septum-mec/actions/comparisons-power/data/20_comparisons_power.ipynb

3029 lines
1.1 MiB
Plaintext
Raw Permalink Normal View History

2021-03-10 12:55:09 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pathlib\n",
"import numpy as np\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import re\n",
"import shutil\n",
"import pandas as pd\n",
"import scipy.stats\n",
"from functools import reduce\n",
"import statsmodels\n",
"import seaborn as sns\n",
"import exdir\n",
"import expipe\n",
"from distutils.dir_util import copy_tree\n",
"import septum_mec\n",
"import spatial_maps as sp\n",
"import head_direction.head as head\n",
"import septum_mec.analysis.data_processing as dp\n",
"import septum_mec.analysis.registration\n",
"from septum_mec.analysis.plotting import violinplot, savefig, despine\n",
"from tqdm.notebook import tqdm\n",
"tqdm.pandas()\n",
"\n",
"from septum_mec.analysis.statistics import (\n",
" load_data_frames, \n",
" make_paired_tables, \n",
" make_statistics_table, \n",
" estimate_power_lmm, \n",
" estimate_power_lmm_paralell, \n",
" LMM, \n",
" estimate_sample_size_lmm, \n",
" estimate_sample_size_lmm_paralell\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"project_path = dp.project_path()\n",
"project = expipe.get_project(project_path)\n",
"actions = project.actions\n",
"\n",
"output_path = pathlib.Path(\"output\") / \"comparisons-power\"\n",
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)\n",
"(output_path / \"data\").mkdir(exist_ok=True, parents=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load cell statistics and shuffling quantiles"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of sessions above threshold 194\n",
"Number of animals 4\n",
"Number of individual gridcells 139\n",
"Number of gridcell recordings 230\n"
]
}
],
"source": [
"data, labels, colors, queries = load_data_frames()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Calculate statistics"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"columns = [\n",
" 'average_rate', \n",
" 'gridness', \n",
" 'information_specificity',\n",
" 'max_rate', \n",
" 'information_rate', \n",
" 'in_field_mean_rate', \n",
" 'out_field_mean_rate', \n",
" 'speed_score', \n",
" 'spacing', \n",
" 'field_area'\n",
"\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"results, labels = make_paired_tables(data, columns)"
]
},
{
"cell_type": "code",
"execution_count": 151,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f54b4eddcc0>"
]
},
"execution_count": 151,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAygAAAIICAYAAACFL8pzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVhUZfvA8e8MM+yIIOCCgrhwFHHPNDXLzEwtM9MWzUzL3NrMSt9eW94WyzJbbNH6ZbllqZmKpWa55JbkvqQjKKDghuzIOsz8/hg4A4nIMjAs9+e6uDzPOed5zj14AXPPs2nMZjNCCCGEEEIIUR1o7R2AEEIIIYQQQhSQBEUIIYQQQghRbUiCIoQQQgghhKg2JEERQgghhBBCVBuSoAghhBBCCCGqDUlQhBBCCCGEENWGJChCCCGEEEKIakMSFCGEEEIIIUS1IQmKEEIIIYQQotqQBEUIIYQQQghRbUiCIoQQQgghhKg2JEERQgghhBBCVBs6ewdQlymKchFwBc7ZOxYhhBBCCCFspBmQYTAYGpWnsiQo9uXq6OjoERAQEGLvQIQQQgghhLCFs2fPkpOTU+76kqDY17mAgICQX375xd5xCCGEEEIIYRODBw8mMjKy3COEZA6KEEIIIYQQotqQBEUIIYQQQghRbUiCIoQQQgghhKg2JEERQgghhBBCVBuSoAghhBBCCCGqDUlQhBBCCCGEENWGJChCCCGEEEKIakMSFCGEEEIIIUS1IQmKEEIIIYQQotqQneRrOLPZjNlstncYQlQrGo0GjUZj7zCEEEIIUQ6SoNRAmZmZpKSkkJaWhtFotHc4QlRLOp0ODw8PPD09cXFxsXc4QgghhCglSVBqmNTUVOLi4uwdhhDVntFoJCkpiaSkJPz9/alXr569QxJCCCFEKUiCUoNkZmaqyYm7uzteXl44Ozuj1cpUIiEKM5lMZGVlkZSURHp6OnFxcej1eulJEUIIIWoASVBqkJSUFMCSnDRt2lTG2AtxHVqtFnd3d9zc3IiNjSU9PZ2UlBRJUIQQQogaQD56r0HS0tIA8PLykuREiFLQaDR4eXkB1p8fIYQQQlRvkqDUEGazWZ0Q7+zsbOdohKg5Cn5ejEajrHgnhBBC1ACSoNQQhd9YyZwTIUqv8M+LJChCCCFE9SdzUIQQQghR6c6nn+fP2D+5cPUC3s7e9GnahyDPIHuHJYSohiRBEUIIIUSlyTRmMnffXFaeWkmeOU89P2ffHO5tcS8zus+gnqMsAy6EsJIERQghhBCVIikriQmbJ3Ai8USx18POhHEy6SRf9f8KHxefKo5OCFFdyWQGIYQQQthcpjHzmuTE392foa2G0qp+K/VcRFIEz219jpy8HHuEKYSohiRBEUIIIYRNmc1m3trzVpHk5JE2jxA2NIy3er3FqntXMTZ0rHrtSPwRPj7wsT1CFUJUQ5KgiDonNjYWRVGK/WrTpg3du3dn6NChzJ07l8TERHuHWy6rV69GURT69OlT5Pzo0aNRFIWPPvrITpHd2IwZM1AUhdGjR9s7FCFEOa07vY6wM2FqeWSbkfzn5v+gd9AD4KB14IWuL/BA6wfUe5adWMaxK8eqPFYhRPUjc1BEnRYcHIy7u7tazsvLIyUlhYiICE6cOMGKFStYtGgRiqLYMUohhKg5krKS+GDfB2q5i18XXuz2YrEbDP+n+3/Yf2k/0anRmMwmZofPZvHAxbIZsRB1nCQook6bOXMm3bt3v+Z8UlISM2bMYNu2bTz77LNs2LChVuw/M3v2bDIzM9Xd1YUQwtbm7p9LSnYKAK46V2b3mY1eqy/2XicHJ1675TXGbRoHwKH4Q2yP3c7tzW6vqnCFENVQzX/HJUQl8PLy4r333sPR0ZHo6Gh27txp75BsokmTJrRs2RJvb297hyKEqIUMiQbWRK5Ry1M6TaGRW6MS63Rr1I3e/r3V8jdHv6m0+IQQNYMkKEJch5eXF61btwYgIiLCztEIIUT1N+/gPPW4Vf1WjGw7slT1pnSaoh4fij/E0fijNo9NCFFzyBAvIUpgNBoBcHNzK/ba+vXr2bhxI8ePHyc5ORmdToefnx/du3dn7NixBAVdu0vyjh07WLZsGYcPHyY1NRV3d3eCg4O5++67GTFiBI6OjtfUSU9PZ9GiRWzevJmYmBjMZjPNmjWjf//+PP7449SrV7pNzkaPHk14eDgTJ05k6tSpgGXRgH79+uHj48POnTtZtWoVK1asIDIyErDM03nwwQcZNmxYsePCbRWbEKJmO3TZMjyrwDOdn0GnLd3bjFCfUDr7debg5YMALD2xlNm+syslTiFE9ScJSi2VmZNHTp7J3mFUmKODFhdHB7s8++zZs0RERKDVarn11luLXMvKyuKpp55i7969APj7+xMcHExCQgLR0dFER0cTFhbGsmXLCAkJUestXryYd955BwA/Pz/atGlDUlIS4eHhhIeHs3HjRr777jscHKyv+fTp04wfP564uDgcHBxo1qwZzs7OREZG8vnnn7NmzRq+/vprWrZsWaHXazabmT59OmvXrqVevXoEBQVx7tw5Dh06xKFDh4iKiuLFF18sUqeqYhNCVH/fHLMOzWrv056+zfqWqf6otqPUBOW36N94qdtLsnmjEHWUJCi10P/CjrNodzQms70jqTitBsb0bM7r97arkufl5eWRmprKwYMHmT17NiaTiYkTJ+Lv71/kvq+//pq9e/fi5eXFV199RYcOHdRrR44cYfLkycTHxzN//nw+/fRTAFJTU5kzZw4Ac+fOZfDgwWqdnTt3MmXKFDVJKbiWkZHBpEmTiIuLo1+/frz++us0bNgQgPj4eGbOnMm2bduYPHkya9euxdnZudyvPSEhgfXr1/Pf//6XUaNG4eDgQHZ2NjNnzmTdunV8++23jBs3Tp2/UpWxCSGqt6iUKLad26aWJ3acWOaVuPoF9MPP1Y/LGZcxmo1sit7EqLajbBypEKImkDkotdDiPTG1IjkBMJktr6eyPPbYY0X2QQkJCaFHjx5MmjSJ6Ohoxo8fz/PPP39Nvd27d6PVann66aeLJCcAHTp04JFHHgHg1KlT6vmoqCiys7Px9PRk0KBBRer07t2bp556igEDBqDXW1e7WblyJTExMbRr14558+apCQCAr68vn3zyCf7+/kRHR7N69eoKfz9GjhzJY489pvbgODk58corr6DRaDAajRw5csRusQkhqq8l/yxRj1t6tiwy6b20dFodg1tYP7gJOx1Wwt1CiNpMEpRa6LFbAtHWkiXkHbQaHrslsNLaDw4OpkuXLupXp06daN26tToP5LvvvuPtt98mLy+vSL3ly5dz5MgRHn744WLbdXFxASxDwQo0bdoUnU5HSkoKM2bM4OTJk0XqTJkyhU8//ZS77rpLPff7778DMGjQoCLDvgo4OzszYMAAALZu3VrWl3+Nvn2vHZLh5eWl9pqkpqbaLTYhRPWUkJnAutPr1PKYdmPQasr39uLeFveqx8cTjnMm5UyF4xNC1DwyxKsWev3edrw8oI3MQSmF6+2DkpOTw88//8xbb73F0qVLycvL44033ihyj16vJyUlhUOHDhEdHc25c+eIjo7mxIkTXLlyBQCTyfp/0KBBA5588knmz5/PmjVrWLNmDb6+vvTo0YPevXvTp0+fa5b/LeiBWblyJX/88Uexr6HgWWfOVPwPeeFekMIKhmcVTtSqOjYhRPW0OmI12XnZADRwblCkF6SsWnu1po13G04mWj7A+fXMrzzd+WmbxCmEqDkkQamlXBwdcME+k8trA0dHRx566CHi4+OZN28eK1asYMKECTRu3BiwrFz1zjvvEBYWRm5urlpPr9fTrl072rZty44dO65pd+rUqYSGhrJ06VL27dtHfHw8YWFhhIWFodPpGDRoEK+99hoeHh7qcwB14n1J0tLSKvy6Cw8vK47ZbB07WNWxCSGqH5PZxE8RP6nlh5SHcHS4diXCshgUNEhNULac2yIJihB1kCQoQpSgX79+zJs3j7y8PP755x81QZk8eTJ79+7F2dmZRx99lI4dO9K6dWsCAwP
"text/plain": [
"<Figure size 900x600 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.rc('axes', titlesize=12)\n",
"plt.rcParams.update({\n",
" 'font.size': 12, \n",
" 'figure.figsize': (6, 4), \n",
" 'figure.dpi': 150\n",
"})\n",
"\n",
"results['gridcell']['gridness'][labels].plot.density()"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Baseline I</th>\n",
" <th>11 Hz</th>\n",
" <th>Baseline II</th>\n",
" <th>30 Hz</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Average rate</th>\n",
" <td>9.040 ± 6.369</td>\n",
" <td>8.934 ± 6.545</td>\n",
" <td>8.368 ± 6.154</td>\n",
" <td>7.553 ± 5.359</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Gridness</th>\n",
" <td>0.527 ± 0.353</td>\n",
" <td>0.393 ± 0.369</td>\n",
" <td>0.579 ± 0.287</td>\n",
" <td>0.479 ± 0.355</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Information specificity</th>\n",
" <td>0.245 ± 0.229</td>\n",
" <td>0.208 ± 0.264</td>\n",
" <td>0.218 ± 0.177</td>\n",
" <td>0.226 ± 0.209</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Max rate</th>\n",
" <td>37.533 ± 15.081</td>\n",
" <td>32.799 ± 14.292</td>\n",
" <td>37.684 ± 16.860</td>\n",
" <td>34.584 ± 12.544</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Information rate</th>\n",
" <td>1.324 ± 0.617</td>\n",
" <td>0.906 ± 0.543</td>\n",
" <td>1.177 ± 0.640</td>\n",
" <td>0.983 ± 0.555</td>\n",
" </tr>\n",
" <tr>\n",
" <th>In field mean rate</th>\n",
" <td>14.973 ± 8.381</td>\n",
" <td>13.344 ± 8.073</td>\n",
" <td>14.126 ± 7.835</td>\n",
" <td>12.109 ± 6.060</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Out field mean rate</th>\n",
" <td>6.389 ± 5.358</td>\n",
" <td>6.712 ± 5.898</td>\n",
" <td>5.787 ± 5.225</td>\n",
" <td>5.265 ± 4.488</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Speed score</th>\n",
" <td>0.142 ± 0.081</td>\n",
" <td>0.105 ± 0.090</td>\n",
" <td>0.120 ± 0.060</td>\n",
" <td>0.104 ± 0.073</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Spacing</th>\n",
" <td>0.439 ± 0.121</td>\n",
" <td>0.456 ± 0.123</td>\n",
" <td>0.416 ± 0.093</td>\n",
" <td>0.424 ± 0.080</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Field area</th>\n",
" <td>0.431 ± 0.053</td>\n",
" <td>0.417 ± 0.051</td>\n",
" <td>0.423 ± 0.051</td>\n",
" <td>0.431 ± 0.052</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Baseline I 11 Hz Baseline II \\\n",
"Average rate 9.040 ± 6.369 8.934 ± 6.545 8.368 ± 6.154 \n",
"Gridness 0.527 ± 0.353 0.393 ± 0.369 0.579 ± 0.287 \n",
"Information specificity 0.245 ± 0.229 0.208 ± 0.264 0.218 ± 0.177 \n",
"Max rate 37.533 ± 15.081 32.799 ± 14.292 37.684 ± 16.860 \n",
"Information rate 1.324 ± 0.617 0.906 ± 0.543 1.177 ± 0.640 \n",
"In field mean rate 14.973 ± 8.381 13.344 ± 8.073 14.126 ± 7.835 \n",
"Out field mean rate 6.389 ± 5.358 6.712 ± 5.898 5.787 ± 5.225 \n",
"Speed score 0.142 ± 0.081 0.105 ± 0.090 0.120 ± 0.060 \n",
"Spacing 0.439 ± 0.121 0.456 ± 0.123 0.416 ± 0.093 \n",
"Field area 0.431 ± 0.053 0.417 ± 0.051 0.423 ± 0.051 \n",
"\n",
" 30 Hz \n",
"Average rate 7.553 ± 5.359 \n",
"Gridness 0.479 ± 0.355 \n",
"Information specificity 0.226 ± 0.209 \n",
"Max rate 34.584 ± 12.544 \n",
"Information rate 0.983 ± 0.555 \n",
"In field mean rate 12.109 ± 6.060 \n",
"Out field mean rate 5.265 ± 4.488 \n",
"Speed score 0.104 ± 0.073 \n",
"Spacing 0.424 ± 0.080 \n",
"Field area 0.431 ± 0.052 "
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"summary = pd.DataFrame()\n",
"for key, df in results['gridcell'].items():\n",
" Key = key.replace('_', ' ').capitalize()\n",
" for label in labels:\n",
" summary.loc[label, Key] = \"{:.3f} ± {:.3f}\".format(df[label].mean(), df[label].std())\n",
"summary.T"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td>Model:</td> <td>MixedLM</td> <td>Dependent Variable:</td> <td>val</td> \n",
"</tr>\n",
"<tr>\n",
" <td>No. Observations:</td> <td>119</td> <td>Method:</td> <td>REML</td> \n",
"</tr>\n",
"<tr>\n",
" <td>No. Groups:</td> <td>4</td> <td>Scale:</td> <td>0.0932</td> \n",
"</tr>\n",
"<tr>\n",
" <td>Min. group size:</td> <td>7</td> <td>Log-Likelihood:</td> <td>-49.4026</td>\n",
"</tr>\n",
"<tr>\n",
" <td>Max. group size:</td> <td>81</td> <td>Converged:</td> <td>Yes</td> \n",
"</tr>\n",
"<tr>\n",
" <td>Mean group size:</td> <td>29.8</td> <td></td> <td></td> \n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>Coef.</th> <th>Std.Err.</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th>\n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td>0.409</td> <td>0.048</td> <td>8.488</td> <td>0.000</td> <td>0.315</td> <td>0.504</td>\n",
"</tr>\n",
"<tr>\n",
" <th>label[T.Baseline I]</th> <td>0.124</td> <td>0.062</td> <td>1.997</td> <td>0.046</td> <td>0.002</td> <td>0.246</td>\n",
"</tr>\n",
"<tr>\n",
" <th>unit_idnum Var</th> <td>0.036</td> <td>0.090</td> <td></td> <td></td> <td></td> <td></td> \n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary2.Summary'>\n",
"\"\"\"\n",
" Mixed Linear Model Regression Results\n",
"============================================================\n",
"Model: MixedLM Dependent Variable: val \n",
"No. Observations: 119 Method: REML \n",
"No. Groups: 4 Scale: 0.0932 \n",
"Min. group size: 7 Log-Likelihood: -49.4026\n",
"Max. group size: 81 Converged: Yes \n",
"Mean group size: 29.8 \n",
"------------------------------------------------------------\n",
" Coef. Std.Err. z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------\n",
"Intercept 0.409 0.048 8.488 0.000 0.315 0.504\n",
"label[T.Baseline I] 0.124 0.062 1.997 0.046 0.002 0.246\n",
"unit_idnum Var 0.036 0.090 \n",
"============================================================\n",
"\n",
"\"\"\""
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mdf.summary()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"vss = [\n",
" ('Baseline I', '11 Hz'),\n",
" ('Baseline I', 'Baseline II'),\n",
" ('Baseline II', '30 Hz'),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [],
"source": [
"\n",
"ps = pd.DataFrame()\n",
"ci = pd.DataFrame()\n",
"ef = pd.DataFrame()\n",
"mf = pd.DataFrame()\n",
"for key, df in results['gridcell'].items():\n",
" Key = key.replace('_', ' ').capitalize()\n",
" for vs in vss:\n",
" pval, low, high, mdf = LMM(df, *vs, key)\n",
" ps.loc[f'LMM {vs[0]} - {vs[1]}', key] = pval\n",
" ci.loc[f'LMM {vs[0]} - {vs[1]}', key] = f'{low}, {high}'\n",
" ef.loc[f'LMM {vs[0]} - {vs[1]}', key] = mdf.params[1]\n",
" mf.loc[f'LMM {vs[0]} - {vs[1]}', key] = abs(df[vs[0]].mean() - df[vs[1]].mean())"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>average_rate</th>\n",
" <th>gridness</th>\n",
" <th>information_specificity</th>\n",
" <th>max_rate</th>\n",
" <th>information_rate</th>\n",
" <th>in_field_mean_rate</th>\n",
" <th>out_field_mean_rate</th>\n",
" <th>speed_score</th>\n",
" <th>spacing</th>\n",
" <th>field_area</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>LMM Baseline I - 11 Hz</th>\n",
" <td>0.928209</td>\n",
" <td>0.054459</td>\n",
" <td>0.427792</td>\n",
" <td>0.088252</td>\n",
" <td>0.000080</td>\n",
" <td>0.285853</td>\n",
" <td>0.759764</td>\n",
" <td>0.016639</td>\n",
" <td>0.441497</td>\n",
" <td>0.112510</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LMM Baseline I - Baseline II</th>\n",
" <td>0.626481</td>\n",
" <td>0.587566</td>\n",
" <td>0.618199</td>\n",
" <td>0.955198</td>\n",
" <td>0.265741</td>\n",
" <td>0.595705</td>\n",
" <td>0.642428</td>\n",
" <td>0.040733</td>\n",
" <td>0.985474</td>\n",
" <td>0.535198</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LMM Baseline II - 30 Hz</th>\n",
" <td>0.556933</td>\n",
" <td>0.107195</td>\n",
" <td>0.839598</td>\n",
" <td>0.315473</td>\n",
" <td>0.081515</td>\n",
" <td>0.195477</td>\n",
" <td>0.665571</td>\n",
" <td>0.382314</td>\n",
" <td>0.603904</td>\n",
" <td>0.729193</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" average_rate gridness information_specificity \\\n",
"LMM Baseline I - 11 Hz 0.928209 0.054459 0.427792 \n",
"LMM Baseline I - Baseline II 0.626481 0.587566 0.618199 \n",
"LMM Baseline II - 30 Hz 0.556933 0.107195 0.839598 \n",
"\n",
" max_rate information_rate in_field_mean_rate \\\n",
"LMM Baseline I - 11 Hz 0.088252 0.000080 0.285853 \n",
"LMM Baseline I - Baseline II 0.955198 0.265741 0.595705 \n",
"LMM Baseline II - 30 Hz 0.315473 0.081515 0.195477 \n",
"\n",
" out_field_mean_rate speed_score spacing \\\n",
"LMM Baseline I - 11 Hz 0.759764 0.016639 0.441497 \n",
"LMM Baseline I - Baseline II 0.642428 0.040733 0.985474 \n",
"LMM Baseline II - 30 Hz 0.665571 0.382314 0.603904 \n",
"\n",
" field_area \n",
"LMM Baseline I - 11 Hz 0.112510 \n",
"LMM Baseline I - Baseline II 0.535198 \n",
"LMM Baseline II - 30 Hz 0.729193 "
]
},
"execution_count": 93,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ps"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>average_rate</th>\n",
" <th>gridness</th>\n",
" <th>information_specificity</th>\n",
" <th>max_rate</th>\n",
" <th>information_rate</th>\n",
" <th>in_field_mean_rate</th>\n",
" <th>out_field_mean_rate</th>\n",
" <th>speed_score</th>\n",
" <th>spacing</th>\n",
" <th>field_area</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>LMM Baseline I - 11 Hz</th>\n",
" <td>-2.180247281054466, 2.390356722874524</td>\n",
" <td>-0.0023867695467641864, 0.25185586146463945</td>\n",
" <td>-0.051885367585011555, 0.12239826383625366</td>\n",
" <td>-0.6829644446775598, 9.804487199879677</td>\n",
" <td>0.19919191566537162, 0.5924315270050661</td>\n",
" <td>-1.331724110761481, 4.516001132500179</td>\n",
" <td>-2.2810214616259765, 1.6653183103649472</td>\n",
" <td>0.006403510267647752, 0.0641586683092662</td>\n",
" <td>-0.03396312071531312, 0.014810117866574444</td>\n",
" <td>-0.0034073546240015826, 0.03240571021475902</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LMM Baseline I - Baseline II</th>\n",
" <td>-2.9916621645393118, 1.8014641972655332</td>\n",
" <td>-0.08520533103529787, 0.15040363600350248</td>\n",
" <td>-0.09750576854071875, 0.05796956577487157</td>\n",
" <td>-5.89536982035741, 6.243311205778393</td>\n",
" <td>-0.33674475640623824, 0.09282359337229243</td>\n",
" <td>-3.975512425442468, 2.2816253105581294</td>\n",
" <td>-2.481648525103001, 1.531057021714961</td>\n",
" <td>-0.05295935481734079, -0.0011404936657067148</td>\n",
" <td>-0.01536441943997291, 0.015081590471976884</td>\n",
" <td>-0.025402212987792654, 0.013191871767799448</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LMM Baseline II - 30 Hz</th>\n",
" <td>-1.6613041417405623, 3.083251607547346</td>\n",
" <td>-0.02440548847993497, 0.2496890970945263</td>\n",
" <td>-0.06538802363578307, 0.08044872106578226</td>\n",
" <td>-3.155261296686419, 9.780244204335176</td>\n",
" <td>-0.02805504733315664, 0.47641353819177146</td>\n",
" <td>-1.0103474044666294, 4.941540621504646</td>\n",
" <td>-1.5577059549335808, 2.439136826914514</td>\n",
" <td>-0.015556136704263908, 0.04057715367485169</td>\n",
" <td>-0.01107815629347443, 0.019054030954896606</td>\n",
" <td>-0.023819756067117653, 0.016668142405318446</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" average_rate \\\n",
"LMM Baseline I - 11 Hz -2.180247281054466, 2.390356722874524 \n",
"LMM Baseline I - Baseline II -2.9916621645393118, 1.8014641972655332 \n",
"LMM Baseline II - 30 Hz -1.6613041417405623, 3.083251607547346 \n",
"\n",
" gridness \\\n",
"LMM Baseline I - 11 Hz -0.0023867695467641864, 0.25185586146463945 \n",
"LMM Baseline I - Baseline II -0.08520533103529787, 0.15040363600350248 \n",
"LMM Baseline II - 30 Hz -0.02440548847993497, 0.2496890970945263 \n",
"\n",
" information_specificity \\\n",
"LMM Baseline I - 11 Hz -0.051885367585011555, 0.12239826383625366 \n",
"LMM Baseline I - Baseline II -0.09750576854071875, 0.05796956577487157 \n",
"LMM Baseline II - 30 Hz -0.06538802363578307, 0.08044872106578226 \n",
"\n",
" max_rate \\\n",
"LMM Baseline I - 11 Hz -0.6829644446775598, 9.804487199879677 \n",
"LMM Baseline I - Baseline II -5.89536982035741, 6.243311205778393 \n",
"LMM Baseline II - 30 Hz -3.155261296686419, 9.780244204335176 \n",
"\n",
" information_rate \\\n",
"LMM Baseline I - 11 Hz 0.19919191566537162, 0.5924315270050661 \n",
"LMM Baseline I - Baseline II -0.33674475640623824, 0.09282359337229243 \n",
"LMM Baseline II - 30 Hz -0.02805504733315664, 0.47641353819177146 \n",
"\n",
" in_field_mean_rate \\\n",
"LMM Baseline I - 11 Hz -1.331724110761481, 4.516001132500179 \n",
"LMM Baseline I - Baseline II -3.975512425442468, 2.2816253105581294 \n",
"LMM Baseline II - 30 Hz -1.0103474044666294, 4.941540621504646 \n",
"\n",
" out_field_mean_rate \\\n",
"LMM Baseline I - 11 Hz -2.2810214616259765, 1.6653183103649472 \n",
"LMM Baseline I - Baseline II -2.481648525103001, 1.531057021714961 \n",
"LMM Baseline II - 30 Hz -1.5577059549335808, 2.439136826914514 \n",
"\n",
" speed_score \\\n",
"LMM Baseline I - 11 Hz 0.006403510267647752, 0.0641586683092662 \n",
"LMM Baseline I - Baseline II -0.05295935481734079, -0.0011404936657067148 \n",
"LMM Baseline II - 30 Hz -0.015556136704263908, 0.04057715367485169 \n",
"\n",
" spacing \\\n",
"LMM Baseline I - 11 Hz -0.03396312071531312, 0.014810117866574444 \n",
"LMM Baseline I - Baseline II -0.01536441943997291, 0.015081590471976884 \n",
"LMM Baseline II - 30 Hz -0.01107815629347443, 0.019054030954896606 \n",
"\n",
" field_area \n",
"LMM Baseline I - 11 Hz -0.0034073546240015826, 0.03240571021475902 \n",
"LMM Baseline I - Baseline II -0.025402212987792654, 0.013191871767799448 \n",
"LMM Baseline II - 30 Hz -0.023819756067117653, 0.016668142405318446 "
]
},
"execution_count": 94,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ci"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>average_rate</th>\n",
" <th>gridness</th>\n",
" <th>information_specificity</th>\n",
" <th>max_rate</th>\n",
" <th>information_rate</th>\n",
" <th>in_field_mean_rate</th>\n",
" <th>out_field_mean_rate</th>\n",
" <th>speed_score</th>\n",
" <th>spacing</th>\n",
" <th>field_area</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>LMM Baseline I - 11 Hz</th>\n",
" <td>0.105055</td>\n",
" <td>0.124735</td>\n",
" <td>0.035256</td>\n",
" <td>4.560761</td>\n",
" <td>0.395812</td>\n",
" <td>1.592139</td>\n",
" <td>-0.307852</td>\n",
" <td>0.035281</td>\n",
" <td>-0.009577</td>\n",
" <td>0.014499</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LMM Baseline I - Baseline II</th>\n",
" <td>-0.595099</td>\n",
" <td>0.032599</td>\n",
" <td>-0.019768</td>\n",
" <td>0.173971</td>\n",
" <td>-0.121961</td>\n",
" <td>-0.846944</td>\n",
" <td>-0.475296</td>\n",
" <td>-0.027050</td>\n",
" <td>-0.000141</td>\n",
" <td>-0.006105</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LMM Baseline II - 30 Hz</th>\n",
" <td>0.710974</td>\n",
" <td>0.112642</td>\n",
" <td>0.007530</td>\n",
" <td>3.312491</td>\n",
" <td>0.224179</td>\n",
" <td>1.965597</td>\n",
" <td>0.440715</td>\n",
" <td>0.012511</td>\n",
" <td>0.003988</td>\n",
" <td>-0.003576</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" average_rate gridness information_specificity \\\n",
"LMM Baseline I - 11 Hz 0.105055 0.124735 0.035256 \n",
"LMM Baseline I - Baseline II -0.595099 0.032599 -0.019768 \n",
"LMM Baseline II - 30 Hz 0.710974 0.112642 0.007530 \n",
"\n",
" max_rate information_rate in_field_mean_rate \\\n",
"LMM Baseline I - 11 Hz 4.560761 0.395812 1.592139 \n",
"LMM Baseline I - Baseline II 0.173971 -0.121961 -0.846944 \n",
"LMM Baseline II - 30 Hz 3.312491 0.224179 1.965597 \n",
"\n",
" out_field_mean_rate speed_score spacing \\\n",
"LMM Baseline I - 11 Hz -0.307852 0.035281 -0.009577 \n",
"LMM Baseline I - Baseline II -0.475296 -0.027050 -0.000141 \n",
"LMM Baseline II - 30 Hz 0.440715 0.012511 0.003988 \n",
"\n",
" field_area \n",
"LMM Baseline I - 11 Hz 0.014499 \n",
"LMM Baseline I - Baseline II -0.006105 \n",
"LMM Baseline II - 30 Hz -0.003576 "
]
},
"execution_count": 95,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ef"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>average_rate</th>\n",
" <th>gridness</th>\n",
" <th>information_specificity</th>\n",
" <th>max_rate</th>\n",
" <th>information_rate</th>\n",
" <th>in_field_mean_rate</th>\n",
" <th>out_field_mean_rate</th>\n",
" <th>speed_score</th>\n",
" <th>spacing</th>\n",
" <th>field_area</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>LMM Baseline I - 11 Hz</th>\n",
" <td>0.105449</td>\n",
" <td>0.133233</td>\n",
" <td>0.036166</td>\n",
" <td>4.734064</td>\n",
" <td>0.417936</td>\n",
" <td>1.629185</td>\n",
" <td>0.322805</td>\n",
" <td>0.037336</td>\n",
" <td>0.016343</td>\n",
" <td>0.014129</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LMM Baseline I - Baseline II</th>\n",
" <td>0.671719</td>\n",
" <td>0.052668</td>\n",
" <td>0.026500</td>\n",
" <td>0.151797</td>\n",
" <td>0.147302</td>\n",
" <td>0.847032</td>\n",
" <td>0.602720</td>\n",
" <td>0.021480</td>\n",
" <td>0.023525</td>\n",
" <td>0.008499</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LMM Baseline II - 30 Hz</th>\n",
" <td>0.814797</td>\n",
" <td>0.100659</td>\n",
" <td>0.007509</td>\n",
" <td>3.100584</td>\n",
" <td>0.193361</td>\n",
" <td>2.016844</td>\n",
" <td>0.521574</td>\n",
" <td>0.016176</td>\n",
" <td>0.007847</td>\n",
" <td>0.008441</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" average_rate gridness information_specificity \\\n",
"LMM Baseline I - 11 Hz 0.105449 0.133233 0.036166 \n",
"LMM Baseline I - Baseline II 0.671719 0.052668 0.026500 \n",
"LMM Baseline II - 30 Hz 0.814797 0.100659 0.007509 \n",
"\n",
" max_rate information_rate in_field_mean_rate \\\n",
"LMM Baseline I - 11 Hz 4.734064 0.417936 1.629185 \n",
"LMM Baseline I - Baseline II 0.151797 0.147302 0.847032 \n",
"LMM Baseline II - 30 Hz 3.100584 0.193361 2.016844 \n",
"\n",
" out_field_mean_rate speed_score spacing \\\n",
"LMM Baseline I - 11 Hz 0.322805 0.037336 0.016343 \n",
"LMM Baseline I - Baseline II 0.602720 0.021480 0.023525 \n",
"LMM Baseline II - 30 Hz 0.521574 0.016176 0.007847 \n",
"\n",
" field_area \n",
"LMM Baseline I - 11 Hz 0.014129 \n",
"LMM Baseline I - Baseline II 0.008499 \n",
"LMM Baseline II - 30 Hz 0.008441 "
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mf"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [],
"source": [
"effect_ranges = {\n",
" 'gridness': (.01, .3, .01),\n",
" 'average_rate': (.5, 6, .2), \n",
" 'information_specificity': (.01,.2,.01),\n",
" 'max_rate': (1,15,.5), \n",
" 'information_rate': (.1,.4,.02), \n",
" 'in_field_mean_rate': (.5, 6, .2), \n",
" 'out_field_mean_rate': (.5, 6, .2), \n",
" 'speed_score': (.01,.1,.005), # if run again, change this to go to 0.1\n",
" 'spacing': (.01,.1,.005), # if run again, change this to go to 0.1\n",
" 'field_area': (.01,.1,.005),# if run again, change this to go to 0.1\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 128,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13f4f0aa63f84c6f8f32526954e607fd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Baseline I - 11 Hz', max=10, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c65251a34561404d910166151ed0b7e8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Baseline I - Baseline II', max=10, style=ProgressStyle(descri…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7ae981b7b1f0402aad9c533789909c5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Baseline II - 30 Hz', max=10, style=ProgressStyle(description…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"powers = {}\n",
"for vs in vss:\n",
" powers[vs] = {}\n",
" for key, df in tqdm(results['gridcell'].items(), desc=' - '.join(vs)):\n",
" power, effect_size = estimate_power_lmm_paralell(results['gridcell'][key], *vs, effect_range=effect_ranges[key])\n",
" powers[vs][key] = {'p': power, 'e': effect_size}"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [],
"source": [
"plt.rc('axes', titlesize=12)\n",
"plt.rcParams.update({\n",
" 'font.size': 12, \n",
" 'figure.figsize': (3.7, 2.2), \n",
" 'figure.dpi': 150\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 146,
"metadata": {
"collapsed": true,
"jupyter": {
"outputs_hidden": true
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcZdn/8c9u2qaTnhBIQtoVQhPpIBJEUR/EhqiAVEGxYRcLCvhYsPtYHtEHKQKKqCgIiCggP6mCFAlJrpCQEAjppLfN7s7vj/ue2bOb2T4zZ2bn+3699nX2zClzze7MXOeupyaTySAiIiK9X23aAYiIiEhpKOmLiIhUCSV9ERGRKqGkLyIiUiWU9EVERKqEkr6IiEiVUNIXERGpEkr6IiIiVUJJX0REpEoo6YuIiFQJJX0REZEqoaQvIiJSJZT0RUREqoSSvoiISJXom3YA0jYzmwIsaWNzBlgPLAP+AvzA3deUKLSCMbNzgGuA5e6+V+LxfwDHAV9390vSia59ZnYtcDZwv7vPSTGO/YEngJvd/X1dOO4g4HHgRnc/pxvP+wBwDPBLdz+/g32nA8/F1WPd/YGuPl8xmNl1wFlx9R3u/qc045HCMbMxQI27r047lnKikn7lmAs8mPj5F7AW2B/4AjDPzA5ILzxJg5mNAm4C+nXxuDHAb6jiC38zGwq8K/HQhWnFIoVjZjVm9hnCRebMtOMpN1X7ga9AH3P3f7R+MH7pXwecBPzezPZ196ZSB1cEZwGDCBc2koeZTQJuA/br4nFT4nH7FiGsSvJewnvsbuAE4EQz28fd26pdk8owAPhO2kGUKyX9Cufu68zsbGA54ar2ROCudKPqOXdflnYM5czM3gP8LzCyC8fUAKcBPwFGFCm0SnJeXN4G1AGvBT4IfD61iESKTNX7vYC7ryNU/0Oo7pdezMweIlTpjwT+EH86OqYWeBi4kZDwbwaqtv3azGYBR8bVOwl/D4Bzzax/OlGJFJ9K+r1Htk13c+sNZtaXUMJ7N/BqYBTQALwM3At8390X5jnujcBHCF+OI4CNhIuLm4Gr3L0+zzHDgI8D7wSmEy4snwduIXQ23NCZF5OvI1+iY+MqYAKhpPYBYHY8bC7wC+Bad88UK7YycBTwInCxu/8mdijsSC1wBKHj52fd/WYzu6GIMXZKojNgRxa7+/QCPnW2lP+Uuy8xs5uBHwJjgVMI/R2Scc4C5sfV2e4+n1ZiTcpSYBLwPne/MbFtBvAZ4A3AnsB24GlCJ9brWzfJmdlNwHuAc4EhhNqH0cALwLnu/lDc71DgQ4S/4URC1fYrhA6aV7XVMdHMjgQ+Cxwez7uE0Ez4A8J7ZBwwwd1XtjruEOCThM/mOGAT8Bhwpbvfmu+52mJmjxDekycAc+LrGAwsBt7u7ovjficA7yd8D40D+gBrCBexP3X3+/P83bL+aWYAp7n7TYn9uvT/6E1U0u8FzGwaoYTfRKuqfTMbSGiz/BXwFqAeeIbwxTCDUJ35hJkd3Oq4i+K5TgZ2AU8RLiiOA34K/NXM+rQ6Zhbhg/NV4ADCRcVzwCzgK8BTcZ+eqiF8QV1FaNJYSLiIORK4Gvhm6wNKGFspXAjMdPffdLhnsybC/3qmu9/c0c4l9B9adlBt3Vk164VCPWG8CD4zrv4aII58+Xt8bLcOfe6+gJBkANoaIXEcIeFvIlxIZp/vvYTP3AcISWsBsC7ufy1wR/yc5nM+8GPC/28RMJ7wN8PMPkH4G50HjCF8Dp4H9iD08fmjmX05z+v/IOHv+05Cn4a5Ma4rgL/SRqdQM/tUfL4zgOHxNW0D3gT8ycyujjVKXfVV4MuE0UjLgYHxdWBmPyD8X06Lsc4HXop/h1OB+8zsrMS5FgAPJdafia81N7Kph/+PiqekX6HMrI+ZjTKzkwnVk7XAN9299ZfjxcDxhA5xh7v7Pu5+mLtPIlzlryBcXX8xce49gG/F1dPcfWI8Zh/gjYSr4jmED132mMHAn4EpwK3AJHc3d38VsDdwBzAZuK0AH6ixwOmEUvtodz+EUPLPllw/HXunpxFb0bn7z919RxePaXL3X7j7zmLF1R3u/mF3f02+H+DZuNty2k603fFfhKTRREz6Ufb981ozy9fJ8Zq4PD2W6lvLXkj81t23A5jZYYQL7n7ApcBId39VrLU4nFDCfhPwozZiPQb4HjDF3fcHprv7FjPbD/gu4QL4s8A4dz/E3WcR3tPZEv4XzWxI9mTx4v6nhO+Ly4Hx7n5Y/HtcTvhc79ZPxMzeHuPYCXwY2CM+36QY/zpCrcQX2ngd7TkG+Li7z3T3GcBR7p4xszcBnwAaCf//Ce5+aPzbTSck9xrg69kTuftlhJqDrOz76574Onr6/6h4SvqV4z4zy2R/CCXbtYROSDMJSXq3q3rg9YQvt8vd/bHkhrj+s7iaHO5nhI5N64HftjrmbkJJ+veEWoOs8wkfxCeAU9z95cQxKwkXCC8QahfO6fSrbtv/uvuP3L0xPscOwhdEhtBsdXiKsVWb9yffm/l+aB6j3ylmdgkhiWwFTnb3FQWM99y4/Ie7L088/qf4fJB/+N5vCRe8U2jVJGFmdTQP/7smsemrhATzXXf/avKiK37+TiW8Z8+LNXatbQYuyVY3J+bieCOhBu5Bd/+uuzckzrsG+FxcrSO897MuI1SP3+Dul7n7rnjMrpgwk7EnfSMuP+3uP0tWf7v7X4EL4urFsRmtKxa6ey7JJl7jmwjfMTe5+43JJrtYuLksru4VCyqd0dP/R8VT0q8crcfpP0IoCWXftJ8CftS6yj2WmOqAK9s477a4HJR4bAnhomIEcG2cxCV5zv9291Pd/ZbEw++Iy5uyibjVMdsJFwoQmgx66s95nmMdzdV4yS+BUsdWbVbRdhV99uffnT2ZmZ1O+HLOENrGnyxUoGY2llD1Dc0lewDcfSvwx7h6lpkNarV9E82dJs9odeq3A8PCbv5wfK4hhIvu3Z4rcc5/A/MI38Un5dnl8Xy1Ou7+fXcfmDh/a9sSvw+K8QwijO6B5ov91n7Y+oHY7JWt+WirH8ithGaNoYTagq54MN+D7v4JQlX/+9s4brfX2J4C/T8qnjryVY62xun3J5ROfwJ8lHAV/+HkPu6+y8xGxM47M4GpcXkwoU0LEheA7r7azL4FfIkwXv4sM1sJ3EPoH3Cnu7ceP58dNXCBmb2tjdcwPi4L0Xa+vI3Ht8dl8r1d6tiqze3etRn52tvvWEK/jBrg8211ROuBMwklvR3kH/VwPaEqeQ/COP6rW22/Om4/1cwuypaUaa7avzax7yya34e/NLPdOr5GExL7t9ZRDUdD/FzvB0yLPwcQauuysp/t6YQCAIT+LfnMJRQkBiQey35+MsBfYse4fLKvdRahBrKz2nyN7t4UJ9t5LaHD7lTC6zgo/p7VmQJsIf4fFU9Jv8J56EH/CzObQKju+oCZfdPdX4TcrGP/Q/iiSnbQqSdUdz9JqEZrfd5LzOzfhAuJ1xKS4hnxpyH2kv2ou2+MhwyPyxnxpz2drYprT1sf2Kxkm2upY8srtqf+uI3NV7t76wRTVcxsJqGKfQBhBMa3OjikO7JV+3XAxnYSGIQq/tb/k38QeuhPAd5M6AcyllCCbiS0F2cNT/x+WCdiy/fe257nMQDM7ALga4Q+LkmLCdX0rUvIo+MyE2s1dhOT7BZaJv3s66ihcyMtuvoZyvsaY6fAzxP6JSWbDJoIne9+Tejb01mF+H9UPCX93uNWmtvrDiYM6co+fjzhg/VjmpsFnos1ABeQJ+kDuPsfCT2AhxF6ts4hdIKaRbiIGA68Ne6+Na6f7O63F/i19VS5xDactr80/97G41XBzEYTOqSOBP5JGGlQ6Oc4gubZC1cSknQ+A2Mch5nZq939ieyG2MHsWsJn7QxCifY0wnfpXcn+IjT3DwDon6gV6LHYAz/bZHcH4WJpLrDA3TfEi/3WST8bT42ZDXX3fMN7awhDBPMd1+L+GCXwdZonSrqRUMv4LOE1brUw7XhXkn7R/h+VREm/90iOK62B3Fjc4+NjJ7n7fXmO2+1
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFbCAYAAABfzB2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxcdb3/8VeSpht0L6WFNi1d+LCXHSogKLIochVxAQFFRS/oVRQVvD8X6orgvaIiijsIyKLiRVYFRGSTfSnbpy3QBijQNi2le9pkfn98z0xO0pPJTHImM5l5Px+PPE5O5pzvfNOezLznu526TCaDiIiISFf15a6AiIiIVCaFBBEREUmkkCAiIiKJFBJEREQkkUKCiIiIJFJIEBERkUQKCSIiIpJIIUFEREQSKSSIiIhIIoUEERERSaSQICIiIokUEkRERCSRQoKIiIgkUkgQERGRRIPKXQHpX2Y2DXixm4czwEqgGbgFuNDdl/VT1VJjZqcCvwNecffJsZ//EzgU+K67f608tcvPzC4FPgrc5e6HlbEeuwGPAte6+8lFnDcbeBi40t1P7cXz3gMcBPzG3U/r4diZwIJo9xB3v6fY50ubmY0ATgaOAfYAJgBtwDLgEeAGwr/Npl6Wn/33+aa7zy3ivJeB7YGPufulvXluqU1qSahtTwH3xr4eBJYDuwH/DTxjZruXr3pSDmY2DrgaaCzyvG2Aq6jRDx9m9jFgMfAzQkjYGnDguej79xHCq5vZvuWqp0gxavKPWXI+6+7/7PrD6E3iMsIL3Z/MbGd3b+/vypXAR4DhhCAkCcysCfgrsGuR502Lztu5BNWqeGY2Fzg32r0V+BbwQPbvxszqgbcCFwD7AXea2b7u7kU+1YfRNSz9SCFBtuDuLWb2UeAVYEfgSMIL34Dm7s3lrkMlM7MPET4Fjy3inDrgROCnwJgSVa2imdm76AgIP3D3s7seE4WFf5rZW4F/AHOAiwh/WwXTNSz9Td0NksjdWwjdERC6H6SKmdl9hC6GscCfo6+ezqkH7geuJASEa4H/K2E1K04Uki6Mdv8FnJPveHffAPxXtHuEmU0vYfVE+kwtCZJPtk96ddcHzGwQ4RPkB4G9gXHAZmAJ4ZPSD919fsJ5RwGfAQ4kvLGsIoSRa4Ffu3trwjkjgTMJfbozCeH2BeA6wuDKNwr5ZZIGLsYGcr4OTAI+DnwK2CU67Sngl8Cl7p4pVd0qwBzgJeAcd78qGkDZk3rgAMJA1y+7+7VmdkUJ61iQ2OC+njzv7jP7+HRHEFrbAL6ddI105e6PmtkPCddWS/bnsYGYrxD+Pn4FHAasA25291PyDVw0s+2ALwHHApOBpcA1wLeT6tHl+aYApwGfpKPLaB7wC3e/rJvzR9H52q8DFhKu/R+5+6qEc6YQgtRRQBPQSrh+biP8vSxOOOckwt/lXoSxHSsJg2p/D1xdyL+59J5CgiQysxmEFoR2unQ1mNkw4CbgbdGPFhFeULYFZkVfJ5vZIe7+WOy8zwE/jnaXAI8D4wlv3IcCHzCzd7h7W+ycnQgzLaYRRok/D6wn9Jl/A/iomR3t7s/18VeuI4zDOAV4A5gPTCe8WB8IGPCVLv8O/VW3/nA6cFn0SbdQ7cB/RudtLE21euXJPI81AvtH32/xhtQL7462q4B/FnqSu38xz8NDCW+a04Gngal0PyMJADPbi3AtbgtsJASQccCXCW/Iw/KcXkdoDTqRztf+HGCOmc3qOhvIzHaJnq+JcO0vjJ53V8Ksjuy1Pz92zo6EAdLjgTWEAZ11hJC1S3TOoe7+ZOycnwCfjXYXRc8zGTg6+jqCECCkRNTdIDlm1mBm48zsWOBmwvVxXkK6P4cQEJYD+7v7Du6+n7s3EV6AXwW2Av5frOzRwPnR7onuvn10zg6EF7H1hE9NH4idsxVhytg04Hqgyd3N3fckfPK5ifAC+tcouPTFBMKgsDOB8e6+D6FlIfvJ+IvR6P1y1K3k3P0XRQYE3L3d3X9ZYQEBd/+0ux+c9EV404Xw6bngqZ157B1tH3X3zSmUB+HNfRywh7vvDWwH/KC7g81sMGFWybaEcDHF3feN/raOBXYg/ziT7Qh/d58FxsWu/auix882s9z50TTPGwkB4bro+XZy99mEa//W6Dn/amZDYs/zPUJAuAaY6O6z3X0Pwt/Qv4HR0THZ59ktqtN64NDodWZ/wlTOjxOmbH9MM0VKSyGhtt1pZpnsF6G7YDlhlPqOhDf1ryec9w7Cp8hvuvtD8Qei/Z9Hu/Hpk0b4hLSS8CIRP+fvwHnAnwjNj1mnEZoxHwWOd/clsXNeI7ywLSa0XJxa8G/dvZ+5+0+yLRnRm+bnCS9Gg+j4BFqOutWaT8SvzaQvOtZIKIiZfQ34GLAWONbdX02hnhOj7esplBX30+zMB3ff6O5bdPnFvJ/w99UCfCC+tom730i4hntykbv/NDsbI3btQ2h92S927KcIIeCh6Ply/47R98cTuq6MMKMoa3a0vcLd18bOeS16rluBZxOOf8bd/xU7PuPuvwN+QQgyFR/CBzJ1N9S2pwjNpFkNwAjCm98Q4CxgKzP7fLwLwN0PNrNGwptnknXRdnjsZy8SQsgY4FIz+6G7PxErM6nf9Lhoe3X8+WPnrDezPwFfJHxi+nnXY4p0Q8JztJjZMkJLw+gy1q3WvE5oWs5nKLBPIYWZ2YcJ0xIzwMnxbrA+6vGDlpktIrQqJbmsm0WnilkYKtvl8ZekcQCE1rAfE/rzu5N07S81sxWEVoika/+qpKnR7r7OzK4jtModSxhbASHUzQQuiAZ83u7u66NzHgDe2aWobAjcx8zOB37l7rlrwt3PyPP7SEoUEmpbd+skDCZ8+v0pYSR2A/Dp+DHuvsnMxpjZgYRWh+nRdi9CsyfEXkCjF5zzga8SPl18xMxeA+4A/k4YmNV17nd2VsUnzew93fwO2U9yO/X42/bslW5+vj7axv9e+rtuteZGL27FxXzHHQL8ltD//RV3T3MGxnLCp+pt8xzzEPByl5/tCGyTcGxWMa0cFm2fSnrQ3VvN7Bk6t4R11Ztr/wwzO76b8yZF2/i1/3XCWhE7E1orN5jZvcDtwE3uPq9LvR80s2uADwFnE7o9XiS8ZvwNuNXd1+T5nSQFCgmyhWiGwS/NbBIwF/iUmZ3n7i9Brk/yx4Q+3fiqfK2E5vfHCIOKupb7NTN7hBA83kp4Ez0p+tpsZlcD/xX7NDQq2mYHQ+YzuofHC7HFzIou6mLf93fdEkUD1i7q5uHfuvtvS/XcA0E0WO7/CC1jl7r7+T2cUqwnCU3xO5tZXdJIe3f/QNefRbNATspT7vo8j3WVXZ8i3xvmyh7KKObaHxlti7r23f0RM9uTsJrrewjjLg6Pvs4zsyeAM9z9/tj5HyaEgk8QQs4OhK6+04D1ZnYJYUZOr5a5lp4pJEg+1xNCQgOhheCl2M/fRnghu4gw6OhpYEHUwvBJEkICgLv/BfhLNHXwUMJgxXcRPnGcTHjz/Y/o8LXR/rFR32olqZS6jaL76X6392dFKo2ZjScMwB0L3E2YiZG2mwlvYBOBg6Pn6W8thDfPkXmOSbPffh1hYPI73b2oRdai7oJPRK8R+xL+/t9BeD2ZDfzdzCw7xifqzvgV8Kto4PDbonOOIQyc/EJU9Fl9/J2kGwoJkk+8v7EOIOpeyE59PMbd70w4b3LXH0Qj/GcBde7+hLu/SegHvYEwc+ArhMGLx5rZqKg1wQmfHnYljKbegpnNIrxRLvb+vRlVRdQt6i6q6+m4WmNmQwlN2jMI61a8zxPW4EjBXwkDVKcCc6MpvP09b98Jb7h7JT0Y9f/vkvRYH55vb8K1nxgSohackcAid18eLbzVBMx099ujN/8Ho68LounEDxHGTRwHXBy1WBrwprvPj/6GrgWujcq7hLCuwykoJJSMZjdIPsdE2wzhDnYQPrFkPUIXZjacMN8aOofQTwFPAFdEL1pd3Rb7viHaZgdTnZY0jTBa0Ol6wovL/3T/a5REJdetpkXX1+8J8/xXAe9OGO+Simja45nR7tuB/zG
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFbCAYAAACwDnanAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wdVf3/8ddmUzZtU0khvZAPNZRAEjqIgoqIICpoaFJFRfn+FP1+RcHvV8QuRRSRXhUVRCkWEJCaQGihfUhIT0hC2qZuNtnd3x9n5u7N3nu33t3b3s/HYx+zc2fm3LM7d+Z+5sznnCmrr69HREREJFmXXFdARERE8o8CBBEREUmhAEFERERSKEAQERGRFAoQREREJIUCBBEREUmhAEFERERSKEAQERGRFAoQREREJIUCBBEREUmhAEFERERSKEAQERGRFAoQREREJIUCBBEREUnRNdcV6ChmNhZYkGFxPbAOWAw8CvzS3T/opKpljZmdBdwKLHP3kUmvPwkcCVzp7pflpnZNM7PbgDOBp9z9qBzWY2/gZeA+d5/Riu32BV4C7nb3s9rwvs8AhwI3u/u5zaw7EZgbzR7u7s+09v2ywcyWAiOA77r7D7JU5q7Az4APA/2AD4Cz3f1f2Si/EJjZXu7+ZqPX4s/H9939ipxUrMSY2V3AF4DbGx/TZnYI8APgAKAbsBKYSvi8Ahzt7k+2473jY+tsd7+t0bJuwFh3n5tu245UtAFCI28AVUnzXYEBwN7AfsB5ZvYhd5+Ti8pJbpjZIOD3hAO+NdvtAtxL6Rw/HcLMyoF/EI7D7YTjtILMgX1RMbN+wFXA+eizlLeii83HgJ7ABuAtYAewvhPe+2PANcA9wBUd/X6NlcqH8qvporvoC+J24HjgT2a2h7vXdXblOsAZQC9gda4rkq/MbDTwV2CvVm43Ntpujw6oVqnZkxAcAHzM3R/PZWVy4CDgSxmWfR4dw53tm4RWgqpGr59ACA6qgAnuviZeYGbxeWBxO9/7SMKFyvuNXv8OsFs7y26zUgkQ0nL3NWZ2JrAMmAQcC/w9t7VqP3dv74e1qJnZ54BfAwNbsU0ZcBrwK0Lrk7Tf4GhaD/wnlxXJNzqGO5+7v0/qFzQ0fE7nJAcH0TbvZOm938tGOdlW8kmK0Q5/I5rdu6l1pfCZ2XOE2woDgT9HP81t0wV4HribEBzcB/ylA6tZKsqjaZ27b89pTUQyiz+n23Jaixwo6RaEJPE96I2NF5hZV8KV42cJCSqDCPeflgP/Bn7h7u+m2e444MvAdMKXShUhELkPuMnda9JsUwl8DTgZmEgI4OYD9xMSKVt0zytdkmJS0uZKYDjwRcK9zz2jzd4AbgRuc/f6jqpbHjgYWAJ8y93vjZIlm9MFmEZoRvymu98XJTTlVFIiW3Pec/eJHViPOLnrPMIx8T3gI4Qrr1WEVrn/i6+KGyVdApSbWfyZ2ykB0sw+QmiGP4QQ1FUBLwI3untKkJaU7LU3cCFwOuEE74REyG8Qmm2/T/i8X064xTiY0JJ4F/ADd99uZh8CvkVIRqsg3Hv+hbvfneZ9u0b/g8/QcJ7YTjhPPA783N3npalnPB///aPcfWlTSYpm1iv6n3yWcKurO7AU+Bfws8ZXo2b24WjZs8DRwCXADMJxXENItr3a3R9q/Hc1xcxGRf+f44DRUVmLo/f6pbsvarR+/DfvA4wD/huYDGwFXgeucfe/ZnivcsKt0zOjbXoT/rf/BH6S6QrczHoA5xJu2RjQN6rjw8BV7r4yad2dkhTN7Fzgd0nFHZO0nw4HXiDsY0iTpGhmw4GLgE8BYwnnkXcI+QTXJX8HNE5STPPel5vZ5cDNwAPAQ9F7D2/cqhGV1xtYAfQBDnT32en+P80p+RYEM5tAOJnU0ej2gpn1JHwA7wA+QTgA5gBrCfeFLgBeNrP9G213cVTWCYSd+Coh+DgSuB74R/SBT95md+A14H8JB9Bywkl0d8IJ99VonfYqI+Rd3ES4rfIuIeCZDtxCSJraSSfWrTNcCExy93tbsU0dYV9Pcvf7OqZabfI64aSf7mdW0nqLUjftEAcSPuunA5uA94CRhBP0i2YWfyFujer4RtK2cb3jIKLMzH5NOP5OInzJv0o4nj4GPGBm90RfzOn8FvgK4YtzLbClURAbf6bPiZavBMYTPs+3mNmXCYlphxAC62rCF/9dZnZO8htFX9iPAbcRgo1qwr5ZRzhPXEg4T0xO2mxWhr+/yavUKHfmFULPj6mEJvE3CF8uFwJzzOyUDJv3IPw/fwwMA94mXCQeA/zNzM5r6r0b1WMSoffPl6Oy3iH8nyYQLiRebfT3JjufkMdzQLRdDfAh4EEz+0Wa96okBB23EM6hmwnn4cFRWa+b2YlpthsBPEe4LXgIYT+/DYyK6jg7CnIyWUHYJ0ui+Soa9lPjPIXG730E4fN1GeGz9l5Uzv6Effdw1DuhuffeEM0viebnEr5blhMubE/NsP2nCcHBnLYGB1CiAYKZlZvZIDM7AXiE8H+4qnHES4iOjyYkCk1193HufpC7j6bh4OwN/E9S2f0JByDAae4+ItpmHCHS3gocRbjSiLfpDfyNEGU+CIx2d3P3/Qgf5oeBMcBfo6ClPYYQoumvAYPdfQqhRSG+Iv5/UZZ+LurW4dz9t+5e3cpt6tz9RnfPqyZGd7/I3Q9L9wPE3eaWEa4WO8MFhBO3RZ+RPYHDCCf0IYQrV9x9WVTHS6LtapPqfkf02qWEq+TthC++oe4+lfBFeGpU5mk0HGuNHQKc4u57u/sYQstXss8RggJz98nROj+Mls0ArgV+Cgxy9wMIgU7c9fLbjcr6H8IX1yrC1dr46JgfRQi8VxKuXP873sDdT076+0n6+zN2t44uKh4mBPZvA5Oj//OBhC/pWwnJdHeb2YFpijgQmAKc6u5DomN/JPBktPzK6HZaS/yQ8AX9B2CYu+/r7pMJ54kXgP40/D8b+yqh98qoqO4jCfu6FrjEzD7TaP2bCefhOcBB7h5vtwvwI0Iy571JCYOx2whByFxgf3efFJ23xgMzCZ+ljC2B7v5Q9DmNP5MvJe2njD3eouT3+6L6PQyMdPf93H13wudhDaE1K2MX9KT3jt/nluh9f+zutUl1Oj1DEWdG01szvUdLlEqA8ISZ1cc/hCvm1YQodhLhJPPdNNt9mHD1+H13fzF5QTT/m2h2n6RFRmiOXEc4eJK3+SfhCv1PhKg5di6hue9l4NPuvjxpmxWEYGIR4WrkrBb/1Zn92t2vjT5oRF+YXycki3UlBD+5qlupOSf5s5nuh52b45tlZpcBZxO+RE+Ikq86wzbgpOSmdHd/loaTWUtuh8RX5HHQ/Z0oqKuLyqt39z8QggaAr2a4CnzS3RP5Je6erjfAmY2apq8iHAPx9t+Km4HdfTMNwchEM+ubtF18nri88dWau88ktGbAzueJtjiN0Nq5ldDrI/El5e5VhNaQxwi3HDKNU3FZ9P+Lt1tPuBCC8IXW0oz5faPpXdH/Ji5vBeFc8ndCEJPOAuDkOBiK9ukNQNx6cHm8oplNAU4hfJaPdfeXkt6r2t3/m3CbsydJX7hmdihhv9QCn3T3V5O2W074X9YBR0StyNl0ITCU0GpwSvJtDHefBfxXNHtWlPzcFrdE02lmttM+i1qZjiYE1+26FVoqAcIb7Nz8+gLhCiu+Ivwv4NrGzf5RBFcB3JCh3C3RtFfSawsIAcgA4DYLA+okl/l/7v4Zd78/6eWTounv4y/tRttsJQQVEG5btNff0rzHGhoG/eifw7qVmpVkvk0Q/7S4idDMPk+4FVQPzHD3V7Jd4SbMdPdVaV6Pvyj6p1mWzpFAJSGI/nWGde4hNMN2IzTrN9bcYFIr03yZb6KhW+EjabZZnvR7ZdJ20wnniZsyvFf8Bdorw/KWio+vB9K0duIhdyj+kj3GzPqkKSPl2GfnL/KW7qM4aP2JmZ2Q3Hro7jPd/WPu/s0M2/7W3bekeT0+z+6V9KUdn38ej4KPdO6Mph9PagGJ/1f/8TQ9Ddx9AaG5f5BnvwdB/N53ZGit/AN
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAFbCAYAAACux0YUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZzddX3v8ddM9oRsJBAgZCPAl0UWEZAUWXqr2F5ci9a2oHWjar21t5v2Xr0VW63a3lu9td5Sxa24oqWlLlXRVhBEFgVl/bCYSUKAQFaWJGSZuX98f+fkN5NZM+fM75yZ1/PxmMdvfvP7nd98TnLOb97n911+HT09PUiSJAF0Vl2AJElqHQYDSZJUZzCQJEl1BgNJklRnMJAkSXUGA0mSVGcwkCRJdQYDSZJUZzCQJEl1BgNJklRnMJAkSXUGA0mSVGcwkCRJdQYDSZJUN7nqAlSNlNJyYPUAm3uALcBa4N+Bj0TEE2NUWsOklF4PfAZYHxFHln7+A+A84AMR8Z5qqhtcSumzwO8A10XE+RXW8Rzgp8BVEXHJCB53CnAb8IWIeP0B/N4bgLOBT0XEm4fY92jggWL1nIi4YaS/b7RSSm8GPln60csj4t+G8bhvAy8uVj93IP9W7SylNAVYHhEPDLmzxoxXDARwF3Bj6esWYCPwHOB/APeklE6qrjxVIaW0APgyMGWEjzsE+BIT+4PHq4faofj3/ZUxqKUlpZR+DbgbuLjqWtTbRH7jap/fj4gf9P1hceL6HHAh8LWU0vER0T3WxTXB64CZ5PCjfqSUlgL/Bpw4wsctLx53fBPKagd7yOfVl6WUpkXEs4PsexET+xz8buCYqovQ/ibyi1JDiIhNKaXfAdYDxwIXAN+utqrRi4i1VdfQylJKrwH+H3DwCB7TAfwW8PfA/CaV1g7WAzuBRH6/fH2QfV9TLG8HntvkuqRhsylBg4qITeSmBshNCxrHUko/IjcfHAz8c/E11GM6gZuAL5BDwVXAvzaxzFb31WI5YHNCSmkRuZ/LncA9Y1GUNFxeMdBw1NqYn+q7IaU0mfxJ8TeA04AF5MupjwD/AfxtRNzfz+NeDLwdOIv8x2QbOYBcBVwREbv6ecwc4A+AXweOJgfbXwBXkztIbh3Ok+mv82GpM+YG4HDgjcDvAicUD7sL+ATw2YjoaVZtLWAVsA54V0R8qegEOZRO4Pnkzqp/GhFXpZQ+38Qah6XUgXEoD0XE0Q381VcB7yE3J0zt77UMvAqYRO6LMWBzTUppPvA24NfIzTNzgWeAB8lXIz4aEduKfTvJ77nzgEeBEyNiS5/jXQlcAjwMnBIRmwd7Iiml95Mv+X+AfGXjg8Cy4vh/GhFfLfY7BvhvwC8DS4FZ5Pf0z4AvAp+pNUP201HzvSml99Kno2lKaS6931MdxfO+uvy81XheMdCgUkoryVcKuunTjJBSmgF8F/gn4CXALvInoM3ktsO3AD9NKT23z+PeURzrpcBu4A5y6DgP+DjwnZTSpD6POY58kvkL4CRy8HgAOA74c+COYp/R6iD3q7iC3HxyPznonAV8mnxi7GUMaxsLbwWOjYgvjeAx3eT/62Mj4qrmlHVAfk7vTrV9O9jWrGnkL42IO4F7yX/ELxhgt1ozwpcHOk5KKZHfTx8gB68nyM9pD/A84DLgppTSrOL3dpP7z2wjh9uP9Dneb5NDwV7g4qFCQR+/Qg48c4vndgR5tAoppV8nB+d3AMvJ/573ATOA/0J+L32mdKzHyP8HTxbr64r1+siElNIJxXN9H/n88zA5FJxYPO/bU0rHjqB+jYDBQPtJKU1KKS1IKb0U+Bb5dfLBiOh7An0X+RPCRuDMiFgREWdExFLgTPKnilnA/ywdex7w4WL1tyJicfGYFeRhWzuA8yldhi1OfF8nn3SuAZZGRIqIU4ElwDfJn2L+rQgro3Eo8NvkTyoLI+J55JNs7RPwHxe97quoreki4h8jYucIH9MdEZ8YoqPdmIuI34uIF/T3Re4ND7lPwLCHYY7AgM0JKaXFwAuAWyJioCHDAJ8CFpP/aC6NiOOL1+OhwBvIw4qPp1R/0X/m7cXq76SUfrX4ncvJ/UYA3h8R14/w+ZxF/qS+tHhtL46Ih4oOyp8GpgIfAxZFxCkRcRKwiBz0AV5XBB0i4hvF/8GdxbZPF/8vHy5qnQ18g3zl4WpgSUQcFxGnkN9T3wZWkN9T00b4PDQMBgMB/GdKqaf2Rf5EspHcu/xY8h/y/9XP415I/rT4voi4tbyhWP+HYrU81DEB08nzJHylz2O+S/5E/jXy1YeaN5MvJf4UuCgiHik95jHyyXcN+SrF64f9rAf2/yLi7yJib/E7dgL/nXwinkwOPVXVNtG8qfza7O+L0ifN4UgpvYf8h/UZ4KUR8WgT6q5dOXl5Smlqn22/Qb4yNdjVgiPI7xWANxevJaAexD4L/LD4Ua+hxBHxhdKx/7Fo5rqS/Gn/h8BfjvjZZH9cC3+leU3OIzeJrAf+MCJ2lOp4Gvgj8vlkvzoH8bvkP/y3Aq8u//8U319EvsqQyFdI1GAGA8H+8xj8mPyJqvYJ8I+Av+t7eb9I/dOBywc47vZiObP0s9XkE8V84LPFRDjlY/5lRLw6Iq4u/fiVxfLLtT/WfR6zgxwmIDdPjNZ+PcmLTpi1k+G8CmubaDYwcHNA7esnwz1YcTn9L8gh75KIuL3RBQNExN3k99Bc4EV9Nr+GHKgHbHaJiEci4hBgZkTc13d70bendil+Zt/t5H4J68ifum8mX6HYQm5C2O91Ogzr+hvNExFXR8Rs4JgBjju1+L0D1dmf2nvqS/0Nj46I7eQrCeB7qinsfCgYeB6DqeRPuX9P7lg0Cfi98j4RsTulND+ldBb56sJRxfK55EuJUAqgEfF4SunD5A5NryNfYnwM+D65v8K3IqLv/AK10RCXppRePsBzOKxYNqItf/0AP699Giq/b8a6tonmGyOc+XCw/c4hX/buAP4sIpo9cuIqchv5q8lNSrVL+s8Hro+IgV5ndRGxo3jM6eSrTkeRmw9OJTfTQT8f8CJiazHU+Hvse929KSLWHeBzGeqqys4i5J8CrCy+TiS/P2rvl+F+EK29p96WUrpogH0OL5a+p5rAYKABFb2pP5FSOpzc4ed3U0ofrJ1cirbA/0tu4yzPjreLfGn9duBX+znue1JKPyGHjXPJfzgvLr72pJS+DPy3Uq/jucXyGIaeEGXeENuHo79e5GUdpe/HurZ+FR08PzbA5k9HxKeb9bvbQdFR7V+BaeSRJR8e4iGNUAsGLy+NTviNYtuQnTtTSseTr8ad22fTNuA6cnv7YJfnbyZ39DuC/Jq+d0TV97ZjoA1FX6SPkkNL2Xry83wZ+94nwzGnWFb6nprIDAYajmvIwWAS+UrAutLPf5l80vgY+5ogHiiuJFxKP8EAICL+BfiXov3zPHKHw/9K/gRwCflE8rJi92eK9ZdGxDca/NxGq1Vqm8vAQ/O+N5aFtJqU0kJyJ9qDyW3sbxmL3xsR96WU7iT/8X5hUcNryE1pXxvssSmlw4DrgYXkPiqfIAfte4E1EdGTUvoKgweDj5BDQTf5kv7nU0qrImL3qJ5Y7zpfRD4PdAA/Ig9NvBO4t9YPIaW0YYSH3U6+GvJrEdH2E6q1I4OBhqPcztcBUDQd/HLxswsj4j/7edyRfX9Q9Mw/BuiIiJ9FxJPkNv2vk3v8/xm5A+JLU0pzi6sGQe7wdyK5t/J+inHUc8knzbG84VNL1FY0BXUMtd9Ek1KaTu5Eu5I8r8SvR//zCjTLVeQ/3q9OKd1PnuvjO/00l/X1ZnIoeAI4bYChhfu9v2pSSi8hd+LbS57S/J/YN8Tx3SN8DoN5F/l1dy35D3mvfgbF+33YM2gWgvzvdCIDzLRaXAGaA3QN499SI2TnQw3HhcWyh30dvVaUtu/X+SulNJM88RH0DqC/Sx7z//liGt2+ri19X+vsWOsM+Ob+hvwVHbGuIfdi/t8DP42maOXaJrTi9fVP5EmbtgEvqeCPSK2D4cvIw2BhkNEIJbX3V1d/oSDlm5rVRsd
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcVbn/8c8smUz2ZUL2TBaSPBBIQiAEIiAgqwbwIoJhE2Rxvddd8XfdwF2vV73eq1e9iKAIiIgCYV8E2Qx7CFkeEkL2PWTfZv39cap7OjM9k1m6u3qmv+/Xa141NVV1+ume6nrqnDp1qqi+vh4RERHp+orjDkBERERyQ0lfRESkQCjpi4iIFAglfRERkQKhpC8iIlIglPRFREQKhJK+iIhIgVDSFxERKRBK+iIiIgVCSV9ERKRAKOmLiIgUCCV9ERGRAqGkLyIiUiCU9EVERApEadwBdGVmNgZ4u5nF9cBWYCXwIPBTd9+Uo9AyxsyuBH4HrHH3kSl/fxI4Gfiuu38tnuhaZmY3A1cAT7n7KTHGcSTwCnCnu1/Whu2mAi8Bf3T3K9vxus8AJwC/dfdrDrLueGBJNHuSuz/T1tfLBDNbDYwAvu7u38lQmcOBHwOnA/2ATcBH3P3RTJTfGZjZEe6+oNHfEvvHDe5+fSyBxcjMioDD3H1R3LFkkpJ+7rwBbE+ZLwUGAEcCRwHXmtl73H1+HMFJPMysArgD6NbG7Q4Bbkff4Q4xsxLgYcL3sJrwPS2n+ZP1LsXM+gHfBz6K9qUkMzsO+B9gAXBlvNFklv7JufNv7v5k4z9GB/1bgFnAXWZ2uLvX5Tq4LPgw0BPYHHcg+crMKoF7gSPauN2YaLvDsxBWoZlESPgA73X3x+MMJgbHAp9oZtklFO53+N+A6YSk36Uo6cfM3beY2RXAGmAicCbwULxRdZy7r4w7hnxmZh8CfgkMbMM2RcDFhBrIgCyFVmgGRdN64B9xBpJv9B3umtSRLw+4+xZCsyI01DqkizKz5whN+gOBv0Q/B9umGHge+CMh4d8J/C2LYRaKkmha5+7VsUYikgOq6eePxDXdnY0XmFkpoYZ3EXA0UAHUAGuBJ4CfuPubabY7C/gUcDwhUWwnnFzcCdzo7lVptukLfAb4ADCecGK4DLib0NlwW2veTLqOfCkdGzcAw4CrCNcSJ0WbvQH8BrjZ3euzFVsemAmsAq5z99ujDoUHUwwcR+j4+SV3v9PMbs1ijK2S0tnrYN5y9/FZjONW4FLgWsJ34hvAGYSa/EZC69m3E7XXRh0TAUrMLLHPHdBJ0MzOIDSBv4tworYdeBH4jbs3OfFK6Wx4JPBx4HLCyYUTOgt+EfgqcANhf/8m4fLeIEKL363Ad9y92szeA1wHzCD0NVhI+L7/Mc3rlkafwYU0HCeqCceJx4H/dPelaeJMzCfe/yh3X91SRz4z6xl9JhcRLjOVAauBR4Efu/tbjdY/PVr2LHAq8DngMsL3uIrQIfVn7j6n8ftqjpldA/wf4UT414QWsMMIlyN+6O4/j9YbDvwrYX84FOhDOM4uAu4C/tfd9zWKM+GKqCX2cXc/PeW1ywn/29kp738FMCd6/+tb+z5yTTX9PGBmhxIOEHU0ato3sx7AI8DvgXMIX5D5wDvABOBjwCtmNq3Rdp+OyjqX8MV/jbCjnwz8Ang46sSUus1hwDzgW8BkwsFiCeGL9A3gtWidjioi9GO4kXBJ403CSczxwE2EjkUHyGFsufBxYKK7396GbeoI/+uJ7n5ndsJql9cJB/J0Py+krLciR/FMJ+zrlwO7gLeAkcA1wItmlkhye6MY30jZNhF34sSgyMx+Sfj+nU9I3K8Rvk/vBf5qZrdFyTadXxOSzWrC93VPoxPTxD59dbR8AzCOsD/fZGafAh4jnGy8DewjJPNbzezq1BeKkvBjwM2EE4h9hP/NVsJx4uOE48SUlM1eaOb972/m/SReqxJ4lXDHwwxgXVTOiOh15pvZB5vZvDvh8/whMJSQeEuB04D7zOzall67GZMIx7pKwknRwMT7MrMTor/9P0LfmbXRshLC5/oT4MGoJQ1gG+EzSNxJtTGaT3awjvahucBPo/e/JXqNMcAXovc/sx3vIyeU9GNiZiVmVmFm5wIPEP4X33f3xgfH6whnxpuBGe4+1t2PdfdKGr5wvYB/Tym7P+FLBXCxu4+IthkLnEU44J1CqBEktukF3EfYce8BKt3d3P0oYBRwPzAauDc6EemIwYROQp8BBrn7MYSaf6Lm+oWod3ocsWWdu/86UbNowzZ17v4bd2/xgJxr7v5Jdz8x3Q8NnaDWEGp1ufAxwgHaon1kEnAisJuw330uintNFOPnou1qU2L/ffS3LxNqs9WEZDbE3WcQktvsqMyLafiuNfYu4IPufqS7jya0UKX6ECHRm7tPidb5XrTsMuDnwH8AFe5+NOHkJVEL/Uqjsv6dcEK/EZju7uOi7/wowsn0BkIN9/8lNnD3D6S8f1Lef7O3DkcVhfsJJ+uLgCnR5zydkMR/B/QA/mhm09MUMR04Bpjt7oOj7/5I4Mlo+XdTEnBrTSOchFS6+zRCS8UT0cnYrYTbMP8CDI/+F9OAQwitLRCOhWdEn8FL0X7xSLTswegz+Vz0/osJLYtTCH1ALPqsj4ne/y2EFpu/mdngNr6PnFDSz52/m1l94odQs91M6IU9kXDg+Hqa7U4n1PJucPcXUxdE8/8bzU5OWWSEpsCtwJ8abfMIoSZ9F6HVIOEaQlPbK8AF7r42ZZv1hBOEFYRaw5WtftfN+6W7/9zda6PX2Ad8ltChqpRwQhNXbIXm6tR9M90PBzaFH5SZfQ34CCExnuvu67IReBr7gfNTm7Hd/VlCSxm07lJEouacOJH+anSiVheVV+/ufyKcCAD8m5mNSlPMk+6e7K/h7ul6wV/RqCn8+4TvQGL76xKX4dx9Nw0nGOPNrE/KdonjxDfd/eXUF3D3uYRWBzjwONEeFxNaJfcS7nZI1oDdfTuh1eIxQnN3c+MofC36/BLbbSNUbiAk4wntiOvf3X1nVF7icz6acFlzH3BtaiuLu1e5+/eIWnVo/edyPuHYtIrw/pPfi6j8qwiXKgYTKjV5R0k/d97gwKbPfxJqQoma2+eBnzduco/OOsuBXzVT7p5o2jPlb28TTioGADdHg7iklvltd7/Q3e9O+fP50fSORCJutM1ewokChEsGHXVfmtfYQkOzWv8YYys0G2i+iT7x83KzWzdiZpcQLsPUA5e5+6uZDrgFc919Y5q/JwZY6Z9mWTonA30JJ8a/bGad24D1hP44s9IsP9gARhvSJOhdNNwi90Cabdam/N43ZbvjCceJG5t5rd3RtGczy1sr8f36a5pWSTz0xflJNHuamfVOU0aT7z4N/x9o/f8ooYbQ3N44lhfcvT8w0N23Nl5uZt0Jl1Wg9Z9L4lj0V3ff03hhdGKY6G+Rl8cideTLnebu0y8j1E7/h3D9rwT4ZOo6Hjr0DDCz4wmtAuOi6TRgSLRaccr6G83sh4Tmqw8DHzaz9YTOPI8AD6SpdSTuGrjWzN7fzHsYGk0zce18TTN/3xtNU/fNXMdWaOZ420bka2m9kwj9MoqAr3iajm5Z1pb9qiWJ/cijGnYT7l5nZq8Sru9bmlUO1rqxqpm/J1rg0jWzp95hUNQonmozGxgNLGPA2Gg6jVDzhI5X9BKfS0sngYllpYSOc/MaLU/3P9qb8ntb89I7LV32cve9UX+faYQWw3GEfgBTCCdK0PrPJXEs+hczO6aZdRK34abbJ2KnpB+zqOnuN2Y2DLge+KiZfd/dVwFETXj/RbjGlzpqWxWhuftV4Ow05X7NzF4mnEi8m5AUL41+aszsDuBfoyY5CNe9IDStHax5ra1n4uk0uXOgkdQDWq5jSyvqLPnfzSy+yd1vytZrdwZmNpFwG2F3wh0YzV3rzqa27FctSdSit7e4FuyIpn3SLNub5m+p0p5MpGj1IF3RnS0/J3y/U4/rVYQk/CqhP09HteZz2ZHye5PPxdPcNdRIa/9HCc1+zmb2LkJLzdRGizY
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcdbnH8c9mN5tN7wVIIyF5qKFKkW7BgihYQYqAqNhArwWvoqCigBVRroioqKCAXGyAcAUVpApJ6OFJI9mQBEgvu0k2uzv3j9+Z2bPLbJ+ZM7vn+3699nX2zCnzzO6Z85xfOb9TkclkEBERkf5vQNIBiIiISGko6YuIiKSEkr6IiEhKKOmLiIikhJK+iIhISijpi4iIpISSvoiISEoo6YuIiKSEkr6IiEhKKOmLiIikhJK+iIhISijpi4iIpISSvoiISEoo6YuIiKREVdIB9FVmNh14sZ3FGWADUAv8Dfihu68pUWgFY2ZnA78CVrr75Njr/wKOBb7l7hcnE13HzOwG4EPA/e5+XIJx7AvMA2519zO6sd3+wBPATe5+dg/e90HgSOAX7n5eJ+vuASyKZo929we7+36FYGYvAbsBX3X3y0rwfrsC3wPeBIwE1gDnAJcQ/nZfd/dLe/kebwL+DuDuFd3Y7jzg58Byd5/emxikuMxsH3d/Luk4ukpJvzCeBTbF5quA0cC+wAHAR8zsDe7+TBLBSTLMbCxwMzCwm9uNB36Pvp9FY2aVwD2E7+hOwne4hvYv5EVaiS4afwAcBuyecDhdppNKYXza3f/V9sXopP9r4ETgNjPby92bSx1cEZwFDAHWJh1IuTKzqcBfgH26ud30aLu9ihCWtNibkPAB3ubu92UXmNkH0fEtnXs78AFgedKBdIeSfhG5+zoz+xCwEpgNnADcnWxUvefutUnHUM7M7APA/wBjurFNBXAa8BNCLZEU17homgEeiC/Q8S39mTryFZm7ryNUHUJLyUL6KTN7mFClPwb43+ins20GAI8ANxES/q3An4oYpkBlNG12952JRiJSQirpl0a2TXdL2wVmVkUo4b0fOAgYCzQCq4B/AD9w94V5tnsL8EngcEKi2ES4uLgVuN7dG/JsMwK4EHg3sAfhom8pcDuhs+HGrnyYfB35Yh0bXwF2Ac4FPkqoRiWK7TrgBnfPFCu2MnAEsAK4yN1/H3Uo7MwAQrtgLfAFd7/VzG4sYoxdEusM2Jkl7r5HEeO4ETgd+AjhO/E14M2E0vqrhNqzb3alhN6m0yJApZllj8evuvtlsc/9mo58ZlYDnA+cSmiCqSZU794BfM/dX+7mZ3sP4Xs8BxhE6Lz5re7sI7av7N/pHOBRwt/pjcAIwnfpOuBqd8+Y2XuBzwD7AxXAfML3OW9NpJkdB3waeD3hHLUBeBj4Ub6mzWib0cDHgbcR/lYjgTpgMfBX4Cp33xRbv4rQvwLCOfNdwAVRjAMBJzSXXuPujV38m2T/3ysJ58qfA8cB9cBd7n5mtN4Q4MPRe+5HOKduJ/xv7yach1fniRNgWnQMNbl7q5xqZqcQzoOHRJ//VeB+4Lvu/mRXPkOhqaRfZGY2k1DCb6ZN1b6ZDQb+D/gN8A6gAXgGWA/MAj4GzDOzA9tsd0G0r5MIB9+ThAuKY4FrgHuijkrxbfYEngK+QTioVxG+DHsSTg5PRuv0VgXhi3k9oUljIeEi5nDgl8DlbTcoYWylcD4w291/341tmgn/69nufmtxwuqRp4GH2vn5T2y9UrVpHkI41s8EtgJLgMnAecDjZrZbF/axjRD/s7HXsp+pw4uGaP+PAT8EDgXWAc8D04HPAc+Y2RFd+SBmVmFmPwNuA44nJEMnfE/+DnT5To88jibcMfJuwndpE+Hi+yrgG2b2HeAP0WsLCd/Zo4C7zOzNeWL9HvDPaH/VhOMiA5wM/NPMXnORYmZGOJd9i3BBuybarhE4GLgUeMTMhrbzGS4n/G0OIlywbAUOjD7DDd34W2TVEP6ubwAWRK+9GMU6kXA8Xx0t3xTFWk84d3+ecB7eJdouQzheFkfzO6L53F0vZjbQzH5PKLS8lfAdf5rQV+SDwBNmdn4PPkevKekXgZlVmtlYMzsJuIvwd77c3dueHC8ifOHXAoe6++7u/jp3n0o4qawGhgJfju17FHBlNHuau+8WbbM78BbCSe044H2xbYYSrqynA38Gprq7ufsBwBTgTmAa8JfoQqQ3JhAO6guBce5+MKHkny25fi7qnZ5EbEXn7j9z9+3d3KbZ3a9z9x3Fiqsn3P0T7n5Uvh8ge4vSSnqXoLrjY4REYtExsjchWdURjrvPdrYDd18ZxZ9dtyn2uX7T3nZRE8zthBL5A1EMM6LjexLhQncc8Cczm9CFz3IWoQS4AzjV3ae5+yHArtH7HNuFfbTnXEISm+buB0b7/G207MuEC5TPAmOj+KcRElIF8MX4jszsk9H664EPuvvYKM5dCN/zeuDLUd+luF8Qbr98iPCd3it6rwmEmogMofTf3rHzeeCbhHPIQdG+vhctO93M9uven4Sx0c+caH+7At+Nln2f0OF2ITDL3We7+yHuPonQCXsb4X98AYC7N0XHUPY8/HJ0/BwXe79vE2qDaoET3H1i9HcbT8uxd42ZvaGbn6PXlPQL459mlsn+EK5m1xJ6Yc8mHBxfzbPdmwhXgF9398fjC6L5n0az8QPcCFetG4Bb2mzzf7RcIcer988jVJnPA97j7qti27xMuEBYTqhdOLvLn7p9/+PuV7t7U/Qe2wlViRlCk9KhCcaWNh+OH5v5fmhd3d0pM7uYcOKuA07KVnuWwA7gFHfPlrBw94cINWXQtaaInjqFcNyuIPT2z/3NoqancwlV8xMIF7yd+Uo0/aa7577H7r6BkEy79T9po4GQoF+J9tkMXBEtG0BoYrsq28zm7msJpVwIJWsg15RxSTR7drz2yt0z0fyXsp8jujDK3spm0evnxZs8ogvcG4B/Ry+1l7z/6O5fy14IR9X5/w1sjpa/vkt/idZ+4u4e7W+Hu28xs2rChWMGuNDdl8Q3cPe7CLUiHcXaSlQjcEG0z5Pc/e+x/TW5+1XAjwj/i2/24HP0ipJ+YTxL66rPRwkloWzJ7b+Aq9tWuUdXizXAte3stz6aDom99iLhomI0cEM0iEt8n9909/e5++2xl0+JpjdnE3GbbbYRLhQgNBn01l/zvMc6QhUfwKgEY0ubV2i/ij77M7erO4tuZ/sG4YR2hrvPL3TAHXjM3V/N83q2unZUnmWFkj1O/+ju9W0XRon1pmi2w+PUzGYTLmIhT1V1lOh+1eNIYX784jmyLPb7XXm2ya4/IvbaUYSS6UZCn4V8biQcC1MIY5Lg7qvcfTwwxN1faLtB1CaeTd5D2i6P5DuHNNJSpd6T//VrBp1y9wYPgx8NIYzb0DbWCkLTQkextnUioRnkGXd/up11sjUvR0S3dpeMOvIVRnv36VcTSqc/AT5F6DH8ifg67r7TzEab2eGEWoEZ0fRAYGK02oDY+q+a2ZWEksJZwFlm9jJwH6F/wF3RlXtc9q6Bj5jZu9r5DJOiaSHazle28/q2aBo/7kodW9rc4d0bka+j9Y4m9MuoAL7k7qW+w6A7x1WhZY/Tk83s4HbWyd6iae0sp83yje7e3mfqTSevFXlei9f85RsdNNsxLT5qYPYzDwb+HZrp82oi/O33JNTYAeGCPergewjhImcGoUr/AEKzJbRf8CzG/7rdGil3325mk8zssFisexLOw9kLjK4WkrN/t2lRp9B8sgXACsLx8HAX991rSvpF5KEH/XVRdc+lwEfN7HJ3XwFgZsMJ1Txn0HrUtgbCl2c+oRNI2/1ebGZzCRcSxxCS4unRT6OZ3Qx8ylt6xo6MprNoKWG0pxClpdfcOdBG/MRS6tjyijpL/ridxb90918W6737gqh0+idCD/Mb3P3KTjYphu4cV4WWPU6nRj8dqTazIflqBCLZcRi2trMcQvNdT9V1sryrA4RlP/MgutZ0kvt+mtlehBrMY9qss4nQe30KHVeXF+N/vS3fi1FzxE8JNTTx/dY
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wkVbn/8c/sbI5sXmBz4AFkQYKEH3JZrwlFMKAIAoqA6YoRFRUQUBTRa0SvIF5BxIRIUFQMiFwRRSVJ2H02we6SNsKyeWdn+vfHOT1T0/TMdM90T3V3fd+v17xqqruq+vRMdz11znnOqaZcLoeIiIg0vgFpF0BERET6h4K+iIhIRijoi4iIZISCvoiISEYo6IuIiGSEgr6IiEhGKOiLiIhkhIK+iIhIRijoi4iIZISCvoiISEYo6IuIiGSEgr6IiEhGKOiLiIhkhIK+iIhIRgxMuwC1xsxmAo918XQOeBZYCfwW+Jq7r+2nolWMmZ0OXA086e5TE4//GTga+Ly7n59O6bpnZtcA7wDudPcFKZZjP+A+4Hp3P7WM/Q4A/gX8yN1P78Xr3gUcCfyvu5/Vw7ZzgSVx9Sh3v6vc16s0M5sCvAt4FTAPGAdsBRYDvweucvcVVXrtQcBMd1/S48ad9zsd+AihvDuBvwJfA/4A4O5NFShb/v96sbtfVMZ+TwB7Au9092v6Wg6pDjMbAUyo1me7HKrpd+9hwhc8//MPYB2wH/Ap4FEzm59e8SQNZjYe+CkwqMz9JgI/IaMX22b2CWAZ8FngpcB24EFgM3AIcB6wxMw+WYXXfg3wCHBKmfudSLhA3p9wwb+E8B5ESmJmpxE+Ny9LuyyQ0ZNPGT7g7n8ufDCe9H8AHAvcYGb7uHtbfxeuCt4ODCdc2EgRZjYd+CXwojL3mxn326cKxap5Zva/wBlx9Srgi+6+PPH8TOBjwH8Bl5rZgcBJ7p6rUBHOI9TUy/XWuLwTeLm7twKY2XAy+r+Usl0K7J52IfIU9HvB3deb2TuAJ4G9CE2Vt6Vbqr5z95Vpl6GWmdlbgf8hNEmXuk8TcDLwLWBslYpW08zsQ4SA3wac4u4/LdzG3R8Hzo7N3NcBJxJa1r7Sj0UtZkJc/iUf8AHcfSuwKJ0iifSemvd7yd3XE5r/ITT3SwMzs7sJTfrjgF/En572GQD8DfgRIeBfD9xcxWLWHDMbQ2jOB/hKsYCfFJ//Vlz9fGwBSFNzXO5ItRQiFaKaft/k+3Q3FT5hZgMJNbwTgYOA8cAu4CngT8BX3X1xkf1eDbwfOJwQKDYSLi6uB77n7juL7DMa+BDwJmAu4WJuOXAjIdnwuVLeTLFEvkRi42pCE9UZwLuBfeNuDwPfBa4p1hRbqbLVgCOAVcC57v6TmFDYkwHAYYTEz4+7+/Vmdl0Vy1iSRNJYT5a5+9w+vtzpwGighdJr7RcB7wOGED5rn4YXJCbOiq0DnSQS205z9+vM7CxCd0LehWZ2IT0kQsb/U7L//3Nm9jmg1d0Hmtkr6CaRL3ZPfBRYAEwi5C38E7jS3W/q6Q9QcKw9CF0fxwFTgTXAz4DPlXOceKz833AFMJvQnXIWocVyC/B/wKfd3c1sEnBhfN0phHPATcD57v58kWOPofN3vQlYSviuf93dN3ZRppfFMhweX6eZ0MX4d+Db7n5HwfaXELprPg98E7gglnF3Qt7FHYRz2MOUKPH/fhfhvP4pwv9tJXCmu/8lbncQ4bN5FOFzNgTYANxL+EzdWKSceVeb2dXABe5+SWK7KYT/77HADEKcWETI//mOu28v9X2UQjX9XjKzOYQafhsFTftmNoyQiXwt8DpCxu9DhA/HPOA9wH3xxJDc74PxWMcRTpIPEC4ojga+DfzOzJoL9tmbkAz1WWA+4aJiCbA38BnggbhNXzUR8hi+RzhBLCZ8OA8Hvk/ot+qkH8vWH94L7OXuPyljnzbC/3ovd7++OsXqlX/TOUG1MFk1rxKZxq+Iy/vcfXUpO8QLwfyJ/tg+vv4zhPeVD1Kr4npPGfxesN/KuN7jCIjYnfEv4FRgDOHCeAvwauBGM7s2tgL1KJ4j7iOMHphGSEZsAz4eyzKslOMU0UwIxpcTKiRLY1nfBNxtZkcQzj/viWVfSbjg+ABwa5Fy7kv4XF1MOC8+EY/5IsJF3P1mtleR/b5MqAS9DRgJLCT8jyYDJwC3m9kZhftFs2IZ308YWbUImAicBPzdzF5cxt8j73RCFx6x/FMI5zDM7AOE/+tZhAuCfFLnbsBrgV+Y2cWJY60gfGbyFbUlcb29G9XM/gN4FDiHcBG2nPC3OwT4KuF/MbkX76NLCvplMLNmMxtvZscBvyH8/S4tMgzjXEKm5jrgUHef5e4vcffpwKHA08AIYg0mHns34LK4erK77xn3mUU4WWwj1BrekthnBPArYCZwCzDd3c3dX0w4QfyacOX4y3gh0heTCF/MDxGGnhxMuLLO11zPidnpaZSt6tz9ynKvuN29zd2/6+411TTs7v/l7i8t9kMIKhDyVUoeitiN/In3wTL3uz8u94mtZr3i7rfG9/VQfOj78b1e1sN+nyvY76q434Lu9jOz1wFfJ1y0nw2MdfeD43f/VYRzwmmE2mm3zGwwobY3mdCqMM3dD4nnhOMIQa/k/JICUwmB6jR3n+bu+xMCzfZ4zLsIF+nm7vvEFp93x32PMrP2liIzG0W4EJhOuJCY5u57u/sBhO/6bbGsvzSzIYn9XkGo4bYShuFOie9vHiEA/oVQ2bgk5sYUehvwHPCSeI49gHDB8RTh/NqbYcdHEv5/M919P2COuz8fKydfjeX5FDDJ3Q9y930INf58d9+5sXUTd78qfobyw7q/ED9D18b3P43Q3TcWuCIecz933xcwwgXGgYRuxYpR0O/eHWaWy/8QarbrCFnYexGCdLEv7ysIV+MXu/s/k0/E9e/E1eRwPwOGEpqnflawz+8JNekb6LhqhHDFOZdQEzjB3Z9K7PMM4QJhBaF14fSS33XX/sfdv5lPaIpB8MOEq+yBhAuatMqWNWcmP5vFfui5NtuJmZ0PvJNQszvO3Z+uQDnziXDry9wv3yowiFCTqhf5Fq+Pu/u3C5L//kDHCIaPxwv97ryZcF5YD7zFE3OCuPuthO9eX1zp7u3dTe7+b8KFevvru/uyxPNXEWqhELos895NCOr/jOV8OrHP04Qa+6r4Xt6e2O8YwvnsBne/Ntk96O6rCF0LECoX47t4Dye5+72J/RYC34irpXRhFdpC6N5oi8fL/81fTbiQu8fdv+juuxKvuZ7Q8gKhuf8FLRpd+AQh4N/o7u9Ldn94mEvi9YRuoQVm9spevJeiFPS7VzhO/++EmlC+5vZR4JuFTe7x6m4o4eqtmK1xOTzx2GOEi4qxwDVxEpfkMT/n7m9J9hkBb4zLnyZPLol9thEuFCDUDPrqV4UPxA98/ouRPIn1d9myZjVdN9Hnf+7tcu8CZvY2QjdMDjjV3e/vYZdSjtlEOAlC54vVUuxK/N7nyW/6Q+wvzyf1dpW7cSvhwn4E8J89HPJ1cXlTF/3h1xGCQm/9ushjj8flo8VyJgi1aAh5Gnn57/pPvMjQZQ8jHfLnreMSj3+McJ58Rxfl25r4fXiR51fGC5VCC+OyNxeL98VzUyfu/g13H05obS2mp7IW84a4LPpZiRWl2+Nqxc6RSuTrXlfj9AcTaqffIjThNRMSYtq5e4uZjTWzwwlXfrPj8kBCcx0kLrrcfY2ZXUZI/Hg78HYze4bwT/898Bt3Lxw/nz/BvMvMXt/Fe5gSl5XoO3+yi8fzX5Lk56m/y5Y1t3p5M/J1t91RhLyMJuCT7l6REQbunjOzDYRaWrnN0PkWgl2EJtx6kBzF8ysz62q7wXHZ0+c+f4CiCWnuvtPMHqVzC1s5VhV5LH9x1tVMoy1xmbwQy7/v95nZCV3slx+n3uk9x89Ivm97H8J5ch5hMqQ5iU2LVVDLOR+VqqfWrRYzO4zwnmcTWjP3o/P76rEyHVt58rOhXmxm53Sx6ay4rNg5UkG/Fzxk0H/XzHYnJKm828wujU1S+T6
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3debgkZXmw8fvMzibCIIjAsMoDiOIGSNCAGy6EqFGjKCoQdxPNomKiCWg0ismnxiVB44ILalBxQ9Eo7rviBiIPi8CgiMiACMw+c74/3uo5dQ59tpnuqp7T9++6+qrTXVVvv32qq5961xoZHR1FkiTNffPazoAkSWqGQV+SpCFh0JckaUgY9CVJGhIGfUmShoRBX5KkIWHQlyRpSBj0JUkaEgZ9SZKGhEFfkqQhYdCXJGlIGPQlSRoSBn1JkoaEQV+SpCGxoO0MaGoRsQ9w9SSrR4FbgOXABcCbM/P3DWWtZyLiZOB9wG8yc8/a618DjgFel5mvaid3U4uIs4FnAV/PzGNbzMehwI+BczPzpFnsdxjwI+CczDx5M973W8DRwHsy89nTbHsAcEX19CGZ+a3Zvl8vRcQJwInAUcBuwHrgRuB7wMcz81MtZq+vImIBsK56+tDM/FqL2VGDDPpbl0uAW2vPFwA7AYcC9wWeExEPy8yL28ic2hERS4GPAgtnud/dgI8wZL8DEbEtcB7wqOql6ynn1giwH/B04OkR8Q3gcZn5h1YyKvXBUJ3sc8DfdLsir3703w8cD3w8Ig7OzI1NZ64PnglsC9zUdkYGVUQsAz4D3GuW++1T7XdwH7I16P6HEvAvBZ6RmT/urIiIEeAxlJqnPwU+ATy8jUxK/WCb/hyQmSsoVcxrgAOB49rNUW9k5vLMvCwzDfpdRMRTgJ8Ah81in5GIeBqlKeDe/crboIqI/ShV+gCPrwd8gMwczczP17Z5WEQc02QepX4y6M8RVeC/pHp6aJt5Uf9FxHcoVfo7U0qjn5jBPvOA7wLnUJqFzgXmbLv1JB5Aqca/OTOvmGyjzPwK8Kvq6ZFNZExqgtX7c0unTfe2iSuqjjsnAn8J3B9YSum4dD3wFeBNmXl5l/0eBbwIeBAlUNxKubg4F3h3Zq7tss9dgJcAfwEcQLm4/BWlHfXNM20j7daRr9ax8XfA7sCpwHOBQ6rdLgHeBZydmaP9ytsAOAq4DjgtMz9SdSiczjxKAFsOvCwzz42ID/UxjzNS6ww4nasy84AtfLvO93XniDgqM787xbaPrpbX11+MiF8De1BqSvYF/hG4D7AK+Dnwn5n5mW4JRsR8SrPVs6p9tqvS/z/gjZl51ST7LQGeDzyV0iSzCLgWOB/4j8y8YZL9DgReBjyCcr4sB84G3jLF555UROxcpXcCsD+lM/FvgK8Bb8nMX0yy3zHACyjf27tTfke+RznnvjrJ+7wYeDxj5+k1lM/7pomfNyKeTWm2OQd4J/B24CBK0+CZmfnWarvN+v/PJZb054iI2J9Swt8IfGHCum0oX+oPAH9G+eG7GLgZuCfwPODHEXG/Cfu9uErrBEpP359SLiiOAd4BfLE6ier7HAT8DHgN5UfxekqP7YOAfwF+Wm2zpUYo/RjeTWnSuJxyEfMg4L3A6yfu0GDemvB84MDM/Mgs9tlIOdYHZua5/cnWZvk58O1JHj+obXdtD97rm8DK6u8vRMRrIqJrv4bMvKJ63DFJWs+l9Iu4P3AZ5bx6GPDpiHjTxI2rC84vUb6fxwB3UM7DXaq0fh4Rj+uy3x7A94E3A0cAKyj9EfYB/gG4OCKO6rLfccBFwLOr97iYEuReB3xuks80qYjYBfgh8ApKwL8KSMrFxLOBiyLikV32eyPlouAp1fv/vFp1AvCViDh1wvb3BX4BnE45T6+u3ueelAuOX0TEn06SzUMov1nLKP+jnalqQDf3/z/XGPS3YhExPyKWVkOPPk85nq/PzIk/jqcBD6Vc9R6Rmftm5uGZuYzyI/Jbysn4T7W07wqcWT09MTP3qPbZl9IJahVwLPDk2j7bAZ+l/Bh9GliWmZGZ9wX2ovzQ7A18proQ2RK7Ak+jlNp3ycwHUH58OiXXf6h6p7eRt77LzHdm5upZ7rMxM9+VmWv6la/NkZkvzMwHd3tQfvyhlCZnPBRxive6GXhp9fQuwD8Dl0bEdRFxTkQ8rxpaOBN/A3wR2CszHwjsSSnNbgD+LiKePGH791DOw4uBwzOzs9/dgDdQOq1+pH4RUjXJnEcplX4DiMzcr/q+351y4bsL8KmI2LW2387Ah4HtKaXf3TPz8CqPf8XMalYmegVldMM3gD0z89DMvB+l1uPTwGLKhckmEXESJVCvr/5fu1X5uAdwRrXZO6saCSJiR8rw47sD3wL2z8x7V++zF+V3bufq8y7rksf7Ufq5LOvsUzXVwGb8/+cig/7W5asRMdp5UE6kmyiljQMpQfqfu+z3CEop79WZ+cP6iur5f1dP6x27AlhCmQfgfyfs83+UkvTHGasuhXK1fwClk9gTM/P62j43UC4QrqVcsZ884089uf/KzLdm5obqPVYDf0upclxAuaBpK2/D5q/q381uD8bG6M9IRLwKOIVSIjshM3/bi4xm5n8DT6BUdXfsSbmIPAu4IiJ+ERHPnCapq4G/6MyNUXUCPAvolPJPr32WBwBPqj7LcZn5o1p+VmfmP1KC+zZAfU6KJ1C+x9cBj6n3Q6iaok6lzLOwK+UCuOP5lCa8XwInZ+bttTy+lxLkZqvTYfRjVR+iTj5upVTFfxn4dkQsru3T+R+8MTPfXjtX12fmq4GvUs7VZ1Tb/Q0l4P8W+LPMvKb2PjdQmuUupTQ1biqkTPBPmXlbtc9NsEX//znHoL91uYTxVZ/fo5SEOiW3vwfeOrHKvSoxLaH8oHXTqe7ctvba1ZSLip2As6tJXOpp/mtmPjkzz6u9/IRq+dHOyT1hn1WUCwUoVXtb6rNd3mMF0Jmg6K4t5m3Y/I7Jq+g7j4tmmlg1wuA1lAu4kzLzJ73MbJaJd/ajtNu/gxIc6w4B3h8Rn4qIyeY/eGdmruzyeuc8u1fV7AZj378LJ2t/Bz5YLR9blfDr+32y23tlGZp7TvW0/r39s2p5TmaunyKPs9G54PjHiDixqi7v5GN5Zj4yM5/XqUmqmso6tSbvnCTNZ1GOQ+fioPMZ3lddTIxTpf326mm3qvj1lKaQiTb3/z/n2JFv6zLZOP1FlNLp24G/BuYDL6xvk5nrImKniHgQpVZgv2p5P8psZFC7CMzMGyPiTOCVlI4vz4yIG4ALKf0DPp93HkrXGTXwnCnaxu5eLXvRdv6bSV5fVS3r3++m8zZszs/Zzcg31XYPobS7jgCvyD7NjFdd/H2xelBVjx9LCTxPplRXP47S36NbDdoPurxGZv4qIu6gNJkdSGn77nz/HlR1XOymc9F9V8p38frafo+vSqvd7Fwto/Za5+9L6CIzr4+IGyk1BDN1JqWkfQ9K08H6iPgBpZ38AuAHOb7zbCfg/yEzl9NFZl434aXOuTfVBWJn3d0jYscJFwc3T9J8tbn//znHoD8HZOlB/66I2J3STvbciHh954SKiB2A/6S0idZLLWsp1d0/Yayncj3dV0XERZQLiT+lnAhPrx7rI+KjwF/XTrodq+U9q8dU7jrN+pm408iBCUZqfzedt66qzpJvm2T1e6uq16FVte1+ihJwz87MM6fZpWcy80bKqJRzq6aFz1NK/C+ie9C/eYrkbqcE/c53qfP925WZBdq7UoJOZ79l1WMqiyJi26pGoPO+t0+x/S0zzAsAmXltVeP3j5SLonsAf1I9Tgd+FREvyczzq12WziAPE+1QLe9Uyq/544Tt69uuorvN/f/POQb9ueXTlKA/n1KCv672+kMpJ8TbGGsWuKKqAXgOXYI+QGZ+EvhkVZV3DKUk9FjKFflJlJPpz6vN76ien1A78QfFoORtRybvRPXlJjMyaKre4Z2OWt+kjDToZfoLge9QfvRPysxvTrZtFeBeRunguVNE3C3vfF+L7aZ4u07V943VsjMC4MzMfMUsst3Z7wVVf4G
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZglVX3/8XfDDDMMm+wi2zAz8gVECC7oiAoucQnibtQAbhHXRGPilrihUYlJfmpUFI0iqKjBLe4rMURAUXEDgS87gyAKiCAMs/fvj1N3+nbP7e7b3fdWXea+X8/TT83tqjr39FTf/tQ5derUyOjoKJIkafO3RdMVkCRJ9TD0JUkaEoa+JElDwtCXJGlIGPqSJA0JQ1+SpCFh6EuSNCQMfUmShoShL0nSkDD0JUkaEoa+JElDwtCXJGlIGPqSJA0JQ1+SpCExr+kKqHkRsRi4epLVo8CtwArgm8B7MvOmmqrWMxHxPODjwPWZuVfb9/8XOBJ4R2a+sZnaTS0iTgOeC5ydmUc1WI+DgZ8BZ2bmcTPY71Dgp8AZmfm8WbzvOcARwMcy84XTbLsMuLx6+bDMPGem79dLEXEM8GxgObA7sA74PfAj4POZ+d8NVm/WIuJTwLHA6bM5pmqOoa+JLgJua3s9D9gROBj4M+CEiHhkZl7YROXUjIjYGfgsMH+G++0KfIYh+1sTEYuALwKPrb51A+WzNQIsoQTmsRHxf8CTMvOPjVRUQ2eoPojqyt9m5v9O/Gb1R/904Gjg8xFxYGZuqLtyffAcYBFwc9MVGVQRsQ/wFeA+M9xvcbXfgX2o1qD7T0rgXwwcn5k/a62IiBHg8ZSep4cDXwAe1UQl5+A1wNsZ30DQ3YChr65k5i0R8VzgemB/4DHAt5qt1dxl5oqm6zDIIuKZwAeBnWawzwilS/sDlF6ioRIRSyg/P8CTM/Py9vWZOQp8IyKeDZwFPDIijszMs2uu6qxl5m+B3zZdD82cA/nUtcy8hdJFCaW7X5uxiDiP0qW/E6U1+oUu9tkC+CFwBiXwzwTultet5+D+lG78P0wM/HaZ+T/AVdXLB9VRMcmWvmaqdU33TxNXRMQ8SgvnL4H7ATtTBi7dAPwP8O7MvKzDfo8FXg48mBIUt1FOLs4EPpqZazrssz3wSuCpwDLKCexVlOuo7+n2GmmngXxtAxt/B+wBvAB4EXBQtdtFwEeA06pWW1/qNgCWA9cBr8vMz1QDCqezBSXAVgCvycwzq0FfjWobDDidKzNz2RzfrvX7ulNELM/MH06x7eOq5Q3t34yI3wB7AvcF9gP+ETgEuAv4FfAfmfmVTgVGxL2AvwH+HFgKbEf5vF4CfB74UGau6rDfAuCFwF8BUe23Avg6cFJm/q5t200G8lWf/7XVJvOBJwGvAA6tXiflEuHJmbmuw/vvDbwa+AtgL+AW4GvAicC/V+93fGY2/vt0d2ZLX12LiKWUFv4GJnTtR8TWwHeATwBPoPzhuxD4A3Bv4MXAzyLisAn7vaIq6xjKH4xfUP5AHQmcDHw7IracsM8BwC+Bt1H+KN5AGbF9APBm4BfVNnM1Qvkj9VHKJY3LKCcxDwZOBU6auEONdavDS4D9M/MzM9hnA+VY75+ZZ/anWrPyK+DcSb5+3LbdtT14rx8AK6t/fysi3hYRHcc1ZObl1dedk5T1Isq4iPsBl1I+V48EvhwR7564cUQcQRlH8I+UMRitAYRbAg8B3g18s+qRad9vT+A8yiWZh1A+t5cAe1NOYC+oQrlbJ1FOMO5HOeG9AzgMeC9wWod6P5ByZ8grqvf8NeWz9uLq+0tn8N6agqGvKUXElhGxc3Xr0TcovzMnZebEP46vAx5BGRB3eGbul5kPzMx9gMMp1/+2Af6prex7AO+qXj47M/es9tmPMgjqLuAo4Blt+2wDfBVYDHwZ2CczIzP/jPLH4uvAvsBXqhORudiN0up5JbBLZt6f0vJvtTT+oRqd3kTd+i4zP9ypRTjNPhsy8yOZubpf9ZqNzHxZZj600xclYKCMV+n6VsQp3usPlBYrwPbAm4CLI+K6iDgjIl5c3VrYjb8Fvg3snZkPoLSAXwqsB14VEe2fjXmU380dKJdi7pWZB2fmYcCuwBuqTY+i9AK0O40S0JcDh2Xm/tXv7RLgfEqvw0xa2K8G/pnyublftf+/V+uOjYj7ttV7a+BzwC6Uz8hemfmAzFxM6S3YlnKirR4w9DXR9yNitPVFOdu+mdLa2J8S0m/qsN+jKa28t2bmT9pXVK8/VL28b9uqABZS5gH4rwn7fIex1kJ79/4LKV3mPwOelpk3tO1zI+UE4VpK78Lzuv6pJ/fBzHxfZq6v3mMV8HeU+QvmUU5omqrbsPnr9t/NTl+M3aPflYh4I/B84E7gmGqA2pxl5oeAp1C6x1v2opxEngJcHhG/jojnTFPU1cBTW3NjZOZoZp5CabEDvKVt2/tRLo+tAk5ov4yUmWsy851t9WkP3SMon9/1wBMz8xdt+91AuWS3AXh41dvXjS9l5ptbJ39Vd/4/ArdX6x/Stu0LKSfDVwPPyMyNd9JUlzBe0uV7qguGvia6iPFdnz+itIRaLbe/B943scu9ajEtpPxB66TV3bmo7XtXU04qdgROqyZxaS/znzPzGZn5xbZvP6VafrYVxBP2uYtyogDlksFcfbXDe9wCtCYoukeDdRs2v2PyLvrW1wXdFhYRf0W5DDMKHJeZP+9lZauJd5ZQrtufTOkub3cQcHpE/HdETDb/wYczc2WH77c+Z/dpBXFm/jgz7wHslJm3Ttyhumb/h+pl++ew9bv4f5l5aYef42pK1/zOmXnlJPWcqNPnZh1wRfWy0+fmtOozMtFngRu7fF9Nw4F8mmiy+/S3orROP0AZJLQl8LL2bTJzbUTsGBEPpvQKLKmWh1FmI4O2E83M/H1EvIvS7fgc4DkRcSPlNqbvAN9oP+uvtO4aOCEinjTJz3DPatmLa+fXT/L91h+n9s9Q3XUbNl+b4Yx8U233MMq4jBHg9f2aGa86+ft29UVE7EbpXj+G0vOzgNKF/WY696D9uMP3yMyrIuJOyiWz/YEr29bdVY0bOYzS87SEcoJxCOXEHMY3+FqXGn45xc/xqyl+zE5m87np+P6ZuSEifk6Z20BzZOirK9UI+o9ExB6U0bQvioiTMvM6gIjYDvgPyjXR9lbLGkp3988ZG6ncXu4bI+ICyonEwymheGz1tS4iPgv8TWa2JgHZoVreu/qayj2mWd+NTe4cmGCk7d91162jarDk+ydZfWpmntqv9747iIj9KbcRLqC0Lt81zS49k5m/p9yVcmZ1aeEblEB+OZ1D/w8dvtdyByX0N/4uRcRDKPMqHDph25so18sfQOlKb7dzW3m9MpPPTTfvf/sU6zQDhr5m6suU0N+S0pK4ru37j6Ccyb+fscsCl1c9ACfQIfQBMvNLwJeqW92OpLSE/oLSGj6OEqZPrDa/s3p9TGZ+rcc/21wNSt12YPLb075XZ0UGTUTsQgnanSij7F/c4/LnU0bB70a5ZPCDybbNzGsj4jWUMN4xInbNTZ9rsc0Ub7d9tfx99d4HU3rJFlIu051GaT1fkpnXV9ucz6ah37pzYLupf7q+WUkZrLf9FNs0VbfNjqGvmWqfencEoOrOf0T1vaMz8/sd9ttr4jeqUbv3BkYy85eZeTvlWuBXKSPjX08ZzHdMROxQtfaTMnjuPpR7eDcREfemBN+1Hf6I9tNA1K26PDMy3XbDJiIWUgakLqXcRvbU7DAHxFxUJ7j3Au5FOXGdNPQrrYGD64BO8zccTDmJGCciAtiaMh6hNVbg7yiB/2vKHTSdro9v8jmk3Ip6NFNMuBURH6OcyJycmb2eifNCypwQhwBfmmSbQ3r8nkPLgXyaqaOr5Shjg6b2a1u/yUCqKA8faU1L2n6i+SJKS+RT1dStE3237d+tgYOtAUIv7HTbW3Xb0peBnzB2i1BdBrluQ636/foEJVxuA57QYbxIr7RubXtZRBw05ZZjn4vvZObaDuufP8ln46XV8ty2u0Ran8OLOwV+RDyecjI
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZglVXn48W/PxswAAoIoAYZVXnDDFSVowH1BEo2auKCiojGb2VSMmoCJipj83DVqEDGAGGJI3E2UGOMWVFwCiq+AwiCuIIIwPczWvz9O3emappd7p+veW059P8/TT/Xtqjp9blfXfavOec+piampKSRJ0o5vybgrIEmSRsOgL0lSRxj0JUnqCIO+JEkdYdCXJKkjDPqSJHWEQV+SpI4w6EuS1BEGfUmSOsKgL0lSRxj0JUnqCIO+JEkdYdCXJKkjDPqSJHXEsnFXQMMTEQcC359j9RRwI7AW+ATwxsz82Yiq1piIOAl4L3BdZu5X+/l/A8cCr8nMV46ndvOLiLOBZwOfzczjxliPewBfAy7IzBMH2O9I4KvAeZl50nb83s8DxwDvycyTF9j2UOCK6uVDMvPzg/6+xYqIRwCfGmCXSzLz/tW+JwP/CFyTmQc2UJcfAPsCz8nMs/vcZxmwsXr50Mz878XWQ796DPrdcRlwU+31MmAP4B7AvYHnR8TDMvPScVRO4xERewIfAJYPuN+dgPPp7mfIV4ANC2zznVFURBpEV0/YLvrj2a7sqw/99wHHAx+MiCMyc8uoKzcEzwJWA9ePuyJtFRFrgA8Ddx9wvwOr/Y4YQrV+Vfx2Zv5ggO3/Bfg803fa0lgY9DsuM2+IiGcD1wGHAY8CPjneWi1eZq4ddx3aLCJ+F3gHcMcB9pkAnga8jdJKpD5l5k1s29ImjYWJfCIzb6A0/0Np7tcOLCK+SGnSvyPwr9XXQvssAb4EnEcJ+BcA/z7EakoaAu/01dPr0/3lzBVVAtDTgN8B7gvsCWwCfgj8F/CGzPzuLPs9GvhD4EGUQHET5eLiAuDMzLxdn2hE3AH4E+C3gUMpF6bfAy6kJBv+op83M1siXy2x8SfAPsBzgRcAd6t2uwx4N3B2Zk4Nq24tcDRwLXBKZp5fJRQuZAnwQEri50sy84KIOHeIdexLLRlwIVdl5qHDrs9cFkrki4jjgD8Gfp1yft0IfBF486AJdxFxGPAS4BGU//O1wNnAmxZR//sCvw88hJJAuBPwc+ASSiLmhTO2773f84B3UVqHDqd0t52RmW+ptltK6Yp7NnAvYGfK58p/Aq/PzKvmqM9dgT8CHgqsqfa7Cfgm8H7gvTtIN2XjvNMXEXEI5Q5/CzOa9iNiFeUE/Cfg8ZTkpUspJ/xdgd8DvhYR95mx34uqsk6g9GN+g3JBcSzwduA/qhO+vs/hlJP2b4B7Uk7+KygfFn8NfKPaZrEmKHkMZ1K6NL5LuYh5EHAWcPrMHUZYt1F4IXBYZp4/wD5bKMf6sMy8YDjV2i7/B3xhjq8v17a7ZvRV609E/D3wGcrF5ArKe5oCngB8JiJeM0BZj6IE4pOBvSjn6s7Aa4CPbWf9/pgySuNkYG/K//1VwO7A44B/jYhXzbH73SifA2uAb1Naly6ryr0DZTTEWZTPhVur+u5FuRj/v4j4rVnq89tVGS8CDqQc2+8Aq4CHUc7r927Pe+0Cg35HRcTSiNgzIk4APk75Xzg9M2d+OJ5CuZq+HjgqMw/KzAdk5hrgKOBHlA+Vl9fK3h04o3r5tMzct9rnIODRwCRwHPCU2j47Ax+hnMQfAtZkZmTmvYH9KR9YBwAfri5EFmNv4OmUu/a9MvN+lDui3p3rX1TZ6eOo29Bl5rsyc/2A+2zJzHdn5m3Dqtf2yMw/yMwHz/YFfKva7Dqg76GIoxQRfwj8BeUi+umZuWc1zG8fyv/oOuDlVd7NQmXdkXKXuwvlDnufzHwAsB/wPPprEZlZ5uHAGygXyn8J7J2Z983MIyh3/L2uoVOqID7TfYCvU86Z+wD7Z+Z/VeveQ/lsuRR4QGbuX733OwGvoyTinh8RWxNGq8TjsygXR28F7pyZR2bmPYE7U24oAJ4VETHo++0Cm/e74zMLnANnAH81y88fQbnLe1VmfqW+IjO/EhH/wPTdb08AKylNlP88Y5//jIjTKU159eb9kylN5l8DnpSZm2v7/DgingJcTmldOAn4h/neTB/e0WtirH7H+oj4U+AZlPPiKKbvjEZdt655XkQ8r8kCI+KVwHMod48nZOaPmiwfuHaB8+mvMvPV820QESuBU6uXJ2XmR3rrqu6l8yNiL+AtwN9GxDkLNFm/kNI1cHlV3qZaWWdV3VuznePzeTSlpe6SzHxdfUWVBPwS4EmU5v7DKC0CM708M39Z7XM9QETcD3gy5fg8KjN/XCt3PfCXVTfFbwOvpJyXUFoEllIu5P5sxrl4S0T8OaVFahnlMykHfL87PO/0u+Mytm36/F/KnVDvzu3PgbfMbHKv7phWAu+co9x11XJ17WffpzSX7wGcXU3iUi/zbzPzKTP6AZ9YLT9QP5Fr+0wCH6xenjDXmxzAR2b+oEpo7E1QtPsY69Y1P2HuJvre1yX9FhYRT6dciE4BJ2bm15uuMGWc/nz17Wf0yIMpd7W/AD46xzbnUt7H/pT5NObz+Gp5Xi/gzzDXOTynzHxzZq6mtMzNZl3t+9WzrN8EXDzLz3vn1EX1gD/DOdXycVUiKZl5YWbuCtx1tnOR0gJw4zz16Tzv9LtjrnH6Kyh3p2+jJMYsBf6gvk1mboyIPSLiQZSr+YOr5X0oTWpQu4DMzJ9GxBnAKyhJOs+KiB8DF1HyAz7eu+Kv6Y0aeP5s/XiVu1TLJvrOr5vj55PVsn5ujLpuXfPRAWfkm2+7h1CafyeAl2XmsEYYDDpOfza9/6tVwOfmaTnYTPl/PJzS2jSXXgGXzbYyM38YET+ldG8NamNEPJBS54MpLV/3YNv/99luIn8+R5dQ770/qErGnE0vaO9OOb9+WFu3vrqZOBI4pPq6e1Vu79z1pnYWBv2OqzLo3x0R+wCnAS+IiNMz81qAiNgVeDOlT7Q+a9sGygfQ14HHzFLuKyPiEsqFxG9QTtpnVF+bIuIDwB9V45cBdquWd62+5rP7Auv7sdBsahO170ddt1lVyZJvnWP1WZl51rB+96+Cqjn43ylNzWdn5hkL7DJuvf+rneivv32h/63e+lvm2eZGBgz6EfFcSiLgXWas+h7lAmu+C7bJOX7ee+9791mf3amCfpWH9CbKxUfddZRZIn+zVr5mMOir50OUoL+Ucgd/be3nD6WcvG9lulvgiqoF4PnMEvQBMvPfgH+rEnyOpTQRPo5yd3Ai5cT8zWrzW6vXJ2TmXE2d49KWuu3G3MHh06OsSNtUfd8fp2SHf47Sr9t2t1bLizPzQQ2U93NK5vtsCXU9AyWaVrkWZ1YvPwH8G6Ul4fLM/EWVuDpvK80ceu/9jMx82QD1eSTlM2mCMqTx/ZREwMuzenZIRPxkO+rTGQZ99dQThCYAqub8h1Y/Oz4zPzPLfvvN/EH1QXBXYCIzv5mZN1P60D9CyYx/GWVY3AkRsVt1t5+U5Lm7M0f/ZjU2dzfKWOdRPhyoFXWrumcmFtqua6qEuA9Tmni/R2l6X6glpw16SWYREUtn66Ou+rKPBX4AXJ2Z803jm5Sgfx9KcJ5Z1m7Mcr4u4C+r5VmZOVuy5aDl9SRl6u85p4CuRtAcRsmP+EGVkHgK5Rz4FPDYmX+z6rOn71kmu8g+D/UcXy2nmE6aOqi2/naJVBGxmjJpD2x7AfkCypj2c6upW2eqP6mslzjYS6w7ebZhb9UEQR+iJFD9/dxvYyjaXLdOq/6//oky4dBNwONnyRdpq/+mzF2xOyX3ZTbPpEyAdTlliNx8esPnnl2dmzM9l8E/8w+slnMlUtbv8ge5ieydU4+uumVm83rK8wouYvpit/eZ9I05EvlOqtXDm9pZGPQ7LiImqskuXlH96IO1BKX6U8L+OiKW1/a7G6W5r9fHXf+QuYDSZ34P4I3VOPfefntR+gehNGv+vPr
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcdZ3/8dckk8kdEjIJgZzk4JNASOQSUPiBrndERWW9QBFR2dVV13XFgxXcXRRhXVzXAy9AwIt1QRQRFxFQIqBCCISQDznIASHkIOSeZDLTvz++356p6fRM5uju6p56Px+PedRU19Hfrq6uT33PqsvlcoiIiEj/NyDtBIiIiEhlKOiLiIhkhIK+iIhIRijoi4iIZISCvoiISEYo6IuIiGSEgr6IiEhGKOiLiIhkhIK+iIhIRijoi4iIZISCvoiISEYo6IuIiGSEgr6IiEhGKOiLiIhkRH3aCahFZjYNeLqTxTlgK7AW+A1wtbtvqlDSSsbMzgeuA55190mJ1+8FzgAud/dL0kld18zseuB9wH3ufmaF3nM1MLWTxTuA54F7gG+6++JKpKmUCs75We6+Ir5+GXApsNDdT0sndV1LnMu4e113l5Xw/acQjt0AYIm7H1uO95F0mNkx7v5E2unoLuX0+24JsDDx92dgMzAX+Cyw1Mz0I8+OdXQ8Hx4AVgOHAx8E/mpm700tdZKG99N+rZ1rZlV5cyQ9Y8H/Ad9MOy09oZx+3/2Du99b+KKZjQV+CCwAfm5mc9y9tdKJK4P3AsMINzZyoGvd/bLCF81sEPAv8e97ZrbQ3VdWOnFl8A3gp8DutBNSjcysDjg/zt4BvAG4CLg/rTRJyZwHvBq4L+2E9IRy+mXi7lsIRcx7gaOA16SbotJw97XuvszdFfR7wN2b3f0LwF+BBkKuv+a5++Z4PqxNOy1V6pXANOAF4CvxtbfHTIFIxSnol1EM/Evi7Nw00yJVI58r0PmQDe+P0zsJuftngcGJ10UqSsX75TcoTncULjCzeuBdwN8CxwNjgf3AeuD3wH+6+1NFtnst8BHgFGAMsI1wc3Ez8H1331dkm1HAx4G3AjMJN3yrgFsIjQ1f7M6HKdaQL9HI63lC3fUFwIeAo+NmS4DvAte7e65caasRnZ4PAGZ2BnAh8DJgAuE3uhl4EPiWu99dZJvZwKcJucojgD2E43cH8F/uvrHINgOBcwmlUS8BhhPOu7uAq9x9eXc+TGcN+RING+cAh8X0nRLf52nCuXqVu+8sV9rSZmaHEM5pgFvcvdXMfgZ8EviwmX218PdgZjcSPvst7v62Tvb7PuB6wnGckd9HPG7vJRy3ebQft/8DriysTjKzmcBywo3IKcD3gDMJVTV3uPt5cb1hwAeANwPHEq45TcAaws3Mf7r7c0XSORz4u/h5ZgDNwB+BfwWOi+/3A3e/sGC7IYQqkHcSzp+G+F63A//h7huKHZdOjtWrCOfNQuDDhOvQCcB2QlXcZ+J6Y2JaXx/f8xBgF7AC+BXwNXffVnDc8s4wsxyw0t1nJt67R99HpSinX0ZmNoOQo2sl/DiSy4YSvvwbgDcC+4DHCcWAswgn6CNmdlzBdh+L+zqL8CN6lBBAziA0KPltPNmS28wGFhN+bMcSTrzlwGzgC8CjcZ2+qiO0Y/g+oUrjKcJNzCnAtcCXCzeoYNpSF+v13xBnf11k+ZeBewkXyZHAk4ReIOMJweN3Zvahgm1OJVQZvJ9woVpCuIgfC3yOcA5NLthmBOEcuh54BeEi/zjhpvODwGIzeyul8UFCr4VXAs8Am2j/bn9rZh2uQRVOW7m9CxhKuCnPf98/jtOZwKuKbHNdnC4ws9Gd7Pe8OL0+EfBHEYLbtYRrwS7CcWsk3IA/ZmZv7mR/Q+K2rySccxB7apjZYYTGyV+Py7cBjxG+l7nApwjn2OHJHZpZI6FU6ypCwFtDOC/PItzAvqlYQsxsIvAQcDXwUmALsJRQRfJPwOPxnO+pw4C7gflxf0MJ1yfMzAjH6nLgZMI5+hjh2nUCcBnwQLyJgXBTvZDQaBfCDcRCwu8w/zn68n2UlYJ+iZnZQDMba2ZnEXJaA4Avu/uaglUvJlzUNgMvdfcj3f0kd59CONmfI9wZfi6x79G01wu+y90nxm2OBF5LOBnPBM5JbDOccKc6DbgNmOLu5u4vASYTLkZTgV/GG5G+GA+8m5Brb3T3Ewg5/5vi8n8ys3EppS0VZlZnZiPM7GTgl4SL/X2Exm/J9c4EPkO4QbwAmODuJ7r7LOBIws0AwL8VBMqrCefJ1+M2x7v70YSbruXARODzBcn6HiHgPAGc7O6T3P1Ewvf3JcIF8UdmVooqiE8SAvgEd58PTCGUUkEozSi8+FcybeV2QZz+r7s3Abj7w7QH1ouKbHMPobfHYODthQtjUHwFoWvwDxOLfhBffxw4yd0nx+M2DriC0Pj2J2Y2p8h7jo1/89z9eEJp0VVx2VeBYwgBcpa7HxXPywmERsp7CCVSHyvY57cIAXMFMN/d58auisfE184q8tkGEEr35gF/AMzdp8fryIT4eRuBX5jZ+CKfoyszCTcsMxOf8Udx2Q8Iv5OFhGvQnPie4wk30zlC7v9cAHd/NpZq3RC3X+Tup7n7OxPv15fvo6wU9PvuHjPL5f8Id4ebCRf4owhB+l+KbPcqwgX+i+7+l+SCOP/tOJvs7meEu/KtwM8Ktvk/Qk7654RSg7wLCSf8I8Db3H19YpsNhBuENYTShfO7/ak79y13/7q7t8T3aAI+Qfjh1BNuaNJKWyVcWnA+tBJKYh4EXkeotlng7vsLtnsd4Xu71d2vS/b0cPdnCDljCBei5AVvfpxe5+57E9usIuSMbiccQwDMbD6h2HQ38Fp3/3NimyZ3/zyh6H0Ixc/bnloMfCBfNOruOXf/FuFiCPDyFNNWNmZ2DHBSnL2pYHE+2LzJzI5ILog593wwP7fIrt9DuG7fk89ImNkJhBuEXcBr3L0txxmP22cJwXQo0NnYGt9wd4/b7HX3HWbWAJxG+O1+vLA42t3vAP4nzrZdp2IX5XMI5/6b3f3xxDZPEm4Wmoqk4WzC9WEd8PpkNU6s4ruAkJseT8hY9NTl+aoBd9/h7nvj8be4/MJk1YG7t7r79YQqiQ6fsSsl+j7KRkG/7wr76T9IyKXkL8CfBL5eWOQe7xSHANd0st98F6hhideeJtxUjAGujxfJ5D7/zd3PcfdbEi+fHac/zQfigm32EG4UoMjddy/8qsh7bCEUmQEkiywrnbZKKOyn/ydCUeHWuPyVwG3JEg+AWLc4hOIXeujYJS55TuQvjNeY2d/EKoT8Pn/l7me5e7JaJX/M73X3Zzt5rxvj9PWF520v/Lqw3jrK53aLnQ+VSls55XP5z9BeSpP3I9pvgi/kQNfH5f+vsGqG9qL96xKv5Y/b3V3Ud+eP2xsKq1SiA7oQuvs+d59GON9+W7g8dkfMt8lInpP59Nzn7kuL7HcVRa4Tie1udfcDuoDGG+H8DVNvrgfFPuN6dx8HDHP3ZYXLY7ur7XF2WOHyTpTi+ygbNeTru8766TcQcqffAD4KDAT+PrmOuzeb2RgzO4VQKjA9To8j1EFB4sbM3Tea2VcIxbXvBd5rZhsIdVX/R2h8U9iVLl8M+sEu6pAmxGkp6s47u1jvidPkOVfptFVCZ/306whVLzcAfwPcbWbHJW923D1nZq1mdjqhEeR0QknIvDjNS14kPk24gJ4M/A7YaWZ/INQn/toPbPSWP+YnmllnfcXzVSkjCcWefemO15vzoVJpK4t445W/eftx4U2Pu6+On+904EIzu7zgPFhtZvl2EO8mVunF9j1zCUEoeWOfP26ndHHc8gFrNOE3tb5g+QEN8RLpaTKzCbGKahbhvJxNuE7lb9qS52Q+PV2NPPlXEtWQBdu9JeaWizk0Tq2T5V3p6jPusdAg+UTaP+Mc2huSQvczyaX4PspGQb9MPLSg/25s4HIZ8CEz+7K7rwMws5HAfxEuDoMSm+4jFHcvIhT5Fu73EjN7mHAj8f8IJ8x74t9+M/sp8NF8cSqhcRe
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFbCAYAAABfzB2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZhcVZ3/8Xd3Z1/InhCyb3wJChFlCwEJiKjDOAzjMiBBEUVEHVxGxVEHcANRxx3EZXBhU9x+jIqsgbCDrILAlwSysmUPCUmnk+7+/XFOdd/uVHdXd9+qW1X9eT1PP7dv172nTnffuvWpc885t6a5uRkRERGR9mqzroCIiIiUJ4UEERERyUshQURERPJSSBAREZG8FBJEREQkL4UEERERyUshQURERPJSSBAREZG8FBJEREQkL4UEERERyUshQURERPJSSBAREZG8FBJEREQkL4UEERERyatf1hWQVmY2HVjewcPNwCZgFfBX4Dvuvq5EVUuNmZ0O/Bx43t0nJ35+O3A08DV3/2I2teucmf0CeB+wxN0Xlug5VwDTOnh4K/AycBtwibs/Voo6pandMT/H3ZfFn18AnA/c7e5HZlO7ziWOZdy9ptDHUnz+Q4FTgSOBWcBQYDOwGrgV+IW7/6OHZS8kHFcA/d19d4H7nU6e17dULoWE8vUEsCWx3g8YBbwWeB1wppkd6+6PZ1E5KbnVhICYUwsMA2YCZwLvN7MPuPuvsqiclI6Z7Q38FPjn+KMmQtB6BhgBHAgcBHzKzC4DPl7om7xIewoJ5es/3P329j80szHAL4ETgN+Z2Vx3byp15YrgvcAQYH3WFSlTl7v7Be1/aGb9gf+OXz81s7vd/dlSV64Ifgj8GtiedUXKiZlNAu4mtC5tBr4K/NLd1ye2GQt8GPgC8BHC6+r93XyqB4C5AAoYfZtCQoVx9w1m9j7geWBf4Hjghmxr1XvuvqrrraQ9d98FnGdmbwMOJrQqfC7bWvVefNNTYEwwsxrgN4SA8BKw0N29/Xbxb/dVM3sE+DNwupn93N3vKPS53H078HQ6NZdKpo6LFcjdNxAuR0C4/CCyJC51PFSvdwML4ven5wsISe7+F+CPcfWsYlZMqpdaEipX/7jc2v4BM+sHnEI4qbweGAPsBl4AFgPfdvdn8uz3FuCjwOGE/g9bCGHkWuBn7t6QZ5+9gI8D/wbMJgTP54A/EDpXbi7kl8nXcTHRqe1lYCJwBvAhYP+42xPATwgdtJqLVbcK0eHxAGBmRwMfBI4A9ia89tcD9wGXuvutefbZD/gscCywD7CD8Pe7Hvieu6/Ns08dsIjQwfN1hM50LwA3A99096WF/DIddVxMdOScC0yI9Ts8Ps9ywrH6TXffVqy6ZeijcXm/u99Y4D7fBRy4LvnDRCfcswl9Gr4IjCf0fTkzbtZhx0UzOwn4GDAPGAg8BFzYUSXaPd8NwHmEVtBxwLr4s6+6+4oO9n8jcA4hJI0hdOK+F/i+uy/uYJ9TCOeMNxD672wGHgauAK5pf5k2Xso5F3gr4RhriH+Pmwnni7x1q3ZqSahAZjaL8ImxiXaXGsxsMHAT8CtCx6YG4HFgIzCH8IniYTM7qN1+58Sy3g7sAh4lvOEcDVwC3BhPssl99gMeA74MHEA44S4F9iOcBB6N2/RWDaEfxs8Il1ieIYSew4HLgYva71DCumUu9kv4p7j6lzyPXwTcTniDHA48RegEOZ4QoG4xsw+122c+8CDhWvYIQiB7nvC3/DzhGJrSbp9hhGPoF8AxhP4EjxNO6mcCj5nZv/X2943OJLyJHQusIbzR5P63N5pZm3NbieuWOjMbRWsrwnWdbZvk7ne4+3+5+30dbLII+DHhNbaUEMYf7aIulxCC9rGEv+PTwKHAjYQg0JnXE16X74v7LgMmAR8AHmh/TMXn+zqhpewdhEDyd8K570Tg1vh4+32+DVwNHAe8Ep9zF/AW4ErCcZDcfhYhQPwHIRA7IXTOJISTx9qfM/sKhYQKYWZ1ZjbGzN5O+CRXC1zk7ivbbXou4SS4HjjU3We4+yHuPpXwQn6R8Anq84myRwIXx9VT3H1S3GcG4UW1A1gIvCuxz1DgT8B0wklrqrubu78OmEJ4s5oG/F8MLr0xHngPoVVgrLu/gXAyuzI+/p9mNi6jumXCzGrMbJiZHQb8H6GlZAmhs19yu4WEPgpNhE9Ve7v7we4+B5hBCA8AX2n3xvodwnHy/bjP6919f0JIW0o4sX+hXbV+Sjgp/wM4zN0nu/vBhP/fhcBg4CozS+OSyKcIJ/q93X0eMJXWT9pHAP+SYd2KYR6t5+v7Uyx3AaGT6HR3PwCY0VkLm5mdSugM2QCc6u5T3f0Qwhvrbwnnic6cCTwJzHX3fd39NYT/11ZCq8J/tnu+swjntM3AIncfHf9v+wAnA68C55rZBxL7zAU+CdQDx7j79Hg+m0QIJ03AaWZ2eOKpvkY4Fn5HOKYOdPcDCeeJe4C9yPNhpC9QSChft5lZc+6L8Ml5PeENYV/Cm/p/59nvOMKL4Evu/rfkA3H9R3H1gMRDBgwiNOH9pt0+NxFeHL8jnBhyPkh4Y3oYeIe7v5DY5yVCoFhJaL04veDfumOXuvv33b0xPkc98AnC/BH9CAEoq7qVwvntjocmwon1PkLz6GLghDw90d9K+L/90d1/nmxidfc1hE/eEE6Q4xP7zYvLn7v7zsQ+zxFO5H8m/A0BMLN5hJP2duAt7v5AYp96d/8C4VLAIPIft931GPABd98Sn6PZ3S8ltA5A66fuLOpWDHsnvn85xXLrgc8lXlddzb2SC4YXuvvVuR/GYLGI8Am8Mw3AScnLne5+L62f7JP/twHAl+LqGe5+VWKfZnf/DfCZ+KMvxcusEIaAxs3ajhCLQ4R/BFxDaJXIyR3vVyUvVbn7y4QPJzcQwk2fo5BQvp4gDHXKfd1H+BSUO2F/Cvh++0sA8frtIOCyDsrNDSkbkvjZckIIGQX8Ip5Uk2V+xd3f5e5/SPz4pLj8de4E026fHYRgAeESRm/9Kc9zbCA0MwOMzLBupbCatsfDPYRm103x8WOB65ItKgDu/jnC8bCog3KTQwyTx0Tu+vxlZvameEkjV+af3P3t7p78ZJX7m9/u7s938FxXxOXb2h+3PfCXfP1QCJdSIP/xUKq6FUOX52ozW5QMknm+ZufZ7RF3f7WQCpjZTOKwSNo11wPEPkv/20UxD8ag3l6+/9sRhH4nW+n4EstVhMA8iXApA1qP3Xlm9i0zm9Ounh9z9/e4+5LEj3P7fN3MTky2MLr7g+7+Nnf/VBe/W1VSx8Xy1dE8CQMIn35/SOg4VEdo/mvh7rvMbFRsTtuXcF1tX8IEKxPiZrWJ7dea2cWETwnvBd5rZi8RZm27CbjeE+Owo1yz7JlmdmIHv0Pu008a1/47OrnviMvksVzqupVCR/Mk1BCaeH8FvIlwjfagZDhy92YzazKzowidPmcSWloOjMuc5BvRZwnB7DDgFmCbmd1B6MT1lzyd/HJ/84PN7K4OfofciXc44aTem2GvPTkeSlW3Yki+/iYQPjC0t5YQIJMGEobGduTFbtTB4nJrnsucOZ32Z6Bn/7cBwB1mRgcaCcfufsAD7v6wmV1FmI3yPwmXI1cQzmc3Aje4e/sOvucRLtMa8P+AnWZ2D+F4v94rcDbTtCgkVJiY1n9iZhOBC4APmdlF7r4awMyGA98jfHLsn9i1gdD8/gihCbp9uV80s4cIweONhDfRU+PXbjP7NfCxXPMuoTMbhCb7Oe3La2dkF48XYo+RFe0kp74tdd3yih2dftDBw5e7++W9fY74afo2M1tE6F9wAPDvhE5buRDxaUIflOTv2kxoGr4COC1PuTeY2SGE68EnEN48/yl+fSe+2Z7l7rkm2NzfvP1li46MpHdvxD05HkpVt2L4e+L71xAuL7URLw3elPyZdT7VO7S+ORdiVFx21vKwqZPHoGf/t4EkLkN0Inl8n0b4G51JCLrTCZ0jPwDUm9lPgM/E8ynu/mhsQf0vQsvTGEJoOAa40MweBz7i7h2FzKqlkFC
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAFbCAYAAADoceW+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wcdf3H8dflcrlLJySkQHr7JJQEMNL9EUGKRvFn+/1AQCM2/MmPnygqAgoogujvZ0PsUgRBUVGUplKlg/SSfJIAKZRUQkgvd/v74zuzN7fZvbp3s+X9fDzusTe7M7Of3Zmd+cy3TU0mk0FEREQkDb3SDkBERESqlxIRERERSY0SEREREUmNEhERERFJjRIRERERSY0SEREREUmNEhERERFJjRIRERERSY0SEREREUmNEhERERFJjRIRERERSY0SEREREUmNEhERERFJjRIRERERSU3vnn5DMxsPvFTg5QywFlgK3Ap8z91X9VBoRWNmc4ErgFfcfXTi+buBw4Fvuvu56UTXOjO7EvgocI+7z+6h91wMjCvw8npgBXAXcJm7P9UTMRVTzj4/xd0XRc+fD5wH3O/uh6UTXesS+zLuXtPe17rj/bq43o8AnwemAtuAh9z92GKtv9SZWW9gorsvSDw3m/C7Aqhz9x1pxFZNCh0LotfqCMeDE4HdgXXAj6OXu3ycKHReSrw+HZjv7pnOvkdnpV0i8ixwf+LvEWA1sDfwFeB5M9snvfCkhy2j5f7wILAYGAV8EvhXdEIRaTcz+wBwFTATeANYCLyYalA9yMyOJhxr9dspbd8FzgHGE5KVVwjHv25lZoPM7EfA00Btd79fPj1eIpLjv9397twnzWwo4cAxB/iDmU1396aeDq4bfAToR0i2ZGeXu/v5uU9GVwpfjf5+YWb3u/sLPR1cN/gR8FtgU9qBVLj/iB7vA95ehVf+ZwOW5/lHgOkAVfidpOUVou8cWJLzWryffsvdvxI/aWbDKM5x4k/AQ8D2nOf3Bz7bxXV3SdqJSF7uvsbMPkrYaFOBo4Hb0o2q69x9adoxlCN33w58zczeCcwilI6clW5UXefuq1FS2hOGRY/36YTbzN03AfPTjqOaRMeyQt95vJ/enbNMUY4T7r6OUN1TctKuminI3dcQihMhVNWI3BM9an+QjoiLm7emGoVI6+LzcdXtpyVZIpJQFz2uz30hanx1AqE4a39gKLADeBW4E/husmFWYrljCMVQBwFDCBnis8D1wC/dfVueZQYB/wO8H5hM2GFeBG4gNKh9oz0fJl9j1UTjpRWEthCnAJ8C9owWexb4OXBlvkZExYqtTBTcHwDM7HDgE8AhwEjC/r2aUBz5Y3e/I88y04AvAUcQGohtJnx/twA/cPeVeZapBU4iNOrdF+hP2O/+AXzH3Re258MUaqyaaLw7HRgRxXdQ9D4vEfbV77j7hu6KrdR05neSaHgdO8/MzoOWDWHNbAhwOvDvwBTCb2gJcDPwf+7+Wk4scwmN/n4HXApcRthWawjf8ffMLP6t1gEfjNa/D+EY9Shwnrs/aGb9CVUn/wmMIbRh+Rtwlru/mud7mAycBrydsI/0JxzDngauI1RvNubEGTvHzM4BrnL3uW01VjWzWYRjy+GE39OG6H1+Ha2jMWf+u6N53wm8RmjvcDiwC6F0+0bgoo52QDCzEwjb+y3AgOg7ehy4GrguWW2f+Mw3Erb9hcD7COeHl4G/ELbR8gLvNRE4k1AKPxrYAjxDaCpwRe5nTiw3k3BeORLYg3AceRz4ibv/ITHfeHIaq+ZprH+XmUHUYaCtRu1m9h7Cce8twHDCMe9e4Nvu/lie7ybbWDXPe2+P3nsCYX86CLjU3U8v8LnPIXzHt7n7O/PN0x4lWyJiZpMIV75N5FTLmFlf4O+EH8S7Ca3gnwFeJxxIPg08bmb75Sx3erSu9xDqyZ4knNQOJxxM/hYdyJPLTAOeAr5OOJC8SmjsNg34GvBkNE9X1RB29l8SqqMWEA5aBwGXAxfnLtCDsaUuaifyrmjy5jyvX0wo0jwJGAjMI/S+Gk5I0m43s0/lLHMw8C/gY8BgwsnsFcJ3eTZhHxqTs8wAwj50JeFksImw7w0lVBk9ZWbv7+rnjXyScKI4gnAQXUXztv2bmbX4/fZwbGnpyO9kAaHR85vRdLIxNABmNoOw3c8HZhAaBzohqf8C8Fx0ws5nGiFpGA88R7iweS5nnu8RDuiTgUVAPXAU4WTzduBhQsP8XoTf7nDgZOCfZtYvuSIze28U6/8AEwnJ0nyggbC9f044JsZWFPj8O12g5TKzL0WxnUT4bTxFSHgOB35F+D0NLrD4OwnJ1vsIJ8VlhBPb54AHzGxgW++fiOO7wLXAO6LP8RTh2H0McA1hX89nEKFN0GlAI+F4MI7Qc+qxfJ0got/Gs8BnCBcl8wm/ucOAXxB+cwPyLPdf0ef9JLBbtI4NhN/t783sm218zEdJ7JM0d+J4prWFzKzWzH5NSK6OI5T8PQ30JVygPxRVZ7f13s8mpuPfxxbC7wng+OjCP5+4AfQVBV5vl5JKRKIvdmiU4d1CiO9id89t1PNlwg9vNXCAu09w97e6+1jgAEI2Hl9pxOveBbgkmjzB3feIlplA2Kk3A7OBDyWW6Q/8lXCguREY6+7m7vsSrl5uJuzcf4mSo64YDnyYcJAZ5u5vIVz5XRO9/gUz2y2l2FJhZjVmNsDMDiT82CYTqmd+mzPfbEKbkSbCldNId5/l7lMIB8C7o1m/kXPy/h5hP/lhtMz+7r4n4QS3kHBlc05OWL8gHBSfAw5099HuPouw/S4iHAR+Y2bFqD76POFAO9LdZwJjaW5Udgjh4JNWbGlp9+/E3S+KriCfiF673N0Pi68qoxPirYSTzoOEK9S93X0/wtXwXwnJxZ/NbEKeWGYSThbj3H3/aJl/5MxzGmHf3D1a71TCBUM9cDuh8fqB7j7R3fcmXIk3ApNoeSwaQjjY1wM/AUa4+0x334dQavbDaNYPm9le0ee/Nefz/zr6/Be19gVHvYwuIRx/vwEMTxwrjyAkOLNpmfQknU64UBzr7nu5+2TgvdHnmgx8vLX3T8QxHTiDcFJ8u7uPj+LYg1Da0QScbGYH5Vn87YSL0g+7e7x9JhC28+7AdcmTa1SicS0hqbsQGOru+0bHkP0Jx4MjCd99MsZDCKVidcC3ou9qlruPIRyLmoCzzeyoQp/T3T+UU9Lx39F2+u82vqIvEpLWTYTagd2j3/uoKM7ewPXRvlPwvYHk+8yO3ns5zQ1kdwN26uoeXchNJQy5cWMbsbYq7UTkLjPLxH+EK5vVhJPOVMKP4at5lnsHYQNf4O6PJl+IpuOdJZn1GmEnW0soUk0u83fCldQfCKUrsU8QfjiPAx9IFpVGG+pDhKuSKcDcdn/qwn7s7j+Mi//cfQvhKiJD2KkOSDG2nnBezv7QRCixeojwQ7gTmJOnweGxhO32J3e/IllU6+4vE0oQIJzEhieWmxk9XuHuWxPLvEi4Gr6JRMv26GB1POHHeYy7P5JYZou7n0OoNmkg/37bUU8BH48ameHuGXf/Mc1XSoemGFuaOvI7ac1nCSelFYT9Ktul191XEKpUniGUCOQmpLFzEttnTZ7q09vc/ZJ4n432x6ui13oRtm/2GObu/yAUq0M4AcbeRjjZLQdO99DQNF5mI2F/jY9dXR3yIL6C/7m7fy3nt3EXoaQD4DgzyzeuxUrgg8kqLXf/C+HiEhL7bRtmNC/esnelu/+acJy/jpCc5fNFd78uscwrhIRoHbAXYfvGzo/Wc6m7f9XdNyeWewL4ACGROtHM9kws91XCdrze3b8S7YvxclcQSo8gJCVFY2Z9aG6wf6a7/zbe96IYTiOU7A2guTdOh7j7esI5EULCkyuu9rw2uY90RtqJSO44Ig8RrubiD/V54Ie51SVR9tgA/LTAeuMfabJo8yVCojMEuDI6cCfX+Y0oM70h8XT8g/ut56kbjHbWeEO9p9CH7IC/5nmPNYTiQQh1rWnF1hNyxxF5gFDUuDZ6/QjgxmTJEIC7n0XYH04
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAFbCAYAAACux0YUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxddX3/8ddk30NICCEJWUjgCxGIIoJxjUrRX6l1pXUBd9D+2tqf1qq/n7Ziq6J2sdq6FBVXrKJ1FxVFBUFAWcSEkA8EyEJCyAYhC9lm5vfH99w7N8PMZJY7d5l5PR+PPM6cueee+czk3HPf93u+3+9paW9vR5IkCWBEvQuQJEmNw2AgSZLKDAaSJKnMYCBJksoMBpIkqcxgIEmSygwGkiSpzGAgSZLKDAaSJKnMYCBJksoMBpIkqcxgIEmSygwGkiSpzGAgSZLKRtW7AB0upbQAuL+bh9uBh4H1wI+Bj0XE1hqVVjUppdcBXwA2RsTciu//Cng28MGIeG99qutZSumLwGuBayNieY1+5lpgfjcP7wIeAn4JfDIi7qhFTdXU6Zg/MSLWFN+/BHgfcENEPKM+1fWs4lgmIlp6+9gAft5aOo6FFRFxei+ecybwu4pvlf/Gw0VK6RRgdUS017uWZmCLQWNbCdxQ8e+3wDbgVOD/AqtSSqfVrzzV2AYOPx5uBNYCxwEXAbeklF5Tt+pUa6ellFIvtvvzQa+kQaWUpqSU/hP4AzCy3vU0C1sMGttfR8SvOn8zpTQd+BJwHvCtlNIpEdFW6+IGwWuACeTwo8e7PCIu6fzNlNJo4O+Lf59NKd0QEffWurhB8J/A14G99S6kAR0in7/PBz7Q3UYppRbgz2pVVAM6A/jLehfRbGwxaEIRsZ3cnL0fOAk4t74VVUdErI+I1RFhMOiDiDgYEf8A3AKMIbceNL2I2FYcD+vrXUsD+kWxPP8I2z0VmAfcPrjlaCgxGDSpIhysLFZPrWctahjXFkuPh6HvR8Ae4PSU0kk9bFe6jPD1wS9JQ4WXEprb6GK5q/MDKaVRwCvJzYhnANPJzY+byJ82/i0i7u7iec8nN709FZgG7CQHkCuBz0XEgS6eMwX4G+ClwGJy4LwP+Da5g+Qjvflluup8WNEx7SHytfQ3ABcDS4qnrQQuA77YVceiatXWJLo9HgBSSs8G3gQ8DZhFfv1vA24CPhUR13TxnJOBdwLPBWYDj5H/flcBH4+ILV08ZyRwAblV64nARPJx9zPgnyPint78Mt11PqzogHcKcGxR31OLn3M/+Vj954jYPVi1NYC95HDwZ+RWgw923iClNKJ4bDfwA+Aj3e2sL8dGSmk5cA35tfT3EfGBTvs6BbgVGA+8JyI+dKRfJqVUeu3OAv4VeDHQWuzn3Ig41NdzWheddg8WXTIWRsTaiu2eBbwVeHqxz4fJ/Xc+ERG/YBiyxaBJpZQWkT8ZtgE/6fTYeOBq4MvAnwAHgBXADuBE4M3AbSmlJ3V63luLfb0QOAj8nvwm82zgk8BPixNr5XNOBu4A/hE4jfwivQc4GfgH4PfFNgPVQu5X8Tny5ZO7ySeFpwKXA5d2fkINa6u7op/BHxerP+ri8UuBX5HfFCcDd5FHt8wkh6afp5Qu7vScZeTLE68HppJD2Eby3/L/kY+h4zs9ZxL5GPoi8BzyG9gK8gn3IuCOlNJLB/r7Fi4ij8Z4LvAAsJWO/9ufFm+M9aqtFq4slt1dTngGOcx9nxzoutTXY6Po9/Rvxerfp5SWVOxrDPA1cij4BfDhPv5O/wO8CriX/P+zuQgF/Tmn/Y6OVlXo6LS7r6LeD5Nb2l4GjCV3UmwDXgRcUzw+7BgMmkhKaWRKaXpK6YXkT2wjgEsjYl2nTd9FPvFtA86KiIUR8ZSImAecBTxI/qT0/yr2fRQdnyheGRFziucsBJ5PPrEsp+IklFKaSP4ksgD4HjAvIlJEPBE4nvwGNR/4fvHCHoiZ5BPG3wAzIuLJ5BaErxaP/21K6Zg61VYXKaWWlNKklNLZ5JP/YvJJ7uudtlsOvJt8wnsDMCsizoyIE4GF5DcFgH/q9Gb6MfJx8oniOWdExBJyMLsHmAO8p1NZnwXOAe4Ezo6IuRFxJvn/70PkN4wrUkrVuNzxdvKb/KyIWEq+ll7qaPY04E/rWFstXEVuDViaUjqxi8dfUSy7vYwwgGPjPeTQPQa4vOIDw6XklpitwAX96BR9JrC8+P+cA/xV8f0+n9Mi4nzgryv2vTwinhERm4vf/c3Ffh8paj26OB5mk/92e4B3pZTe2MffoekZDBrbL1NK7aV/5E/I28hvAieR38j/vovnnUN+ob8/IirHL1Osf7pYrRzqmIBx5Ga0b3R6ztXkF/y3yEm95E3kN6PbgJdFxKaK52wmh4h15ET/ul7/1t37VER8IiJai5+xD/g/5PkdRpFPEPWqrRbe1+l4aCO36NwEvID8Ce28iDjU6XkvIP+/fScivlB5so6IB8ifsCG/Qc6seN7SYvmFiNhf8Zz7gL8Ffkj+GwKQUlpKPqHuBZ4fEb+teM6+iHgP+VPuOLo+bvvqDuCNEbGz+BntEfEp8idJyE3D9apt0EXEY+T/A+jUalC8Ub+M/Hr+aQ+76dexUVxSfDX50/fZwFtTSs8D3kZ+Pb4uIh7sx691ZURcV/yMtojYUXy/P+e0bhUtG+8vVt8QEVdU7K89Ir4B/F3xrfcXlzGGDYNBY+s8j8FN5E87pZP024FPdG7eL67HjgM+081+S8O/JlR8735y8JgGfLE4kVbu858i4vyI+HbFt19SLL9eerPu9JzHyGEC8uWJgfpBFz9jO/nTCcBRdaytFjrPY/AbctPnw8XjzwW+V9lyAhAR7yYfDxd0s9/K4YCVx0TpevtnUkrPKy5XlPb5g4h4YURUXsIp/c1/FREbu/lZXymW/6vzcdsPP+pmwpq7imVXx0OtaquVUojvfDnhOeQ38u901S+oZADHBhFxJ7m1AfKb7JfIl/w+HhFX9ar6x7u+mzr7c07rydPI/VN2kVsUu3IFOYzMIfdpGDaGVQpqQt3NYzCG/Cn3P8lNbSOB/125TUQcTClNSyk9ldy6cEKxfBL5BQEVwTAitqSUPkJuInwN8JqU0mZyJ6Orgau6GEZYanK9KKX0om5+h1nFshrX8rs7oZeun1Yez7WurRa6m8eghXyZ58vA88jXRp9UGYgioj2l1JZSeia54+YJ5BaV04tlSeWHhXeSw9jZwM+B3Sml68gd9X7URUe90t/8zJRSlyd4cnM95GvZc8jXsvurP8dDrWqrlZ+Q39yemFJaHB0zGvZ6NEI/j42ST5D7tpxL/rvdRm6e769uWxn6ek47gtLxMAa4rod5olqLfZ5MnmBuWDAYNKHiE8BlKaXjgEuAi1NKl0bEBoCU0mTg4+RPAaMrnnqA/MK9ndyE2Hm/700p3UoOG88iv3G+uvh3KKX0deCvSk235A5pkJvju7rGWemoIzzeG91+8ilUTjtb69q6VHSG+o9uHr48Ii4f6M8oPjX/MqV0Afma8GnkN4avFTW0AO8gX3+t/F3bgSB/Ur6wi/3+JKX0FPKJ/jzyif+Pi38fK95g3xwRq4qnlP7mnS9JdOcoBvbm25/joVa11URE7EspfZ/8Gj0fuLRo2XkpsIWO+Q661N9jo+Lnt6eUfkDHXCqre2qh6IUuO0n295zWg9LxMJaKS049GLRzRCMyGDS375GDwUhyat5Q8f3nkF9k/0HHJYh7itR9Ed28iCLiO8B3imF+zyZ/Ev1jcmK+gPyCKnXq2lOsvzAifvj4vdVVo9Q2le5PPD+v5g+KiGtTSjuLn3kmRTAgXye+pPj6G+T7bNxJPonvLjqudXnyj4jfA68s3myeSj4e/oj8Oz2D3GP9xIjYQ/6bA/xrRLyjmr9bFTRybQN1JRXBgHw9/mjyvTMedxmtk34fGwAppRPIHTchN7u/KqX03Yj4Zj9/l+70+5zWjdLxcGvR4VAVDAbNrbLHbwtA0cz2nOJ750XEL7t43tzO3yh65p8ItETEHRHxKLkZ+QfkHv/vJp9
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAFbCAYAAABMG11tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcdb3/8dfuZrPpvVCSkP5JIhB6MSAJzYLgT1EvCCoXxYYdRa54aV5BbCheil7FBqjo1YuKqCQkofciSPJJQkISQkl2U0jfNr8/vmd2z87O9pk5szvv5+ORx8nZc+bsZ2a/55zPfNspS6VSiIiISOkpTzoAERERSYaSABERkRKlJEBERKREKQkQEREpUUoCRERESpSSABERkRKlJEBERKREKQkQEREpUUoCRERESpSSABERkRKlJEBERKREKQkQEREpUUoCRERESpSSABERkRLVL+kAkmBmk4E1bWxOAVuAdcDdwHXuvqlAoeWMmZ0H/AzY4O4TYj9fApwAfMPdv5ZMdO0zs58DHwaWuvv8Av3Ol4AD2ti8HXgdWAzc4O7PFiKmXMoo8zPcfVX08yuAy4EH3f24ZKJrX6ws4+5lnd2Wj9/Xw+N+CPgiMBOoBR5x97fl6vjFzsz6AVPdfUXsZ/MJ5xVApbvXJxFbksxsAvCGu7+RxO9XTQA8DzwY+/cYUA0cCPwH8IKZHZRceFJg62lZHh4GXgL2BS4Anogu5iKdZmZnAr8A5gJbgZXA6kSDKiAzO5VwrdW5EzGz/mZ2FbACGJdUHCVZE5DhM+6+JPOHZjaacNKeBvzezGa7e2Ohg8uDDwGDCImOtHaLu1+R+UMzqwT+M/r3P2b2oLu/WOjg8uC/gd8Au5IOpI97f7R8AFhQgt94vwpYlp8/BswGKMHPZD/C9SRRSgLa4O41ZvZhYAOh+u5U4G/JRtVz7r4u6Rh6I3evAy4zs7cDRxBqBS5JNqqec/dqlBAWwpho+UAJ3uza5O67gOVJx1HK1BzQDnevIVRhQWgeEFkaLVUepCsqouXeRKMQyaCagI5VRsvtmRuiji5nE6r6DgNGA/XAK8C9wPfinWBir3srcCFwDDAS2EZINu4AfuLutVleMwz4HPAeYDohgVsN/IHQeXFrZ95Mto6BsU5jrxPavs8HPgbMiV72PPBj4OfunspXbL1Em+UBwMxOAD4KvBnYh3COVQOPADe6+6Isr5kFXAycSKgi3E34/P4K/MDdN2Z5TQVwLqED5SHAYEK5uwf4truv7MybaatjYKyj5GxgfBTfMdHvWUMoq9929x35iq3YdOc8iXVyTbvczC6Hlp0OzWwk8Fng/wEzCOfQWuAu4Lvu/mpGLOcROi/+FvghcAPhb1VD+IyvM7P0uVoJvDc6/kGEa9TjwOXu/rCZDSZU1/8bMJHQZ+HvwCXu/kqWz2E68GlgAaGMDCZcw/4J/JrQpNaQEWfapWZ2KfALdz+vo46BZnYE4dpyAuF82hH9nl9Gx2jI2H9JtO/bgVeBS6P1EYRa3TuBq7vS2Tt2LswFPkJoUq0EHDjF3TebWRlwerTtSJrb+F8H7iecx09kiTNtpZlBaCpaEttvLqEz6QLCebgDeAL4sbv/b2ffQ3tUE9AOM5tG+MbXSEZTgJkNBP5BKIzvJPT2fQ7YTDiJPw48ZWaHZrzus9GxTgfqgGcIN5QTCCfy36OLaPw1s4BngasIJ/ErhI5Fs4DLgGeifXqqjNAP4ieEJpAVhAvGMcAtwDWZLyhgbImL+gW8I1q9K8v2a4AlhBvgUGAZYZTJOEKCtNDMPpbxmmMJJ/W/A8MJN5INhM/yq4QyNDHjNUMIZejnhIvDLkLZG01opnjWzN7T0/cbuYBwkT4ReBnYRPPf9u9m1uIaUuDYktKV82QFoYNpuud3vOMpAGZ2MOHvfgVwMKEjqhMS6ouAf0U3y2xmEW7Yk4F/Eb5U/Ctjn+sIN+fpwCqgCjgFWGxmC4BHCZ2gywnn7jjgg8B9ZjYofiAze1cU6+eAqYREZTkwgPD3/jHhmpj2ehvvv9WXo0xmdnEU27mEc+NZQrJxAvBTwvk0vI2Xv52Q6LybkISvB6YAnwceMrOhHf3+LG4kJFKvRMfcG0sAbiMkGGcSan2eJyQhE6P4Hzazd8SO9RzhvE97kvC5bIu9/wujn3+I5r/rDkLT9O/N7LbMe0V3KAnIYGYVZjbazE4nfBMrB65x97UZu36FUOirgaPcfYq7H+nuk4CjCAUgnWGnjz0CuDZaPdvd949eMwV4K+Eb4HzgfbHXDAb+TDjJ7wQmubu5+yGEAnYXIUv9U5SY9MQ44AOEE3yMux9O+MZza7T9IjMbm1BsiTCzMjMbYmZHA38iXEiXEjrTxfebT+gj0Ej4hriPux/h7jMIF58l0a5fz7hxXkcoJ9dHrznM3ecQbi4rgf0J32bi/gc4mXBRONrdJ7j7EYS/39XAQOA2M8tFk8UXCTf0fdx9LjCJUIsFobbjjARjS0qnzxN3vzqqYXk62naLux+XrnWJbkZ3E2qAHiYM3zzQ3Q8FJhDOr5HA/5nZlCyxzCXcUA5w98Oi19yTsc+nCWVzv+i4Mwk3sipgIaGj8NHuPtXdDyTcZBqAabS8Fo0kfKuvAm4Cxrv7XHc/iPAt9fpo1w+Y2Zui9393xvv/ZfT+r27vA45GU1xLuP5+HRgXu1aeSEgu5tMy4Yj7LOFL2iR3f5O7TwfeFb2v6YRv9F01DzgrOt5kmsv+hwk1wruB06Iyf6S7TwXeRDgX+gFXpg/k7p8h9tlGxz3O3Z+O3v/bCTU8DYRyNiK6NhxAOL82EsrgFd14Hy0oCQjZcCr9j5DRVxMu+DMJBTFbD86TCRf8K9398fiGaP2maDU+vNAIGfMWQjVe/DX/IHyD+D2hViHto4RC+xRwZrx6zt1fIxSktYTah/M6/a7bdqO7X5+uZnP3PYTsOUUoyEclGFshXJ5RHhoJNTWPAG8jNPOclqVz19sIf7c/uvvP4iNJ3P1lwjdnCDeQ+HCgudHyZ+6+N/aa1YRvgX8hfIZAU/XgWYRv2G9198dir9nj7pcSquoHkJuex88CH3H3bdHvSLn7jYQbD4QLY1KxJakr50l7LiQkAK8TylXTsEF3f51Qjf8c4ZtwZjKYdmns71OTpcnub+5+bbrMRuXxF9G2csLft+ka5u73EKqwITRzph1PqAZ/Dfhs1Kkv/ZqdhPKavnb1dFj1N6Llj939soxzYzHhGz7AGWaWbX6LjcB7480o7v4nwhc7iJXbLrjf3Zuu2x461UJImuoJZeKv8Re4+3Kav/h15TO5mlDjdEm8nEXHXETz9fSiaCRbtykJaD1PwCOEzC1d6L4IXJ9Z7RJltwOAm9s4bvoEiVenrSEUlpHAz6OLZvyYX3f397n7H2I/Thf232S2f0Wv2U1IHCA0MfTUn7P8jhpCNTCEtrWkYiuEzHkCHiK0QW6Jtp8I3BmvEQFw90sI5eHcNo4bH4IXLxPp9vGbzeykqMkhfcw/u/vp7h6vXk5/5kvcfUMbv+tX0fLtOaguvCvLTQVCUwdkLw+Fii1JXTlP2pM+L37h7lsyN3roH/TDaPWMqOo5rpFQg9CeVk1XhCYHCOVyaZbt6YR+WCyWP7n7UMKEP9lGOAwgNIdCyzLeJWY2g+bhhN/Pto+7P0w4NyH0o8i0MErMMmUrt531QBuxfIDw3r+abTvN535VZvNZNlHfk0Oi1Vuz7ePudxO+rA4ETuromO1Rx8C25wnoT8i2/ptQnVYBfCq+j7vXmdlIMzuGUGswNVoeSqgeg1ii5e4bzexaQkb/IeBDZvYasIhQdfXXWHaZlq42vSBqj8tmn2iZi7b3ti7eu6NlvMwUOrZCaGuegDKaqx9PAhaZ2aEZGXrKzBrN7HhCZ7GphJqSg6NlWvxCcDHhhnI0oWp2h5ndR6jSvctbd6JLf+ZHmFnWixLhwgChX8L+hH4J3dWd8lCo2JLUlc+lPenz4sl29klvGwuMInT+S9saJdvtWZ/lZ+lv7DWeff6TumjZasZEd98dfYGZSyjj0wjV3gf
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAFbCAYAAAC0+6aaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcZd338c/uZpNNT0jvjfBLII3emyiiNMUGghARUB8Lt+W2ImAF9Lkf71tFUZEmKHKriAIiihA6IhBIQvglIaSQ3vuym919/rjOzE42M1tmZ+dM+b5fr32dPTszZ387e+bMd65zXdepaGpqQkRERCSdyrgLEBERkcKloCAiIiIZKSiIiIhIRgoKIiIikpGCgoiIiGSkoCAiIiIZKSiIiIhIRgoKIiIikpGCgoiIiGSkoCAiIiIZKSiIiIhIRgoKIiIikpGCgoiIiGSkoCAiIiIZdYu7gFwzs/HAGxlubgK2ACuAvwI/dPcNeSotZ8xsNnArsMrdR6f8/DHgZOC77n5VPNW1zsxuAy4B5rj7KXn6ncuAcRlu3gGsAx4FbnT3l/NRUy612Ocnu/uS6OfXAtcAT7n7CfFU17qUfRl3r2jvbV3x+7qKmV0MfB44CKgDngWuJ+xzANXuvreTv+Mxsnjtp7w2Lnf3mztTg3QdM+sFDHX3ZXH8/lJvUZgPPJXy9S9gIzAN+CrwqplNj688ybOV7Ls/PAMsA0YAlwP/jg7qIjlhZu8DbgdmAluBxcDSWIuSomJmHwYWAW+Pq4aSa1Fo4TPu/ljLH5rZIMKL90zg92Y21d0b811cF7gY6EUIQ7K/W9z92pY/NLNq4BvR1y/N7Cl3fz3fxXWBnwB3A7vjLqSMfTBaPgmcmmg5iD4hTgXobGuClLzvAaPiLKDUg0Ja7r7JzC4BVhGaA08HHoq3qs5z9xVx11CM3L0euNrM3gUcQWhd+Eq8VXWeu29EoTFug6Plk6mBwN13A6/FU5JIx5T6qYeM3H0T4dQEhFMRInOipfYHyZWqaPlWrFWIdEJZtiikqI6WO1reYGbdgAsITYeHAYOAvcBq4J/A/3P3RWke907gU8AxwEBgGyGQ3APc7O51aR7TD7gSOA84kBDglgJ/JHS43NqePyZdh6aUjm7rCOfiLwWuAA6OHjYf+AVwm7s3dVVtRSLj/gBgZicDlwHHAcMJr5+NhM5pP3X3R9I8ZgrwJeBtwEhgD+H5exD4H3dfn+YxVcBFhE6fs4DehP3u78AP3H1xe/6YTJ0ZUzqwTQWGRfUdE/2eNwj76g/cfWdX1VZoOvs6SbO92wjPUcI1ZnYNhE6UZnYKrXRmNLOZhA6QpxL+RzuBfwO/cPc/dPBvGwF8ATgHGANsIPyPv9WR7UTbGk94nlYBY4FPEFrgDNhFOMXyNXdfaGaDCfvfuYTXyzrgPuDr7r4tzbazOtZ09HWZ8rq4Afi/hFOO5xBen1sJ/5fvuvu8DjwvtxH+358EGoGrgKGEflGXJ06Bm9ks4P8AJxJOJ9QQOti/QDg1+vs0dSb80sx+CXwz9RSqmQ0j/H/PAsYDDYTWqrsJHbRr2/t3ZFK2LQpmNonwybGRFqcdzKwn8DBwB+HJrwPmAZuBycDHgRfN7NAWj/tstK2zgXpgLuFN52TgRuBv0YE29TFTgJcJL9rphIPuYmAKcDUwN7pPZ1UQ+mXcTDjdsogQfI4BbgGua/mAPNYWu6ifwruj1QfS3H4d8BjhTbIvsJAwemYo4cD2DzO7osVjjiUc3D8K9Ce82awiPJdfI+xDY1o8pg9hH7qN8Caxm7DvDSIckF82s/M6+/dGLiccFN8GvEl4A0n8b/9mZvscH/JcW1w6/DrJYBGhw+z2aD21I22rzOxThDeOiwkfNhYQgsLphD5Vd7U8jrSyrZnRtr5ACIevRn/PF4CnCX2aslEJ/C/huDaEcFzoD7wHeCra918mvCnuBpYDowkfov5qZi1HuGR1rMnmdZliHOEY/ZlofSHhVNGHgGfN7LCOPCGRi4CfE/ajxYTQOTeq9ZOE/8XlhPC3BHid8Ly9C/hfM/tuyrZWEPaXRGvUkmg9eYrZzI4n7B//SQhXS6PbDyeEoGfNbHgWf8c+yioomFmVmQ0ys7MJn+gqgevcfXmLu36ZcCDcCBzl7hPc/Uh3HwscBawhfJL6Wsq2BxASKsAF7j4qeswE4J2ET5KnAB9IeUxv4C+EFHgfMNbdzd1nEZL/A4Sd+c9ReOmMocCHCYl9sLsfTtiJ74xu/4KZDYmptliYWYWZ9TGzo4E/E15ocwhJPPV+pxD6LDQSPmkOd/cj3H0yMIFwoAL4dos31x8S9pMfRY85zN0PJrwBLSZ8ovh6i7J+SejdvAA42t1Hu/sRhP/f94CewF1mlovTI58nvOkPd/eZhE+In4puO47wKSuu2uLSoddJJu7+vagV56XoR7e4+wltDVON+sn8mPCp8EpgQLTfjCM89+uj+q5tq4aoVfQ3Uf3/JLyGD3f3iYRQPIbwJp+NEYT9YzYwJtp/DiOEgoGEloV1wBR3nxK9Vi6NHnsscFJKnVkdazrxukw4nxDAEsf4WYQWpDcJAerqLJ6X4wmdiMe7+3RggrtvNbPJwP8Q3nOuAoZF/9ephJaMe6LH/6eZDQRw91ui/WVtdNsN0T50S/T3j4qer0GE1+ZQd5/m7ocQPtA+Rxhtk9h21ko9KDxqZk2JL0KS3kh4UziI8Mb+jTSPezth5/umuz+fekO0/rNoNXVopdHcjPS7Fo95mPBJ5PeE1omEywhvTi8C73P31SmPWUsIFcsJ//TZ7f6rM/upu//I3Rui31EL/AdhfoluhBAUV235cE2L/aGR0OLzLHAG4WB6Zppe6GcQ/m/3uvutqSNk3P1Nmg8oQ6OvhJnR8lZ3fyvlMUsJn+juJzyHQPLT3/mEg+073f1fKY+pdfevE170NaTfbzvqZeBjiWZgd29y958SWgkgHPTiqi1OHXmd5Nr3CJ9Gv5JaQ1THIzS/1r4Qjd5qzXmEN74twPvdfV3Ktv5K8yfpbN3s7rcnTsW4+3zCGxfR3/CB1FNR7n4rYTgyhFCRkO2xJtvXZaoPu/u/Ux7nhIAPKft/B9QS/neJfScxT8/phPefF9z9ux46UCd+52bgi9FqNeG9pD2+SAgJf3b3K1JPzXgYtXUuoUXrxCiAZq3Ug0LLeRSeJXwaShy0Pw/8qGUzXpTiaoCbMmw3MdwstdnuDcKOMBC4LTqwpm7z2+7+AXf/Y8qP3xst7049IKQ8Zg8hXEA4ndFZf0nzOzYRmpwBBsRYWz60nEfhaeAVwoEUQhP8fS0/Mbr7Vwj7w0UZtps6/DB1n0gcJG8ys9Oi0xuJbf7F3c9299Sm7MRz/pi7r8rwu34dLd/V3ubnVjzg6c+3L4yW6faHfNUWp468TnImOv8/K1q9M919ojf4jYTWm9Pa2ORZ0fI+d9+S5vbfEvpQZWu/U3Q0BwH39EOMEyGgX8rPsjrWdOJ1mazF3V9M8/N0+397veTuu1r+0N1vdPdehL4J6bRVazqJ5y3TvrKO0HcIOnmMLvXOjJnmUehOSKY/AT5N6Jn8f1Lv4+71ZjbQzI4htD5MjJaHEs4vQUrQcvf1ZnYDoSn5YuBiM1sLPELo7/Cgh+FqqRJNtJeb2bkZ/obE+aVc9AXIdIDfEy1T94d815YPmeZRqCCcFrqDcPB9xMwObfFprsnMGs3sRMKntImET0EzomVCavj+EuFN52jgH8BOM3uc8OJ9wPfv+Jd4zo8wsycz/A2Jpte+hFMXnRkSm83+kK/a4tSR5yWXUk/Z3GuW8YNlTbRs63WX2MD8dDdGx7gFhNNM2ViZ5meJFtNMM94mPkmn9lHI+liT5esyoSv+z2vauL3OzI4i/M2Toq/p7Pt3tfkBPuovlJht9mozuzLDXcdHy04do0s9KKTlYeTBL6LewNcCV5jZde6+EsDM+hLOJ11Ec094CC+CFwnnHc9Is92rzOwFQvg4ibBzXxh97TWzu4FPe3OP3/7RcnL01ZpcfIrZb8RFC6kv3nzXllbUYfTHGW6
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAFbCAYAAACNnBfBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxcdb3/8VeadN/pQktLW7rwaWnZd1yoC4JWEASuIKggi96fK8oVvaKAirghbihXvIoCCl5FUEAQUEFWkU268GkLdKEt3ei+kDSZ3x/f7yQn00kyyUxyMpn38/HIY3Iyc04+M3PmzOd8v5/v91RlMhlEREREitEr7QBERESk/CmhEBERkaIpoRAREZGiKaEQERGRoimhEBERkaIpoRAREZGiKaEQERGRoimhEBERkaIpoRAREZGiKaEQERGRoimhEBERkaIpoRAREZGiKaEQERGRoimhEBERkaLVpB1AocxsEvByC3dngA3AMuDPwDXuvraLQisZMzsH+AWwwt3HJ/7+d+BY4Ep3vzSd6FpnZjcAHwIedPfZXfQ/lwATW7h7C7Aa+Btwrbs/1xUxlVLOPj/N3RfHv18OXAY84u5vTCe61iX2Zdy9qtD7Svj/5wCnA28AxgB9gFeBJ4Fbgdvcvb6T/vcM4AV3z7RjnTHAd4DjgGHAOuA84POU6LNvZrMJnweA3u6+q8D1ziHPcUm6HzOb6e7z0vr/ZZNQ5JgLbEos1wDDgVnAQcAFZvZWd38+jeCkyy0nJJNZvYBBwGTgAuBcMzvP3X+VRnDSdcxsH+DXwFHxT9uBF+Pvk4FT48/zZnaauy8s4f8eAnwd+AjQHyj0C7sXcA9wYFxnLiEBWlKq2KRnM7OxwNXAm4C904qjXBOKT7j733P/aGYjgF8Cc4DfmdkMd2/o6uA6wQeBAYSzFtndz9398tw/mllv4Evx53oze8TdX8x9XBn6EXAL4ctSIjM7AHgAGEn4Mv5vQkvE6/H+auC9wFeA/YF/mtlJ7v5QiUI4BPhYB9YzQjIB8G53v7fxDjN99qUQxwNnAivSDKJcE4q83H29mX2I8KLuC7yDkPmXNXdf1vajJJe71wFfNrN3AocRWis+n25UxXP3degLppnYOnAbIZl4AniXu7+WfEzs4vg/M/sL8EfgzcBvzGz/3Md2sZGJ3/+evEOffSknPa4o093XE5oMIXSBiDwYb7U/9FyfAqYAW4H3tpYguPsmwtncZmAv4NtdEmHLqrO/ZFtTRMpRj2qhSOgdb7fk3mFmNYSDyX8QmihHEPotVwJ/Bb6br1/VzI4nNGceRajX2ERIXH4L/Mzda/OsM4RwoHsvMJWQwL1EOJO6xt03FvJk8hVlJgr2VgNjgQ8DFwL7xdXmAj8FbshXHFaq2MpEi/sDgJkdC5wPHEMo4KshtAA8DvzY3R/Is8504HPAWwlfSjsIr9/dwPfdfU2edaqBswnFqwcBAwn73X3At919USFPpqWizESR6gxgzxjfUfH/vEzYV7/t7ls7K7Y0mFkV8PG4+Ct3X9nWOu6+0syuBb4AnG1mF7v7hri9Gwivw83ufnae/3cOoUhxqbtPin9bQvMC4TozA9jH3Ze0EPckcgrNzSz7Wb3C3S9vrSDbzPoCHwXOIHzu+xBqie4ivGer2nodcrZ3CuF1PBDoCzxFqAlpt8RreAHwEGF/fRswlPCcf0Y4zmTM7L3Apwn7XTXwLOH53t3Ctt8MfJJQcDuCUJD/GPADd/9rC+sMI7xW7yK8VkOBbYT6mj8RPrMbctbJvhf9gXfG/3kw4XV24FfAj2JLaCGvySSajtmHANcTjh87gHvc/f3xcf0Jx/OTgQMI3zc7Ce/tvcDVyX08ESfAuOxynmLo9xC+Iw4nFP6uJZxsfcfdny7kObSlx7VQmNkUwploAzndHfGN+gthR3g3UAs8D7wGTCMUUz1tZgfnrPfJuK0TgTrCDr+F8EG/Frg3HpCT60wHnqOpv3YlsAiYDnwZeDY+plhVhLqRnxG6eRYSEqSjgJ8DV+Wu0IWxpS7WUbwrLt6V5/6rCM3MZwODgQWED+5oQrJ1v5ldmLPO0cC/gHMJB6a5hG62/Qn99k+b2d456wwi7EM3AG8h1D88TzggXgA8Fw+spXABoZr/rcArhANH9r29NxYBphVbZziA8H5BGOVVqNvibR/g7UXG8CRNLaMAj8Sfna2sszM+Jt96rXZ1xCK8x4HvAUcSjmHzgQnARcBcM3tDocHH5Oo2wj6zHXgBOILwBfahQreTxzHAM8BphFE2GwkJ79XA183s68DvCZ+dRYQRe8cAd5rZCXni/AbhS/BUQtLzb8Kx/j3AA/H+3HWmxcddBRxN+Dz8m3CcPISQ7DwWPwf5fJXw2hxOSAi2EJKf7wI3tuvVCPoSvoeOIxxvGogFuGY2itBl9yNCAraZcKzeBswEPgM8Y2bJ0TaPEF47CN9p2X0o+/xrzOwm4HbCsTATt9mPcHL9TzP7OCXQIxIKM6s2sxFmdiLhDLEXcJW7L8156CWEA+Y64Ah338fdD3f3CYQPzyrCmdl/J7Y9DPhmXDzT3cfFdfYhFMLsAGYThqhl1xlIyHonAXcAE9zd3P0gQgXuXYSzmT/GJKcYo4H3E1obRrr7oYQWi5vi/Z+NO2kasaXCzKrMbJCZHUnoK59KOAjdkvO42YSaigbCGcEYdz/M3acB+9DUn/3VnC/hawj7yQ/iOoe4+36EhG4RMA74Yk5Y1xO+tOYBR7r7eHc/jPD+fZ1wFnSzmZWiW+YzhORgjLsfSPiSyRYLHgOclGJsneGgxO/tGR78LOHgCiEp6TB3Px34ROJPs939je7+aivrvBpbmD6R+Nsb48/PW1ovtsj8jvC8HwZmxGPZoYQWtp8DewC3x+GorTKzs4D/R/gyOsvdJ7j74YSWt/8jHN866lzgaWBiPMaMI+ybEFrQPg9cDIyI8U8kJCBVhON1Ms6PxL9tBM529z3ifroXoZVmG3CJmZ2XE8P1hGPb44Tj3Yz4v0YRCt4bCIWxLSVOFxOSkZHufnD8f9nE5X1mdlAL67VkGOF9OsjdD8nZ3rcJydViwNx9Wvy+GQucQEj2RhOO90DYZ2hqSVqb3YcS/++rwFmEk4sT3H3P+P6OJrS6ZIAfmNlx7XweuynXhOJvZpbJ/hAyzXWEL499CQnAl/Ks93bCznOFuz+ZvCMu/yQu7p+4ywiZ3AbC+PXkOn8h7Gi/I3wYs84nfIk9DZyabJ6KB5jTgaWEVpFzCn7WLfuxu/8gO67e3XcSmhAzhOb7I1KMrStclrM/NBDOIh4nfAj/CszJM+7+BML79gd3/0VyRJC7v0I4o4fwwRudWC9bkf+LZJ+3u78EfBa4k/AaAmBmBxIOeNuB4939n4l1drr7FwndEf3Iv9+213PAebFWAHfPuPuPCa0OEJqK04qtMySLGtcXulLcH7K1FqNae2w3cxIhMVxJ+ILw7B3xPT+fcJY7ktBa0ZZs8vt1d/91YlsbCS13nnetwuwinIi9GrfZQFOraS/gRne/OvvZizVw34/3H5LdiJn1Aa6Iix9295sTcWbc/Vbgv+Kfrohd25jZnoQze4ALkt1Acb0baTpxSB73k/7k7v8dj6vZ4t5LCd8JkPg8tcOP3X1+3F6tu2+OralvJhy3L8rtZvQw+id7UtRSrM3E55/dB97jiRFE7l7v7j8ktLRUAV/rwPNoplwTirk0Nes8QvjimAdkD+6fIWRczbohYtbWD7iuhe1mh+ENSPztZcKHYjhwQzwAJ7f5VXc/3d1vS/z5lHh7i+eZPMfddxCSEAjdKMX6U57/sZ7QtAchI04rtq6wnOb7w6OEJs3sB/6twB3JlhoAd/88YX/YrZ88Sg7LTO4T2Q/6dWb2tnggyG7zT+5+orsnu5qyr/nf3b2lYV3ZptN35u63HXCX559UaUG8zbc/dFVsnaFf4vfdapnakE0yO2WCrU6Sfc9ud/dtuXfG9z7bQtnqZ9jMJhO6IKCp5SC5rVrgfzscKTwXk/OkJYnf89VJZE9yhiT+dgyhLmgLoWU1n5s
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZglZXnw/2/PMMMw7A6iyL7egAKiKBL0FcUFQ4gaNKIiUaPEqNG4BP1FI4MbLu9PiSjihhpcETW4oEZRiSAuoCCbNyDLjLixiWzTs/X7x1Nn+vSZ0/s5Vc2c7+e6+qo+XVVPP+dUnbrrWWtoZGQESZK04ZvXdAYkSVI9DPqSJA0Ig74kSQPCoC9J0oAw6EuSNCAM+pIkDQiDviRJA8KgL0nSgDDoS5I0IAz6kiQNCIO+JEkDwqAvSdKAMOhLkjQgDPqSJA2IjZrOwP1ZROwC3DDO6hHgDmAZ8C3g/Zl5S01Z65mIeCHwSeDmzNyh7e8/BB4PvCMz39xM7iYWEZ8C/gE4PzMPq+l/3gjsPM7qu4A/Aj8APpSZl9WRp17qOOf3zMzrqr8vBU4ELszMxzaTu4m1nctk5tBU1/Xg/24L/DPwNGB3YEvgdsrn+D/ARzLzd738n3PJ/eHcGCSW9HvnCuDCtp+fAbcCDwP+P+CqiNivueypZssZez5cBNwIbAe8FLg4Io5rLHeqRUQcBVwDLAUOpNz0XUIpEDwKeAtwbXXTIfWdJf3e+ZfM/GHnHyNiCfBp4Ejg7IjYJzPX1p25PjgOWEy5sdH6zsjMpZ1/jIgFwH9UPx+LiAsz8zd1Z64PPgh8Abi36YzMFRGxD3AWsIgS9P//zLy7bf0DgZOBfwQ+ERG/zczvNZFXDQ6Dfp9l5m0R8Q/AzcBewFOAbzebq9nLzGVN5+H+KDNXAW+JiKcBB1FK/W9sNlezl5m34g1gp9dRAv4XM/OkzpWZeUtEHA/sAhxOqQI36KuvrN6vQWbeRqn+h1LdL51fLT0fNlyPqpY/HW+DqtbvE63tI8JrsvrKkn59FlTLuzpXRMRGwHOBvwceASwBVgO/A74PvC8zr+my31OBVwCPAbYG7qTcXJwFfDwzV3bZZwvg1cDfAXtQbvyuB75C6Wz456m8mW4d+do6ef2R0nb9YuB4YN9qtyuAjwKfysyRfuXtfmLc8wEgIh4PvAT4K+DBlO/qrcBPgNMy87wu++wNnAA8EXgIcB/l8zsX+M/M/FOXfeYDx1I6PD4c2JRy3n0XeG9mXjuVNzNeZ622jo37AA+q8veY6v/cQDlX39te7d3rvDWo9f07MiJO6XbOV75GeX+3tTf9tXUuPIfyGbwdeCbl+vDbar/3ZuYfuiUaEbsBr6fULu4ArAAupzQ3fjIz14yz3wHAa4EnUI7Z3cDFwEcz88vj7DOvyuNLGf2+X0hp1piRWVzfXka5lu4BbMzoNeS9mfmXLvscDryc8l1bUv2fi4GPZeZXumx/I+WcPoDSNHMc5fucwJMz8/Zquxl9/v3mXWUNImJ3SoluLR1V+xGxCaUH738Bf0O5UFxO6d27J/BPwC8i4sCO/V5VpXUUsAq4lBJAHg98CPhOddFs32dv4DLgrcB+lAvotcDelA5Fl1bbzNYQ5cT+OKVJ4xrKTcxjgDMo7Zhj1Ji3xlXt+n9dvfxml/UnAz+kBLzNgaspo0C2pdwQfa+qFm7f5xDKhepFlN7hV1CalPYD/p1yDu3Ysc9mlHPoU5QL/L2Uc28J5eJ9WUT83Wzfb+WllFELT6QErFsYPbbf6Szh1py3fvlOtTwc+GFEHB0Rm3ZulJn3ZOZlmfnbcdLZArgAeCWwhnI+7EwJzJd06yBcfTZXUEYNPAT4NeUzfyzwMcpnvlmX/V5B6Wh4HCXQXkkJ+k+h9En6bJfrykLgy5Tv9iGUm9PrgSdTAv+Txnlf45rh9W0f4BfAuymFp5uB6yjXoDcDF0XEVh37nEppUvk7SuC+lHINPgL4ckR8sfq+dnMa8CrKtepWYLgt4M/o86+DQb9PImJ+RCypeu+eS/msT87Mmzo2fQPlonYr8OjM3DUzH5WZOwGPBn5PKeH8e1vaW1FObIDnZub21T67Ak+llPAOA57dts+mwNcp7YfnADtlZmTmw4EdKcFnZ+Br1Y3IbGwLPI9Sat8mMx9JKfl/plr/uqoTUxN5a0REDEXEZhFxMKWEtgeliv8LHdsdRmnjX0upKXlwZh6UmXsCu1JuBgDe1hEo3085Tz5Q7fOIzNyXcsG7FtgeeFNHtj5GuSBfCRycmTtk5kGU4/dOYBPgsxHRiyaI11IC+IMz8wBgJ0opDkoJ628bzFu/vBe4qvr9/wBnA3dExAURcXJEHBERi6eQzhMoBYDnZebOmfkIyrlwESWgfL6qLQTWldQ/R+lP8HZgSWY+vDqHHkE5Hw4HPtz+T6p+JqdSbixeDWxVnUc7U47Fnyjf66Ud+fs34BmUEvKTM3OPKo+7AD8GDp3Ce2zPx0yubwuBL1KGRF4M7JWZD83M/Si1TNdSaiA+1LbP6yg3Uqsp5+K2mfnozNyeUlNwd7X8v+Nk9VDgmOr/7EJ1Ds/086+LQb93fhARI60fyol0K+UCvxflJP6PLvs9iXKBPykzf96+onrdOjHa7+aDckLdQTnR2/f5H0pJ+mxGqxehVBXvQbkTPrp9XHBVPfhs4CbKxeWFU37X4zstMz/QqsLKzBXAv1LmL9iIckPTVN7qcGLH+bCWUlL5CaUU8X3gyMxc3bHfEZTj9tXM/GR7dW9VEnxL9XLb6qflgGr5ycwcbtvnekqHsm9QPkNg3YXpGEoJ+qmZ+bO2fVZk5psY7Xne7bydrsuAf8zMO6v/MZKZp1FK79AWGBrIW19U7/WxlCr6VlXuAsp7fSNl/o5bI+LMiNhpkuT+LTM/35b2zcDTKYH2ocCz2rZdSqnWPjUz/yMz72vb75fA0VV+nh8R+7bt905KLd0b27+71X7nMfrde101KqlVa3VC9fdXt48+qL7HzwRum+S9dZrJ9e2ZlGvkXcDftOaPqPa5ri3vR0fElhGxiFL6B3hLZp7W8V37EqVGCeAVVdNlpx9l5hfb9ml1ZF3KzD7/Whj0e6dznP5PKKWU1gX4tcAHOqukqvbPRcDp46TbGgLVXiK4gXJTsTXwqeoi2Z7m2zLz2R3tUc+sll/o1pZUnZhnVy+PGu9NTsPXu/yP2yhVXADt1Wx1560OneP0fwz8inIhg1LNfU57jQdAZr6Rcj4cO0667UPi2s+JVvv26RFxeHuVZGZ+PTOPysz2ZpXWZ/7DKoB0c2a1fFrneTsD3xynTfvqatntfKgrb32TmXdk5ospNVWvotT6tbcrb0I51ldHxHjV4HdTaj46076F0lYN5QaAiNiYMgkQjNasde53OaUae4jSpNjqj/PwSfb7FqUgswmlpArwOErzwwo6aq2qfdYL3FMwk+tb67rw35n5xy75+DHwSOBB1c3Y4yjn3GraSv8dvkhpIphP9Tl1uKDzDzP9/OtkR77eGW+c/kLKXeYHKVVJ8ymdRtbJzFURsXVEPIZSK7BbtTyQ0pEG2m7QMvNPEfFuSnXtccBxEfEH4DxK/4Bz2+46W1rVoC+NiKeP8x4eXC170XY+3sW6ddfbfu7Vnbc6jDdOf4hSNflflAvneRFxYEepaiQi1kbE4yhVkrtRakL2r5Yt7TftJ1ButA6mtFHeHRH/S+n09s1cv9Nb6zM/KCLWu3hVWk0pm1OaB2YzTHMm50Ndeeu76ublVODU6iblQEqb9/Mo73cx8NWI2LXLd/dXVU1ZN7+qlntVyz0ppUyA0yJieP1dgNFZI1vfp/Zmkq9GxHhvZVHHfq0Nr2uvYepw6XiJdTPD61vrezHuLJeZ+Yu2l638X5tdOvdV249ExC8o51e3D+T3Xf4208+/Ngb9PsvSw/SjEbEdpdrn+Ig4OTOXA0TE5sB/Uu722zuMrKRUd/+SUuXbme6bI+ISyo3E/6EExedXP6sj4gvAK1vVqZTOXVBOyj0nyfZWk6yfivV61nZon+q07rx1VXWWPHW
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZgkVZmw/bu7aZp9EUQRaHYeQBBREBj0FQEVh2HUURQQFBlRZ9PRcXvdwAXR8VVRRNFx3MANHfwY91FERhBQUBAEHkDZcQHEBYGu7ur+/jiRXdnZWdW1RFRGd96/66orcok4ebIiMp44a8xZtmwZkiRpzTd30BmQJEmzw6AvSdKQMOhLkjQkDPqSJA0Jg74kSUPCoC9J0pAw6EuSNCQM+pIkDQmDviRJQ8KgL0nSkDDoS5I0JAz6kiQNCYO+JElDwqAvSdKQWGvQGdDEImI74OZx3l4G3AfcBnwL+EBm3j1LWatNRBwPfAq4MzO37nr9B8CTgVMy882Dyd3EIuLTwIuACzPzoFn6zFuAbcd5+8/Ab4ELgDMy86rZyFOdeo75nTPzpur1k4GTgIsz84mDyd3Euo5lMnPOZN+r4XO3AP4BeAawI7Ax8HvK//F/gI9l5l11fuZsGO9Y0PRZ0l+9XANc3PX3Y+AeYA/g/wLXRsSeg8ueZtntrHg8XALcAmwJnAhcHhEvHFjuNCsi4gjgBuBkYG/KRd8VlALBvsBbgRuriw4NOUv6q5d/ycwf9L4YEZsBnwEOB74SEbtl5tLZzlwDXgisR7mw0co+mZkn974YEfOBt1R//xERF2fmL2c7cw34MPBF4IFBZ6QtImI34BxgHUrQf19m3t/1/sOBU4G/B/4zIu7IzO8NIq/TdCewW/X41kFmZE1h0F8DZOa9EfEiyg9kF+BpwLcHm6uZy8zbBp2H1VFmLgbeGhHPAPahlPrfMNhczVxm3oMXgL3+jRLwv5SZb+t9MzPvjoiXAtsBh1CaR1aboF8dy9cPOh9rEqv31xCZeS+l+h9Kdb90YbX0eFhz7VstLxtvharW7z8760eE5/0hZkl/zTK/Wv65942IWAs4Gnge8DhgM2AJcBfwfeD9mXlDn+2eDvwTsD+wKfBHysXFOcAnMnOkzzYbAa8E/g7YiXJx+SvgXEpnwz9M5sv068jX1bHnt5S26xOAlwK7V5tdA3wc+HRmLmsqb6uJcY8HgIh4MvAS4K+AR1LOB/cAlwIfyczz+2yzK/A64GDgUcCDlP/fN4EPZubv+mwzDziW0uHxscD6lOPuu8B7M/PGyXyZ8TrydXVs3A14RJW//avPuZlyrL63u9q77rwNUOf3d3hEnNbvmK/8N+X73dvd9NfVufA8yv/gncCzKeeHO6rt3puZv+lNMCLmAEdQmuH2Bbao3vot8EPK8XB5v8xExF6U88ohwFaU4+inwEcz8ytd623HxJ063wP8P0pT1t9Sjsk/UDqynpKZV4/z+c+tPn8PShPiz4EPUfrF3Azcmpnb9dt2decV3xoiInakHMBL6anaj4h1KT14Pwv8DeVEcTWld+/OwMuAn0bE3j3bvaJK6whgMXAlJYA8GTgD+E510uzeZlfgKuDtwJ6UE+iNwK6UDkVXVuvM1BxKP4ZPUJo0bqBcxOwPfJLSjrmCWczbwFXt+n9dPf1Gn/dPBX5ACXgbAtdRRoFsQbkg+l5VLdy9zQHA5cCLKb3Dr6E0Ke0JvJFyDG3Ts80GlGPo08BTKO3xV1OCyonAVRHxdzP9vpUTKSf7gykB627G9u13eku4s5y3pnynWh4C/CAinhMR6/eulJl/ycyrMvOOcdLZCLgI+GdglHI8bAu8Griit4NwFfA/R7lYeA4wj3I8/BrYhnJcXRIRf02PiPhH4CeU//HDq+3up+y3L0fEKZP/+mxLOS/9S/X8OmBz4PnApRHxuJ7PnhsRHwe+DBxEudi4jnJB9HngfVP47NWSQX81FhHzImKzqvfuNyn789TM7O3w8nrKSe0e4AmZuX1m7puZC4EnUH6o61NO3J20N6FcRQMcnZlbVdtsDzyd8mM5CDiya5v1ga9R2g/PAxZmZmTmYykngm9QfqT/XV2IzMQWwDGUUvvmmfl4Ssn/7Or9f6s6MQ0ibwMREXMiYoOI2I9SQtuJUsX/xZ71DqK08S+l1JQ8MjP3ycydge0pFwMA7+gJlB+gHCcfqrZ5XGbuTrnoupFSYntTT7b+AzgU+AWwX2ZunZn7UPbfu4B1gc9FRB1NEK+mBPBHZuZewEJKaQ5KbcbfDjBvTXkvcG31+P8AXwHui4iLIuLUiDgsItabRDpPoRQAjsnMbTPzcZRj4RJK6fkLVW1hx4soNYcPAodX/7t9M3MH4NGU/+lawAr9DCLir4DTKbVQ7wa2qI69bSjH4lLgjRHx1El+/6MoFwyd89pjKbV+d1BK8G/tWf8llIuNB4HnZ+bCap8/CvgvygXvGs2gv3q5ICKWdf4oJdt7KCf4XShB+i19tjuU8mN6W2b+pPuN6vlHq6fdV/NB6SB0H/Clnm3+h1KS/gpj1YtQflA7UarpntM9LriqHjyS0gN3Z+D4SX/r8X0kMz+UmaPVZzwE/Ctl/oK1KBc0g8rbbDip53hYSqmJuRQ4jNJsc3hmLunZ7jDKfvtqZn6qu7q3Kgl2TpRbMFZlC7BXtfxUZi7q2uZXlA5lX6erh3VVhXsUpQT99Mz8cdc2D2Xmmxjred7vuJ2qq4C/z8w/Vp+xLDM/Qim9Axw4wLw1ovquT6RU0Y9WL8+nfNc3UObvuCcizoqIhatI7rWZ+YWutO8Enklp0ns08NyudZ9GOf98JDO/2ZOn6xkrMPQOIX4LJe6ck5n/t/rNdrb7FGN9D05YRV67HdPdjJCZSblAhRX3+VzKCAco3/Wcrm3uo1zE/HwKn7taMuivXnrH6V9KuaLunIBfDXyot8q9av9cBzhznHQ7Q6C6SwQ3U37UmwKfrk6S3Wm+IzOPzMxzu15+drX8YicQ92zzIOVCAUqTwUx9rc9n3Eup1gXYZIB5mw294/R/RDlp3Ve9fzBwXneNB0BmvoFyPBw7TrrdQ+K6j4lO+/aZEXFI1YTQSfNrmXlEZnY3q3T+5z+oAkg/Z1XLZ/Qet9PwjXHatK+rlv2Oh9nKW2My877MPIFSU/UKSq3fn7pWWZeyr6+LiEPHSeZ+Ss1Hb9p3U/q7QLkA6Lx+DOUYemPvNpXOMbSgU1tU1TgcXL3+sXG2ezOlwDHZ+SXuysyf9nm93z7fn1IbuIjSBLiCaqTAGZP83NWWHflWL+ON01+bUjr9MKVNbh7wj93rZObiiNg0Ivan1ArsUC33pnR+gq6LwMz8XUS8h1Jd+0LghRHxG+B8Sv+Ab1ZDqLp1qkFPjIhn0t8jq2UdbefjnawfrJbdx/ds5202jDdOfw6l6eWzlLbe8yNi7+6LncxcFhFLI+JJlOrQHSg1IY+plh3dBYPXUS609qMM+7o/Iv6X0untG306vXX+5/tExEXjfIdOU8qGlOaBmQzTnM7xMFt5a1x18XI6cHp1kbI38FRKM1inw9pXI2L7Pr/dn3eXunvfq5a79HzeaESsUx1Du1KOoZ0p7ePdfTvmUmqhFgJrV6/1nSmy6gi6UmfQCUxnn99YXeT307fj4ZrEoL8GyNKD/uMRsSWl+uqlEXFqZt4OEBEbAh+kXO3P79p0hFLd/TNKlW9vum+OiCsoFxL/hxIUX1D9LYmILwL/3KlOpXTugvLD33kV2d5kFe9PxkojB3p0T3U623nrq+osefo4b38yM1cqgUxVVdq9ICKOpbTP70np2PT5Kg9zgNdQSmnd33UZkJQS7nF90v12ROxL6SNyOCUY/nX194EqeL4sMzttzJ3/eW8zwXg2YWaBdTrHw2zlbVZVF3iXU2ZlfDelBuA0YAPKRfz7ezb5/QTJdUY9LD9WqlqeUyjnhu4+MKOU5pQfUzr4ddusT5oztap93m3zSXz2nyZ4b41g0F+znEcJ+p2r/Nu7Xn8K5er3dMaaBW6sagBOpE/QB8jMr1JKBxtReu0fRDnJ70q
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de5glVX3v/3fPHQaEcRBEuSN+QQXUoIDoAe8aQqIxnmhExQtocnI0GqM+RyNoomjyO9F4QTQevOAtxmi8awSVKCreDd6+gnITY4AZVJiZnmFm+vfHqj1d3ezu6Uvtqj3s9+t5+qnevWuvXt1Ve39q1Vq1amxiYgJJknTHt6TrCkiSpHYY+pIkjQhDX5KkEWHoS5I0Igx9SZJGhKEvSdKIMPQlSRoRhr4kSSPC0JckaUQY+pIkjQhDX5KkEWHoS5I0Igx9SZJGhKEvSdKIWNZ1BUZRRBwCXDXD0xPAzcC1wGeA12fmjS1VrTERcQbwTuD6zDyg9vMvAScDr87Ml3dTu9lFxLuApwOXZOYpLf3Oq4GDZ3j6FuC/gS8Cb8nM77dRpyZN2+ePyMwrq5+fA5wNXJqZD+6mdrOr7ctk5thcn1vE7/sS5T0yV4/PzH+rXns1ZT86MzPfsch6nEGf9/AcXncOQ75NR5mh370fAL+pPV4GrAHuA9wXODMiHpaZl3dRObXuOsoBX88SYA/gMOBM4BkR8azMfE8XlVOrbgCumMN66wZdEd1xGPrd+9+Z+aXpP4yItcC7gVOBD0fEUZm5ve3KDcDTgN2Bm7quyJC6IDPPmf7DiFgO/HX19U8RcWlm/qztyg3Am4EPAhu7rsgQ+kxmnjHP1zwcWA78V/PV0R2BoT+kMnNdRDwduB64J/Ao4LPd1mrxMvPana+l6TLzNuAVEfFY4DhKq/+l3dZq8TLzJjwAbMwd5EBQA+RAviGWmesop/+hnO6XLqmW7g+S5s2W/vBbXi1vmf5ERCwDngz8T+D+wFpgK/BL4AvAP2TmT/u87tHA/wJOoIwf+A3l4OJDwDsyc0uf19wJeD7wh8A9KAeMPwc+Qhls+Ou5/DH9BvLVBnn9N7A/8EzgLOBe1ct+ALwdeFdmTgyqbruIGfcHgIg4GXg28CDgrpT3+E3A14HzMvPiPq85Engx8DDgbsAmyv/v08A/ZuYNfV6zFDidMuDxvsBqyn73eeDvM3MufdEzDvqqDUg7Ctivqt8J1e+5irKv/n1m3jqouu2KZhvI1+T7JCKWUP6/ZzL5Pr0UOGcRdd+N8t5/HHAM5bNpnDLG5XPA/83MX057zdWUv/dY4FmU7sPlQAKPzMz11XqHAS+inDE9oCr3ckoX6jszc1uf+izo83XY2dIfYhFxOKVFt51pp/arN8i/A+8Bfg/YQtmJ1wNHAM8BvhMR95v2uudVZZ0G3AZ8jxIgJwNvAT5XfWjWX3Mk8H3gVcDRlJ3+CuBI4BXA96p1FmuM8iZ8B6VL46eUN9kJwAXAudNf0GLdOlf16/9u9fBTfZ4/F/gSJfD2BH5M+cDcl/JBf1FEnDXtNScC3wKeAexFOcC6nvK//D+UfejAaa/Zg7IPvQt4KKU//nLKh+KZwPcj4g8X+/dWzqRctfAw4BfAjUxu289V4dNV3XYZTb5PImIF8K+U9+SJlIPKnwOPpAT/IxZQv7sAl1HGeDwc+G1V3w3AvYEXAt+NiJmuIjgPeF71d90EbK4F/h9S9us/pRzU/oSyHz0Y+CfKfrTHtPos6PN1V2DoD5mIWBoRayPiNEpLawlwbmZeM23Vl1A+1G4CHpiZh2bmAzLzIOCBlIE8qykf3L2y9wZeVz18cmbevXrNocCjKS28U4An1l6zGvgEcAjwMeCgzIzMvC9wICV8DgY+Xr1RFmNf4E8orZF9MvN3KC3/91bP/2X14dBF3ToREWMRsUdEHA98nNJCu4Qy+K2+3imUPv7tlNbSXTPzuMw8AjiUcjAA8DfTgvL1lP3kjdVr7p+Z96IcdF0B3B142bRq/RPlg/2HwPGZeUBmHkfZfq8BdgPeFxFNdEG8kBLgd83MY4GDKGepoJzN+P0O67ZLGMD75K8orfHfUFrT98jM+1flfxU4aQHV/HvKwciVQGTmEdVn0/7AYygHb/tSPhv6OQl4UmbeOzMPodovIuJY4P3AKuBvgbWZed/qfXF/yj7+cOCt08qb9+frrsLQ794XI2Ki90Vp2d5E+YC/JyWk/7rP6x5B+YB/ZWZ+s/5E9bi3Ex9deyooO//NwD9Pe82/U1rSH6Yc1fY8mxI03wGeUD+9lpm/ohwgXEM5+j1jzn/1zM7LzDf2Trdl5jjwF5T5C5ZR3nBd1a0NZ0/bH7ZTzsR8nfLh9wXg1MzcOu11j6Fst49m5jvrV3pk5i8orTkoH5z71l53bLV8Z2Zurr3m58BfAp+k/A+BHR+iT6J8CD86M79Re814Zr6Mcup9Ff332/n6PvCszPxN9TsmMvM8SqsLagHTQd0G7en1faHf1xzLaex9Up1tenH18PmZeVGtrF8Cj2eelxBWZf4Pynv8BdO7XzLzc0we5B5Nf1/OzB2fadUAUSjdDSuBN2XmX2fmpto63wWeAGwDnhIR96qVt5DP112Cod+9H1BOifW+vk5ppfQ+gF8IvHH6Kfeq/3MVcP4M5fYugdq99rOrKAcVa4B3VR+S9TL/JjOfmJkfqf348dXyg/36vao30Yerh6fN9EfOwyf6/I51lNNxAHt3WLc2XMfU/eGrwH9SDtSgnOb+WP2MB0BmvpSyP5w+Q7n1S+Lq+0TvA/b8iHh49QHcK/MTmXlaZta7VXr/8y9l5vUz/K4Lq+Vjp++3C/CpfuM4KF0X0H9/aKtug3YDU/eFfl9z0eT75CHAnSh94h+c/mRm3q5BsTOZeVtmHkbZL/t1W41RTvPD1H237it9XrcSeGz18L3Tn69+9+WULs4xymn83s8X8vm6S3AgX/dmuk5/BeWo+83AnwNLgT+rr5OZt0XEmog4gXJW4LBqeT/K4CeoHdhl5g0R8TrK6dqnAU+LiF8BF1P6rz5dO0Lu6Z0GPTMi/mCGv+Gu1bKJvvOZPqx7R+j1fbbturVhpuv0xyhdL++hnI68OCLuV/8Qz8yJiNgeEQ+hDK46jNLCO6Za9tQP9l9MOdA6HrgIuDUi/oMy6O1TfQa99f7nx0XE7T5oK71TxHtSugcWc5nmQvaHtuo2aAu5Tr+fJt8nUS2vrJ8ZmuZ786lcT2aOR8R+VVfWPSndUkdSPs/WVKvN1FDtNy/BEZRWPsB5ETFTfXszYU752+f7+bqrMPSHVDWC/u0RsT/lFNVZEXFuZl4HEBF7Av9Iadktr710C+U03ncpp3ynl/vyiPg25UDif1De7E+pvrZGxAeBP++dTqUM7oLyBjpiJ9XeeyfPz8XtrhyYpj7Vadt166sazPOmGZ6+IDMvWOzvqFq7X4yI0yn980cDf0zpr+wdFLyI0sdY/1snKCOZLwSe2qfcz0bEAyh9mKdSwvB3q6/XV+H5nMz8UfWS3v98ejfBTPZmccG6kP2hrbrtKpp8n/TC93ZXTdTcPMtzfUXEXSmnzH+fqUG6EfgGJatmm9J3U5+f7VX7/rg5VGPH377Qz9ddgaE//D5GCf2llCPM62o/fyhlZ38Tk90CV1RHqGcyw06ZmR8FPlpdwnMypQX5u5Qj3dMpb5beAKkN1ePTMvOTDf9tizUsdduLmQcvXTTDzxckMy+JiN9Uv/M4qtCn9NmfU33/z5T7NvwQ+Elm3hoRR9An9Ksyvwc8uTq1fwJlf3gk5W96MGXU/xGZuYHJ06z/NzNf1OTf1oBhrluXmnyf9Prr7zTLOvMaNBsRqyhjVY6ijI4/j3JFyY+Bn2Xmtoh4NbOHfj8bat/vmX0u75zFgj9fh52hP/zqU++OAVSnmx5a/ezUzPxin9fd7tKWamTuEcBYZn4/M39LObX7CcrI+JdSBvOdFhF7Va39pAyeuzdlUNftVIGyF3BNtntzoKGoW9U908jNVuaot0/09ofllFY+wKsy8+w+r+m3PyylnEK9W2b+R5Z
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcdbnH8c9uNsmmJ6RR0tuTQEhAusAldBSwgoAUAVHxqqAXFbtYUbleUNSLClIV4SoWQERCiRSlk1CShwTSIaSSnmx2d+4fvzOzJ5vZPrNnZs/3/Xrt6+TMKfNMpjznV87vV5HJZBAREZGurzLpAERERKRzKOmLiIikhJK+iIhISijpi4iIpISSvoiISEoo6YuIiKSEkr6IiEhKKOmLiIikhJK+iIhISijpi4iIpISSvoiISEoo6YuIiKSEkr6IiEhKKOmLiIikRFXSAcjOzGwMsLCJzRlgHbAEuA+42t1XdVJoBWNm5wM3AsvdfUTs8UeAo4DvufvXkomueWZ2E/ARYJa7z2jttiLH1B/4IvABYBywBXgZuAW4wd3rmziuCvg0cD5gwHbgReB/3f137YgjO0/3Be5+Uwv7nk/4DODuFW19rmIxs/nABKAWGOnuKxIOSQrEzPZx95eTjiNpKumXtpeAx2N/TwGrganAl4FXzGzf5MKTpJnZaOAF4KvAJMIF4xrgncCvgIfNrFee47oBfwCuBvYFXgVWAkcAvzWz33TKCyghZnYUIeFDKBBdlGA4UiBmNsDMfgHMTjqWUqCkX9o+4+5HxP4OdXcDdgfuBYYAfzCzrvI+ngdMAa5JOpAychswFpgDTHH3Ke4+ETgIWA78B/CjPMd9HXgvodZoX3ef7u6TgBOBTcAFZvbRzngBJeTCaPm3aPmxLvTdSrODgE8C3ZIOpBToA12G3H0NoRp5O6F0d0KyERWGuy9x93nuvjrpWMqBmR1KKJkDfMjd52e3uftzwGXR6kejqvzscQOAz0arH3f3V2LH/SO27RtpSXpm1g84LVr9NrAZGAW8O7GgRIogFV/orihK/C9Fq1OTjEUSUwdcD9zq7p5n+5xo2QsYFnv8/cAAQp+K+/McdyuhX8Ao4PDChVvSzgB6A8sIzWh3R49fnFhEIkWgjnzlrXu03Nh4Q1SyOwv4EPAOYDChc9IbwEPA/7j7q3mOOxH4FHAoMAhYT7i4uBO43t1r8hzTH7iU0JFsAuFi8nXgLkJnw7db82LydeSLdWx8C9iDUAX7cWDv6LCXCG3XN7l7ptEpCxZbKXL3p4Gnm9nlwGi5gfD/l3VYtHysifPWmNnThPdiBvBoxyJtvVhnwJbc7O7nF/Cps1X7f3b3jJn9DjgTeJeZjXb3xY3i/CjhgmslsKe71zU+YfTZfT1aHe/uC2PbZgCfIfS9GEzooPsE8BN3fyTPuZYBexEu8C8GziVUVztwnLu/bWYVhCabcwlV2kMJnX/fIryH10Q1QLswsw8B/wnsQ7hInAP8BHgWmA+85u4T8hz3fsL38UDCheRKYBZwlbu/kO+5mnj+KmBHtDoU+Gn0WmoJn/ET3b0u2u9s4HQaftd2EH7XHgR+7O4L8vy/Zdezn6+R7r4s9vgM2vB+lDOV9MuUmY0n/ADUA39vtK0X8A9C7+1TgBpCr+y1wETgE8BzZrZ/o+Muic51KuGL9ALhguIo4OfA/VEHsPgxkwkdZL5N6BD2BuFHYjLwDeCFaJ+OqgBuJvzQTiJ0PKslXJz8Briy8QGdGFtJMbMqMzub8KMN8MNGSSn74/1aM6dZFC0nFTi8ljzezN+82H6Ldz20faLPQPZCKHvXwt8J35dKQlJr7E5Cbcgwmm5eO4fwuX2kUcL/b+BhwoVoD0KCzQDvI3S8/F4z4f6ScMfFsii+LVHCrwR+D/wpOm8F4YL4LUKNzbnAv6OL+vhrr4w6bd5B+J5vIfw/7x+d74f5gjCz7mZ2O+Hi+STC79AcQm3Jh4FnzKy9tSR/JtS8zI/ieSNK+L2BmcBNwMnAtug51xF+1y4m/K5Ni53rKRpqRKHhs7Q99lo68n6UHSX9MmJm3cxssJmdSuhsVAlc2bgUAlwOHE3o6X+wu49194PcfRRwMPAm0Af4SuzcA2n4gp/l7ntFx4wldO7aSij1nR47pg+hGnQM8BdglLubu+8HjCR0NhwN/DVfD/I2Gkb4MbkUGOLuBxBK/rdF2y8zs6EJxVYSzGycmT1LeN9vA3oCX3b37zfaNVvV39ztnmui5ZDCRtm8Rh1Xc3+ExLI12u1B4DsFfNpsKf81d/9XFMcOQmIHuNDMuscPcPeNhLsfIJQ88zk3Wt6UfcDMPkXoa7EW+LC7D3b3Awmf5Q8TktxXzOwjTZzzncBp7j7V3UcTElX2NXwoOv4kdx8Z+/5OBeYSagavaHS+i4ELouNOc/fRUTx70XABkc/3CTUhS4AT3H14dNxQ4HPRPj83s2OaOL45BwD/EX1XR9DQx+QrhAuTlcCB7j4ueo0jCRf/bwH9CHc2AeDuH4jFE/98rYKCvB9lR0m/tD1sZpnsH6Fkuxr4K6EE9kNCL+zGjiNceX8rqgLOidb/N1qN3+5nQDXhqvmORsf8g1CS/gOh1iDrIkKp8Tngg+7+RuyYFYQLhMWEq/DzW/2qm/YLd/9pttTq7tsIPwgZQlPVwQnGVgqMUOU5IFrvCRyepzajd7Tc1sy5sgm2dzP7NOXG+Oc23x/RPfqtEdUu/Z5Q+nTgdHevbUdcTZ07m5x/22hz9oJyd0Kpr7Hsa3hfdJEZP+/BhO9o7uLAzKqBb0a7nO/ut2f3d/dMtP6l6KHvNNGJ8hF3/2PsuGyn1xMIvw/XNu6n4e5zgaui1dx3Pnrt2Xj+q9F51xKS+i73tZvZHsAlhO/dqe7+QOy4One/hlDLVEn7Ls5ud/fHY+dbGz2e/V37prs/2+g1PkmoBdnpNTanQO9H2ekSL6ILa3yf/r8JX8Js1dR/AT9tXOUelYyqgeuaOO+WaBn/QV9I+NEYBNxkZtMbnfM77n66u98Ve/j90fL3+do03X0rDaWhU5t6kW1wd+MHog6N2RLrwARjKwVPEUpaA4DjCZ+fU4DHouagrF3+P5rR2jb2uPk0X03/eLRPa/2UUJ27lpBk1rUjpqa8m5DUoSHJAxAlnmy1/CfzHDuL0Gbfh10vCs6Llne6e/b7dgTh/XkbuKeJeG4j/J+PBPbLs72pfhgfInznv9HEefN95w8n1PpsJVYbETtnDfCLPOc6mVAN/qK7z8mzHUJnUIDDzGxwE/s0panXeCjhNV7fxHGbo2VrL1QL8X6UHXXkK22faaJTTw9C6fRnhPa9boROODnuvsPMBkW3dU0ijNQ2iVBaGh7tVhnbf6WZ/ZAwyMt5wHlmtoJQlfoP4G++66102bsGPmZm723iNWR/UAvRdr68icezpdL457mzY0tcdAGUNdPMDgOeIXR6/DoNNRqbomV1M6fLNnlsaWafpnzf2zAiXwv7XUb4bO8g1Ni05WKhNbJV+081ce7bCP93R5vZpHjn16jD302EPiPnENUURE0BZ0S73RQ7V/Yz2Qt41MyaiqmO8FmeTKipinuzqYOidu9eZvYf0bFjCd/56YSkBaGtv3E87u7bye+ZPI9ljxttZnkTNA33xFcQaqCeaCruPJp7jTvMbDczOyQ679houT8NzVatLcwW4v0oO0r6ZSi6Av9VVM12BfBxM7vS3ZdC7p7jnxB+iOJtkTWED+3zhDbSxuf9WtQm/GnCoC67E9orzwZqzez3wKfdfX10SLYaeWL015yBLWxvjV3uHGgk/oPW2bG1WdSR8tomNv/G3Ts0Kp67bzWzawh3N8yIbcpevDVXAsu25a/sSAwdYWYfoGFgof8sdC9qMxtGKLUCHNyKOwcuJtSuxd1M+A4eZ2bD3H0l8C7C/998d48nxZ2aXVoRYr7P5dY8j2ULAlcSaiTifVRqCZ14n2bX9vnse7yJpm3I89iA2LK9r6M5Tb3G/oRan7PZOXfVEO4yeJ7Q/6i1CvF+lB0l/fL2F8IPTjfCle7S2ONHE74819L
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFbCAYAAABfzB2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZhcVZ3/8Xd3J52NbGSH7An5sodAACMgoMgiIuIKIyguuIwzjrv+BgQcF1xm1BkGRQE3cBlGcXABRVFRFoGwyfolYclKIPuedNLdvz/Oqeqbzu3u6u5bfaurPq/n6ef2rbr31Onk1q1PnXPuuXWtra2IiIiItFefdwVERESkMikkiIiISCqFBBEREUmlkCAiIiKpFBJEREQklUKCiIiIpFJIEBERkVQKCSIiIpJKIUFERERSKSSIiIhIKoUEERERSaWQICIiIqkUEkRERCSVQoKIiIikGpB3BaT8zGw68FwHT7cC64GlwK3A1919dR9VLTNmdiHwPWCFu09OPP5n4ETgC+5+ST6165yZfR94B3CHu59U6nNlrtMI4JPAG4CZwDbgceCHwHXu3tLBfgOAfwIuBAzYCTwKfMvdf9yDehTuZf9Od/9+F9teSDgGcPe67r5WOZjZFMK/xSnAgcBoYDvwAnAXcKO7/64X5Rf+fV7t7n8ocZ/ptJ0PDnD3xT19fal+Cgm15zFgY2J9AOHEdShwBHCRmb3S3R/No3KSPzObBvwJmAE0A4sIx8nLgeOB883sdHff3m6/BuBnwNlAC+FYGxL3Od7MTnH3d/XZH5IjMxsIfAH4CG3n2ZXA34FBhOD1LuBdZnYH8BZ3fymPuop0RiGh9vyzu/+5/YNmNgb4AXAm8DMzO6ijb4v9zNuBocCavCvSj9xACAh/B97k7osAzOxI4JfAK4CvAP/cbr/PEALCUuAMd38i7ncq8HPgnWZ2l7tf1yd/RU5ia8ovgdMJYembhBa6xYltBgNvBL5MaOn6s5kd6e47uvlyB8Xl0l5XXCSFxiQIAO6+ltCsvROYA5yab42y4e5L3f0pd1dIKIGZvYzwzR/Ct9tFhefc/UHgY3H13fHDsLDfSODDcfW9hYAQ97st8dylZlbt551/IwSEZkLI+mD7Jn133+HuPwKOIwTYgwjdO90Sj+2n3H1bBvUW2Uu1v1mlG2JQeCyuHppnXSQ3zcC1wPXu7inP/z0uhwDjE4+fA4wkjAlJ62O/njCuYSrhg7EqxTEIhSD1FXf/RWfbu/sS4HNx9aIaCFDSz6i7QdobGJeb2z8RvzmeB7wFOBIYA+wm9LX+Efiauz+dst9pwAeBlxHGP2wkhJEbgWvdvSllnxHAvxAGzs0mBNpngZsITbcbSvlj0gYuJgZuvQhMIvQNvxc4OO72GPAd4Pvu3tquyMzqVonc/X7g/k42mR+Xmwj/fgUL4vLODsptMrP7Cf8XJwF/7V1NS5cY3NeVH7j7hb18uYuARkKL3JdL3Od64BDgFqA44DIxEPN/gCuBqwgtDmuBr7r71zsbuBi7hz5BaBkaCywGriYMUN5Lu9d7N/Bpwnt9GrAVuJsQfFL/78xsJvBxQivkZGAHYdDqD4DvuXtzyj7HAh+NdRwPbAEc+D/gKnff3G77IcCHgDcTBoIOIByHd8Xt70qrm/ScUqsUmdksQgtCC/Dbds8NAW4jjG5/LdBEOAGsAw4A3gc8aGbz2u33oVjWWcAu4GFCADmRcNL7XRzwltznQOARQrPtYYQQsohwUrgUeDhu01t1hBPYtYQulqcJoedlwHeBK9rv0Id1qyhmNsDM3gb8Z3zoy+1O+rPj8plOink+LudkXL2u3NXJz1OJ7ZZk8Fqvjcs73H1jp1tG7r7e3d/n7jenfZASjq3fAdMJV5iMjssOxf+rvwHnAsMIwXci8N9AV2NCRsV9LwH2AZ6IZbwW+JOZnZnyem+Ir/EBYD/Cv+tqwof/NYT3+T4p+9xJCCKNhPfVauAYwnvvnhjIC9sPAm4HvkQYZL0svuYIwpeXv5rZu7v426SbFBJqnJk1mNkYMzuL8E2mHrgiNoMmfQo4mdB/eoy7z3D3o919KuFN/QLhRPKvibJH0fZt6jx33z/uMwM4jXAp2EmEbwWFfYYBvyKcEG8Gprq7ufsRwBTgN4RvNr+MwaU3xgP/QGgVGOvuRxFaFm6Iz3/MzMblVLeKYGYzzewBwv/7DYSR+f/P3b/YbtNC10Nnl8+ujcux2dayc+5+fNoPYdxA4QqN22lr9u+ReEVDoZvu3t6U1c5cQiCf5u5HEr6l/76TeswkBIGBwNeAie5+NCEk/D/Ce64zpxH+j06L79kjaRvI2kC4aiP5enOBHwODgc8DY9z9CHc/gNDiuAh4FfCtxD71hMAygDAWY6K7z3f3OYTWqtWE1pV/TLzUOwktVk8DM939IHefT3jPXkUI/f8RB4VKRhQSas+fzKy18EP45ryGMBp7DuFD/TMp+51CaGH4bGySLorrhRPAYYmnjHDiWE9owkzucxvh28LPCK0SBe8hfCt9EHiju69M7LOKECiWEFovLiz5r+7YN939vwrf4OLo8g8T5o8YQAhAedWtEhjhRD8yrg8CjktpLRkal52Nzi98IA/tZJuOfC953Kb9EOdIKEVsvfopMI/QvP1md9/dg3oljaGtu+7FzjbsgYsLLRPuvjatGyzh44T/pz+7+8cK3Xnu3uzuX6K0f6cPxvcocd8XgM/G1bntWgUuj693pbt/JnlprLs/RLiKoxl4m5kVuvTGET7cAa5JtqDEAbIXE7ocCsESQlgCuNXdlya230EYB3IboctvTAl/n5RIYxJqT/t5EhqA4YQPv0GE/sFhZvbhdm/c4+M3pY5OToXR1ckPgOcIIWQ08H0z+5q7P5IoM+2b2zlx+dO0pld3325mPyOcFM4i8e2kh36V8hprzWw14dvxqBzrVgnuI5zQmwiB6d8Jzc4LzOxYdy90L6Q1k3ek1DECSYuAruYRGE8IaKX4L8LlvuuAs9x9fQ/q1F6XX7rMbDKhmbwjF7n7te0eawHu6UY9Cl0e3+/g+W8RvpV3pJn0cQtPJn4fCWyJXQBnxMdu2HsXcPdHzexh4KhYtycIX0zWE84NPzKzzwP3Fi67dvdrCN0USYUrbd5tZg78zOPEb+6+k9ACIhlTSKg9Hc2T0Ej49vvfhBnzGtizqQ9332Vmo+NlcnMIE8LMIXwbmxA3q09s/5KZfZnwreDtwNvNbBWhafc24JaUSxMLzbUXmdnZHfwNE+Myi77/FR08Xvg2lHyP9HXdcheveCn4g5ktABYSBnl+hrYWky1x2VlTb6ELpieX633RuzHjYhfbfYxwbO8itAgt6mKXUq0jfKDX0/Z+aG8nYSxEe/MJIT3NBm83cVVHYjfXlLj6WAebPUIIah3NSrmug9dLPlZ4XxxAW72/aWY7OyhzWlweCKFVw8w+RRgg/Jr4s97M/kQ4N/zG3Ze3K+NawoDKgwlzT1wVw8cfCOOe/pJBa5C0o5AgQBh9DnzHzCYRmg/fa2ZXuPsyADMbThi0dj5tTaoQvmE+CDxE6ONtX+4lsU/7nwiT8EwE3hZ/dpvZT4F/SgzyKjRrH0DX3wpHdfF8Kfa6sqKd5Im0r+vWbXHg6JUdPP1dd/9ub8qPrSXfIJzcT0o8VQh7nTX1FsYi5DazYBws95W4+o9pgbmn3H2HmS0idNEc0sE2hcF87ev1PG0fpO2VFBCi0Ynft6RtEK802UYYQ5Smq/cEtL0vRiYem5+2YTvF94W7XxP/vT4KvJpQ9zfEn1YzuwV4fyEsuPum+AXl44SxRLMJX1DmEa7ieMnMLomtEJIRhQRp72ZCSGggvPmWJR4/mXDCupIw+vlxYFFsYbiIlJAAEK8V/0UcqVy4BO41hG8V5xNONK+Lm2+N62e5+68z/tt6q5LrVjCSjuch6HJufzMbShiY2eQdz+lfGNQ6MfHYk4QT/fROii88t9dlsn3BzI4hNInXA/+R0qyfhVsIIeF0Mxvm7lvL8BqdWZf4fUTaBmZWR8etFt2V/PuGu3tqMOlIDGl
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAFbCAYAAAC55dbdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcdb3/8dduNsmmd0JMSCcfgpDQIRQBFVFRFFGvUgQLiuXntWC7FuBaELwqKlguTQXUi9gpFpAaQsdQ/aSRBoH0XnazO78/vufMngyzM7M7szvt/Xw89nH2zCnznTkzZz7n+/18v6chlUohIiIikktjuQsgIiIilU8Bg4iIiOSlgEFERETyUsAgIiIieSlgEBERkbwUMIiIiEheChhEREQkLwUMIiIikpcCBhEREclLAYOIiIjkpYBBRERE8lLAICIiInkpYBAREZG8FDCIiIhIXk3lLkApmdlk4PlOFqeADcBy4Hbg++6+ppeKVjJmdi5wHfCCu09IPH43cDzwTXf/SnlKl5uZ/Rw4B7jH3U8odFkPl2ko8HngHcBUYDvwDPBL4Bp3b+9kuybgE8C5gAG7gKeAn7j7r7pRjvg+8+9395/nWfdcwmcAd2/o6nOVQsZ37UR3v7tE+z0S+BZwKNAPeBk4zN3XlWL/1cDMXu3uz2Q8Fn8+TnL3O8pQrLpjZkuBScB57n51xrL3AZ8BZgAtwIPAt4G7olX6uvvubj7vZDq+W/u6+6KM5SOBfu7+Unf2X4xarmF4Gpib+HsYWAscAHwJeNbMDixf8aTczGwS8C/gy4Qv/vPAOuBo4H+Bu8xsQJbt+gA3A98HDgQWAKuBY4EbzezaXnkBNcbM9gH+CbwWaCAEbmvqJVgwsxlm9lfgZ+Uui3TOzE4HfgHMBjYCC4ElvfTcnwIWEX7Hel1N1TBk+H/ZrnrMbBThYJ8C3GxmMzu7iqwy7wMGEoIiKcwNwBTgSeCd7r4QwMwOAf4MvAa4DPh/Gdt9FXgbobbqTe7+bLTdG4DfAe83s7nufk2vvIra8RbCZ3gLML0aawCLdAZwMuECJ9PMaLq894pT914H9AVWZTz+7mh6P6F2bTeAmQ0kOk7drV2IvEDH8V6Wsez7Rey3aLUcMGTl7uvM7BzCQZkBvAH4a3lLVTx314mkC8zsKEKNAMC742ABwN0fN7PPAr8BPmhmn06cFIYBn4pW/XAcLETb/T26Arga+JqZXVcjwWhvGR1Nn6nDYCEnd/93uctQb9x9cSeL4s/p/cnAwN23A0UfJ3dvLcV+ekItN0l0KqrifDqaLUvVjpRdG+GH/Xp39yzLn4ymA4C9Eo+fBgwj5JD8Lct21xPyICYCx5SuuHWhTzTdVdZSiORWt5/TuqthSOgbTbdkLogS2t5LqHo6BBgF7AZeJLSxfs/dF2TZ7mTg48BRwAhgEyEwuQm42t1bsmwzFPhPQtLddEIQtwT4PSExc2MhLyZb0mMieeZlYBzwAeDDwP7RZk8T2up/7u6pjF2WrGyVyN0fAR7Jscph0XQz4f2LzYmm93ey3xYze4RwLE4A7iuupIVLJMbl8wt3P7cHy7GUkCw2ExhLSCo9ChhE+DzeBHzH3bdG659LlMQZOT7xWtIJlVHuyLnAWcBBhOaLl4F7CJ/HxzPKMZmOz/8hwFWE/IgdwF/d/YzE9+Ykwvf1K4RAbwDgwOXu/kszawA+CJwfva7dwEPA19z9wSzvwfBo3TcTvm/DgG3AYuAvwA/cfUNGOWPHRK9/mbtPjtbpNOnRzMYTar1OASYD7YR27j9Ez7MxY/2LgAuBS4H/ITSxnQq8itAmfxfhPPJU5uvKJUpY/Qyh5m4vYCvhPfwjcKW7b0msG7/mTcBIwnnmw1H51xKaZS519yc6ea5unZvMbG/gY8DbCc2RjVEZfw380N13JdZdSiLpMZGYHbvQzC6EkHxsZieQI+nRzGYTfh9eB4wnfA4fJyRK35zlvYEo6THLc//DzADeT0i6/iLwlLvP6uR1H0M4Z20Exrn7zmzr5VOXNQxmNo1Qs9BORnNElOT2d0KW/FsIGbBPAeuBfYGPAI+b2cEZ230y2tdbgVZCMt0WwsnoSuBv0Qkvuc1+wHzgvwnJcy8SEmj2A74G/Ctap1gNhLyNqwnNMAsIJ7yjgGuBSzI36MWyVRQzazKzM4EfRA9d6u5tiVWmR9POqisBlkbTGSUuXj5zc/wlqzgz20V7ynmEE+hrgZXAGjo+P38zs/j883JUxhXR/GY6yr0J0j8Q9xI+wycQTnxPEn6IzwIeMbNPd1KO/oTv9EnAc4Tv/dKMdd4JPEA4mS8HdgIHA78ws48Sao6uAvYh/MA0R/u7O/ohSDOzfaOyXUIIMNdE87sJgcuFwDwzGxxtsrOT158roI2f63WE5NALCJ9Nj17bgcBFwJM5krvjpN84R+c5QnX7fwAPRrk8BTGzdxB+kN5N6N0yn/C6jyC8D/OiY5jNdcD3CEHG08CQRBnek+W5unVuin405xMCpJmEAGMFIfi8DPirmfXL8TIXEI7L5mh+BR2f05zM7GOE43keMCZ6nVsJ343fmtk38+wifu5YnNT/MuEcDnBg5mcxIQ42ft3dYAHqKGAwsz5mNsrM3grcRnjtl7h75snzC8CJhCj3CHef4u6Hu/tEwod/FeFK6b8S+x5OiNYB3uvu46NtphCSmHYQTnLvSmwziHClMRn4EzDR3c3dDyKclG4lfKH/nC1Tv4v2IiRU/Scw2t0PJdQ43BAt/6yZjSlT2SqCmU01s8cIx/0Gwo/Ml9z9Wxmrxs0TudrY46z+0TnWKTl3PzbbH/BGwmcQ4E7g671UpM8APwf2dvfZhGaaj0fLjiZc1eLut0fljE98TyTKH19h3hht8xKh1mGKux9OOB5fJ3yfvxf9cGUaDuwNHOTuhxCupL+dsc5HCJ/18dE64wlBBsAVwOnA2e4+Nlo+g/CD0Z+OnJZYHFg8SPjuzIy+c2MIycnthKvCc6LX/1LG638qeu3vIoeol88fCUHTn4F93P1gdz+AcHEzLyrHLVHuTab3EH604vPcQYTakJWE2puv5Xr+RDkao/eoiVCbtLe7H+buMwg1dWuAVxOu7DMNi96T/yFc+R5OODf9jBB4XGdmUxLP1a1zk5mNAH5L+LzcHr1Xs919P8J5fQ3hHH1hZ6/T3b8VHaf4M3lt4juW6/05GvgRoVb728Be0fuzD6HWtx34LzM7qYDnjn06eu7bo/yruMbz7CzP30xHouZ1mcu7opYDhrvMLBX/EaL7tYQv1gzCD/xXs2z3esIBvDiqtk6L5n8SzSajdiNccWwA/i9jm78TIuybCbUVsQ8RrggeB0539xcT27xECC6WEb745xb8qjv3Y3f/YXy1HEWZnyKMT9FE+NKUq2yVwAhXf/GJtT+hajjzSmVgNM0Vpcc/zgNzrNOZ65Kf22x/dOFLH9Vq/YZwtezAu4rM4O6K+cAH3X0TgLun3P3HhBo7KDDHI0pQfUs0e7onej+5+y53/xodXREvJbsfxwmq7t7i7pszlq8DzkmUdSfw3WhZI3CZu8cBNtGFRtwLJn0lbmZjCT+OEKqyVyW2Sbn79UBc/mK7dX8JGEy42nyXu6ebztx9CaGJ4iVCoJbZ0yd2hrs/mtjO6cjELzQHZwzhRx7gqmSNXNRM9GVCYNNZ99jfu/vnPGqydfcdwEcJNT7NhIu4WHfPTR+Oyrg02u6lxHaP0hH0nZOo+SqVrxI+Qze5+5eSV/jufh0dn6MPFPEccbB5RmZNNqH5ZRghmThvrVUutRwwZI7D8CCh6i5uo/oM8MPMNzeK4pqBn3ay3+3RNPlj8DwhIBkB/DyzWsjdv+7u73L33ycePi2a/iajyjveZgchyIDQzFGsv2R5jnV0XCkPL2PZKsHDhBPfMEJV89OEH6n7oyas2CvejxwKzSlIWkjupoW50TqF+iHhh2M98FaP2s17ya2eJTeGUPUNe37mcok/Yw+7+wOdrBP/uE83s2yJzFlzThLudvdtGY8tTfx/W5Zt4h+rdFW7u7/s7mOAge7+dOY
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAFbCAYAAACux0YUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxcVZ338U+HkJVshAQC2SAhhy2J7DKoBEdwCeigLCLLAALijDrj6KjPyAjMjDiOPuroqIyyyTbI5uPIogIqyg4BIWE5IYHsBJIQIPvW/fxxblVXKr13dW39eb9e/bp96966fTqpuv2tc3733IampiYkSZIA+lS6AZIkqXoYDCRJUp7BQJIk5RkMJElSnsFAkiTlGQwkSVKewUCSJOUZDCRJUp7BQJIk5RkMJElSnsFAkiTlGQwkSVKewUCSJOUZDCRJUl7fSjdA5RNCmAi80srmJmA1sAi4B/hujHFFmZpWMiGEc4BrgKUxxrEFj/8BOAb4eozx4sq0rm0hhGuBvwYeiDHO6Oi2Hm7TUOBLwEeBfYD1wHPAdcBVMcbGVp7XF/gMcA4QgE3AbODHMcabutCO3P3hz40xXtvOvueQXgPEGBs6+7NKoeD/C2AbMKa991MIYWfgNWBE9tAFMcYre6yRVSiEsCvQL8a4vNJt6c3sMei95gAPFXw9DqwEDgL+D/B8CGFq5ZqnSgshTAD+DHwVmEIKlauAvwB+Avw+hDCwheftBNwGfBeYCswFXgfeBdwYQri6LL9A9diJFKzaczzNoaDXCSH8PTCPdA5SBRkMeq/PxhjfVfD1zhhjAPYA7gJ2A24LIdTLa+RsYH/ge5VuSA25AdgbeBbYP8a4f4xxX+BwYCnwHuA/WnjePwMfIfU+TY0xTo8xTgHeD6wFzg0hfLIcv0AV2JotT+nAvqf1ZENqwHfpxcGomtTLSV8lEmNcReoC3UT6lHh8ZVtUGjHGRTHGF2OMKyvdlloQQngn6RM+wKkxxpdy22KMTwFfyFY/mQ0b5J43DPj7bPXCGOPzBc/7bcG2r9VR6GzLH4BGYEYIYVRrO4UQ+pPC1ApgSXmaJrWsN7wx1UlZOJiTrdqt1zttA64Ero8xxha2P5stBwKjCx4/CRhGqvH4TQvPu55UpzAeOLp0za1arwF/JA0nnNTGfh8EhpKGYLaVoV1Sqyw+VGt2zpZrijdknxBPB04FDgFGkrpMlwG/A74TY5zbwvPeD/wt8E5Sl+FbpAByC3BljHFzC88ZCvwdaYx2MinMvgzcQSqQfLMjv0xLxYcFxZivAWOA84ALgQOyp80hjaVfG2NsKjpkydpWjWKMTwBPtLHLYdnybdK/X85R2fLBVo67OYTwBOn/Ygbwp+61tOMKChjb87MY4zkl/NG3kH7XU0ivp5bkhhH+B/hQawcKIUwmFXUeC0wABpPeR89mz706xrgt23cUqeBzd+C+GONxRccaCDxJer3/FvhAS6/zouf8gfR/9yHSa+AzwBDS6/7kGOOL2X7HAOeT6lH2IP2tWQk8Cvwoxnh/wTGvpblQE+DeEAIUFZqGEPYBvkjqxRwLbMx+v58B1+R+b3WfPQbaQQhhEqmnoBH4ddG2gaSTyHXACcBm0pvzDWBf4FPAUyGEg4ue97nsWCcCW0hFbWtIJ5kfAr/JitYKn7Mf8AzwL6QitmXAS8B+wNeAP2f7dFcD6eRyJWn4ZC4p6LwTuBr4RvETyti2qhJC6BtCOAP4z+yhbxadkCdny/ltHGZBtpxS4ua156E2vl4s2G9hiX/u7aRegBkhhN2KN4YQBpHeF0toJVBl+32EFFb/jnSFyEJSuweQgsJPSO9LALKrIHK1HO8LIZxfdMj/SwoFrwFntxcKinyV9NpfAywm9Xa8lLXzG6QhlDNJoeEFUr3JaFKIvi+EcGHBseaS/g9ycoXR+cAZQvho9vingT2z33sFabjrp6Tzxy6daL/aYDAQkCrJQwgjQwgnAneTXhvfiDEWnyS/TDoJrQSOiDHuHWM8PMY4HjgCeJX0KeafCo49HPhmtnp6jHGv7Dl7kwrSNtD8iSr3nMHAr4CJwC+B8THGEGN8BzCOVCA5AfjflirjO2k08AnSCXe3GOOhpB6EG7LtXygcHy5z26pCCGGfEMIs0v/7DUB/4P/EGC8v2jU3rNDWpXmrsuUOfyR7UlGxbf4L+ADpNQhwP/CvJf65rwMPkD41tzSccALpPXNLa3+cQwgjSJdg9gd+DOyeFXVOJfUIfD/b9RMhhAMLfvZdwBXZ6rdDCHtlxzuR9Ee2iRQKCnt9OuJo4MsxxslZ0fKhMcZtIYQZwFdIHyrOA/aIMR6WFa3uTQoMAP+aqzGJMV6e/T/kfD77v7kna+t04CZSAPo3YGSM8R3ZMQ8hBZK/zP5dVAIGg97r9yGEptwX6RPySuB/SZ/kvkmqLi/2PtKb/rKsuzkvW8+9OQsvdQykN/Vq4OdFz/kt6RP5baTeh5zzSZ8+nwI+FmNcVvCc5aQQsZDUS3FOh3/r1v0oxvj93KffGONGUqFcE+mEfkQF21YNAukkPCxb7w8c3UKvyKBsubGNY+X+CA9qY5/WXFP4um3pi2wOg47IeqluBg4GInBKjHFr28/qkluyZUtXJ+SGEW5u4/nvJg3vLQc+F2Ncn9sQY1xHKgbNvX+KLzP+Aul3Gwb8KISwO3BVtu1b2XuwsxYC3ypoQy4IfiBrxy9ijNcUznMRY1xC6k2DFCALa1Pacinp9faDGOM/xxhzrx9ijE8DHyP1yJwRQjig5UOoMwwGvVfxPAaPkiau2ZRt/wfg+8Xd+1myH0Dzp5BiuRNW4Un/FVLwGAFcm30CKDzmv8YYT4kx3lHwcO6T1c0tjR1mJ4fbstUTW/slO+FXLfyMVTR/8h1ewbZVg8eBUaQ/LseRXj8nAA9mQ085nRnn7UzXdc5LtD0k8FC2T0d9H5hJGgo7Mca4ugtt6ojbSe+BY0MII3MPhhCGkMbr5xcH7UIxxv+NMQ4B9mkluAwg/Q5QFLiyEHEmaQjvw6RP7aNI/6ddnezr4ZZ6N2KMX8nacmYrz1tf8H27wTC7WuOD2eoNLe0TY5xNGppsIL0m1U0WH/Zen40x/qH4wRBCP9Kn3P8iFRbtBPxN4T4xxi0hhBHZJW1TSOOdU0ifunbPdutTsP/rIYRvksYlzwbODiEsJ3Xb/ha4u4XLCHNXQ1yQja22ZI9sWYqx/KWtPJ77dFL4Xil32youC0k594UQjqK5cO2fae4ZWZstB7RxuNzwyvo29mnN5Z2Z+bCd/b5Aem1vIfX8dCZQdEqMcWUI4fekUHUSqZ4F0h/qART1pLVxnA1ZsJ5Oet9NAg4kvSZzBcM7fOCLMT4ZQriM1BW/H6lo9PQY45Yu/kqvttHGphBCYwjh3aTXxz6kHrZpNNegtNjOFuxL6i2A1NuxqZX9JmTLuni/VZrBQNvJrgz4SQhhDKkL78IQwjdijIsh/wnnP0mfCHYueOpmUtf606TuxOLjXpyNUX+GNDHOHsAZ2dfWEMLNwGdijG9lT8l1We+bfbVleDvbO2KHKyKKFE6tW+62dVpW/PmDVjZfHWPs1uyD2R+o75EK3mYUbMoFvJE7PKlZrrbg9e60oTuyYrbc5Ex/01JI7gG3kILBKTQHg8KrEdoUQvgQ6b03uWjTsuzYH6LtCYJ+SQoGkP7tuzPt8IaWHgwhNJCuHPgntn/tN5GGM64HzurEzxlW8P1hre7VrCLvt3pjMFBrfkkKBjuRegIWFzx+LOnE8AOahyBeynoSLqCFYAAQY/wF8IvsMr/c5WofIqX8M0kngQ9nu6/L1k+MMd5Z4t+tu6q5bTnDaH2egPvae3JWKT8R2BxjnNfKbrnC1D0KHnuB9MdvYhuHz23b4ZLWcgghHEHqlu4D/N9YvvsR3EGqwXlvNpywjVR8+1yMcU5bTwwhHEsa7upDes/dSLoa6IWsuJEQwlJaCQZZT2DuioVGUrj4NkW9gSXwNdJ5A1IvyD2k88OLMca1IYR96VwwWFfw/ZAY49pW91TJGAzUmsKb4zRAfja8Y7P
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wcdf3H8delV0IKCZBePwQSQq8qoQsRFCmCgmBDbIACij8QgigCKs0fiD+KKAhIFZEeQKQjLaTxSYEUEgjpPbnk7n5/fGf3Nnt7e213Z2/3/Xw87jE3O+U+uzc7n/nMfOc7FTU1NYiIiEjpaxN3ACIiIlIYSvoiIiJlQklfRESkTCjpi4iIlAklfRERkTKhpC8iIlImlPRFRETKhJK+iIhImVDSFxERKRNK+iIiImVCSV9ERKRMKOmLiIiUCSV9ERGRMqGkLyIiUibaxR1AKTGzIcCH9UyuAVYA84EngGvdfUmBQssZMzsD+DOw0N0HpLz+b+Ag4NfufnE80WVnZncApwMvuPv4xk7Lc0zbAD8FvgwMA9YD04C/Are5e3U9y7UDfgicARiwCZgC/NHd725GHIlnbH/D3e9oYN4zCNsA7l7R1L+VC2nftYPd/d85Wu++wBXAnkAHYDGwl7svy8X6WwMz28Xdp6W9ltg+Dnf3STGEFSsz6wL0dfe5ccfSUqr082cq8HLKzxvAUmAM8HNgupmNjS88iZuZDQbeBS4CRhGS2DLgAOD/gOfNrHOG5doCDwDXAmOBmcCnwGeAv5nZ7QV5AyXGzAYCzwGHABWEg68l5ZLwzWyUmT0J/CnuWIqJmX2V8B07LO5YckGVfv78KFP1YWa9gb8AE4AHzGx0fdVcK/N1oAvhwEYa5y5gKPAecIK7zwIwsz2AfwKfA64GfpS23C+ALxLOGh3l7tOj5Y4AHgS+YWYvu/ttBXkXpeMLhG14DTCiNZ6Ja6GvAkcSipR0o6Ph/MKFUzSuAPrHHUSuqNIvsKhqOJ1wOnYUcES8EeWGu8939/fdXUm/EcxsP0JlDnBSIuEDuPvbwHnR6LeiU/mJ5XoA50ajZyYSfrTc0ynTLjEzfb+bpk80nFaGCT+r6Lv9vruvjzsWaRntFGIQJf6p0eiYOGOR2FQBtwJ3urtnmP5eNOwM9E15/TigB6FNxVMZlruT0C5gEHBg7sItC22j4aZYoxDJI53ej0/7aLgmfUJU2Z0CnATsAfQGtgCLCNccr3H3mRmWOxL4AbAf0BNYRTi4uA+41d0rMyyzDXAOoSHZCMKB4AfAQ4TGhisb82YyNeRLaWy1GNgB+CZwJrBztNhUwrXrO9y9Jm2VOYutGLn7f4H/Zpllr2i4mvD5JewfDV+qZ72VZvZfwv9iPPBiyyJtvJTGXg35i7ufkcc45gKDCaek+xEaSu4HdCVsj/cBv3X3tdH8ZxA1TIwclPJeko0Eo7YUZwCnArsRLgUsBl4gbI9vp8UxhNrtfw/gFkJ7gQ3Ak+7+1ZTvzeGE7+vFhIO1zoAD17n7X82sAvgWcFb0vrYArwOXuPtrGT6DbaN5jyZ833oA64A5wKPA9e6+Ii3OhAOj9z/P3YdE89TbkM/M+hPOME0AhgDVwGzg4ejvrEybfyJwKXAV8DvC5apjgR2BlcDzhP3IlPT3VZ+Uhrjfi/7+xYSD5QXAd1L+h7sB3wc+Szhl34nQwPot4HZ3fyBDnAm3mNktwGXuPjFlvn6EM3NfiN5/FfA+cC9wo7tvbOz7KARV+jEws+GECr8aeDJtWmfgaULr7S8AlYRW2cuBkcB3gbfNbPe05c6O1nUMsJnQQGwNYYdyI/BUtNNKXWYnYDLwS0KDsEXALGAn4BLg3WielqogtGO4lXBJYyZhp7UfcDvwm/QFChhbUTGzdmb2NeD66KWr3L0qZZYR0XBOltXMjYajchxeQ17O8vN+ynzzChTPdwgJ5BDgI2AJtdvPUymXPxZHMS6IxldTG/cqSB6A/oewDY8nJKf3CMn0VOC/ZvbjeuLoSPhOHw7MIHzv56bNcwLwCnAo4br5RmB34C9m9j3CGZxbgIGEg4FO0fr+bWbjUldkZiOj2H5DOEhcEo1vIRx8XAq8ambdokU21vP+sx2UJv7WoYQGj+cTtk2P3ttYYCLwXpYGy4mGrIk2KzMIl1i+ArwWtW1pqlMJDRErCPuLHaK/QfQ5vkXYLvoRDkzmEP6HRwH3m9mvU9Y1n/A5JM78zI7Gk+0azOxAwvu/gPD+P4im70k4oHnNzLZvxvvIGyX9AjGztmbW28yOAR4nfPa/cff0HeDPgIMJDeL2cfeh7r63uw8C9gE+JlQs/5Oy7m0JR80Ap7h7/2iZoYSGORsIO6oTU5bpSjjiHwI8Agxyd3P33Qg7lscIX8p/ZmpB3kR9CY2EzgH6uPuehC/jXdH088xsu5hiKwpmNszM3iL83+8iJIqfu/sVabMmTvVnu+acaG3eJ8s8Oefun8n0A3yesA0CPAtcXqCQfgLcAWzv7uMIlzx+EE07gFBd4u5PRHEm7np4JyX+d6LX/hYt8wmh+h/q7nsT/h+XE77P15jZlzPEsS2wPbCbu+9BqGivTJvnu4RtvX80T3/CgQLA/wLHA6e5e79o+ihCku5IbTuOhMTBwWuE787o6Du3HaHBbTXhNs/To/f/Sdr7nxK99xPJIrr75B+EpPlPYKC77+7uYwgFyqtRHP+K2qKkOxlYS+1+bjfCWYmPCGdRLsn29+txIOHzGuLuY4Gh7r4yOhC6nvB/uhjo5+57uPtowv/jvmj5C8ysZ/S53B59Lp9E066KPpfbo/ffn/A/6034zPu6+xh33yV6/68D41LWXRSU9PPneTOrSfwQjrKXEr4cowhJ+hcZljuM8KW8LDoFnBSN/zEaTT16NmpPU/09bZmnCUf8DxDOGiR8m3Bk+jZwvLsvSlnmE8IBwjzCxntGo991/W5y9xsSVWt0yutcQv8F7QgHNHHFVgyMUIUldo4dCadZ089mdImG2U4ZJhJslyzz1OfPqdttph+2PhWeVXR26V5C1erAie6+pRlxNcdk4FvuvgrA3Wvc/SbCmTNoZJuHqNHlF6LR41PvynH3Te5+CbW3uV1FZjclGl26e6W7r06bvgw4PSXWjcDvo2ltgKvdPXGQTFQsJO7OSFbE0anmXaLR77j7xynL1Lj7nUAi/pbeMvxzoBvhMt2J7p68DOXuHxBO939CONhKvwMl4avu/mbKck64FRWa1yZlI3Bhyn4mcXB8BGEf/Ja7/9rdN6f8zeWEMxUQLrtaI//W+YSE/093PzP1Moa7zyHcYbMa+KyZHdWM95IXSvr5k36f/muE00CJU0U/AW5IP+UeHVl2Am6uZ72J1rOpO/QPCRt0T+CO9NN97n65u5/o7g+lvHxcNLw37fRxYpkNhAMFCJcMWurRDH9jGbUV67YxxlYM3iBUYj0Ip22nEhLNS9HloIQ6n0cWjb3GnmoW2U/TvxzN01g3EHb+y4FjEteRC+SxTG1FCKeRYettLpvENvaGu79SzzyJBD3CzDI1zs3YBiPFv919Xdprc1N+fzzDMomD4W0SL7j7YnffDuji7lPTF4j2N4kDjuYcFKZKHAjd5BnaC0X/68TZgy9lWH5RejuISFP/P6neyfA54u43unsXwrX8TFLvSmjs55LYT92VaWJ0EPRMNFo0+yk15Muf+u7T70CoTv+X0KNaW0LDkiR332xmPaMKYxShp7ZRhGqpXzRbm5T5PzWzqwidvHwd+LqZfUI4lfo08LjXvZUusWP6jpl9sZ73kLgWlYtr5wvreT1RlaZui4WOLXa+dQcwk8xsf+BNwunOX1B7RmNtNOyUZXWJSx7Nub3qCm9Cj3wNzHceYdveTKiQm3KwkAtN2eaySWxjb9U3g7vPMrPVhARs1N6dk/Bx3aW2siDDa6mJNNPlnES1WqdXRHffEJ1+35tw1mwYoQHgboTqHFpQ9JlZd2rvXa/3c0mZlql6ztX/J1VDn3Olme1D2McMj37GsvV+pMHPJWoPMTgavcTMzqln1iHRsGj2U0r6BRYdEf+
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcdb3/8deWbHpPSEIqaZ8QEpJAKKGDgIV2ERQQULDiTxSw4VVU8CoiXgQL6lVEFFCwIChFKUKkhhYgkOSTXiCQXkk22ezO74/vmdnJZrbPzJnZeT8fj32cPXPOnP3s7pnzOd96yhKJBCIiItLxlccdgIiIiOSHkr6IiEiJUNIXEREpEUr6IiIiJUJJX0REpEQo6YuIiJQIJX0REZESoaQvIiJSIpT0RURESoSSvoiISIlQ0hcRESkRSvoiIiIlQklfRESkRCjpi4iIlIjKuAMoFmY2CljayOYEsBFYATwE3Ojua/MUWtaY2UXAb4G33H1Y2utPAMcC33P3q+KJrmlmdhvwMWCmux/X0m05jqkX8FXgg8BoYDvwBvB74DfuXtfI+yqBS4GLAAN2AnOAX7j7H9oQR/L52Re7+23N7HsR4RzA3cta+7OyocFn7Xh3fyIPP/Mw4FrgYKAKWA1MB9ZFu5zk7o+282dcDXwbeNrdj2rF+24jnL93uvsF7YlBcsfMyoAJ7j4v7liaopJ+27wOPJ329Tzh4jAJ+G9grplNji88iZuZjQReAb4BjCcksfXAEcCvgMfNrGuG91UAfwFuBCYDC4A1wFHAnWZ2a15+gRJiZsOBfwMnAGWEG7O17r4+1sCkaJjZIcBzhM97QVNJv20+n6n0YWb9gd8BpwB/MbP9GyvNFZmPAt2oL/VI8+4A9gNeA85294UAZnYQ8HfgGOB64PMN3vdN4AxCrdH73X1u9L6Tgb8CF5vZ0+7+m7z8FqXhVML5vRUY26CWbv9ouSLvUUkx+RxwKLAw7kCao5J+FkUlg48RqmPHAyfHG1F2uPsKd5/v7kr6LWBmhxNK5gAfTiZ8AHd/GfhStPqJqCo/+b7ewOXR6qeTCT9638Np275lZvrsZs+AaPlGw2a56Lyf7+7bY4hLJOt04ciyKPG/Hq1OijMWiU0tcAtwu7t7hu2vRcuuwD5pr58J9Cb0qfhXhvfdTugXMAI4MnvhlryKaLkz1ihE8kDV+7nRKVpubbghKtmdB3wYOAjoD+wGVhHaFX/k7gsyvO+9hCqkw4G+wGbCzcWfgFvcfVeG9/QCLiN0JBtLuMlbAtxD6Gy4qSW/TKaOfGmdrVYDQ4CPA58GJkZve53Qdn2buycaHDJrsRUid38BeKGJXaZHyy2Ev1/SjGj5VCPH3WVmLxD+F8cBT7Yv0pZL6wzYnN+5+0U5jGMZMJJQ7T6I0FHycKA74Xz8E/BDd9/WgmNdRNRpMXJs2u95vLs/kba+V0c+MxtEqLU5FRhFuNmbD9wF3Ozu1a34vboAnyHUFI4j3IA8SmjuabW0v9M4QifSrxLOu3JCp9Br3f2B6Hp0RfRzxxBuKmcCX3f3+RmOWwFcEO0/lfB3XwU8Qvi7Z6zeNrOxhM6px0dxdSdcw14D/gjc6u61afsfBzwOzAKOBr5AaGYcB+wCXgZ+7O73teJvchHh/3038FPgZsJ5tD6K/cZovyFRrCcRrk09Cdfy+YQmtp+7+44GcSadb2bn06DTsJl1Bi4BziVcI6sITUYPRD/77Zb+Hu2lkn6WmdkYQgm/Dvhng21dgYcJvbdPJZy8c4ANhJP5M8DLZjatwfu+EB3rNKCG0EFsK+HifzPwr+jDmP6eCcCrwHcIHcJWEdqbJgDfAl6J9mmvMkI/hlsITRoLCDcxhwO3At9v+IY8xlZQzKwyuiD8OHrpB+kXOsIFBmBxE4dZFi3HZzm85jzdxFd6cliep3g+RbjYngC8Cayl/vz5VwubP1YT4l8ZrW+h/nfa3NQbzexIQoe/rxD+b0sIF/GDgf8FnjOzwS35RcysD/AYcBMwLTrOKuBDwEu0r8bwcuBfUVxLoteOAP5hZmcSrkfXA30Aj5ZnAk+b2b4N4uxBuA7dRkje2wnXr/6E/8erZvbBDL/fGYRCwGWEG5DlhHOmS3ScXxGuiZlUEUZE/S+wLzCPUFg9HrjXzC5pzR8jMoHwNxlF+B/2jZbJprm5wNepvza9TsiVM6I40q+3mwnny5pofW20Pift9x9C6OR3E3AY4Xo/l1BjdwXwenQ+5YWSfhaYWYWZ9Tez04AHCX/X77t7wwvglYSTdR1wqLvv5+6HuPsIQieQtwl3wF9PO3Yf4AfR6nnuPjR6z37Ae4EdhFLfh9Le0x34B+Gkvg8Y4e7m7lOB4YS7y5HA3zP1IG+lfYCPED7QA9z9YELJ/45o+5fMbGBMsRUEMxttZi8R/u93AJ2B/3b3axvsmqzqb2q4Z7JH+YAm9sk6dz8q0xfwPsI5CCFx/U+eQvoiIfkMdvcphAvo56JtRwCnN3cAd38o+h2SIyJmp/1usxt7n5kNJZy7/YFfA/u4+yR3P4Bw8z4LmEKodWiJH0Yxvwkc5O4HuPuBhFJo8kairT5HKNXu6+4HEf5OrxFu1v8CHAi8z92HRZ/BgwgFin6ERJ7u18CJhAR5WPSe6YTz9lpCc9WdZpa6STGzvoTSdWfgF8Agd5/i7pMJNTU/iXb9iJkdkCH+aYREeb67D4yuL0MJ5xrAd9P7xbTQFEJSHhn9TYYBj0SJ/A7Cjc+90d9skrtPAwYCX4vefzThvMfdZ0fn0EPRtoej8+fz0e+f/DtPJdTg7R9d9w8GBhPOvX6EG5gW3SS2l5J+2zxuZonkF6Fku47QK3s8IUlnqpY7kVADcE1UBZwSrf8iWk0f7meEO+KNhGqp9Pc8TChJ/4VQa5D0SULp42XgLHdflfaedwg3CMsJF6iLWvxbN+7n7v6TZKk1qta8nDB/QSXhhiau2AqBES6mvaP1zsCRGWozukXLpqqFkwm2WxP7NOa36edtpi/2rO5uUnSRvItwYXbgQ+6+uw1xtcWrwCfcfTOAuyfc/efUl7ByWXL6MiHh/93dP53eFOXuiwmjL7YAR5vZ+5s6UHSh/3i0ekH6zUbUzHcGoXavreYClyero6NYb462lQNfSe8/4u6vEqqwIZyzyTinEKqmtwPvdffn095T7e7fINzkdGHPa9/RhObOd4AvpHeIdPd3Cc0jyWtXY8Ocv+1p81NE//OvRqv9CZ+v1vpG2rmzPmqCnBIdbyfwSXffmPYza9z9B9TXlrR0SPbphBu6VYSbq1Qfn+jnf5JwkziAUOrPOSX9tmk4Tv85wt1vsiPQF4GfNKxyj+4IuwC/bOS4yQ9E+gV9KeGmoi9wW/ThSz/m/7j7h9z9nrSXz4yWdzWoPk6+ZwfhRgFCk0F7/SPDz1hPfYm1T4yxFYLnCSWF3oR2wtcJzTtPRc1BSXv9PZrQ0jb2dAtpupr+aVo35OgnhOGpG4DT0i+SefBApr4ihOpf2POcy7bkOXxHpo3uvprQxg3Nn8MfIFyHl7n7zAzHWpx2rLZ4yPceNrws7fsHM7wneSPeK+215O/8hLu/1cjPuj1avj957XP3v7t7T2B0IzeEXQjnDzR+I7vX9YX6/zO0/n9dBzzb8EV3f9nd+wJ9PcMcDVG7fHOxNpT8u90b3eQ0/JkJ6s+jvFzv1JGvbRobp19FKJ3+jNARpAL4f+n7uHuNmfWN2o7GE9q4xhNKS4Oi3crT9l9jZj8gTPrwUeCjZvYOoXrrYeBB33soXbJ67VNRe1omyaqkbLSdN3YRSJZK08+zfMcWuwYXkEfNbAbwIqFDzzepr9FIdj7r0sThkk0ebRlCdq23Yka+Zvb7EuHcriHU2OR7fHJrzrmsidq1R0ar3zKzyxrZdVS0bO4cTpZSX29in1cINwdtsTLDa+m1gpmakpI1C+kzMiY/t9PNLGNHU+rPzZ6EKvjU3AbuviMqsEwhXPPGAAdEx012fG6sELrX/zo6XnK1tf/rTcmaj0yiYydr58ZE8R5AaApJfjZbWmBO/t1Oa1h
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf4AAAFbCAYAAAA0vux4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcdZ3/8dccue87kIOEhHwSIIQooByugIBoBH4oqAhq8F5lQcVFd0XBVUBxFTwXb+RwUfEGRAGBFVRAICFA8slBThLISZLJNZmZ/v3xrZ6p6fT0XN1TPV3v5+Mxj5qaOvozM931qe+3PvWtqkwmg4iIiKRDddIBiIiISM9R4hcREUkRJX4REZEUUeIXERFJESV+ERGRFFHiFxERSRElfhERkRRR4hcREUkRJX4REZEUUeIXERFJESV+ERGRFFHiFxERSRElfhERkRRR4hcREUmR2qQDKAdmNgVY2cbiDLANWAP8EbjB3Tf1UGhFY2bzgZ8AL7r7xNjPHwJeD1zj7lcmE11hZnYz8F7gYXc/uaPLShzTUOAK4K3AocBu4DngFuBH7t7Uxna1wCXAfMCAfcAi4H/c/WddiCP7XO2L3f3mdtadT3gP4O5VnX2tUjCzOYT/36nAJGAI4fO2CPgD8BN331Gi1x4J9HX3lzqxTR/gKuBC4GBgO/DdaPFVwKPuflIRYsv+X0939/s7uM0UWo5jh7n78u7GIaVhZhOBHaV6b7dHLf4DPQs8Gvt6HNgMHAn8B/C8mc1OLjxJmpkdAiwAPgvMIBxstwAnAN8HHjSzAXm2qwHuBG4AZgNLgY3AScDtZvbjHvkFyoCZDYxO2p4GPkH4fG0CngFqgDcANwIrzWxeCV7/48Dy6HU74+uE//sUwv/9RWBVMWOTymVmfc3svwif/bFJxaEW/4H+zd0fyv2hmY0CfgrMA+40s1lttep6mfcAAwknN9IxtwFTCUnqPHdfBmBmrwJ+D/wLcD3wbznbfQ44h9B79CZ3fz7a7gzgV8DFZvaou/+oR36LhJjZEOBB4NXALuAa4HvuvjW2zmuAq4EzgT+Y2eXufkMRw+jqvt4eTb/s7v+R/aGZjQbuIPT8iLTlYMJxIFFq8XeQu28hdEnuI7Tyzkg2ouJw9zXuvsTdlfg7wMxeS2ihA7w9m/QB3P0p4PJo9v1Rt352u2HAx6PZD2WTfrTdn2PLPm9mlf65/DEh6W8BTnD36+JJH8DdHwPeTGj1VwFfNbMTejzSA42Opg/Ff+jum6PP0ZqeD0mkcyr9AFNUUfJ/NprtbBehVIZG4IfAre7ueZY/E00H0Lor71xgGKHG4k95truV0FqcDJxYvHDLi5m9Djgvmn2fuz/T1rruniGcSD1B6P6/uQxOirKvvy/RKES6QV39ndcnmu7MXRC18C4gdAe+ChgFNADrgb8AX3f3pXm2eyPwMeC1wAhCwdCzwC+AH7p7fZ5thgKXEYrLphMOSC8AvyYUIL7SkV8mX3FfrEjoZeAg4H3Ah4DDo82eJVzLvjk6OJcktnLk7k8QElFbjommOwh/v6zjo+kjbey33syeIPwvTgb+2r1IOy5WSNaen7r7/G6+3KXR9Dl3/317K7t7k5ldCfwJOIzQ9X8PtF2wmpVT7DbV3VfFikGz7jMzaKc40sxWAYfEfvRgtN3D7n6ymV1NgeI+MzuH8Bk6FhhOqGd4GPjvqKeow6JLSv9O6HkaTahVuIlQfNwpsb/h7cBHCfUL5xO6pDcBvwU+6+47okLMzxHeo0MJn+nvAze2cRw4FPgUoXd0IrCXULT5U0LRZmOebTp9DI0dw94EbIh+h9cT/s4vAr8Dru1MUXbs/z0HeD/hkmgfwAkFl1vNrAo4K1p2LC0n+i8TPr/fcPd/5okza1n0Hjolfnk5+jt/EjgFGAfUAf8Evu/uv+ro71BI0mfPvYqZTSO09JuAe3OWDQD+TKjqfgtQT3iTbyUcsD4MPGVmc3O2uzTa11nAfkLR2E7CG+Q7wJ+iorD4NjOBhcB/EYrE1gPLgJnA54EF0TrdVUX4kP6QcHljKeFD+FpCd+11uRv0YGxlxcxqzexC4BvRj76Sc2CbHk1XFNjNqmg6o8jhtefRAl9LYuut7s6LRAfKU6PZewutm+NBIHuy2N1Cv6WE3ysrW8z7cv7Vmz3RxnaLCm0UvS9uIyTQNxPuEloI9CckuMfN7JKOBh+9x/4BvBMYFMUxHvg20J3akDGE5HIFoTdjDSFZXwL80czOJhQ6zyMk01cIn+mvA9fmifOtUWz/SjiJWEI4kTgJ+AHhuDY4Z5suHUNj3kT4P51LqFlaS6jF+Tjwt6i2pLO+SzhZXR/tc18s6d9OOKl4G6FH6lnCicck4CLg72b25ti+FhH+xllPEt5D22N/g49FP38PoRH4HCHxn0GoLbs9Nx90hRJ/O8ysxsxGmdlZhJZGNXCdu+ceBD9NOEPbDBzn7lPd/Vh3nwwcR3hDDAL+M7bv4cBXotkL3H1CtM1U4I3AHkLr7/zYNoMItzlNIbzpJru7ufvRhDfc3YQz1d/nqyzvpLHAuwit99Hu/mpCD8Bt0fLLzWxMQrGVBTM71MyeJPzfbwP6Af/h7rkHw2xroFCrY0s0HV1gnaJz95PyfRFa13ui1R4AvtjNl5oMjIy+X9iJ+PbTcontqO4E4O7X5rTIPxH9vgVby+5+fs52/xZtl1vAmeuLhFv/1gFnuvs4d8+2Di8lnAh808xOby/2qAX9I0LL8+vA+Ghf4wl3HJ3c3j4KOAMYTDh2zXL3GYSePgh3q/yGcEfKuOjzPIFw8g9wWfzzHLVYf0Y4ufkSMMrdj3b3wwit+GWEuzb+JyeGTh9Dc1xKOHGY7O5HuPt0QjFtI+HE+/1d+LucCLwz2t8U4Ozo5+8lnLjtAea5+8Qo1kOBIwgJuxb4QnZH0Xvl/Ni+3xm9h54GMLM3Ad+K4r0MGO7ur3L3Q4DTCHcAvYtQ9NotSvwHetDMMtkvQgt3M6FaewYhUeeryjyN0BPwhag7uFk0n32Tx28FNMKHYxvw85xt/kxoUd9JOPPN+gDhTfwU8DZ3Xx/b5iXCG2s14Qx5fod/67Z9192/mW29uvtewhl0hvDGPi7B2MqBEQ5mw6L5fsCJeXo1BkbTvQX2lU2yAwus05afxN+3+b6I7uHviKhVcQcwl9C9eb67N3Qhrrj4Cc2WNtfKL9siH1NwrTJiZuMItyoCnBOv7XD3Rnf/FiGBVxESZHs+RXh/PeTul2cvAUb7+jKd+P+24RM5x66bCS1dCL1R7/HovvPovfBf0bIBhNZ/1tVRnN9y98+5e/Z9TZTk3kZIbhea2eGx7bpyDI3bSLjLZkNsu98TXRqia7Uzf3X35mNzrAj6DEJu+K673xPfwN2X0NKg68yt39cS3gufiR9zo30+QMsx8/LoLrMuU+I/UO59/P8gnL1li3k+SThDb9XdErUG+hOuteWTvc0nflBfSXjzjCAULs3J2ecXo5bGr2M/Pjea3pHvGln0Ibszmj2rrV+yE/6Q5zW20NJyHZ5gbOXgcUIyGgacTnj/vAV4JLo0lHXA36OAjl5zj1tG4S77R6N1OuqbhG7drcBZ7r6tCzHl6h/7/oC6lXZkTzrKYuChDnoTIQE+X+A6/q3R9Dgza+++7rdE05vbWJ7bgu6MDDk1AtF1+2zP5p/zfKbXx74fCmBm/Qi/N7T0DLbi7osIlzSraPmdunoMjbs/apjkWhxNh+dZ1p62anLeRYi1rd6HbKz9OlKQGtWjHB3NtvV3+yOhETqA0GPSZSruO1Bb9/H3JZxxfZtw3auGUAzTzN33m9mI6JavGYQR3WYQWk3jotWqY+tvNLOvEIpR3gO8x8xeInSr/hm4xw+8zS57N8EHo4KhfMZH02JcS3+xjZ9nz+Lj76Geji1x0UlQ1v1mdjzhOt7hhJ6h+dGyumgaT365st2lXbkX/NpCxWnQeuS+dta7nPDe3k/ouenMCUMh8b/VyDbXyi/bW9CbRs3Mfh4mmlneBELrxtdMQqv1AFFX+qRo9tl86xAun2To2snRds8
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZgsZXnw/++cBTiHTTyIIvsiN6KIK0gwP3FfkKgvbkQ0uKFGXzVq1Df6Kmpc8E2UqBjcUATXGIzBXZQYRYO4oCB6C7IKIoIoZ1/n98dTfaZmTs/eXdXn9PdzXXPV1FTV009Pddddz1ojo6OjSJKkbd+CtjMgSZKaYdCXJGlIGPQlSRoSBn1JkoaEQV+SpCFh0JckaUgY9CVJGhIGfUmShoRBX5KkIWHQlyRpSBj0JUkaEgZ9SZKGhEFfkqQhYdCXJGlILGo7A9pSROwPXDPJ5lHgduB64KvAezLzDw1lrWci4mTgY8CNmbl37e//BTwUeFtmvqGd3E0tIj4O/A3wncw8dqbb+pynXYDXAP8LOBBYBfwC+ATw0czcNMlxi4CXAicDAawFLgP+NTM/NYd8dJ7V/ZzM/Pg0+55M+QyQmSOzfa1eiojtgOcATwLuA+wOrARuAi4Ezs7MH7WXw/6KiGMp7xNgcWZuaDE76iNL+oPvcuCi2s8PgVuBewP/B7giIg5vL3tqW0TsB1wKvB44hHLDeBvwF8CHgAsjYkmX4xYCnwfeAxwO/Bq4BXgI8MmIOKuRN9CyiDiIcoN0JvAYYDXwU8qN9YGUm6IfRsQZEdHqzYk0X5b0B9//zsz/mvjHiFgGnA0cB3w+Iu45WWluK/NsYCnlxkYzcy5wAPBz4CmZeSVARNwf+E/g/wPeBfzvCcf9X+CJlOD2uMy8ojru0cC/A8+JiIsy86ONvIsWVCX8rwIHA18EXpKZN9a27wA8Hzgd+FvK5/JNLWRV6glL+lupzLyNUo28llK6e3S7OeqNzLw+M3+VmQb9GYiIB1NK5gBP6wR8gMz8CfCqavV5VVV+57hdgVdUq6d0An513Ddq294YEdvydeJpwD0oNz5Prwd8gMxck5nvB95S/elVVVOKtFXalr/M27wq8F9erd67zbyoNRuBjwDnZGZ22f7zarkE2KP29ycDu1L6VHy9y3HnUPoF7Asc07vsDpwHVctLM3PtFPt9pFruiN81bcWs3t/6La6WyyduqEp2J1JKM/cHlgEbKJ2Tvg28OzN/3eW4xwAvAR4M7Ab8mXJz8TngI5m5rssxuwAvp3QkO5hyQ3k1cB6ls+GfZvJmunXkq3Vs/D2wJ/Bc4BTgsOqwyylt1x/PzNEJSfYsb4MoMy8BLplilwdWyzso/7+Oo6vl9yZJd11EXEI5F8cC351fTmeu1hlwOmdn5snzfLnOZ/nBEbGsupHeQmbeFBH3o3wX6tX/+1M+m38G7kz5nJ0C7E9pCrgIOC0zf9ot3bl+NiPirpRanCdUr7UR+BXwGeCMzFwzyXHHAq+k3OzsSvnuvAf4Xbf9pxMRh1I6kD4cuDulP8TVwFeAf8nMW7ocMwI8k1JTeTjl//Y74FvAO+q1VbVjDgH+DngUsA+wBvgl8FngzMxcPWH/j1fpvxjYBLyBctN7A/CCTpPptnxtmIwl/a1Y1QHp3pQP9dcmbFsCfIPSe/sJlIvbZcAfKdWZLwR+Ul3I6se9rErreGA9pYPYcsrF/wzg61UHsPoxhwI/o1SBHk65qbgSOBR4I3Bptc98jVD6MXyE0qTxa8pNzIOBs4B3TDygwbwNlIhYFBHPBP6l+tNpmbmxtsvB1fI3UyRzbbU8pMfZm85FU/z8qrbfdT14rU4txx6UznoviYi7ddsxMy/NzGu63fRWPga8u0rrcmBn4OnA/0TEMybuPNfPZkQcQ+l4+PeU83g1pXniAcA/Va+3xXuIiNdSbvaPp1z7f0E5t59iDv0UIuJo4EeUUQ+dG4gbq/fyD5Tryz4TjtmJ0ofiHOCRjI0WuXOVzk+qvij1Y55JqbF6EeXG4jLgZuAoyv/74ojYm+5OAj5IuXZcSSk0XFqlO5TXBoP+ViYiFkbEsog4nnI3vYBydzzxAvha4GGU0saRmXlAZj4oM/cFjqTcWe9I+XJ20r4TcFq1emJm7lUdcwBjvZqPBZ5aO2ZH4HxKaeOLwL6ZGZl5X8od+ZeB/YD/7NaDfJb2AP6acme+e2Y+gPIlPrfa/qqIuEtLeRsIEXFgRPyYct7PBbYH/k9mvn3Crp2q/qmGe3ZKvbv3NpdTy8yHdPsBHkv5DEIpFb61B691AfDJavVA4P3ATRFxeUR8ICKeUf9MTWFXSifUfwL2zMwHUT6bHwS2Az4WEQd0dp7rZzMi9qr2XwZ8GNgjM++dmfei3MxfDBxBqZWjdtwxwDur1VfX8ng34H2U7/VsvYdyDXkvcLfMvH9mHka5kbgS2IsyoqTunyjXkluBR2XmftX3eG/gP4CdgP/oFCwi4ijg45TP8Yer13lgZgZwP8qN/+HAF+t9VmqOoZzT/TPzcOCAzPzTMF4bOgz6g+/CiBjt/FBKtrdSemUfQgnS/7fLcY+k1AC8uaoC3qxa/9dqtT7cL4AdKPMAfHbCMd+glKQ/z1iVKJSezQcDPwFOyMybasfcTLlBuI5yQTp5xu96ch/IzPd2Sq1VNeYrKPMXLKLc0LSVt0EQlKacXav17YFjupRYllbLrtXAlU6AXTrFPpP5WP1z2+2Haoz+TFRB4DOUC30CT+3hWPK/AV7HWBPZCHAvStXwp4GbI+LCKnBO5bzM/PtOTUBV5fxi4PuU79Vra/vO9bP5akrA/8/MPKVe/ZyZv6GMxrgD+MuIeFztuE7wPTsz/7kz0qfqqPgySg3AbB1RLT9W7w+RmVdTmh6+RK02JiL2pDR9ADy7uuHqHPNnSqn8T5Sg+8hq05sp3+tvVO/3jtoxlzJ2I3h/YIvaFMrn+3W160XnJncYrw2AQX9rMHGc/v9QquU6X7JXAu+dWOVelYx2oIw97mZVtaxf0K+h3FTsBnw8Io6oH5CZb83Mp2bmebU/P7lafmZC9XHnmNWUGwUo1YrzdX6X17iNsRLrnVrM2yD4IXAXStB/FOXz8wTge1VzUMcW/48pzLSNve5Kpq6mv6jaZ6beSxme+kfg+My8fQ556iozN2bmaZSq42dSSv431XZZQNWvISL+YcsUNnt3l7RHKaV9KAG5Y66fzc5x59JFZv4e+Gb9uIhYSmlzh1Jq7may68RUOufvzIh4RER0+heRmedn5vGZWW9yO45yQ3V9Zn61S95XUvqa7JmZX69K4w+rNp/eLQOZeQ3whWr1SV12+WmV7kTDeG0A7Mi3NZhsnP52lDvQ91MmD1lIGUe8WWauj4jdqmFdh1CqLw+hlJbuWu22oLb/LRFxGqVU8Gzg2RFxM6Uq9RvAV3LLoXSdnswviIgn0l2nfbEX7WM3TvL3Tqm0/pluOm+tm9AR7YJau+thlBqhk6ttK6rlDlMk16nWXDXFPpN5e85iRr5p9nsV5bO9nlIqm83Nwoxl5gpK+/anqtc9GHgEcALlBmoEeFtE/CQzvzbh8FEm71DZGUFxt4jYOTOXM4fPZtUevl/1tzdGxMsnOW7/+nHVMdtXv1++xd7FpZP8fSqvodyEHwVcAKyIiP+m3HR8uct56vQj+TmTyMx6n40DKU0jAD+eIh8/pjT7RZdtk3VQHLprQ4dBfytVVSF+qKoyOxU4JSLekZk3AETEzpROXCcx1sMfStX8Tygzjj22S7pvqNqEX0qZ1OVulNLPM4ENEfEZ4KVVdRyMVSPfo/qZyp2m2T4Tk3Wi6qjPmNZ03mat6kj5vkk2n5WZ85oVLzNXR8TplNENx9Y2dW7elk1xeKctf4se2E2JiP9FmVgI4G+73QD3S2ZeBVwFfDAiHkppUtuFcgMyMeivnKKD34ra73eiNCPM5bO5a+1vMxk22Dlut0nyUjfrmpPM/FpEPIjSbHEcpePi46uf90TE94AX5tgcEJ3P2mR5mKg+H8KfJ92rNGdQvf5Eq7v8DbaCa0O/GPS
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxkVXnw8V/PMCyDbIIsAYZlgAdQxA2UYF5xX5Bo4h5Q0SiSaDSJWxJQMC6EvInigpJEUQSJQUSJKERFwhsxAqIoCD4ssgkSFonKNj1Lv3+cW9M1PdXV1d33Tl2o3/fz6c/t6rr31Om+Vf3cc85zzh2bmJhAkiQ9/C0YdgUkSdK6YdCXJGlEGPQlSRoRBn1JkkaEQV+SpBFh0JckaUQY9CVJGhEGfUmSRoRBX5KkEWHQlyRpRBj0JUkaEQZ9SZJGhEFfkqQRYdCXJGlErDfsCmg4ImJn4IZpnp4A7gFuBs4FPpKZd66jqtUmIg4HPgvcmpk7dP38P4GnAR/MzKOHU7v+IuJzwGuBCzPzoEGfa7hOmwLvAv4Q2BW4H/gp8HngM5m5aprj1gPeAhwOBLAMuAL4VGaePod6dO4H/rrM/NwM+x5OeQ+QmWOzfa06RcT6wOuAFwOPBbYC7gNuAy4ATsnMHwyvhnMXETcCOwFvzMxPD7c26seWvgCuBC7q+roEuAt4DPDXwFURsc/wqqdhi4idgMuBo4A9KBeMdwO/C/wzcEFEbNTjuIXAmcBHgH2Aa4A7gKcCX4iIk9fJLzBkEbGUcoF0EvBc4AHgR5QL610pF0WXRMSJETHUixM9vNnSF8CfZeZ/Tv1hRGwJnAIcDJwZEXtN15p7iHkNsJhyYaPBnAbsAvwEeGlmXgsQEU8A/h34P8DfA3825bj3AC+iBLfnZ+ZV1XHPAb4MvC4iLsrMz6yT32IIqhb+ucBuwNnAmzPz1q7nNwTeAJwA/CnlfXnMEKo6H88EFgG/HHZF1J8tfU0rM++mdCMvo7TunjPcGtUjM2/OzJ9lpkF/ABHxFErLHODlnYAPkJk/BN5ePfzjqiu/c9xmwJ9XD4/oBPzquG92PffeiHg4/y96ObA75cLnFd0BHyAzH8zMTwB/W/3o7dVQykNGZl5ffaZ+Pey6qL+H8wdNNagC/5XVw8cMsy4ampXAp4FTMzN7PP+TarsRsHXXz/8A2IySU/EfPY47lZIXsAQ4sL7qts5+1fbyzFzWZ7/OWPjG+FlTQ+ze1yAWVdvfTn2iatm9itKaeQKwJbCCkpz0HeDDmXlNj+OeC7wZeAqwBfBrysXFGcCnM3O8xzGbAm+jJJLtRrlo/TlwFiXZ8H8H+WV6JfJ1JTb+D7Ad8HrgCGDv6rArKWPXn8vMiSlF1la3NsrMS4FL++zypGr7G8rfr+OAavvdacodj4hLKefiIOC/5lfTwXUlA87klMw8fJ4v13kvPyUitqwupNeSmbdFxOMpn4Xu7v+dKe/NXwOPpLzPjgB2pgwFXAQcn5k/6lVuRDyOMmzwe8D2wIaURN3LgJMz88xpjtu2Ou7FlKGdBUAC/wp8rPsCplciX0QcRElQvLh67bdShtZ2r/4mPwQ+mplnT/P6T6Ikjj4FeBRwE+VC8R+qeuwE7JKZN/Y6Xr3Z0ldfVQLSY4BVwHlTntsI+CYle/uFlA/yFcCvKB/sNwE/rP6RdR/31qqsQ4DllASx31L++Z8I/EeVANZ9zJ7AjyldoPtQLiquBfYE3gtcXu0zX2OUPIZPU4Y0rqFcxDwFOBk4buoB67BurRIR60XEocBHqx8dn5kru3bZrdpe36eYG6vtHjVXbyYX9fn6Wdd+N9XwWp1ejq0pyXpvrgLqWjLz8sy8oddFb+WzwIersq4ENgFeAXw/Il45deeI+BNKcH8jsA1wHeV8bAY8H/hSRHywx3EHUt7T7wH2olzA3gI8jpK7cV6VqzCITk7DPwC/A1xNaXA+HfhqRBzZ4/UPB74PvAx4RPW7bgV8gNKY2HDA19YUBn2tJSIWRsSWEXEI8A3K++S4zJz6D/DdlA/uXcD+mblLZu6XmUuA/SlJPRsDf9NV9ubA8dXDV2Xm9tUxuzCZ1XwQ5cPeOWZj4GuUls3ZwJLMjMx8HLAj8HXKVf+/98ogn6WtgT+itKa2yswnUlr+p1XPvz0iHjWkurVCROwaEZdRzvtpwAbAX2fmh6bs2unq7zfds9Pq3areWvaXmU/t9QU8j/IeBDgfeH8Nr/Vt4AvVw12BTwC3RcSVEfHJiHhl93uqj80oLeV/ALbLzP0o781/ogTWz0bELp2dI2J3ygXZAuBoYJvMfEJm7kUJvmdUu74zIrboOm4L4EuU83cusGNm7puZe1I+13dSPqODJhs+HngycGhmPqr6TG1P+fsCfGBKLsjewL8ACykX2dtWv+u2lNkjB1AuYDQHBn1BmW410fmitGzvomRl70EJ0u/pcdyzKD0A76u6gFerHn+qetg93S+Y7F78tynHfJPyIT+TyS5RKJnNu1G6A1+Smbd1HXM75QLhJkrvwuED/9bT+2RmfqzTas3MBylJZxOUFsr+Q6xbGwRlKGez6vEGwIE9ejMWV9sH+5TVCbCL++wznc92v297fVHN0R9E1bv0RUqQSuBlmbliDvXq5bXAXzE5RDYGPBr4E0p3+e0RcUHVwu7nrMx8Z6cnIDMfqMr4HuVz9e6ufZ9D+SxflpkfzMzlnScy81fAO6qHiyjntOMIysXEjZT39O1dx/2AyQTM184iAfOY7jUZqoS/d1UPt5zy+sdQPmdnZubfdP2uK6oLy5MGfE31YNAXrD1P//uUOcWdMbu/BD42tcu9ahltyPQfwvurbfc/9Bso/4i2AD4XEftOKfP9mfmyzDyr68d/UG2/OKX7uHPMA5QLBShDBvP1tR6vcTeTLdbNh1i3NriEMsa6GfBsyvvnhcB3q+GgjrX+Hn0MOsbe7Vr6d9NfVO0zqI9Rpqf+CjgkM++ZQ516ysyVmXk8pYV9KKXlf1vXLguo8hoi4m/WLmG1D/coe4LS2ocyPbLz8xMzczFlPL2X+7u+7/6Mdt6np1bv36nOpFwY7TGLKbxrfaYo3fwdm8Pq6Y0vqH72qbWOKE4Y8DXVg4l8gunn6a9PaZ1+grJ4yEJKYs9qmbk8IraopnXtQem+3IPyT6HTBbega/87IuJ4Sjfda4DXRMTtlK6+bwLf6DGVrpPJ/MaIeBG9dcZI6xg7v3Wan3f+AXZ/btZ13YZuSiLatyPiAOAHlKTH9zDZo3Fvte03/toZ8ri/zz7T+dBsVuSbYb+3U97byymt29lcLAwsM+8FTq++iIjdKHPcX0K5gBoDPhgRP8zM86YcPsH0CZWdGRTbRsQmmdmddDseEftT3qtLq699WPP92N0A7ORi/Hia32GckoczG2t9pjLzgYjVDfzOZ2pnyhh+v9e/JiJ+S8ln0CwZ9DWt6sP9zxGxHXAscEREHJeZtwBExCaUMcPDmMzwh8nM3B9Rxkinlnt0NSb8FsqiLttSWj+HAisi4ovAW7rm/Ha6kXevvvrZfIbnBzFdElVH94pp67pus1YlUn58mqdPzsx5rYpX/fM+gTK74aCupzoXb1v2Obwzln/HfOowHxHxh5TkNIA/7XUB3JTMvI6SXPdPEfE0ypDappQLkKlB/74+CX73dn2/OdUwQkS8ljJktt2U/W8APkNJ8Juqc77u7fHcXA36merO7ej3+r/BoD8nBn0N4mxK0F9IacHf0vXzp1NawB9ncljg2qoH4I30CPoAmfkV4CvVVLfOlK0XUFofh1GC6e9Xu99XPT4kM8+p+XebrzbXrWMzpp8H/+2ZDo6IxZQW2HgVpHrpJHl2Z6VfTWm97tyn+M5za03rXBeqFvBplJbuP2bN68ZXKxZ+ljLVbvcqP6SnzLwwIk6kLH0dPXbZKCLGek0ZZfLiE6phqCrgf6762XnAVyhDMVdn5j0RsYjeQb/znh5GUL2v6/tNmT4J1IA/RwZ9DaJ73G4MVq/S9vTqZwdn5gU9jtth6g+qDPbdgbHM/HFm/oYy3vc1Smb8X1F
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZgtVXno/2+fmUlAEEHmyRdQxIFBgl5x1hBivGqiEQ0aISYxxqhXvcGrqFHE/BKNs8YgCBhDDF6jwZEoN6AizqLwAiocBomAoMI5fcb+/bFqn65ueu7aVZuzv5/n6af27qpavbqra7+1Vr1r1cjY2BiSJGnrt6TrCkiSpHYY9CVJGhIGfUmShoRBX5KkIWHQlyRpSBj0JUkaEgZ9SZKGhEFfkqQhYdCXJGlIGPQlSRoSBn1JkoaEQV+SpCFh0JckaUgY9CVJGhLLuq6AmhMR+wE/m2b1GHAnsBr4HPDOzLytpao1JiJOBj4K3JyZe9W+/1XgccBbM/P13dRuZhFxNvBHwCWZefxc1/W5TvcDXgP8T+AAYA3wI+BjwD9l5uZp9lsGvAw4GQhgHfBD4AOZ+fEF1KP3jO8XZebZs2x7MuV/gMwcme/PakJEnA68cR67/ENmvqLa92zKsT4/M09aZD32Y/ycPzgzr5vjfscDX6neLs/MjYuph+47DPpbryuBX9XeLwN2Bh4KPBw4JSKekJk/7KJy6l5E7Ev54N8f2ARcS/k/+S3gMcBJEfG0zFw7ab+lwCeBZwCbKf9r21T7PCYinpSZL27tF+nWOuBbc9jup/2uiDQXBv2t119k5lcnfzMidgHOAU4APhkRh07XmruPeSGwLXB71xW5DzmPEvB/ADw7M68FiIhHAv8O/A/gHcBfTNrv/1AC/mrg6Zn542q/pwD/BrwoIi7LzH9q5bfo1q2Z+Zh57vO/gbcz8aJcaoX39IdMZt5B6VpcBzwYeEq3NWpGZq7OzKsz06A/BxHxaErLHOD3ewEfIDO/A7yqevvHVVd+b78dgVdUb0/tBfxqvy/W1r0hIvx8mUJm/rz6X/1513XR8PGkHEJV4L+yevvQLuuizmwCPgKcm5k5xfofVMttgN1q338msCMlp+ILU+x3LiUvYB/guOaqK6kJdu8Pr+XV8jeTV1Qtu+cBvw88EtgF2AjcAvwn8PeZec0U+z0V+HPg0ZT8gV9RLi4uAD6Smeun2Od+wF9SEskOolyI/hS4kJJseNdcfpmpEvlqSU7/DewBvBg4FTis2u1K4MPA2Zk5NqnIxuo2iDLzCuCKGTY5slr+mvL36zm2Wl46TbnrI+IKyrE4HvivxdV07mrJgLM5JzNP7mddZjJTIl+VL3FStf7hwHaU8+5LwN/We2Tm+LOOB14JHEW5WLsSeCewoF6GiBgBTqTcTjuK8QvC/6Yc63/IzG9N2ufs6vf5U0oOyOur/W4ETundhlzo+RYRjwNeQslF2Z0S124HvgG8PzMvXsjvurWypT+EIuJASgt/M/D5Seu2Ab5Iyd7+HWA9JSv7l8DBwJ8A34mIR0za7+VVWScCG4DvUS4oHge8D/hC9YFW3+cQ4PvAm4HDKR9u1wKHAG8Avldts1gjlDyGj1BuaVxDuYh5NHAWcMbkHVqs20CJiGUR8XzgH6pvnZmZm2qbHFQtfzJDMddXywc3XL3ZXDbD19W17W5ouV5zEhHbU86hs4HHU3pMfki56D4F+H5E/M95lPdaykX6iZTP+h9RjsnHmd/Ig155I8D5wKeBZwFLKRcRPwf2plysfD0ifnuaIk4CPkQ5H6+lXIh/ryp7QedbRJwBfLUqewfgKkquyW6Ui4cvR8Sp8/1dt2YG/SEREUsjYpeIOBG4iHLsz8jMyR+Ar6V84NwOHJ2Z+2fmUZm5D3A05QTfDvjrWtk7AWdWb5+XmXtW++wPPBVYS2n1Pae2z3bAZ4D9KB8i+2RmZObDKR8g/wHsC/x7dSGyGLsBf0hpReyamY+ifOCcV61/VUQ8oKO6DYSIOCAivk057ucBK4H/nZlvm7Rpr2U303DPO6rlrs3WcmaZ+ZipvoCnUf4HAS4G3tJmvebhH4EnUYLzMZm5V2YeSfmbv41yq+X8iJj1llxEHEdJFgR4NbBHZh5FaQm/h3I+ztcfUXoA1wInVPU7KjMPAB5S1XsZ8KZp9j8OeC+wX2YeDuyfmXct9HyrejFeR2m8vBjYPTOPzMyDKQmqX602fYv5JePs3t96fSUiZlp/JiULe7InUU6iN1VdwFtk5hUR8QHGr8Z7AlhFmQfgXybt88XqavxhlF6DnpdQWo3fAZ5Vb01m5q0R8RzKVfvBlLHgH5jpl5mD92fmu2s/YzQiXgE8n3IeHE35cOmiboMgKLdyelYCx0XEIZlZbyVvWy1HZyirF2C3nWGb6Xw0Ij66gP2mVPUufQJ4BJDAcxoek77vHG4rPH6qkTR1EXEE8FxK6/6pmXlzb11mjgKnRcRBlFtu/wf4g1l+5mnV8pzM/LtJZb08Ih4CPGGWMiZ7CqWH7P2ZeVF9RWZeHRFnUnoID59qZ8r/zOt651NtnpCFnm9Po3ymfCYzJ/zPZOZNEfEG4P9RLpp2A26d5++7VfLqZ+t1JRO7N79BuRJfV61/JfDuyV3uVctoFfDBacpdUy3rH+g/o3wY7AycXX2A1ct8S2Y+JzMvrH37mdXyE5O6j3v7rKWMBYfSPblYn5niZ9zBeIt1pw7rNgi+CTyAct/3yZT/n98BLq1uB/Xc6+8xg7neY6+7lpm76S+rtpmrd1OGp/4SODEz71xAnWayboZ69r7mMjSv9z/31XrAn+Tcavn0yedtXURsy3hAP3uazaY7v6eVmX9I+Wz462k26X02rJymZf3dzLxniu8v6HzLzNdV9ZlugqM1tdcLuQDdKtnS33pNN05/BeVq+b2UGdWWAn9W3yYzN0TEztWwrgdTZmp7MKW19MBqsyW17X9RXeWfRknweWFE3ErpSv0icNEUQ+l6XZSnRMQzpvkddq+WTdw7n+6DtNcqrZ8Lbdetc9UFUM+XI+JYyqQzh1FalidX6+6ulqtmKK7XBbtmhm2m87b5zMg3y3avovxvb6C0IOeVBDdHCxmnP5Xe/9yRETFlkiTjf9cdgD0p966nsi+lpwbGR+lM9r151xDIzE0RsSoiHkv53z+A0gLvdcX3LKH0GNZNlzy44PMtM8ciYnNVn8Oq+hxE6Vk8qLapDdyKQX/IVBn0H46IPYDTgVMj4ozMvBEgInagJHGdxHiGP5RutO8A36V0q00u9/XVPeGXUSZ12Z3Sdf58YGNEfAJ4WWb2Wj07VsuDq6+Z7DTL+rm418iBSerTubZdt3mrEinfM83qszLzrMWUn5lrI+JdlNENx9dW9S7edplh9969/F8spg6LUSW8vaN6+2ezda8PgN7/XK8rejY7MX3Q37n2+u5ptpl3j0dELAfeSjnH67ksmygJh9+kJPhNZ+0031/Q+VYlFr6a0vNQPw/HKLdyzgVeMEt5Q8egP7w+TQn6Sykt+Btr33885QR9D+O3Ba6tegBOYYqgD5CZnwI+VQ296Q3Z+m3K1flJlJP7d6vN76nen5iZn234d1usQa5bz45MPw7+y7PtXHUB7wesz+nna+8lee5e+95VlO7//WYovrfuXsM62xARR1OSEZcAf5eZH+miHvPU6/b+u8x89SLLqvfa3I+pky4XkoD6YUqPz6bq9SWUz4ZrqovEJzNz0J/OQs+3N1A+w6DkEn2uqs/VmXl3RByMQf9eDPrDq971NgJbZml7fPW9EzLzK/faC/aa/I0qo/ZgYCQzv5+Zv6bcQ/8MJTP+dZRhcSdGxI5Vaz8pyXMPAaY80auTdkfghmz34UCDXDcAqpbrYh428x5KxvPnKBdmU9m3WtZvjVxeLY9lCtXto94Y/68ton4LEhH7U/7vtqEcu9e0XYcF6k2Q9JDpNqim0D6EcoF+41RzS1RWU5LmVlEu6L84xTbT/pxpfvaDKNn7UMbWT3V75V6fDXM07/Ot6nXoXRy9OTOnGoK40Pps1bzPMbxOqJZjwLe
"text/plain": [
"<Figure size 555x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"for vs, vals in powers.items():\n",
" for key, val in vals.items():\n",
" plt.figure()\n",
" plt.plot(val['e'], val['p'])\n",
" plt.title(' - '.join(vs) + ', ' + key.replace('_', ' ').capitalize())\n",
" savefig(output_path / 'figures' / f\"{'-'.join(vs)}_{key}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Store data"
]
},
{
"cell_type": "code",
"execution_count": 135,
"metadata": {},
"outputs": [],
"source": [
"np.savez(output_path / 'data' / 'powers.npz', powers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create nice table"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"from scipy.interpolate import interp1d"
]
},
{
"cell_type": "code",
"execution_count": 143,
"metadata": {},
"outputs": [],
"source": [
"effect_size_power_80p = pd.DataFrame()\n",
"for vs, vals in powers.items():\n",
" for key, val in vals.items():\n",
" e = interp1d(val['p'], val['e'])(0.8)\n",
" effect_size_power_80p.loc[key.replace('_', ' ').capitalize(), ' - '.join(vs)] = e"
]
},
{
"cell_type": "code",
"execution_count": 144,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Baseline I - 11 Hz</th>\n",
" <th>Baseline I - Baseline II</th>\n",
" <th>Baseline II - 30 Hz</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Average rate</th>\n",
" <td>2.669697</td>\n",
" <td>2.775000</td>\n",
" <td>2.814286</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Gridness</th>\n",
" <td>0.144211</td>\n",
" <td>0.136500</td>\n",
" <td>0.154615</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Information specificity</th>\n",
" <td>0.105789</td>\n",
" <td>0.091765</td>\n",
" <td>0.087297</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Max rate</th>\n",
" <td>6.108696</td>\n",
" <td>6.951613</td>\n",
" <td>7.593750</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Information rate</th>\n",
" <td>0.231034</td>\n",
" <td>0.253158</td>\n",
" <td>0.285000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>In field mean rate</th>\n",
" <td>3.410345</td>\n",
" <td>3.646667</td>\n",
" <td>3.468000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Out field mean rate</th>\n",
" <td>2.285000</td>\n",
" <td>2.340000</td>\n",
" <td>2.404762</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Speed score</th>\n",
" <td>0.365714</td>\n",
" <td>0.029091</td>\n",
" <td>0.036545</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Spacing</th>\n",
" <td>0.029259</td>\n",
" <td>0.018495</td>\n",
" <td>0.018404</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Field area</th>\n",
" <td>0.260000</td>\n",
" <td>0.358824</td>\n",
" <td>0.378481</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Baseline I - 11 Hz Baseline I - Baseline II \\\n",
"Average rate 2.669697 2.775000 \n",
"Gridness 0.144211 0.136500 \n",
"Information specificity 0.105789 0.091765 \n",
"Max rate 6.108696 6.951613 \n",
"Information rate 0.231034 0.253158 \n",
"In field mean rate 3.410345 3.646667 \n",
"Out field mean rate 2.285000 2.340000 \n",
"Speed score 0.365714 0.029091 \n",
"Spacing 0.029259 0.018495 \n",
"Field area 0.260000 0.358824 \n",
"\n",
" Baseline II - 30 Hz \n",
"Average rate 2.814286 \n",
"Gridness 0.154615 \n",
"Information specificity 0.087297 \n",
"Max rate 7.593750 \n",
"Information rate 0.285000 \n",
"In field mean rate 3.468000 \n",
"Out field mean rate 2.404762 \n",
"Speed score 0.036545 \n",
"Spacing 0.018404 \n",
"Field area 0.378481 "
]
},
"execution_count": 144,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"effect_size_power_80p"
]
},
{
"cell_type": "code",
"execution_count": 147,
"metadata": {},
"outputs": [],
"source": [
"effect_size_power_80p.to_latex(output_path / \"statistics\" / \"effect_size_power_80p.tex\")\n",
"effect_size_power_80p.to_csv(output_path / \"statistics\" / \"effect_size_power_80p.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Estimate required sample size to detect effect size of 0.1 "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"effect_sizes = {\n",
" 'gridness': .1,\n",
" 'average_rate': 1, \n",
" 'information_specificity': 0.1,\n",
" 'max_rate': 5, \n",
" 'information_rate': 0.2, \n",
" 'in_field_mean_rate': 3, \n",
" 'out_field_mean_rate': 2, \n",
" 'speed_score': 0.1,\n",
" 'spacing': 0.05,\n",
" 'field_area': 0.05\n",
"}\n",
"\n",
"n_samples_ranges = {\n",
" 'gridness': (10, 300, 10),\n",
" 'average_rate': (10, 300, 10), \n",
" 'information_specificity': (10, 120, 10),\n",
" 'max_rate': (10, 120, 10), \n",
" 'information_rate': (10, 120, 10), \n",
" 'in_field_mean_rate': (10, 120, 10), \n",
" 'out_field_mean_rate': (10, 120, 10), \n",
" 'speed_score': (5, 60, 5),\n",
" 'spacing': (5, 60, 5),\n",
" 'field_area': (5, 60, 5)\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d87e33f19a164ed980120478a4cd17a6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Baseline I - 11 Hz', max=10, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bfece32d69f844048b3deb98d59150b5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Average rate', max=29, style=ProgressStyle(description_width=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "80ce68390eb2409daff87ecaead40369",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Gridness', max=29, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a223dadef9ab4c488bafd0a9870fbc35",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Information specificity', max=11, style=ProgressStyle(descrip…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e6d5efd72f14e5095aeaef18688dd0d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Max rate', max=11, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4a1ae2dd8ea5410090cac255b1b8b9a0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Information rate', max=11, style=ProgressStyle(description_wi…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5a147d8e230f440498b42ef82703c40c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='In field mean rate', max=11, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ea63a719b4ee4ac6ac1eba01f81a50a4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Out field mean rate', max=11, style=ProgressStyle(description…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c06766d5a1464f8596272fa3adccec5a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Speed score', max=11, style=ProgressStyle(description_width='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "88b60c1a337d4eaeae3dbc404e2413d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Spacing', max=11, style=ProgressStyle(description_width='init…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b4f755a70234ff891b06bb3ada5bab7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Field area', max=11, style=ProgressStyle(description_width='i…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "00112e17e415461198f68203a2100f03",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Baseline I - Baseline II', max=10, style=ProgressStyle(descri…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "425cf62261d04278a4af606a570fb558",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Average rate', max=29, style=ProgressStyle(description_width=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a1c6fd31d929426c87859b76a84e2e7e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Gridness', max=29, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d587bd258ec94fc3bf195a9cd525500e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Information specificity', max=11, style=ProgressStyle(descrip…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f86f9ba4391c4219983b99a68b087801",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Max rate', max=11, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "53e9a63b43284b808a0a27bd65e17f36",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Information rate', max=11, style=ProgressStyle(description_wi…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "848e12e4bac544db98f9166ac2d47889",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='In field mean rate', max=11, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "20b67b01c8fc42068b0b77c6886a10cc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Out field mean rate', max=11, style=ProgressStyle(description…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f8a9ee996f97475bb6ad6b11e7bc53b3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Speed score', max=11, style=ProgressStyle(description_width='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34163a83d8e44a15ae7cbcd8550f9637",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Spacing', max=11, style=ProgressStyle(description_width='init…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29bc6384d76045128c4df4c04d989a8b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Field area', max=11, style=ProgressStyle(description_width='i…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "067e11ef388d47bbb7f60b782604bdd0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Baseline II - 30 Hz', max=10, style=ProgressStyle(description…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "be4973ca16f0464d92a75b3a90a152bf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Average rate', max=29, style=ProgressStyle(description_width=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "23e7b29c2ed246b18ec7df891f424ca2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Gridness', max=29, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5284fa3c09944118ac9ffabeef44eee7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Information specificity', max=11, style=ProgressStyle(descrip…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8828346b709244ef88066ada11d8d9b5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Max rate', max=11, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc0849842ae24d62994ec3e0bd6e2908",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Information rate', max=11, style=ProgressStyle(description_wi…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ebed041e04a405d8f2dbaf65394b1d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='In field mean rate', max=11, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f0e7417db9947eba4474d26d766c744",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Out field mean rate', max=11, style=ProgressStyle(description…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "44bac1e7ac23492586fad88bf4ed2b69",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Speed score', max=11, style=ProgressStyle(description_width='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "668978430f3f4c02b180a69535b60628",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Spacing', max=11, style=ProgressStyle(description_width='init…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bfa5f9383bdb49018ac05dfd2c170ae3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Field area', max=11, style=ProgressStyle(description_width='i…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n"
]
}
],
"source": [
"powers_sample_size = {}\n",
"for vs in vss:\n",
" powers_sample_size[vs] = {}\n",
" for key, df in tqdm(results['gridcell'].items(), desc=' - '.join(vs)):\n",
" power, sample_size, effective_sample_size = estimate_sample_size_lmm(\n",
" results['gridcell'][key], *vs, effect_size=effect_sizes[key], n_samples_range=n_samples_ranges[key], key=key)\n",
" powers_sample_size[vs][key] = {'p': power, 's': sample_size, 'es': effective_sample_size}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAESCAYAAADjS5I+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAcPElEQVR4nO3df7ylY73/8dceg1GNKeKQSEf5REWY4+dgFEdRYSpHvvrhR4OU0EkKSb/ElxwUSkSY5DCcKFIn1TR+TCbyo+PTd1Ty/YYOfZkpzTBjnz+uazfLbu971p6Zvfba5vV8POYxa93XWvf9uee+Z73XdV1r3aunt7cXSZIGM2akC5AkdTeDQpLUyKCQJDUyKCRJjQwKSVIjg0KS1GjsSBegwUXEhsADwD110UrAU8AxmTlzGLb3O+Cd9e5xmfnOwR89pPV+GnhpZn5okPYvAjdn5vcj4vXAOcAEYBFwaGbOjohV6vId69NuAI7NzEURcQZwXWb+eAg1HQTsk5lv67d8VeB64KuZedUAz9sQuDczXzSUfWyo41Lg1My8NyKuBjYH/lybb87Mo+vjPggcAqwGzAYOzswFS7nvVwM7Axtk5lNDqXe0iIibgP0z87EhPm894Dxgr8zsrcs2B27MzHXr/ZWA/wAOysw/Lt/Ku5M9iu7318x8Q/3zeuAM4OLh3GBm3rG8QmJJImJbYNMaEi8AbgJOy8wtgM8Cl9eHfghYC3gdsBmwPbBvbfsMcE5ErNbG9taIiPMpodPTr2074DZg0jLvWBsiYl/gycy8ty7aDtip5Xj3hcQU4MPArsBrKWFxdH1O2/te1/UyYCfKfr53ue1M99ltKZ93AfCZzOyNiLERcTTlnBzf94DMXAScBpy77GWODvYoRp81gYcBImIMcCawLeVE7gEOycyZETEJ+BKlF9ILnJKZV9d35qdS3lGuBNwJHJmZc/s2EBGTgS9n5usi4mJgLvB6YH3gfmC/zPxzRGwCnFVrWgk4OzMvGuL+fBr4cr39z8ADmfm9ev87wG8BMvNLEXFOZj4bEWsBLwb+VNuejIiZwNRaT5N9Kf9+/wrs2a/tSOAE4GND3Ie/qe82Z7csWgNYG1gzM//S7+EnA++qz3sl5RieX3sts4GPZuafKC/oZ9TbRMRhwCow5H2nPu4/gauAz0bEV+uL4lTg7Zn51rqN19THbQBszADHuZ4nZwF/AV4IbE15AR3ofFwL+AawEfA48AilZ/bpds+j2uO9nfJG4ZPAM/XvVeq/8SWZeWJEfKM+5eaI2AN4lnKObQCsDFyRmV8YYP3bAmtn5h110ZZ1W++k9GD/JjN/GhHnR8TmmfnLJfybj3r2KLrfahFxV/3zIOU/1Cm1bRvgZcB2mbkpcAlwXG07GfhSZm4FHAS8sS4/DlgIbJWZmwN/AL64hBq2At4MbFK3966IGEt5sTmubmNn4F/rf7a2RMSLKUNJN9VFGwOPRMSFEXEH8ANa3sxk5jN1mOoB4FFgRsvqrgOmLGmbmXl+Zp4M/HWAtndn5nfbKL31mNwVEXcBh9V1LOrrEVD+zecB7+8fEhHxOmC1lt7E2sAPgUOBLSjDT30vlhsDa0fEjRFxNyVcnxjqvtdj9gHgsvqcf6AcV4BvAZMiYp16/0DKC3sPzcf5dcC767m0JYOfj2cD92XmJpRw3L6lpqGcR/fWdVwLfBR4X2ZOpITTJyLipZl5YH3sLpn5EHApcFFd/9bArrU31987KcOOAGTmrLquhwap5bu08e/+fGBQdL/WoadXAJOBKyLilZl5K+Ud8KERcTrlRO8bO78S+EpEXE55of9kXf5WYC/gzvoCtzew6RJquDEzF2TmM5T5kjUoL14bARfV9fyEMiSyxRD27VXAw5n5dL2/MrAH8LX6n/8c4Ht13gCAzDwOeAnwO8pYcp8HgBjCtpdF6zHpC4XzWx9Qh4KuAy7NzCsGWMdrgDl9dzLz9szcJzMfrkMbnwb2rD3AlSlDKfsCEyn//p9vWVe7+74X5R37jZm5ALiCOoSVmfMoL9gH1F7RAcCFLPk4P5SZD9Z1NJ2PewBfq497uG6LNtbf34y6jl7gbcBWEXESpffcQ+nZ/E1EvJASPp+t67+N0rN4wwDrfs4xaUMnz7kRZVCMMpl5C5DA1hGxJ+VdDZTJtfOp4+6Z+VXKcNEPgN2BuyNiAuWF4iMtL3Bbs3gCezCt77576zZWAp7o92K5LeVdaLuerevp8wfg/sy8ve7Df9T2f4yIHSJi47r8Gco8zZYtz12JMvk94uoL7bco734H6609Z98jYseIeHtLe099zCLKv8s1mTm3hupllPmMPu3u++GUF+E5dRhnb2C3iHhtbf86ZZjrzcCvMvO3LPk4902803Q+UnqxrXNCffUO9Tz6c93WCynDplsCv6AMFz7Tbxt96+8Btu+3/r8beuLvz8cl6ZpzbrgZFKNMfbHcmPKfZDfKJ17OA35O+Y+/Un3cLcAWmXkxZVz6xZR34t8HPhQRq9Q5jgtYPJQ1FAnMj4gD6vbWB+6l9F7a9RvKkMq4ev8GYMOI2KqucydKMP2WMoxzZp1gHAP8L+BHLev6R8r8STf4CqUXcETDY35NqbnPiyiT0mvU+x8Drqq9i6sow32rRUQP5Tj/vOW5S9z3et5MBrbMzA3rn5dR3qEfBZCZt1FeVD9FOS9gaMd50POREiAH13WsCexDObZLex69GlgdOCEzr6P0GlZt2d4iYOU693YbcExd/4uBmZTeVX/9j8mSdNM5N6wMiu73nPFwyovG1Mz8NeUd28513PpWSlf4lfWF9FjgMxFxJ3AzcHJm/o7ySaLfUYLmV5QXho8Otaj6znYv4JC6/ZuAE3MIH9vNzCcoL1S71PuPUF5czo2IeykT9VMycz5lAv5B4Jf1z0LgEy2rezPw71AmeyPi60Pdp+WhfnLqUODlwM9bjt3E1sfVuYm/1olcMvMGyjj+zIhIynBM30dtz6XMX8ymvDC9iMVDidDevh9O6ZU80G/5yZThppfW+xdQXgCvrXUN5Tg3nY9HA6+JiHuAqynH8qllOI/upswn3B8RvwDeTjmfX1XbpwM/q3NB+wPb1m3fDnwrMy8fYJ1XsXjOph27s3gI7Xmtx8uMayRFxPbA8ZnZ/xNIQ1nHBMq7xImZOT8ixgNfz8x/WV51DoeI2B+YlJkfXIZ1jIp9j/I9kDsz89Y65zQDOKkGZNeI8v2L4zPz50t43GTgiMx8V0cKG2H2KDSi+uZcImIo7+T6Owk4qvY8oExUnrTMxQ2zzJwGrBnlS4ZLa7Ts+68oQ2t3UuYUvtdtIVFNBU6qQ3wDqnNQx1I+Tr1CsEchSWpkj0KS1MigkCQ1et5dwmObbbbpXW+99Ua6DEkaVe67777HMnOtgdqed0Gx3nrrMX369JEuQ5JGlXqJoAE59CRJamRQSJIaGRSSpEYGhSSpkUEhSWpkUEiSGhkUkqRGBoUkqZFBIUlqZFBIkhoZFJKkRgaFJKmRQSFJamRQSJIaGRSSpEYGhSSpkUEhSWpkUEiSGhkUkqRGBoUkqZFBIUlqZFBIkhoZFJKkRgaFJKmRQSFJajS2UxuKiDHAucDmwALgkMyc09L+AeBQYCHwucy8vqVtZ+CyzFy/U/VKkopO9ij2BsZl5nbAccAZfQ0RsQ5wJLADsDtwSkSsWtvWB44BVu5grZKkqpNBMQm4ESAzbwMmtrRtDczMzAWZ+SQwB9gsIsYB5wMf7GCdkqQWnQyK1YEnW+4vioixg7TNAyYAXwZOz8z/15kSJUn9dTIo5gLjW7edmQsHaRsPPA3sCJwUET8G1oiIKzpRqCRpsY5NZgMzgbcBV0bEtsA9LW2zgM/XoaZVgU2AWZkZfQ+IiEcyc78O1itJorNBcQ2wW0TcAvQAB0bEMcCczPxORJwNzKD0co7PzPkdrE2SNIiOBUVmPgsc1m/x/S3tFwAXNDx/nWEqTZLUwC/cSZIaGRSSpEYGhSSpkUEhSWpkUEiSGhkUkqRGBoUkqZFBIUlqZFBIkhoZFJKkRgaFJKmRQSFJamRQSJIaGRS
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcVbn/8c8sSSZ7yCYhhGwkD2ELIYEQCCGoyCayuFxFRQQMiFxluSKogPhTuaDoBb2IIhhEuIACCiqLiBAIe0IWtickZCYJCSEzmckyM5nMTPfvj6omzTBLz1Jd09Pf9+uVV7qquqqemup++tSpU+cUJJNJREQkvxTGHYCIiGSfkr+ISB5S8hcRyUNK/iIieUjJX0QkDyn5i4jkoeK4AxAws3HAKmB5OKsIqAEudveFEeyvFPhMOHmZu3+m5Xe3a7s/AIa7+wUtLP9v4N/u/qiZHQD8EhgMNALnuvsiM+sdzj8yXO1h4FJ3bzSz64GH3P3JdsR0FnCqu5/UZH4f4G/Ab9z9z82sNw541d0HtOcYW4njDuBad3/VzO4DpgLbw8X/dveLwvedD5wD9AUWAWe7e117j93M5gCXAxOBBFALXO/uf2zh/T8EVrr7H5rMHw5scveC9hxvVzKzgcCfgVOAncDPgWMJ8tfP3P3mVtYdAzwPTHX38nDeH4EfufubUcfenank333UuvtB4b8DgOuB+VHu0N1f7qrE3xYzOwzYN0z8/YDHgOvcfRrw/4A7w7deAIwA9gcOBA4HPhcu+yHwSzPrm8H+hprZzQQ/JAVNls0iSAizO31gGTCzzwFb3P3VcNYsYE7a+U4l/tOA/wQ+DuxH8ANwUbhOe479eIK/54/dfbK770OQOK8I9/Eh7n5l08TfjVwL3OLutcC5wCSCz8chwIVmdmhzK5nZGcDTwB5NFl0JzDez2H7QugOV/LuvYcAGADMrBH4BHAYMJEhm57j7QjObTVASKgKSwDXufl9Ygr4WOCpc9grwTXffmtqBmc0FfuXu+5vZfGArcAAwBngT+Ly7bzezKcANYUxFwI3ufls7j+cHwK/C158AVrn7P8LpB4HVAO7+czP7pbsnzGwEMATYHC7bYmYLgXlhPK35HMHf77+AE5ss+ybwfeDb7TyG95lZEUHJPGUoMBIY5u7VTd5+NfDZcL3xBOfw5vDqYhFwibtvBs4gKJ1vDt97HtAb2n3s1wEXufszqRnuXmZm5wD9w23PD2OeSHAF9BGCK52fhT8QPya4+nwp7ZjPBE4luJKYRFAKPyO8mhkcxnUA0Av4F/Btd28ws6vD9XYCFcCZ7r6hpflN/s5jgE8SnDPC9//W3RuASjO7G/gS8GKT9fYg+ME7AXgtfZm7v21mVcCngL+28bfssVTy7z76mtmS8F8ZwRfpmnDZTILSyyx33xe4HbgsXHY18HN3nw6cBXw0nH8Z0ABMd/epwHrgv9uIYTpwHDAl3N9nzayY4JL7snAfRwH/FZbkM2JmQwiqcR4LZ00G3jWzW83sZeCfpBVE3L0+rCJaBWwkKL2lPAQ0W3pN5+43u/vVBNUdTZd9wd3/nkHo6edkiZktAc4Lt9GYKrkT/M23ESSvDyR+M9sf6JtW6h8JPE5Qgp1GUPWT+iGdDIw0s0fMbBnBD2ZVe449/FvvDzzazHE/7e6PpM3q5+77uft30tb/SBjPp8PzXdZkM0cB/+nu+wML2fUD+gtgUbjONGA4cHGYvC8EDnH3GQSfgZktzW/mkE4GngiTPQQFk7Vpy9cBezZzrOvd/TR3f72ZbUKGn6OeTCX/7qM2TCQAmNnhwMNmdpC7P2dm3wfONbOJwFyCZANwL/C/ZnYSQVL5bjj/kwSl5mPMDIIS5HttxPCIu9eF+19OUDKcTFA6vC3cDgTVEdMIqk4ysTewwd13htO9CEpkR7v7C2Z2MvAPMxub2r+7X2ZmVwC3AL8GvhKuuwowsuMD5wR21fmnTfclSCR3uPvdzWxjH2BlasLdXyAovaZv793wSq0XcAxBwttB8CP/Y4IkCZkde6oq4/1+W8zsnnC93sB77j43XPQMHzYbWJ6WNH8D/CRt+SJ3Xxe+XsyuBPpJ4FAzOzucTlVP/QxYCiw2s4eBh939X+HV7IfmNxPPB/5+NF9gbWxmXltWAV/uwHo9hkr+3ZS7Pws4wRfqRCBVUv0rcDPhl9zdf0Nwqf1Pgptgy8JL8CLgW2ml00PZdZO3Jeml5GS4jyKgKq1++iCC6qfft+NwEuF2UtYDb4aJEHf/a7h8gpkdYWaTw/n1BPc9Dk5bt4iOfdm7XFj1838E1SUtXVV94NjN7Egz+1Ta8oLwPY0Ef5cH3H1r+EP5R4L7AyltHru7VwJvEBQQUvP+Izxv55P2w8WuG87pUuc9paHJ8uY+I6nYPpv2GZkJXODuCYKrhTMJqnZ+YWY3tDS/mXiafnbWAKPSpkcTlP7bq9t8juKi5N9NhQlwMkFd/TEELT1+TVAHewrhF8LMngWmuft8gvrgIcBuBJf9F5hZ77CUdQu7qpHaw4EdZvalcH9jgFcJqogy9TZBdUZJOP0wMM7MpofbnEOQSFYTVKH8wsyKw7i/CDyRtq0JBPcjuoP/JSitf6OV96wgiDllAMGN26Hh9LeBP7t7I0H12mfNrG94M/IU0urcyfzYLwZuDK8egfdbzHySthPe08B+ZjY1nD4zg/1B8Hm7yMwKwpZUDxJ8/qYSfF7ecPdrCKqHprY0v5ntNv37/RU4K/x8DAE+D/wlwxjTdafPUSyU/LuPD9QvEySCee6+gqCkf1RYD/wcwSXr+DA5Xgr80MxeAf4NXO3upQQtaEoJfjxeJyihXdLeoMIS6MnAOeH+HwOu8HY0QXX3KoKkcnQ4/S5BYrvJzF4l+OKf5u47CG5SlxFUCSwlKHlenra544A/QXBD1Mx+195j6gphi6FzCeqbX0o7dzPS3xfW9deGN81x94eBG4GFZuYEVWqpZqM3EVTdLSJITAPYVY0HGR57WK//BeA7ZrbMzJYSVNEVE/wAtMjdNwGnA3ea2WJgfCZ/D4Ibsv0JmisvC/+/zt2XElRNvhze3zmL4GZ0s/Ob2e5fgKPDqywIqgBXEXw2XgJudfenIGiuakGT1Uy8/7fMVwXq0lmyISyFfs/dm7a8ac82BhPcZJzh7jvC0uzv3P0/uirOKJjZ6cBsdz+/E9vIyWPvCmb2W+Bxd7+3i7Y3kaAp7Cx3z9sEqJK/ZEXqHoaZHdeJzVwFXBheIQAcFM7r1tz9LmCYBQ+2dVROHnsXuRSYZxk845ChHxE0lc7bxA8q+YuI5CWV/EVE8pCSv4hIHsqJh7xmzpyZHD16dNxhiIjklNdee63c3Uc0tywnkv/o0aO5//774w5DRCSnhF3FNEvVPiIieUjJX0QkDyn5i4jkISV/EZE8pOQvIpKHlPxFRPJQZMnfzGaa2ZPNzD/JzF4ys+fM7GtR7V9ERFoWSTt/M7uUYJScpkPa9SLovveQcNlCM3vQ3TdGEYdIVOoaGnljwzaWrq2iYntd3OFID9WnVxFfnLkXQ/r17vJtR/WQ1yqC4d3uaDJ/CrAyHG0IM3sGmEOe96st3VsikeTt8u0sWbuFpWurWLquijc2bKW+cVeniAUFrWxApIP6FBdy+MRhTNsrR5K/u99nZuOaWTQI2JI2vQ0YHEUMIp2xo76Rm59axYurN7N83Ra21QWjGQ7oU8wBowdz9uwJHDRmMFPHDGH3QSUUKPtLjsl29w5bgYFp0wOBqizHINKqxkSSb939Co++tpED9xzMKdNGc+CegzlozBAmjBhAUaESveS+bCf/N4BJ4fil2wmqfH6W5RhEWpRMJvn+X17l0dc2csUn9+Xs2ZmOYiiSW7KS/MNh7Aa4+2/N7GKCwZ4Lgdvc/Z1sxCCSif95/C3+78U1fH3uRCV+6dEiS/7hIOKHha/vSpv/EPBQVPsV6ag7ni/jhn+9xWen78mlx1rc4YhESg95iQD/WL6BK//6Kh/bZyTXnHaAbuBKj6fkL3nv2VXlXHj3Eg7eazd+dfrBFBfpayE
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd3gU5fr/8TeB0Jt0BOlw0wQUlCIqqCiIinqO3S9iOfaGx5+9YTv2eo5dBD2oYEGxYS8IKEWRfiMiCEoTDk0gkGR/f8wE1xhCgtlMsvt5XRcXuzuzs/dkZz/7zDOzz5SJxWKIiEhqSYu6ABERKX4KfxGRFKTwFxFJQQp/EZEUpPAXEUlBCn8RkRRULuoComRmzYAfgFnhQ2WBzcAV7j4xAa+3GPh7ePcad//7zucu1HJvAeq4+8U7mX4X8Km7v29mewOPAjWALOA8d59uZuXDxw8Mn/YecJW7Z5nZ/cBb7v5ZIWo6CzjO3Y/O9XgF4G3gSXd/NY/nNQNmu3vVwqxjPnW8ANzt7rPN7DWgM7ApnPypuw8N57sQOAeoBEwHznb3jMKsu5mNCGu/bxfzXQ+cB3zs7mcWZn3+CjNrDtzn7n8zsz2BV929V3G9/l9lZucDNd39LjM7HHgaWAUMB2q4+135PPdd4Ep3n2tmHwCnuvuvhXjtssCbBNvFSjO7DhhMkKH/BYa5e57nzZtZTeAL4Cx3nxY+VujPVFFL6fAPbXH3Ljl3zOxEYATQOlEvGG4ARRL8u2JmPYD27n6NmVUGPiDYgN81s0HAKKAtcDFQF+hIsEc4ATgReAm4FfjSzPZ39y27eL1awJ3A/wGf5prWE3gsfL0ni24td1rLicB6d58dPtQT6Obuv+Sa73jgEuAAYB3wCjAUuItCrHshnE0QPl8W0fIKqilgAOHfoNQEP4C7PxF392TgaXe/vYDPPTLubr/dePl/Ap+FwX8kcALQlaAB9T4wFxiT+0nhvA8BzXJNSsR2VSgK/z+rDSwHMLM04EGgB1ANKAOc4+4Tzaw38ADB3kIM+Je7vxa2oO8GDg6nfQtc6u4bcl7AzPoA/3b3jmFrcQOwN7AXMB842d03mVk74OGwprLAI+4+vJDrcwvw7/D24cAP7v5ueH8c8COAuz9gZo+6e7aZ1QVqAmvDaevNbCJwblhPfk4k+PtdCQzMNe1S4Abg/xVyHXYIW2DT4x6qBdQDarv7b7lmH0bwIc1p9VYDngj3LqYD/3T3tQQtuPvD2zktzPJQ6HWPr/MzYDLBF0oTgi/TMwi+TBsDz5rZTcBE4HGCcCgDjHT3e8MaJwDzwmlnEHxRf0LwJZZO8Dc+j+DLdBpwSvj+XQccC1QEqoTzjQOeARqZ2fvh82a7e1UzSyfYlg8lCLOvgaHuvjHcWx0RTmsCjHb3q/JY3wuA84FtwFaCPcq54fPHEuxR1gz/zo+HzzmaYHsoT7DHfaW7TzazcsA9wFFAJjAJuBC4DqgDLAnXb4uZ1QB+I9wrNLM2BA2LekA2cLu7j47b674oLPlTM7uYoNXeNPy7VQYWAx3dfVXculUGLif4jAIcB7yYs72Z2XPA6eQR/gTbfM77vsPubldFSX3+UMnMZoT/lhC8Ef8Kp3UH9gR6unt7YCRwTThtGPCAu3cFzgIOCR+/hmCD7erunYFfCFqQ+ekK9Afaha93QvgBeJWge6grwZfJlWFLvkDC3c0DCVr7AG2AFWb2rJlNAz4krgHg7tvDLqIfgJUE4ZPjLeD4Xb2muz/h7sOAP7Vm3P0Ud3+nAKXHvyczzGwGQbDg7lnu3iXcWzsE2AgMyR38ZtYRqBTX6q8HfEQQevsQdP3kfJG2AeqZ2Xgzm0nwhbmusOueh5ZAH4LQOAQ42N1PItgmTnP30QSB/qm7703wRXG6mZ0cPr8xcJu7tyH4Qm0OjHP3DsDHBNvqKUAHgve5h5k1BQ4LX6sTcD1wq7tnEXRr/eDuR+Sq8waC7a5z+C8NuDduelV3P5BgT+GS8It0h/AL+SGgv7vvBzwF9I6bpTKwX/i3uNXM9jaz1gR7iEe6+z4EIfi6mVUhCPquYS0dCb60T8pZmLvfS/Bl9qC7525IvAy8Ev6NjgTuNLPqcc/N6Wbr6+6fA2sIPnsQ7E18HB/8oUOABe6+Jry/F7A0bvoygvfqT9y9v7tPzmsau79dFQm1/P/c7dMLeM/MuoStkBuA88ws54O8MZx1DPCfsPXyEUGrBILWSk2gn5lB0KrJvTHlNt7dM8LXn0XQmm1DEB7Dw+VA0B+9D/BVAdetFbDc3beF99MJPhB93f3rsNvnXTNrmvP6YffQjQT9qY8TtFog+EIwiscf3hP4vc8/7n4lgg/PC+7+ch7LaAsszLnj7l8TtNjil7ci3FNLJ+gKGETQah0J3EHQ2oPdX/e33D0b2GhmCwne1/h1qkIQ+IeHNa4P9wQHELzHmQR7Dzm2h+ucU9OknD1KM/sFqOXuk8zsDOA0M2tFsNf6h+MneRgAXO/u28NlPQq8ETf9zbC+n81sVbgeP+ZMDI8LvQJMMrN3CBobL8Y9/z9hf/gyMxsfru8WoCHwcdz2nU2wzR5G8L7mNCBOCuu6Jb+VCLscOxPs4eDuSwk+Q8S9Rm7/Af4BvEvQMMhrr/QP2xJ5N5qz8qttJ4rzM/Unavnn4u6TAAf2N7OBQE5L9U3gCYJdc9z9SYIW3YfAEcDMcBe0LHBZXOt0f3bdvx/fSo6Fr1EWWJeznHBZPYDnCrE62eFycvwCzA+DEHd/M5zewswOCHeZCUNgBLBv3HPLsnsbeJELW5ovEXRb7Gyv6g/rbmYHmtkxcdPLhPNkEfxdxrr7hvCL8r8EXSs5dnfd83pf46Xt5LH08HaGu2fGTduW66Di9twvaGb7EnSTVCcI4bvzeI3ccudAfA2w6/XA3U8HjiYIyauB1+Mmx69DGsHfsixBKzv39j07nH/HeppZfTNruIt1iH+d+Oda2FDYmVFAbzPrS7CH80Ue8+T+HP1E8MWVoxFB67+wIv1MKfxzCQOwDUFffT+C1tvjwFSCfsay4XyTgH3cfQTBLmtNYA+Cgz8Xm1n58JjB0/zejVQYDmw1s9PD19uL4IPRtRDLWETQnVExvP8e0MzMuobLPIjgg/Ijwa7tg2ZWLqz7NIL+5RwtCI5HlAT/IQini/KZZwFBzTmqAo+GrUMIWnivht0hrxJ0tVUyszIE7/PUuOcmZN3dfSNBC/8igLDxMJigQbG7DgKmufsDwOfEbbME4Ziex3PeB843s/Twvb+oMDWYWR0zWwqscfeHCLqROsfNMjicrwlBq/89gm3rcDNrG047EphJcJziI+BUM6sQ1vM4QfdWvsK9oOmEe6vhZ2YiwZlt8bII/w7uvpngy344QeMuL7m3pTcJ9qyqWHD22hD+uKdUUJF+phT+ufqXCYLgXHdfQLAxHBz2A08m2E1rHm6QVxH0X35LcFbLMHdfDNxGcNDoW4IzAMoQnClQKGELdBBwTvj6HwA3eiFOQXX3dQT99n3D+ysIwuAxM5tNcDD7eHffStBCXAJ8F/7LBK6NW1x/grNgMLPzzeyZwq5TUbDgjKHzCPpYp8a9d93i5wv7+rdYcNAcd38PeASYaGZO0B2Qc9roYwSBM53gw1iV37vxILHrfhpwaNjdNwV4jWCva3e9BNQxs7kE67MJqGVm1YA5QJaZTeGPrffbgRXADIIDzOnAZQV9QQ9OmbydoAtnOsExrnPiZmkePj6e4OQHd/c5BI2ml83sO4LPzTHhsZsnw9qnE5yGvZzgvSuIU4ETw2W+RXCCxopc87xOcKZNx/D+cwTHhJ7fyTI/AtqGx9Bw97fCZUwhaJBNz3luIbePHdtVFMpoSOfkFh7DuN7dc595U5hl1CBoQXVz961hkDwTHrwssczsVKC3u1/4F5ZRKte9pLDwLBsPz28vacI9vasJzvi5IJ/5rgMy3f2eInrdP2xXRbHMwlLLP8nlHMMws/67nHnnbgYuj9tIu4SPlWju/iJQ24Iftu2uUrnuUmCLCM64GbaL+e4DDjGzBkX0urm3q2K
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wV9fX/8df2ZWHpINKW6tFYAFFBREUN1hg1XzVGTWLXfC2xfH9+TTWmfGOKGo0xJpZYIok9ltiwJYDYEBRQDiJVEKQtbdl+f3/MLNysbIOdnb33vp+Pxz72TrkzZ/bePfOZMzOfyUokEoiISGbJjjsAERFpe0r+IiIZSMlfRCQDKfmLiGQgJX8RkQyk5C8ikoFy4w5AdszMBgGfALPDUTlAGXC1u0+LYH2LgVPDwevc/dSG527Rcn8C9HT3yxqYfiPwmru/aGb7Ar8HugA1wMXuPsPM8sPxh4Zvex641t1rzOwm4Bl3f70FMZ0HnOLuJ9YbXwA8C/zJ3R/bwfsGAXPcvVNLtrGROB4EfuXuc8zscWAEsDmc/Jq7XxXO99/ABUAHYAZwvrtXtGTbw8+3F7Cbu29OGv9t4D7gtB1tc1TMrAvwpLsfuRPvHQl8193PDb8z04EFSbN8PRx+CjjP3T9vjZjTjZJ/+7bV3UfWDZjZ6QT/qMOjWqG7v8v2nUCkzGws8CV3v87MioCXCBLbc2Z2EvAQsCdwGUHi2ofgaHUKcDrwN+CnwFQzO8jdtzaxvu7A/wHfBF6rN+1g4I5wfX9qva1sMJbTgQ3uPiccdTBwgLuvqDff14DLgUOAUuBR4CrgRlqw7aE1wNeAB5LGfRtYtSvbspO6AQe19E1mlg3cA3w1HDUOmOTuF+1g3l8TfKZt8n1ONUr+qaUH8Bls+ye4BRgLFANZwAXuPs3MxgM3ExwtJIBfuvvjYQv6V8Dh4bSZwBXuvrFuBWY2Abjd3fcxs/uAjcC+wABgHnCGu282s72AW8OYcoDb3P3eFm7PT4Dbw9dHA5+4+3Ph8NPAIgB3v9nMfu/utWbWC+gKrAunbTCzacBFYTyNOZ3g7/c/wAn1pl0B/BD4fy3chm3MLIegZV6nO9Ab6OHuW+rNfgNwWvi+wQSf4Z3h0cUM4Bp3Xwd8C7gpfI2ZXQLkQ4u3HeCvwNmEyd/MSoBOBJ9r3TacB1wcrqM7cKO7/9HMrgeOBcYT7IjfA85y9/o70QqCFvcI4Cxgvx0tD/gL0MHMZgGjgT1o3vfpdGCRuy8Ph8cBQ8zs7XD4Rnd/Ivz7/NvM7jSzEe7+fjP+PhlFNf/2rYOZzQp/lhD8c/wynDYG6Asc7O5fAu4Hrgun3QDc7O6jgfOAukPr64BqYLS7jwBWELQgGzOa4J9+r3B9p5lZLvAYQXloNMHO5H/ClnyzmFlXgjLOS+GoPYCVZnaPmb0LTCapceLuVWGJ6BOCluqUpMU9Q9CibZS73+nuNwBfaCW7+zfc/Z/NCD35M5kVJq9LwmXUuPvI8GjtSGATcE79xG9m+wAdklr9vYGXCZLkKILST13i2wPobWYvmNkHBDvM0pZue+ifwEgz2z0c/iZJRwFm1gm4EDje3UcRlE9+HU7+OVBJsHP8K0ED4T8SfyifoBRlBDuVhpZ3LtuPbLNo/vfpVILSXJ0tBC3/gwiOYv5oZqPrbXNz/z4ZRS3/9q1+2Wcc8LyZjXT36Wb2Q+BiMxsKTCBINgCPAH8wsxMJksr3w/FfIWg1TzQzCP5Rm6qHvuDuFeH6ZxO03vYAhgL3hsuBoB49Cnizmds2DPjM3SvD4TzgeOAId38rLPs8Z2YldesPy0M/Au4C/kjwzw7BDsFoG//xmcD2mn/ScAeCpPygu/99B8vYk6Qatbu/BZxSb3krwyO1PGAicBJQTrCT/wVwZTh7S7a9kqBsdCZwE3AGcBhhWSQ8ovsKcIKZDQdGEhwZEJ5fORv4AHiX7Y2QHZnS1PLqacn3aU/gd3UD7v7fSa8/MrNHCEpCdUdgnxD8b0g9avmnEHd/A3DgIDM7gaBVA8Fh9p0ELSjc/U8EpZrJwDHAB+EJthyCE2V1rdODaLoemtxKToTryAFK65YTLmsswaF8c9WGy6mzApgXJkLc/alw+hAzO8TM9gjHVxGc99g/6b05BCeIYxeWfv5GcGK4oaOq/9h2MzvUzL6aND0rnKeG4O/ypLtvDHeUfyU4P1Cnpdv+AHB22JCYV1dOCuPoD8wCSoCpBGWwZAMJvg/DCBoRDdnczOUlb0Nzv0/b/nZmlmNmPzCz4qTpWUBVvWW3i+9Ge6Pkn0LCBLgHQa1+IsHh9R+Bd4CT2f5P8QYwyt3vI6gHdyU4wfYicJmZ5YfnDO6i8RZcQxwoD1uCmNkAYA5Biai5FhKUMwrD4eeBQXWH7GZ2GMHOZhFBCeUWM8sN4z4LeDVpWUNIqlvH7A8ErfVLG5lnPkHMdToBvw9PSENQWnnM3WsIyiGnmVkHM8si+JzfSXpvi7Y93Ll2IDh6uK/e5AOA1cDP3f1FgiPFuiTblWDH822Cnds9zVhdg8sjKD/mhNvUku/Ttr9d+Pf5KsF3vO4cxn8BjyfN356+G+2Kkn/79h/1ZYJEcJG7zydo6R8e1oGnExzeDg6T47XAT81sJsFVLTe4+2LgZ8Bigp3HhwStpGtaGlTYAj0JuCBc/0vAj1pyCaq7lxKUB44Ih1cSJLY7zGwOwcnsr7l7OcFJ6iXA++FPNfC9pMUdS1DOwMwuMbO7W7pNrSG8YuhioD/wTtJnd0DyfGGtf2t40hx3fx64DZhmZk5QAqm7bPQOgtLdDIIk1ontZTzYuW1/kKB88kK98S8BnwIefncGEiTvYQQNhX+6+2SC8w5DLbgEtTGNLe8zgpPGHxGc7G7u9+mxcJvrnAUcF5YknweudPePkqYfE75H6slSl84Sl7D08AN3r3/lTUuW0QWYRnCZZHlYArjb3b/eWnFGwczOBMYn16x3Yhkpue27IumKqhOSrvhpaN4JwKXuflpbxJZq1PKX2NSdwzCzY5ucuWHXE7T2ysPhkeG4ds3dJwE9LLhJaWel5LbvirDUcyHB/RoNCncS1xJcwis7oJa/iEgGUstfRCQDKfmLiGSglLjJa8yYMYl+/frFHYaISEqZO3fuGnfvtaNpKZH8+/XrxxNPPBF3GCIiKSXsFmaHVPYREclASv4iIhlIyV9EJAMp+YuIZCAlfxGRDKTkLyKSgSJL/mY2xsxe38H4E83sHTObbmYXRrV+ERFpWCTJ38yuBe4GCuuNzyPoqvdogke1XWRmu0URg4hIqtpUXsWUj1dz/xuLKS2rbPoNOyGqm7w+IXhu5oP1xu8FLHD39QBmNpXgMXKPRhSHiEi7lkgkWLK2jBlL1jNj6XreW7IeX7WJRAJys7PYr38XRg3Mb/X1RpL83f1xMxu0g0mdgQ1Jw5uALlHEICLSHm2trOGDT0vDRF/Ke0vXs25L0LovLshl5MCuHLtPH/Yf2I2RA7vSuTAvkjjaunuHjQRP7alTDJS2cQwiIm0ikUiwYkM57y1Zz4wl63lv6Xo+XLGR6tqgK/0hPTtyhPVmdEk3Rpd0Y1jvTuRkZ7VJbG2d/D8ChofPKt1MUPL5bRvHICISicrqWuau2MCMJeuZubSUGUvWs3Jj8KydwrxsRvTvykWHDWF0STdGDexG946tX85prjZJ/uEj6zq5+5/N7GqCB4lnA/c29Sg2EZH26vNN5by3pJSZS4OW/QfLN1BZXQtAv64dOGhwd/Yf2JXRJd3Zc/di8nLaz9X1kSX/8IHhY8PXk5LGPwM8E9V6RUSiNHPpeh6YvoQZS9azdF0ZAPk52ezTrzPfGlvC6JJu7F/Sjd06FzaxpHilRJfOIiJx27C1il+/MI9Jby+lS4c8xg7uwTfHlrB/SVf27tuFwrycuENsESV/EZFGJBIJnn5/BT979iPWbangnHGDuOZoo1NBaqfP1I5eRCRCi9Zs4cdPzWHKx2vYr38X7jv3QPbplx5Xpyv5i4jUU1Fdw52vL+QPry+gICebn560N2eNKWmzyzDbgpK
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xU9fX/8dc2dllYels6ghwxFBWUZiGxIKCJ+jX52WKCMWqq0URjSzQ9Jpp8Tb4xponGaIyJDQu2aNRQbIgU5SjCUlz6Agss2+f3x70r47pllmV2dmbez8eDBzP33pl7Pjt3zv3cc+98bkYkEkFERNJLZqIDEBGRtqfkLyKShpT8RUTSkJK/iEgaUvIXEUlDSv4iImkoO9EBJDMzGwq8DywLJ2UBZcCV7j4/DusrAs4On17j7mc3vnSL3vcmoJe7f72R+T8HXnD3p81sDPBboCtQA1zq7m+YWYdw+nHhy+YBV7t7jZndCjzm7v9pQUwXAWe6++n1pucCjwN/cPd/NfC6ocByd+/ckjY2Ecc9wM3uvtzMHgTGAXvC2S+4+xXhcl8FLgY6Am8AX3L3ipa03czuCmO/pZnlrgcuBf7t7rNb0p7WMLNhwC3u/j9m1h/4l7tPaav1R8XxDHCeu29r4esGAL8HPkPwOf0ZOJKgE/xdd3+kgdf0Bv4AjCDIl0+Ey9aa2d+AH7v7yta0J1HU82+9fe5+RPhvDHArcFc8V+jurx+sxN8cM5sEHB4m/nzgGeAX7n4k8CPg3nDRrwO9gdHAWGAK8Llw3g+B35pZxxjW18PM7iDYkWTUmzcZWAQc2+qGxcDMPgfscvfl4aTJwPFRn3dd4j8L+AZwEvAJgsRyRfiamNveAl8iSH5tlvhDQwADcPfiRCT+0MkH+Lo/AT909whwE7DH3UeF73e7mQ1s4DW/Bt5297HAUcBE4IvhvO8Dd5lZRgOva/fU8z/4egIbAcwsk2DjmQQUECSzi919vpkdC/yK4GghAvzM3R8Me9A3AyeE894EvunupXUrMLNpwP+5++iwt1gKjAEGASuBc9x9j5mNAm4LY8oCfuPud7awPTcB/xc+PgV4392fDJ/PBdYAuPuvzOy3YY+oN9ANKAnn7TKz+cAlYTxN+RzB3+87wKx6874J3ABc1cI2fMjMsgh65nV6AH2Anu6+t97iPwA+G75uGMFneEd4dPEG8G13LwEuBG4NH2NmlwEdoMVtj47zP8BCYCowGHgZ+ALwd2Ag8Bcz+z4wn6A3O5Rg+7rb3X8Zxvgy8E447wsEO+rnCXZiOQR/40uBw4DXgXPDz+864AwgD+gULjeXoKc8wMyeDl+33N07m1kOwbZ8IsHR4CvAFe6+OzxavSucNxj4h7tf3UB7i8LXjQWuA6rC/zsQfD53u/v3zGxO+JIXzGwmUEuwfQ4O23S/u/+0gfefBPRx99fDSWcC5wG4+7rwaOJzYTuiPRz+jXH3cjNbTrATxN1Xm9lO4NPAo/XX2d6p5996Hc1sSfhvLcEX/GfhvIlAf2Cyux8O3A1cE877AfArdx8PXAR8Kpx+DVANjHf3cUAx8PNmYhgPnAqMCtf3WTPLBv5FUB4aT7Az+U74JYiJmXUjKOM8E04aCWwys7+Y2evAs0R1INy9KiwRvQ9sJkg+dR4Dzmpune5+h7v/ANjXwLxz3f2JGEKP/kyWmNkS4LLwPWrqeu4Ef/PdwBfrJ34zGw10jOr19wGeI0h6RxKUfup2pCOBPmb2lJktJdhh7mxp2xswHJhGsGP/FHCCu/8/gm3ifHf/B0FCfyE86pwKXGBm54SvHwj8yN1HEuxQhwFz3f0TwL8JttVzCY5WjgMmmdkQgiOYE8Le7vUEveUagrLW++4+vV6cNxBsd+PCf5nAL6Pmd3b34wiOBr8R7kgbsjzsiT8CfBv4grtPIOg8XWtmvaKOdj7p7uuBe4A7w238GOCk8IitvrMJyoV1BgHro55vCP9eH+HuD7r7JgAzO5Jgh/Fw1CIH+tkmnJJ/60WXfYYQfFnvN7Nh7r6Q4ItxqZndQrAB1tWiHwB+Z2b3EiTv68LppxHUJN8Mk9YZwOHNxPCUu1e4exXB+YceBAlpOHBn+D4vEpQjjmxB20YAG929MnyeA8wE/hh+KX8LPBnW4QFw92uA7kARQY+0zvuEJYM2EP2Z1CX6O6IXCMswjwH3uPv9DbzHYcCquifu/oq7n+nuG8NEeBMwKzxSyyEoHXwOmEDw9/9J1HsdaNsfc/dad98dxtKjXhs6EST834Ux7iLoZc8IF6kmOHqoUxW2uS6mBe5e6u7lBDuUHu6+luAo4fxwR34Z+7fZxswA7nD3KnevJdguZkTNfzSM7wNgS/12RHk5XC4CnA6MN7MbCXrjGQRHIfXbfwLwo3AbX0RwBHBEA+/9kc+ThnNfTWMNNLPpBJ2gb7j7kqhZbbldH1RK/geZuy8AHDjGzGYRnCCC4AtwB2Ed293/QNCjexaYDiw1s64E5ZnLo5LWMew/yduY6F5yJFxHFrCzXgKcBMxp6A0aURu+T51iYKW7vxK24dFw/iFmNtXMRobTqwiS0FFRr82iiS9XWwpLP38n6Gk2dlT1kbab2XFm9umo+RnhMjUEf5eHw0RaCfyNoLRS50Db3tDnGi2zkWk54eMKd6+OmlcZJtY6VfVXaGZHAQuALgTJ7uYG1lFf/TwSHQM03446e8IYOhGUO48CFhOU+aoaeF1WOG1KvW38Y2UfPr4trwMKo54PIOj9f4yZXUlwhHGuu9/TQAztYrtuKSX/gyxMgCMJNt6TCXpvvwdeI+jFZ4XLLQCOdPe7COrB3Qh6zE8DXzezDuE5gz+xv4zUEg6Um9kF4foGAcsJjjJitZqgnJEXPp8HDDWz8eF7Hk/wZV5DUJb4tZllh3GfT1BfrnMIwfmI9uB3BMnpa00s8y5BzHU6E5y4reu1XkVwtUsNQXnts2bWMTz5dwbB510nLm0PjwgWEbYj7DxcSNChOFDHA6+7+68IjhY/3GYJjiRyGnjN08BlZpYTfvZfa2UMhxLsfG5w98cIeve5UXHUADnhebBFwJXwYZlyPsGRc331P89HCb53hCd6T+WjZSHCeVeG7Znk7s818L7tabtuESX/1vtIfZkgEVzi7u8S9PRPCOvACwkOEYeFX5CrgR+a2ZvAC8AP3L2I4AqaIoKdx9sEPZtvtzSosAf6GeDicP3PAN/zFlyC6u47CQ7FPxk+30SQDG4PT3z9GjgrLBvcDKwF3gr/VQPXRr3dqcA/ITghamZ/bmmbDobwiqFLCeq7r0V9dhOilwtr/fvCk+a4+zzgN8B8M3OCklrdZaO3E5wPeIMgEXRmfxkP4tv284ETzWwZ8CrwIK272uzvQC8ze5ugPXuAHmZWAKwAaszsVT7aC/8xsAlYQnCCOQe4vBUxLCVIxCvNbDHBCdW3CcqQAA8B/w3Py5xHcK5iGcEJ47+7+70NvOe/CD6HOjcCnc1sBcFnd5W7vw9gZn8OP6cOBN/HPOChqG3l+qj3+fCzTTYZGtJZmmJmU4Dr3b3+lTcteY+uBD2yCeEVEwXAn8OTl+2WmZ0HHOvuX23FeyRl21NReEXP9e7+WrMLx/Z+wwlOuE+uV05LCur5S5PqzmGY2anNLty4G4FvhUcIEJyQu7HVwcWZu98H9LTgh20HKinbnqIuAW60g3dd/o8JLt1OusQP6vmLiKQl9fxFRNKQkr+ISBpKiuEdJk6cGBkwYECiwxARSSorVqzY5u69G5qXFMl/wIABPPTQQ4kOQ0QkqYRDzjRIZR8RkTSk5C8ikoaU/EVE0pCSv4hIGlLyFxFJQ0r+IiJpKG7J38wmhreiqz/9dDN7zcwWmtmX47V+ERFpXFyu8zezq4HPA/VvjZdDMAzw0eG8+WY21903xyMOEZGDqaqmlgXvb2fx2h20xbhouTlZnD9xMN3yOxz0947Xj7zeJ7ivZf273owCVrn7DgAz+y/BzSOScjxsEUl91TW1LFpdwhPLinlq+SZ2lAU3QMs4WGODNiE3O5Mpw3ty5OAkSf7u/qCZDW1
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wV5dn/8c/2pfcmTRG4QBGkRMGu2MVYfmoM5rFrTLMmtsQajTFqfDRqNCZG46NpKolgwx5FbKAs9UJQUVl6WXaBXbac3x8zi8fNlrOws2f3nO/79doXZ/o1nDnX3HPPPfdkxGIxREQkvWQmOwAREWl+Sv4iImlIyV9EJA0p+YuIpCElfxGRNKTkLyKShrKTHUBrZma7AkuBueGoLGALcLm7z4hge58Dp4SDV7v7KXXP3aj13gh0d/cf1zH918Dr7v6Sme0F/A7oBFQC33f3WWaWG44/MFzsBeBKd680s7uAqe7+RiNiOhc4yd2PrzE+D5gGPOTuT9Wy3K7APHdv35h9rCeOx4Hb3X2emT0NjAJKwsmvu/tl4Xw/BM4H2gCzgPPcvawx+25mj4ax39mI+PYGngaKgEeBwe5+cQPLxIAe7r62xvifAiPc/exEt98SmVknYIq7H7YDy+4NXOLu55jZSOD3QDsgBlzr7i+YWXvgn8DJ7r61KWNvTkr+O2+ru+9dPWBmpxH8CIdEtUF3/5CvTwKRMrPxwB7ufrWZtQWmEyS2583sBOAJYBjwY6AHMILgivIt4DTgr8DNwNtmtk9DPxYz6wr8Cvgf4PUa0yYAD4Tbe6jp9rLOWE4Ditx9XjhqAjDO3QtrzHcy8BNgf2AjQWK4DPg1jdj3HfRtgpPQ+RGsu7XqAuzT2IXMLBP4E8H/KcD/Ade7+7/MbAQw08y6uXuJmf0V+CXw06YKurkp+Te9bsAK2H4w3Q2MBzoAGcD57j7DzA4AfktwtRADbnP3p8MS9O3AweG0j4CL3X1T9QbM7BDgPncfEZYWNwF7Af2BRcDp4QE6HLgnjCkLuNfdH2nk/twI3Bd+PhJY6u7Ph8PPAp8BuPtvzex37l5lZj2AzsD6cFqRmc0ALgzjqc9pBP9/PwWOqzHtYuAXwM8auQ/bmVkWQcm8WlegJ9DN3TfXmP0m4NRwud0IvsMHw6uLWcAV7r4eOBO4K/yMmV0E5EKj9z0+zjeAmQQnlAEEJ9Oz3L0qbp4zgB8CWWbWBngZOMXdJ4Wl33sIjosc4FXgZ+5eEbd8DnAvcASwGlhFcAVRM5azgf9HcFWzK/AFcD/BCX8o8Ft3vyuc97wwpkxgHfBjd19kZkPDZdoDuwAfA99x91IzKyU4UR4RTrvH3f+3ljjKgH8TXH2dAYwEvk/wf90V+LW7/x74M9DGzD4GxoYxJvI7OA34zN2Xh8NjCK5uAXYnOLFXD/8DuN3M7nD3VbWsq8VTnf/Oa2NmH4d/ywgOstvCafsSHMwT3H0P4DHg6nDaTQQ/mrHAuUD1JerVQAUw1t1HAYUEP4z6jAWOBoaH2zvVzLKBpwiqh8YSnEx+GpbkE2JmnQmqcaaHo4YCK83sT2b2IUGy2V6AcPfysIpoKUEieStudVOBkxvaprs/6O43Af9VSnb377r7cwmEHv+dfBwmgYvCdVS6+97h1dphQDFwds3EH5b02sSV+nsCrxAkm9EEVT/VCWQo0NPMXjSzAoIT5sbG7nstdgcOIUjghxF8h9u5+xPAg8Df3f2MGsveDcwKv/vRQHfg8hrz/DCMfQ+CxDugnlgOBM4J5+8FnA5MBI4FbjGzTDM7GDgLONDdRwO/AZ4Jl78AeMzdJwCDgd34+uSeB6x19/0Jrmh/bWb5tcSQS1CFZgSFnAuAY8NtfSfcHmGc1VfkGST+OziFoEoRgOoTpZktDffjdnevDKeVAm+H+98qqeS/82pW++wHvGBme7v7TDP7BfB9M6v+IReHs/4DuN/MjidIKteG4ycRlJqPMDMIDvjVDcTworuXhdufS1AKGkqQPB4J1wNByW008G6C+zYYWOHu28LhHIKD/VB3fy+s9nnezAZWbz+sHroOeJigvvSscNmlgNE8vvGdwNd1/nHDbQiS8uPu/rda1jEMWFI94O7vASfVWN/K8EothyB5ngCUEpzkbwUuDWff0X2fGpb0i81sCcH3mqhJwD5hSRyC776mw4Enw+93m5k9QVCars0H7v4lgJl9BkwPr/KWAvlAW4JkPhh4J+6Y6xpW5V1FcExfSXBs7kJwFVDt3+G/swlOBu0I/i9regsgvLKdBBxnZkOAvWusr1pjfgfDgG9ccbh7DNg9vPJ7y8wWuPtr4eTmPKabnEr+Tczd3wGc4Id3HFBdUv03QSktI5zvIYIS3cvAUUBBeKmeRXDDqbp0ug8N1+/Hl5Jj4TaygI3V6wnXNZ7gkjhRVeF6qhUCi8JEiLv/O5w+yMz2Dy/tcfdygvseY+KWzeLrS+akCqt+/kpwc7Wuq6pv7LuZHWhm346bnhHOU0nw/zLF3TeFifT/CO4PVNvRfa/te01UFnBq3He/L0E1Tbya66ygbmU1hsvr2ObjcdscA4wDNhD8f18ILCO4KpldY9tbYXuyhbr3tQTAzPoRVB0NJCiB/6KO+RvzO9j+nZtZrpmdHlbd4u6fERTSRtdYd4s4pneEkn8TCxPgUIK6+iMISm+/Bz4ATuTrg+sdYLS7P0rwo+hMcKPqJeDH4cGXSVCCvq3mdhLgQKmZfS/cXn9gHkEVUaI+JajOqL4EfwHY1czGhus8iCCBfEZQLXG3mWWHcZ8BvBa3rkEEl+otwf0EpfUf1TPPYoKYq7UHfheWYiG47/BUWA3wFEFVWxszyyD4nj+IWzYZ+/4ScJmZZVjQQupZ/jv5vwicaWb54Xf8nZ3c5nTgu2bWJxy+iOBeAwQFnJvd/e8Ex8y+fLNg0VjjgDXALe7+EsGVTvWJvYLgPkgGjfsdbP/Ow5P4LQTVW5jZLsChwJtx87ekY7rRlPx33jfqlwkSwYXuvpigpH9wWA88k+AycbcwOV4J3GxmHxG0arnJ3T8naEHwOcHJYwFBCeiKxgYVHrwnAOeH258OXOeNaILq7hsJLrMPDYdXEiS2B8xsHkEJ7uSw/vN2glLdnPCvArgmbnVHE7SCwcwuMrM/NnafmoIFLYa+D/QDPoj77sbFzxfW9W8Nb5rj7i8Q3BydYWZOUJVQnUwfICgVziJIBu35uhoPkrPvFxNUncwFCsJ/f1NjnoeADwmS4ZuEN+93VJiEbwdeDo+5yQTHR4zg/2NKeK/owXB7g3dic9OBrwAPf0MDCE4GgwkaDMwGFhLcpE/0d/AUwXdV7STgovB3PY3ghvmHsL3J8QSCqsNWKUNdOkt9wnsYP3f3mi1vGrOOTsAMgmaSpWbWAfiju+9sSTNSZjYZOMDdf7gT62iV+56O7OuWYMfFtfipa96zgT3dfYdbniWbSv5Sr+p7GGZ2dIMz1+0G4NLwCgGCm3M37HRwEXP3J4FuFjzYtqNa5b6no7AK7wKC50zqFJ7AJxO06mq1VPIXEUlDKvmLiKQhJX8RkTTUKh7y2nfffWN9+/ZNdhgiIq3K/Pnz17p7j9qmtYrk37dvX5555pmGZxQRke3CLmdqpWofEZE0pOQvIpKGlPxFRNKQkr+ISBpS8hcRSUNK/iIiaSiy5G9m+1rwKrqa4483sw/MbKaZXRDV9kVEpG6RtPMP39bzP0DNV+PlEHQD/K1w2gwze7a1vgNTRJrH3K+KeHnhKkizvsjycrI4Y98BdG6b2+Trjuohr6UE7yx9vMb44cASd98AYGZvAwcR9nUuIhKvrKKSe1/9hN+/sZSqGGQ05l1mKSAvO5P9du/G6AGtJPm7+9NmtmstkzoCRXHDxUCnKGIQkdZt3vIifvrPOSxaWcwpY/tx3aQ96NQmJ9lhpYzm7t5hE8Gbdap1ADY2cwwi0oKVV1Zx/+tLuO+1JXRpl8ufzhrHxOG9kh1Wymnu5L8QGBK+B7WEoMrnzmaOQURaKF9ZzBX//Jh5yzdxwt67cOPxe9KlXdNXeUgzJf/
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXwU9f3H8VdOEgIJh1xyCsLHAxABuUTFtp5o69FaryoqHm2ttba1tl61d+3P2tNqVbyP1rNqFa1nLYgHqIDKh0MOuQ9JIITc+/tjJrDEJCSSySa77+fjkUd257sz85nd2c985zuz329aLBZDRERSS3qiAxARkZan5C8ikoKU/EVEUpCSv4hIClLyFxFJQUr+IiIpKDPRAbQlZjYAWALMCydlACXAFe4+I4L1LQO+Gj69yt2/Wv+rm7TcnwJ7uful9ZT/BnjF3Z83s2HAn4ECoAq42N1nm1l2OP2wcLbngCvdvcrMbgKedvdXmxDT+cDJ7n5irentgGeA29z90TrmGwDMd/cOTdnGBuK4D/itu883s8eAg4DisPgVd/9e+LpvAVOBXGA2cIG7lzV1283sC8C1QB+CfWk98DN3f70R804Fst39ljrKrgYuBl4i+NwedvcXG1jWFOCr7n5CHWXzgUub8nm2RmY2GRjr7td9jnnjvxNnAz8EYgSf2WXu/o6ZjSL4flzUrIFHRDX/ptvu7iPCv2HATcDdUa7Q3d9prsS/O2Y2Djgg3MnbAy8AN7r7wcDPgQfCl14KdAOGAsOBCcBpYdnPgD+bWW4j1tfFzG4lOJCk1SobD8wCJu7xhjWCmZ0GFLn7/HDSeODwuM+7JvGfAnwH+BJwIMEB4HvhPE3Z9i8Dfwd+4u6D3f0gggPB/WZ2fCNCngi0r6fsAuBMdz/P3ac2lPhTyCFAl6bOVOs7YcDvgGPdfQTwC+BxAHefDWSa2WcOoK2Rav57riuwBsDM0oGbgXFAR4JkNtXdZ5jZROD3BGcLMeDX7v5YWIP+LXBEWPYuQU1iS80KzGwS8Bd3H2pmdwNbgGFAX2ABcLq7F5vZ/sAfw5gygD+5+7Qmbs9Pgb+Ej48Glrj7s+Hzp4ClAO7+ezP7s7tXm1k3oBPwaVhWZGYzgIvCeBpyGsH79wNgcq2yy4BrCGpZn4uZZRDUzGt0AboDXd19W62X3wB8LZxvH4LP8Nbw7GI28H13/xQ4B7gpfIyZXQJkQ5O3/XfAd9z9jZoJ7j7LzC4Py54NP+/57v5/4bruBuYTnIF+GTjKzLa7+1/jtvkfBGcSd5rZdcA3CfafR81sAsH+lgdUAz9192dqvWcHANMIDiwLwtd+hpm9Gr4vXwjf0z8CPQj25TzgNHefZ2YFYdkwIIvgbOSH7l4ZnvFdHL5/XYDfuPvfwjORk8MYBwPlwDlxB+aaGKYQHOjygCLgBOBvwJBweVuBMwn2z0uADDMrcverzewC4FsEleBNBGc3C+rY1J+y8ztRRvCdXhM+fwfoaWbZ7l5OcDD/G8HZaqummn/T5ZrZe+HfcoKd+tdh2Vhgb2C8ux8A3ANcFZbdAPze3UcB5xN8YQjLK4FRYc1vNfCb3cQwCjgW2D9c39fMLBN4lKB5aBTBF/AHYa2lUcysE0EzzgvhpCHAWjO708zeAf5DXIXB3SvC0+ElwDogvqniaeCU3a3T3W919xuA7XWUneHu/25E6PGfyXtm9h7BFx13r6qpuRO851uBKbUTv5kNBXLjkkt34EWCxHQwQdNPzYF0CNDdzKab2VyC5FDYlG03s67hcv5bR/GLwAFm1rm++d39CYKD8c3xiT8s+zrBfnSWu/8jbp2dgbuAb7j7SIKDx9/MrF+txT8A3O7uwwn27/4NbMqA8KzwFIKDyqvuPhqYTnB2BEGFaHa4Xx4M7AVcYWYdgAuB48NlfB24MW7ZRxAcHIcCM6i/EnAgMMndjwSOAwrdfZy7DwHeJkjqbwK3Av8IE/8RwLnAYeG6bySswcer/Z1w92U1+6SZpRFU6J4KEz/uPgvoHVYeWjXV/Jtue5hIAAhrUs+Z2Qh3f8PMrgEuNrNBwCSCZAPwT+CvZnYiwZf7J+H0EwhqJUcFZ5RkE7T7NmS6u5eF659HUMMZAgwCpoXLgaA54mCCppPG2BdYU7MjE9TSjgeOdPc3zewrBLXR/jXrd/erzOxa4HaCGs+54bxLAKNl7PKZwM42/7jnuQRJ+T53f7iOZewHLK55EiaLk2stb214ppYFHAV8BSglOMj/Erg8fHlTtj2rjmntwv/N3ffKeKAX8GTcPhIjaLYDdhyUhgP3AoRnrfOpX03CXBL+nx73fFL4+ARgTFjThmC/JDxbPQGYbGaDgRFA/LWb2e6+Mnw8h/oPqHNrzpTDs5uPzew7BPvzJOCNOuaZHJbPjHsvuphZl5ozulDt7wQAZpZH0Nzbl6AiFu9jgs9/aT3xtgqq+e8hd58JOMHOPRmoqan+i6CmkRa+7jaC097/AMcAc8PT4Qzgu3G10zHsvMhbn/hacixcRwZBjWdE3LLGEdT0Gqs6XE6N1cCCMBHi7v8Kywea2aFmNiScXkHwRRgZN28GwYXGhAubfh4iaD6p76xql203s8PCNvkaaeFrqgjelyfcfUuYFO4nSKw1drvt7r6JYL+ZVEfxkcBH7l7Izs+3RnZDy92NjHC5tfeR5+NeU3PAiV9nZQPLLIt/Eu4Lda33a3HrHAtcamZ9gPcIziz+R9DEF6+u/bwuNRfkMbNvAncSXIh9kOBzr2u+DIKKQE1MI4HRwOZar6v9nSA8U5pJ8BkfGX5OtZfdKvb9hij576EwAQ4haKs/iuBOj78RnG6eRLjjmNlM4GB3v5ugPbgT0Jngi3epmWWH1wxuZ2czUlM4UBreiYCZ9SVoGx7VhGV8TNCckRM+fw4YEN7FgJkdTvAlXErQhHKzmWWGcZ8FvBy3rIEE7cWtwV8JatjfbuA1CwlirtGB4MJtzQXCHwKPunsVQfPa18wsNzz1P4ng867R2G2/AvhDfNNceJH798CPwkkbCJISZrYXO++ugiAp13XmUJ9ZwODwc8TMRgCLCJoOAQhrvbMJ7mTCzEYSVFr2xPPA98wszYK7t54iuGFgNMH2/cLdnyc4Q6g5WH9exwB3u/udBN+JE9mZvOPfrxeAM8ysV/j8EoJrEbXt8p0I94fXgMfd/XR336W5MtwfBoTrbtWU/Jtul/ZlgkRwkbsvJKjpHxG2A79BcOq7T5gcrwR+ZmbvAq8AN7j7MoI7aJYRHDw+JKilfL+pQYU10K8AU8P1vwBc6024BTWswbxOUPPE3dcSJLZbwlP/m4FT3L2UoH13OfB++FcJ/DhucccCj0BwQdTM7mjqNjWHMJleTHAB9O24z250/OvCtv7tFlw0x92fA/4EzDAzJ2hSq7lt9BaCprvZBEm+Azub8aCR2x5eSD8H+LmZfWRmCwj2h3Pc/enwZX8GeoUxPAC8GreI54DLzCz+fa+Xu28ATgV+Z2bvA/cRtP8vr/XSM4DTwybFa4GPGrP8BlxGcEF2HjA3/H8jwT66EvDwe9GP4GCw7x6s6/8Iml3fI0jmc+KW9xLwZQtuVHieYB/+T/h9OZNg396lqa32d4Lg4nk/4ORa15m6huWjCW6SWLEH29Ai0tSls8QLr2Fc7e6177xpyjIKCC7QjXb3UjPrCNwRXohstczsTGCiu39rD5bRJrdd6teU74QFd2M90sgbFRJKNX/ZRc01DDOrfRGrKa4HLg/PECC4kHf9HgcXMXd/EOhqwQ/bPq82ue1Sv8Z+J8Kzyeq2kPhBNX8RkZSkmr+ISApS8hcRSUFt4kdeY8eOjfXu3TvRYYiItCkffPDBRnfvVldZm0j+vXv35vHHP/PLaxERaYAFXdDUSc0+IiIpSMlfRCQFKfmLiKQgJX8RkRSk5C8ikoKU/EVEUlBkyd/MxlowzFvt6Sea2dtm9oaZXRjV+kVEpH6R3OdvZlcC3wBqD5WXRdAt8CFh2Qwze8rd10URh4hIcykuq2TRuq0sWlfMysLt0AL9orXLyuCssf3o1H5PxvC
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcVbn/8c/MZLJvZMMQA8GEPBcFwhJNgmFxQTaRgMqVyFXBiKj8RFEx1+uG+xYVQWQRRBFEVgGVRQUVA0EE2eVJT1gVmCYBkuksk8xM//44p0kzzNKTmZpe6vt+vfJKd1V11VPdPU+dOuf0OXX5fB4REUmX+nIHICIig0/JX0QkhZT8RURSSMlfRCSFlPxFRFJIyV9EJIWGlDuAWmZmM4BVwANxUQOwATjV3ZcncLzHgXfFp0vd/V3db92n/X4ZmOTuJ3ez/lvAre5+k5ntDpwJjAPagQ+7+91mNjQu3y++7AbgNHdvN7NlwPXu/uc+xHQCcJS7H9Fp+TDgt8C57n5lF6+bATzo7qP7co49xHEx8G13f9DMrgLmALm4+lZ3/2Tc7qPAEmAEcDfwQXdv7cu5m9lU4IfAa4E8sBH4hrtf25eYt5WZ5YDd3P3xwTheX5nZR4B2dz/PzOYBPwZGAU8Dx7n7Mz289ivAhMLnb2b7EL67Jw5C6GWhkn/yNrr7nvHf7sAy4KIkD+ju/xioxN8bM5sPvDYm/pHAzcB33H0v4KvAJXHTk4HJwG7AHsC+wDFx3VeAM81sRAnHm2Bm5xAuJHWd1i0AVgAL+31iJTCzY4C17v5gXLQA2L/o8y4k/qOB/we8FXgd4QLwyfiaks8d+Cmwwt13d/c9gOOBi8xs14E7q+pkZjsBHwDOjwWNK4FT3H3X+PiCbl73ajO7Evh08XJ3vxsYYmZvTzTwMlLJf/BNBJ4BMLN64AfAfGAMIZktcfflZrYQ+D7hbiEPfNPdr4pf7G8DB8R1/wQ+7u7rCgcwswOBs9x9NzO7CFgH7A5MBx4B3uPuuZg0zogxNQA/cvcL+3g+XwbOio/fBqxy99/H59cBjwG4+/fN7Ex37zCzycB44Pm4bq2ZLQdOjPH05BjC+/dp4PBO6z4OfB74TB/P4SVm1kAomRdMAKYAE919fafNTwfeHV+3M+EzPCfeXdwNfMrdnwfeByyLjzGzk4Ch0OdznwqMMLN6d+9w94fN7B3AC3G/bYQ7gzcRSryfc/er47oPAh8lFPjWACe7+yM9fZ/MbD/CRTYP3EU3hcVY4j4J2AxsIpSYHzaz2cC58f3rAL7m7r82s9cRvjMT476Xufsv4vf2DGB9jP8NhO/U5+P7tQH4tLvf0UUY/wtc7O55M3s9sK7o7voC4IdmNtHd13R63QeB24B/Adt1Wnce8BPCnWTNUck/eSPM7N747wnCl/ubcd08YAdggbu/Fvg5sDSuOx34vrvvA5wAvDkuXwq0Afu4+xzCLe23eolhH+AQYNd4vHeb2RBCiWhpPMYBwKdjSb4kZjaeUI1zc1w0G3jWzC4ws38Af6CogOHuW2IV0SqgmfBHV3A9cHRvx3T3c9z9dEKVR+d1x7r770oIvfgzudfM7iUkL9y9vVByJ7znLcAHOid+M9sNGFFU6p8C/BH4MLAXoeqncCGdDUwxsxvN7H7CBfPFvp474YJ3MpA1s2vN7DPAo+7+bFzfADwfP89jgAvNbLKZHQC8H9gv3pF9B7g6vqbL71O8KFxBuIDtBdxKuGN5mXix/CFwiLu/npAwC3delwFXuPvrgMOAb5jZWEKh4Mx493JoXL4gvmY34NgYy47AN4DDYgwnAleb2ahOMdQB72Rrkp4OPFVY7+6bgeeAaZ3jd/fT3f0MQhVl53UrgGnxwl5zlPyTV1ztsxNwIHCZme0cSzCfBz5sZt8j1NcX6qIvB35sZpcQkvfn4vK3A0cC/4xJaxGhDrgnN7p7q7tvIbQ/TCAkpJmEBHEv8BfCH/defTi3WcAz8Y8LoJHwR36eu88llBp/H+vhAXD3pYQS1uOEUlXBKsD6cOz+KP5MCon+nOINYjXM9YTS5GVd7OO/gKbCE3e/092Pcvdn3L2dkOAPj0m0ETiIkJDnEt7/rxftq6Rzd/dbCAlxEXAncATwSCzpFpwVt72f8FnvT7hDmgXcHj/r7wATzGwC3X+fdge2uPuf4v5+RbgQdo6pnXCRuN3MzgLWAhfEfc8hVFXh7k+5+0zg1cDwwh2Juz8NXEUonAA85e5PxMcHEe52/hRju4RwBzGrUxgTgfFFbRHd5bVXJPgSPMrgfS8HlZL/IHP32wEH3mBmhwOFkuq1hARUF7c7l/AH+AfgYOB+MxtHKN2dUpS03sDWRt7uFJeS8/EYDcCLnRLgfOBnfTidjrifgqeBR9z9zngO18b1rzGzN8ZqAOJF6CJg76LXNrBtf5wDLpZmf0VoGO7urupl525m+8UqmIK6uE074X25xt3XxQvlLwntAwW9nruZTTGzs4G8u//N3b/h7vsDvyaU6gvaih7Xx/02EC5ihc95b8JF6AW6/z4VvifF2uiCux9HuBA1AZ8l3FUUtn1p8DAzM17+fSmOszE+zhUtbwD+1MV39MFOr+8A6mI1KsCThItG4biNwCTgP13F34uK+V4ONCX/QRYT4GxC3epBhJ4ePyHUqS4i/nGY2e3AXu5+EeF2dzyhxHwTcLKZDY1f9vPZWo3UFw5sMrPj4vGmE/6o9unDPh4lVGcMj89vAGbEnhKY2f6EP/7HCFUoPzCzITHu9wK3FO3rNYT2iErwY0Iy+lgP26wkxFwwmtBwOyE+/wxwZSwZX0moahsRqygWET7vglLO/XnC9+WUuA9iA/uOwD1F270vrtubcHfyF0K13LGxtxCEKq4/xcfdfZ8eICTUw+L+3sEr68Qxs0lm9hSwxt1/SLiTnRPboO4mXpji92s5obprc2wEx8x2IFTZ/KGLc74FeJuZ/Vfc9jDgfmB48UaxLeUFYKe46E5gopntG5+fANzh7sVVbb2K7/MMwt9KzVHyT97L6pcJieBEd19JKOkfEOuB7yDc/u8c/whPA75iZv8k1LeeHm9rv0qoMvkn8DChdPapvgYVS6BHAkvi8W8GvuB96IIa/5huIzQwEuueFwFnm9mDhMbso919E6FR8QngvvivjdBIV3AIofoAMzvJzH7a13MaCLHu+cOE6om7ij67ucXbxbr+jbHRHHe/AfgRsNzMnFClVug2ejahPeBuQpIfzdZqPCjh3N29jdD4uQB4LL6/dwI3dWqkf6OZ3UNob/hvd3/B3W8ivP9/iJ/1YsLnkqeb71O8O1sEfDV+b48Gsl3EtRr4GqFq5m5C+9OSuHoxcIyZ3UeoQlvi7k/F/Z4SY/kj8BV3v7WLfT9EKPhcFvfxVeAdXTS8Q1HVUYz9aEIj70OEgsbx8f3dIX6eO3Sxj87mEjowPFnCtlWnTkM6S3/E0tX/uXvnnjd92cc4QqlwrrtvMrMxwE/d/b8HKs4kmNliYKG7f7Qf+xiwczezPDA5JuRUiY2yVxLexwFJahZ6yl1RYieCqqOSv/RLoQ3DzA7pdePufQn4RLxDANgzLqto7n4poXph937spirPvdK4+2OE3nIfHoj9xTu9jlpN/KCSv4hIKqnkLyKSQkr+IiIpVBXDO8ybNy8/bdorfpwnIiI9eOihh1a7++Su1lVF8p82bRpXX3117xuKiMhL4pAyXVK1j4hICin5i4ikkJK/iEgKKfmLiKSQkr+ISAop+YuIpFBiyd/M5pnZn7tYfoSZ3WVmd5jZh5I6voiIdC+Rfv5mdhrwP4S5OIuXNxKG+X19XLfczK5z9+Yk4pDutWzawu/uf4anX3zFbIgiUiGGNTbw3nk7Mn7k0AHfd1I/8lpFGE/74k7LdwWa3L0w4fTfCNPMXZFQHFIkn89z/7/X8qu/P8l19z3Nhs1hgqK6zvM1iUhFGDaknn1nTmSvHask+bv7VWY2o4tVYwlzfBa0AOOSiEG2atm0hWvvfZpf/f1JHnp6HSMaG3jHnB04dt6OzHn1OOqU/UVSZ7C
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXwV5dn/8U8S9iXsKCKIBLjEqoBS2RGt1q3W5WnVor9WLY9itXVrrdVq9Xna2g2t1sfS2lqt1SrWvda1ak1AXNmRiwTBtUDCFhYTSHJ+f8xEjmlITpDJWeb7fr14cc7MnDPXJCfX3HPNfe47L5FIICIi8ZKf7gBERKT1KfmLiMSQkr+ISAwp+YuIxJCSv4hIDCn5i4jEUJt0BxB3ZjYIWAEsChcVANuAy919dgT7WwV8JXx6lbt/Zddbt+h9rwd6u/vFu1j/M+BFd3/GzA4GfgN0A2qBC9z9TTNrFy6fFL7sKeBKd681sxnAE+7+UgtiOg841d1ParC8PfB34Hfu/rdGXjcIWOzuXVpyjE3EcQ/wc3dfbGYPASOALeHqF939snC7bwHTgI7Am8A33b26JcduZv2AXwMHAgngY+Cn7v5YS2JOhZn9Abjf3Z/fQ+9XADxGcNxrzOxq4OsEeeovwA3u/h9903e1Xfg5ewUoS9r8jPD5Y8B57r52T8SejZT8M8PH7j6y/omZnQ7cBQyNaofu/gY7TwKRMrOxwIHufpWZdQKeJfgD/4eZnQzcCxwAXAz0AQ4iuCotBk4H/gr8D1BiZoe7+8fN7K8n8FPg/wEvNlg3Drg93N/v9txR7jKW04FN7r44XDQOGO3uHzXY7jTg28AEYCPwIHAZ8DNacOzAH4Dn3f2M8H0PBGab2Xh3f3tPHReAu0/bk+8HXAG8FCb+E4CvAocRNBCeAZYCs5Jf0Mx244H73P38hjsys18QfA5a5W8gEyn5Z6ZewL8BzCwfuBkYC3QF8oBp7j7bzCYCNxFcLSSAG939obAF/XPgiHDdPOA77l5ZvwMzmwLc5u4HmdldQCVwMDAAWAac6e5bzGw4cEsYUwFwq7vf2cLjuR64LXz8RWCFu/8jfP44sBLA3W8ys9+4e52Z9QG6A+vDdZvMbDZwfhhPU04n+Pl9FzixwbrvAD8EvtfCY/hE2EJ9M2lRT6Av0MvdtzbY/AaC5ISZ7U/wO5wZXl28CVzh7usJWq4zwseY2XSgHbT42PsBHc0s393r3H2pmX0Z2BC+bw3BlcGRQGfgand/2Mw6A78FhoXHsxmY6u5uZnsDMwlOmHXATHe/1cxeIvi9vgH8E/gHMCZ8/TXu/kB4sp9J8PndSJCYcfdzGvxMOwGXEnwGAU4lSNxbw/V/As6mQfJvZrvxwGAzey3c9mfu/nC4/5fNbKaZjXD3Bc38THOSav6ZoaOZzQ//vUvwB35juG4MsA8wzt0PBO4GrgrX3QDc5O6HAecBR4XLrwJqgMPcfQTwEUELsimHAccBw8P9fdXM2gB/IygPHUZwMvlu2JJPiZl1JyjjPBsuGgasNrM/mtkbwHMkNULcfUdYIloBrCFo/dd7AjituX26+0x3v4Gg5NFw3dfc/ckUQk/+ncw3s/nA9PA9at19ZHi1dhRBojynYeI3s4OAjkmt/r7A88AFwCiC0k/9iXQY0NfMnjazhQQnzI0tPXaCE97FwFoze8zMvge84+6rw/UFwPrw93k6cGd4oj0e2OjuY919GPB6+D4QtJCXu/sBBFcu55vZkAb7HQw84+6HA98HfhEuv5bg93sAcHR43I05KtzHuvD5AOD9pPUfAPs28rqmtttKcGI4HPgG8FszOyxp2ydJ7Weak9TyzwwNyz7jgafMbKS7v2JmPwQuMLMiYApBsoGgdfN/ZnYSQVK5Olz+JYJW8zFmBkELsrna5tPuXh3ufxFB620YUESQIOq360jwBzw3xWMbAvzb3beHz9sCJwBHuvurYdnnH2a2X/3+w/LQtcAdBK3Rb4SvXQEYreNTvxPYWfNPet6RICnf4+73N/IeB5BUb3b3Vwlaqsnvtzq8UmsLHAOcDFQRnOR/QtAahhSP3d1fMLOBBC3tycBJwHVmdpS7vx5udlu47cLwdz3Z3f9mZu+Y2bcJfmdTCOrlECTtK8PXbCIoy5H0mQDYQdDyB3iL4PMDwe/6cnevAyrN7G7gkOZ+VjTeMK1tZNkut3P3b9UvcPe3zWwW8GV2XrWtIDjOWFLLPwO5+xzAgcPN7ESCFgoEN6lmEpR+cPffEVwmPwccCyw0s24ErbtLklqnh9N8bTO5lZwI91FA0BocmfReY4E/teBw6sL3qfcRsCxMhIQ3IgsILs8nmNmwcPkOgvsehya9toDGE0CrC0s/fyW4Mbyrq6pPHbuZTQpLMPXywm1qCX4uj7h7ZXii/AtBK7tes8duZn3N7HYg4e4l7v5Td58MPMDOEygEV4X18oFaM7sQ+CNBZ4P7wmPLS9r+kxutZjbYzAob7H57mOBh5+en/rV5Sdvt6hgafk7eIyhh1etP0KpvqNHtzKzAzK4xs65J6/IITlL1MubzlA5K/hkoTIDDCGr1xxD09PgtwaX4KYR/JGY2Bxjl7ncR1IO7Az0IbnpdbGbtwnsGd7CzjNQSDlSZ2dnh/gYAiwlKRKl6h6Cc0SF8/hQwqP7y28wmEySLlQSX/jebWZsw7rOAF5LeazDB/YhM8H8ErfWLmthmOUHM9boAvwlvSENw3+Fv7l5LUF77qpl1NLM8gt/z60mvTeXY1xN8Xi4J36O+lj6QoDVe7+vhukMJWtz/Img83OXufyT4vZ/EzmT8PHBu+JpuBPX9VDsjPAmca2b5YSxTSTqRJGn4s3oMOMvMOlvQO+sc4NFGXtfoduHP9MsEfxeY2X7AfwEPJb02kz5PrU7JPzN8qr5MkAjOd/flBC39I8I68CsEl6r7h8nxSuB/zGweQa+WG9x9FfC/wCqCk8dSghbPFS0NKmyBngxMC/f/LHCtt6ALqrtvJKjbHxk+X02Q2G43s8UEN7NPc/cqgpvU7wILwn81wA+S3u44gl4wmNl0C7oatjoLegxdQFBbfj3pdzc6ebuw1v9xeNMcd38KuJWg940TlNSS6+rPE5QklhGcKK5Oertmj93dawhuqI8DVoY/31cJavHJN+knmNlbBPcbznD3DcCvCEqL8wmS+1sE5R/CGIeHn4HZBB0Lkm94N+VGgjLWovD41hJcXTT0PHBAeI8Id38CeBh4jaDB8Sbw54bH39R2BI2H48PS1lPApQ16PB1L8LcWS3ka0lmiFt7DuMbdG/a8acl7dCNIPKPdvSq8nP9DfZfGTGVmU4GJyfXn3XiPPXbsZpYA+rh7xe7G08L9nQlUht168wla3s+GV7INt70aqHH3XzRcF0FcU4CL3P2rUe8rU6nlL5Grv4dhZsd9hrf5EUHLrSp8PjJcltHc/T6glwVfONpdWXnsocXANeEVxWKCexu7umL7FXCUBV1LIxPer7mSoNtvbKnlLyISQ2r5i4jEkJK/iEgMZcWXvMaMGZPo379/usMQEckqS5YsqXD3Po2ty4rk379/fx5++OF0hyEiklXC4WIapbKPiEgMKfmLiMSQkr+ISAwp+YuIxJCSv4hIDCn5i4jEUGTJ38zGWDDNW8PlJ5nZ62b2ipn9d1T7FxGRXYukn7+ZXUkweXbDae3aEgzh+/lw3Wwze9zd10QRh8RH1Y5a3infyoryLayq2MqO2rrmXySS4dq3LeCsMQPp3qndHn/vqL7ktYJgbsx7GiwfDpSF44djZiUEU809GFEckmPWb91O2dotrCjfwoq1WygrDx5/sOFjkscozMvb9XuIZIv2bfIZX9SLUQOzJPm7+0NmNqiRVYXApqTnm4FuUcQg2au2LsGHGz5mRfmWnYk+fLxh285Z+Dq0zWdw7y6MGtCDrxw6gKK+nRnStwuDenWmQ9uCJvYgIq09vEMlkDynZldgYyvHIBmiakdtmNi37mzFr93CyoqtVNfsLNv07tKOwX26cNxB/RjStwtFfTpT1KcL/bt3JD9fTXyR3dH
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZgcZbXH8e/MZN9DFpZIEshyhIuQAEoCEQKILIoEt6u4grkQBGXxiuhVEfcNvSiGTZBFEFFEQQXRCygEgiwii3J6kpCAYHqSYJKeJDOZpe8fb3XSGWd6eshUb/X7PE8euquqq071NKffPu9bb9Vls1lERCRZ6ssdgIiIlJ6Sv4hIAin5i4gkkJK/iEgCKfmLiCSQkr+ISAINKHcASWJmU4HlwNPRogZgM3C+uy+J4XgrgXdGTy9093f2vHWf9vsFYLy7n93D+q8D97n778zsdcD3gdFAB3CGuz9uZoOi5W+MXnYXcIG7d5jZJcCd7n5/H2I6DTjZ3U/ssnww8GvgSnf/eTevmwo84+4j+nKOBeK4EfiGuz9jZrcBBwDN0er73P28aLuPAguBocDjwEfcvbUv525m9wNTgA35y919lpn9ELjF3f9Q4PUfBt7p7m/tZt0zwNl9+RvEpct7ehrwSULu+gPwcXdv6+Y13W5nZqOBNPBc3ubnuft9ZvZj4Mvu/lzX/dUiJf/S2+Lus3JPzOzdwHXAjLgO6O6Psf1LIFZmNgfY190vNLNhwD2ExPZbMzsJuAl4LXA2MAHYj/AL9AHg3cBPgC8CD5rZG9x9Sy/H2wX4KvAB4L4u6+YCi6PjXdl/Z9ljLO8GNrj7M9GiucDB7v5yl+3eDnwMOAxYD/wMOA/4On0498gnu/tSc/eFr/5MKkf+e2pm+wEXAwcC6wifpfOAb3Z5TaHt5gB/cvc3d3O4zwM3m9lcd6/5C6CU/MtvHPBPADOrB75L+ICOBOqAhe6+xMzmAd8h/FrIAl9z99uiFvQ3gCOidX8htHI25g5gZvOBy9x9PzO7DtgIvA7Yk9ACeo+7N5vZPsClUUwNwPfc/do+ns8XgMuix28Glrv7b6PndwDPA7j7d8zs++7eaWYTgDHAK9G6DWa2BDg9iqeQdxPev/8G3tJl3ceBzxJagK+KmTUQWuY5uwATgXHuvqnL5hcD74petxfhb3hF9OviceAT7v4K8EHgkugxZrYIGAR9PvdCcd9P+Jv/3MwOJXxGhgOdwBfc/dddtt8XuBYYRvhMDO9hv3MISXQwsDvwe3f/SHSODwB/B6YSPo97dXdcMxsOXA7MJLyfGeAUd/duDrntPQVOAu5w9zVRLFcC36NL8u9lu0OBXczswSiuq9z9cgB3X2Fm64G3Ab/q7vxriWr+pTfUzJ6M/q0i/A/+tWjdIcAewFx33xe4HrgwWncx8B13Pwg4DTgqWn4h0A4c5O4HAC8TWpCFHAQcB+wTHe9dZjYA+DmhPHQQ4X/e/47+Zy+KmY0hlHHuiRbNBFab2TVm9hjwe/IaHNHP8K8TSmFpQvLIuRN4e2/HdPcr3P1i4N9aye7+Xnf/TRGh5/9NnjSzJ4FF0T463H1W9GvtKEKi+nDXxB+1NofmtfonEsoNZwCzCaWf3BfpTGCimd1tZk8RvjDX9/XcI9/qEvsJXeIaC/wI+IC7H0hIbJeb2eQu+7kJuNrd9yd8Jqf0cLxzgM+7+yHAvsDbzOygaN1rgC+5+0ygpcBxjwfWu/ucaNtHCb8Ed9DNe7on8GLeJv+IjtlVoe3aCe/vEcBbgfPMbEHetn1576uaWv6l17Xscyhwl5nNcveHzeyzwBlmNg2YT0g2ALcCPzCzEwlJ5TPR8rcSWs3HmBmEFmRTLzHc7e6t0fGfJrS+ZgLTgGuj/UCoR88GlhZ5btOBf7r71uj5QOAE4Eh3fyQq+/zWzKbkjh+Vhz4HXE1oDX4oeu1ywCiNHf4msL3mn/d8KCEx3Ojut3Szj9cCy3JP3P0R4OQu+1sd/VIbCBxDaKG2EL7kvwKcG23el3PvtuyTZy6hhf7LvL9rFtg/L7Zx0fMbotiXRDX/7nwIOMHMPkM452HACEJ5pR14uLfjRr9GVpjZxwifmfl5r8u3w3tK943Vjm6W9bidu38pb9lL0a+Ck4FfRsuWE0qINU8t/zJz94cAB95gZm8Bci3VXwFXEEo/uPuVhFLN74FjgaeizqsG4Jy81ukb6L2+n99KzkbHaCC0xmbl7WsOofVWrM5oPzkvA89FiRB3/1W0fm8zO8zMZkbL2wj9HgfmvbaB7v/HLrmo9PMTQsdwT7+qdjh3M3ujmb0tb31dtE0H4X253d03Rl+UPyYky5z+PPcG4O/d/F1/l7dNrr5dl7esvYf9PUD4Qn+O0D/xj7zXtbp77nU9HtfMzgSuIQx2uJnw3uYfO6fr5+kFwhdKzqTo+F31uJ2ZfazLr546IL/DuGI+d3FT8i+zKAHOJNTqjyGM9Lic8FN4AdGH38weAma7+3WEevAYYCzhf+KzzWxQ1GdwNdvLSH3hQIuZvT863p7AM4QSUbFWEMoZQ6LndwFTc2UBMzuckGieJ5RQvmtmA6K43wfcm7evvdlxREY5/YDQWj+rwDYpQsw5I4DvRx3SEPodfu7uHYTy2rvMbKiZ1RH+zo/mvbY/z30pMCN67zGzWUAjodwHQNT38Dhh9BFmdiChobGDqIR0MPApd/8FIalOZ8cEXcxxjwWuc/drCJ+7E3vYR9f39A5CmWli9L6dzvYWO0VuN4+oDyj623wE+GneayvpcxcrJf/S26G+TEgEp7t7itDSPyKqAz9M+Am6V5QcLwC+aGZ/IYxqudjdVwJfAlYSvjz+RmjJfKKvQUUt0JOAhdHx7wE+530Yguru6wktwyOj56sJiW1xVEb4LvB2d28hdASuAv4a/WsHPp23u+MIo2Aws0UWhi6WXDRi6AxCzfjRvL/dwfnbRXXpLVGnOe5+F6GTcYmZOaGklqtrLyaU7h4nJJoRbC/jQT+ee9Tp+Q5C38BfgRsJdfhVXTZ9L/CeqAz4OULHbdd9/YvQsHgi6sP5NLCE8AXQl+N+m1DafBL4P+CJHvbR9T19ivBr417C+9ZB+BxhZm8zs9/2th3hbzDJzJ4lfEFd7u6/zzvstve+1tVpSmfpT1Efxv+4e9eRN33Zx2hCUjnY3VvMbCTwQ3f/z/6KMw5mdgowz90/uhP7qMpzj0t/vKd9ONY0Qsd3IoZ6quUv/SrXh2Fmx+3Ebi4Czo1+IQDMipZVNHe/GRhn4cK2V6sqzz0u/fSeFuvLhKHVNZ/4QS1/EZFEUstfRCSBlPxFRBKoKi7yOuSQQ7KTJk0qdxgiIlXl2WefXevuE7pbVxXJf9KkSfziF78odxgiIlUlmkKmWyr7iIgkkJK/iEgCKfmLiCSQkr+ISAIp+YuIJJCSv4hIAsWW/M3sEAu3kuu6/EQze9TMHjaz/4rr+CIi0rNYxvmb2QWEu+F0vdXdQMK0vq+P1i0xszvcPR1HHNKzre2d3PHXl3lhXdfb0IpIpRg8sIH3HTKZMcMG9fu+47rIaznhPpg3dlm+D7AsmhccCzdRPpyEzJ9dCVrbO7j1sX9w+X3LeHlDmDiyrrt7KIlI2Q0eUM+h08Yxe3KVJH93v83MpnazahSwIe95BhgdRwyyo5a2Dn766Itcfv9yVm9s4cDJY/jaO/bn8BnjqVP2F0mcUk/vsBEYmfd8JLC+xDEkSktbBz/58wtc8cflpDe28vqpY/n2uw7gsOnjlPRFEqzUyf/vhPt67gI0E0o+3y5xDImwZWsHNz2yiiv/tII1mVYO2WsXvvufs5i7t5K+iJQo+Ue3Yhvh7leZ2fmEm47XA9e6+0uliCEpNm9t58dLV3HVn1awtnkrh04bx/ffO5s5e48rd2giUkFiS/7RzcXnRI9vzlt+J3BnXMdNqk2t7dzw8CqufmAFr2zayrzp4znnTTN4/dRdyh2aiFSgqpjSWXqWaWnjhodX8cMHVvCvzW0cPnMC5xw9nYOmKOmLSM+U/KvUxpY2rluykmsefJ4NW9o40ib
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAESCAYAAADjS5I+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAdtElEQVR4nO3deZwcVb3+8c8kAQLXJBqECwYELugjKEsWCUuAoGCUuEBwQS6IbAEEEVCBK5ssynJBBBSQyBKQgAiJIghEZTEEMBJBIMrXG1TAH4KCkgQwgYS5f5zTv5RzZ870TGZ6esjzfr3ySndVT9e3qrrrqXNOd3VLa2srZmZmHRnQ1wWYmVlzc1CYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVDerrAlYWkjYEngAezZMGAq8Ax0TE7F5Y3p+Aj+e7x0fExzt+dJee96vAWyPiiA7mnwXcFRF3SNocuAgYBiwDDomIuZJWzdN3yH92G3BsRCyTdB7w44i4u45a/gQsAf5JOukZCFwQEZd1fw07XNZVwGMRca6kh4HxEfFiDzzveOBbEfGefL8VWCsinm/nsSOAS4CPRURrnrYq8Avgxog4N08bTtq+mwGrA1+LiGskvQn4ATApIv5ZZ31vBZ4GpkbEoSu0sk1K0nuBA7uzfpIOA5ZVX3OSTgOG194jkkaTXvuTe6rmRnOLorH+GRFb5X+bA+cBV/XmAiPiwZ4Kic5I2gbYLIfEGsBM4JyIGAmcDlybH3oEsBbwHmALYDvgk3neacBFklavc7H/mbfnFsAHgQskrd8za9S+vLwVDolumAKcVguJ7JvAxm0edxXw57zddwEulLReRLwEXEfaF/U6APgR8OkcQG9E7wbW6+ofSdoA+CxpvyBpPUk3Al+qPi4i5gKDJH14xUvtG25R9K01gb8ASBoAnA9sAwwBWoCDImK2pHHAN0hnzK3AmRFxUz6bPBvYKc97CDgyIhbWFlA9Y81nxQuBzYH1gceBvSLiJUmbAhfkmgYCF0bEFV1cn68C38q3PwA8ERE/yfdvBv4IEBHfkHRRRLwuaS3gzcDf87wFkmYDk3M9XfEW4GXgpbzuBwCHAKsCw4GzIuISSesAVwNvzX93a0SclP/mQOBzpJOoF4AjIuLx6kJqZ/3Ah4E9gNeBdwCvAp+JiMckDcv1bw6sAvwc+HJELO3iOtWWuQ2wdkQ8WJm2L6m1dmtl2nBgV2AvgIj4s6Sx5O0L3ACcLem/I+K5TpY5gLT9DgfelG+fmefdB3wjIm7M988CWiLiuI62YX79DScF2y3A5cC383O/DXgY+FRELJa0G+m1vSxP3wUYFxF/qnMfjSdt/5eBfwO2Bs6hzfsLeIp0cjJM0pURsb+kjwAnkl43rwBfioj729lE/wVcUwnuA4FZwO9Ir8Wqy0itwVtK27xZuUXRWKtLejj/e5L0Qj4zzxtLerNsGxGbAVOB4/O8U0lvytGkM7z35enHA0uB0RGxJfAMcFYnNYwmnXlvmpf3CUmDgBtJXVSjScHzpXxwqoukN5O6kmbmSe8EnpV0uaQHgZ9SOTGJiNfyweUJ4DnSG6zmx8CkOhd9bd6ej5OC8tKI+EfuZjkY2C2fWX+KdKAgT/9DRIzKNb9D0jBJOwH7ATvkvzkHmN7J8ncCPp+7jmYDX87Tzwfm5u05khRKx9S5Tu35OJWDTO7W+wIpUKs2IZ18HCNpdt72oyLiFYCIWAzcC+xWxzInkA6yPyO9Hg+XtEqeN4V0No2kgcA+wHfr2IZrRMS7I+I40n6YGhHb5ro3AiZKWhO4BtgnIrYC7gJG5GV1ZR+9B/h0fm+Mop33V0Q8DZwMzMoh8Q7g6yx/3UwGpkv6t+oTS2oB9qSyTyLi1Ii4gBRu/yIiHgBGSNqog1qbmoOisapdTxsA44HrJW2Uz1hOBA6RdC7pwPCm/Hc3AN+WdC3pQP+VPP3DwMeAh3K/+e6kfumS2yNiSUS8RhovGU46qG8MXJGf5x5S3/bILqzbJsBfIuLVfH8V0sHosogYQ+oz/4mk1Wp/EBHHk868/kQ626p5AlCdy611Pb2L1Er6uKRP526WD5MOPKcDJ7B8e94O7CnpJ6Sz5OMjYgEwMa/HfXk7nAMM76TLZW5E/Dnf/jVpe5KXfUh+nrmkM9rN61yn9rwLmA+QWyvXkFovL7d53CqkA+7CiNie1LI4P/eT19S7fT8HXJtbQTcDawCfyPNuALbNrbMJwPyI+B8634b3Vp7/OOBvko4l7f+3kfbRjsBvI+I3ABExldQSpo7nr3o6Ip7Mz1F6f1XtCqwL/Dw//7WkFuMmbR63JvDmiPhTu1uufX+g/td1U3FQ9KGIuA8IYGtJE1nehfAj4FJS85iI+A7pIPNT0pvykXywGAh8oRY+pINRZ+MR1UHM1ryMgcCLlRDbitREv7ILq/N6fp6aZ4DHI+KXeR1+lOf/h6TtJb0zT3+N1Kc+qvK3A2nnrKwzEfEM6YC2o6T1SF0WG5AOTidWHvcr0sH0MmBDYI6k7fJyr6lsg1HAGOAfhcW2tz1r6/CJynONJY3NdFd1+04gdddNywezjwJH50HUZ/JjrgKIiPmk9d+68lydbt/c/74bsFf+0ECQWoRH5ed9mTQwvjewP7mfns634UuVxVxHOmN/ktQC+zVp+y1l+Xasrn89z1/1/5dVen+1MRD4eTvvhcfaqacld8/Vq1uv62bgoOhD+WD5TlKXya6kT/tcAvyK1DoYmB93HzAyIq4ivbHeTDoTvwM4QtKq+QU7heVdWV0RwGJJ++TlrU96Y4wu/tW/+gOwtqTB+f5twIa1M1lJO5IOpH8kdZ2dL2lQrvs/gTsrz/UfpPGTLsndA7sCc0gHj78BZ0TEHaQzfCQNzF1eJ0XED0ndN/NI+2EmadB23fyUh5LGFrrjDtLBuyW3om5mxYLi96TtQkTcEBEbVg5kNwPnR8TJEfFH0gF3PwBJ/076sMCDleeqZ/seAtwbESPysjYkvR5GSdo+P6bW/bQdcFOe1pVtOIE0OP990mtjLOk1Pxt4p6Qt8jrsSXrNt3bx+as6fH+RgqnWpXYn8AFJ78rL3g14BBhcfbKI+DspnDaoY9m1rqoNSe+1fsdB0VjVMYqHSeMCkyPi96QznJ0kPQLcT+oe2CgfSI8FTpP0EKm/9tTc5D2d1G3zEPBb0hnSF7taVO4u+hhwUF7+TNKBtO6P7Ub6FNAsYOd8/1nSm/FiSY+Rzhgn5T7ys0lnkb/J/5aSBgZrPkg6W0XSoZK+W1h0bYziIdJ2uCUirszr8Gcg8ry3k4JjE9InhbbKdT1ICq/rcqCcDfw0b4e9c83ducTykaT+/UdJB5pHWT5G0h03krZLPfYgHezmAXeTDsa/AsihtS1pHAhJP5H00eofK31I4sC29eaupetY3qqYS9p3N+X9She34VeAGXkc5VJSl+cm+SD8aeBqSb8mBcpS4JUV2Eel99f9wLskzYiIeaSTsesl/Yb0HvtoO118kMKx3n0yhvThjqfqfHxTafFlxq2n5O6bEyJi4go8xzDSGeWY/OmXIcB3I+JTPVVnfyVpJmn7/moFnuOzwLsj4sv5/sHA8xExo2eqXHGShpK6Cr8aEa9IGkXqNnpbN0O7V+SB6RtJr9ViXUqf+PpBRNxaelyzcovCekxtzEVSvWdZ7TkFOKp2hgpsladZOtM9JXdjdFkO3b1JH2OuWUqTfWQz0se7XwV+lVve3wE+2UwhAZC7+aaSuuk6JGkM8Hp/DQlwi8LMzDrhFoWZmRU5KMzMrOgNdwmPsWPHto4YMaKvyzAz61fmzZv3fESs1d68N1xQjBgxgunTO7vqgpmZVSldVqhd7noyM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7OiQY1akKQBwMXAlsAS4KCImF+ZfzB
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxcdb3/8VeWpumSpnvpShfaj1RaKJRuIBSR3QWQ69UiilysoP5cUBGvC+J1Q0Au6AUEBQRBRRBFZVMRxaYtUEopSz+ladpSSpckbZqkbdIk8/vjnJEhJpNJm8mZ5f18PPLIzDkzcz7nnJnP+c7nfOd7CmKxGCIikl8Kow5ARER6n5K/iEgeUvIXEclDSv4iInlIyV9EJA8p+YuI5KHiqAPIRWY2EagEVoeTioA9wGXuviQNy9sAnBfevcLdz+v80d163W8Cw939053M/z7wN3d/zMxmAD8CyoFW4BPuvsLMSsLp7wif9ghwubu3mtl1wB/c/ckUYtkANAF7CRotRcAN7n7rga9hp8u6E3jR3a81s+eBhe6+qwdedyHwY3c/IrwfA0a4e3UHjx0L3Ay8z91j4bQS4B/A/e5+bThtKMH2nQ70A77j7neb2UDgN8C57r43hdiKgc8BHwb6AP2BVcCX3d07eU6H28bMvggc4e4XdrXcdDGzM4Dj3f2rZjYVuB0YBjQAH3H3NUmeexFwjru/J7w/jmAbv9/d29Iffe9Qyz999rr7UeHfDOA64M50LtDdn+2pxN8VM5sHTA8Tf3/gceAH7j4L+B/gnvChnwZGAEcAM4EFwAfCed8CfmRm/VJc7Pnh9pwJnA7cYGbje2aNOhYu76AT/wG4DfhWPPGH/heY0u5xdwKbw+3+LuBGMxvn7g3ALwn2RSruAo4DTnb3t7v7JOA+4K/hgeTfRLhtkjKzMuAHwHfCSfcAN7v7dOBK4AEzK+jgeUPN7BaCRP+v+e6+GVgJfDLdsfcmtfx7zzDgDQAzKwSuB+YBZQRvtIvdfYmZHQ/8kKBlGwO+5+4PhK2+q4ETw3krgc+4++74AhJblmHrdTcwAxgPrAE+6O4NZnY4cEMYUxFwo7vf3s31+Sbw4/D2qUCluz8c3n8IqAJw9x+a2Y/cvc3MRgCDgdpwXp2ZLQEWh/F0xxCgkaAlF2+tfQIoAYYC33f3m83sEILENjx83p/c/evhc/6L4ANdCNQAn27fIoy3zoF3A+cAbcBUoJmgBfmimZWH8c8gaDX/FfiSu7d0c53iy5wHjHT3ZxOmXUDwrepPCdOGAqcAH4QgSZnZXMLtS5C8rzaza9x9W5LlHQOcDExy9z3x6e5+b7iMQUCDmTUBvweOBM4Hngm3TR1wYxjLdmBbOA0zexJYSnBgmQA8BXw0fD8sIHhPDyDYrt909z92ts+S7ct2PgU85u57wm9QbwN+Fa7TI2Z2MzALeK7d8z5A8Bn9InBWu3k/A542s1vdvbmzbZlN1PJPn35m9nz4t5EgOXwvnDcXGAPMD1sjPweuCOddBfzQ3Y8BLgLeGU6/AmgBjnH3I4EtwPe7iOEYghby4eHy/iP8en8/QXnoGIKDyRfDhJMSMxtMUMZ5PJw0DdhqZj8zs2eBP5PQsHD3/WGJqJIgMTyV8HJ/AM5NcdH3hNtzDcHB7xZ33xm2TD8OnBm2gP+ToOVHOH29ux8dxjzVzMrN7ETgo8A7wuf8APhtF8s/Efh/YdlmCfClcPr1wIpwe84iSE6XpbhOHTkP+GP8TlhS+yzBQTLRYQTJ6jIzWxJu+6PjCdzd9wH/BM7sYnnvAP6ZmPjj3P3H7r4lvFtCUKazxAMTwQF0GkHp6RSCJJ9oCrCQ4OD4TuBEMxsC3AFcEO6b9wI3m9kEOtlnSaa3l7j9xgNb2pVrNgPjOljXW9z9KoLSYvt5rxN85o7rYHlZSS3/9Nnr7kfF74StnEfM7Ch3X2pmXwM+YWbxD0Z9+ND7gP8zs/cAfwH+O5z+boJW8ylmBsEHcXsXMTzq7k3h8lcTtIinEXwYbw9fB4Ja8SxgWYrrdhjwRkILqA9BgjnJ3Zeb2fuAh83s0Pjy3f0KM/s6QTnjZoLEC8EBwUjN+fGkY2ZjgCfM7CV3/6WZvRs4K6zvHgXESxWPhrFMINieV4TfOM4K16MiYTsMDVu6nVkRlgAgaDXGD1rvBuaE3yQg2J4H418t1TC53Q0scvfGhFgh2O6TgN3ufpyZHQY8ZWavuvuK8DGpbN8Cgm+ZhMs04Nfh3XKCct7N4f2n+HfvAu4N3w/NZnYPQYkv7g9h8q03s3UE78P5wGjgdwnrFAuf19k+63B6B/G8DVgX3u6sgdvayfRk4tvybwfw3Iyjln8vcfcKwAmSxFm8+fX998AthDVGd/8JQQvpz8BpwAthAigCPhs/jwDM4c2TvJ1JbMHEwmUUAbsSzkccRVB+uqMbq9MWvk7cFmCNuy8P1+H34fzJZnacmU0Lp+8nqFEfnfDcIg7ggxi2Rh8CTghPyD0PHErQ0v1awuOeIUiQtwITCb66LwiXe3fCNjgamA3sTLLYjrZnfB3+I+G15hKc6zhQidv3NIKD/r3hCdb3Ap83s28RbHcIzyW5+zqC9Z+T8FqpbN8KYIGZ9QlfxxPW5e8EZZm4hg6en7gtIPiGmqiz9+ErHbwPH+tsnyXZl+0lbr9NwCHtavxjCVr/3XVA79VMpeTfS8IEOI2gXHEKQWvoZoK66dmEb1YzqwBmufudBF/zBxPUtx8DPm1mJeE5g9t4s4zUHQ7sM7MPh8sbD7xIUCJK1XpgpJmVhvcfASaGtWPM7ASCD3kVwdf8682sOIz7fOCJhNeaTHA+olvMbADBdnyaIGnvAL7t7o8RtMQxs6Kw3PR1d/8dQenkJYL98DjwITMbHb7kJQS1+gPxGEFCLjCzvgQHpYNJ/msJtgvufp+7T0xIkA8B17v7N9y9iuAbyEcBzGwUwQn1xJJMl9s3PGj/DbjbzOL1dMxsOsG3qK4S3qPAR8ysNHxP/GcK67iMoGxzQriso4BXgTGd7bMk+7K9xO23maDF/p/hck4jODis7uB5XTmg92qmUvJPn8Sa//MEdfbF7r6WoKV/opm9QHAyrBKYFCbHy4FvmdlKgg/kVe6+gaDXxgaCg8fLBK2nL3Q3qPCr+fuAi8PlP07wgUq5C2rYw+Mp4KTw/laCA9hNZvYiQQ383LDmfDWwkaDb4CqCVuFXEl7udIIuiZjZJWb20ySLjtf8VxJshz+6+x3hOmwGPJw3geBgcBhBD5mjwrieJTgg/TI8SFwN/DncDovCmA9kmNvPELSOVwMvhP9/kPQZyd1PsF1ScQ5wqpm9BDxJ0EPoGYDwQDSf4LwKZvawmb23k9e5gOA8xsNmttLMXiZoYd9E0PslmZ8QbNsXCb4pVHUVtLvvAN4PXGNmqwhKWxe4+0Y62WdJprfXfvt9ELgkfN53CL6ltUHQXdXMZncVb3hgHUmwjXJCgYZ0lgMRft3+qru37xXRndcoJ/gwzXb3fRZ00fupu6fScsxpZvY4wfZ95iBe40Lg7e7+pfD+x4Fqd3+wZ6LMTGY2iOCbxeyOTmIf4Gt+E9jh7v/XE6+XCdTylwMSP4dhZqm2UDtyJfC58BsCBCWGKw86uNywGLjSOuiPnorwQLqIoEtuXAsJvYhylQfdn78CdNQNtNvC0ujRBN/Yc4Za/iIieUgtfxGRPKTkLyKSh7LiR15z586NjR07NuowRESyyksvvVTt7iM6mpcVyX/s2LH89rdd/fJeREQSWTC0TIdU9hERyUNK/iIieUjJX0QkDyn5i4jkISV/EZE8pOQvIpKH0pb8zWyuBZdwaz/9PWb2jJktDQeaEhGRXpaWfv5mdjnBELGN7ab3IRju99hw3hIzeyjZ9UVFOvPqtnr+tPoN2to0PlUmmDVhCCdMG0FR4QGNRddtsViMHfVNrN3WwNpt9ezakxOX1n2Lvn2KOH/uBAb3L+nx107Xj7wqCS5xd3e76YcD69x9J4CZ/RM4gXA8d5FUtLbFuO2p9fzw8bU0t7ZR0Du5RpKIjw85dnA
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXwU9f3H8RcJhDsgh4DIfXw4VEBQDlHxQES8a9WqtdZ6az2wXvVArdZ6a22t1Vat/LyrVBTFE60iVEFRzo9yCsgh9xkgyf7+mIls0yRsQjaT3X0/H488sjszO/P5zs585jvfmf1OjVgshoiIZJasqAMQEZGqp+QvIpKBlPxFRDKQkr+ISAZS8hcRyUBK/iIiGahm1AFUJjNrD8wDpoeDsoEtwEh3n5iE5S0ETgnfXu/up5Q+dbnmeyvQzN0vK2X8H4AJ7v62me0LPAI0AgqAC919qpnlhMMPDj/2FnCtuxeY2f3A6+7+YQKxLAS2AVsJKgvZwMPu/njFS1jqsp4GZrj7fWY2DRji7usqYb5DgD+5+z7h+xjQ3N1XlTBta+AvwAnuHguH5QD/Bv7p7veFw5oQrN8eQF3gTncfbWYNgJeBk919awKxlRpL3DS5BN9fY+AWd38l4cLvJjM7D8hx90fN7CKgsbv/oaqWv7vM7E3gN+4+y8z+AhwNPAf0KRpeyuf6Ee7TZnYA8Ct3v6icy+4NXOHuvzSz5sAzQDugELjA3T8t47NHAfe4e+/wfbm2q0SkVfIPbS1aYQBmdirwNNAlWQt09ynsPAgklZkNAHq4+/VmVg94h2DDfNPMTgCeBboBlwHNgX0IkvbHwKnA88DtwCdmdmCCG9KZYRkxszbAN2b2lrsvruzyFYn/DqvYEwQJNv4HMA8BnYpN9zQw293PNLO9gelmNsHdl5jZ88DvgN9UUky9gRbu3rmS5lceg4EZAO7+WATL3y3ufkzc2wuBtu6+JIHPxe/TPYG9y7NcM8sC/g4cHw76M/Cxuw8PDwrjzKyLu28p9rm6wI0E+++Pcbr7psrertIx+RfXFFgGP34hDwIDgIZADeA8d59oZoOBBwhqtjHgLnd/Jaz13Q0cGo77Erjc3TcULSC+ZhnWXjcA+wJtgDnA6eGX1x14OIwpG/ijuz9ZzvLcCvwpfH0UMM/d3wzfjwUWALj7A2b2iLsXhrWOxsCacNx6M5sIXBDGUx57AJuBTWHZzyXYqXKAJsAf3P0vZtaSoKbTLPzcOHe/OfzMr4BLCA5Kq4HL3H1O/EKKasTAscBJBLWlLsB24Gx3n2FmjcL49wVqAe8D17h7fjnLVLTMAcCeRQe6cNjPCc6qxsUNawIMBU4HCBN+f8L1C7wE3G1m97r7igSX3T6M/02gP8G6vBGYBjwJtA7PhgYCw4BRBNvQBoIz28/CM8aBQCvga2AuwUGrE7AX8B+CysIvgA4EZ4LPm1kL4K9AC6AlsIigonAQQfIaamZbCb6PZu5+mZn1JNgOmxLsL/e7+zPhvnAnMJ+g4lEbuNTdJxQrbwPgKYLvtBCYSrAdHQLcCywFOhKccZ7j7rPL2hfNrGtYhj3D+d3h7i/GnZ0/SLC/v2VmlwCjgVPcfUq4DV9NcOa8Klw/ncLyDSeoLDUys6eAfOAHd/9tWI4zw/mcVOwrPRVY4O5LzawmwXZ8KYC7TzOzbwnOQl4t9rlhQH3g3HC58cq9XZUlHdv865rZtPBvEUFyuCsc159gJxjo7j2AfwDXh+NuAx5w974EK/7wcPj1BF94X3fvBXwP7Oq0ty/BF9s9XN5Pww3gnwSnkn0JNuDfhAknIWbWmKAZ551wUFdguZn93cymAO8Sd0B39x1hE9E8YAVB7b/I68DJCS762XB9ziHY4R5z97XhDnw+cIy79wFOA+4JP3M+MN/d9w9j7mJmjczsUIKd6+DwM/fwvztAcYcCvw6bbSYC14TDHwSmhuuzD8GBZmSCZSrJKcAbRW/CJrUrCA6S8ToTVChGmtnEcN3vX1SLc/c84BPgGMqnI/C2ux8IXEdw2u/AeQQH+d4EzQaPAT9x9/2AW4DXwqYhwvH7u/tZ4fvBBAmsO8EBq4e7H0JQs7wtnOZ0YJK7Dwxj2AL83N3HEFQoHnT3P8etl5rh8EfCGIYDvzezgeEk/QkOBn0Iar+3llDWk4CGYZkOiCs/wP7h5/cjOECMDoeXtS++ALzs7j0J1vvv49YJ7l7U/HmYu/+4H5hZL4IDytHh8sYSHHSLPrc4XMcfu/svCWrw54TrAIIDVklnRPHbUjMgy91/iBu/hBLOJtz9X+5+FTsrEvHjKrpdlSgdk/9Wd+8d/rUDhgAvmFkHd58E3ARcaGb3EXxBDcLPvQT82cyeJUjevw2HHwucAHwZ1rxOJGjnLct4d9/m7jsIrj80IUjUnYAnw/l8RNBW3KccZesMLHP37eH7WgQbwuPu3o+gDfpNM6td9AF3v56gtr6QoC27yDzAElzumeH67EZwNnOKmf3M3TcRrJ8RZvY7gp2maH2OB34StrleSHDQWw+MCMvxabge7gGahLXp0kyNO1X/gmB9Ei77wnA+U4EDCc4CKqobQW2Z8KxiNMFZxuZi09UiqDlvcPeDCJLng2bWN26a8qzfIjsIav7w3+WMdzjwvrvPB3D3D4CVBNsswORiZz7vufv6sHnve4LvpSi+JuE8Hib4PkYCjxLU2BtQuq5AHXd/Nfz898ArBBUegEXuPm0X5fgE6GlmHxIk9YfcfW447qu4BP0k0MfMmlLKvhhuO72Av4XxLHb3TvFn52U4guCAuzj87ENeRtt+WK4FBNt8UeXunRIm/XFbovQ8W5BAfMVVZLsqUTom///iwUUVBw40sxHsPH1/jeCIXSOc7q8EieNdglOvr8MEkE1w0aZ3WEs5kF2378e3o8fCZWQD6+IOTL0Jmp+eKkdxCsP5FPkemOPu/wnL8Fo4vqOZHRSeChMehJ4mqFEVyaYCG1+4o48FDgnbuqcR1DY/ITiwFk33OUGCfBxoD3xmZoPC5Y6OWwf7A/2AtWUstqT1WVSGn8bNqz9Bjbai4tfvMIKmsufCRHM8cJWZ3U6w3iFYp4RJ6xOCbaNIRdbvdncvDF/HlzNeSftsFsEBCcLmuDjbir3fUfzDZnY3QRPDDwTf1zulLDvRGEr7vn7k7gsIKgF3AbnAe2ZWtF/FH7xqhH8FlL4vFk3/43UaC9QtowxF8ot9rq6ZddvFZ/5M0DpwLkHFq6QO0uK3pZXhvPeIG9+auDb9cqjQfluStE/+YQLsStBcMZTgLpe/AJ8T1Byyw+k+Bfq4+9MEp/mNCWrMbwOXmVlOeM3gCXY2I5WHA3lmdla4vDYEF9L6lvmp/zYf2NPM6oTv3wLaF9U4zewQgg15AUEN8UEzqxnGfSbwQdy8OhJcjygXM6tPsB4/I0jaPxC0r75NUDPDzLLD5qab3f1fBE0nMwm+h3eAn5lZq3CWFxG0dVfE2wQJuUZ4tjOW3Uv+3xA2Pbj7S+7ePi7RFDV/3BImri8Imq8I28wHAVPi5lWh9ZuAD4CjzKxjuOzDCc7G/rMb8xxGUPMeTZCohrIzceWzM6kXcWC7mZ0cxrAX8BOCilNCzOxigorPO+5+HcF3uU84ureZ7Re+vgCY6MFdXyXui2ENfyo7v482BM2DjRIIZQJwZNz2eCE7my6LFF8H/yQ4Y/8JwZlJSeK3pXyCSueFYXz7EbQefJhAfMVV2naVjsk/vs1/GsEXdYG7f0NQ0z/UzL4GJhGcQnUIN6RrgdvN7EuCDeI2d19IcHV9IcHBYxZBLeTq8gYVNtWcAJwXLv8dguSY8C2o4Q7wMXBY+H45wQHsUTObQdAGfnLYNng3wYW7r8K/fOCGuNkdTXDrGGZ2kZn9rYxFF7X5f0mwHt5w96fCMiwBPBzXluBg0JngDpneYVxTCA5Iz4cHibuBd8P1cEYYc0W6l72c4OLYdIILnNP53x23PP7JzqaLXTmJIAnPJNiJbw/PdggPRAMJrqtgZm+a2fGlzag8PLg18RLg1XDd/gE4LmxSq6jbgfvMbCr
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxU9fX/8VcIhMi+r4qo6JEdIcpSqlhFFJeitXWtte7+alu1dW/dam3d61K10lqXb2mrqHU3uC+gVVC2IAfDqmjCvgqBJPP7494pIyaTScjNJJn38/Hgwcy9M/eee2dy7ueee+fzyYrFYoiISGZpku4ARESk7in5i4hkICV/EZEMpOQvIpKBlPxFRDKQkr+ISAZqmu4AMoWZ9QYWAnPCSdnA18Cl7j41gvUtAU4Mn17p7idW/upqLfd6oJO7X1TJ/D8Cb7p7vpkNBO4F2gJlwPnuPsPMcsLp3w3f9jJwubuXmdkdwPPu/lYKsSwBSoAtBA2ZbOBud3+o5ltY6boeAea6++1mNhMY4+7ramG5Y4D73H1A+DwGdHb3VRW8tifwAPB9d4+F03KAd4DJ7n57OK0Dwf7tB+wG/N7dHzezVsCTwAnuviWFuN4EHnf3M3aa9yZwoLu3qvGG14CZHQ0Md/dra/DexO/lHcAPgTXhbHf3k8xsGMF39Lzai7r+Usu/bm1x9yHhv4HAHcAjUa7Q3afXVuKvipmNAPqFf2AtgCnAre5+APA74B/hSy8COgMDgEHAKOBH4bwbgXvNbLcUV3tauD8HAUcCd5vZHrWzRRUL17fLib8GJgI3xhN/6E/APju97hHgi3C/Hw7cY2a7u/sm4J8En0UqvgKOCT9LAMxsT8BqGP+uOhDoUN03JX4vw0mjgJMT/hZPAnD3GUBTMzum1iKux9TyT6+OBH9gmFkT4C5gBNAayALOcfepZjYauJOgZRsD/uDuT4WtvluAQ8J5nwC/cPcN8RUktizD1usGYCCwBzCf4I9gk5n1Be4OY8oG7nH3h6u5PdcD94WPjwAWuvtL4fPngMUA7n6nmd3r7uVm1hloR9gKc/f1ZjYVOC+MpzraA5uBTeG2nwWcD+QQJI0/uvsDZtYNeAzoFL7vRXf/bfies4H/R9AwWg1c5O7zE1cSb50DxwDHA+XAvsA24Ax3n2tmbcP4BwLNgNeBy9y9tJrbFF/nCKCLu09PmPZjgrOqFxOmdQDGAicDuPsXZjacHa3cJ4BbzOw2dy+uYrVrCM5WJwCTwmlnhI8vCNfXkuBsZD+CfbwROBVYBkwH/uzu94efxSUELfevE+I9EzgbaAmsJ9inFS2vXbjObDNb7+7XpPJZha4n/F6aWXPgAODXZrYPUAhc4u7Lwtc+FK7/hSr2TYOnln/d2s3MZob/lhIkhz+E84YDPYCR7t4PeBS4Mpx3A3Cnuw8DzgK+F06/EigFhrn7YOBL4I9VxDCMoIXcN1zfD82sKTCZoDw0jOBg8usw4aTEzNoRlHGmhJP2A4rM7G9mNh14lYTGhrtvD0/FFwLFwLsJi3seOCHFVf8j3J/zCQ5+D7r72rDEcS4wPmwBnwTcGr7nXGCRuw8NY97XzNqa2SHAT4Dvhu+5FXi6ivUfAvw8LNtMBS4Lp98FzAj35wEEB5pLU9ymipxIQkIKS2q/JDhIJupD0KC41Mymhvt+aDzhuvtW4D1gfIrrfQz4ccLzk9hxIAA4Cljn7iPcfT/gI4IkvIXgAHSjmY0HbgZOTEz8CfoTlNEOTbK8/wIPAv8OE39Kn1UF38sewBvAVcAQ4APgWTPLCvfPB0BPM9srxf3TYKnlX7e2uPuQ+BMzGwW8bGZD3P19M/sNcH7YIhlD0OqBoLX2ZzM7FngNuDqcfgxBi2ismUHQwl1RRQyvuHtJuP45BK2r/QhKBw+Hy4GgVnwAwR9HKvoAX7n7tvB5M4IEc6i7/9fMvg+8ZGZ7xtfv7lea2W8JyhkPEPwxQ3BASLW0cFq8NWxmPYA3zKzA3f8Znr4fbWb7Evyhx2vUr4Sx9CLYn1eGZxxHh9sxLWE/dAhb05WZ4e5fhI8/ZsdB6xjgoLB1CsH+3BX7A/8Kt7Mt8DhwqrtvTogVgv2+F7DB3b9jZn2Ad83ss7CsAdXbv88DD5hZF4Kzm/nsOIvA3Seb2SIz+znBvhsDvB/Om2NmNxActH7i7l7JOmbHz1aTLW8nlX5W7r4m4XXf+F66+2ISDnxmdjvwW6A34ZkpsIhg/yymEVPLP43cfRrgBEniaHacvj9L0MqJt0b+QlA+eBUYB8wOE0A28Mt47RI4iB0XeSuTeKEvFq4jm6C1NSRhWSOAv1djc8rD5cR9CcwPW2y4+7Ph/L3N7Dtmtl84fTtBjXpownuzCS4QV4u7f0lQXjrYzHYHZgJ7ErR0f5Pwuo8IEuRDBH/0H4YH4myCC5zxfTAUyAPWJlltRfszvg0/TFjWcIJrHTWVuH/HERz0J4UXn48DLjGzGwn2O4TXkty9kGD7D0pYVsr7N0yaTwGnEBycH0mcb2YXAn8juHlhEsE1hayEl/QnOLNLdha5qRrLS9yGVD6rb3wvzWxQWC5LlAVs32nZ1f7+NTRK/mkUJsD9CMoVYwnucnmA4FR3AuGX1symAQe4+yMEp/ntCOrb+cBFZpYTXjOYyI4yUnU4sNXMTg/Xtwcwl6BElKpFQBczyw2fvwz0Du+gwMwOJkiOiwnKVneZWdMw7tMITsXj9iZoYVZLWH8eC3xIkAhWAjeFF/qOCV+THZabfuvu/yEonRQQfA5TgFPMrHu4yAsIavU1kU+QkLPCOvNz7FryX0CwX3D3J9y9d0Liew64y92vDVu2HxOeRZlZV4ILnNMTllXd/fsYcCZwMMFZU6JxwCPu/jeC79Gx7PjengAcSnBR/4jw7K8qlS6PoMTZLHyc6me18/eynOACeLyscyHBmccXYcxZBA2Cys5SGg0l/7qVWPOfSVBnP8/dFxC09A8xs9kEp7kLgb3C5Hg5Qe30E4Lb725w9yUEd20sITh4zCNowfyqukGFrbvvA+eE659CkBxTvgU1vPvlXYI/dty9iOAAdr+ZzSWogZ8Q1pxvAZYCs8J/pQQ12LgjCW5JxMwuMLO/Jll1vOb/CcF+eMHd/x5uwxeAh/N6ERwM+hDcITMkjGs6wQHpn+FB4hbg1XA/nBrGXJOub39BcBFzDjA7/P/WpO9IbjLBfknF8QTJtgB4i+AOoY/gfxc8RxKUczCzl8zsuGQLc/f3CbblhQouWN9OUKqcSZB8Pwb6hA2IBwkugK8kOBhNDM/IkqlweeG814HjLLhZIKXPqoLv5Vzg58DzZvZpuK9OSXhLHsGNCsto5LLUpbPUlrB0co27H70Ly2hLcOE0z923mllr4K/x2/EymZlNIdi/H+3CMs4E+rv7ZeHzc4FV7v5M7URZ/1Tne2nBHXFPuvuLVb22oVPLX2pN/BqGmaXaQq3IdcDF4RkCBBdqr9vl4BqH84Dr4nemVFd4ID2V4NbHuFIa+W2NqX4vzSwPKM+ExA9q+YuIZCS1/EVEMpCSv4hIBmoQP/IaPnx4rGfPnukOQ0SkQSkoKFjl7p0rmtcgkn/Pnj15+umqfmUvIiKJLOhGpkIq+4iIZCAlfxGRDKTkLyKSgZT8RUQykJK/iEgGUvIXEclASv4iIhlIyV9EpB4qK4/x9MdfsH7L9qpfXANK/iIi9dCt+fO59IlZzPtyQyTLV/IXEalnnprxBX95exGnDe/FiL2TDSFdc0r+IiL1yIyla7nq6TmM3Lsj1x/Xn6ysGg3fUCUlfxGRemL5ui2c//h0urfL5f7ThtIsO7oU3SA6dhMRaew2l5RyzqPTKdlezr/Oy6N9y5xI16fkLyKSZuXlMS59YiZetIG/nXkgfbq0jnydKvuIiKTZXa8tIL+gmKvH9+VQ61In61TyFxFJo2dnLufeNwo5KW8Pzh69V52tV8lfRCRNZn6+jssnz+ag3h343YQBkd3ZUxElfxGRNChav5XzHptO59bNeeD0oeQ0rdt0rOQvIlLHtmwr49zHprO5pJS//iS
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5hU5dnH8e82WHrv0sEbkS5KEYXEWMBYo4kaXxN9FU15YzSJIdGoMZZoNJYkRrFGo4nG3lGjEUQEC1246UVApAhL2V22zPvHOSsTXJZtM2dn5/e5rr12Tr+fmXPuec5zzjwnIxaLISIi6SUz6gBERCT5lPxFRNKQkr+ISBpS8hcRSUNK/iIiaUjJX0QkDWVHHUBdYmY9gOXA/HBUFrAbuNzdpydge6uAM8LBSe5+xv7nrtJ6rwXauvuP9zP998Db7j7FzAYCfwJaACXAxe7+kZk1CMcfFS72KnCFu5eY2W3Ai+7+n0rEsgooBPIJKhtZwJ3uPrn6Jdzvth4GFrj7rWY2Bxjn7ttqYb3jgD+7+4BwOAa0c/fN5czbBfgrcIq7x8JxDYCpwFPufms4rjXB+9sfaATc4O6PmllT4F/A6e6eX4nY9htL3DzNCT6/lsDV7v50pQtfQ2Z2IdDA3e82s0uAlu7++2RtP4zhcOB/3f2Saiz7A6DE3Seb2QjgL0ATYD1wrrtvKGeZ44EbCPJrKfCr8Fg7iOAz/5a7l1a/RLVDNf+vynf3IeHfQOA24OFEbtDdP6ytxH8gZjYS6B/ujI2B14Fb3H0o8DvgsXDWHwPtgAHAIGA08O1w2nXAn8ysUSU3+93w/RwEnADcaWZda6dE5Qu3V+PEXw33AdeVJf7QHUDvfeZ7GPg0fN+/AdxlZge5+07gHwSfRW0ZAnRw90OTmfhDY4DGAO5+T7ITf+hQ4KCqLmRm3YHvA/eFX+BPAZe6+yHh6wfKWaYF8DjwPXcfEi7/hJk1c/dPgdnAD6tZjlqlmv+BtQE2AJhZJnA7MBJoBmQAF7r7dDMbA/yRoGYbA25y96fDneZmYGw4bTbwE3fPK9tAfM0yrL3mAQOBrsBi4Cx332lmhwB3hjFlAXe5+4NVLM+1wJ/D18cBy939lXD4BWAlgLv/0cz+5O6lZtaOoNa4NZy23cymAxPDeKqiFbAL2BmW/QLgYqAB0Br4vbv/1cw6Ao8AbcPlXnb334TL/C/BAZQJbAF+7O6L4zdSViMGvgmcRlAD6wvsAc5z9wXhgXonwXudA/wb+IW7F1exTGXbHAm0d/cP48b9D8FZ1ctx41oDxwJnAbj7p2Gtcms4y5PAzWb2B3ffWMlt9wjjfwUYQfBeXgnMAR4EuoRnQ6OA44FrCPahPIIz21nhGeMooBMwD1hG8KXVG+gMzCSoLHwP6ElwJvgPM+sA3At0ADoCqwkqCkcCJwPHmlk+wefR1t1/bGaHEuyHbQiOl9vc/ZHwWLgBWEFQ8WgI/Mjd396nvOMIPrtdBDXxI4Bb2OfYBNYQVFZamNlD7n6+mZ0EXEWwz+0Gfu7uM8p5W38FPOrusfDsIS+uBeAB4A4za+PuW+KWyQF+6O4Lw+FPwljaAjvC5WaZ2WR331PONpNGNf+vamRmc8K/1QQ72E3htBEEB8Eod+8P/A2YFE77LfBHdz8MuAD4ejh+ElAMHObugwlOFw9U+zmMoIZ8SLi9M80sm6C2MSncxljg52HCqRQza0nQjPN6OOpg4DMze8DMPgTeIK5C4O5FYRPRcmAjMC1udS8Cp1dy04+F7+digi+/e9z9i7CJ4yJgQlgD/g7BAUw4foW7Dwtj7mtmLcxsLEHyOSpc5hbgmQNsfyzwf2GzzXTgF+H424GPwvdzKMEBenkly1SeM4CXygbCJrVLCb4k4/UhqFBcbmbTw/d+mLvvBnD3AuBdYEIVt98LmOLuRwC/JDijc4IkuDysiXYH7iFoehgEXA08HzYNEU4f5u7nhsNjgPEE++KxBGeNRxOcGf42nOcsYIa7jwpj2A38j7s/S1ChuN3d/xL3vmSH4/8UxjAeuNHMRoWzjCD4MhhKkCyv3U95BwBnh8fVMMo5Nt19bVjGaWHi7wvcyN59biLwjJk1iV+xmWUA32Lv59kVWFs2PUzcm4Au8cu5+2Z3fyJu1HXAEncvq1StI8gBR+6nTEmj5P9V8c0+3YFxwD/NrGdYO7gKuNjMbiU42JuGyz0J/MXMHiNI3r8Ox38TOAWYHda8TiVo563Ia+5e6O5FBNcfWhMk6t7Ag+F63iFoKx5ahbL1ATbE1ThyCBLMZHcfTtAe+YqZNSxbwN0nEdTWVxG0ZZdZDlglt1vW7NOP4CA6w8zODps4vgmcaGa/I6iplr2frwHfMrNXCM4MJrn7duDEsBzvhe/DLUDrsDa9Px+Fp9wAHxO8n4Tbvjhcz0cEtceBlSxTefoR1JbLTv8fJTjL2LXPfDkENec8dz+SIHnebmaHxc1Tlfe3TBFBzR/+u5zxvg78291XALj7W8DnBPsswPv7nPm86e7bw+sP6wk+l7L4WofruJPg87gcuJsgKTdl/w4Gct39mXD59cDTBBUegNXuPucA5QBY6+6rw3VUdGzGO5bgzObf4ef+GMFZYZ995mtDcH1iVTi8v1xZUt5IM8s2s7uAMwm+ROJV57OtdUr+B+Du7wEOHGFmJ7L39P15ghpURjjfvQSJ4w2C0+p5YQLIImgnHBLWvI5g70Xe/Ym/0BcLt5EFbIv7YhpCcIr7UBWKUxqup8x6YLG7zwzL8Hw4vZeZHWlmB4fjiwjaqIfFLZvFfnb8ioQH+gvA0eEFsDkEtc13CQ7esvk+IEiQk4EeBKfKo8PtPhr3HgwDhgNfVLDZ8t7PsjKcGbeuEQQ12uqKf3+PJ2gqezxMMicDl5nZdQTvO4TXktx9GUH5j4hbV3Xe3z2+90JifDnjlXfMZxJ8IUHYHBencJ/hon0XNrObCWq4mwg+r9f3s+3KxrC/z2tfX8Za0bG5jyyCL799j6MF+8xXCmSETb0QNB91itteDsGZ4rp9N2BmrYApBF+CI919TTkxVPnYqW1K/gcQJsCDCZorjiW4y+WvwAcEtfiscL73gKHu/jDBqWRLghrzFODHZtYg3JHuY28zUlU4UGBm54bb60qwwx5W4VL/bQXQ3sxyw+FXgR5lNU4zO5rgYFtJUEO8PazBZALfBd6KW1cvgusRVRKeXh8LzCJI2puA6919CkFNHDPLCpubfuPuzxE0nSwk+BxeB842s7ID8RKCtu7qmEKQkDPCs50XqFnyX0LwvuDuT7p7j7gEU9b8cXXYBPAxQfMVYZv5aODDuHVV6/2thLeA48ysV7jtrxOcjc2swTqPB+5w90cJziKOZe+XYDF7k3oZB/aY2elhDJ0Jasdv1CCG/R6b+8RQVv5+4bYnEFzfyI1fmbtvJahQdA9HzQTahBUQCJp2Z/g+NxWE+9HrBMfQcftcDyiTqM+2SpT8vyq+zX8OQTv7RHdfQlCbGGtm84AZBKdvPcPkeAVwnZnNBt4GfhueMv6OoMlkNnsv/vysqkGFTTWnABeG23+dIDlW+hbUcEedBnwtHP6M4CC528wWELSBnx62Od9McOFubvhXTHABrMwJBLckYmaXmNn9FWy6rM1/NsH78JK7PxSW4VPAw2ndCL4M+hDcITMkjOtDgoPpH+GXxM3AG+H7cE4Yc3W6p/0JwcXC+QQJYD57rzlUx1Psbbo4kNMIktBC4D8Edwh9AF8mkFEE11Uws1fM7OQaxPUld/+E4GL5M+F7+3vgpLBJrbquA241s48Irr+8y95mlFeBn5jZl/tOeCZ5KnBp+Bm+SVD+t6m+io7NGUA/M3s2vBA7kaApdy7B8XlyOU1zENcUFcZ8OsFF3oUElaHzIfjyCvfvzgRn9cMJziI/jMslA8N5OwDtCa49RSpDXTqnl7DmcqW7n1iDdbQg2HmHu3uBmTUD7nf379RWnKnKzF4neH8/qME6vg8c6u6/CIcvAjaHF1AlScysJ8EX+vBqVi7KW+e1wKb4C+BRUc0/zZRdwzCzytZQy3M
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5hU5dnH8e/uspQFFliKFGmK3mKhCNJsmMRuosaOJRZETezJa4lRo4lvNPbyRiNI7Io9ahB7AQRBQhPlRjpIUdoCwi5b5v3jnMURl93ZMjszO7/Pde21M6fe58w59zznOWeeJyMSiSAiIuklM9EBiIhI3VPyFxFJQ0r+IiJpSMlfRCQNKfmLiKQhJX8RkTTUINEBJBMz6wYsAGaHg7KALcDV7j4xDutbDJwcvr3O3U/e+dRVWu6fgTbufulOxt8OfOjub5vZfsCDQAugBLjI3aeZWcNw+MHhbG8B17h7iZndDbzh7h/FEMtioBDYSlDYyALud/dHq7+FO13X48AX7n6Xmc0Ahrr7hlpY7lDgIXffN3wfAdq6+5pypu0EPAwc7+6RcFhD4BPgJXe/KxyWR7B/9waaALe5+1Nm1gx4Efi1u2+NIbadxlLBPDcAFwHvE3zmz7v7exVMfy5wsrsfV864L4BLYzkWkpmZHQsMdPebqjFv9Pl0KXAJECHIJRe6+7dmdjzQ291vrdXAa0Al/5/a6u59wr/9gLuBx+O5Qnf/vLYSf2XMbBCwd3ig5gDvAH93977AX4BnwkkvBdoC+wK9gCHAqeG4W4EHzaxJjKs9M9yfvYCjgPvNrHPtbFH5wvXVOPFXw0jg1rLEH7oP2H2H6R4Hlof7/RfAA2a2q7tvBp4j+Czi5QJgmLuf5+7DK0r8aeQAIK+qM+1wPvUD/gAMCQsKXxN+ju7+b+BgM+tTizHXiEr+lWsNrAQws0zgXmAQ0BzIAIa7+0QzOwi4h6BkGwH+5u4vh6W+O4BDw3HTgcvdfWPZCqJLlmHpdSOwH9AZmAuc7u6bzawncH8YUxbwgLuPruL2/Bl4KHx9BLDA3ceG718HFgG4+z1m9qC7l5pZW6AlsC4cl29mE4ERYTxV0Qr4Htgcbvv5BKXQhgQn3+3u/rCZtQeeBNqE8/3H3W8M57kA+C1B4WUtQclzbvRKykrEwHHAiUApsAewDTjH3b8wsxZh/PsB2QQl4f9x9+IqblPZOgcB7dz986hhZxNcVf0nalgecDhwOoC7LzezgYT7F3gBuMPM7nT31TGuu1sY/1hgIMG+vMHdx+ww3RhgV+AxM7uJoJT6kLu/ZGZDCI7VpgT768/u/uYO8+8NjAZyCI7NpjuJ5yNgGvAzoB3Bft6F4DxoCpzq7rMr+gwqODbOZSef6Q4xnEvwRdcUyCc4Fh4G9gyXtwkYRnBsXwxkmVm+u98QyzEW+jPh+RReMe/h7kVm1hjoRHg+hR4Dbg5jTziV/H+qiZnNCP+WEByYfwvHDQQ6AoPdfW/gCeC6cNwtwD3u3g84n+CgJxxfDPRz997ACuD2SmLoR1BC7hmu7xQzawC8RFA91I/gJPpDmHBiYmYtCapx3gkH7QmsMrPHzOxz4F2iCgThQXw7weXramB81OLeAH4d46qfCffnXIIvv0fcfX1YxXEhcExYAj4N+Hs4z4XAQnffP4x5DzNrYWaHAr8BDg7n+TvwSiXrPxS4LCyNTQT+Jxx+LzAt3J99Cb5oro5xm8pzMrA9WYZValcQfElG60FQoLjazCaG+35/d98C4O4FwATgmCqufzfgbXcfAFzLD/tyO3c/jeAYPDP6i8HMWgH/As4O9/mvgIfNrMsOi3gGGBlexd0PdK0gnm7hZ/Rrgi+Vj9y9PzAOuCycptzPoJJjA3b+me5oH4Lqv8OAo4EN7j7I3fcEphIk9c+AR4AxYeKP6Rgr53wqO2dOAJYDhxDs0zL/AY6swhVzXCn5/1R0tU9XYCjwvJl1d/dJwJ+Ai8zsLoKTvVk43wvA/5nZMwTJ+4/h8OOA44HpYT30CQT1vBUZ5+6F7l5EcP8hjyBR7w6MDpfzMUFdcd8qbFsPYKW7bwvfZxMkmEfDk/JBYKyZNSqbwd2vIyitLyYoNZVZAFiM6y2r9tmL4GrmZDM7I6ziOA441sz+AtzAD/tzHHCSmY0lKP1d5+75wLHhdnwa7oe/A3lhaXpnprn78vD1f/nh8v44gs9yBkEpdQBBCbS69gLmA4Ql2qcISqTf7zBdNtAd2OjuBxJcAdwbVhuUqcr+LVNEUPKHH29nLAYDHYDXwv0xluAKtlfZBGbWOnz/JEB4H+yLny5qu7KEuSD8Py7qfYWfQSXHBuz8M93RrLKrbHd/CXjczC4zs/sJzu1m5cwT6zG24/lEuJ7X3L0NwVXB22GNAe6+ieCqvqIvzDqj5F8Jd/8UcGBAeFOo7PL93wSlhYxwun8SJI53gSOBWWECyAKuKPtCITi4K6vfj77RFwnXkUVQaukTtaxB/LhkUZnScDllVgBzw5JPWb1kFrCbmR1oZnuGw4sI6qj3j5o3i+BmYZW4+wqC6qVDzGxXYAbByTCB4Iu1bLqpBAnyUaAbMCWslsgCnoraB/sD/YH1Fay2vP1Ztg2nRC1rIMG9juqK3r9HElQnPBsmkF8BV5nZrQT7HcJ7Se4+n2D7B0Qtqzr7d5u7l4avo7czFlnAV+UcX29HTVN2HyN6uRVVkRVGvwmPo/LW+5PPoKJjI7Szz3RHm8temNklBFUvW4BnCe6tlDdfrMfYj84nM+sRVv+WGR3G32qHZVf5vIkHJf9KhAlwT4LqisMJnnJ5mOCS8QTCD9/MPgX6uvvjBJf5LQk+9LcJDuaGYQlgJD9UI1WFAwVmdla4vs4Epa5+Fc71YwuBdmF9JARP8HQrK3Ga2SEEJ9Iigmqre82sQRj3mcAHUcvajaDOt0rMrCnBfpxCcEJ9B/zV3d8mKOlhZllhddON7v4aQdXJHILP4R3gDDPrEC7yYoJ64up4myAhZ4RXO69Ts+Q/j2C/4O4vuHu3qATyOnCvu9/k7osISqu/ATCzXQhuqH8etaxq7d8amExQtXZIGFMfghuWHcsmcPd1BKXz4eE0+1OzKyXY+Wew02OjBus6Enjc3R8jOJ9+yQ/Ju5jgigxiP8Z2PJ86ENQSlN2nOpPg6bO1YewtCK7Wl9ZgG2qNkv9PRdf5zyCoZx/h7vMISvqHmtksYBLB5Wv3MDleA9xqZtOBD4Fb3H0xwd3+xQRfHl8SlDR+X9WgwkvL44Hh4frfIUiOMT+C6sHTL+OBw8L3qwi+wP5hwSN79xI8YlhAUEe7BJgZ/hUD10ct7iiCRxIxs4vNbFQFqy6r859OsB/edPd/hduwHPBwXBeCE74HwRMyfcK4Pif4QnouTAR3AO+G+2FYGHN1mqe9nOBm4GxgVvj/J/XkVfASwX6JxYnAEWY2B/iI4AmhqQBhEhxMcF8FMxtrZr+qQVyVcvfvgJOAO81sJkGV1dnuvmSHSc8ATjez2cCNwFc1XPXOPoOKjo3quosfqpjeJ/gCLlve+8CvLHjIIaZjrJzzaTxwG/BRuI7TCc6vMkcQHPs/uiJKlAw16ZxewqqTG9z92BosowXBTbb+7l5gZs2BUeHNxLRmZu8Q7N+pNVjGucA+7v4/4fsLgTXu/mrtRCm1pSrnk5l9AFzp7rPiH1nlVPJPM2X3MMws1hJqeW4mOIgLwvd9wmESVPndbGZVqW/fLvwiHUZws7BMMVFPEUnyiPV8MrMTgfHJkvhBJX8RkbSkkr+ISBpS8hcRSUMp0bzDwIEDI506dUp0GCIiKWXOnDlr3L1teeNSIvl36tSJV16p7Bf8IiISzYImasqlah8RkTSk5C8ikoaU/EVE0pCSv4hIGlLyFxFJQ0r+IiJpKG7J38wGWtCV247Df2lmU81sUthglYiI1LG4POdvZtcAZxP01Ro9PJug2eADwnETzex1j7GfUhGRulBcUsrK/AKWrd/CsnVbWJlfQGlp3beD1ig7izMHdqFlTsNaX3a8fuS1gKDfzqd2GN4TmO/u6wHMbAJ
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wU9f3H8ddVjnJHbyId+QACIqI0xYoFuzH22GJNjFFjLDHGmF+aGmM0iRo1lhixETX2ElvIASoiAgIfBDyadLjjKNf398fMwXreHQfc3t7tvp+Pxz1ud2Z25jOzM5/5zndmv9+USCSCiIgkl9R4ByAiIg1PyV9EJAkp+YuIJCElfxGRJKTkLyKShJT8RUSSUHq8A4gXM+sFLAJmh4PSgK3Ade6eG4Pl5QGnh29vcvfTa556l+b7S6CDu19Vw/jfA++7+1tmNgT4M9AaKAcud/dPzSwzHH5I+LE3gBvcvdzM7gZecfcP6hBLHlAMbCMoWKQB97r7Q7u/hjUu63Fgjrv/wcxmAoe5e349zPcw4C/uPjh8HwE6uvu6aqbtBjwAnOzukXBYJvBfYJK7/yEc1o5g+w4CmgO/cfcnzawV8Dxwmrtvq0Ns6cCNwLlA5TPaHwC3uvuGOnz+beCcqutiZjkE33kb4LfAD919zE7m9QHBdppUZfgIgnXvtbN4Gjszexh40N0/3cXPZQOTgFPCQX8FDiQ4Jj4i2L7bduXYioVkL/lvc/dh4d8Q4G7g8Vgu0N2n11fi3xkzGwUMChN/C+Bt4E533x/4P+CpcNKrgI7AYGAoMAY4Ixz3K+DPZta8jos9N9yeQ4FjgXvNrHv9rFH1wuXtceLfDQ8Dv6pM/KE/AX2rTPc4sDzc7kcB95nZ3u6+GXia4Luoi2eAfYGD3X1fYBiwBJgaJpydGV/D8GFAZ3ff192f2lniTyLjgZTd+NwdwMPhCf0WgkL2fgTHVnPg5nC6XT226lXSlvxr0B5YCWBmqcA9wCggm2AnuMTdc83sYOCPBCXbCPA7d/9XWOq7Azg0HPcZcLW7b6pcQHTJMiy9bgKGAN2B+cBZ7r7ZzAYC94YxpQH3ufuju7g+vwT+Er4+Gljk7q+H718GvgJw9z+a2Z/dvcLMOhKUADeE4wrMLBe4LIxnV7QFtgCbw3W/GLgcyATaAb939wfMrAvwD6BD+LnX3P3W8DPfB35AUFBZD1zl7vOjF1JZOgdOAE4FKoB9gBLgfHefY2atw/iHABnAu8BP3b1sF9epcpmjgE7uPj1q2PcIrqpeixrWjiCJnAXg7svNbCTh9gWeA+4ws7vcfXUtyxtNsC/2qozZ3UuBO81sLHAFcFfVK5WobXNXOKv3zWyCuy8LxxvwKNAtvII6G/jE3VuF428BvkOw/fOAH7j711ViuxK4Fihgx5V01fh7Ae+Ff6MJvoPrCfaHAcB04OxwHxxDcBy1JPguf+nur5pZS4Irrf4E+08hwZWMh1ciU4GxQA9gMnCBu1dUieODcNsPCOf1CXAn0AzoCrzj7t83s98AewFPmdn5BMfmTvefsKBzAnB1OOi/QF5lHGb2GcEJfE+PrT2W7CX/5mY2M/xbQvAF/C4cN5Lgyx/t7oOAJ4CbwnG3A3909wOAi4EjwuE3AWXAAe6+H/A18PudxHAAQQl5YLi874aX95MIqocOIDiZXB8mnDoxszYE1Thvh4P6A6vM7O9mNh14h6iTv7uXhlVEi4DVBAdPpVeA0+q46KfC7Tmf4OT3oLtvDKs4LgUmhCXgMwkOOsLhi919eBjzPmbW2swOBS4ADgk/cyfwwk6Wfyjwo7DaJhf4aTj8HuDTcHvuT3Ciua6O61Sd04FXK9+EVWo/JjiQo/UjKFBcZ2a54bYf7u5bAdy9CPgfMGEnyxsDTK3hZPUf4ODaPuzuF4UvD69M/OFwBy4hKBgMI6iyq1yn8wmS3UHhuNeBR6Lna2bDCAoZ49z9QIITbk16Ay+HVy3vEhxvZxMkw0OAUWbWFngM+F64P5wEPGBmPYDjgHx3H+Xu/QkSd3R1Z1/gsDDmIwj2hepsdPdB7v5ngu/sF+4+kqBa7iQzO8DdbyE4fs9194+o+/5zMvBe1An6bXdfEG6rnsA1BFV9lXbl2KpXyV7y3xbu1ACEJY43zGyYu081s58Dl5tZ5U5VGE76HPBXMzuR4MD7WTj8BIJS8/igQEUmsGYnMbzp7sXh8mcTlGj6E+zIj4bzgeBycX9gWh3XrR+w0t0rD8YMggRzuLt/ZGYnA6+bWc/K5bv7TWZ2K0F1xgMEiReCE4JRN+dWlobNbC/gPTP7wt2fNrMTgOPNbB+CqoZWldsgjKUHwfa8KSwVHR+ux5So7dAuLE3X5FN3Xx6+nsGOA+sE4KDwSgKC7bknBhBUwxBeVTxJUArdEhUrBNu9N7DJ3ceaWT9gspl9GVWXXNftm1HD8GbsuAdQn04ADgKmh+uUBrSoMs2RwNvuvip8/xBBYaY6pQTJDoJ1nlJ5VWxmXxPs+6MJSuAvRW3HCDDU3SeZ2WIz+xHBfnEYQWm/0ithCbvQzBaG86tOdMHmAmCCmf2M4DttwY79Mlpd958BwMKqA83sAOBFgqv+V6NG7cqxVa+SveT/De4+BXCCL/l4dly+/xt4kLD+z93/RlC6eAc4BpgVJoA04MeV9xEIDpyd1e9H3+iLhMtIIyjhDIua1yiCElFdVYTzqfQ1MD8sxeDu/w7H9zGzsWbWPxxeSlBHPTzqs2kEN4h3SVg98DIwzsz2BmYCPQlKuj+Pmu4TggT5ENAL+Dg8EacBT0Ztg+HACGBjLYutbntWrsN3o+Y1km+WGndV9PY9huCkPzGsOjkJuNbMfkWw3SG8l+TuCwnW/6CoedVl++YS7JdVky/A4cCUqPcpsP3m855IA+6I2mYjCKpVokVvYwiufGtSUuX+SGkNy5xXzb7/Vli99HeCBzMmEtwviV52Td99VZujXk8mKBTNJ6iDX17D5+q6/1Q97jCzswhyxU3u/ttq5rvLx1Z9UPKPEibA/gTVFeMJShKV9YKnEH6pZjYF2N/dHye4zG9DUL/9FnCVmWWG9wweZkc10q5woMjMzguX1x2YQ1BFVFeLgU5mlhW+fwPoFZZAMLNxBAfIVwSXyPeYWXoY97kEdbOV+hAcHLskrKMdD3xMkDjWAr9297cISlKYWVpY3XSru79EcBn+BcH38DZwtpl1DWd5BUF1we54iyAhp5hZM4KT0p4k/wUE2wV3f87de0UlhpeBe9z9F+7+FcEVyAUAZtaZoApnetS8drp93X0a8CHweFg1UrntbiHYVn8LJ11LsK3h29UJ5dR89VCdt4BLLHgaCILk+GSVad4Bjg5P7gAX7sL8qzONoNpvHGyvVvqSoEr0GOBxd/87wTFyIlUS7a4It+MI4EZ3fwHoRnBFUTnPMnZsr7ruP9v3i3AZpwP3AUe7+8Rqpt+tY6s+JHvyj67zn0lQz35ZWEf3IHComc0iuLRcBPQOk+MNwK/CmzfvA7e7ex7BUxt5BCePuQQliJ/salBhVc3JBAfeLIIkeKvvwiOoHjz9MpmgVEh4WX4KcL+ZzSGowzwtrHO+g+Cpkc/DvzJ2PJEAwWX88wBmdoWZfaPet4rKOv/PCLbDq+7+WLgOywEPx/UgSFT9CJ6QGRbGNZ3ghPR0eJK4A3gn3A7nhDHvThXH1QQ3EGcDs8L/d9b6idpNoubqjapOJUiQXxA8mvmr8GqHMJGMJqwOMbPXzeykGuZzHkFB5MOwinAewYMCY9y9IJzmaoIqyRkE1YQroz7/AvA/Mxtcx7gfIbivMS2MfShVkru7zyY4Ht4N72dkVZ3JrnD3tQQ3mO8ys88JTjbfc/clwB8IqmFnEhQCZhDsP7u7rI0EhbMZYew3E1xhVc7zJeBZMzuauu8/LwGHm1nlCeR3BHngkahc89eo6bcfWw0tRU06J66w6uQWdz9+D+bRmuCAGOHuRRY8UviIu59ZX3E2VRY8N39LZSLfzXlcCOzr7j8N318KrHP3F+snSmloZvYQ8B93f24n033j2GqQ4KI
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxcVZn/8U93Z1+BLIgRSCDJIyKb4BD2gCCrAg6OCrghAg6OIPwEXBBxxlE2EWRQQVkHxg1RUFlUQCHIDgooT1UCQdbqJEBS1Vl7+f1xTiVF7K5UL7e2+32/Xnml6t7qe59769ZT555z6pyWnp4eREQkXVprHYCIiFSfkr+ISAop+YuIpJCSv4hICin5i4ikkJK/iEgKDat1AI3EzKYDC4An46I2YDlwmrvPS2B/C4Gj4tOz3P2ovl/dr+1+DZjs7p/tY/23gLvd/Q4z2w74LjAR6AJOdPdHzWxEXL5X/LPbgDPcvcvMLgJudfd7KohlIbAKWEEojLQBl7j7FQM/wj73dQ3wlLtfaGZPAHPd/Y0h2O5c4DJ3f2d83gNMcffFvbx2GvA94HB374nLRgB/An7u7hfGZZsQzu87gNHAN9z9ejMbB/wM+IC7r6ggtkOBrwBjCJ/3pwnX64uDO+oNM7OjgM+6+9yk9zUQZtYG/Ar4lLvnzOxLwMcI5+l/gXOL71Evf7sR4T07zt0ficsqvu7rgUr+/bfC3XeM/7YDLgKuSXKH7v7IUCX+DTGzOcA7YuIfA9wJnO/uOwH/CdwQX/pZYArwTmB7YHfg3+K6rwPfNbPRFe72mHg+twcOAi4xs82H5oh6F/c36MQ/AFcCX18vqXwH2Hq9110DvBjP+/7ApWb2NncvAP9HeC/KMrO3AtcCH3b3Hdx9W+AvwE8HfxhN4XTgnpj4DwE+COxMuKb3jc//SXztQ8Db11vV3+u+plTyH7xJwCsAZtYKXAzMAcYDLcDx7j7PzPYEvk0o2fYA33T3m2Kp7zxgn7juceBz7r6suIPSkmUsvS4DtgM2B54hfLgLZrYNcEmMqQ241N2v6ufxfA24LD5+L7DA3X8bn98CPAfg7t82s++6e7eZTQE2Al6L65aa2TzghBhPf2wMdACFeOzHAScCI4BNgG+5+/fM7C3AdcDk+He/cfez4998Cvh3QuFmCaH0+UzpToqlc+Aw4EigG5gFrAY+5u5PmdnEGP92wHDgD8AX3L2zn8dU3OccYGqxpBiXfZRwV/WbkmWbAAcAHwZw9xfNbFfi+SUk7/PM7AJ3z5XZ5WTCeRtXsuw7wBNxP58APkI4T9OAl4CPu/vL5Y693HVmZl8HjiGc92wf52EccDXhfHcDjxLuKLvj+3064S5zcYznBTM7AfhcXJ4jvKeZ+HnYhPDl+WvgbDbweYoxjAFOjccH4Rq40d074vqrgWPp/Yvyc8DHCV/Caw3yuq86lfz7b7SZPRH/PU94k78Z1+0KvBXYzd3fQSh1nRXXnQt82913Bo4D9ovLzwI6gZ3dfQfgZeBbG4hhZ0IJeZu4vw+a2TDg54TqoZ0JF///iwmnIvFWdi9CaR9gNvCqmf3IzB4BfkdJgcHd18QqogWED+S9JZu7FfhAhbu+IZ7PZwgf1u+7++sxSXwaOCSWgD8EnB//5tPAs+7+rhjzLDObaGb7ED6Ye8W/OR/4xQb2vw/wH7HaZh7whbj8YuDReD53IiTT0yo8pt4cRUhQAMQqtVMIyaLUTEKB4jQzmxfP/bvcfTmAu68E7gMOKbczd/8r4U7jcTP7m5ldCbwPuKPkZXsAJ8fr9VHg0ri812Mvd52Z2eHAvwI7Eu4EJ/YR2pHAeHffEXh3XLaVme1ASNwHxbvAW4Avm9l+wBnAvvEzciPwSzNriX87xt23dfczqfzztB+Qcfcl8fnmwAsl618E3tZb8O5+kLv/uY9j6891X1NK/v1XWu2zJTAX+LGZzYgXxFeAE83sQsKHvVjq+inwP2Z2AyF5fykuPww4nPABfQI4glDPW87t7r7K3dcQ2h82ISTqrYGr4nb+SKgr3qkfxzYTeMXdV8fnwwkJ5gp334VQB/1bMxtZ/AN3P4tQWl9IqMsuWgBYhfstVvu8nfAhPMrMPhKrOA4DDjWz/wS+zLrzeTvwr2b2W8KdwVnuvhQ4NB7H/fE8nA9sEkvTfXm0pA78McL5JO77xLidR4F/YV1JcSDeDswHiCXr6wl3GR3rvW44MANY5u57EO4ALjaznUteU9H5dffTgc0IJeIVwAXAH2N9N8Cd7p6Jj68EDoyP+zr2ctfZ/sAv3D0f7476uuu8D9jWzO4hJOvvuPt84D3AHe7+Qoz9O+5+EqGg8xN3XxSXX0O4U5lesr2iSj9Pa9+LqLdc2NVH/OX057qvKVX7DJK7329mDvyLmb2DcCdwEaEh6RnCrSPu/gMzu5VQlXIQ8DUz255wa3qKu98Ga2+JR21gt6UNfT2E6qU24I1YmiJua1NgaT8Opztup+hl4Bl3fzAew6/M7IeEUtomwCJ3z8Q7gGsIXw5FbQzgwxOrHG4B9jaze4E/A1cQPuA/J3y4cfeHzWwGIeHsBzxkZkfE/V4fS4HFqri3Aq+X2W1v57N4DB9097/HbW0U1w9U6fk9kFBVdqOZAWwBHGBmEwhVIhDbktx9vpndR0jAj5bEVvyS7pWZvR+Y5O5XAzcBN8VGzRdYVygorcJqZd171texb0Hf19n5rDt36297LXd/zsxmEgpO+wG/N7P/iK9fe35j3fmW9J6YWwhfkhCrCEviruTztP61/g/Cl2TRNELpv78GdN3Xgkr+g2RmswmloccJ9bS3uvv3gIcJpY62+Lr7gZ1iqeUEwgd/Y8It+GfNbERMVFeyrhqpPxxYaWbHxv1tDjxFuMuo1LPAVDMrflhuA6YXS5xmtjfhw/kc4UN7sZkNi3EfA9xVsq2tCF9+/WJmYwnn8SFgF2AR8F/ufgcx8ZtZW6xuOtvdf0moOnma8D7cCXzEzIof5JMI9dUDcQfweTNriXc7txAaugcqQzgvuPtP3X168S4ybvtid/+quz9HuAP5OKxNrrsDj5Rsq5Lzmwe+GQslRTOAlYQSKsB7LPRAgnCubo2P+zr2ctfZ7YQqyI3iNfHR3oIys88QvuDujF/SdxAaWe8G9i95704kfKHcAXwoti1hZp8ktCnMX3/bVP55WvteRL8CjjGzsfF4PwH8srf4N2BA130tKPn3X2md/xOE0ugJ8db5+8A+ZvZXQol1ATAjXoRnAF83s8cJF/m57r6Q0GtjIeHL42+EEs3p/Q0qVtUcDhwf938nITlW3AU19n65l9DTAXd/lfAFdrmZPUWoB/5ArHM+D3ie0HvkL4RS2xdLNncQoUsiZnZSvGPoS7HO/3HCefh1LK3eSSh9eVy3BeHLYCah4XLHGNcjhC+k/4tfEucBv4vn4egY80BK7J8DxhKq1v4a/z+/7F+U93PCeanEkcB7zexp4B5CD6GHAWJy2o2YqM3st7GU/ybufjchYV9rZlkz+zvhzvRwdy/eCb0IXB/XTSc0gkIfx17uOosdA64ivB8P0vdd53WEQtHfYnvGBEL33icJ7S23m9lf4rk6yd1/R7j27orn4+PAYe7e3cu2K/08/R54e7yjwd1vJbQNPUT4Mns0xlnJ9Vtq7XVf71o0pLOUMrPdgS+7+6GD2MZEQsPpLu6+0szGAz909w8NVZyNyszuJJzfhwexjU8A27r7F+LzTwOL3f3mAWznKHc/bKCxNLJYBdbp7oP5Qi/d3puu+6HYZpJU8pc3cff7CSXtSkuovTkHOLXkA7BjXCahyu+ckp4q/RK/SI8mdMkt6qSkF5FU7EJgPwvdhofC+td9XVPJX0QkhVTyFxFJISV/EZEUaoh+/rvuumvPtGnTNvxCERFZ6+mnn17s7lN6W9cQyX/atGn84hcb+oW+iIiUsjAETa9U7SMikkJK/iIiKaTkLyKSQkr+IiIppOQvIpJCSv4iIimUWPI3s13jZA3rL3+fmT1sZn+OA1KJiEiVJdLP38zOIIzl3bHe8uGEoVnfHdf
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAESCAYAAAD9gqKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZhcVZnH8W93Z9/JhhAxCVlewWEJyUjYg4JsKqAyStRhEQFXFEfFBRTHDQQRZFBBEURwRsQgqGwjy0AQZIsEJG9VIIms1UkgSVWWTnqZP84pcm27O9VJbnUtv8/z5EnVXc+53X3fe5Z7TkNHRwciIiKNfZ0AERGpDAoIIiICKCCIiEikgCAiIoACgoiIRAoIIiICQL++TkA9MLNJwLPAwrioCVgHnO3u81M431LgffHrOe7+vu637tVxvw6MdfdPdrP+u8A97n6Hme0B/BAYCbQBZ7j7Y2Y2IC4/KO52G/AFd28zs4uBW9393hLSshRoAdYTHmyagEvd/cqtz2G357oGeMrdLzKzBcAcd1+1HY47B7jc3f8lfu8Axrn7ii62nQD8CDjW3TvisgHA/wG/cfeL4rLRhOu7OzAY+Ja7X2dmw4Abgfe4+/oS0nYM8FVgCOE+8TTh9/WFbcv1P51n55j+/bfjMfcGznL3U8xsHPALYCLQDpzu7g92sU+328XfyxOAV+Pm7u7vN7OZhN/r07dX2vuaSgjls97d947/9gAuBq5J84Tu/uj2CgZbYmazgd1jMBgC3Alc6O4zgP8Ero+bfhIYB/wLsCewP/Bvcd03gB+a2eAST/vBeD33BI4ELjWzXbZPjroWz7fNwWArXAV8oxgMoh8AUzptdw3wQrzuhwGXmdkb3b0A/Irws+hRvElfC3zA3fdy97cAfwV+ve3Z+Efu/tJ2DgaNwM8IwQzgv4D73X134EPAjfH3s7OettufcC2Kf7/vj2l/DOhnZu/cXunvayoh9J0xwMvw+i/xJcBsYDjQAJzm7vPN7EDg+4Qn4A7gO+5+U3w6vAA4JK57Avi0u68pniD5BBqfctcAewC7AIsIv+QFM9sNuDSmqQm4zN2v7mV+vg5cHj+/A3jW3f8Yv98CLAFw9++b2Q/dvT0+lY0iPnm5+2ozmw+cHtPTGzsAa4FCzPupwBnAAGA08F13/5GZvYHwJDg27vcHdz837vMR4OOEB6WVwCfdfVHyJMWneOCdwPGEp8lpwEbg3939KTMbGdO/B9Af+BPweXdv7WWeiuecDYx390cTyz5MKH39IbFsNHA48AEAd3/BzPZl85Ptr4ELzOx77p7r4ZRjCddtWGLZD4AF8TwnAycSrtME4EXgJHd/Kab1QmAgsBNwl7t/JO73TuCbcb+1wJnAakLpa1gsgU6K+00ElgPvj8d9K3BFTNezcf3ZXZQm/w1Y4u4vmlk/ws/pE/F6LDCzLOHh4beJ69btdmb2B2AG8B9mNgVYDHzW3f8ed7+SUHL7fQ/Xs2qohFA+g81sQfy3jHDD+E5cty+wM7BffEK5Fjgnrjsf+L67zwROBd4Wl58DtAIz3X0v4CXgu1tIw0zCH8Nu8XwnxD+G3xCqlmYSAsx/xD/skpjZKEIV0J1x0XTgFTP7mZk9CtxF4uHD3TfF6qVngRxwf+JwtwLvKfHU18fruYgQEH/s7q/F6pGPAkfHJ+X3E25SxOXPufs+Mc3TzGykmR0CnAQcFPe5kMRNoxuHAJ+KVT7zgc/H5ZcAj8XrOYNwgz27xDx15X0kbjixOu4sQuBMmkp4yDjbzObHa7+Pu68DcPcNwAPA0T2dzN2fJJRInjCzv5nZVcC7gDsSmx0AfCL+vj4GXBaXnwWc5+77Eqqt3m1mM81sR+CXwMmxRPc9uv59PQg4wd3fDLwGnBF/R28Czo37XgbsXcK1Ggs0uvvyxPoXgDd22qen7XYG7ga+FM/5EPA7M2uI1+ohYIKZTe4mPVVFAaF8klVGE4E5wH+b2WR3/zOhiHuGmV1E+KUuPp39GvgvM7uecEP/clz+TuBYwh/tAuA4wh9gT2539xZ330RozxhNuHlPAa6Ox7mPUPc8oxd5mwq87O4b4/f+hJvOle4+i1Cn/UczG1jcwd3PITzVLyU8YRU9C1iJ5y1WGb2ZUOp5n5mdGKtH3gkcY2b/CXyFzdfzduC9ZvZHQgniHHdfDRwT8/FgvA4XAqPjU3d3HkvUqT9OuJ7Ec58Rj/MY8FZCaWFrvZnwZEosfVxHKI2s7bRdf2AysMbdDyCUFC6Jdd1FJV1fd/8c4Un9XEI7zfeA+8ysKW5yp7tn4uergCPi55OAUWb2ZcIT/RDCtT+AUBJYEI//W3c/qotT35so5T5BuKZ7xH1ui//fAzzVTdJfv1Z0f39r6/S92+3cfYm7H+1BB3AR4e9lUmK75yj9d7aiKSD0kdhg5cBbYwNesej/O+DHhGoj3P0nhD+Iuwh/dE/Gm0IToeFsb3ffm3DT2VJ7QbIxsSOeowlYlQhWexOqrn7ei+y0x+MUvQQscveHYx5+F9fvamYHmNn0uHwToc57n8S+TfzzH+wWuftLhKqpg83sjYTqjYmEJ+KvJrZ7hHDTvJLwR/0XM9s/nve6xDXYB5hFeErtTlfXs5iHExLH2pfQdrK1ktf3CEI12w0x4Lwb+KyZfYNw3SG2Tbn7YkL+35o41havr5m928xOcfeV7n6Tu3+aUKrcnc0PCsnqr8bEMe8nPAwsIrQJvUC4Lq2Ea1Q8R4OZ7dnF6bu6pq1svrZF3eUhea2a47l2SKyfENOU1O12ZrZnrJ5LagA2Jb5v1e9sJVJA6CPxpjid8BR0OKF3zY+ARwhP+01xuweBGe5+DaGKYBThyfoO4JNmNiC2QVzF5iqo3nBgg5l9KJ5vF8LT18we9/pHzwHjzWxQ/H4bMKn4ZGpmBxP+uJcQqrwuMbN+Md0fJBTJi3Yl3Ex6xcyGEq7jXwg38uXAN939DsITO2bWFKuqznX3mwnVG08Tfg53Aiea2U7xkGcS6v63xh2Em3RDLBXdwrYFhAzhuuDuv3b3SYlgcwtwibuf5+5LCCWVkwBiNc3+wKOJY5VyffPAd8wsWeKcDGwglDAA3m6h5xOEa3VrvKHOAr7o7r8l3FSnEn6XHwZ2M7O3xH2OJVQhleIZoMXMjoz5Kpa4uhqZM3mtWgkPWmfE/fYkBLV7kztsYbt2QsN8sUroY8CTxZJhrDqaRPg7qnoKCOWTbENYQKi3Pz0Wu38MHGJmTwJ/JvzRTY43zC8A3zCzJ4B7gPPdfSmht8hSQkD5G+Gp5XO9TVSs5jkWOC2e/07CDbPk7rAeet3cDxwav79CCGpXmNlThDr198Q67AuAZYReK38lPP19KXG4IwndIzGzM83spz2cutiG8AThOvze3X8e8/AC4HHdmwgBYiqhcXTvmK5HCUHqVzFwXADcFa/D3JjmrRkO+NPAUEK13JPx/wt73KNnvyFcl1IcD7zDzJ4m3NC+EUtFxOC0H6GdBjP7o5m9u/MBYpXMJ4FrzSxrZs8Q2ryOdfdiiekF4Lq4bhLwmbjuO8Djsf3iS4S2lamxEfuD8ZgLCG0qHyglQ/GG/V7g6/Hn+TngFULX7c46X6uPAwfEn/f1wIdjFWHn/He5nbs/BXyKEPCeidf3xMTxZxE6UPydGtCg4a9le4jVLl9x92O24RgjCTeQWe6+wcyGAz/12M2vnpnZnYTr+8g2HONk4C3u/vn4/aPACneftxXHeZ+7l627pZl9D7jI3XOxFPtXYFfv1AU4tnE8Bhzj7i+WIV3XADe6+x+2tG01UAlBtotim0ixWL+VvkZ40twQv+8dl0moLvxasXdLb8XgOpfQPbiolerpLrkM+FMsIdxK6Jb9T++DuHsboSfZt9NOkJnNAtprJRiASggiIhKphCAiIoACgoiIRFU9dMW+++7bMWHChC1vKCIiADz99NMr3H1cV+uqOiBMmDCB3/52S6MLiIhIkYWhc7qkKiMREQEUEEREJFJAEBERQAFBREQiBQQREQEUEEREJEqt26mFqfsucPc5nZa/CziPMI7K1e5
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwdVZn/8U93p5PO0p2QjYQtxAQeEmVHCIsQBhBkEVB0xogoyCAM/kRxWAQBYdwQ0EEZVFBEGNBBIArKqiBCQpRFJKQ7DwRZxNyEJJDcztL7/f1x6pKbpvvmdrqr71Lf9+uVV24tt+o51d1PnTp16lRVJpNBRESSpbrYAYiIyOBT8hcRSSAlfxGRBFLyFxFJICV/EZEEUvIXEUmgIcUOoJyZ2Y7Ay8DCaFYNsB44193nxbC/V4GToskL3f2k3tfu03a/Box398/3svzbwKPu/qCZ7Qr8ABgNdAKfc/dnzGxoNP8D0dfuB853904zuwa4193/WEAsrwKtwAZC5aQGuNbdb9jyEva6r5uBF9z9ajN7Dpjt7qsHYLuzgevc/X3RdAaY4O4re1h3W+CHwPHunonmDQX+BNzp7ldH88YSju9MYDjwDXe/1cxGAb8CPuLuGzYT145s+vuadQ/wo2h/B2xmG3+MynZnt/n7RN/fMd/3B0PuMSUcq58AexJ+ny5w91/38J0Rva1nZv8PuBhYFq3e7O4fMLPtCD+Tj7p7V7ylGnhK/v23wd33yE6Y2ceBm4Gd4tqhuz/NxpNArMxsFjDT3S+M/kAeAj7r7veZ2fHAbcAuwOeBCcD7CH88jwMfB34BXAE8YWb7bi5BRT4ZlREz2x540czud/d/DHT5snJ/hoPsRuDSbOKP/Dcwrdt6NwNN7v7JKOksNLNH3f0NM/sF8F/Afxawvw15ypo38ZeRd45pVLFZ6+4zzGwHYIGZPe3ub3T7Tr71DiBU6G7P/UJ07P8K/AdwXdyFGmhK/gNvHJACMLNq4HvALKAeqAJOd/d5ZnYQ8F1CzTYDfMvd74pqfVcCh0TL/gp8wd3T2R3k1iyj2msa2BXYHlgM/Ju7rzWzGcC1UUw1wPfd/aY+ludrbPzF/iDwsrvfF03fA7wC4O7fNbMfuHuXmU0AxgBvRcvWmNk84Iwonr7YClgHrI3KfhrwOWAoMBb4trv/0MwmAbcA46Pv/c7dL4m+81nCH2g1sAr4vLsvzt1JtnYOHAucCHQRTuBtwCnu/oKZjY7i3xWoBf4AnOfuHX0sU3afs4CJ2RNdNO9ThKuq3+XMGwscAfwbvJN09iM6vsAdwJVmdpW7L9/CWHYkXAWNiqYvBj5KOGavAv/h7ku7fecs4EvAGt59NZG73kXACUAdMBL4T3efGyXm/YHJwPPufnJv+42O1XeAYdH6D7v7Z3vYV/djeiIwB8DdXzezhwiVku92+2q+9Q4A6s3sPODNKP5seX8K/MXMbnD3tt6OQSlSm3//DTez56J/rxGSw7eiZfsB2wD7u/tM4OfAhdGyy4HvuvvewGnAv0TzLwQ6gL3dfXdgKfDtzcSwN3AUMCPa38fMbAhwJ6F5aG/CyeQ/oz+OgpjZGEIzzkPRrJ2BZWb2UzN7GniYnAqEu7dHTUQvA8sJtf+se4GPFLjr26LjuZhw8vuRu78dNXH8O3C0u+8J/CshIRDN/7u77xXFvJOZjTazQ4BPAx+IvvMd4O7N7P8Q4P9FzTbzgPOi+d8DnomO556EE825BZapJycBv81ORE1q5xBOkrmmEyoU55rZvOjY7+Xu6wHcvQV4Aji6gH3m/r4+F21rE2Z2CuEEt290lXAfoUkkd509CBWDg939/YST5LuY2RTgcOAQd9+N0HxyRc4qU6KynLyZ/Z5DqM3vR2j6+rCZ7d3DLjc5poQKUe4V4xvAdj18r8f1zGwkoUL1zej356fA/dHvIu7+T8Lf6IE9lb+Uqebff92bfQ4g/HLs4e5PmtlXgc+Z2TRgNtAcrXoH8D9mdhzwe+CiaP6xhFrzEWYGoYb75mZieMDdW6P9LyTUiHcmNB3cFG0HQvvnnsCCAss2HUjl1GhqCQnmUHf/c9Tsc5+ZTcnuP2oeuoRw6f1DQuKFcEIwCpPb7LMN8IiZLXL3X5jZscAxZrYTsAcwKnsMolh2IBzPC6MrjmOicszPOQ5jo9p0b57JaRZ4lo0nrWOBfaMrCQjHsz92AX4ZlXM0cCswx93X5cQK4bhPBdLufqCZTQceN7OX3P2ZaJ1Cj2++Zp+sY4F9gaejOGqAEd3WOQx4yN2z7eA3ECogm3D318zs08Ano7hnsfFnBrAg58op334/DRwdXUXsEs3P3U7WO8c00lMFt7OHeT2u5+7rgCNzynNH9Pv9fuDRaHb22D/67k2ULtX8B5i7zweckCSOYePl+28IN9WqovV+TKjlPEz45Xo+SgA1wDnuvkf0R7ovm2/fz21Hz0T7qAFWZ7cTbWsW8LM+FKcr2k7WUmCxu/85KsNvouXvMbMDzWznaH47oY16r5zv1tDzH11eUVPDPcDBUVv3c4Ta4hPAV3PWe4qQIG8AdiRcih8Q7ffWnGOwF7AP8Hae3fZ0PLNl+FjOtvYj3OvYUrnH90jCSf/26Obzh4EvmdkVhOMO4Zji7ksI5d83Z1tbdHx7UQNcmVPOfXh3zTb3uEC4Wn0XM9sLmA80EK4gr+z2vbUF7vdxQsVjMeHK4Y1u28nq/jv7OqGZKGvb6Lvd9biemU2JbvjmqgLau8U9UMd+0Cj5D7AoAe5MaK44gtDL5YfAU4R2z5povfnAnu5+M+EyfwyhfftB4PNmNjS6Z3AjG5uR+sKBFjM7Odrf9sALhCaiQv0dmGhmddH0/cCO2cttMzuYkAReITRbfc/MhkRxfxJ4JGdb7yH84fZJdNl9BPAXQjJYAXzd3R8k1BQxs5qouemSqIfGOcAiws/hIeATZpb9wz6T0Fa/JR4kJOQqMxtGOCn1J/m/SDguuPsd7r5jTuK7B/ieu1/q7q8QrkA+DWBmWxPaoXObbLbo+PbiQeB0M2uIpq8gXJXkehj4YHRCBvhML9s6GHja3b8LPEbO30Ch+zWzrQg/+wvc/W5CYp7ey3beOaaR3xA1o0WxHsWmzUKbW28d8HUz2zdadjThquMvOd8dyGM/aJT8+2+TNlRCO/sZ7v4ioaZ/iJk9DzxJuDycGiXH84ErLPQWeBS43N1fJfTaeJVw8mgk1DK+3Negoqaa4wl/TM8TkuAl3ocuqB66PT4OHBpNLyP88V5vZi8Q2sA/ErU5Xwm8Bvwt+tcBfCVnc0cRuiRiZmea2SZtyN1k2/z/SjgOv3X3n0VleAPwaNkOhJPBdEIPmT2iuJ4mnJB+EZ0krgQejo7DnCjmLRnO9guEG5YLgeej/7+T9xv53UkPTSW9OJGQbBcBfwSuiK52iE5E+xPuq2Bm95nZh/sR108IiW9BtL/d6Jbcoxue5wN/iO4b1HXfSOQXwHgzawSeIdT0x5pZfaH7dfe3CRWgZ6N9fYVwL2Z6D9vofkwvA0ZF2/s94Qb9ywBm9hMzOzPfeh66534c+HG07BLgxGxTaHQinhjFU1aqNKSz5BM1nVzs7sf0YxujCX8c+7h7S/SH/xN3/9eBirNcWehVcnE2kW/hNj4DvNfdz4um/x1Y6e5zBybK8jIQx7QP+/oasMLd/yfufQ001fwlr+w9DDMrtIbak8uAL0ZXCBBu1F7W7+AqwxnAZWbWU/v1ZkUn0jmEnjdZHfTctJEU/TqmhYqaUvciXOGXHdX8RUQSSDV/EZEEUvIXEUmgsnjIa7/99stsu+22xQ5DRKSsLFq0aKW7T+hpWVkk/2233Za7797cE/kiIpLLwpAzPVKzj4hIAin5i4gkkJK/iEgCKfmLiCSQkr+ISAIp+YuIJFBsyd/M9rPwsufu848zs6fM7MloACoRERlksfTzN7PzgU8RxsLOnV9LGAb4/dGyeWZ2z5a+d1Te7a+vv838l1cxftRQJtQPY8KoOibUD2PcqKHU1lTWhV4mk6GlvYs1G9o3+bd6fRtrNrTT3NKBxq6
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAESCAYAAAD9gqKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxV1bn/8U8ShjAEFBAZHFCsj0MVFRRxtkod0Kq911t/2luHUodODv21tbXVq9dWbbX9aW/V6tVKHVpbLa2ztnUGcR4Q5NFExQGUgEIShkCS8/tjrSPbmOEE2Dnn5Hzfr5cvz9njs7MP+9lrrb3XKstkMoiIiJTnOwARESkMSggiIgIoIYiISKSEICIigBKCiIhESggiIgJAr3wHUMrMbAxQA8yOkyqAFcA57j4jhf29Dfx7/Hquu/97+0t3abv/BQxz92+b2QHA/7j759tZ9jBgH3c/LzFtK+B54Ivu/lycthPwG2Aw0Ayc5u7Pm9n4+PnUHOIaDNwAbEe4+Znm7pfFeZ8DbgSGAg3A19x9XhvbeDQezx2JaWOAV919YGcxtHfsZnYg8EugN7AS+K67PxOXuxMYF+MCeMTdzzazo4Bx7n5RF/b5HeAqYJK7z+pKvMXCzM4HXnb3v3dxvQrg78DX3f3DOG0j4HHglMRv8Qrgbnd/dIMGXoBUQsi/le6+S/xvJ+AK4KY0d+juz22oZNAVZlYF/AL4WWJaJXAL0CcxrT/wEPALd98V+G/gVgB3fx7oZWZH5LDL/wbei8lpd+AMM5sU590KXOPuOwAXAHeaWdl6HmK7ksduZn2A24FvuPs44GLg5sTik4D9Er+LswHiBW9fM9ulC7s+nXCsZ22I4yhQXyAk1q76HvBoIhkcDjxDuIFIugj4jZn1W68oi4BKCIVnKLAQwMzKgV8DewJVQBkw1d1nmNk+wK8IpYoMcIm73xkvNpcB+8d5LxLuPuuyO0jexZvZTUAdsBOwOTAPOM7dG8xse+DKGFMFcJW737gex/Yt4EF3X5GY9ltCAjwvMe2LQI273xe/3wW8lZh/HXANcE8n+zszxg0wEugLLDOz0YR/9H8CcPf7zewaYFfgha4ckJn9DJgSv5YBOxPO0Q2tFv3UsZvZaHdfE5PQ1sCSOH0rwrm+NpZEnge+5+4fxe3cQEhgx+QQ2wHAEOAHQI2Zbe7u75rZtsBMYJS7r453yvMJf/f3Ced8J8JF9l/A9929ycwaCXfU44AT4rGeRkjmQ4BL3f2auL1fAl8ClgFPAzu4+wGx1Nbm9lvFflPc5ljCeb6B8FsZCIwCXgK+AnwdmAD80syagXvp5Pcft9+fkCR3Skz+LnAi8Mfksu6+zMxmAKfG2HsslRDyr5+ZvRT/m0/4wV0S500k/PgnxTvZacC5cd6FwK/cfTxwCuEuiTi/CRgf7z4XAJd2EsN44FBg+7i/Y82sF3AHoWppPOEf2P81sz3X41j/ncRF3MymAr3d/fpWy20LfGBmN5jZc8A/SNy8xKqP0fHi2S53z8QL2S3Aq8CjgBMS3wJ3b0ks/h6wWTub+mXiHL0EZBMV7n5e9k4eeCAe302dHXtMBpvG/f6SUHoAGA78k3Ch3ZVQbZRMwvcCh+R4t3oGcKu7LwAeBr4d9/06MIdwwYaQCN5297mEG5Dn4znfFRgGnBOX60OoOjHCjcM3gMNjKe4riWOYSvhNfZ5Q2hmbiKmj7bfW3913dPcfxn1Nc/dJwDbAVsAUd/8t8BwhqUwn99//F4DX3X1JdoK7H+ruT7UTy93Al9uZ12OohJB/K+PFBAAz2wu438x2cfenzOwnwGlmNhY4AKiPi/4Z+K2ZHUm4gPw4Tj8C2AiYbGYQ/hEv6iSGB9y9Me5/NuHObFvCP+Qb43YA+hH+Ea9rXfR2QHXcz26E6oz92liuN3A4cKC7Px3rzu8zsy2zcQJvAsanSw5tcvevmtnpwJ3A+cCD7Sza3M7077fVhpBcwMy+CxwE7O/ubW3nk2NPxPUhIbHtBvzLzOa6+9Mk7v5j+8wHZtbH3Ve7e72Z1QFbEi7KbTKzEXE74+OkaYRSx0Xuvhy4HjiJkPRPBv43LncEsIeZfT1+b514noixN8RquymxPWYXwt07hHP3B3dfFWP5HeHuO5ftJz2Z+PxDwm/6B4Tf5qjE/pJy/f1/5nx0oobwe+vRVEIoMO4+k3AXu4eZTSHcEUIoql9LqJbA3X9HKO7+AzgEeCUWxyuAMxN3rXuwtiG5PSsTnzNxHxXA0kQ99i6Eqqvfr8fhtbC2CudrwCBgZrzrHgXcamZfItzVzYsXx2zdeQWhaiWrgvYv4ACY2SFmNipuo4FQFbAb8A4wolWbwWjC3XqXmdmxhOqHI+LFti2fHLuZDTazTy767v4C8DKwk5ntG/8GWWVx3eSxdnrshLv0DHB3fJjgcsLf+8Q4/w5gYqwW3J9wg5Hd9rGJcz6RWLKIGuIxbEaottmScOH+SWKZphh3VuvYO9p+UkPi8x8JVTbzCaWMF1rtI7n9XH7/yd9iLnL5mxc9JYQCE+t3tyXUfU4mFNGvAZ4FjmbtRWUmsKu730T4h7IRsDHh7vfbZtYntkFcz9oqqK5wYJWZfTXub3PCXfH4Dtfq2OvEi7q7n+Xu2yb+4S4ATnD3u4D7gTHxiSLMbD/Cxe2t+L0MGBNj7Mh/ABeYWZmZ9Y3fH3b39wh3fF+J2zuEcIGY3e6W2mFm+xOe4jnC3T/I5dgJF5YbzWzvuI0dCXesTxPuen9jZkPist8H7siWOmLS70dIau3FVEH4TZzu7mPif1sAPwfONLOyePf+J0L11p2Jdp0HgbMTf7O7aPuCPQGoBS529wcJd+bZfd8LfNXM+saqx5MI568r22/tEOAid789bmsiay/oTaxtVM719588H7nYmg5KZD2FEkL+JdsQXiLcuZ0a63mvBfY3s1eApwgXsa3iD/0HwEVm9iLwCHChu79NeLLmbUJCmUu4i/peV4Ny99XAUcDUuP+HgJ/6+j0OewehraKzfX9ASH5Xm9mrhDvCL2erIAgXoxp3f8fMRsW/3ag2NvU9wmOrswn1zM+ztlHwOOD0uP2fEe5aW9rYRmeuIySTmxPnsa3HQj859lhaORr4f/Gc3wgc7+7vufv9hAQzw8ycUG2XvGB+EbjH3RvNbEJcv7UjCP+2b201/dfACEKVDoSL5R6srS6CULUzgPA3eyX+/xd81kOEEpXH3+AWhASxDSHJPE34Dc4EVhMep+7K9lv7MTA9tildCzwW9wWhfv9yMzuR3H///wS2s/CYaS4OBf6S47JFq0zdX0t3MbNBhPaHCa2eNOrqdm4C/uLu98bvNwNnJRsIC80GPPaHCcf6Svx+r7tP6WS1bmVmXwSGu/st8fuVwKrYOFwwzOzHQJO7d5iQYqlsBuHcrepo2WKnEoJ0m/jo34+An67rNsxsAtCSSAb9CY9zFmwygA127McATySSwWjg6g0T4QY1BzjRzF42sznAJoTqqkJzOfCF2ADfkQsISbhHJwNQCUFERCKVEEREBFBCEBGRqKhfTJs4cWJm9OjR+Q5DRKRozJkzZ7G7b9LWvKJOCKNHj+avf/1rvsMQESkaFrrIaZOqjEREBFBCEBGRSAlBREQAJQQREYmUEEREBFBCEBGRSAlBREQAJQQRkaJSvaiex1+vTWXbRf1imohIKXl78XKOvfYpbEQV+23b5svG60UlBBGRIvDx8tWcfNOzAFz65Z1T2YdKCCIiBW7VmmZOvfk53l+6kj9+YyJjhg1IZT8qIYiIFLCWlgzfv+MVnn37Y379H7swfsshna+0jpQQREQK2OUPOXe/vIBzD9uOKTuPTHVfSggiIgXqT8+8w9WP1nD8xC04bb+tU9+fEoKISAF6/PVazvvbq+y/7SZc9KUdKSsrS32fSggiIgXmtYV1fPPWF9h20yp+e8Ju9Kronku1EoKISAH5sG4Vp9z0LAP6VnDjSRMY2Lf7HgZVQhARKRANjU2c/PtnqVu5hhtP2p2Rg/t16/5TST1mVg5cDYwDGoGp7l6dmP8t4CQgA1z
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxddZ3/8VfW7ulGKd2BAh9Z29IKLSAUZZFFKaiM4jLIIOLyAMQfiIOKODqOMOioM4gyIMjAT5BaZMcFGLBQhdJ0AfqpRWzSvTQkaZombZI7f3xP2mvIctPm5N5z7/v5ePTRe8+5y+fkJO/zvd/zvd9TlEqlEBGRwlKc7QJERKT/KfxFRAqQwl9EpAAp/EVECpDCX0SkACn8RUQKUGm2CyhkZnYg8AawPFpUAjQCV7v7whje72/Ah6O717n7h7t+dK9e95vAfu7+RTObC/ynux/VxWPPAk5y9+vTlh0ELAbOcPeXo2VHAz8GhgOtwGfdfbGZzYxuX5ZBXcOBO4B3ERo6d7v796J1hwJ3AqOBBuBT7r6yk9d4NtqeB9OWHQiscPehPdXQ1bab2anAzUAZsAO4wt3/HD1uPjAtqgvgGXf/kpmdB0xz929l+H5TgBuBE4Bd0Xv9Cvimu+/q5PEfBE5z9ys6WbcC+KK7P9ubbe5LZnYP8D13X2FmlwDXEDLs94Sf3zu2KXreAOBR4Kft+9HMrgTedvdf9E/1uUct/+zb4e7To39HA7cAd8X5hu7+cl8Ff2+Y2TDgJuA7acsGAv8DlKctGwz8FrjJ3WcA/wLcC+Dui4FSMzs3g7f8F2BtdCB6N/A5M5sTrbsX+Im7HwHcAMw3s6J93MQupW+7mZUD9wOfcfdpwLeBe9IePgc4Oe334ksA7v4b4D1mNj2D95sALAIWAubuRwLHEg6Et3T2HHd/uLPgzwVmdiFQFwX/UYSD2smAASOAL3XxvDmEn8NJHVb9J3CVmR0QX9W5TS3/3DMa2ABgZsXAD4DZwDCgCLjU3Rea2UnA9wmfFlLAd919fhQs3wNOidYtIbSK6tvfIL11bmZ3AfXA0cAkYCXwUXdvMLPDgR9GNZUAP3L3O/dh274APOXujWnL/otwsLs+bdkZwBvu/nh0/2HgzbT1PwN+QmjNdefKqG6AccAAoC4KxncBvwRw9yfM7CfADOCV3myQmX0HOCe6WwQcQ9hHd3R46N9tu5lNcPdd0QHnYGBrtPwgwr6+LfqEsRj4srvXRK9zB+FgdX4PpV0HzHf329sXRPv0i0Sf/szsYuCfgCFAHXA38GF3P9fMjiB8MhpM+J0YEj3nQOAPwOPA8cAo4Hp3vz9afz3wIULD8m/A5919vZldAHwNaCN8krvG3Z/rankn23Mj8JHo9nnAw+6+JXrPnwI/IhxcO7oiev1r0he6e6uZPQB8hS4OHPlOLf/sG2RmldG/NYSw/W607nhgPDAnaqHeTfijhvDH8H13nwlcArw3Wn4d0ALMjFqV64F/66GGmcD7gcOj9/uImZUCDxK6h2YSDib/z8xm78O2fpi0wDazS4Gy9ICKHAZsNLM7zOxl4HekNVTcfREwIQrKLrl7yt1bzOx/gBXAs4ATDnLr3b0t7eFrgYldvNTNafuokhB87e9xfXsLHXgy2r67etr2KPjHRu97M3uCa39CN8ZnCQejBkIIt3sMONPMBnW37cB7gKc6LnT3De7+47RFRwJz3f3UDg+9F7jd3Y8h/E5OSVt3MOFAdhwhPG8CMLNPERoRx0U/j8eB/46eczPhQDAL+Dowt4flu0Ut/UHuviJaNAmoTntIl/vO3T/m7o91tg54BLigi3V5Ty3/7NsR/aEAYGYnAE+Y2XR3f9HMvgZ81symEv4wtkUPfQD4LzP7ACEs/jlafi7hY/DpZgahO2VzDzU86e7N0fsvJ7TmDgOmAndGrwMwiBBIi/ZyW98FrI7e51jgcsJH947KgLOBU939T1Ff9+NmNqW9TuCvhI/8b3by/L/j7p8ws8uB+cA36CQUI61dLL+msz7/9AeY2RXA+4BT3L2z19m97Wl1bSIcxI4F/mBmr7n7n0hr1UfnUzaaWbm773T3bWZWTwjjd5yjSFNE+ETY/jrXAB+P7h4AHBHdXpb+qTB67GjCJ5hfRHUujPr82+1izwHwFcLvC4TfveOAl6PfmRLCJwcIn7IWmNljhIP5TT0sT9fxZ9dZo7WrfdedN4DJZjbQ3Zv24vmJppZ/jnH3Fwit0+PM7BxCSw/gN8BthD9q3P2nhFbW74AzgWXRCc4S4Mq01uhx7DnJ25UdabdT0XuUALVp/c7TCd1PP9+HzWtjTzfMp4AK4IWoNT0euDc66bgeWBkFYXtfdwmhxdmuhB7+4M3sTDMbH71GA/D/Cf3eVcABHfr4JxBakL1mZh8BrgLOdfftXTxs97ab2XAz2x3w7v4KsBQ42szeE/0M2hWxp0ukXY/bDrxAWiva3W9O249j2fO339DJc9sPGuk/n5a02zvTPjWl0h5XQjgh2/4+s4ATo/e/Prr9MnAx8KKZFXe1vEM96b83EPbfuLT7e7vv2rtM23p6YD5S+OcYMzuM0OpeApwOPOLuPwFeAuaxJ0BeAGa4+13AZYTW/khCq/aLZlYe/RHdzp5upN5woMnMPhG93yRCa3fm3m8dq4gC3N2vcvfD0oJiPfBxd38YeAI4MBrZg5mdTPgjfTO6XwQcGNXYnQuBG8ysKBrxcSHwtLuvJbT6/iF6vTMJAbC8y1fqgpmdQuhvPtfdN2ay7YTgvtPMToxe40hC6/ZPwFDgx2bW3pq+Bniw/dNEdIAfRAjA7nwHuNDMPmVm7b8zJdGJU+gm8KLzC4uBS6PnHUtoaPTkKeBSM6uI7n8LuMfMSi2MNBvi7rcBnyd0MZZ1tbzD66b/7CCcA/qgme0f/S5cBjyUQX0dHQy86e479+K5iafwz770Pv9KQj/7Ze6+itDSP8XMlgEvEgLroCjUrwW+ZWZLgGeAG939b4QRLn8jHDxeI7TKvtzboqI/iPMIf8zLCKNvvu77NgT1QcK5hZ7eeyPhQHdr1N3wA+CCtI/mswgnhKvMbHz0sxvfyUt9mTBUdDmhZbmY0H8N8FHg8uj1vwN8pMM5gEz9jBCk96Ttx86GYu7e9uhTyDzgP6J9fidwkbuvdfcnCAeThWbmhK63L6a9zhnAo+7ebGazoue/Q3SAm00Y5bIk+j15jdClNDvtBHJXPgZ8NOoG/Drwes8/Cv6bcF5jkZm9Sug6utjdWwifjO4zs1cIw00vibrwulqevi0rgB0WBiDg7ssIB5anCV1frYRBDpjZB83scTLz/ug9C1KRpnSW/hK1CBcBszqM+Ont69wF/Kr9RJ6F8d9XufvWPik0Bn247U8TtnVZdP8xdz+nh6clnpldRPiOxOf76PVKCOcrzojOvRQctfyl30QnFr9KaEnuFTObBbSlBf9gwsiTnA1+6LNtPx94Pi34JwC39k2Fuc3d7wNGW/jyX1+4AviPQg1+UMtfRKQgqeUvIlKAFP4iIgUoEV/yOv7441MTJkzIdhkiIony6quvvuXuYzpbl4jwnzBhAr/+9a+zXYaISKJYmDKmU+r2EREpQAp/EZECpPAXESlACn8RkQKk8BcRKUAKfxGRAhRb+JvZ8RYuft1x+QfM7CUze9HMPhPX+4uISNdiGedvZtcCnwS2d1heRpie993RuoVm9nAhT64ke6e2cSePL9/IxrodPT9YJKEGlJXw8eMnM2JweZ+/dlxf8nqDcG3MezosPxxY7e5vA5jZHwmX8SvYObUlc7ta23jWtzB/8VqeXrmZna1h+v2ioh6eKJJQA0qLOWHqaGZMTkj4u/v86DqnHVUAdWn3txEutiHSqVQqxavr65n/yloerlzP1u07GT2knE/MnsKHZk7giHEVFCn9RXqtv6d3qAeGpd0fBtT2cw2SAJvrm3ioch3zF6/DN22jvKSY047Ynw8dO5GTDxtDWYnGKojsi/4O/9eBQ6PrkzYQunz+vZ9rkBxU27iT1zbU8/qGbTy3agvP/2ULbSmYMXk
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwU5bX/8c/MMOz7pogICnjAqKAQWVQEFFyTaK4xXmLc4pbodYmJMZpozE1uFmMSjVvE3ejPJBqTaFwYBRUXcFd04MCIIooM+87ALP3746mBZpzpmYHp6emu7/v14kV3VXXVeaarT596qvqpvEQigYiIxEt+pgMQEZHmp+QvIhJDSv4iIjGk5C8iEkNK/iIiMaTkLyISQ60yHUCmmNkA4ENgTjSpANgEfN/dX07D9j4GTo6eXunuJ9e9dKPW+zOgp7tfZGbjgZvdff86lj0WOMzdr06atjfwJjDZ3d+Iph0A/AnoAlQC57v7m2Y2Inp8XgPi6gLcBQwhFBn3uftvonmDgbuBHsAG4HR3n1fLOp6P2vNI0rQBwPvu3rG+GOpqu5lNAK4HCoHNwMXu/lq03KPAsCgugBnufpmZfQ0Y5u4/b8C2zgROdvcT6lluMjAVWAaMc/fNjWnTrjCzacAUd19hZk8CP3D34uba/q4ws5FEnyEz6wc8RdhPLwIuSfXZMrOfAyXufr+ZXQO86+7/auT2f03YL54xs+OBXwFtgPeA77j7ujpelwfcQ9h/fxdNa/B+1dTiXvlvdvfh0b8DgBuAe9O5QXd/o6kSf2OYWSfgt8Avk6a1Bf4CtE6a1h6YBvzW3Q8C/hd4EMDd3wRamVnKpBb5X+DT6Ivoy8B3zWxMNO9B4DZ33w+4Fng0+mCkRXLbzaw18FfgXHcfBvwCeCBp8TGERFy9X1wGECWIw81seBOGdiow1d2/3JyJPzKp+oG7H5ctiR++8BmaACx192HuPrO+z5a7X+Pu90dPJxIKgAYzs9HAflHi70VI5v/l7gYsBH5dx+uGAs8Bp9SIJx37VYPEtvKvQw/gcwAzywf+AIwGOgF5wDnu/rKZHQb8nnC0kAB+5e6PRonlN8AR0by3CVXltkoguTo3s3uBdcABQD9gHnCqu2+IdpYbo5gKgJvc/e5daNuFwDPuvilp2i2EL7urk6ZNBj509yej5/8GPkqafwdwG/BEPdu7JIoboA+hMlprZn0JRwMPA7j7U2Z2G3AQ8FZjGmRmvwSOj57mAQcS3qO7aiy6Q9vNrK+7l0dfOPsAK6PpexPe69ujI4w3gcvdfVW0nrsIX1YnNSLGnwEDCH+D/sBy4JvAt4ATgc3RUdJVhH3qSEIVOxu4zN3XR0eNs6P2XUXYLx+K2t4jiulQYARQDnzV3ZdEX9JXEb7cexOOvn5qZvdE4c0ws+OAmYQjlTfM7Dzg4iiGUuAid5+fal+t0d66Phv3Rs+HAr0IBcbF0ftQ575uZmcDl0fxrADOAAYCNwP/Q/jy7mJmM4Dr2P7Z6kg4ej0UqAD+SdjP7wHeJxzxjQSuN7M20fpGufv8aLtF0bpqHhX8LFoWwmfldXdfED2/DXjXzC5095q/nr0w2vYnfFGj96umEPfKv52ZvRP9W0TYAX8VzRsF7AGMiSrU+4Aro3nXAb939xHA2YQKgmh+BTAiqiqXUEclkGQEcAzhQ7EH8A0zawU8Qji0HUH4MvlBVHXsrJNJSthmdg5Q6O5Tayy3L7DUzO4yszeAIpKKBHefBfSNEmWd3D3h7hVm9hfCh+15wAmJY4m7VyUt/imwZx2ruj7pPXoHqP5Swt2vrq7Qgaej9t1bX9ujhLNbtN3rCUcFEBLks8D5hC+jDYTuqWr/AY42s3ap2l6Lw4FvuPsQYDWh6+x6whfrH9z9h8BPCO//sOhffhRbtffdfai7PxY9bxvtY5cTvpBvjJ4vBs6MvtguB85w95GEIubHZtbT3c+K1jHB3RdXb8DMJgJXRNOHEb5g/pl0VPaFfbWWttb12SBq11HAftG/81Pt62Y2jFBMHePuB0Z/r22FirvPAK4BZrr7hBpx/BxoG8U6nPAlcETSa28B3gB+6O4PEj7f50R/h4GAUaPAMbOuhPdyWjSpX/T3rvYp0JlQQOzA3S9y9wdqTo/s7H61S+Je+W+OEgcAZjYWeMrMhrv7q2b2E8IOOhAYD6yPFv0bcIuZfYWQLK6Kpp8AdAUmmRmEimtZPTE87e5bou3PAboTEvBA4O5oPQDtCAlp1k62dQhQEm3nYOACYFwtyxUCxxESwOyoT/JJM+tfHSfh8NbY8YigVu5+mpldADxK+KA+U8eilXVM/2Ftff7JC5jZxYSK+Qh3r20929qeFFcp4UvsYOA5Myt299kkVV9R1b7UzFq7+9aoCl9HqOC/cI4iheeTjv7eJrzHNR0LXO3u5dG2/0SoVqvNrLH8o9H/HxK6Pd5Net7d3RPR/nmCmU0hJME8oAOhgq7NMcBf3X05gLvfa2Y3Eo5coPZ9taa6PhsA91YfKZjZ/YQjn+nUva+3IxyxLY7i+WP02vF1xJ/sKML5u0rCvnVE9Noz61j+VuBFM7saOA+4s5Z9aRDwubtvjZ7XVTzXtS/Xahf2q10S98p/B+7+CqE6PSQ6kfOfaNa/gNsJHx7c/c+Ew98i4GjgvejQvYBwwqm6Gj2E7Sd565Lc15uItlEArEnqdx5OqNzuqW0FDVTF9m6Y0wkVyitRNb0H8KCZfZVwtDIvSoTVfZIFhO6RagXUs4Ob2dFmtke0jg3A/wMOJhz27l6jj78voWpqNDP7BnApcIK7b6xjsW1tN7MuZrYtwbv7W8C7wAFmdnj0N6iWF702ua31tr0Wtb3HNdX8LOazY3/0hhrztyQ9Lq+5MjPrQPiiOZjQnfbDaLlU51Zqywd5SXHU244Unw0IR8XJ26ok9b5eEW2nuk3tzGxIiviT1XxtPzPrUdfCUXfPe8DXCF1yd9ayWPJnCMK+3CfpeV9gdYr9MJWd2a92iZJ/EjPbl1B1v004Ifa4u98GvE6oUqoTyCvAQe5+L6FK6Ap0I1S1F5lZ6+icwVS2dyM1hgNlZnZatL1+hGp3xM63jvlECdzdL3X3fZM+bEuAb7n7vwlXTgywcGUPZjaO8CH6KHqeR6gEvZ7tnQJca2Z5UZ/qKcB0d/+UUJ1+M1rf0YQP1Zw611QHMzsCuImQ+Jc2pO2ED9jdZnZotI4vEY4MZgMdgT+ZWXVF+0PgkeoKMEpi7ai933ZXPQNcYGaF0b5zISGB7qzBhC/4n7j744TKtw3bk1clXzzZ+QzwTQsnMjGzswjnQ0pooBSfDaJ1t7FwocEZwOOk3tdnAEeZWXWCPZ/tXXT1eRY4w8zyo/3vEZK6fSIV7Pg3uIXQ1Tbb3ZfUss6FQO8ofgjdP6MtXL0G4Wi6UVcOQdr3qzrFPfkn9/m/Q9hBzouqgNuBI8zsPeBVQsLaO/pgXgH83MzeJuyg17n7x4QrXD4mfHkUEyqjyxsbVHRY+TXgnGj704Cf+q5dgvoI4bC+vm0vJXzR3Wpm7xNOLn7d3cuiRUYSTgh/YmZ7RH+7PWpZ1eWES0XnEPpW3yScU4FwlcsF0fp/SegPr6plHfW5g/DF8UDS+1jbJXPb2h4dhZwI/DF6z+8mXPL4qbs/RfgyednMnNAdcVHSeiYDT7j7FjMbGb2+qfwCWAq8A8wlJKVLdmF97xH6rOeZ2VvAVwn75KBo/j+Al8xs22XB7l5EeL+nm9kHhAR9QiPfm7o+GxAupZ5J2CdmAvek2tfdfQ7hC/hpM3uX8B5e0MA4rgO2Eo7q3gaedPd/1FjmceB3ZnZG9PwJQgFwe20rdPc1UdwToufLgLOAR8xsLuGI53IIl6M2Yv/Ytl81cPkmkachnePBzDoTzheM9B2v+Gnseu4F/u7u/4mePwBc6u4rmyTQNGjCtk8ntPW96Pl/3P34el4mbNtvtl3f3hJF5/ymAvvXcrVO8jJXN+X7XnO/ai5xr/xjIzrh+GPgpzu7Dgs/rqlKSvztCSfkWmzihyZr+0mEq0qqE39fwklCyQF
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxU5dn/8U9CgBBIwg5hF5QLkEUUZREVtYiKVuxPn/pYH2urdanWra21dautto9a7aO11mqltlar1qUqqLhv4L4lbBeCAgJhh4QQss/vj3OCI80GZDIzme/79eLFzDlnzrnumcl17rnOOfdJi0QiiIhIakmPdwAiItLylPxFRFKQkr+ISApS8hcRSUFK/iIiKUjJX0QkBWXEOwD5T2Y2CFgGFIST2gClwOXuPjcG21sOnBI+vdLdT6l/6d1a7y+B7u5+kZlNAe5095H1LHscMNndr4qatg/wIXCMu38QThsF/AHIBaqB89z9QzM7KHx8bhPiygXuA4YRdID+5u43hfP2A2YC3YAS4Ex3X1zHOl4L2/NY1LRBwHx379RYDPW13cyOBG4B2gI7gIvd/b1wuceBMWFcAK+6+2VmdhIwxt1/1YRt3Q98Fzja3V/ZJfbPgbvc/aLdiX9vmdm9wN3u/uFuvi4beAyY4e47zGwDsDpqkVvc/UEzuxV4xt1fa7agWwH1/BPXDnc/IPw3CrgVuD+WG3T3D5or8e+O8I/4ZuDGqGmZwD+AdlHTsoAXgJvdfSzwa+BBgDBxZJjZCU3Y5K+BVeGO6GDgAjObGM57EPiTu48ArgMeN7O0vWxivaLbbmbtgEeAH7j7GOAG4IGoxScCh0d9Ly4DcPengMPM7IAmbnYlcMYu084E1u9FU/bGVGBP3uObgHvDxG/Alqj35gB3fzBc7lfAH8ysQ3MF3Bqo5588ugGFAGaWDvwemABkE/zhnOPuc81sMnAbwa+FCPBbd388TCw3AUeE8z4m6FUW124gunce9hCLgVFAf2AxcJq7l5jZcOD2MKY2wB3uPnMv2nYhMMfdS6Om/ZFgZ3dV1LRjgGXu/mz4/Gngi6j59wB/AmY1sr1LwrgB8oD2QJGZ9SX4NfAwgLs/Z2Z/AsYCH+1Og8zsRmB6+DQNGE3wGd23y6Jfa7uZ9XX3ynCHMxjYFE7fh+CzvjvspX8I/NjdN4fruY9gZ3VyE8J7GDjbzDLdvSyc9m3gUcIOoZlNINgptSd4j15097PDXyb/IvgFUgi8TPAL5Gu/OsJfRpsJ3s8/Ae/Xs74bgT7Ag2Z2JsH37HaC713bcP0/dfeqXdbfHzgBuDicNAmoNrNXCb6XjwE3unu1uxeZ2Vzg3HDdgnr+iayDmX0S/ltB8KX9bThvPMEfzMSwh/o34Mpw3vXAbe5+EPB94Khw+pVAFXBQ2KtcA/xvIzEcBBwLDA+3d6qZZRD8YV0ZbuMI4CdhsthTpxCVsM3sHKCtu9+7y3JDgbVmdp+ZfQC8SFQHxt3fAfqGibJe7h5x9yoz+wcwH3gNcIKd3Bp3r4lafBXQr55V3RL1GX0C1O6UcPeranugwPNh++5vrO1h4u8VbvcWgoQJ0BN4CTiPYGdUQlCeqjUbmNbE3u0G4G3gJICww7CIIFnXugS41t3HAyOAb5rZQe7+KvBn4F7gaqCc4BdKXba4+wh3/0MD67uK4Lv4HXd/l6BT82H43RoLdAcur2PdJwGvRO0UMgi+D8cChwPTgB9FLf8M8K0mvDcpQz3/xLUjTBwAmNkk4DkzO8Dd3zazq4HzzGwIMAXYFi76KPBHMzuRIFn8Ipx+AtAZmBr8QqYdjf/Mf97dy8PtFwBdCRLwEGBmuB6ADgR/qO/sYVuHAUvD7RwInE/wB7yrtsDxwJHu/m5Y637WzAbWxklQtza+/ougTu5+hpmdDzwOXAvMqWfR6nqm/7Sumn/0AmZ2MXA0cIS717WenW2PimsdwU7sQOBlM1sYJsadvfrweMpaM2vn7hXuvs3MioGBBL3nxvydoNTzCMExgPuBcVHzvwscb2a/CGPMAmqPZVwHzAV+CIzcZWcZ7c0mri/aCcAhZnZ2+Ly+ndnX3rddOgrlZnYbwa+C/wunLSP4XkhIPf8k4e7zCHqnh5jZdIKeHsBTwN2ENVN3/zPBT+YXCXo/+eEBzjbAJVG90UP46iBvfXZEPY6E22gDbI2urRKUn/66F82r4asyzJlADjAv7E3XlgS+SdBDXBwmwtpadxuC8kitNtSfrAEws2lm1idcRwnwT+BAglp4711q/H0JeuG7zcxOBS4FTnD37fUstrPtZpZrZjsTvLt/BHwKjDKzw8L3oFZa+Nrotjba9ihPA+PD8snhBL9Oor1JsKNdTFAzX8VXdflcoHe4/f0a2EZJ1OOG1hetDXBq1HdrPFDXAejo7wxm9j9mNjpqfhpQuct6m/repAQl/yRhZkMJet0fExwge8bda2upM/gqgcwDxrr7/QQ1zs5AF4Je7UVm1i48ZnAvX5WRdocDZWZ2Rri9/gS93YP2vHUsIUzg7n6puw+N+uOvLQk8DTwHDArP7MHMDifYKX0RPk8DBoUxNuS/gOvMLM3M2ofPX3H3VQQ9xG+H65tGkGQK6l1TPczsCOAOgsS/tiltJ0hOM83s0HAd+xP0cN8l6CX/wcy6hsv+FHis9tdEuIPvQLADa1T4S+lJgl8Az0TX1M2sC8GvgJ+5+xMEO8B9+SrZziQ4EP09gh1zbkPbasL6qgh+1UHwPb0s6rN5mrqTf/T7BjAS+JWZtQlLXxcR/KqpNZim/SJKGUr+iSu65v8JQZ39XHdfQtDTP8LM8glqt8uAfcKkfgXBH8HHwKvA9e6+nOAMl+UEO4+FBD2jH+9uUO5eQVBvPSfc/gvANb53p6A+RlCrbWzbawl2dHeZ2XyC+vC3og5ajiM4ILzSzPqE712fOlb1Y4LeawHwAcHB09oDgacB54frv5GgF1pfWaMh9xDsOB6I+hzrOhVzZ9vDXyEzgP8LP/OZwOnuvsrdnyPYmcw1MycovUUnxWOAWe5ebmbjwtc35u8EJcP7oye6+xaCjsFH4bGVnxOUefY1swsJjo1c7+5zCJL1PQ1tpKH1hYv8G3jEzI4hKNV0JPhs8sP/b/6PlQavOdLMancg1xMcs6h93TzgL1HLH0twoFpCaRrSWeLNzHIIjheM2+WMn91dz/3Av9x9dvj8AeBSd9/ULIHGQDO2/RWCtuaHz2e7+/RGXpbUzOwe4CV3f7SR5XIJdjbjojoKKU89f4m78HTTnwPX7Ok6zGwcUBOV+LMITqFM2MQPzdb2k4E3oxJ/X+Cu5okwoV0BnNuEM5yuI9gxKvFHUc9fRCQFqecvIpKClPxFRFJQUlzkNX78+Ejfvn3jHYaISFJZsGDBRnfvUde8pEj+ffv25Yknnoh3GCIiSSUcGqZOKvuIiKQgJX8RkRQUs+RvZuMtGNZ11+knmtn7Zva2mf0gVtsXEZH6xST5m9kVBJdWZ+4yvS3BJfnHEAwFfG44fK2IiLSgWPX8l1H32NnDgaXuviUcI+Yt6h66V0REYigmyd/dH+frw6nWygGKop5vIxhgS0REWlBLH/AtJrgVXa1sYGsLxyAikvJa+jz/RcB+4ZjkJQQln9+1cAwiIgkpEomwsaSClZu3s3JzKZtKKjjloH50zmrX7NtqkeRvZqcDndz9HjO7nGAM8HRgpruvbokYREQSQUVVDau37mDFpiDBr9xUyorNpXy5uZSVm0sprfjqhmNt26Rx0MAujB2QRMk/vIHIhPDxQ1HTnyG4mbKISKtUVFrJys2lrNi8nRWbgsS+YlOQ3AuLdlATNZhy+4x0BnTNYmC3LCYO6cbArlkM6JbFgK4d6delA5lt29S/ob2QFMM7iIgkkuqaCIVFO1gZJvQVYa+99nnRjq+f79K9Uzv6d83i4EFdGNC1LwO6dWRgtywGdM2iR6f2pKfXdTvj2FLyFxFpQFllNU99spr5q4uDBL+5lFVbSqms/qr7npGeRr8uHRjQrSNj+ucysGtH+oe9+f5ds+jUPvFSbeJFJCK
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xV1bn/8c80GNpQRYr00cdKEQRpCiaKLbGkiOg1aiwYTGL0JjEm0ZhfclNMuYnYb4zGCGqixF5iQIMgoHRRHh1Aht5nhjbDlPP7Y+/Rk3EaMKfN+b5fr3lxdjl7P4uzz7PXXmuftTMikQgiIpJeMhMdgIiIxJ+Sv4hIGlLyFxFJQ0r+IiJpSMlfRCQNKfmLiKSh7EQHkIrMrC+wClgezsoC9gE3u/ucGOzvY+DL4eSt7v7lutc+qO3+BOji7jea2ThgqrufWMe65wBj3P2HUfP6AQuBs9z93XDeScDdQHugErje3Rea2dDw9XWNiKs98CfgWIIKyqPu/qtw2dHAw0BnYA9whbuvrGUbb4Tl+XvUvL7Ae+7etqEY6iq7mY0H7gJygP3At9x9Qbje08CgMC6AWe7+HTO7ABjk7j9txL6uBL7s7uc3sN5ZwEPAVuA0d99/MGU6HGb2GjDJ3beb2UvAf7v7+/HafxjD7cBSd3/2IN+XBTwLfN3dt5jZbcAVBLnwr8Cd7h6p8Z5M4JfAeUAV8BHBsbzNzL4N7HL3vxx2oeJMNf9Dt9/dB4d/JwG/BR6J5Q7d/d2mSvwHw8zaAb8Gfh41L5fgy9Iial5r4DXg1+4+BPh/wOMA7r4QyDazepNa6P8B68MT0SnADWY2Mlz2OHCfux8P3AE8bWYZh1nEOkWX3cxaAE8C17r7IOBnwGNRq48kSMTVx8V3AMIENdbMBjdhaBOBh9z9lHgm/tCZ1S/c/dx4J/7QGQQn4IN1C/BGmPjPBb4CDAVOBMaH0zVdHa5zcvhdLyD4vgNMBW4ys26HEEtCqebfdDoDm+CTmsLvgVOBdkAGcI27zzGzMcDvCK4WIsAv3P3pMLH8Cjg9XLaYoFZZUr2D6Nq5mT0ClAAnAb2AlcBEd99jZscBfwhjygL+6O4PH0bZpgCvuvu+qHn3EJzsfhg17yxglbu/FE4/B6yJWv4gcB/wQgP7+3YYN0B3oCVQbGY9Ca4GngBw95fN7D5gCLDoYApkZj8nqMlB8PkMJPiM/lRj1f8ou5n1dPfy8ITTH9gRzu9H8FnfH15hLARucfed4Xb+RHCyuuggYvwJ0Jfg/6APsA24BLgMuBDYH14l3UZwTH2O4GprPvAdd98dXjXOD8t3G8FxOS0se+cwptEEya0c+KK7bwxP0rcRnNy7Elx9/djM/hyGNytMnrMJrlTeNbPrgG+FMWwBbnT3D+s7VmuU9xGgEzCA4Bj5E8Fx1hboASwJy/91YBhwl5lVAi/SwHcn3H5r4KYwDgg+i2nuvjdc/mfgcuCpGh/FCuC77l4WTr9LcFzg7pVm9hTwfeA7pBDV/A9dKzNbEv6tJUi2vwiXjSA4WEeGNdRHgVvDZXcCv3P3oQQ1ijPC+bcCFcDQsFa5keBSsz5DgbOB48L9fcXMsoG/EzQPDSX4Qvy3mZ16GGX9MlEJ28yuAXLc/aEa6x0DbDazP5nZu8A/iapguPs8oGeYKOvk7hF3rzCzvwLvAW8ATpA4Nrp7VdTq64Gj6tjUXVGf0RKg+qSEu/+wuoYOvBKW75GGyh4m/iPD/d5FcFUAQYJ8Hbie4GS0h6B5qtqLwAQza1Vf2WsxFviKux8L7CJobriL4MT6e3f/LvAjgs9/UPiXGcZW7T13P87dZ4TTueExdgvBCfkP4fQ64MrwxHYL8DV3H0ZQifmBmXVx96vCbYx393XVOzCzM4DvhfMHEZxg/hF1VfaZY7WO8rZ29xPc/fvAtQQnnZFAPtAPOM/d7yFIwN8Ny9TY784ZwIfuviOc7hWWuVqtx5K7v+3ui8JydgRuB/4WtcrzwMV1lCdpKfkfuuhmnz7AOOAJM+vn7m8TfCGvN7PfECSQ6nbmp4B7zOxxgi/EbeH884ELgMVhoroQOL6BGF5x9zJ3Lyfof+hEkIAHAA+H23kTaEWQkA7VsQSXupjZycDk8K+mHOBc4MEwadwNvGRmLaPWWQ1YY3bq7pcDXQjKdTt1H6+Vdcz/btRnNDiM7T+Y2bcIaswT3b227XxS9qi4trh7T4Jmnj+b2THuPt/dL3L3TeF2fgKcF17R4e67CWq/feov9We8EVWDXUzwf1HTOcD97l4enhjvDudVm11j/afDf1cBm919adR0p7DN+wvAUDO7g+CqIgNoU0+cZwNPuvs2AHd/BOhJcOUCtR+rtXkr6vX3gW1m9j2CK8YefPo9itbY707Nz7K246muYwkzGwD8O4zxnqhFq4DeYVNoylDybyLuPpegdjrczM4jqOlB0Ll0P8GXB3d/gOCy85/ABGBZeOmeBXw7KlEN59NO3rpEt/VGwn1kAUU1kt6pwJ9r20AjVfFpM8wVQB4wN/yi9QAeN7MvEtS4Vrr7/LCsz4bv6x+1rSzq+YIBmNkEM+sRbmMPMB04GSgEutVo4+9JUGM7aGb2FYJmgPOrL/1r8UnZzay9mX3SbBPWBpcCJ5nZ2PD/oFpG+N7osjZY9lrU9hnXVPN7nMl/tofvqbG8LOp1ec2NmVkbghPNyQTNad8N16uvb6W2XJIRFUdjylEz1unAdcBaguaqRXW8r7HfnejjGILjqXvUdJ3HUtjR/zbBlcjkGp3C1U24VbW9N1kp+TcRMzuGoNa9mKBD7Hl3vw94h6AmUp1A5gJDwprRdUAHoCPwKnCjmbUI+wwe4tNmpIPhQKmZXR7urxdB08nQQy8dHxImcHe/yd2PifqibQQuc/fngJeBvuGdPZjZaQRfijXhdAZBTdAb2N9XgTvMLCO8avgqMNPd1xPUsi4JtzeB4Au3vM4t1cHMTgf+SJD4Nzem7ASJ+2EzGx1u4wSC2uR8ghrp3WZWXaP9LvD36quJ8ATfiiDhNLVXgclmlhMeO1MIKheH6miCE/yP3P15gqbDlnyaOCv5bGfrq8AlZnYEgJldRdAfUsChmwD81N2fJDiORkTFUBEVQ2O/O9GfJQQVs8vMrE14nF0J/KPmm8xsFDCD4M6y39Sy3f7AGnc/cJDlSygl/0MX3ea/hKCd/Tp3/5Cgpn+6mS0jqC2sAvqFB+b3gJ+a2WJgFsGtZR8T3OHyMcHJ432CGs4tBxtUeABeAFwT7v814Md+eLeg/p3gsr6hfW8mONHda2bvEdTWLnb30nCVYQQdwoVm1iP8v+tRy6ZuIbhVdDlB2+5Cgj4VCO5ymRxu/+cE7eGHUuN6kODE8VjU51jbrZiflD28CrkQ+N/wM3+Y4JbH9e7+MsHJZI6ZOUHT241R2zkLeMHdy8xsWPj+pvIzYDNBh+gHBEnx24exvWUE/RwrzWwR8EWCYzI/XP4M8JaZfXJbsLv/k+DznmlmK4CvEZxYD6c2fBswI+w/up+gCbM6hueB35jZ12j8d+d14Fgz6xDG/HxYlgUEFaSFwF8AzGyymf1f+L47w23+MupYmRG13bP5zz6AlJChIZ2lIWaWB8wDhtW44+dgt/MI8Dd3fzGcfgy4KaoDLuk0YdlnEpR1WTj9oruf18DbpIlZcF9/hbv/usGVG7e9LILmqLPcfUtTbDNeVPOXBoUdjj8Afnyo2zCzYUBVVOJvTXALZdImfmiysl8EzI5K/D2Be5smQjlIvwHOsKa7L/9bwP+mWuIH1fxFRNKSav4iImlIyV9EJA2lxPAOI0aMiPTs2TPRYYiIpJQVK1Zsd/cjaluWEsm/Z8+ePPPMM4kOQ0QkpYRDz9RKzT4iImlIyV9EJA0p+YuIpCElfxGRNKTkLyKShpT8RUTSUMySv5mNsOAh2jXnf8HM3jGzt83s2ljtX0RE6haT+/zDJ+/8F7C3xvwcgmFfTwmXzTGz51JxUCQRkcMViUQoLa+ieH85xfvLKSktp3hf+SfT5ZVVXHJKLzq0btHk+47Vj7xWETz
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxU1f3/8VcSEkKQEBaRfdePG/sqIqKtomjrUm2Vbtq6a936q9Xa1tpvN7XL16Vq3WrrV1DrVrV1q6hFRBEBBZWPBsSwCLKGNfv8/rg3MsQsk2Vyk8z7+Xjkwcy9d+79HObO55455845abFYDBERSS3pUQcgIiLNT8lfRCQFKfmLiKQgJX8RkRSk5C8ikoKU/EVEUlC7qANorcxsILAcWBIuygB2AVe6+9wkHG8lcFr49Gp3P63mreu1318A3d39EjObCtzm7ofWsO3xwGR3vzZu2SDgbeBYd18QLhsG3Ap0BsqB8939bTMbEz4+L4G4OgP3AgcSVFL+5u43hOv2B+4DugE7gO+4+7Jq9vFKWJ5H45YNBJa6+z51xVBT2c3sKOAmIBPYDVzq7vPD7R4DRoRxAbzs7leY2UnACHf/ZQLHOgs4zd1PrEd8ucCzQB7wG+Bid59Ux2teocr/T7h8LPCouw9M9PgtlZndDdzp7m/X83WdgEeBk4Esaj4X/w/4VXXnX0unmn/j7Hb3keHfMOAPwP3JPKC7L2iqxF8f4YfhRuDXccuygf8j+HBULssBXgBudPdRwP8ADwKEH8B2ZpZIUvsfYHV4IRoHXGhmh4XrHgTucPeDgeuAx8wsrZFFrFF82c0sC3gYONfdRwC/Ah6I2/wwYErceXEFgLv/EzjCzEYmKcyRwH7ufoi7P1hX4k8hxwANOTduAO52993Ufi7+HLg/medfsqjm37S6AZ8CmFk68CdgItCJ4AQ8x93nmtlk4I8E3xZiwG/d/bEwsdwAHBmuW0RQq9xWeYD42rmZ3Q9sA4YB/YBlwBnuvsPMDgJuDmPKAG5x9/saUbaLgefdfVfcsj8TXOyujVt2LLDc3f8dPn8K+Dhu/V3AHcAzdRzvsjBugF5Ae6DQzPoQ1MAeAnD3Z83sDmAUsLA+BTKzXwMnhE/TgOEE79G9VTbdq+xm1sfdS8MP/GBgU7h8EMF7fWf4DeNt4Ifuvjncz70EF6tT6hHjL4CBBP8HA4ANwDfcfW3cNkbwTaiPmS0GzgTeqvx2Y2bXAl8jqOytBC6Kf324zYXAFUAhe77NVo1lIDA7/DuM4JvP/wPOJ3hPFgBnunuFmU0iOJc7AhXAL9z9GTPrSPD+HwB0BbYDM9zdw28i84DDgf7AHOC77l5RJY5XgM3hMe8A3iK4OLcP/59edPfvh+9vb+BBM/sOwefjZoLPSybwEvAjdy+rsv9+wInApeGias9FAHdfYWZbga8C/6zu/62lUs2/cTqY2eLw7xOCE+u34boJBCfeYWEN9W/A1eG664E/uvsY4HvA0eHyq4EyYExYq1wL/K6OGMYAxwEHhcc73czaEXxlvTo8xpHA/zOziY0o62nEJWwzOwfIdPe7q2x3ALDOzO41swXAi8RVMtz9DYIkNai2g7l7zN3Lwq/VS4FXACe4yK2tkhBWA31r2NVNce/RYqDyooS7X1tZQweeC8t3f11lDxP/fuFxbyJIPAA9gP8QJMNRBE0/8RfcfwHTzKxDbWWvxhHA6e5+ILAl3P/n3N2BcwguuiMJmqIACJPeMGB8uO7fwD3xrw+/jfyC4BvLOKCkllgGAU+5+yEEyfNmgovNIWGcE82sC/BX4NvuPpogMd5hZv2B44Gt7j7R3Q8gSNyXxO1/CDA1jPlognO3Olvc/WB3v5UgOf/c3ScABwNfNbMxYfPkWuCb7v4mQWXs7fAzMQroDlxZzb5PAmZXXhRqORcrPQ2cWsv/WYukmn/j7A4/UACEtZ1nzWyku88zs58C55tZ5Qm9Pdz0EeDPZvYVgmTxk3D5iQRttscElTmygM/qiOE5dy8Oj7+EoDZ1AMGH6L5wPwAdCE74NxpY1gOB/PA4o4ELgCnVbJcJTAeOcvc3w7buf5vZgMo4gRWAsfc3gmq5+7fM7ALgMYKv2M/XsGl5Dct/VF2bf/wGZnYp8CXgSHevbj+flz0urvUEF7HRwEtm9n6YYD6v1Ye19nVmluXuJe6+3cy2EdTg69NG/Erct79FBO9xok4ExgMLwnMhA8ipss2XgBfcfV34/C6CCkV1SgmSHQR9Xq9XxmZma8PYDiOoIT8Zd/7FgOHu/qiZrTCzHwBDCT4X8+L2/3R4Yd9uZvm1lHVO3OPvAtPN7CcE71UOUF2fzonAeDP7fvi8povwF95vqPZcvC5ctRz4dg37arFU829C7v46QY1gvJmdQFDTg+Dr4J2EbY/u/heCms2LwDTg3bCDMwO4LK42Op49nbw12R33OBYeI4OgdjUybl8TCWpjDVXBnq++3wFygdfD2nTlV+uvEtS0loWJsLKtO4OgeaRSBjUnawDMbJqZ9Q73sQOYBYwGCoCeVdpY+xDUwuvNzE4HLgdOdPedNWz2ednNrLOZfZ7g3X0h8A4wzMyOCP8PKqWFr40va51lr0Z173GiMoAb4s6DsQTNKvGq7rOMmpW4e/yAYKU1HPODas6/58PmpXsJbo6YSfC+xh870bLuiHs8h6DCsQz4JcG5UN3rMgi+QVXGNIG9v3VUij/XazsX4/db3/c0ckr+TcjMDiCodS8i6Gh62t0r2yRPZk8CeR0Y5e73A+cR1Pa7ENRqLzGzrLDP4G72NCPVhwNFZvat8Hj9CGq7YxpeOj4kTODufrm7HxD3Iar8av0UwR0nAy24swczm0LwIf44fJ5G0IbtXzzEXr4OXGdmaWbWPnw+291XE9S0vhHubxrBh7XaduramNmRwC0EiX9dLZt+XnaCD/l9ZnZ4uI9DCGqKbxLUNm81s8ra6o8I7popD7ftTFDbLKhvrI3wPHCOBXcDQZAcH6iyzYvAsWZW2XR2ViOP+Qawf/jeVzYrfURQSZgG3B/2qzjwFeISbX2FTUxjgR+7++MEFYGhcfssI/g2CsH/xRVx59RTVJ/8499vqOFcjFs/mPp9k2sRlPwbJ77NfzFBO/t57v4hQU3/SDN7l+Br7XJgUJjUrwJ+aWaLgJeB6919JcFdBSsJLh7vE9RefljfoNy9hKDd8pzw+C8AP/PG3YL6KDU3BcQfex3Bhe52M1tK0M56qrsXhZuMJWibLjCz3uH/Xe9qdvVDgltFlxB0JL5N0L4McAZwQbj/XxPU5iqq2Udd7iK4cDwQ9z5Wdyvm52UPa34nA/8bvuf3EXRYrnb3ZwkuJnPNzAma3uKTy7HAM+5ebGZjw9cn2z0E/RVvmNl7BJ3aZ8Vv4O5LCM7Jl8J+muzGHNDdNxB0MN9kZu8QXGy+7e6fAL8naApdTNBnsJAgWTf0WFsIKkgLw9ivAebG7fNJ4GEzO5agA7cjwTn1bvjvjV/YafCao8ys8gJS27kIwbnxj4aWISppGtJZEhHWHN8Axla546e++7kf+Ie7/yt8/gBwubtvapJAk6AJyz6boKzvhs//5e4n1PEyiYCZ3QX8x90fqWO7IQS3Hh9WpTmsxVPNXxISdupdA/ysofuw4MdDFXGJP4fgFsoWm/ihycp+CjAnLvH3AW5vmgglCa4CzkvgzqxfEdwe3KoSP6jmLyKSklTzFxFJQUr+IiIpqFX8yGvChAmxPn36RB2GiEir8t577210932rW9cqkn+fPn14/PHHow5DRKRVsWDYmWqp2UdEJAUp+YuIpCAlfxGRFKTkLyKSgpT8RURSkJK/iEgKSlryN7MJFky3VnX5V8zsLTObZ2bnJuv4IiJSs6Tc529mVxHMbLOzyvJMgiF+x4Xr5prZU+GsSCKSgF0lZazavJuCzbso2LyLwl21zboorVn7zAy+OaE/eTlZTb7vZP3IaznBnJZVJ404CMgPx+DGzF4jmAqw1Y2FLZIs5RUx1m0rYlWY3Cv/rXy8cccXk31afeb2klajfbt0Jg3pxqj+rST
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wV1fnH8c/usnSWKgILSNPHQu9YMRbEDlFjSGKPJeZnTYzRqDHR+DNG/WkSNRbUGEuMYO8lKqJIWUBEeBCpS+9L276/P2YWr+uWu8vevbv3ft+vFy/unZk785y9c585c2bmnJSSkhJERCS5pMY7ABERqXtK/iIiSUjJX0QkCSn5i4gkISV/EZEkpOQvIpKEGsU7gIbAzHoA3wDzwklpwC7gGnefGoPtLQPOCN9e7+5nVLx0tdb7e6CDu//SzEYDf3P3vhUsOxY43N1vjJjWE5gFHO/uM8Np/YC/Aq2BIuASd59lZkPC1xdHEVdr4DHgQIIKyZPufmc4b39gItAe2AGc4+4Ly1nHh2F5XoiY1gP40t1bVhVDRWU3s6OBu4B0YDdwhbtPD5ebBAwI4wL4r7tfbWanAQPc/Q9Rbq8X8CdgWLiuPOAhd58YxWeHARe6+6XlzDseeARYT/A3bO3u/1vJunpQwd/LzP4GbHT330dTpvoq3If/4u4/rMFnI/eLYcD/AS0I8sGd7v4vM2sJ/AcY7+67azP22qaaf/R2u/vA8F8/4G7giVhu0N1n1lbirw4zawX8Gbg9YlpT4F9A44hpzYF3gD+7+yDgj8DTAO4+C2hkZidHsck/AtnhgWgYcJmZjQrnPQ086O4HA7cAk8wsZS+LWKHIsptZY+DfwM/dfQBwG/BUxOKjgCMj9ourAdz9ZeAIMxsYxfZ6AB8BbwJ9wu2MA84xszuiCPkQoGsF884GHnH3Ye7+YGWJP4nsB1h1P1Rmv0gBJgG3uPtAYCxwj5nt7+47gGcJ9ul6TTX/mmsPrAEws1TgXmAk0ApIAS5y96lmdjhwD0HtoAS4w90nhYnlTuCocN5sglplTukGImvnZvYEkAP0A7oBC4Gz3X2HmR0E3BfGlAbcH02tsRKXA2+7+66IaX8nONjdGDHteOAbd38jfP8KsDRi/sPAg8BrVWzvyjBugM5AE2CbmWUSnA08B+Dub5rZg8AgIKs6BTKz24GTwrcpQH+C7+ixMot+p+xmlunuBeEPvhewKZzek+C7fihM4LOAa919c7iexwgOVuOqCO23wDPu/mTpBHdfZWY/Apaa2f3AGOAMdz853PZ5BGeGlwF/AFqb2ePufn5EeX8NnA7sDs+sdvLtWV8m8DegO8EZzXPu/qcyf68M4FGCM5s1QCHwSdngw7PJ3uG/LsDnBBWCc4GewHXu/my47I3ADwkqncuAX7j7ajMbSZBYmxB8/++6+4Xh3/V94A1gBNAOuNHd/10mhh7AFGAB0IPgN3V+WP6mBLXzXxHsn48CmWb2truPMbNDCX6HLYBi4PfuXt7+ume/CCtCt7r7e+H3lW1mGwkOwl8DzwN3mtld7r6unHXVC6r5R6+Zmc0J/y0nSLalNbMRBDv+qLCG+iRwfTjvVuAedx8CXAD8IJx+PcEPakhY21sNVFUzGwKcABwUbu9MM2sEvEDQPDSEYMf/VfiDqqkziEjYZnYRkO7uj5RZ7gBgrZk9ZmYzgXeJqFC4+zSCH1rPyjbm7iXuXmhm/wK+BD4EnOAgt9rdiyMWz6bimu5dEd/RHIKkUbqNG0tr6MBbYfmeqKrsYeLfN9zuXQRJCqAj8B5wCcHBaAdB00qp14ExZtassrIDhwIfl50YJo0FBBWKcrn7SuBmYEpk4g/n3UWQ7O5191+X+ehTwMRwfxkOHGtmZ5VZ5laCZq4DgTOpvLZ8OEHt9yDgOOBgdz8S+GW4HszsHIKKy/DwO3iDIBFDcPC/2d1HAAcDp4bNhhAccN929+HAb/j2719WV+CP7n4AwdnpscBR7t6foMLyB3cvAi4iqLCMMbO2wOPAz9x9MHAq8KCZdS9n/Xv2C3fPjaw0mNnFQEtgWul8ggPliZX8zeJONf/o7Q53WgDCGsObZjbQ3T8zs98Bl5hZb2A0sD1c9Hng72Z2CkGyuCGcfjLQBjjOzCDYYddXEcNb7p4Xbn8eQU3oAIJa18RwPQDNCBLStBqW9UBgcbidwcClwJHlLJdOsIMf7e6fh23db5jZfqVxAksIEsfScj7/He7+UzO7lOCU+mbg7QoWLapg+q/La/OPXMDMrgCOIUgM5a1nT9kj4lpHcBAbDLxvZl+5++dE1OrDGvBaM2vs7vnuvt3McgiaGb53jaKM9AqmNyE4W6w1ZtaCoILQzsxKmyZaAgOB6RGLHgtc5e4lwAYze7GS1b7n7tvC9a8mOLhCcJ2sXfj6ZIIDzcxwP00DmofzzgVONLMbCP7+zcOYNgEFfHsQz4pYX1mFwGcA7r7czM4FfmJmfQgOoOVd9xlFcKbxUsRvp4TgrHBFmWW/t1+E5b2e4OB1Qpk2/m+oQfNSXVLNv4bc/VOC2ulwMzuJoKYH8DLwEEHTAu7+D4Iaz7sEp+9fhKfhacCVEbXR4Xx7kbcikTtXSbiNNGBrRLvzQIKd/fG9KF4x3zbDnANkAJ+GtekuwNNmdirB2crCMBGWtnWnEdTWSqVRcbIGwMzGmFmXcB2lbaaDCX6Ancq08WcS1MKrzczOBK4CTnb3nRUstqfsZtbazPYkeHfPAuYC/czsiPBvUCol/GxkWassOzCVoLJQNtZMgmaT6Xz7XZdqXHb5akgL13Vomf3lT2WWK7vNwkrWmVfmfUEF270zYptDgcPCeVMIKhELCZqxsiO2nR9x5lc2pu/E4O6FsKfC8inBfvsOQbNOeZ9LAxaU89spr9IR+ZvAzJqY2bPAjwnO+OeWs+6qvvu4UvKvITM7gKDWPZvgVPdVd38QmEHQ1liaQD4FBrn7E8DFBLX9tgQ72C/NrHF4zeARvm1Gqg4Hcs3sp+H2uhHUdodU+qnKLSJM4O5+lbsfEPHjWA38xN1fIbhI2aP0FN3MjiT4gS4N36cQtMF6Fds7C7jFzFLMrEn4/gN3zyaoQf0oXN8Ygh/hvArXVAEzOwq4nyDxr42m7AQ/3olmdli4jkMIaoCfE9Qk/2pmpTXRXwMvlJ5NhAf4Zny/BlnW7cBZYU21NNauBAfAB9x9NbAB6GtmTcNmvlMiPl9IxWcO3xNeU5oGXBNuqw3BAei0Mou+BVxoZqlh80jZ+dX1NnBReC0BgiT/VLjuocBv3H0ywcG9DxGJtgaOBGa6+z0EF9P3/B757t9rGrB/uN9iwQX6rwkqOGVF7hcQ3NGTQXAQXVbO8r2o+owvrpT8oxfZ5j+HoJ39YndfRFDTP8rMviA49fwG6Bkm9euAP5jZbOC/BBeKlhHcDbCM4ODxFUHN5NrqBuXu+QQ/zIvC7b8D3OR7dwvqCwTXFqra9lqCH9YDZvYlwUXv8WGbJwQ/6m/cfYWZdQn/duX9sK4luFV0HjCT4OLpfeG8s4FLw/XfDpxZ5hpAtB4mOHA8FfE9lncr5p6yh2chpwP/F37nE4EJ7p7t7m8SHEymmpkTNL39MmI9xwOvuXuemQ0NP/89Ybv9KIJ2dzez+QRnj08T7DsQfKcfESSTKXz34PcZcGAVzTJlTQBGhk2HnwPPuvvTZZb5PUENfiHwKjU44JbxKEGb+bSwjP2B89x9C0GlJyu8bvRbgoNRn73Y1rNABzP7imBf2kHQzNUKmA8Umdl0YCPBBei7zGwuwbWQn7n78nLWuWe/CCsDp4QxTo3Yn8aE85sQfKev7kUZYi5FXTpLWWHtbBow1L97x0911/ME8B93fz18/xRBO/KmWgk0Bmqx7B8QlPWL8P3r7n5SFR+Teqo6+4UFd2MdUs6F9npFNX/5nrBp4LfATTVdh5kNBYojEn9zgrs26m3ih1or+ziCO3BKE38m8EDtRCjxEO1+EZ5dTCA4c6rXVPMXEUlCqvmLiCQhJX8RkSTUIB7yGjFiRElmZma8wxARaVDmz5+/0d3
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxcVZn/8U93ZyMrZGGLCZAgj4gQNocAAYKyyKKA22jEBSZiFH6KMCLjjqPjCKKiELYBQYSfsggDKIsKKAaCgiABzKNJVcIOXW1I0pXeu+aPcyu5NN2V6k7frq663/frlVeq6t669zmpm6fOPefUOXWFQgEREUmX+koHICIiQ0/JX0QkhZT8RURSSMlfRCSFlPxFRFJIyV9EJIVGVDqAWmRmOwMrgWXRSw3ABuAsd1+SwPlWAe+Pnp7r7u/ve+9+HfcbwFR3P8PM5gMXu/vb+tj3GGCeu3859touwGPAUe7+aPTansCPgUlAF/Apd3/MzPaLHp9WRlyTgKuAtxAqMNe6+3ejbW8GrgamAM3Ax9x9eS/HeCAqz82x13YGnnL38ZuLoa+ym9nhwAXASKAF+Ky7/yna7xZgThQXwP3u/nkzOwGY4+7fLONcI4FvA+8CCkAd8HPgO+6e+LhtM7sTuNndr0n6XANhZnsDn3P3U8xsGvBTYCegGzjN3R8q8d6jgPPdfe/o+XjgJuC97t6SfPRDSzX/5LS4+97Rnz2BC4Frkjyhuz86WIm/P8xsAnA+ISkVXxsD/AwYFXttLHAv4T/YPsB/AtcDuPtjwAgzO76MU/4n8Hz0RfR24NNmdmC07XrgUnd/K/B14BYzq9vCIvYpXnYzGwX8Aviku88BvgVcF9v9QODQ2HXxeQB3/1/gkChxbc6ZwCxg3+gchwDvAz45aIWqUmZWT6gUfCV66RLgwehaOBm4KboGe75vKzP7FnAjsQqxuzcD/59wvdUc1fyHzhTgJdh4kf4AmAtMINTeFrr7EjObB3yfcLdQINTobokSy3eBw6JtjxNqleuKJ4jXzs3sGmAdsCcwA1gOfMjdm81sd+CiKKYG4EfufvUWlO104B533xB77RLCl92XY68dBax0919Hz28HsrHtVwCXAndu5nyfi+IG2AEYDaw1s+mEu4GfA7j7XWZ2KbAP8Jf+FMjMvg0cFz2tA/YifEZX9dj1dWU3s+nu3hF94cwCmqLXdyF81pdFdxiPAWe7+z+j41xF+LI6aTOh7UC4qxgNdLr7WjP7KFFFLrqjeQbYH5gKXOfuX4+2HUS4hsYRasLfcPc7o23/BnwmOk4TcIa7LzezHYFrgR2B1cC2ffx79XXdjifc6R0MdAK3Ea6JiYRrZO9o/7uAL7l7p5m1Af9LuEv6CJCnvOv1g0DW3V8wsxHA8YTPB3d/wsz+Qbhj+mWP9x0d/ZucCvS8+7oR+K6ZXeDur/RW9mqlmn9ytjKzJ6I/qwkX73eibQcQ/jMdGNVKrgXOjbadB3zf3fcjXIzviF4/l/CfZ7+oxvci8N+biWE/wsW+e3S+D0T/KW4mNA/tR/gy+Xczm7sFZX0/sYRtZguBke5+ZY/9dgNeNrOrzOxR4De8vqa1FJgeJco+uXshShI/A54CHgCc8CX3ort3x3Z/HnhTH4e6IPYZPQEUv5Rw9y8Xa+jA3VH5rtlc2aPEv1103gsIdwUQkuZvgU8RvoyaCc1TRb8CjjazrUqVnZBgpwM5M3sg+pIa7e5PxfbZiZBs9wX+1cyON7NtgJ8AH3X3fYH3AJea2UwzOwz4OHBIdEd2PpsS5CXAUnffA/gs4cu1N31dt98ExhCuwb2juA4DfkT4ktmT8EU1B/j36D2jgDvc3YAnKP96jX8WU4F6d2+Mbe/1WnD326K7sH/2sq0V+CNwbB/lrlqq+Senpdh2CBtrXXeZ2d7u/rCZfQX4lJnNBuYD66NdbwQuMbN3E5LFl6LXjwe2Bo40Mwj/QV7dTAx3u3tbdP5lwGRCAp4NXB0dB2ArQkJaOsCyvgVYEZ1nX2ARcGgv+40k/Cc63N0fidq6f21mOxXjBDKA8fo7gl65+8lmtgi4BfgacE8fu3b18foXemvzj+9gZp8F3gkc5u69HWdj2WNxvUL4EtsX+J2ZPePujxCr1Uf9KS+b2Sh3b3f39Wa2jpC439BHETv288D+ZvZW4PDoz8Nmdpa7L452u9zdO4DXzOwmQs22m3DXcFvscy8Q7mgOBXYFHoptm2xmk4EjiJKyu68ws/v6CK2v6/YIQl9XF+FzOCwq/43AwVE/RZuZXUZo0ipWaB6M/u7P9foW4IfR474qtn1dC6WsJFyTNUU1/yESdTQ58C9mdhyhpgfh9vYyQtMC7n45oTb0G8J/2iejDs4GQkdWsTb6L2zq5O1LvJOq2DnYALwWa3fem9D89JMtKF43m5phPka4pX8oqk3vCFxvZu8h3K0sjxJhsa27gdA8UtTAZv6DmtnRUXNEvF12X+BZYPsebfzTCTW+fjOzDxAS0vHunu9jt41lN7NJZrYxwbv7X4C/Anua2SHRv0FRXfTeeFnLKfv5Zrabuz/j7pdEfTwLCU02RZ2xx/XRMRuAv/Xyud8Tbbsu9vq+hNr4GjZdN70de6MS121ndIxi/DPMbApvzD31hMpBUbFTvD/Xa/w6fDU63zax7QO9Fjb7uVQjJf8hYma7EWoxjwNHEm5rLwX+DJzIpgTyELBPNJriNEJtfxvCf9IzzGxU1GdwJZuakfrDgVYzOzk63wxCbXe/gZeOvxMlcHc/0913i/1HfRH4iLvfTmjX3dnCyB7M7FBCYshGz+uAnaMYS/kg8HUzqzOz0dHz+6Ja8UrgX6PjFWu8y/o8Uh+ippAfERL/y+WUnZAgrjazg6Nj7EGojT4CjAd+HNWmAb5AGDXTFe07iVCjfXYzoW0L/Gex4zL6NzNe36dxspnVR4nvg8AdhFrym6N/8+KomH8QvpzvBT5sZjtE718E/C56fDfhOsTMZhLuNN6gxHX7W+DjUTyjCU04hxGu59Njn+FphC+Onvpzvcavw05CBetT0fv2At5KaCLsr1mUuBurVkr+yYm3+RfbLU9z978TavqHmdmTwMOEhLVLlNTPAb5pZo8D9wPnufsqwoiDVYQvj2cItbGz+xuUu7cDJwALo/PfC3zVt2wI6s2EvoXNnftlwhfdYjN7itDp/d6oXRVCbXOluz9rZjtG/3Y79nKoswlDRZcBjxI6Ty+Ktn0IWBQd/9vAB3r0AZTrCsIXx3Wxz7G3oZgbyx7dhZwI/DD6zK8GFrj78+5+F+HLZImZOaEp44zYcY4C7nT3NjPbP3p/bz5D+EJ90syeJiSlqUQdm5GtgD8REv5id/9d1Pb9PkI/x18Jo5A+6u6r3f0eQkfwb6JrYgHhcylEx32rmf2N0CndV1x9XbfnAe2EO6DHgV+7+y8J/QfbEj7DZYQk/+2eB+3n9drzOvwMcHB0LVwflXctgJn9usedWK+iL6YDCV+gNaVOUzrLljKziYREs3+PET/9Pc41wE3u/qvo+XXAme7eNCiBJmAQy34foaxPRs9/5e7HbeZtvR3nAXr8fiEtzKyBUBE4zt1fGKRjfgLYw92/MBjHG05U85ct5mG46X8AXx3oMcxsf6A7lvjHEoZQDtvED4NW9pMI49GLiX86sLj0u6SnqAntk8B/DcbxLPyGYwHwjcE43nCjmr+ISAqp5i8ikkJK/iIiKVQVP/I64IADCtOnT690GCIiVeXpp5/Oufu03rZVRfKfPn06v/xlz+k4RESkFAtTy/RKzT4iIimk5C8ikkJK/iIiKaTkLyKSQkr+IiIppOQvIpJCiSV/MzsgmmSq5+vvNrM/m9nDZpb6dUdFRCohkXH+ZnYO8FHC2pvx10cSpvF9e7RtiZndXmtrY1ZCd3eB3y1/lWXPv1bpUERkkIwe2cBHDpjJ1mNHDfqxk/qR10rgvYQ5w+N2B1a4+xoAM/sjYQm5mxKKo+Z1dRe466mXuPi+FSx/OawEWVe3mTeJSFUYPaKeg2ZPYZ+ZVZL83f2WaD3UniYCa2PP1xM
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZgcVbnH8e/MJJnsCckkLCEkJMgrawigCWGXJWxKwJ3FBQFBvICgCHgVUbkKCAoiqyCIIAgYZZFFBRTZZE8AeTEd9m06CVl6kkwyM33/ONVJMc6amZpe6vd5njx0d1V3vdXT/PrUqdOnqvL5PCIiki7VxS5ARET6nsJfRCSFFP4iIimk8BcRSSGFv4hICin8RURSqF+xC0grM5sIZIC50UM1wHLgFHd/OIHtvQp8Krp7urt/qv21u/W63wfq3P3rZrYHcIm7b93OuvsDu7j7d2KPbQo8Bezr7k9Gj20D/AIYATQDX3X3p8xsh+j2sV2oawRwNfBhQiPnOnc/N1r2IeAaYDSQA77g7i+18RoPRvtza+yxicDz7j60sxra23cz2xM4H+gPrABOdPd/RevdBkyJ6gJ4wN2/YWYHA1Pc/Qdd2FZ/4BxgPyAPVAE3AT92914d221mxwEj3f0nvfiaPyHs971mdiDwY6AWmAN8xd2XtvGcdtczsyzwVmz18939BjO7ALjD3R/srdrLiVr+xbXC3beL/m0DXABcm+QG3f3J3gr+7jCzYcB5hFAqPDYQ+C0wIPbYYOA+4Dx3nwr8ELgBwN2fAvqZ2UFd2OQPgTejL6KPAMeb2U7RshuAy9x9S+As4DYzq+rhLrYrvu9mNgC4GTjG3acAPwKuj62+E7Bb7HPxDQB3/xOwq5lt14VNngxMAraPtrEr8EngmF7bqYi7X97LwT8d2DIK/jHAr4FPursB84H/2lZH65mZAe/H3s/t3P2G6Kk/AH5hZoN6q/5yopZ/aRkNvANgZtXAz4DpwDBC6+1od3/YzHYBLiQcLeQJLbrbomA5F9g9WvYMoVW5pqUUb52b2bXAUmAbYDzwEvA5d8+Z2RbARVFNNcDF7n5ND/btBOBed18ee+yXhC+778Qe2xfIuPufo/u3A6/Ell8JXAbc2cn2TorqBtiQ0CJcYmbjCEcDNwG4+91mdhkwFXi6OztkZucAB0Z3q4BtCX+jq1ut+oF9N7Nx7r46+sKZBCyMHt+U8Le+PDrCeAo41d0XRa9zNeHL6pBOStuQcFRRCzS5+xIzO5KosRcd0bwI7AjUAde7+1nRsjOBWcBAYAjwTXefbWb9CF9gBwFNwCPA14AzWXvk9yrh77kXsAlws7ufFr3u6cBXgGXAP4BZ7j6xjdq/D1wS3d4XeMLd/xPdvwx4zsxOaHUE0+56wAyg2cweIHyWbwXOcffm6H15GDiW8FlPFbX8i2uQmT0b/XuN8AH8cbRsGrARsFPUQr0OOD1adjZwobvvABwFfCx6/HTC/5g7RC2+t2mjpdTKDoTugS2i7X06+h/9VkL30A6EL5NvRq2ydfUpYoFtZkcD/d39qlbrbQ68a2ZXm9mTwF+INVLc/TFgXBSU7XL3vLs3mdlvgeeBBwEnfMm97e4tsdXfBDZu56XOj/2NngUKX0q4+3cKrUngnmj/ru1s36PgXz/a7vmEUAUYC/wV+CrhyyhH6J4quAuY2YWW6oXAOGCBmT0YfUnVuvvzsXUmADsD2wOfNbODzGwCsDewu7tvS/hSLnQzfY3wWZkCbE34kvpsG9se6u67EkL3f8xsUzObCXyJcAS2Q/Tc/2JmIwlHKfdFD40H3oit8iYwvI3nd7ReP8JnaD9gN2Am8D+xde8ADm2rnkqnln9xrYiCAwAzmwHcbWbbufujZva/wFfNbDKwB6HVBPB74Jdm9nFCWJwZPX4QMBLYJxztMgCo76SGe9y9Mdr+XGAUIYAnA9dErwMwiBBIj63jvn4YmBdtZ3vgOML/jK31Bw4A9nT3x6O+7j+b2YRCnYTDeuODRwRtcvcjon7p24DvAfe2s2pzO49/q60+//gKZnYiobW7u7u39Tpr9j1W13uEL7Htgb+Z2Yvu/jixVn10PuVdMxvg7qvcfZmZLSUE93+do4i99pvAjma2JbBn9O9RMzvF3S+NVrvC3VcDi83sFmCmu99pZl8EDjezzQhHnYVzG3sTjhBWRPc/G6sx7k9RDW+ZWT3h83QAcIu7L46e88vo/WptM+Add18V3W+vcdr6PW53vVaNi0YzuxA4Efh59FiG8FlKHbX8S4i7P0JonX40OoF1V7ToT8DlhK4F3P0KQlfNXwgtmTnRCc4a4KRYa/SjrD3J254VsduFk4M1wOJ4PykhCH7dg91rYW03zBcILbNHotb0RsANZvYJwtHKS1EQFvq6awjdIwU1tB/WAJjZTDPbKHqNHPA7Qiv3dWCDVn384witxW4zs08T+tgPcveGdlZbs+9mNsLM1gS8uz8NPAdsY2a7Ru9BQVX03Pi+dmXfzzOzzd39RXf/ZXSO52hC672gKXa7mtA1sj2hO2c4ofV9blRDYf01XS1mtr6ZbdjG5tv6PDXFXocO6o9/RiD8reLbGEfov2/9Pre7npkdaWbbxpZVAatj9zt9PyuVwr+EmNnmhFb3M8A+hJEIlwFPEPphCwHyCDDV3a8l9FeOBNYjtGq/bmYDonMGV7G2G6k7HFhpZkdE2xtPaO3usO57x8tEAe7uJ7v75rEvlreBw939duBuYKKFkT2Y2W6EEHklul8FTIxq7MhngLPMrMrMaqP790et4gxrW64zCaEzt91XaoeZ7Q5cTAj+d7uy74SgucbMdo5eYyvCkcHjhFb2L8xsVLTut4BbC0cT0Rf8IELYdWQs8MPo5HnhPTM+eE7jCDOrNrP1CO/NHYQjsSfd/ULg78Q+c4QjzMPMrDb6bF0GfL6TOgruAj4Z1Q+h77+tUUfzgbEWBgJA+AKabmF0FoSjxT+18byO1tsa+IGZ1UTdZV8nnHAvmEQHR1GVTOFfXPE+/2cJ/ezHuvvLhJb+7mY2B3iUEFibRv/jnUb4QD8DPACc7e6vEka4vEr48niR0Mo5tbtFRYfdBwNHR9u/D/iu92wI6q2EftfOtv0uIXQuNbPnCSe9D3X3ldEqOxJOCL9uZhtF791GbbzUqYShonOBJwknTwsn9T4HHBe9/jnAp1udA+iqKwlfHNfH/o5tDcVcs+/RUcgs4OfR3/wa4DB3f9Pd7yZ8mTxsZk7oevt67HX2Be5090Yz2zF6flu+RvhCnWNmLxDCrY5w4rlgEPAvQjfepe7+N8LRUZ2ZvUh4v3LAKAujla6IHnuK8J6+E9XaKXe/n9AQeTQ6jzOCMKy59XqLgYcI3VS4ez3wZeBWM/s34Wj3VID4/ne0HuH82KKo5jmEI5tfxTa7H3BLV/aj0lRpSmfpC2Y2nBA0O7Ya8dPd17mW0H98V3T/euBkd1/YK4UmoBf3/X7Cvs6J7t/l7gd28rS2XudBWv1+IUlmtiMww90vju6fAkxz9/86YRyd9/rOuuzXOtQ1AniY8HdZ2dn6lUYtf+kT0XDTM4DvrutrRCHSEgv+wYQhlCUb/NBr+34I8FAs+McBl3b8rJLxMuE3Cs9Hgwr2Ak5pa8XCeS8z6/QosRecRfgyTV3wg1r+IiKppJa/iEgKKfxFRFKoLH7kNW3atPy4ceOKXYaISFl54YUXFrj7mLaWlUX4jxs3jj/84Q/FLkNEpKxYmDamTer2ERFJIYW/iEgKKfxFRFJI4S8ikkIKfxGRFFL4i4ikUGLhb2bTogmkWj/+cTN7wsweNbNev6aoiIh0LpFx/mZ2GnAk0NDq8f6EKXo/Ei172Mxuj65qJD302PyFPDJvQbHLEJFeUtu/hsOnbcLIwQN6/bWT+pFXhnBdzOtbPb4FMM/d3wcws38SLiCRyvm0e8uqphZ+ep9z5T/mA1BV1ckTRKQs1ParZsbk0UzdpEzC391vi6512tpwYEns/jLChR1kHc3P5jjxpmd4/q2lHDl9At85cAsG9q/p/Ikikmp9Pb3DUmBY7P4
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAESCAYAAAAVLtXjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3xcVbn/8U+S3tMbbcqt0hYKPKIiIFVarFDEUi6ixdvxoEcFe6D+8CWIR616RNCjHkU8oogKgmAFFcUqiFxUFLWlKDctaB8sdoZL5ZLpPZOmTTK/P9aedBNzmaTZM5nZ3/fr1Vdn9vVZmeSZtddee626QqGAiIikS32lAxARkfJT8hcRSSElfxGRFFLyFxFJISV/EZEUUvIXEUmhEZUOIA3MbBbwOLAmWtQA5IEL3X1lAufLAG+J3i5z97f0vvWAjnsx0OTu7zezBcAV7v6yXrY9BZjv7p+ILTsQeAA4yd3vj5YdDnwNmAR0AOe6+wNmdnT0+pwS4poEXAO8mFChud7dvxCtOwS4FpgKbAfe5e5rezjGb6Py/Di2bBbwiLuP7y+G3spuZicAlwIjgVbgA+7+x2i7m4EjorgAfuPuHzSzNwJHuPunSzjXxcB5wNPdVi0B5gCT3f1/+9h/Fr2U0cyuAJrd/eL+4kiamb0P6HD3q8zsGODrQCOwAXinu/+zh3163c7MHgDGAjujzW9w90vN7Hxgk7t/N/FCVZiSf/m0uvuRxTdm9jbgOuCQpE4YJdghSfwDYWYTgC8Cx8SWjQG+B4yKLRsH3AW8191/ESW9G4AXR18AI8zs9e7+835O+RngKXd/i5k1Ao+a2e/c/d7oeF9x9xujpHyzmb3M3RN5wCVedjMbBfwQWOTuD5nZ64HlgEWbzwPmuPuG+DHc/Wdm9n4zO9LdHy7htD909/f3sPz+wZdk+DCzmcB7gLnRz/THwNvdfWX0pXANcGq3fXrdLvodmQ1Mc/dd3U53BfAnM7vL3Z9JtGAVpuRfOVOBYi2kHvg/YC4wAagDlkS/tPOBLxOuFgrA59395uiX+wvA8dG6hwi1yq3FE8Rr52Z2HbAVOBw4AFhL+MPYbmaHAZdHMTUAX3X3a/egbOcBd7p7Prbs64Qvu0/Elp0EPO7uv4je3wKsj62/CvgG0F/yPz+KG2A/YDSwxcymE64GfgDg7reb2TeAo4AHB1IgM/sscFr0tg54OeEzuqbbpi8ou5lNd/ddZlYHHATkouUHEj7rb0a17weAD7n7xug41wCfAs4YSJzdYr6Y3Vdq0wmJbQbhKuQH7v65bttPBL5NuBr5J9AO/KGH4+4DfAvYB9gXyAJvc/fnoqvO+wg/n48Df+ztvGb2cWAxMIZQO/8vd1/RQ1E+Bix394KZvRLYGrtivgb4iplNdfdcbJ9et4ti2w7cZmb7Ab8CPu7ure7eYWY3AR8FPtj7T7f6qc2/fMaa2cPRvywh2X4+WncMsD8wz91fAlwPLIvWXQJ82d2PBs4GXhstX0b44zza3Y8gXNb2enkfORo4GTgsOt9bzWwEoYa0LDrH8cB/mdncPSjrW4glbDNbAox096u7bXco8IyZXWNm9wO/JFYhcffVwPQoUfbK3Qvu3m5m3wMeAX4LOOFLboO7d8Y2fwp4US+HujT2GT0MFL+UcPdPuPuR0dXbHVH5ruuv7FHi3yc676WEqwKAvQlJ51zCl9F2QvNU0W3AIjMb21fZI/8Wj9vMLuphm+XAtdFn/CrgddHVZ9wlhKapFwNvZfcVSndvB+5193mEL7Q88B+x9Y+4+2FRIu/xvFFt/nXA8e7+ckKl4F+auaIvzTez+2d6APBkcb277wSeB6Z327Wv7SYAvyF8Vq8kfDF9PrbvrcCbeil7zVDNv3y6N/scC9weXdrfa2b/DZxrZrOBBcC2aNObgK+b2elENZRo+euBycBCM4PQnPJcPzHc4e5t0fnXAFMICXg2cG10HAhtoUcBqwdZ1hcD66LzvAJYChzXw3YjCZfrJ7j7fVGzzy/MbGYxTuAfhCS0vof9X8Dd32lmS4GbgYuAO3vZtKOX5R/uqc0/voGZfQA4kZC0ejpOV9ljcT1L+BJ7BfBrM/uru99HrFYf1dKfMbNR7r7T3beZ2VZgJuEqrS+9NfsUj91I+FKfYmafiRaPB44k1MyLXgdcEDWJPW9mPdXCcffLzew1ZnYhodnyZYTaftHv+zuvu99kZu8G3mFmBxOuenu6tzKVcN8iE73vrcLa/bPodTt3v4VwlUkU5+eAnwAXRIseB2aY2Rh339HLcaqeav4V4u6rCLXTV5nZaYSaHsDPgG8SmhZw928Rmmp+CSwC/hLd4GwAzo/VRl9F/+37rbHXhegcDcDm4nGiY80FvrMHxetkdzPMu4CJwKqoNr0/cIOZvYFwtbI2SoS4+8+i/Q6KHauB3pM1AGa2yMz2j46xHfg+8ArgCWDfqPZYNJ1QCx8wM3srIUG83t1betmsq+xmNsnMuhK8uz8I/Bk4PEqeb4jtVxftGy9rv2UvUUN0/GO7fcaf67Zd8XeiqL2ng5nZFwi19OcJTXN3dduveAO71/NGX4SrCL8bdxGaMOPHKOoE6qKmUQif6X6xWEYCTfzrDe9etzOz080sXhmpA+Jt/8Um1vgVY81R8q8QMzuUUOt+CFgI3Oru3wD+RGgHLSaQVcBR7n4dcA6htr8XoVb7fjMbFf1hXM0LL11L5cAOM3tndL4DCLXdowdfOh4jSuDufoG7Hxr7498AvCOqfd0OzLLQs4foD7JAVMuPkvasKMa+vA34lJnVmdno6P3d7v4UoRb3b9HxFhH+oNf0eqRemNnxwFcJib+vG4FdZSck7mvN7NXRMV5KuDK4j1DL/ZqZTYm2/TDw4+LVRPQFP5aQxPZIdB9oNXBhdOzJwErgjd02vQN4r5nVm9lePawvWkS4ib6ccLW5kN1f9qWe9zjgfnf/MnAPsd/5bsfYCGwiXAFB+NlNja6cITSF3uvum7vt2td2LwK+ZGZjzawhiu+HsX0PAtZHTUU1S8m/fOJt/g8T2tnPcffHCDX9483sL8C9hIR1YJTUPwJ82sweIrRTXhJdAn8GyBC+PP5KqL18aKBBRb/gbwSWROe/C/ik71kX1B8T7i30d+5nCH/0V5rZI4Sb3m+KXWrPIdwQfsLM9o9+dvv3cKgPEbqKriH0cHmAcE8FQvv00uj4nwXe2u0eQKmuInxxLI99jj11xewqe3QVsphwo/FhQpv+me7+lLvfTvgyWWlmTmh6izfdnAT83N3bzGxOtP+eOJPQW2YNITF+391v6LbNxYQa8FpCu3dvX5KfJiTPBwjNJX8ADh7geb8PNJnZXwmf13ZC89CEHo5xM7t/prsI7fFfMbNHgXcAZwHEf0f62o5ws/oewk3/tdG545/lycCPeilPzajTkM4y1Cz0GllN6MaY72/7Po5zHfAjd78ter+c0Cad63PHChrCst9NKOtfove3uftp/exWk6Ib/j8m/EwTTVjRlcCDhGdRnk3yXJWmmr8Muehy/2PAJwd7DDObA3TGEv84QhfKYZv4YcjKfgbw+1jinw5cOTQRVh93X0/oAXduGU73AUKTVk0nflDNX0QklVTzFxFJISV/EZEUqoqHvI455pjC9OndH+ATEZG+PProo83uPq2ndVWR/KdPn85PfvKTSochIlJVLAwl0yM1+4iIpJCSv4hICin5i4ikkJK/iEgKKfmLiKSQkr+ISAollvzN7BgLk2J3X366mf3JzO41s/9M6vwiItK7RPr5m9lHCNO6tXRbPpIwbO8ro3UrzeyWNAyilJTOzgIbtrTyj+dbePz57WxqqekhyEVSZfTIBt5xzAwmjxs15MdO6iGvxwljaS/vtvwwYJ27bwIwsz8QJnWo+bGz99T2tnbWRwn+H89v5/HmFh5/bjuZXAs7dr1wePq6nuZDEpGqM3pEPcfOnspRM6ok+bv7zdH8p91NBLbE3m8jTMIhhFr805tbowTfwj+at/P4c+H/Z7e2dW1XXwczpozjoGnjmX9wE7P3Hs9BTY0cNG08TeN
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"for vs, vals in powers_sample_size.items():\n",
" for key, val in vals.items():\n",
" plt.figure()\n",
" plt.plot(val['es'], val['p'])\n",
" try:\n",
" e = interp1d(val['p'], val['es'])(0.8)\n",
" plt.axvline(e, label=f'N={e:.0f}', color='k')\n",
" plt.axhline(0.8, color='k', alpha=0.1)\n",
" plt.legend()\n",
" except:\n",
" pass\n",
" n1, n2 = results['gridcell'][key][list(vs)].count().values\n",
" plt.title(f\"{vs[0]} ({n1}), {vs[1]} ({n2}), {key.replace('_', ' ').capitalize()} ({effect_sizes[key]})\")\n",
" plt.ylabel('Power p(~H0|H1)')\n",
" plt.xlabel('N neurons')\n",
" savefig(output_path / 'figures' / f\"sample_size_{'-'.join(vs)}_{key}\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'interp1d' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-13-7929fdf41f49>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvals\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpowers_sample_size\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mvals\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0me\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minterp1d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mval\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'p'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'es'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.8\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mf\"{key.replace('_', ' ').capitalize()}\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0msample_size_power_80p\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m' - '\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'interp1d' is not defined"
]
}
],
"source": [
"sample_size_power_80p = pd.DataFrame()\n",
"for vs, vals in powers_sample_size.items():\n",
" for key, val in vals.items():\n",
" e = interp1d(val['p'], val['es'])(0.8)\n",
" name = f\"{key.replace('_', ' ').capitalize()}\"\n",
" sample_size_power_80p.loc[name, ' - '.join(vs)] = e"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_size_power_80p"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Store data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_size_power_80p.to_latex(output_path / \"statistics\" / f\"sample_size_power.tex\")\n",
"sample_size_power_80p.to_csv(output_path / \"statistics\" / f\"sample_size_power.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.savez(output_path / 'data' / 'powers_sample_size.npz', powers_sample_size)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register in Expipe"
]
},
{
"cell_type": "code",
"execution_count": 148,
"metadata": {},
"outputs": [],
"source": [
"action = project.require_action(\"comparisons-power\")"
]
},
{
"cell_type": "code",
"execution_count": 149,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['/media/storage/expipe/septum-mec/actions/comparisons-power/data/statistics/effect_size_power_80p.tex',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/statistics/effect_size_power_80p.csv',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/data/powers.npz',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_field_area.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_in_field_mean_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_gridness.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_field_area.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_spacing.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_information_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_speed_score.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_information_specificity.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_average_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_spacing.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_speed_score.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_field_area.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_speed_score.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_out_field_mean_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_average_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_field_area.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_out_field_mean_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_out_field_mean_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_in_field_mean_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_in_field_mean_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_max_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_information_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_max_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_information_specificity.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_information_specificity.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_max_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_gridness.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_information_specificity.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_gridness.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_field_area.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_gridness.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_in_field_mean_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_information_specificity.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_average_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_out_field_mean_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_out_field_mean_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_max_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_information_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_field_area.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_information_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_speed_score.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_max_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_average_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_in_field_mean_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_spacing.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_information_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_spacing.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_speed_score.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_information_specificity.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_in_field_mean_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_spacing.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_gridness.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-Baseline II_out_field_mean_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_average_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_gridness.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_information_rate.png',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_max_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_speed_score.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline II-30 Hz_average_rate.svg',\n",
" '/media/storage/expipe/septum-mec/actions/comparisons-power/data/figures/Baseline I-11 Hz_spacing.png']"
]
},
"execution_count": 149,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"copy_tree(output_path, str(action.data_path()))"
]
},
{
"cell_type": "code",
"execution_count": 150,
"metadata": {},
"outputs": [],
"source": [
"septum_mec.analysis.registration.store_notebook(action, \"20_comparisons_power.ipynb\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Testing"
]
},
{
"cell_type": "code",
"execution_count": 213,
"metadata": {},
"outputs": [],
"source": [
"vs, key = vss[0], 'gridness'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"power, sample_size, effective_sample_size = estimate_sample_size_lmm(\n",
" results['gridcell'][key], *vs, effect_size=effect_sizes[key], n_samples_range=(10, 300, 10), key=key)"
]
},
{
"cell_type": "code",
"execution_count": 216,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e280fa482c0b4d91aa6463176e88a5e5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='Gridness', max=19, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"power, sample_size, effective_sample_size =estimate_sample_size_lmm(\n",
" results['gridcell'][key], *vs, effect_size=effect_sizes[key], n_samples_range=(10, 200, 10), n_repeats=100, key=key)"
]
},
{
"cell_type": "code",
"execution_count": 198,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 992 ms, sys: 740 ms, total: 1.73 s\n",
"Wall time: 7min 45s\n"
]
}
],
"source": [
"%%time\n",
"power, sample_size, effective_sample_size = estimate_sample_size_lmm_paralell(\n",
" results['gridcell'][key], *vs, effect_size=effect_sizes[key], n_samples_range=(10, 130, 10), n_repeats=100, key=key)"
]
},
{
"cell_type": "code",
"execution_count": 223,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 226,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 0, 'N neurons')"
]
},
"execution_count": 226,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyoAAAJGCAYAAAC0iHFSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXhcddn/8XeWLknXdIe2aaGFG1pAtrassld2eBRkaYGKgPgTlAcQFEEQWeUREUEQEEFbRFBAZC2LoixdoKyF3lCkK933Nk3bJPP743smmaaTySQzyWT5vK5rrjMnZ7snOTlz7vPd8mKxGCIiIiIiIi1Jfq4DEBERERERqU2JioiIiIiItDhKVEREREREpMVRoiIiIiIiIi2OEhUREREREWlxlKiIiIiIiEiLo0RFRERERERaHCUqIiIiIiLS4ihRERERERGRFkeJioiIiIiItDhKVEREREREpMVRoiIiIiIiIi2OEhUREREREWlxlKiIiIiIiEiLU5jrAETaGjMbCnxRx+IYsAqYBzwP/MrdlzVTaFljZhOAPwAL3X1Qws//BRwC3OjuV+cmutTM7CHgHOA1dz+0kfu4GfhfYDd3n11rWX/gCuA4oBSoAN4H7nX3SXXsrxPwfeBMwKJtPgUeBe5y9/Ja65cAnwGT3f3MxnyGhjCzYuADoHPi3zuN7boAHwF57j60Ece9AfgJ8Lm7D09j/QXAQOAad7+hocdrDDO7DbgIGOHuXyT8PB57Khe7+11J9rkT4Rw6Etge2ABMI1wvXqy1bm/CufCMu5+dyWepj5kNIfzvHAnsAvQEyoDFwH+Ax9z9pUbuuxDYEs0e5u7/SnO74YTPD7CDu89pzPHbEjMrIPw9ugN7untFwrJCwrXmHMK1ZiPwIfBbd380S8e/DbicOv6OZvYt4PfAWHd/ORvHlLZLJSoiTesj4I2E1zRgObAb8GPgYzPbPXfhSUOZ2UGEm8g7kyQpBwCzgEuBwYADm4CDgIlm9kCS/ZUQzo1fAF8BvgQWRO9vA94xs76J27j7KuAa4AwzOyOrH3Db+PKB+4FhDdyuAHgQGNoEYbUIZnYIcBkhgaj9cOIr0fQTtr4GJL6+TLLPUwg3jucBJcBMwnf114AXzOzHieu7+wrgWuAsMzs1O59sm5g6mtkvgc+BnwEHA5sJyesCwrl+HjDZzF41sz5NEYek7Spgf+DSJEnKk8AvCd9BTvg+Ohj4s5ndl+mBzewkwkOcVB4C3gEeNrOemR5T2jYlKiJN62J3PyjhtZ+7GzAAeBboA/w1uhlsC84GdgXuyHUgTSH6or8XWA3cVGtZX+BpwlPmx4FB7r6Xu/cF/h9QBXw7yc3kncA+hBu+0e4+3N1HEH6PHwIjCDf8td1HuNH4VVN92ZtZEfAnQklPQ7YrBiYB32yKuFoCM+sA3AOsAG5Jsko8UTmr1jUg8fVErX3uBjwCdAJ+BWzn7nsTrhPxY9xgZvvUOtY9wGzg12bWPSsfsCamDsAzhOQb4C5guLsPcvd93X23KL6zgUXAYcA/o1LCtEU31LtGr2nZir+9iUqYfkIobZ1ca/F1wPHAHEJp8FfcfSfgWEKp3flmdk4Gxz4DeAwoSLWeu8cIJS7bAzc29njSPrSVmyORViV6CnoO4Wn7zsDY3EaUHe4+z91nufvyXMfSRM4DRgJ3uPvqWsuuA3oDbwFnRKUeALj7PcDEhH0AYGbbU5MEfNvd307YZjZwfjR7vJltVeXK3SsJX/L9CaVzWRXdDE+l4UnKKMKN5mnZjqmF+Q7hpvp2d1+buCAqJRtMSE4/bsA+fwl0AB5x90vdfSOEm3h3/zHwJuF7+9zEjaKb/JuA7YArG/dx6nQjcBRQCXzd3S92989rHX+ju/8JOBBYSXhaf1lDDxRdO2a5e1kW4m6vbiEkutcl/jA6J78fzZ7n7p/El7n789T8va41s7yGHNDMSszsXkKS3TGdbdz9NeDfwIVmtktDjiftixIVkRyJkpWPotndchmL1C96snw14Ybt97WWdQTiVbCujJKI2m4nVMl4KOFnxcDvCO2VktXV/iDhfWmS5Y8RbgwvymZ1GzO7BZgO7E6oepTWU8+obvpUQjL3IXBztmJqSaLSgqsIbSqSlXbFS1M+jycbaexzIKHtRyXwozpWu5qQiDybZNmjhJK+75tZr3SOmUZMQ4FLotmb3P3pVOtH1d/i58oFDb3hlcyY2VeArwMfuvtbtRZ/A+gGzHX3V5Js/hBQDuwA7NeAYx5EKM37DqG90rcbEPK9hPvQaxqwjbQzakwvklsdoum62guiakZnEKrP7E14Wl9BqNf+KuFJ7qdJtvsa8D3Cl00JsIaQED0GPODum5Ns0x34AeFLbjjhy+O/wBOE+ve1Sw+SStaYPqFzgSWEJ77nAhcQqjQRxXYf8FBUJaBJYsuCbxAaak9299ptC/Yl/K6Xuft/km3s7u8TGtUn/mw2oVpYXfaNplWEz1x7n5vM7DHgQsINwq1pfI507Ee46fg/QrKRbjuY/QlVSH4RxdKkjbvTkWaj9rjB7r4gjfVOJZzLz7n7kiTL44nKh2keF+AIwrk9xd3nJ1vB3f8J/LOOZRvN7K+EErtvEUpnMnUB4RpVTmgvlY6HCaXEzxE+TyWAmZ1HaOs0iZCc30VokL+ccK78lhSN6aMSvh8S2nvFOxC4h+QJfu3jXUgodTwFGAKsJ5RO3erub9Sx/bDoeEcR/u/LCf+/DwMPJ3sYYWb7E9pnHAT0JVzXHXgKuNvd19dav5hwbTsl+l0UEK6TrxM60aidbNTnYiCPUF2ztv2j6evJNoyuJe8QSsUOJZQMp2MXoBchef4BMJdaD3JSeIJwvTjVzC5z98VpbiftiBIVkRyJvgh3I9yEvlBrWRHhwn9Y9KM5hJue/sBO0Wu8mR3s7u8mbPd94NfR7JfAe4T644dEr1PN7MjEL9mo2P15QqPnSkKD2Y2Ep+I/Bc4xs6PdfVaGHzmP8CV/FuHJ76fAjoSb4v0IPdBs9SS5GWNLR7wqU7Kn2XtE048BzGwEoWpfvKOEd4H73H1uOgeKnkQfS7h5A/h9ii/xFwg3YqeTvUTlXuCf8ZtwM0t3u7uBV9x9aQO3a0pzCQ3X67I3UETojW9tivUSpToXoCZRmRk1Lj6JcIO8DphC+HvW7u0vfg7NBDCz/ajpBW4T4cbxvqgkti4vEBKV08lOonJ8NH3V3bd5mJJMFN+FKVYZQYhzM+H/ZRdqSpaTMrOzCTe/hYS/00eEa8JvgX/VE1IvQinfCGBhdMyRwAnAsWZ2vLvXvv6eCvwR6Ey43swCugBfjV6nm9nJiVXUom3+TEg2lhGSmu7UXN/GmdkB8WTFzDoTks7RhAdQswkPB4YR/u5nmNm57v5QPZ8vfvwCQsIDyc/LeK95nydZFjeHkKjsnM4xI+8DB8STqugBW1qi5OifhPPsG4Trh8hWVPVLpBmZWYGZ9TazE6h54nhzkhvYKwlJynJCA+sd3H2Uu5cSvtgWEb44r0rYd09qblTPcPeB0TY7EHoM2kh4UnZqwjZdgH8QvvT/DpS6u7n7noQ69s8SbrCejpKnTPQjfAH/AOjj7vsQnkrH225clti7VTPHllJ0ExBPGpM9kRwSTZeZ2RWEL+8rgGOi11XALDM7vZ7jFJnZdMKNzjOExqa3k7rUJR7PV2r3DtZY7v5oHSUF9W3353iS0lK4+/11NWYnPHEvItwonlK7rUky0Y3YIdFs0qfT1CQqlxCepn8LOJyQsNwMzI6uAYni59ByM7ubkJhcTGi/dgKhDYqb2VdThBePZ+9Mq39F1dvipZ5TM9lXLXsREvdSd9+LUIr1aoo4diL8nQoJpToD3H0U4dpxNeGalsoxhA4ujow6ANib8IBkJiGp2KobazPbm3BN6kTo4ayXu+8ZNTrfl1CyeRQJN9XR9eE30f4ujWLc1913BkYROlzYna0TuPMI1/JZwI7uvmvCNfFewoOd26NqpenYF+gBrHL3ZO2i+kXTVN3hx5PgtKuRuvv0RpT8JIqfs0dlsA9pw5SoiDStf5p
"text/plain": [
"<Figure size 900x600 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(effective_sample_size, power)\n",
"estimated_sample_size = interp1d(power, effective_sample_size)(0.8)\n",
"plt.axvline(estimated_sample_size, label=f'N={estimated_sample_size:.0f}', color='k')\n",
"plt.axhline(0.8, color='k', alpha=0.1)\n",
"n1, n2 = results['gridcell'][key][list(vs)].count().values\n",
"plt.title(f\"{vs[0]} ({n1}), {vs[1]} ({n2}), {key.replace('_', ' ').capitalize()} ({effect_sizes[key]})\")\n",
"plt.legend()\n",
"plt.ylabel('Power p(~H0|H1)')\n",
"plt.xlabel('N neurons')\n",
"# plt.xlim(0,200)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}