8CYIgCILQBkRsChtKzL/yW6xkWFydy3N1Lg+Az60yFHfEZzwgk19BuEUivuU/h4YF5yZSnJtIEQ94OLInjLYnRNQv5kGCIAiCIKwfEZvChnJff4TvDidapvCpgLloW7FicmUmx5WZHAABj8pQPMD+DvtfV9Aj4lMQ1sA9PRHOjCVbfg7rSeTLPDU8z1PD8/RH/RzZE+ZwdwifW6ouBEEQBEFYGyI2hQ2lM+jl0SN7lpgEKcCjd+/h7r1hxpIFhufz3EgUmEgVWFzCmS+bXJrOcmk6C0DI62JfPMC+Djv62REQ8SkIyxEPeHjt4e4lJkEK8OpDnaiKgj6dYTxVbDhuPFVgPFXgm1dnOdgZ5MjeMPviAVyqfN4EQRAEQVgZEZvChnNff5TBuJ9zE2mS+QqxgJv7+hb6bB7oDHKgMwhAqWIymixwYz7P8HyeyXRxSTQmWzJ48WaGF29mAIj4bPFZrfmUvoGCsJSjPRH6o35emEqTKlaI+twcreuzeW9vlGShzKXpDBdvZkkUFhxqDcviymyWK7NZAh6VO7vDUt8pCIIgCMKKiNgUNoXOoJfX3NG14vO8bpVDXUEOddnis1AxGE3Y4vPGfJ6bmaWtUtJFgwtTGS5M2eIz5nezryPA/rgtPqOrqBsVhN1APODhFQc6W+6P+T08NNTBg4NxpjJFLt7McHkmS6GykOyeL5tS3ykIgiAIwqqQWbiwrfG7XRzuDnG4OwRAvmwwnMjXIp8z2aX9AZOFCucn0pyfsNs5dAQ8TtTTTrsNeeVtLwjLoSgKvRE/vRE/rzrYxY35HPp0hmtzeQxrIddA6jsFQRAEQVgOmXULm8JsrsTZsRSJQoW4382JgShdThrtWgh4XGh7wmh7wgBkSxWG5ws1ATqXWyo+5/Nl5vNlzo6nAOgOeZyaTzv1NuBx3doPJwi3MS5V4VBXiENdIYoVg8szWanvFARBEARhVYjYFDacs+Mp/uaFmw21l9+5keCNR/dyoj96S+cOed3c3RPm7h5bfKaLFdtsyPnXrM/nTLbMTLbM6TFbfO4Ne2tpt0NxP34Rn4LQFJ/bxb29UanvFARBEARhVYjYFDaU2VxpidAEsIC/eeEmQ3H/uiKcrYj43NzTG+Ge3ggAyXyZG4l8TYCmi8aSY25mStzMlHh2JIkC9ER8tbTbwVhAUgKF24ZsqcJYokChbOL3qAzE/etOK5f6TkEQBEEQVkLEprChnB1LteztZwH/35kJ7uuL0B/10Rf1E/K2N6oYC3i4L+Dhvr4olmWRyFfsek8n7TZbahSfFjCZLjKZLvLdYVAU6I/4aim3AzE/HpeIT2HnMZYo8MJEuuHzeGM2z9G+CANx/7rPK/WdgiAIgiC0QsSmsKEkmqSx1jOfL/PNq3O1xzG/m76oj/6on76Ij76or201lYqi0BH00BH0cGLAFp+zuXIt6jmcyJMvmw3HWBaMpYqMpYp850YClwL9MX+t1Up/zI9batKEbU62VFkiNMFeXHlhIk086G6LcZbUdwpbwY2ZLI+fGmc
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 900x600 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"fig = plt.figure()\n",
|
|||
|
"import matplotlib\n",
|
|||
|
"cNorm = matplotlib.colors.Normalize(vmin=-np.pi/2, vmax=np.pi/2)\n",
|
|||
|
"scalarMap = plt.cm.ScalarMappable(norm=cNorm, cmap=plt.cm.Blues)\n",
|
|||
|
"\n",
|
|||
|
"ticks = []\n",
|
|||
|
"for i, pairs in enumerate(results_gridness):\n",
|
|||
|
" for j, pair in enumerate(pairs):\n",
|
|||
|
" if results_unit_id[i][j] in [results_id_map[i] for i in exclude]:\n",
|
|||
|
" continue\n",
|
|||
|
" angle = float(np.arctan(np.diff(pair) / 0.9))\n",
|
|||
|
" color = scalarMap.to_rgba(angle)\n",
|
|||
|
"# color = plt.cm.Paired((np.sign(angle)+1)/14)\n",
|
|||
|
" tick = (i, i+.8)\n",
|
|||
|
" plt.plot(tick, pair, marker='.', color=color)\n",
|
|||
|
" ticks.append(tick)\n",
|
|||
|
"plt.xticks(\n",
|
|||
|
" [t for tick in ticks for t in tick], \n",
|
|||
|
" ['Baseline I', 'Baseline II', 'Baseline I', 'Stimulation I', 'Baseline II', 'Stimulation II'],\n",
|
|||
|
" rotation=-45, ha='left'\n",
|
|||
|
")\n",
|
|||
|
"plt.ylabel('Gridness')\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'stickplot_gridness.png', bbox_inches='tight')\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'stickplot_gridness.svg', bbox_inches='tight')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 66,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAysAAAIMCAYAAAD1iTNmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcZFld5/3PXSMil1p7qa7qamh6OU13s7gLOoL7IC7gODw44obwoOO8fFRGx2dERRmHEceFeR4dUMQXiz7CqK9RX6AOy6CAgII03U13n+7qtbauPSszY7nbuc8fN7IquzqrKivzZsTNjO+7X1VZeePGPacrozLje885v+OVZYmIiIiIiEjT+OPugIiIiIiIyEoUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVkREREREpJEUVsbIGPOXxpi/HHc/RERERESaKBx3BybcTTfffPPtQDnujoiIiIiI1Mir4yIaWRERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUZSWBERERERkUYKx90Bka2il6Uc6c5R1nCtqTBm38yOGq4kIiIisnkprIjU5KGzx7FnjpEU2bqvtbs9w45Wh+moVUPPRERERDYnhRWRmuTOcSbp0s0SdrWm13ydE/0FtremyJ2rsXciIiIim4/CikhNAs/Dx+e6qe1c1ZlZ83XOJD18wPe8+jonIiIisglpgb1ITQLPx/fBrXPVSlE6fM8n9PXPU0RERCab3g2J1CT0A0IvoFjH9C1XlpRlSeB7hH5QY+9ERERENh+FFZGatIKAwPPJXLHmaxTO4fs+gecTevrnKSIiIpNN74ZEatIKIqIgWNfC+NTlRH5AKwjxtGZFREREJpzCikhN2mFI7AekLl/zNVJXEPkh7SCqsWciIiIim5PCikhNOkFMK4hIipyyXNsi+6TIaQUhnVBhRURERERhRaQm7TAkDgI8z1vzupWkyGgHIVOhNoMUERERUVgRqYnv+UyFMe0gYrDGXewHeU47jJiO4pp7JyIiIrL5KKyI1GgmatEOI/r5lYeVsiwZFBntIGI2am9A70REREQ2F4UVkRrNxm2mwnhNYWVQ5AReQDuMtGZFREREBIUVkVpti9t0gohenl7xc3t5ylQUMRu1VLZYREREBIUVkVptizt0oojMOfIrXGTfy1OmwhbbW50N6p2IiIjI5hKOuwMbxRjzOuBtwGutte9Yw/NvA14PfAOwD8iAh4A/B95qrV2osbuyRUR+wEzUphNGdLP0ioJHL0vZOzPFtlhhRURERAS26MiKMeYrgF9fx/P/NXAX8BrgeuAAcAp4PvAm4LPGmOtr6KpsQTviDtNRfEVTwQrnGBQZU2HEDoUVEREREWALhhVjzIuBvwVm1/j8ZwHvAVrAu4FrrLV3WmufCXwpcD9wK/D+OvorW8+O1hTTYYvFLFn1c7p5SiuImB5WExMRERGRLRRWjDFtY8wbgQ8DO9dxqZ+gCip3Aa+21p5desBaexfw3UABvMAY87XraEe2qB2tDtNRi16e4la5k303S5iJWuyIpza4dyIiIiKbx5YIK8aYm4EHgV8aHnoD8PgaL/f1w4/vt9Y+bYW0tfYB4IHhp1+xxjZkC5uOWkxFMbEfrHoqWDdPmY5a7GwrrIiIiIgs2RJhhWpdyX7g08BXWWt/dR3X+r+AVwN/cYlzlurKButoR7awHXGH6bhFdxVTwVxZ0s0SpsOYHS2FFREREZElW6Ua2CHgpdbaD673QtbajwEfu9jjxpg7gNuHn35xve3J1rSzPcVM2GIu6V/23EGeEfsBU1HMdBiPoHciIiIim8OWCCvW2gNUFbs2lDEmAH53+Olh4KMb3aZsTjviKaajFoe7c5RleclNHhezhOmoxY7WlDaDFBEREVlmq0wD23DGGI9q35avGx56vbV29eWeZKLMxi06YYyHx6DIL3nuYr4UVlSyWERERGQ5hZVVGI6o/D7VvisA/4+19n1j7JI0nO/556qCXW7dSi9LmRqOrIiIiIjIeVtiGthGMsZMA38MfOfw0B8CPzm+HslmsT3uMBVeenPIpMhxlEwFEdui9gh7JyIiItJ8Glm5BGPMXuDjnA8qvwX8iLXWja9Xsllsb11+J/teljIVtpiN2wS+/jmKiIiILKeRlYswxjwH+CBVWWQH/JS19r+Nt1eymWwbjqwMipzCuRXDSC9PmQ4jtsVaryIiIiJyId3KXYEx5naqSl/XA33guxVU5Eq1gpBOGNMKQvpFtuI5vTylE8ZsizUFTERERORCCisXMMbsBP4auAo4C3yTtfZSG0SKXNRs3KYTxPQvMhVsUGR0wkhhRURERGQFEzsNzBhzAzAF9Ky1Tyx76L8CN1BN/fo/rLX/MI7+ydYwG7XohBGD/Onli7OioATaYcR0pM0gRURERC40sWEFeDfwIuDvgBcDGGOuA35g+HgP+AVjzC9c4hrvtNa+cyM7KZvbdNSiHYbMp0/fyb5fZLT8aqqY72mQU0RERORCkxxWVvJCzv+dzABfc5nzP7yx3ZHNbjpq0Q4iBiusWUmKrBpVCTWqIiIiIrKSLRtWrLXPvMzjL17h2J8B3gZ1SSbQVBgRBQFFWT6tIlhaFLSCkClNARMRERFZkeaeiGyg0A+I/ZDID0jdU9etJC4nDkI6QTSm3omIiIg0m8KKyAZrhxGxH5C54inHs6Ig8gPaocKKiIiIyEpGOg1suNFiANxrrX16eSSRLagVhIQrhJXcVWEl9rfsbEwRERGRdan9XZIxZgb4t8Apa+0fDI/tA/4KeN7wtCeMMT9orf37utsXaZrYDwj9gNy5pxzPS0fo+cSBwoqIiIjISmqdBjYMKp8C3gx827KH3gY8n2rxugc8A/iAMeb6OtsXaaLIDwk9j6I8H1Zc6SjLksD3iXzNxhQRERFZSd3vkn4cuAM4CXwQzo2qfBtQAq+k2hn+3cA08Pqa2xdpnMDz8D2foizPHSvKEs/z8YBAe6yIiIiIrKjud0kvo9r5/VuXpoABL6UaTfmctfb91trTwL8DusC31ty+SOP4no/nQbksrJRliectPaZq2SIiIiIrqTusGOCAtfauZce+hWpU5W+XDlhrF4GHgf01ty/SOJ4H3gXb95SU+HgKKiIiIiKXUHdYmQHmlz4xxnjA1w8//bsLzg3YwptSilyopLz8SSIiIiJyTt1h5TjwjGFIAfgqYCcwAD6+dJIxZidwE3C45vZFGqcsq6CyfHTFw6PkqVPDREREROSp6g4rn6RaQP9TxphtwBuopoB9yFqbABhjIuB3gRbwiZrbF2mcqvIXT5ny5XkerizPVQUTERERkaerO6z8BlAAvw6cAV4yPP6bAMaYrwSOAK8A0qXjIltZMQwlwbKwEngeZeko4SkljUVERETkvFrDirX2H6nKEx+jqgA2B7xu2eaP88Bu4BTwL621d9fZvkgT5a4gL8unlCheqgJWlI7MKayIiIiIrKT2DR6stX8O7AP2AFdba9+x7OGHqcob77PWXrjgXmRLSlxO4QrCCzZ/DD2f3DkyV4ypZyIiIiLNtiHVuKy1JdVi+wuPZ8BfbkSbIk2VFDmZKwi94CnHQz8gdwVJkQHt8XROREREpME2JKwYY2Jgt7X26LJjLwO+n6pk8QeAP7DWav6LbHlLYSUOnhpWoiAgdQWDPBtTz0RERESarfZpYMaYVwNPAr+y7NhrgD+jmgL2ncDbgD+tu22RpsldQVrkpK4g8p96byD
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 900x600 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"fig = plt.figure()\n",
|
|||
|
"ticks = [0,0.6,1.2]\n",
|
|||
|
"\n",
|
|||
|
"diff_res = [[], [], []]\n",
|
|||
|
"for i, pairs in enumerate(results_gridness):\n",
|
|||
|
" for j, pair in enumerate(pairs):\n",
|
|||
|
" if results_unit_id[i][j] in [results_id_map[i] for i in exclude]:\n",
|
|||
|
" continue\n",
|
|||
|
" diff_res[i].append(abs(np.diff(pair)))\n",
|
|||
|
"violins = plt.violinplot(\n",
|
|||
|
" diff_res, ticks, showmedians=True, showextrema=False, points=1000, bw_method=.2)\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"for category in ['cbars', 'cmins', 'cmaxes', 'cmedians']:\n",
|
|||
|
" if category in violins:\n",
|
|||
|
" violins[category].set_color(['k', 'k'])\n",
|
|||
|
" violins[category].set_linewidth(2.0)\n",
|
|||
|
" \n",
|
|||
|
"colors = plt.cm.Paired(np.linspace(0,1,12))\n",
|
|||
|
" \n",
|
|||
|
"for pc, c in zip(violins['bodies'], cmap):\n",
|
|||
|
" pc.set_facecolor(c)\n",
|
|||
|
" pc.set_edgecolor(c)\n",
|
|||
|
" \n",
|
|||
|
"plt.xticks(ticks, ['baseline', 'stim i', 'stim ii'])\n",
|
|||
|
"plt.ylabel('Absolute difference in gridness')\n",
|
|||
|
"\n",
|
|||
|
"plt.gca().spines['top'].set_visible(False)\n",
|
|||
|
"plt.gca().spines['right'].set_visible(False)\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'violins_gridness_difference.png', bbox_inches='tight')\n",
|
|||
|
"fig.savefig(output_path / 'figures' / 'violins_gridness_difference.svg', bbox_inches='tight')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Save to expipe"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 67,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"action = project.require_action(\"longitudinal-comparisons-gridcells\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 68,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"['/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_45_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_23_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_24_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_36_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_3_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_10_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_18_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_41_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_15_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_7_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_6_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_19_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_17_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_2_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_22_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_17_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_15_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_44_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_15_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_18_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_5_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_18_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_8_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_11_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_5_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_29_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_29_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_39_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/violins_gridness_difference.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_41_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_39_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_33_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_46_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_16_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_43_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_4_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_9_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_22_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_11_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_16_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_44_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_10_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_48_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_36_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_40_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_33_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_33_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_21_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_23_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_4_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_34_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_2_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_36_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_34_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_3_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_48_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_40_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_22_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_17_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_39_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_gridness.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_4_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_2_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_10_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_25_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_20_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_21_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_4_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_26_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_28_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/baseline_gridness_vs_other.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_20_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_14_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_37_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_19_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_40_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_34_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_6_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_21_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_12_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_1_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_17_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_25_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_33_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_24_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_40_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_29_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_2_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_24_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_25_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_45_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_46_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_35_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/violins_gridness_difference.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_11_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_5_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_6_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_48_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_3_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_46_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_38_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_39_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_7_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/stickplot_gridness.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_11_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_16_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_12_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_20_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_7_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_14_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_10_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_44_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_8_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_43_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_7_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_1_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_3_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_30_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_27_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_18_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_47_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_38_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_34_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_25_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_19_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_42_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_16_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_45_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_28_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_38_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_37_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_24_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_1_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_5_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_6_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_28_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/baseline_gridness_vs_other.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_9_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/stickplot_gridness.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_28_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_9_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_42_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_20_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_9_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_1_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_23_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_12_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_43_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_15_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_27_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_14_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_42_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_36_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_31_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_23_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_32_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_gridness.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_37_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_41_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_12_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_44_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_43_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_48_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_46_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_8_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_21_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_29_spike_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_27_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_38_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_14_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_19_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_22_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_41_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_37_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_8_rate_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_42_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_27_spike_map.png',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_45_rate_map.svg',\n",
|
|||
|
" '/media/storage/expipe/septum-mec/actions/longitudinal-comparisons-gridcells/data/figures/neuron_13_rate_map.png']"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 68,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"copy_tree(output_path, str(action.data_path()))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 55,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"septum_mec.analysis.registration.store_notebook(action, \"20_longitudinal_comparisons_gridcells.ipynb\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.6.8"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|