3029 lines
1.1 MiB
Plaintext
3029 lines
1.1 MiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%load_ext autoreload\n",
|
||
|
"%autoreload 2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import os\n",
|
||
|
"import pathlib\n",
|
||
|
"import numpy as np\n",
|
||
|
"import matplotlib\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"import re\n",
|
||
|
"import shutil\n",
|
||
|
"import pandas as pd\n",
|
||
|
"import scipy.stats\n",
|
||
|
"from functools import reduce\n",
|
||
|
"import statsmodels\n",
|
||
|
"import seaborn as sns\n",
|
||
|
"import exdir\n",
|
||
|
"import expipe\n",
|
||
|
"from distutils.dir_util import copy_tree\n",
|
||
|
"import septum_mec\n",
|
||
|
"import spatial_maps as sp\n",
|
||
|
"import head_direction.head as head\n",
|
||
|
"import septum_mec.analysis.data_processing as dp\n",
|
||
|
"import septum_mec.analysis.registration\n",
|
||
|
"from septum_mec.analysis.plotting import violinplot, savefig, despine\n",
|
||
|
"from tqdm.notebook import tqdm\n",
|
||
|
"tqdm.pandas()\n",
|
||
|
"\n",
|
||
|
"from septum_mec.analysis.statistics import (\n",
|
||
|
" load_data_frames, \n",
|
||
|
" make_paired_tables, \n",
|
||
|
" make_statistics_table, \n",
|
||
|
" estimate_power_lmm, \n",
|
||
|
" estimate_power_lmm_paralell, \n",
|
||
|
" LMM, \n",
|
||
|
" estimate_sample_size_lmm, \n",
|
||
|
" estimate_sample_size_lmm_paralell\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"project_path = dp.project_path()\n",
|
||
|
"project = expipe.get_project(project_path)\n",
|
||
|
"actions = project.actions\n",
|
||
|
"\n",
|
||
|
"output_path = pathlib.Path(\"output\") / \"comparisons-power\"\n",
|
||
|
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
|
||
|
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)\n",
|
||
|
"(output_path / \"data\").mkdir(exist_ok=True, parents=True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Load cell statistics and shuffling quantiles"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Number of sessions above threshold 194\n",
|
||
|
"Number of animals 4\n",
|
||
|
"Number of individual gridcells 139\n",
|
||
|
"Number of gridcell recordings 230\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"data, labels, colors, queries = load_data_frames()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Calculate statistics"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"columns = [\n",
|
||
|
" 'average_rate', \n",
|
||
|
" 'gridness', \n",
|
||
|
" 'information_specificity',\n",
|
||
|
" 'max_rate', \n",
|
||
|
" 'information_rate', \n",
|
||
|
" 'in_field_mean_rate', \n",
|
||
|
" 'out_field_mean_rate', \n",
|
||
|
" 'speed_score', \n",
|
||
|
" 'spacing', \n",
|
||
|
" 'field_area'\n",
|
||
|
"\n",
|
||
|
"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"results, labels = make_paired_tables(data, columns)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 151,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.axes._subplots.AxesSubplot at 0x7f54b4eddcc0>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 151,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAygAAAIICAYAAACFL8pzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVhUZfvA8e8MM+yIIOCCgrhwFHHPNDXLzEwtM9MWzUzL3NrMSt9eW94WyzJbbNH6ZbllqZmKpWa55JbkvqQjKKDghuzIOsz8/hg4A4nIMjAs9+e6uDzPOed5zj14AXPPs2nMZjNCCCGEEEIIUR1o7R2AEEIIIYQQQhSQBEUIIYQQQghRbUiCIoQQQgghhKg2JEERQgghhBBCVBuSoAghhBBCCCGqDUlQhBBCCCGEENWGJChCCCGEEEKIakMSFCGEEEIIIUS1IQmKEEIIIYQQotqQBEUIIYQQQghRbUiCIoQQQgghhKg2JEERQgghhBBCVBs6ewdQlymKchFwBc7ZOxYhhBBCCCFspBmQYTAYGpWnsiQo9uXq6OjoERAQEGLvQIQQQgghhLCFs2fPkpOTU+76kqDY17mAgICQX375xd5xCCGEEEIIYRODBw8mMjKy3COEZA6KEEIIIYQQotqQBEUIIYQQQghRbUiCIoQQQgghhKg2JEERQgghhBBCVBuSoAghhBBCCCGqDUlQhBBCCCGEENWGJChCCCGEEEKIakMSFCGEEEIIIUS1IQmKEEIIIYQQotqQneRrOLPZjNlstncYQlQrGo0GjUZj7zCEEEIIUQ6SoNRAmZmZpKSkkJaWhtFotHc4QlRLOp0ODw8PPD09cXFxsXc4QgghhCglSVBqmNTUVOLi4uwdhhDVntFoJCkpiaSkJPz9/alXr569QxJCCCFEKUiCUoNkZmaqyYm7uzteXl44Ozuj1cpUIiEKM5lMZGVlkZSURHp6OnFxcej1eulJEUIIIWoASVBqkJSUFMCSnDRt2lTG2AtxHVqtFnd3d9zc3IiNjSU9PZ2UlBRJUIQQQogaQD56r0HS0tIA8PLykuREiFLQaDR4eXkB1p8fIYQQQlRvkqDUEGazWZ0Q7+zsbOdohKg5Cn5ejEajrHgnhBBC1ACSoNQQhd9YyZwTIUqv8M+LJChCCCFE9SdzUIQQQghR6c6nn+fP2D+5cPUC3s7e9GnahyDPIHuHJYSohiRBEUIIIUSlyTRmMnffXFaeWkmeOU89P2ffHO5tcS8zus+gnqMsAy6EsJIERQghhBCVIikriQmbJ3Ai8USx18POhHEy6SRf9f8KHxefKo5OCFFdyWQGIYQQQthcpjHzmuTE392foa2G0qp+K/VcRFIEz219jpy8HHuEKYSohiRBEUIIIYRNmc1m3trzVpHk5JE2jxA2NIy3er3FqntXMTZ0rHrtSPwRPj7wsT1CFUJUQ5KgiDonNjYWRVGK/WrTpg3du3dn6NChzJ07l8TERHuHWy6rV69GURT69OlT5Pzo0aNRFIWPPvrITpHd2IwZM1AUhdGjR9s7FCFEOa07vY6wM2FqeWSbkfzn5v+gd9AD4KB14IWuL/BA6wfUe5adWMaxK8eqPFYhRPUjc1BEnRYcHIy7u7tazsvLIyUlhYiICE6cOMGKFStYtGgRiqLYMUohhKg5krKS+GDfB2q5i18XXuz2YrEbDP+n+3/Yf2k/0anRmMwmZofPZvHAxbIZsRB1nCQook6bOXMm3bt3v+Z8UlISM2bMYNu2bTz77LNs2LChVuw/M3v2bDIzM9Xd1YUQwtbm7p9LSnYKAK46V2b3mY1eqy/2XicHJ1675TXGbRoHwKH4Q2yP3c7tzW6vqnCFENVQzX/HJUQl8PLy4r333sPR0ZHo6Gh27txp75BsokmTJrRs2RJvb297hyKEqIUMiQbWRK5Ry1M6TaGRW6MS63Rr1I3e/r3V8jdHv6m0+IQQNYMkKEJch5eXF61btwYgIiLCztEIIUT1N+/gPPW4Vf1WjGw7slT1pnSaoh4fij/E0fijNo9NCFFzyBAvIUpgNBoBcHNzK/ba+vXr2bhxI8ePHyc5ORmdToefnx/du3dn7NixBAVdu0vyjh07WLZsGYcPHyY1NRV3d3eCg4O5++67GTFiBI6OjtfUSU9PZ9GiRWzevJmYmBjMZjPNmjWjf//+PP7449SrV7pNzkaPHk14eDgTJ05k6tSpgGXRgH79+uHj48POnTtZtWoVK1asIDIyErDM03nwwQcZNmxYsePCbRWbEKJmO3TZMjyrwDOdn0GnLd3bjFCfUDr7debg5YMALD2xlNm+syslTiFE9ScJSi2VmZNHTp7J3mFUmKODFhdHB7s8++zZs0RERKDVarn11luLXMvKyuKpp55i7969APj7+xMcHExCQgLR0dFER0cTFhbGsmXLCAkJUestXryYd955BwA/Pz/atGlDUlIS4eHhhIeHs3HjRr777jscHKyv+fTp04wfP564uDgcHBxo1qwZzs7OREZG8vnnn7NmzRq+/vprWrZsWaHXazabmT59OmvXrqVevXoEBQVx7tw5Dh06xKFDh4iKiuLFF18sUqeqYhNCVH/fHLMOzWrv056+zfqWqf6otqPUBOW36N94qdtLsnmjEHWUJCi10P/CjrNodzQms70jqTitBsb0bM7r97arkufl5eWRmprKwYMHmT17NiaTiYkTJ+Lv71/kvq+//pq9e/fi5eXFV199RYcOHdRrR44cYfLkycTHxzN//nw+/fRTAFJTU5kzZw4Ac+fOZfDgwWqdnTt3MmXKFDVJKbiWkZHBpEmTiIuLo1+/frz++us0bNgQgPj4eGbOnMm2bduYPHkya9euxdnZudyvPSEhgfXr1/Pf//6XUaNG4eDgQHZ2NjNnzmTdunV8++23jBs3Tp2/UpWxCSGqt6iUKLad26aWJ3acWOaVuPoF9MPP1Y/LGZcxmo1sit7EqLajbBypEKImkDkotdDiPTG1IjkBMJktr6eyPPbYY0X2QQkJCaFHjx5MmjSJ6Ohoxo8fz/PPP39Nvd27d6PVann66aeLJCcAHTp04JFHHgHg1KlT6vmoqCiys7Px9PRk0KBBRer07t2bp556igEDBqDXW1e7WblyJTExMbRr14558+apCQCAr68vn3zyCf7+/kRHR7N69eoKfz9GjhzJY489pvbgODk58corr6DRaDAajRw5csRusQkhqq8l/yxRj1t6tiwy6b20dFodg1tYP7gJOx1Wwt1CiNpMEpRa6LFbAtHWkiXkHbQaHrslsNLaDw4OpkuXLupXp06daN26tToP5LvvvuPtt98mLy+vSL3ly5dz5MgRHn744WLbdXFxASxDwQo0bdoUnU5HSkoKM2bM4OTJk0XqTJkyhU8//ZS77rpLPff7778DMGjQoCLDvgo4OzszYMAAALZu3VrWl3+Nvn2vHZLh5eWl9pqkpqbaLTYhRPWUkJnAutPr1PKYdmPQasr39uLeFveqx8cTjnMm5UyF4xNC1DwyxKsWev3edrw8oI3MQSmF6+2DkpOTw88//8xbb73F0qVLycvL44033ihyj16vJyUlhUOHDhEdHc25c+eIjo7mxIkTXLlyBQCTyfp/0KBBA5588knmz5/PmjVrWLNmDb6+vvTo0YPevXvTp0+fa5b/LeiBWblyJX/88Uexr6HgWWfOVPwPeeFekMIKhmcVTtSqOjYhRPW0OmI12XnZADRwblCkF6SsWnu1po13G04mWj7A+fXMrzzd+WmbxCmEqDkkQamlXBwdcME+k8trA0dHRx566CHi4+OZN28eK1asYMKECTRu3BiwrFz1zjvvEBYWRm5urlpPr9fTrl072rZty44dO65pd+rUqYSGhrJ06VL27dtHfHw8YWFhhIWFodPpGDRoEK+99hoeHh7qcwB14n1J0tLSKvy6Cw8vK47ZbB07WNWxCSGqH5PZxE8RP6nlh5SHcHS4diXCshgUNEhNULac2yIJihB1kCQoQpSgX79+zJs3j7y8PP755x81QZk8eTJ79+7F2dmZRx99lI4dO9K6dWsCAwP
|
||
|
"text/plain": [
|
||
|
"<Figure size 900x600 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"plt.rc('axes', titlesize=12)\n",
|
||
|
"plt.rcParams.update({\n",
|
||
|
" 'font.size': 12, \n",
|
||
|
" 'figure.figsize': (6, 4), \n",
|
||
|
" 'figure.dpi': 150\n",
|
||
|
"})\n",
|
||
|
"\n",
|
||
|
"results['gridcell']['gridness'][labels].plot.density()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 77,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Baseline I</th>\n",
|
||
|
" <th>11 Hz</th>\n",
|
||
|
" <th>Baseline II</th>\n",
|
||
|
" <th>30 Hz</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Average rate</th>\n",
|
||
|
" <td>9.040 ± 6.369</td>\n",
|
||
|
" <td>8.934 ± 6.545</td>\n",
|
||
|
" <td>8.368 ± 6.154</td>\n",
|
||
|
" <td>7.553 ± 5.359</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Gridness</th>\n",
|
||
|
" <td>0.527 ± 0.353</td>\n",
|
||
|
" <td>0.393 ± 0.369</td>\n",
|
||
|
" <td>0.579 ± 0.287</td>\n",
|
||
|
" <td>0.479 ± 0.355</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Information specificity</th>\n",
|
||
|
" <td>0.245 ± 0.229</td>\n",
|
||
|
" <td>0.208 ± 0.264</td>\n",
|
||
|
" <td>0.218 ± 0.177</td>\n",
|
||
|
" <td>0.226 ± 0.209</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Max rate</th>\n",
|
||
|
" <td>37.533 ± 15.081</td>\n",
|
||
|
" <td>32.799 ± 14.292</td>\n",
|
||
|
" <td>37.684 ± 16.860</td>\n",
|
||
|
" <td>34.584 ± 12.544</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Information rate</th>\n",
|
||
|
" <td>1.324 ± 0.617</td>\n",
|
||
|
" <td>0.906 ± 0.543</td>\n",
|
||
|
" <td>1.177 ± 0.640</td>\n",
|
||
|
" <td>0.983 ± 0.555</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>In field mean rate</th>\n",
|
||
|
" <td>14.973 ± 8.381</td>\n",
|
||
|
" <td>13.344 ± 8.073</td>\n",
|
||
|
" <td>14.126 ± 7.835</td>\n",
|
||
|
" <td>12.109 ± 6.060</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Out field mean rate</th>\n",
|
||
|
" <td>6.389 ± 5.358</td>\n",
|
||
|
" <td>6.712 ± 5.898</td>\n",
|
||
|
" <td>5.787 ± 5.225</td>\n",
|
||
|
" <td>5.265 ± 4.488</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Speed score</th>\n",
|
||
|
" <td>0.142 ± 0.081</td>\n",
|
||
|
" <td>0.105 ± 0.090</td>\n",
|
||
|
" <td>0.120 ± 0.060</td>\n",
|
||
|
" <td>0.104 ± 0.073</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Spacing</th>\n",
|
||
|
" <td>0.439 ± 0.121</td>\n",
|
||
|
" <td>0.456 ± 0.123</td>\n",
|
||
|
" <td>0.416 ± 0.093</td>\n",
|
||
|
" <td>0.424 ± 0.080</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>Field area</th>\n",
|
||
|
" <td>0.431 ± 0.053</td>\n",
|
||
|
" <td>0.417 ± 0.051</td>\n",
|
||
|
" <td>0.423 ± 0.051</td>\n",
|
||
|
" <td>0.431 ± 0.052</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Baseline I 11 Hz Baseline II \\\n",
|
||
|
"Average rate 9.040 ± 6.369 8.934 ± 6.545 8.368 ± 6.154 \n",
|
||
|
"Gridness 0.527 ± 0.353 0.393 ± 0.369 0.579 ± 0.287 \n",
|
||
|
"Information specificity 0.245 ± 0.229 0.208 ± 0.264 0.218 ± 0.177 \n",
|
||
|
"Max rate 37.533 ± 15.081 32.799 ± 14.292 37.684 ± 16.860 \n",
|
||
|
"Information rate 1.324 ± 0.617 0.906 ± 0.543 1.177 ± 0.640 \n",
|
||
|
"In field mean rate 14.973 ± 8.381 13.344 ± 8.073 14.126 ± 7.835 \n",
|
||
|
"Out field mean rate 6.389 ± 5.358 6.712 ± 5.898 5.787 ± 5.225 \n",
|
||
|
"Speed score 0.142 ± 0.081 0.105 ± 0.090 0.120 ± 0.060 \n",
|
||
|
"Spacing 0.439 ± 0.121 0.456 ± 0.123 0.416 ± 0.093 \n",
|
||
|
"Field area 0.431 ± 0.053 0.417 ± 0.051 0.423 ± 0.051 \n",
|
||
|
"\n",
|
||
|
" 30 Hz \n",
|
||
|
"Average rate 7.553 ± 5.359 \n",
|
||
|
"Gridness 0.479 ± 0.355 \n",
|
||
|
"Information specificity 0.226 ± 0.209 \n",
|
||
|
"Max rate 34.584 ± 12.544 \n",
|
||
|
"Information rate 0.983 ± 0.555 \n",
|
||
|
"In field mean rate 12.109 ± 6.060 \n",
|
||
|
"Out field mean rate 5.265 ± 4.488 \n",
|
||
|
"Speed score 0.104 ± 0.073 \n",
|
||
|
"Spacing 0.424 ± 0.080 \n",
|
||
|
"Field area 0.431 ± 0.052 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 77,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"summary = pd.DataFrame()\n",
|
||
|
"for key, df in results['gridcell'].items():\n",
|
||
|
" Key = key.replace('_', ' ').capitalize()\n",
|
||
|
" for label in labels:\n",
|
||
|
" summary.loc[label, Key] = \"{:.3f} ± {:.3f}\".format(df[label].mean(), df[label].std())\n",
|
||
|
"summary.T"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 83,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<table class=\"simpletable\">\n",
|
||
|
"<tr>\n",
|
||
|
" <td>Model:</td> <td>MixedLM</td> <td>Dependent Variable:</td> <td>val</td> \n",
|
||
|
"</tr>\n",
|
||
|
"<tr>\n",
|
||
|
" <td>No. Observations:</td> <td>119</td> <td>Method:</td> <td>REML</td> \n",
|
||
|
"</tr>\n",
|
||
|
"<tr>\n",
|
||
|
" <td>No. Groups:</td> <td>4</td> <td>Scale:</td> <td>0.0932</td> \n",
|
||
|
"</tr>\n",
|
||
|
"<tr>\n",
|
||
|
" <td>Min. group size:</td> <td>7</td> <td>Log-Likelihood:</td> <td>-49.4026</td>\n",
|
||
|
"</tr>\n",
|
||
|
"<tr>\n",
|
||
|
" <td>Max. group size:</td> <td>81</td> <td>Converged:</td> <td>Yes</td> \n",
|
||
|
"</tr>\n",
|
||
|
"<tr>\n",
|
||
|
" <td>Mean group size:</td> <td>29.8</td> <td></td> <td></td> \n",
|
||
|
"</tr>\n",
|
||
|
"</table>\n",
|
||
|
"<table class=\"simpletable\">\n",
|
||
|
"<tr>\n",
|
||
|
" <td></td> <th>Coef.</th> <th>Std.Err.</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th>\n",
|
||
|
"</tr>\n",
|
||
|
"<tr>\n",
|
||
|
" <th>Intercept</th> <td>0.409</td> <td>0.048</td> <td>8.488</td> <td>0.000</td> <td>0.315</td> <td>0.504</td>\n",
|
||
|
"</tr>\n",
|
||
|
"<tr>\n",
|
||
|
" <th>label[T.Baseline I]</th> <td>0.124</td> <td>0.062</td> <td>1.997</td> <td>0.046</td> <td>0.002</td> <td>0.246</td>\n",
|
||
|
"</tr>\n",
|
||
|
"<tr>\n",
|
||
|
" <th>unit_idnum Var</th> <td>0.036</td> <td>0.090</td> <td></td> <td></td> <td></td> <td></td> \n",
|
||
|
"</tr>\n",
|
||
|
"</table>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<class 'statsmodels.iolib.summary2.Summary'>\n",
|
||
|
"\"\"\"\n",
|
||
|
" Mixed Linear Model Regression Results\n",
|
||
|
"============================================================\n",
|
||
|
"Model: MixedLM Dependent Variable: val \n",
|
||
|
"No. Observations: 119 Method: REML \n",
|
||
|
"No. Groups: 4 Scale: 0.0932 \n",
|
||
|
"Min. group size: 7 Log-Likelihood: -49.4026\n",
|
||
|
"Max. group size: 81 Converged: Yes \n",
|
||
|
"Mean group size: 29.8 \n",
|
||
|
"------------------------------------------------------------\n",
|
||
|
" Coef. Std.Err. z P>|z| [0.025 0.975]\n",
|
||
|
"------------------------------------------------------------\n",
|
||
|
"Intercept 0.409 0.048 8.488 0.000 0.315 0.504\n",
|
||
|
"label[T.Baseline I] 0.124 0.062 1.997 0.046 0.002 0.246\n",
|
||
|
"unit_idnum Var 0.036 0.090 \n",
|
||
|
"============================================================\n",
|
||
|
"\n",
|
||
|
"\"\"\""
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 83,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"mdf.summary()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"vss = [\n",
|
||
|
" ('Baseline I', '11 Hz'),\n",
|
||
|
" ('Baseline I', 'Baseline II'),\n",
|
||
|
" ('Baseline II', '30 Hz'),\n",
|
||
|
"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 92,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"\n",
|
||
|
"ps = pd.DataFrame()\n",
|
||
|
"ci = pd.DataFrame()\n",
|
||
|
"ef = pd.DataFrame()\n",
|
||
|
"mf = pd.DataFrame()\n",
|
||
|
"for key, df in results['gridcell'].items():\n",
|
||
|
" Key = key.replace('_', ' ').capitalize()\n",
|
||
|
" for vs in vss:\n",
|
||
|
" pval, low, high, mdf = LMM(df, *vs, key)\n",
|
||
|
" ps.loc[f'LMM {vs[0]} - {vs[1]}', key] = pval\n",
|
||
|
" ci.loc[f'LMM {vs[0]} - {vs[1]}', key] = f'{low}, {high}'\n",
|
||
|
" ef.loc[f'LMM {vs[0]} - {vs[1]}', key] = mdf.params[1]\n",
|
||
|
" mf.loc[f'LMM {vs[0]} - {vs[1]}', key] = abs(df[vs[0]].mean() - df[vs[1]].mean())"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 93,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>average_rate</th>\n",
|
||
|
" <th>gridness</th>\n",
|
||
|
" <th>information_specificity</th>\n",
|
||
|
" <th>max_rate</th>\n",
|
||
|
" <th>information_rate</th>\n",
|
||
|
" <th>in_field_mean_rate</th>\n",
|
||
|
" <th>out_field_mean_rate</th>\n",
|
||
|
" <th>speed_score</th>\n",
|
||
|
" <th>spacing</th>\n",
|
||
|
" <th>field_area</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline I - 11 Hz</th>\n",
|
||
|
" <td>0.928209</td>\n",
|
||
|
" <td>0.054459</td>\n",
|
||
|
" <td>0.427792</td>\n",
|
||
|
" <td>0.088252</td>\n",
|
||
|
" <td>0.000080</td>\n",
|
||
|
" <td>0.285853</td>\n",
|
||
|
" <td>0.759764</td>\n",
|
||
|
" <td>0.016639</td>\n",
|
||
|
" <td>0.441497</td>\n",
|
||
|
" <td>0.112510</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline I - Baseline II</th>\n",
|
||
|
" <td>0.626481</td>\n",
|
||
|
" <td>0.587566</td>\n",
|
||
|
" <td>0.618199</td>\n",
|
||
|
" <td>0.955198</td>\n",
|
||
|
" <td>0.265741</td>\n",
|
||
|
" <td>0.595705</td>\n",
|
||
|
" <td>0.642428</td>\n",
|
||
|
" <td>0.040733</td>\n",
|
||
|
" <td>0.985474</td>\n",
|
||
|
" <td>0.535198</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline II - 30 Hz</th>\n",
|
||
|
" <td>0.556933</td>\n",
|
||
|
" <td>0.107195</td>\n",
|
||
|
" <td>0.839598</td>\n",
|
||
|
" <td>0.315473</td>\n",
|
||
|
" <td>0.081515</td>\n",
|
||
|
" <td>0.195477</td>\n",
|
||
|
" <td>0.665571</td>\n",
|
||
|
" <td>0.382314</td>\n",
|
||
|
" <td>0.603904</td>\n",
|
||
|
" <td>0.729193</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" average_rate gridness information_specificity \\\n",
|
||
|
"LMM Baseline I - 11 Hz 0.928209 0.054459 0.427792 \n",
|
||
|
"LMM Baseline I - Baseline II 0.626481 0.587566 0.618199 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.556933 0.107195 0.839598 \n",
|
||
|
"\n",
|
||
|
" max_rate information_rate in_field_mean_rate \\\n",
|
||
|
"LMM Baseline I - 11 Hz 0.088252 0.000080 0.285853 \n",
|
||
|
"LMM Baseline I - Baseline II 0.955198 0.265741 0.595705 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.315473 0.081515 0.195477 \n",
|
||
|
"\n",
|
||
|
" out_field_mean_rate speed_score spacing \\\n",
|
||
|
"LMM Baseline I - 11 Hz 0.759764 0.016639 0.441497 \n",
|
||
|
"LMM Baseline I - Baseline II 0.642428 0.040733 0.985474 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.665571 0.382314 0.603904 \n",
|
||
|
"\n",
|
||
|
" field_area \n",
|
||
|
"LMM Baseline I - 11 Hz 0.112510 \n",
|
||
|
"LMM Baseline I - Baseline II 0.535198 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.729193 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 93,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ps"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 94,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>average_rate</th>\n",
|
||
|
" <th>gridness</th>\n",
|
||
|
" <th>information_specificity</th>\n",
|
||
|
" <th>max_rate</th>\n",
|
||
|
" <th>information_rate</th>\n",
|
||
|
" <th>in_field_mean_rate</th>\n",
|
||
|
" <th>out_field_mean_rate</th>\n",
|
||
|
" <th>speed_score</th>\n",
|
||
|
" <th>spacing</th>\n",
|
||
|
" <th>field_area</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline I - 11 Hz</th>\n",
|
||
|
" <td>-2.180247281054466, 2.390356722874524</td>\n",
|
||
|
" <td>-0.0023867695467641864, 0.25185586146463945</td>\n",
|
||
|
" <td>-0.051885367585011555, 0.12239826383625366</td>\n",
|
||
|
" <td>-0.6829644446775598, 9.804487199879677</td>\n",
|
||
|
" <td>0.19919191566537162, 0.5924315270050661</td>\n",
|
||
|
" <td>-1.331724110761481, 4.516001132500179</td>\n",
|
||
|
" <td>-2.2810214616259765, 1.6653183103649472</td>\n",
|
||
|
" <td>0.006403510267647752, 0.0641586683092662</td>\n",
|
||
|
" <td>-0.03396312071531312, 0.014810117866574444</td>\n",
|
||
|
" <td>-0.0034073546240015826, 0.03240571021475902</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline I - Baseline II</th>\n",
|
||
|
" <td>-2.9916621645393118, 1.8014641972655332</td>\n",
|
||
|
" <td>-0.08520533103529787, 0.15040363600350248</td>\n",
|
||
|
" <td>-0.09750576854071875, 0.05796956577487157</td>\n",
|
||
|
" <td>-5.89536982035741, 6.243311205778393</td>\n",
|
||
|
" <td>-0.33674475640623824, 0.09282359337229243</td>\n",
|
||
|
" <td>-3.975512425442468, 2.2816253105581294</td>\n",
|
||
|
" <td>-2.481648525103001, 1.531057021714961</td>\n",
|
||
|
" <td>-0.05295935481734079, -0.0011404936657067148</td>\n",
|
||
|
" <td>-0.01536441943997291, 0.015081590471976884</td>\n",
|
||
|
" <td>-0.025402212987792654, 0.013191871767799448</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline II - 30 Hz</th>\n",
|
||
|
" <td>-1.6613041417405623, 3.083251607547346</td>\n",
|
||
|
" <td>-0.02440548847993497, 0.2496890970945263</td>\n",
|
||
|
" <td>-0.06538802363578307, 0.08044872106578226</td>\n",
|
||
|
" <td>-3.155261296686419, 9.780244204335176</td>\n",
|
||
|
" <td>-0.02805504733315664, 0.47641353819177146</td>\n",
|
||
|
" <td>-1.0103474044666294, 4.941540621504646</td>\n",
|
||
|
" <td>-1.5577059549335808, 2.439136826914514</td>\n",
|
||
|
" <td>-0.015556136704263908, 0.04057715367485169</td>\n",
|
||
|
" <td>-0.01107815629347443, 0.019054030954896606</td>\n",
|
||
|
" <td>-0.023819756067117653, 0.016668142405318446</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" average_rate \\\n",
|
||
|
"LMM Baseline I - 11 Hz -2.180247281054466, 2.390356722874524 \n",
|
||
|
"LMM Baseline I - Baseline II -2.9916621645393118, 1.8014641972655332 \n",
|
||
|
"LMM Baseline II - 30 Hz -1.6613041417405623, 3.083251607547346 \n",
|
||
|
"\n",
|
||
|
" gridness \\\n",
|
||
|
"LMM Baseline I - 11 Hz -0.0023867695467641864, 0.25185586146463945 \n",
|
||
|
"LMM Baseline I - Baseline II -0.08520533103529787, 0.15040363600350248 \n",
|
||
|
"LMM Baseline II - 30 Hz -0.02440548847993497, 0.2496890970945263 \n",
|
||
|
"\n",
|
||
|
" information_specificity \\\n",
|
||
|
"LMM Baseline I - 11 Hz -0.051885367585011555, 0.12239826383625366 \n",
|
||
|
"LMM Baseline I - Baseline II -0.09750576854071875, 0.05796956577487157 \n",
|
||
|
"LMM Baseline II - 30 Hz -0.06538802363578307, 0.08044872106578226 \n",
|
||
|
"\n",
|
||
|
" max_rate \\\n",
|
||
|
"LMM Baseline I - 11 Hz -0.6829644446775598, 9.804487199879677 \n",
|
||
|
"LMM Baseline I - Baseline II -5.89536982035741, 6.243311205778393 \n",
|
||
|
"LMM Baseline II - 30 Hz -3.155261296686419, 9.780244204335176 \n",
|
||
|
"\n",
|
||
|
" information_rate \\\n",
|
||
|
"LMM Baseline I - 11 Hz 0.19919191566537162, 0.5924315270050661 \n",
|
||
|
"LMM Baseline I - Baseline II -0.33674475640623824, 0.09282359337229243 \n",
|
||
|
"LMM Baseline II - 30 Hz -0.02805504733315664, 0.47641353819177146 \n",
|
||
|
"\n",
|
||
|
" in_field_mean_rate \\\n",
|
||
|
"LMM Baseline I - 11 Hz -1.331724110761481, 4.516001132500179 \n",
|
||
|
"LMM Baseline I - Baseline II -3.975512425442468, 2.2816253105581294 \n",
|
||
|
"LMM Baseline II - 30 Hz -1.0103474044666294, 4.941540621504646 \n",
|
||
|
"\n",
|
||
|
" out_field_mean_rate \\\n",
|
||
|
"LMM Baseline I - 11 Hz -2.2810214616259765, 1.6653183103649472 \n",
|
||
|
"LMM Baseline I - Baseline II -2.481648525103001, 1.531057021714961 \n",
|
||
|
"LMM Baseline II - 30 Hz -1.5577059549335808, 2.439136826914514 \n",
|
||
|
"\n",
|
||
|
" speed_score \\\n",
|
||
|
"LMM Baseline I - 11 Hz 0.006403510267647752, 0.0641586683092662 \n",
|
||
|
"LMM Baseline I - Baseline II -0.05295935481734079, -0.0011404936657067148 \n",
|
||
|
"LMM Baseline II - 30 Hz -0.015556136704263908, 0.04057715367485169 \n",
|
||
|
"\n",
|
||
|
" spacing \\\n",
|
||
|
"LMM Baseline I - 11 Hz -0.03396312071531312, 0.014810117866574444 \n",
|
||
|
"LMM Baseline I - Baseline II -0.01536441943997291, 0.015081590471976884 \n",
|
||
|
"LMM Baseline II - 30 Hz -0.01107815629347443, 0.019054030954896606 \n",
|
||
|
"\n",
|
||
|
" field_area \n",
|
||
|
"LMM Baseline I - 11 Hz -0.0034073546240015826, 0.03240571021475902 \n",
|
||
|
"LMM Baseline I - Baseline II -0.025402212987792654, 0.013191871767799448 \n",
|
||
|
"LMM Baseline II - 30 Hz -0.023819756067117653, 0.016668142405318446 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 94,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ci"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 95,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>average_rate</th>\n",
|
||
|
" <th>gridness</th>\n",
|
||
|
" <th>information_specificity</th>\n",
|
||
|
" <th>max_rate</th>\n",
|
||
|
" <th>information_rate</th>\n",
|
||
|
" <th>in_field_mean_rate</th>\n",
|
||
|
" <th>out_field_mean_rate</th>\n",
|
||
|
" <th>speed_score</th>\n",
|
||
|
" <th>spacing</th>\n",
|
||
|
" <th>field_area</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline I - 11 Hz</th>\n",
|
||
|
" <td>0.105055</td>\n",
|
||
|
" <td>0.124735</td>\n",
|
||
|
" <td>0.035256</td>\n",
|
||
|
" <td>4.560761</td>\n",
|
||
|
" <td>0.395812</td>\n",
|
||
|
" <td>1.592139</td>\n",
|
||
|
" <td>-0.307852</td>\n",
|
||
|
" <td>0.035281</td>\n",
|
||
|
" <td>-0.009577</td>\n",
|
||
|
" <td>0.014499</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline I - Baseline II</th>\n",
|
||
|
" <td>-0.595099</td>\n",
|
||
|
" <td>0.032599</td>\n",
|
||
|
" <td>-0.019768</td>\n",
|
||
|
" <td>0.173971</td>\n",
|
||
|
" <td>-0.121961</td>\n",
|
||
|
" <td>-0.846944</td>\n",
|
||
|
" <td>-0.475296</td>\n",
|
||
|
" <td>-0.027050</td>\n",
|
||
|
" <td>-0.000141</td>\n",
|
||
|
" <td>-0.006105</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline II - 30 Hz</th>\n",
|
||
|
" <td>0.710974</td>\n",
|
||
|
" <td>0.112642</td>\n",
|
||
|
" <td>0.007530</td>\n",
|
||
|
" <td>3.312491</td>\n",
|
||
|
" <td>0.224179</td>\n",
|
||
|
" <td>1.965597</td>\n",
|
||
|
" <td>0.440715</td>\n",
|
||
|
" <td>0.012511</td>\n",
|
||
|
" <td>0.003988</td>\n",
|
||
|
" <td>-0.003576</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" average_rate gridness information_specificity \\\n",
|
||
|
"LMM Baseline I - 11 Hz 0.105055 0.124735 0.035256 \n",
|
||
|
"LMM Baseline I - Baseline II -0.595099 0.032599 -0.019768 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.710974 0.112642 0.007530 \n",
|
||
|
"\n",
|
||
|
" max_rate information_rate in_field_mean_rate \\\n",
|
||
|
"LMM Baseline I - 11 Hz 4.560761 0.395812 1.592139 \n",
|
||
|
"LMM Baseline I - Baseline II 0.173971 -0.121961 -0.846944 \n",
|
||
|
"LMM Baseline II - 30 Hz 3.312491 0.224179 1.965597 \n",
|
||
|
"\n",
|
||
|
" out_field_mean_rate speed_score spacing \\\n",
|
||
|
"LMM Baseline I - 11 Hz -0.307852 0.035281 -0.009577 \n",
|
||
|
"LMM Baseline I - Baseline II -0.475296 -0.027050 -0.000141 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.440715 0.012511 0.003988 \n",
|
||
|
"\n",
|
||
|
" field_area \n",
|
||
|
"LMM Baseline I - 11 Hz 0.014499 \n",
|
||
|
"LMM Baseline I - Baseline II -0.006105 \n",
|
||
|
"LMM Baseline II - 30 Hz -0.003576 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 95,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ef"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 96,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>average_rate</th>\n",
|
||
|
" <th>gridness</th>\n",
|
||
|
" <th>information_specificity</th>\n",
|
||
|
" <th>max_rate</th>\n",
|
||
|
" <th>information_rate</th>\n",
|
||
|
" <th>in_field_mean_rate</th>\n",
|
||
|
" <th>out_field_mean_rate</th>\n",
|
||
|
" <th>speed_score</th>\n",
|
||
|
" <th>spacing</th>\n",
|
||
|
" <th>field_area</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline I - 11 Hz</th>\n",
|
||
|
" <td>0.105449</td>\n",
|
||
|
" <td>0.133233</td>\n",
|
||
|
" <td>0.036166</td>\n",
|
||
|
" <td>4.734064</td>\n",
|
||
|
" <td>0.417936</td>\n",
|
||
|
" <td>1.629185</td>\n",
|
||
|
" <td>0.322805</td>\n",
|
||
|
" <td>0.037336</td>\n",
|
||
|
" <td>0.016343</td>\n",
|
||
|
" <td>0.014129</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline I - Baseline II</th>\n",
|
||
|
" <td>0.671719</td>\n",
|
||
|
" <td>0.052668</td>\n",
|
||
|
" <td>0.026500</td>\n",
|
||
|
" <td>0.151797</td>\n",
|
||
|
" <td>0.147302</td>\n",
|
||
|
" <td>0.847032</td>\n",
|
||
|
" <td>0.602720</td>\n",
|
||
|
" <td>0.021480</td>\n",
|
||
|
" <td>0.023525</td>\n",
|
||
|
" <td>0.008499</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>LMM Baseline II - 30 Hz</th>\n",
|
||
|
" <td>0.814797</td>\n",
|
||
|
" <td>0.100659</td>\n",
|
||
|
" <td>0.007509</td>\n",
|
||
|
" <td>3.100584</td>\n",
|
||
|
" <td>0.193361</td>\n",
|
||
|
" <td>2.016844</td>\n",
|
||
|
" <td>0.521574</td>\n",
|
||
|
" <td>0.016176</td>\n",
|
||
|
" <td>0.007847</td>\n",
|
||
|
" <td>0.008441</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" average_rate gridness information_specificity \\\n",
|
||
|
"LMM Baseline I - 11 Hz 0.105449 0.133233 0.036166 \n",
|
||
|
"LMM Baseline I - Baseline II 0.671719 0.052668 0.026500 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.814797 0.100659 0.007509 \n",
|
||
|
"\n",
|
||
|
" max_rate information_rate in_field_mean_rate \\\n",
|
||
|
"LMM Baseline I - 11 Hz 4.734064 0.417936 1.629185 \n",
|
||
|
"LMM Baseline I - Baseline II 0.151797 0.147302 0.847032 \n",
|
||
|
"LMM Baseline II - 30 Hz 3.100584 0.193361 2.016844 \n",
|
||
|
"\n",
|
||
|
" out_field_mean_rate speed_score spacing \\\n",
|
||
|
"LMM Baseline I - 11 Hz 0.322805 0.037336 0.016343 \n",
|
||
|
"LMM Baseline I - Baseline II 0.602720 0.021480 0.023525 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.521574 0.016176 0.007847 \n",
|
||
|
"\n",
|
||
|
" field_area \n",
|
||
|
"LMM Baseline I - 11 Hz 0.014129 \n",
|
||
|
"LMM Baseline I - Baseline II 0.008499 \n",
|
||
|
"LMM Baseline II - 30 Hz 0.008441 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 96,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"mf"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 110,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"effect_ranges = {\n",
|
||
|
" 'gridness': (.01, .3, .01),\n",
|
||
|
" 'average_rate': (.5, 6, .2), \n",
|
||
|
" 'information_specificity': (.01,.2,.01),\n",
|
||
|
" 'max_rate': (1,15,.5), \n",
|
||
|
" 'information_rate': (.1,.4,.02), \n",
|
||
|
" 'in_field_mean_rate': (.5, 6, .2), \n",
|
||
|
" 'out_field_mean_rate': (.5, 6, .2), \n",
|
||
|
" 'speed_score': (.01,.1,.005), # if run again, change this to go to 0.1\n",
|
||
|
" 'spacing': (.01,.1,.005), # if run again, change this to go to 0.1\n",
|
||
|
" 'field_area': (.01,.1,.005),# if run again, change this to go to 0.1\n",
|
||
|
"}"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 128,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/vnd.jupyter.widget-view+json": {
|
||
|
"model_id": "13f4f0aa63f84c6f8f32526954e607fd",
|
||
|
"version_major": 2,
|
||
|
"version_minor": 0
|
||
|
},
|
||
|
"text/plain": [
|
||
|
"HBox(children=(IntProgress(value=0, description='Baseline I - 11 Hz', max=10, style=ProgressStyle(description_…"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/vnd.jupyter.widget-view+json": {
|
||
|
"model_id": "c65251a34561404d910166151ed0b7e8",
|
||
|
"version_major": 2,
|
||
|
"version_minor": 0
|
||
|
},
|
||
|
"text/plain": [
|
||
|
"HBox(children=(IntProgress(value=0, description='Baseline I - Baseline II', max=10, style=ProgressStyle(descri…"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/vnd.jupyter.widget-view+json": {
|
||
|
"model_id": "7ae981b7b1f0402aad9c533789909c5e",
|
||
|
"version_major": 2,
|
||
|
"version_minor": 0
|
||
|
},
|
||
|
"text/plain": [
|
||
|
"HBox(children=(IntProgress(value=0, description='Baseline II - 30 Hz', max=10, style=ProgressStyle(description…"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"powers = {}\n",
|
||
|
"for vs in vss:\n",
|
||
|
" powers[vs] = {}\n",
|
||
|
" for key, df in tqdm(results['gridcell'].items(), desc=' - '.join(vs)):\n",
|
||
|
" power, effect_size = estimate_power_lmm_paralell(results['gridcell'][key], *vs, effect_range=effect_ranges[key])\n",
|
||
|
" powers[vs][key] = {'p': power, 'e': effect_size}"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 129,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"plt.rc('axes', titlesize=12)\n",
|
||
|
"plt.rcParams.update({\n",
|
||
|
" 'font.size': 12, \n",
|
||
|
" 'figure.figsize': (3.7, 2.2), \n",
|
||
|
" 'figure.dpi': 150\n",
|
||
|
"})"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 146,
|
||
|
"metadata": {
|
||
|
"collapsed": true,
|
||
|
"jupyter": {
|
||
|
"outputs_hidden": true
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcZdn/8c9u2qaTnhBIQtoVQhPpIBJEUR/EhqiAVEGxYRcLCvhYsPtYHtEHKQKKqCgIiCggP6mCFAlJrpCQEAjppLfN7s7vj/ue2bOb2T4zZ2bn+3699nX2zClzze7MXOeupyaTySAiIiK9X23aAYiIiEhpKOmLiIhUCSV9ERGRKqGkLyIiUiWU9EVERKqEkr6IiEiVUNIXERGpEkr6IiIiVUJJX0REpEoo6YuIiFQJJX0REZEqoaQvIiJSJZT0RUREqoSSvoiISJXom3YA0jYzmwIsaWNzBlgPLAP+AvzA3deUKLSCMbNzgGuA5e6+V+LxfwDHAV9390vSia59ZnYtcDZwv7vPSTGO/YEngJvd/X1dOO4g4HHgRnc/pxvP+wBwDPBLdz+/g32nA8/F1WPd/YGuPl8xmNl1wFlx9R3u/qc045HCMbMxQI27r047lnKikn7lmAs8mPj5F7AW2B/4AjDPzA5ILzxJg5mNAm4C+nXxuDHAb6jiC38zGwq8K/HQhWnFIoVjZjVm9hnCRebMtOMpN1X7ga9AH3P3f7R+MH7pXwecBPzezPZ196ZSB1cEZwGDCBc2koeZTQJuA/br4nFT4nH7FiGsSvJewnvsbuAE4EQz28fd26pdk8owAPhO2kGUKyX9Cufu68zsbGA54ar2ROCudKPqOXdflnYM5czM3gP8LzCyC8fUAKcBPwFGFCm0SnJeXN4G1AGvBT4IfD61iESKTNX7vYC7ryNU/0Oo7pdezMweIlTpjwT+EH86OqYWeBi4kZDwbwaqtv3azGYBR8bVOwl/D4Bzzax/OlGJFJ9K+r1Htk13c+sNZtaXUMJ7N/BqYBTQALwM3At8390X5jnujcBHCF+OI4CNhIuLm4Gr3L0+zzHDgI8D7wSmEy4snwduIXQ23NCZF5OvI1+iY+MqYAKhpPYBYHY8bC7wC+Bad88UK7YycBTwInCxu/8mdijsSC1wBKHj52fd/WYzu6GIMXZKojNgRxa7+/QCPnW2lP+Uuy8xs5uBHwJjgVMI/R2Scc4C5sfV2e4+n1ZiTcpSYBLwPne/MbFtBvAZ4A3AnsB24GlCJ9brWzfJmdlNwHuAc4EhhNqH0cALwLnu/lDc71DgQ4S/4URC1fYrhA6aV7XVMdHMjgQ+Cxwez7uE0Ez4A8J7ZBwwwd1XtjruEOCThM/mOGAT8Bhwpbvfmu+52mJmjxDekycAc+LrGAwsBt7u7ovjficA7yd8D40D+gBrCBexP3X3+/P83bL+aWYAp7n7TYn9uvT/6E1U0u8FzGwaoYTfRKuqfTMbSGiz/BXwFqAeeIbwxTCDUJ35hJkd3Oq4i+K5TgZ2AU8RLiiOA34K/NXM+rQ6Zhbhg/NV4ADCRcVzwCzgK8BTcZ+eqiF8QV1FaNJYSLiIORK4Gvhm6wNKGFspXAjMdPffdLhnsybC/3qmu9/c0c4l9B9adlBt3Vk164VCPWG8CD4zrv4aII58+Xt8bLcOfe6+gJBkANoaIXEcIeFvIlxIZp/vvYTP3AcISWsBsC7ufy1wR/yc5nM+8GPC/28RMJ7wN8PMPkH4G50HjCF8Dp4H9iD08fmjmX05z+v/IOHv+05Cn4a5Ma4rgL/SRqdQM/tUfL4zgOHxNW0D3gT8ycyujjVKXfVV4MuE0UjLgYHxdWBmPyD8X06Lsc4HXop/h1OB+8zsrMS5FgAPJdafia81N7Kph/+PiqekX6HMrI+ZjTKzkwnVk7XAN9299ZfjxcDxhA5xh7v7Pu5+mLtPIlzlryBcXX8xce49gG/F1dPcfWI8Zh/gjYSr4jmED132mMHAn4EpwK3AJHc3d38VsDdwBzAZuK0AH6ixwOmEUvtodz+EUPLPllw/HXunpxFb0bn7z919RxePaXL3X7j7zmLF1R3u/mF3f02+H+DZuNty2k603fFfhKTRREz6Ufb981ozy9fJ8Zq4PD2W6lvLXkj81t23A5jZYYQL7n7ApcBId39VrLU4nFDCfhPwozZiPQb4HjDF3fcHprv7FjPbD/gu4QL4s8A4dz/E3WcR3tPZEv4XzWxI9mTx4v6nhO+Ly4Hx7n5Y/HtcTvhc79ZPxMzeHuPYCXwY2CM+36QY/zpCrcQX2ngd7TkG+Li7z3T3GcBR7p4xszcBnwAaCf//Ce5+aPzbTSck9xrg69kTuftlhJqDrOz76574Onr6/6h4SvqV4z4zy2R/CCXbtYROSDMJSXq3q3rg9YQvt8vd/bHkhrj+s7iaHO5nhI5N64HftjrmbkJJ+veEWoOs8wkfxCeAU9z95cQxKwkXCC8QahfO6fSrbtv/uvuP3L0xPscOwhdEhtBsdXiKsVWb9yffm/l+aB6j3ylmdgkhiWwFTnb3FQWM99y4/Ie7L088/qf4fJB/+N5vCRe8U2jVJGFmdTQP/7smsemrhATzXXf/avKiK37+TiW8Z8+LNXatbQYuyVY3J+bieCOhBu5Bd/+uuzckzrsG+FxcrSO897MuI1SP3+Dul7n7rnjMrpgwk7EnfSMuP+3uP0tWf7v7X4EL4urFsRmtKxa6ey7JJl7jmwjfMTe5+43JJrtYuLksru4VCyqd0dP/R8VT0q8crcfpP0IoCWXftJ8CftS6yj2WmOqAK9s477a4HJR4bAnhomIEcG2cxCV5zv9291Pd/ZbEw++Iy5uyibjVMdsJFwoQmgx66s95nmMdzdV4yS+BUsdWbVbRdhV99uffnT2ZmZ1O+HLOENrGnyxUoGY2llD1Dc0lewDcfSvwx7h6lpkNarV9E82dJs9odeq3A8PCbv5wfK4hhIvu3Z4rcc5/A/MI38Un5dnl8Xy1Ou7+fXcfmDh/a9sSvw+K8QwijO6B5ov91n7Y+oHY7JWt+WirH8ithGaNoYTagq54MN+D7v4JQlX/+9s4brfX2J4C/T8qnjryVY62xun3J5ROfwJ8lHAV/+HkPu6+y8xGxM47M4GpcXkwoU0LEheA7r7azL4FfIkwXv4sM1sJ3EPoH3Cnu7ceP58dNXCBmb2tjdcwPi4L0Xa+vI3Ht8dl8r1d6tiqze3etRn52tvvWEK/jBrg8211ROuBMwklvR3kH/VwPaEqeQ/COP6rW22/Om4/1cwuypaUaa7avzax7yya34e/NLPdOr5GExL7t9ZRDUdD/FzvB0yLPwcQauuysp/t6YQCAIT+LfnMJRQkBiQey35+MsBfYse4fLKvdRahBrKz2nyN7t4UJ9t5LaHD7lTC6zgo/p7VmQJsIf4fFU9Jv8J56EH/CzObQKju+oCZfdPdX4TcrGP/Q/iiSnbQqSdUdz9JqEZrfd5LzOzfhAuJ1xKS4hnxpyH2kv2ou2+MhwyPyxnxpz2drYprT1sf2Kxkm2upY8srtqf+uI3NV7t76wRTVcxsJqGKfQBhBMa3OjikO7JV+3XAxnYSGIQq/tb/k38QeuhPAd5M6AcyllCCbiS0F2cNT/x+WCdiy/fe257nMQDM7ALga4Q+LkmLCdX0rUvIo+MyE2s1dhOT7BZaJv3s66ihcyMtuvoZyvsaY6fAzxP6JSWbDJoIne9+Tejb01mF+H9UPCX93uNWmtvrDiYM6co+fjzhg/VjmpsFnos1ABeQJ+kDuPsfCT2AhxF6ts4hdIKaRbiIGA68Ne6+Na6f7O63F/i19VS5xDactr80/97G41XBzEYTOqSOBP5JGGlQ6Oc4gubZC1cSknQ+A2Mch5nZq939ieyG2MHsWsJn7QxCifY0wnfpXcn+IjT3DwDon6gV6LHYAz/bZHcH4WJpLrDA3TfEi/3WST8bT42ZDXX3fMN7awhDBPMd1+L+GCXwdZonSrqRUMv4LOE1brUw7XhXkn7R/h+VREm/90iOK62B3Fjc4+NjJ7n7fXmO2+1
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFbCAYAAABfzB2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxcdb3/8VeSpht0L6WFNi1d+LCXHSogKLIochVxAQFFRS/oVRQVvD8X6orgvaIiijsIyKLiRVYFRGSTfSnbpy3QBijQNi2le9pkfn98z0xO0pPJTHImM5l5Px+PPE5O5pzvfNOezLznu526TCaDiIiISFf15a6AiIiIVCaFBBEREUmkkCAiIiKJFBJEREQkkUKCiIiIJFJIEBERkUQKCSIiIpJIIUFEREQSKSSIiIhIIoUEERERSaSQICIiIokUEkRERCSRQoKIiIgkUkgQERGRRIPKXQHpX2Y2DXixm4czwEqgGbgFuNDdl/VT1VJjZqcCvwNecffJsZ//EzgU+K67f608tcvPzC4FPgrc5e6HlbEeuwGPAte6+8lFnDcbeBi40t1P7cXz3gMcBPzG3U/r4diZwIJo9xB3v6fY50ubmY0ATgaOAfYAJgBtwDLgEeAGwr/Npl6Wn/33+aa7zy3ivJeB7YGPufulvXluqU1qSahtTwH3xr4eBJYDuwH/DTxjZruXr3pSDmY2DrgaaCzyvG2Aq6jRDx9m9jFgMfAzQkjYGnDguej79xHCq5vZvuWqp0gxavKPWXI+6+7/7PrD6E3iMsIL3Z/MbGd3b+/vypXAR4DhhCAkCcysCfgrsGuR502Lztu5BNWqeGY2Fzg32r0V+BbwQPbvxszqgbcCFwD7AXea2b7u7kU+1YfRNSz9SCFBtuDuLWb2UeAVYEfgSMIL34Dm7s3lrkMlM7MPET4Fjy3inDrgROCnwJgSVa2imdm76AgIP3D3s7seE4WFf5rZW4F/AHOAiwh/WwXTNSz9Td0NksjdWwjdERC6H6SKmdl9hC6GscCfo6+ezqkH7geuJASEa4H/K2E1K04Uki6Mdv8FnJPveHffAPxXtHuEmU0vYfVE+kwtCZJPtk96ddcHzGwQ4RPkB4G9gXHAZmAJ4ZPSD919fsJ5RwGfAQ4kvLGsIoSRa4Ffu3trwjkjgTMJfbozCeH2BeA6wuDKNwr5ZZIGLsYGcr4OTAI+DnwK2CU67Sngl8Cl7p4pVd0qwBzgJeAcd78qGkDZk3rgAMJA1y+7+7VmdkUJ61iQ2OC+njzv7jP7+HRHEFrbAL6ddI105e6PmtkPCddWS/bnsYGYrxD+Pn4FHAasA25291PyDVw0s+2ALwHHApOBpcA1wLeT6tHl+aYApwGfpKPLaB7wC3e/rJvzR9H52q8DFhKu/R+5+6qEc6YQgtRRQBPQSrh+biP8vSxOOOckwt/lXoSxHSsJg2p/D1xdyL+59J5CgiQysxmEFoR2unQ1mNkw4CbgbdGPFhFeULYFZkVfJ5vZIe7+WOy8zwE/jnaXAI8D4wlv3IcCHzCzd7h7W+ycnQgzLaYRRok/D6wn9Jl/A/iomR3t7s/18VeuI4zDOAV4A5gPTCe8WB8IGPCVLv8O/VW3/nA6cFn0SbdQ7cB/RudtLE21euXJPI81AvtH32/xhtQL7462q4B/FnqSu38xz8NDCW+a04Gngal0PyMJADPbi3AtbgtsJASQccCXCW/Iw/KcXkdoDTqRztf+HGCOmc3qOhvIzHaJnq+JcO0vjJ53V8Ksjuy1Pz92zo6EAdLjgTWEAZ11hJC1S3TOoe7+ZOycnwCfjXYXRc8zGTg6+jqCECCkRNTdIDlm1mBm48zsWOBmwvVxXkK6P4cQEJYD+7v7Du6+n7s3EV6AXwW2Av5frOzRwPnR7onuvn10zg6EF7H1hE9NH4idsxVhytg04Hqgyd3N3fckfPK5ifAC+tcouPTFBMKgsDOB8e6+D6FlIfvJ+IvR6P1y1K3k3P0XRQYE3L3d3X9ZYQEBd/+0ux+c9EV404Xw6bngqZ157B1tH3X3zSmUB+HNfRywh7vvDWwH/KC7g81sMGFWybaEcDHF3feN/raOBXYg/ziT7Qh/d58FxsWu/auix882s9z50TTPGwkB4bro+XZy99mEa//W6Dn/amZDYs/zPUJAuAaY6O6z3X0Pwt/Qv4HR0THZ59ktqtN64NDodWZ/wlTOjxOmbH9MM0VKSyGhtt1pZpnsF6G7YDlhlPqOhDf1ryec9w7Cp8hvuvtD8Qei/Z9Hu/Hpk0b4hLSS8CIRP+fvwHnAnwjNj1mnEZoxHwWOd/clsXNeI7ywLSa0XJxa8G/dvZ+5+0+yLRnRm+bnCS9Gg+j4BFqOutWaT8SvzaQvOtZIKIiZfQ34GLAWONbdX02hnhOj7esplBX30+zMB3ff6O5bdPnFvJ/w99UCfCC+tom730i4hntykbv/NDsbI3btQ2h92S927KcIIeCh6Ply/47R98cTuq6MMKMoa3a0vcLd18bOeS16rluBZxOOf8bd/xU7PuPuvwN+QQgyFR/CBzJ1N9S2pwjNpFkNwAjCm98Q4CxgKzP7fLwLwN0PNrNGwptnknXRdnjsZy8SQsgY4FIz+6G7PxErM6nf9Lhoe3X8+WPnrDezPwFfJHxi+nnXY4p0Q8JztJjZMkJLw+gy1q3WvE5oWs5nKLBPIYWZ2YcJ0xIzwMnxbrA+6vGDlpktIrQqJbmsm0WnilkYKtvl8ZekcQCE1rAfE/rzu5N07S81sxWEVoika/+qpKnR7r7OzK4jtModSxhbASHUzQQuiAZ83u7u66NzHgDe2aWobAjcx8zOB37l7rlrwt3PyPP7SEoUEmpbd+skDCZ8+v0pYSR2A/Dp+DHuvsnMxpjZgYRWh+nRdi9CsyfEXkCjF5zzga8SPl18xMxeA+4A/k4YmNV17nd2VsUnzew93fwO2U9yO/X42/bslW5+vj7axv9e+rtuteZGL27FxXzHHQL8ltD//RV3T3MGxnLCp+pt8xzzEPByl5/tCGyTcGxWMa0cFm2fSnrQ3VvN7Bk6t4R11Ztr/wwzO76b8yZF2/i1/3XCWhE7E1orN5jZvcDtwE3uPq9LvR80s2uADwFnE7o9XiS8ZvwNuNXd1+T5nSQFCgmyhWiGwS/NbBIwF/iUmZ3n7i9Brk/yx4Q+3fiqfK2E5vfHCIOKupb7NTN7hBA83kp4Ez0p+tpsZlcD/xX7NDQq2mYHQ+YzuofHC7HFzIou6mLf93fdEkUD1i7q5uHfuvtvS/XcA0E0WO7/CC1jl7r7+T2cUqwnCU3xO5tZXdJIe3f/QNefRbNATspT7vo8j3WVXZ8i3xvmyh7KKObaHxlti7r23f0RM9uTsJrrewjjLg6Pvs4zsyeAM9z9/tj5HyaEgk8QQs4OhK6+04D1ZnYJYUZOr5a5lp4pJEg+1xNCQgOhheCl2M/fRnghu4gw6OhpYEHUwvBJEkICgLv/BfhLNHXwUMJgxXcRPnGcTHjz/Y/o8LXR/rFR32olqZS6jaL76X6392dFKo2ZjScMwB0L3E2YiZG2mwlvYBOBg6Pn6W8thDfPkXmOSbPffh1hYPI73b2oRdai7oJPRK8R+xL+/t9BeD2ZDfzdzCw7xifqzvgV8Kto4PDbonOOIQyc/EJU9Fl9/J2kGwoJkk+8v7EOIOpeyE59PMbd70w4b3LXH0Qj/GcBde7+hLu/SegHvYEwc+ArhMGLx5rZqKg1wQmfHnYljKbegpnNIrxRLvb+vRlVRdQt6i6q6+m4WmNmQwlN2jMI61a8zxPW4EjBXwkDVKcCc6MpvP09b98Jb7h7JT0Y9f/vkvRYH55vb8K1nxgSohackcAid18eLbzVBMx099ujN/8Ho68LounEDxHGTRwHXBy1WBrwprvPj/6GrgWujcq7hLCuwykoJJSMZjdIPsdE2wzhDnYQPrFkPUIXZjacMN8aOofQTwFPAFdEL1pd3Rb7viHaZgdTnZY0jTBa0Ol6wovL/3T/a5REJdetpkXX1+8J8/xXAe9OGO+Simja45nR7tuB/zG
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFbCAYAAACwDnanAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wdVf3/8ddmUzZtU0khvZAPNZRAEjqIgoqIICpoaFJFRfn+FP1+RcHvV8QuRRSRXhUVRCkWEJCaQGihfUhIT0hC2qZuNtnd3x9n5u7N3nu33t3b3s/HYx+zc2fm3LM7d+Z+5sznnCmrr69HREREJFmXXFdARERE8o8CBBEREUmhAEFERERSKEAQERGRFAoQREREJIUCBBEREUmhAEFERERSKEAQERGRFAoQREREJIUCBBEREUmhAEFERERSKEAQERGRFAoQREREJIUCBBEREUnRNdcV6ChmNhZYkGFxPbAOWAw8CvzS3T/opKpljZmdBdwKLHP3kUmvPwkcCVzp7pflpnZNM7PbgDOBp9z9qBzWY2/gZeA+d5/Riu32BV4C7nb3s9rwvs8AhwI3u/u5zaw7EZgbzR7u7s+09v2ywcyWAiOA77r7D7JU5q7Az4APA/2AD4Cz3f1f2Si/EJjZXu7+ZqPX4s/H9939ipxUrMSY2V3AF4DbGx/TZnYI8APgAKAbsBKYSvi8Ahzt7k+2473jY+tsd7+t0bJuwFh3n5tu245UtAFCI28AVUnzXYEBwN7AfsB5ZvYhd5+Ti8pJbpjZIOD3hAO+NdvtAtxL6Rw/HcLMyoF/EI7D7YTjtILMgX1RMbN+wFXA+eizlLeii83HgJ7ABuAtYAewvhPe+2PANcA9wBUd/X6NlcqH8qvporvoC+J24HjgT2a2h7vXdXblOsAZQC9gda4rkq/MbDTwV2CvVm43Ntpujw6oVqnZkxAcAHzM3R/PZWVy4CDgSxmWfR4dw53tm4RWgqpGr59ACA6qgAnuviZeYGbxeWBxO9/7SMKFyvuNXv8OsFs7y26zUgkQ0nL3NWZ2JrAMmAQcC/w9t7VqP3dv74e1qJnZ54BfAwNbsU0ZcBrwK0Lrk7Tf4GhaD/wnlxXJNzqGO5+7v0/qFzQ0fE7nJAcH0TbvZOm938tGOdlW8kmK0Q5/I5rdu6l1pfCZ2XOE2woDgT9HP81t0wV4HribEBzcB/ylA6tZKsqjaZ27b89pTUQyiz+n23Jaixwo6RaEJPE96I2NF5hZV8KV42cJCSqDCPeflgP/Bn7h7u+m2e444MvAdMKXShUhELkPuMnda9JsUwl8DTgZmEgI4OYD9xMSKVt0zytdkmJS0uZKYDjwRcK9zz2jzd4AbgRuc/f6jqpbHjgYWAJ8y93vjZIlm9MFmEZoRvymu98XJTTlVFIiW3Pec/eJHViPOLnrPMIx8T3gI4Qrr1WEVrn/i6+KGyVdApSbWfyZ2ykB0sw+QmiGP4QQ1FUBLwI3untKkJaU7LU3cCFwOuEE74REyG8Qmm2/T/i8X064xTiY0JJ4F/ADd99uZh8CvkVIRqsg3Hv+hbvfneZ9u0b/g8/QcJ7YTjhPPA783N3npalnPB///aPcfWlTSYpm1iv6n3yWcKurO7AU+Bfws8ZXo2b24WjZs8DRwCXADMJxXENItr3a3R9q/Hc1xcxGRf+f44DRUVmLo/f6pbsvarR+/DfvA4wD/huYDGwFXgeucfe/ZnivcsKt0zOjbXoT/rf/BH6S6QrczHoA5xJu2RjQN6rjw8BV7r4yad2dkhTN7Fzgd0nFHZO0nw4HXiDsY0iTpGhmw4GLgE8BYwnnkXcI+QTXJX8HNE5STPPel5vZ5cDNwAPAQ9F7D2/cqhGV1xtYAfQBDnT32en+P80p+RYEM5tAOJnU0ej2gpn1JHwA7wA+QTgA5gBrCfeFLgBeNrP9G213cVTWCYSd+Coh+DgSuB74R/SBT95md+A14H8JB9Bywkl0d8IJ99VonfYqI+Rd3ES4rfIuIeCZDtxCSJraSSfWrTNcCExy93tbsU0dYV9Pcvf7OqZabfI64aSf7mdW0nqLUjftEAcSPuunA5uA94CRhBP0i2YWfyFujer4RtK2cb3jIKLMzH5NOP5OInzJv0o4nj4GPGBm90RfzOn8FvgK4YtzLbClURAbf6bPiZavBMYTPs+3mNmXCYlphxAC62rCF/9dZnZO8htFX9iPAbcRgo1qwr5ZRzhPXEg4T0xO2mxWhr+/yavUKHfmFULPj6mEJvE3CF8uFwJzzOyUDJv3IPw/fwwMA94mXCQeA/zNzM5r6r0b1WMSoffPl6Oy3iH8nyYQLiRebfT3JjufkMdzQLRdDfAh4EEz+0Wa96okBB23EM6hmwnn4cFRWa+b2YlpthsBPEe4LXgIYT+/DYyK6jg7CnIyWUHYJ0ui+Soa9lPjPIXG730E4fN1GeGz9l5Uzv6Effdw1DuhuffeEM0viebnEr5blhMubE/NsP2nCcHBnLYGB1CiAYKZlZvZIDM7AXiE8H+4qnHES4iOjyYkCk1193HufpC7j6bh4OwN/E9S2f0JByDAae4+ItpmHCHS3gocRbjSiLfpDfyNEGU+CIx2d3P3/Qgf5oeBMcBfo6ClPYYQoumvAYPdfQqhRSG+Iv5/UZZ+LurW4dz9t+5e3cpt6tz9RnfPqyZGd7/I3Q9L9wPE3eaWEa4WO8MFhBO3RZ+RPYHDCCf0IYQrV9x9WVTHS6LtapPqfkf02qWEq+TthC++oe4+lfBFeGpU5mk0HGuNHQKc4u57u/sYQstXss8RggJz98nROj+Mls0ArgV+Cgxy9wMIgU7c9fLbjcr6H8IX1yrC1dr46JgfRQi8VxKuXP873sDdT076+0n6+zN2t44uKh4mBPZvA5Oj//OBhC/pWwnJdHeb2YFpijgQmAKc6u5DomN/JPBktPzK6HZaS/yQ8AX9B2CYu+/r7pMJ54kXgP40/D8b+yqh98qoqO4jCfu6FrjEzD7TaP2bCefhOcBB7h5vtwvwI0Iy571JCYOx2whByFxgf3efFJ23xgMzCZ+ljC2B7v5Q9DmNP5MvJe2njD3eouT3+6L6PQyMdPf93H13wudhDaE1K2MX9KT3jt/nluh9f+zutUl1Oj1DEWdG01szvUdLlEqA8ISZ1cc/hCvm1YQodhLhJPPdNNt9mHD1+H13fzF5QTT/m2h2n6RFRmiOXEc4eJK3+SfhCv1PhKg5di6hue9l4NPuvjxpmxWEYGIR4WrkrBb/1Zn92t2vjT5oRF+YXycki3UlBD+5qlupOSf5s5nuh52b45tlZpcBZxO+RE+Ikq86wzbgpOSmdHd/loaTWUtuh8RX5HHQ/Z0oqKuLyqt39z8QggaAr2a4CnzS3RP5Je6erjfAmY2apq8iHAPx9t+Km4HdfTMNwchEM+ubtF18nri88dWau88ktGbAzueJtjiN0Nq5ldDrI/El5e5VhNaQxwi3HDKNU3FZ9P+Lt1tPuBCC8IXW0oz5faPpXdH/Ji5vBeFc8ndCEJPOAuDkOBiK9ukNQNx6cHm8oplNAU4hfJaPdfeXkt6r2t3/m3CbsydJX7hmdihhv9QCn3T3V5O2W074X9YBR0StyNl0ITCU0GpwSvJtDHefBfxXNHtWlPzcFrdE02lmttM+i1qZjiYE1+26FVoqAcIb7Nz8+gLhCiu+Ivwv4NrGzf5RBFcB3JCh3C3RtFfSawsIAcgA4DYLA+okl/l/7v4Zd78/6eWTounv4y/tRttsJQQVEG5btNff0rzHGhoG/eifw7qVmpVkvk0Q/7S4idDMPk+4FVQPzHD3V7Jd4SbMdPdVaV6Pvyj6p1mWzpFAJSGI/nWGde4hNMN2IzTrN9bcYFIr03yZb6KhW+EjabZZnvR7ZdJ20wnniZsyvFf8Bdorw/KWio+vB9K0duIhdyj+kj3GzPqkKSPl2GfnL/KW7qM4aP2JmZ2Q3Hro7jPd/WPu/s0M2/7W3bekeT0+z+6V9KUdn38ej4KPdO6Mph9PagGJ/1f/8TQ9Ddx9AaG5f5BnvwdB/N53ZGit/AN
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAFbCAYAAACux0YUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZzddX3v8ddM9oRsJBAgZCPAl0UWEZAUWXqr2F5ci9a2oHWjar21t5v2Xr0VW63a3lu9td5Sxa24oqWlLlXRVhBEFgVl/bCYSUKAQFaWJGSZuX98f+fkN5NZM+fM75yZ1/PxmMdvfvP7nd98TnLOb97n911+HT09PUiSJAF0Vl2AJElqHQYDSZJUZzCQJEl1BgNJklRnMJAkSXUGA0mSVGcwkCRJdQYDSZJUZzCQJEl1BgNJklRnMJAkSXUGA0mSVGcwkCRJdQYDSZJUN7nqAlSNlNJyYPUAm3uALcBa4N+Bj0TEE2NUWsOklF4PfAZYHxFHln7+A+A84AMR8Z5qqhtcSumzwO8A10XE+RXW8Rzgp8BVEXHJCB53CnAb8IWIeP0B/N4bgLOBT0XEm4fY92jggWL1nIi4YaS/b7RSSm8GPln60csj4t+G8bhvAy8uVj93IP9W7SylNAVYHhEPDLmzxoxXDARwF3Bj6esWYCPwHOB/APeklE6qrjxVIaW0APgyMGWEjzsE+BIT+4PHq4faofj3/ZUxqKUlpZR+DbgbuLjqWtTbRH7jap/fj4gf9P1hceL6HHAh8LWU0vER0T3WxTXB64CZ5PCjfqSUlgL/Bpw4wsctLx53fBPKagd7yOfVl6WUpkXEs4PsexET+xz8buCYqovQ/ibyi1JDiIhNKaXfAdYDxwIXAN+utqrRi4i1VdfQylJKrwH+H3DwCB7TAfwW8PfA/CaV1g7WAzuBRH6/fH2QfV9TLG8HntvkuqRhsylBg4qITeSmBshNCxrHUko/IjcfHAz8c/E11GM6gZuAL5BDwVXAvzaxzFb31WI5YHNCSmkRuZ/LncA9Y1GUNFxeMdBw1NqYn+q7IaU0mfxJ8TeA04AF5MupjwD/AfxtRNzfz+NeDLwdOIv8x2QbOYBcBVwREbv6ecwc4A+AXweOJgfbXwBXkztIbh3Ok+mv82GpM+YG4HDgjcDvAicUD7sL+ATw2YjoaVZtLWAVsA54V0R8qegEOZRO4Pnkzqp/GhFXpZQ+38Qah6XUgXEoD0XE0Q381VcB7yE3J0zt77UMvAqYRO6LMWBzTUppPvA24NfIzTNzgWeAB8lXIz4aEduKfTvJ77nzgEeBEyNiS5/jXQlcAjwMnBIRmwd7Iiml95Mv+X+AfGXjg8Cy4vh/GhFfLfY7BvhvwC8DS4FZ5Pf0z4AvAp+pNUP201HzvSml99Kno2lKaS6931MdxfO+uvy81XheMdCgUkoryVcKuunTjJBSmgF8F/gn4CXALvInoM3ktsO3AD9NKT23z+PeURzrpcBu4A5y6DgP+DjwnZTSpD6POY58kvkL4CRy8HgAOA74c+COYp/R6iD3q7iC3HxyPznonAV8mnxi7GUMaxsLbwWOjYgvjeAx3eT/62Mj4qrmlHVAfk7vTrV9O9jWrGnkL42IO4F7yX/ELxhgt1ozwpcHOk5KKZHfTx8gB68nyM9pD/A84DLgppTSrOL3dpP7z2wjh9uP9Dneb5NDwV7g4qFCQR+/Qg48c4vndgR5tAoppV8nB+d3AMvJ/573ATOA/0J+L32mdKzHyP8HTxbr64r1+siElNIJxXN9H/n88zA5FJxYPO/bU0rHjqB+jYDBQPtJKU1KKS1IKb0U+Bb5dfLBiOh7An0X+RPCRuDMiFgREWdExFLgTPKnilnA/ywdex7w4WL1tyJicfGYFeRhWzuA8yldhi1OfF8nn3SuAZZGRIqIU4ElwDfJn2L+rQgro3Eo8NvkTyoLI+J55JNs7RPwHxe97quoreki4h8jYucIH9MdEZ8YoqPdmIuI34uIF/T3Re4ND7lPwLCHYY7AgM0JKaXFwAuAWyJioCHDAJ8CFpP/aC6NiOOL1+OhwBvIw4qPp1R/0X/m7cXq76SUfrX4ncvJ/UYA3h8R14/w+ZxF/qS+tHhtL46Ih4oOyp8GpgIfAxZFxCkRcRKwiBz0AV5XBB0i4hvF/8GdxbZPF/8vHy5qnQ18g3zl4WpgSUQcFxGnkN9T3wZWkN9T00b4PDQMBgMB/GdKqaf2Rf5EspHcu/xY8h/y/9XP415I/rT4voi4tbyhWP+HYrU81DEB08nzJHylz2O+S/5E/jXy1YeaN5MvJf4UuCgiHik95jHyyXcN+SrF64f9rAf2/yLi7yJib/E7dgL/nXwinkwOPVXVNtG8qfza7O+L0ifN4UgpvYf8h/UZ4KUR8WgT6q5dOXl5Smlqn22/Qb4yNdjVgiPI7xWANxevJaAexD4L/LD4Ua+hxBHxhdKx/7Fo5rqS/Gn/h8BfjvjZZH9cC3+leU3OIzeJrAf+MCJ2lOp4Gvgj8vlkvzoH8bvkP/y3Aq8u//8U319EvsqQyFdI1GAGA8H+8xj8mPyJqvYJ8I+Av+t7eb9I/dOBywc47vZiObP0s9XkE8V84LPFRDjlY/5lRLw6Iq4u/fiVxfLLtT/WfR6zgxwmIDdPjNZ+PcmLTpi1k+G8CmubaDYwcHNA7esnwz1YcTn9L8gh75KIuL3RBQNExN3k99Bc4EV9Nr+GHKgHbHaJiEci4hBgZkTc13d70bendil+Zt/t5H4J68ifum8mX6HYQm5C2O91Ogzr+hvNExFXR8Rs4JgBjju1+L0D1dmf2nvqS/0Nj46I7eQrCeB7qinsfCgYeB6DqeRPuX9P7lg0Cfi98j4RsTulND+ldBb56sJRxfK55EuJUAqgEfF4SunD5A5NryNfYnwM+D65v8K3IqLv/AK10RCXppRePsBzOKxYNqItf/0AP699Giq/b8a6tonmGyOc+XCw/c4hX/buAP4sIpo9cuIqchv5q8lNSrVL+s8Hro+IgV5ndRGxo3jM6eSrTkeRmw9OJTfTQT8f8CJiazHU+Hvse929KSLWHeBzGeqqys4i5J8CrCy+TiS/P2rvl+F+EK29p96WUrpogH0OL5a+p5rAYKABFb2pP5FSOpzc4ed3U0ofrJ1cirbA/0tu4yzPjreLfGn9duBX+znue1JKPyGHjXPJfzgvLr72pJS+DPy3Uq/jucXyGIaeEGXeENuHo79e5GUdpe/HurZ+FR08PzbA5k9HxKeb9bvbQdFR7V+BaeSRJR8e4iGNUAsGLy+NTviNYtuQnTtTSseTr8ad22fTNuA6cnv7YJfnbyZ39DuC/Jq+d0TV97ZjoA1FX6SPkkNL2Xry83wZ+94nwzGnWFb6nprIDAYajmvIwWAS+UrAutLPf5l80vgY+5ogHiiuJFxKP8EAICL+BfiXov3zPHKHw/9K/gRwCflE8rJi92eK9ZdGxDca/NxGq1Vqm8vAQ/O+N5aFtJqU0kJyJ9qDyW3sbxmL3xsR96WU7iT/8X5hUcNryE1pXxvssSmlw4DrgYXkPiqfIAfte4E1EdGTUvoKgweDj5BDQTf5kv7nU0qrImL3qJ5Y7zpfRD4PdAA/Ig9NvBO4t9YPIaW0YYSH3U6+GvJrEdH2E6q1I4OBhqPcztcBUDQd/HLxswsj4j/7edyRfX9Q9Mw/BuiIiJ9FxJPkNv2vk3v8/xm5A+JLU0pzi6sGQe7wdyK5t/J+inHUc8knzbG84VNL1FY0BXUMtd9Ek1KaTu5Eu5I8r8SvR//zCjTLVeQ/3q9OKd1PnuvjO/00l/X1ZnIoeAI4bYChhfu9v2pSSi8hd+LbS57S/J/YN8Tx3SN8DoN5F/l1dy35D3mvfgbF+33YM2gWgvzvdCIDzLRaXAGaA3QN499SI2TnQw3HhcWyh30dvVaUtu/X+SulNJM88RH0DqC/Sx7z//liGt2+ri19X+vsWOsM+Ob+hvwVHbGuIfdi/t8DP42maOXaJrTi9fVP5EmbtgEvqeCPSK2D4cvIw2BhkNEIJbX3V1d/oSDlm5rVRsd
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcVbn/8c8smUz2ZUL2TBaSPBBIQiAEIiAgqwbwIoJhE2Rxvddd8XfdwF2vV73eq1e9iKAIiIgCYV8E2Qx7CFkeEkL2PWTfZv39cap7OjM9k1m6u3qmv+/Xa141NVV1+ume6nrqnDp1qqi+vh4RERHp+orjDkBERERyQ0lfRESkQCjpi4iIFAglfRERkQKhpC8iIlIglPRFREQKhJK+iIhIgVDSFxERKRBK+iIiIgVCSV9ERKRAKOmLiIgUCCV9ERGRAqGkLyIiUiCU9EVERApEadwBdGVmNgZ4u5nF9cBWYCXwIPBTd9+Uo9AyxsyuBH4HrHH3kSl/fxI4Gfiuu38tnuhaZmY3A1cAT7n7KTHGcSTwCnCnu1/Whu2mAi8Bf3T3K9vxus8AJwC/dfdrDrLueGBJNHuSuz/T1tfLBDNbDYwAvu7u38lQmcOBHwOnA/2ATcBH3P3RTJTfGZjZEe6+oNHfEvvHDe5+fSyBxcjMioDD3H1R3LFkkpJ+7rwBbE+ZLwUGAEcCRwHXmtl73H1+HMFJPMysArgD6NbG7Q4Bbkff4Q4xsxLgYcL3sJrwPS2n+ZP1LsXM+gHfBz6K9qUkMzsO+B9gAXBlvNFklv7JufNv7v5k4z9GB/1bgFnAXWZ2uLvX5Tq4LPgw0BPYHHcg+crMKoF7gSPauN2YaLvDsxBWoZlESPgA73X3x+MMJgbHAp9oZtklFO53+N+A6YSk36Uo6cfM3beY2RXAGmAicCbwULxRdZy7r4w7hnxmZh8CfgkMbMM2RcDFhBrIgCyFVmgGRdN64B9xBpJv9B3umtSRLw+4+xZCsyI01DqkizKz5whN+gOBv0Q/B9umGHge+CMh4d8J/C2LYRaKkmha5+7VsUYikgOq6eePxDXdnY0XmFkpoYZ3EXA0UAHUAGuBJ4CfuPubabY7C/gUcDwhUWwnnFzcCdzo7lVptukLfAb4ADCecGK4DLib0NlwW2veTLqOfCkdGzcAw4CrCNcSJ0WbvQH8BrjZ3euzFVsemAmsAq5z99ujDoUHUwwcR+j4+SV3v9PMbs1ijK2S0tnrYN5y9/FZjONW4FLgWsJ34hvAGYSa/EZC69m3E7XXRh0TAUrMLLHPHdBJ0MzOIDSBv4tworYdeBH4jbs3OfFK6Wx4JPBx4HLCyYUTOgt+EfgqcANhf/8m4fLeIEKL363Ad9y92szeA1wHzCD0NVhI+L7/Mc3rlkafwYU0HCeqCceJx4H/dPelaeJMzCfe/yh3X91SRz4z6xl9JhcRLjOVAauBR4Efu/tbjdY/PVr2LHAq8DngMsL3uIrQIfVn7j6n8ftqjpldA/wf4UT414QWsMMIlyN+6O4/j9YbDvwrYX84FOhDOM4uAu4C/tfd9zWKM+GKqCX2cXc/PeW1ywn/29kp738FMCd6/+tb+z5yTTX9PGBmhxIOEHU0ato3sx7AI8DvgXMIX5D5wDvABOBjwCtmNq3Rdp+OyjqX8MV/jbCjnwz8Ang46sSUus1hwDzgW8BkwsFiCeGL9A3gtWidjioi9GO4kXBJ403CSczxwE2EjkUHyGFsufBxYKK7396GbeoI/+uJ7n5ndsJql9cJB/J0Py+krLciR/FMJ+zrlwO7gLeAkcA1wItmlkhye6MY30jZNhF34sSgyMx+Sfj+nU9I3K8Rvk/vBf5qZrdFyTadXxOSzWrC93VPoxPTxD59dbR8AzCOsD/fZGafAh4jnGy8DewjJPNbzezq1BeKkvBjwM2EE4h9hP/NVsJx4uOE48SUlM1eaOb972/m/SReqxJ4lXDHwwxgXVTOiOh15pvZB5vZvDvh8/whMJSQeEuB04D7zOzall67GZMIx7pKwknRwMT7MrMTor/9P0LfmbXRshLC5/oT4MGoJQ1gG+EzSNxJtTGaT3awjvahucBPo/e/JXqNMcAXovc/sx3vIyeU9GNiZiVmVmFm5wIPEP4X33f3xgfH6whnxpuBGe4+1t2PdfdKGr5wvYB/Tym7P+FLBXCxu4+IthkLnEU44J1CqBEktukF3EfYce8BKt3d3P0oYBRwPzAauDc6EemIwYROQp8BBrn7MYSaf6Lm+oWod3ocsWWdu/86UbNowzZ17v4bd2/xgJxr7v5Jdz8x3Q8NnaDWEGp1ufAxwgHaon1kEnAisJuw330uintNFOPnou1qU2L/ffS3LxNqs9WEZDbE3WcQktvsqMyLafiuNfYu4IPufqS7jya0UKX6ECHRm7tPidb5XrTsMuDnwH8AFe5+NOHkJVEL/Uqjsv6dcEK/EZju7uOi7/wowsn0BkIN9/8lNnD3D6S8f1Lef7O3DkcVhfsJJ+uLgCnR5zydkMR/B/QA/mhm09MUMR04Bpjt7oOj7/5I4Mlo+XdTEnBrTSOchFS6+zRCS8UT0cnYrYTbMP8CDI/+F9OAQwitLRCOhWdEn8FL0X7xSLTswegz+Vz0/osJLYtTCH1ALPqsj4ne/y2EFpu/mdngNr6PnFDSz52/m1l94odQs91M6IU9kXDg+Hqa7U4n1PJucPcXUxdE8/8bzU5OWWSEpsCtwJ8abfMIoSZ9F6HVIOEaQlPbK8AF7r42ZZv1hBOEFYRaw5WtftfN+6W7/9zda6PX2Ad8ltChqpRwQhNXbIXm6tR9M90PBzaFH5SZfQ34CCExnuvu67IReBr7gfNTm7Hd/VlCSxm07lJEouacOJH+anSiVheVV+/ufyKcCAD8m5mNSlPMk+6e7K/h7ul6wV/RqCn8+4TvQGL76xKX4dx9Nw0nGOPNrE/KdonjxDfd/eXUF3D3uYRWBzjwONEeFxNaJfcS7nZI1oDdfTuh1eIxQnN3c+MofC36/BLbbSNUbiAk4wntiOvf3X1nVF7icz6acFlzH3BtaiuLu1e5+/eIWnVo/edyPuHYtIrw/pPfi6j8qwiXKgYTKjV5R0k/d97gwKbPfxJqQoma2+eBnzduco/OOsuBXzVT7p5o2jPlb28TTioGADdHg7iklvltd7/Q3e9O+fP50fSORCJutM1ewokChEsGHXVfmtfYQkOzWv8YYys0G2i+iT7x83KzWzdiZpcQLsPUA5e5+6uZDrgFc919Y5q/JwZY6Z9mWTonA30JJ8a/bGad24D1hP44s9IsP9gARhvSJOhdNNwi90Cabdam/N43ZbvjCceJG5t5rd3RtGczy1sr8f36a5pWSTz0xflJNHuamfVOU0aT7z4N/x9o/f8ooYbQ3N44lhfcvT8w0N23Nl5uZt0Jl1Wg9Z9L4lj0V3ff03hhdGKY6G+Rl8cideTLnebu0y8j1E7/h3D9rwT4ZOo6Hjr0DDCz4wmtAuOi6TRgSLRaccr6G83sh4Tmqw8DHzaz9YTOPI8AD6SpdSTuGrjWzN7fzHsYGk0zce18TTN/3xtNU/fNXMdWaOZ420bka2m9kwj9MoqAr3iajm5Z1pb9qiWJ/cijGnYT7l5nZq8Sru9bmlUO1rqxqpm/J1rg0jWzp95hUNQonmozGxgNLGPA2Gg6jVDzhI5X9BKfS0sngYllpYSOc/MaLU/3P9qb8ntb89I7LV32cve9UX+faYQWw3GEfgBTCCdK0PrPJXEs+hczO6aZdRK34abbJ2KnpB+zqOnuN2Y2DLge+KiZfd/dVwFETXj/RbjGlzpqWxWhuftV4Ow05X7NzF4mnEi8m5AUL41+aszsDuBfoyY5CNe9IDStHax5ra1n4uk0uXOgkdQDWq5jSyvqLPnfzSy+yd1vytZrdwZmNpFwG2F3wh0YzV3rzqa27FctSdSit7e4FuyIpn3SLNub5m+p0p5MpGj1IF3RnS0/J3y/U4/rVYQk/CqhP09HteZz2ZHye5PPxdPcNdRIa/9HCc1+zmb2LkJLzdRGizY
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcdbnH8c9mN5tN7wVIIyF5qKFKkW7BgihYQYqAqNhArwWvoqCigBVRroioqKCAXGyAcAUVpApJ6OFJI9mQBEgvu0k2uzv3j9+Z2bPLbJ+ZM7vn+3699nX2zCnzzO6Z85xfOb9TkclkEBERkf5vQNIBiIiISGko6YuIiKSEkr6IiEhKKOmLiIikhJK+iIhISijpi4iIpISSvoiISEoo6YuIiKSEkr6IiEhKKOmLiIikhJK+iIhISijpi4iIpISSvoiISEoo6YuIiKREVdIB9FVmNh14sZ3FGWADUAv8Dfihu68pUWgFY2ZnA78CVrr75Njr/wKOBb7l7hcnE13HzOwG4EPA/e5+XIJx7AvMA2519zO6sd3+wBPATe5+dg/e90HgSOAX7n5eJ+vuASyKZo929we7+36FYGYvAbsBX3X3y0rwfrsC3wPeBIwE1gDnAJcQ/nZfd/dLe/kebwL+DuDuFd3Y7jzg58Byd5/emxikuMxsH3d/Luk4ukpJvzCeBTbF5quA0cC+wAHAR8zsDe7+TBLBSTLMbCxwMzCwm9uNB36Pvp9FY2aVwD2E7+hOwne4hvYv5EVaiS4afwAcBuyecDhdppNKYXza3f/V9sXopP9r4ETgNjPby92bSx1cEZwFDAHWJh1IuTKzqcBfgH26ud30aLu9ihCWtNibkPAB3ubu92UXmNkH0fEtnXs78AFgedKBdIeSfhG5+zoz+xCwEpgNnADcnWxUvefutUnHUM7M7APA/wBjurFNBXAa8BNCLZEU17homgEeiC/Q8S39mTryFZm7ryNUHUJLyUL6KTN7mFClPwb43+ins20GAI8ANxES/q3An4oYpkBlNG12952JRiJSQirpl0a2TXdL2wVmVkUo4b0fOAgYCzQCq4B/AD9w94V5tnsL8EngcEKi2ES4uLgVuN7dG/JsMwK4EHg3sAfhom8pcDuhs+HGrnyYfB35Yh0bXwF2Ac4FPkqoRiWK7TrgBnfPFCu2MnAEsAK4yN1/H3Uo7MwAQrtgLfAFd7/VzG4sYoxdEusM2Jkl7r5HEeO4ETgd+AjhO/E14M2E0vqrhNqzb3alhN6m0yJApZllj8evuvtlsc/9mo58ZlYDnA+cSmiCqSZU794BfM/dX+7mZ3sP4Xs8BxhE6Lz5re7sI7av7N/pHOBRwt/pjcAIwnfpOuBqd8+Y2XuBzwD7AxXAfML3OW9NpJkdB3waeD3hHLUBeBj4Ub6mzWib0cDHgbcR/lYjgTpgMfBX4Cp33xRbv4rQvwLCOfNdwAVRjAMBJzSXXuPujV38m2T/3ysJ58qfA8cB9cBd7n5mtN4Q4MPRe+5HOKduJ/xv7yach1fniRNgWnQMNbl7q5xqZqcQzoOHRJ//VeB+4Lvu/mRXPkOhqaRfZGY2k1DCb6ZN1b6ZDQb+D/gN8A6gAXgGWA/MAj4GzDOzA9tsd0G0r5MIB9+ThAuKY4FrgHuijkrxbfYEngK+QTioVxG+DHsSTg5PRuv0VgXhi3k9oUljIeEi5nDgl8DlbTcoYWylcD4w291/341tmgn/69nufmtxwuqRp4GH2vn5T2y9UrVpHkI41s8EtgJLgMnAecDjZrZbF/axjRD/s7HXsp+pw4uGaP+PAT8EDgXWAc8D04HPAc+Y2RFd+SBmVmFmPwNuA44nJEMnfE/+DnT5To88jibcMfJuwndpE+Hi+yrgG2b2HeAP0WsLCd/Zo4C7zOzNeWL9HvDPaH/VhOMiA5wM/NPMXnORYmZGOJd9i3BBuybarhE4GLgUeMTMhrbzGS4n/G0OIlywbAUOjD7DDd34W2TVEP6ubwAWRK+9GMU6kXA8Xx0t3xTFWk84d3+ecB7eJdouQzheFkfzO6L53F0vZjbQzH5PKLS8lfAdf5rQV+SDwBNmdn4PPkevKekXgZlVmtlYMzsJuIvwd77c3dueHC8ifOHXAoe6++7u/jp3n0o4qawGhgJfju17FHBlNHuau+8WbbM78BbCSe044H2xbYYSrqynA38Gprq7ufsBwBTgTmAa8JfoQqQ3JhAO6guBce5+MKHkny25fi7qnZ5EbEXn7j9z9+3d3KbZ3a9z9x3Fiqsn3P0T7n5Uvh8ge4vSSnqXoLrjY4REYtExsjchWdURjrvPdrYDd18ZxZ9dtyn2uX7T3nZRE8zthBL5A1EMM6LjexLhQncc8Cczm9CFz3IWoQS4AzjV3ae5+yHArtH7HNuFfbTnXEISm+buB0b7/G207MuEC5TPAmOj+KcRElIF8MX4jszsk9H664EPuvvYKM5dCN/zeuDLUd+luF8Qbr98iPCd3it6rwmEmogMofTf3rHzeeCbhHPIQdG+vhctO93M9uven4Sx0c+caH+7At+Nln2f0OF2ITDL3We7+yHuPonQCXsb4X98AYC7N0XHUPY8/HJ0/BwXe79vE2qDaoET3H1i9HcbT8uxd42ZvaGbn6PXlPQL459mlsn+EK5m1xJ6Yc8mHBxfzbPdmwhXgF9398fjC6L5n0az8QPcCFetG4Bb2mzzf7RcIcer988jVJnPA97j7qti27xMuEBYTqhdOLvLn7p9/+PuV7t7U/Qe2wlViRlCk9KhCcaWNh+OH5v5fmhd3d0pM7uYcOKuA07KVnuWwA7gFHfPlrBw94cINWXQtaaInjqFcNyuIPT2z/3NoqancwlV8xMIF7yd+Uo0/aa7577H7r6BkEy79T9po4GQoF+J9tkMXBEtG0BoYrsq28zm7msJpVwIJWsg15RxSTR7drz2yt0z0fyXsp8jujDK3spm0evnxZs8ogvcG4B/Ry+1l7z/6O5fy14IR9X5/w1sjpa/vkt/idZ+4u4e7W+Hu28xs2rChWMGuNDdl8Q3cPe7CLUiHcXaSlQjcEG0z5Pc/e+x/TW5+1XAjwj/i2/24HP0ipJ+YTxL66rPRwkloWzJ7b+Aq9tWuUdXizXAte3stz6aDom99iLhomI0cEM0iEt8n9909/e5++2xl0+JpjdnE3GbbbYRLhQgNBn01l/zvMc6QhUfwKgEY0ubV2i/ij77M7erO4tuZ/sG4YR2hrvPL3TAHXjM3V/N83q2unZUnmWFkj1O/+ju9W0XRon1pmi2w+PUzGYTLmIhT1V1lOh+1eNIYX784jmyLPb7XXm2ya4/IvbaUYSS6UZCn4V8biQcC1MIY5Lg7qvcfTwwxN1faLtB1CaeTd5D2i6P5DuHNNJSpd6T//VrBp1y9wYPgx8NIYzb0DbWCkLTQkextnUioRnkGXd/up11sjUvR0S3dpeMOvIVRnv36VcTSqc/AT5F6DH8ifg67r7TzEab2eGEWoEZ0fRAYGK02oDY+q+a2ZWEksJZwFlm9jJwH6F/wF3RlXtc9q6Bj5jZu9r5DJOiaSHazle28/q2aBo/7kodW9rc4d0bka+j9Y4m9MuoAL7k7qW+w6A7x1WhZY/Tk83s4HbWyd6iae0sp83yje7e3mfqTSevFXlei9f85RsdNNsxLT5qYPYzDwb+HZrp82oi/O33JNTYAeGCPergewjhImcGoUr/AEKzJbRf8CzG/7rdGil3325mk8zssFisexLOw9kLjK4WkrN/t2lRp9B8sgXACsLx8HAX991rSvpF5KEH/XVRdc+lwEfN7HJ3XwFgZsMJ1Txn0HrUtgbCl2c+oRNI2/1ebGZzCRcSxxCS4unRT6OZ3Qx8ylt6xo6MprNoKWG0pxClpdfcOdBG/MRS6tjyijpL/ridxb90918W6737gqh0+idCD/Mb3P3KTjYphu4cV4WWPU6nRj8dqTazIflqBCLZcRi2trMcQvNdT9V1sryrA4RlP/MgutZ0kvt+mtlehBrMY9qss4nQe30KHVeXF+N/vS3fi1FzxE8JNTTx/dY
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wkVbn/8c/sbI5sXmBz4AFkQYKEH3JZrwlFMKAIAoqA6YoRFRUQUBTRa0SvIF5BxIRIUFQMiFwRRSVJ2H02we6SNsKyeWdn+vfHOT1T0/TMdM90T3V3fd+v17xqqruq+vRMdz11znnOqaZcLoeIiIg0vgFpF0BERET6h4K+iIhIRijoi4iIZISCvoiISEYo6IuIiGSEgr6IiEhGKOiLiIhkhIK+iIhIRijoi4iIZISCvoiISEYo6IuIiGSEgr6IiEhGKOiLiIhkhIK+iIhIRgxMuwC1xsxmAo918XQOeBZYCfwW+Jq7r+2nolWMmZ0OXA086e5TE4//GTga+Ly7n59O6bpnZtcA7wDudPcFKZZjP+A+4Hp3P7WM/Q4A/gX8yN1P78Xr3gUcCfyvu5/Vw7ZzgSVx9Sh3v6vc16s0M5sCvAt4FTAPGAdsBRYDvweucvcVVXrtQcBMd1/S48ad9zsd+AihvDuBvwJfA/4A4O5NFShb/v96sbtfVMZ+TwB7Au9092v6Wg6pDjMbAUyo1me7HKrpd+9hwhc8//MPYB2wH/Ap4FEzm59e8SQNZjYe+CkwqMz9JgI/IaMX22b2CWAZ8FngpcB24EFgM3AIcB6wxMw+WYXXfg3wCHBKmfudSLhA3p9wwb+E8B5ESmJmpxE+Ny9LuyyQ0ZNPGT7g7n8ufDCe9H8AHAvcYGb7uHtbfxeuCt4ODCdc2EgRZjYd+CXwojL3mxn326cKxap5Zva/wBlx9Srgi+6+PPH8TOBjwH8Bl5rZgcBJ7p6rUBHOI9TUy/XWuLwTeLm7twKY2XAy+r+Usl0K7J52IfIU9HvB3deb2TuAJ4G9CE2Vt6Vbqr5z95Vpl6GWmdlbgf8hNEmXuk8TcDLwLWBslYpW08zsQ4SA3wac4u4/LdzG3R8Hzo7N3NcBJxJa1r7Sj0UtZkJc/iUf8AHcfSuwKJ0iifSemvd7yd3XE5r/ITT3SwMzs7sJTfrjgF/En572GQD8DfgRIeBfD9xcxWLWHDMbQ2jOB/hKsYCfFJ//Vlz9fGwBSFNzXO5ItRQiFaKaft/k+3Q3FT5hZgMJNbwTgYOA8cAu4CngT8BX3X1xkf1eDbwfOJwQKDYSLi6uB77n7juL7DMa+BDwJmAu4WJuOXAjIdnwuVLeTLFEvkRi42pCE9UZwLuBfeNuDwPfBa4p1hRbqbLVgCOAVcC57v6TmFDYkwHAYYTEz4+7+/Vmdl0Vy1iSRNJYT5a5+9w+vtzpwGighdJr7RcB7wOGED5rn4YXJCbOiq0DnSQS205z9+vM7CxCd0LehWZ2IT0kQsb/U7L//3Nm9jmg1d0Hmtkr6CaRL3ZPfBRYAEwi5C38E7jS3W/q6Q9QcKw9CF0fxwFTgTXAz4DPlXOceKz833AFMJvQnXIWocVyC/B/wKfd3c1sEnBhfN0phHPATcD57v58kWOPofN3vQlYSviuf93dN3ZRppfFMhweX6eZ0MX4d+Db7n5HwfaXELprPg98E7gglnF3Qt7FHYRz2MOUKPH/fhfhvP4pwv9tJXCmu/8lbncQ4bN5FOFzNgTYANxL+EzdWKSceVeb2dXABe5+SWK7KYT/77HADEKcWETI//mOu28v9X2UQjX9XjKzOYQafhsFTftmNoyQiXwt8DpCxu9DhA/HPOA9wH3xxJDc74PxWMcRTpIPEC4ojga+DfzOzJoL9tmbkAz1WWA+4aJiCbA38BnggbhNXzUR8hi+RzhBLCZ8OA8Hvk/ot+qkH8vWH94L7OXuPyljnzbC/3ovd7++OsXqlX/TOUG1MFk1rxKZxq+Iy/vcfXUpO8QLwfyJ/tg+vv4zhPeVD1Kr4npPGfxesN/KuN7jCIjYnfEv4FRgDOHCeAvwauBGM7s2tgL1KJ4j7iOMHphGSEZsAz4eyzKslOMU0UwIxpcTKiRLY1nfBNxtZkcQzj/viWVfSbjg+ABwa5Fy7kv4XF1MOC8+EY/5IsJF3P1mtleR/b5MqAS9DRgJLCT8jyYDJwC3m9kZhftFs2IZ308YWbUImAicBPzdzF5cxt8j73RCFx6x/FMI5zDM7AOE/+tZhAuCfFLnbsBrgV+Y2cWJY60gfGbyFbUlcb29G9XM/gN4FDiHcBG2nPC3OwT4KuF/MbkX76NLCvplMLNmMxtvZscBvyH8/S4tMgzjXEKm5jrgUHef5e4vcffpwKHA08AIYg0mHns34LK4erK77xn3mUU4WWwj1BrekthnBPArYCZwCzDd3c3dX0w4QfyacOX4y3gh0heTCF/MDxGGnhxMuLLO11zPidnpaZSt6tz9ynKvuN29zd2/6+411TTs7v/l7i8t9kMIKhDyVUoeitiN/In3wTL3uz8u94mtZr3i7rfG9/VQfOj78b1e1sN+nyvY76q434Lu9jOz1wFfJ1y0nw2MdfeD43f/VYRzwmmE2mm3zGwwobY3mdCqMM3dD4nnhOMIQa/k/JICUwmB6jR3n+bu+xMCzfZ4zLsIF+nm7vvEFp93x32PMrP2liIzG0W4EJhOuJCY5u57u/sBhO/6bbGsvzSzIYn9XkGo4bYShuFOie9vHiEA/oVQ2bgk5sYUehvwHPCSeI49gHDB8RTh/NqbYcdHEv5/M919P2COuz8fKydfjeX5FDDJ3Q9y930INf58d9+5sXUTd78qfobyw7q/ED9D18b3P43Q3TcWuCIecz933xcwwgXGgYRuxYpR0O/eHWaWy/8QarbrCFnYexGCdLEv7ysIV+MXu/s/k0/E9e/E1eRwPwOGEpqnflawz+8JNekb6LhqhHDFOZdQEzjB3Z9K7PMM4QJhBaF14fSS33XX/sfdv5lPaIpB8MOEq+yBhAuatMqWNWcmP5vFfui5NtuJmZ0PvJNQszvO3Z+uQDnziXDry9wv3yowiFCTqhf5Fq+Pu/u3C5L//kDHCIaPxwv97ryZcF5YD7zFE3OCuPuthO9eX1zp7u3dTe7+b8KFevvru/uyxPNXEWqhELos895NCOr/jOV8OrHP04Qa+6r4Xt6e2O8YwvnsBne/Ntk96O6rCF0LECoX47t4Dye5+72J/RYC34irpXRhFdpC6N5oi8fL/81fTbiQu8fdv+juuxKvuZ7Q8gKhuf8FLRpd+AQh4N/o7u9Ldn94mEvi9YRuoQVm9spevJeiFPS7VzhO/++EmlC+5vZR4JuFTe7x6m4o4eqtmK1xOTzx2GOEi4qxwDVxEpfkMT/n7m9J9hkBb4zLnyZPLol9thEuFCDUDPrqV4UPxA98/ouRPIn1d9myZjVdN9Hnf+7tcu8CZvY2QjdMDjjV3e/vYZdSjtlEOAlC54vVUuxK/N7nyW/6Q+wvzyf1dpW7cSvhwn4E8J89HPJ1cXlTF/3h1xGCQm/9ushjj8flo8VyJgi1aAh5Gnn57/pPvMjQZQ8jHfLnreMSj3+McJ58Rxfl25r4fXiR51fGC5VCC+OyNxeL98VzUyfu/g13H05obS2mp7IW84a4LPpZiRWl2+Nqxc6RSuTrXlfj9AcTaqffIjThNRMSYtq5e4uZjTWzwwlXfrPj8kBCcx0kLrrcfY2ZXUZI/Hg78HYze4bwT/898Bt3Lxw/nz/BvMvMXt/Fe5gSl5XoO3+yi8fzX5Lk56m/y5Y1t3p5M/J1t91RhLyMJuCT7l6REQbunjOzDYRaWrnN0PkWgl2EJtx6kBzF8ysz62q7wXHZ0+c+f4CiCWnuvtPMHqVzC1s5VhV5LH9x1tVMoy1xmbwQy7/v95nZCV3slx+n3uk9x89Ivm97H8J5ch5hMqQ5iU2LVVDLOR+VqqfWrRYzO4zwnmcTWjP3o/P76rEyHVt58rOhXmxm53Sx6ay4rNg5UkG/Fzxk0H/XzHYnJKm828wujU1S+T6
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3debgkZXmw8fvMzibCIIjAsMoDiOIGSNCAGy6EqFGjKCoQdxPNomKiCWg0ismnxiVB44ILalBxQ9Eo7rviBiIPi8CgiMiACMw+c74/3uo5dQ59tpnuqp7T9++6+qrTXVVvv32qq5961xoZHR1FkiTNffPazoAkSWqGQV+SpCFh0JckaUgY9CVJGhIGfUmShoRBX5KkIWHQlyRpSBj0JUkaEgZ9SZKGhEFfkqQhYdCXJGlIGPQlSRoSBn1JkoaEQV+SpCGxoO0MaGoRsQ9w9SSrR4FbgOXABcCbM/P3DWWtZyLiZOB9wG8yc8/a618DjgFel5mvaid3U4uIs4FnAV/PzGNbzMehwI+BczPzpFnsdxjwI+CczDx5M973W8DRwHsy89nTbHsAcEX19CGZ+a3Zvl8vRcQJwInAUcBuwHrgRuB7wMcz81MtZq+vImIBsK56+tDM/FqL2VGDDPpbl0uAW2vPFwA7AYcC9wWeExEPy8yL28ic2hERS4GPAgtnud/dgI8wZL8DEbEtcB7wqOql6ynn1giwH/B04OkR8Q3gcZn5h1YyKvXBUJ3sc8DfdLsir3703w8cD3w8Ig7OzI1NZ64PnglsC9zUdkYGVUQsAz4D3GuW++1T7XdwH7I16P6HEvAvBZ6RmT/urIiIEeAxlJqnPwU+ATy8jUxK/WCb/hyQmSsoVcxrgAOB49rNUW9k5vLMvCwzDfpdRMRTgJ8Ah81in5GIeBqlKeDe/crboIqI/ShV+gCPrwd8gMwczczP17Z5WEQc02QepX4y6M8RVeC/pHp6aJt5Uf9FxHcoVfo7U0qjn5jBPvOA7wLnUJqFzgXmbLv1JB5Aqca/OTOvmGyjzPwK8Kvq6ZFNZExqgtX7c0unTfe2iSuqjjsnAn8J3B9YSum4dD3wFeBNmXl5l/0eBbwIeBAlUNxKubg4F3h3Zq7tss9dgJcAfwEcQLm4/BWlHfXNM20j7daRr9ax8XfA7sCpwHOBQ6rdLgHeBZydmaP9ytsAOAq4DjgtMz9SdSiczjxKAFsOvCwzz42ID/UxjzNS6ww4nasy84AtfLvO93XniDgqM787xbaPrpbX11+MiF8De1BqSvYF/hG4D7AK+Dnwn5n5mW4JRsR8SrPVs6p9tqvS/z/gjZl51ST7LQGeDzyV0iSzCLgWOB/4j8y8YZL9DgReBjyCcr4sB84G3jLF555UROxcpXcCsD+lM/FvgK8Bb8nMX0yy3zHACyjf27tTfke+RznnvjrJ+7wYeDxj5+k1lM/7pomfNyKeTWm2OQd4J/B24CBK0+CZmfnWarvN+v/PJZb054iI2J9Swt8IfGHCum0oX+oPAH9G+eG7GLgZuCfwPODHEXG/Cfu9uErrBEpP359SLiiOAd4BfLE6ier7HAT8DHgN5UfxekqP7YOAfwF+Wm2zpUYo/RjeTWnSuJxyEfMg4L3A6yfu0GDemvB84MDM/Mgs9tlIOdYHZua5/cnWZvk58O1JHj+obXdtD97rm8DK6u8vRMRrIqJrv4bMvKJ63DFJWs+l9Iu4P3AZ5bx6GPDpiHjTxI2rC84vUb6fxwB3UM7DXaq0fh4Rj+uy3x7A94E3A0cAKyj9EfYB/gG4OCKO6rLfccBFwLOr97iYEuReB3xuks80qYjYBfgh8ApKwL8KSMrFxLOBiyLikV32eyPlouAp1fv/vFp1AvCViDh1wvb3BX4BnE45T6+u3ueelAuOX0TEn06SzUMov1nLKP+jnalqQDf3/z/XGPS3YhExPyKWVkOPPk85nq/PzIk/jqcBD6Vc9R6Rmftm5uGZuYzyI/Jbysn4T7W07wqcWT09MTP3qPbZl9IJahVwLPDk2j7bAZ+l/Bh9GliWmZGZ9wX2ovzQ7A18proQ2RK7Ak+jlNp3ycwHUH58OiXXf6h6p7eRt77LzHdm5upZ7rMxM9+VmWv6la/NkZkvzMwHd3tQfvyhlCZnPBRxive6GXhp9fQuwD8Dl0bEdRFxTkQ8rxpaOBN/A3wR2CszHwjsSSnNbgD+LiKePGH791DOw4uBwzOzs9/dgDdQOq1+pH4RUjXJnEcplX4DiMzcr/q+351y4bsL8KmI2LW2387Ah4HtKaXf3TPz8CqPf8XMalYmegVldMM3gD0z89DMvB+l1uPTwGLKhckmEXESJVCvr/5fu1X5uAdwRrXZO6saCSJiR8rw47sD3wL2z8x7V++zF+V3bufq8y7rksf7Ufq5LOvsUzXVwGb8/+cig/7W5asRMdp5UE6kmyiljQMpQfqfu+z3CEop79WZ+cP6iur5f1dP6x27AlhCmQfgfyfs83+UkvTHGasuhXK1fwClk9gTM/P62j43UC4QrqVcsZ884089uf/KzLdm5obqPVYDf0upclxAuaBpK2/D5q/q381uD8bG6M9IRLwKOIVSIjshM3/bi4xm5n8DT6BUdXfsSbmIPAu4IiJ+ERHPnCapq4G/6MyNUXUCPAvolPJPr32WBwBPqj7LcZn5o1p+VmfmP1KC+zZAfU6KJ1C+x9cBj6n3Q6iaok6lzLOwK+UCuOP5lCa8XwInZ+bttTy+lxLkZqvTYfRjVR+iTj5upVTFfxn4dkQsru3T+R+8MTPfXjtX12fmq4GvUs7VZ1Tb/Q0l4P8W+LPMvKb2PjdQmuUupTQ1biqkTPBPmXlbtc9NsEX//znHoL91uYTxVZ/fo5SEOiW3vwfeOrHKvSoxLaH8oHXTqe7ctvba1ZSLip2As6tJXOpp/mtmPjkzz6u9/IRq+dHOyT1hn1WUCwUoVXtb6rNd3mMF0Jmg6K4t5m3Y/I7Jq+g7j4tmmlg1wuA1lAu4kzLzJ73MbJaJd/ajtNu/gxIc6w4B3h8Rn4qIyeY/eGdmruzyeuc8u1fV7AZj378LJ2t/Bz5YLR9blfDr+32y23tlGZp7TvW0/r39s2p5TmaunyKPs9G54PjHiDixqi7v5GN5Zj4yM5/XqUmqmso6tSbvnCTNZ1GOQ+fioPMZ3lddTIxTpf326mm3qvj1lKaQiTb3/z/n2JFv6zLZOP1FlNLp24G/BuYDL6xvk5nrImKniHgQpVZgv2p5P8psZFC7CMzMGyPiTOCVlI4vz4yIG4ALKf0DPp93HkrXGTXwnCnaxu5eLXvRdv6bSV5fVS3r3++m8zZszs/Zzcg31XYPobS7jgCvyD7NjFdd/H2xelBVjx9LCTxPplRXP47S36NbDdoPurxGZv4qIu6gNJkdSGn77nz/HlR1XOymc9F9V8p38frafo+vSqvd7Fwto/Za5+9L6CIzr4+IGyk1BDN1JqWkfQ9K08H6iPgBpZ38AuAHOb7zbCfg/yEzl9NFZl434aXOuTfVBWJn3d0jYscJFwc3T9J8tbn//znHoD8HZOlB/66I2J3STvbciHh954SKiB2A/6S0idZLLWsp1d0/Yayncj3dV0XERZQLiT+lnAhPrx7rI+KjwF/XTrodq+U9q8dU7jrN+pm408iBCUZqfzedt66qzpJvm2T1e6uq16FVte1+ihJwz87MM6fZpWcy80bKqJRzq6aFz1NK/C+ie9C/eYrkbqcE/c53qfP925WZBdq7UoJOZ79l1WMqiyJi26pGoPO+t0+x/S0zzAsAmXltVeP3j5SLonsAf1I9Tgd+FREvyczzq12WziAPE+1QLe9Uyq/544Tt69uuorvN/f/POQb9ueXTlKA/n1KCv672+kMpJ8TbGGsWuKKqAXgOXYI+QGZ+EvhkVZV3DKUk9FjKFflJlJPpz6vN76ien1A78QfFoORtRybvRPXlJjMyaKre4Z2OWt+kjDToZfoLge9QfvRPysxvTrZtFeBeRunguVNE3C3vfF+L7aZ4u07V943VsjMC4MzMfMUsst3Z7wVVf4G
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZglVX3/8XfDDDMMm+wi2zAz8gVECC7oiAoucQnibtQAbhHXRGPilrihUYlJfmpUFI0iqKjBLe4rMURAUXEDgS87gyAKiCAMs/fvj1N3+nbP7e7b3fdWXea+X8/TT83tqjr39FTf/tQ5derUyOjoKJIkafO3RdMVkCRJ9TD0JUkaEoa+JElDwtCXJGlIGPqSJA0JQ1+SpCFh6EuSNCQMfUmShoShL0nSkDD0JUkaEoa+JElDwtCXJGlIGPqSJA0JQ1+SpCExr+kKqHkRsRi4epLVo8CtwArgm8B7MvOmmqrWMxHxPODjwPWZuVfb9/8XOBJ4R2a+sZnaTS0iTgOeC5ydmUc1WI+DgZ8BZ2bmcTPY71Dgp8AZmfm8WbzvOcARwMcy84XTbLsMuLx6+bDMPGem79dLEXEM8GxgObA7sA74PfAj4POZ+d8NVm/WIuJTwLHA6bM5pmqOoa+JLgJua3s9D9gROBj4M+CEiHhkZl7YROXUjIjYGfgsMH+G++0KfIYh+1sTEYuALwKPrb51A+WzNQIsoQTmsRHxf8CTMvOPjVRUQ2eoPojqyt9m5v9O/Gb1R/904Gjg8xFxYGZuqLtyffAcYBFwc9MVGVQRsQ/wFeA+M9xvcbXfgX2o1qD7T0rgXwwcn5k/a62IiBHg8ZSep4cDXwAe1UQl5+A1wNsZ30DQ3YChr65k5i0R8VzgemB/4DHAt5qt1dxl5oqm6zDIIuKZwAeBnWawzwilS/sDlF6ioRIRSyg/P8CTM/Py9vWZOQp8IyKeDZwFPDIijszMs2uu6qxl5m+B3zZdD82cA/nUtcy8hdJFCaW7X5uxiDiP0qW/E6U1+oUu9tkC+CFwBiXwzwTultet5+D+lG78P0wM/HaZ+T/AVdXLB9VRMcmWvmaqdU33TxNXRMQ8SgvnL4H7ATtTBi7dAPwP8O7MvKzDfo8FXg48mBIUt1FOLs4EPpqZazrssz3wSuCpwDLKCexVlOuo7+n2GmmngXxtAxt/B+wBvAB4EXBQtdtFwEeA06pWW1/qNgCWA9cBr8vMz1QDCqezBSXAVgCvycwzq0FfjWobDDidKzNz2RzfrvX7ulNELM/MH06x7eOq5Q3t34yI3wB7AvcF9gP+ETgEuAv4FfAfmfmVTgVGxL2AvwH+HFgKbEf5vF4CfB74UGau6rDfAuCFwF8BUe23Avg6cFJm/q5t200G8lWf/7XVJvOBJwGvAA6tXiflEuHJmbmuw/vvDbwa+AtgL+AW4GvAicC/V+93fGY2/vt0d2ZLX12LiKWUFv4GJnTtR8TWwHeATwBPoPzhuxD4A3Bv4MXAzyLisAn7vaIq6xjKH4xfUP5AHQmcDHw7IracsM8BwC+Bt1H+KN5AGbF9APBm4BfVNnM1Qvkj9VHKJY3LKCcxDwZOBU6auEONdavDS4D9M/MzM9hnA+VY75+ZZ/anWrPyK+DcSb5+3LbdtT14rx8AK6t/fysi3hYRHcc1ZObl1dedk5T1Isq4iPsBl1I+V48EvhwR7564cUQcQRlH8I+UMRitAYRbAg8B3g18s+qRad9vT+A8yiWZh1A+t5cAe1NOYC+oQrlbJ1FOMO5HOeG9AzgMeC9wWod6P5ByZ8grqvf8NeWz9uLq+0tn8N6agqGvKUXElhGxc3Xr0TcovzMnZebEP46vAx5BGRB3eGbul5kPzMx9gMMp1/+2Af6prex7AO+qXj47M/es9tmPMgjqLuAo4Blt+2wDfBVYDHwZ2CczIzP/jPLH4uvAvsBXqhORudiN0up5JbBLZt6f0vJvtTT+oRqd3kTd+i4zP9ypRTjNPhsy8yOZubpf9ZqNzHxZZj600xclYKCMV+n6VsQp3usPlBYrwPbAm4CLI+K6iDgjIl5c3VrYjb8Fvg3snZkPoLSAXwqsB14VEe2fjXmU380dKJdi7pWZB2fmYcCuwBuqTY+i9AK0O40S0JcDh2Xm/tXv7RLgfEqvw0xa2K8G/pnyublftf+/V+uOjYj7ttV7a+BzwC6Uz8hemfmAzFxM6S3YlnKirR4w9DXR9yNitPVFOdu+mdLa2J8S0m/qsN+jKa28t2bmT9pXVK8/VL28b9uqABZS5gH4rwn7fIex1kJ79/4LKV3mPwOelpk3tO1zI+UE4VpK78Lzuv6pJ/fBzHxfZq6v3mMV8HeU+QvmUU5omqrbsPnr9t/NTl+M3aPflYh4I/B84E7gmGqA2pxl5oeAp1C6x1v2opxEngJcHhG/jojnTFPU1cBTW3NjZOZoZp5CabEDvKVt2/tRLo+tAk5ov4yUmWsy851t9WkP3SMon9/1wBMz8xdt+91AuWS3AXh41dvXjS9l5ptbJ39Vd/4/ArdX6x/Stu0LKSfDVwPPyMyNd9JUlzBe0uV7qguGvia6iPFdnz+itIRaLbe/B943scu9ajEtpPxB66TV3bmo7XtXU04qdgROqyZxaS/znzPzGZn5xbZvP6VafrYVxBP2uYtyogDlksFcfbXDe9wCtCYoukeDdRs2v2PyLvrW1wXdFhYRf0W5DDMKHJeZP+9lZauJd5ZQrtufTOkub3cQcHpE/HdETDb/wYczc2WH77c+Z/dpBXFm/jgz7wHslJm3Ttyhumb/h+pl++ew9bv4f5l5aYef42pK1/zOmXnlJPWcqNPnZh1wRfWy0+fmtOozMtFngRu7fF9Nw4F8mmiy+/S3orROP0AZJLQl8LL2bTJzbUTsGBEPpvQKLKmWh1FmI4O2E83M/H1EvIvS7fgc4DkRcSPlNqbvAN9oP+uvtO4aOCEinjTJz3DPatmLa+fXT/L91h+n9s9Q3XUbNl+b4Yx8U233MMq4jBHg9f2aGa86+ft29UVE7EbpXj+G0vOzgNKF/WY696D9uMP3yMyrIuJOyiWz/YEr29bdVY0bOYzS87SEcoJxCOXEHMY3+FqXGn45xc/xqyl+zE5m87np+P6ZuSEifk6Z20BzZOirK9UI+o9ExB6U0bQvioiTMvM6gIjYDvgPyjXR9lbLGkp3988ZG6ncXu4bI+ICyonEwymheGz1tS4iPgv8TWa2JgHZoVreu/qayj2mWd+NTe4cmGCk7d91162jarDk+ydZfWpmntqv9747iIj9KbcRLqC0Lt81zS49k5m/p9yVcmZ1aeEblEB+OZ1D/w8dvtdyByX0N/4uRcRDKPMqHDph25so18sfQOlKb7dzW3m9MpPPTTfvf/sU6zQDhr5m6suU0N+S0pK4ru37j6Ccyb+fscsCl1c9ACfQIfQBMvNLwJeqW92OpLSE/oLSGj6OEqZPrDa/s3p9TGZ+rcc/21wNSt12YPLb075XZ0UGTUTsQgnanSij7F/c4/LnU0bB70a5ZPCDybbNzGsj4jWUMN4xInbNTZ9rsc0Ub7d9tfx99d4HU3rJFlIu051GaT1fkpnXV9ucz6ah37pzYLupf7q+WUkZrLf9FNs0VbfNjqGvmWqfencEoOrOf0T1vaMz8/sd9ttr4jeqUbv3BkYy85eZeTvlWuBXKSPjX08ZzHdMROxQtfaTMnjuPpR7eDcREfemBN+1Hf6I9tNA1K26PDMy3XbDJiIWUgakLqXcRvbU7DAHxFxUJ7j3Au5FOXGdNPQrrYGD64BO8zccTDmJGCciAtiaMh6hNVbg7yiB/2vKHTSdro9v8jmk3Ip6NFNMuBURH6OcyJycmb2eifNCypwQhwBfmmSbQ3r8nkPLgXyaqaOr5Shjg6b2a1u/yUCqKA8faU1L2n6i+SJKS+RT1dStE3237d+tgYOtAUIv7HTbW3Xb0peBnzB2i1BdBrluQ636/foEJVxuA57QYbxIr7RubXtZRBw05ZZjn4vvZObaDuufP8ln46XV8ty2u0Ran8OLOwV+RDyecjI
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZglVXn48W/PxswAAoIoAYZVXnDDFSVowH1BEo2auKCiojGb2VSMmoCJipj83DVqEDGAGGJI3E2UGOMWVFwCiq+AwiCuIIIwPczWvz9O3emappd7p+veW059P8/TT/Xtqjp9blfXfavOec+piampKSRJ0o5vybgrIEmSRsOgL0lSRxj0JUnqCIO+JEkdYdCXJKkjDPqSJHWEQV+SpI4w6EuS1BEGfUmSOsKgL0lSRxj0JUnqCIO+JEkdYdCXJKkjDPqSJHXEsnFXQMMTEQcC359j9RRwI7AW+ATwxsz82Yiq1piIOAl4L3BdZu5X+/l/A8cCr8nMV46ndvOLiLOBZwOfzczjxliPewBfAy7IzBMH2O9I4KvAeZl50nb83s8DxwDvycyTF9j2UOCK6uVDMvPzg/6+xYqIRwCfGmCXSzLz/tW+JwP/CFyTmQc2UJcfAPsCz8nMs/vcZxmwsXr50Mz878XWQ796DPrdcRlwU+31MmAP4B7AvYHnR8TDMvPScVRO4xERewIfAJYPuN+dgPPp7mfIV4ANC2zznVFURBpEV0/YLvrj2a7sqw/99wHHAx+MiCMyc8uoKzcEzwJWA9ePuyJtFRFrgA8Ddx9wvwOr/Y4YQrV+Vfx2Zv5ggO3/Bfg803fa0lgY9DsuM2+IiGcD1wGHAY8CPjneWi1eZq4ddx3aLCJ+F3gHcMcB9pkAnga8jdJKpD5l5k1s29ImjYWJfCIzb6A0/0Np7tcOLCK+SGnSvyPwr9XXQvssAb4EnEcJ+BcA/z7EakoaAu/01dPr0/3lzBVVAtDTgN8B7gvsCWwCfgj8F/CGzPzuLPs9GvhD4EGUQHET5eLiAuDMzLxdn2hE3AH4E+C3gUMpF6bfAy6kJBv+op83M1siXy2x8SfAPsBzgRcAd6t2uwx4N3B2Zk4Nq24tcDRwLXBKZp5fJRQuZAnwQEri50sy84KIOHeIdexLLRlwIVdl5qHDrs9cFkrki4jjgD8Gfp1yft0IfBF486AJdxFxGPAS4BGU//O1wNnAmxZR//sCvw88hJJAuBPwc+ASSiLmhTO2773f84B3UVqHDqd0t52RmW+ptltK6Yp7NnAvYGfK58p/Aq/PzKvmqM9dgT8CHgqsqfa7Cfgm8H7gvTtIN2XjvNMXEXEI5Q5/CzOa9iNiFeUE/Cfg8ZTkpUspJ/xdgd8DvhYR95mx34uqsk6g9GN+g3JBcSzwduA/qhO+vs/hlJP2b4B7Uk7+KygfFn8NfKPaZrEmKHkMZ1K6NL5LuYh5EHAWcPrMHUZYt1F4IXBYZp4/wD5bKMf6sMy8YDjV2i7/B3xhjq8v17a7ZvRV609E/D3wGcrF5ArKe5oCngB8JiJeM0BZj6IE4pOBvSjn6s7Aa4CPbWf9/pgySuNkYG/K//1VwO7A44B/jYhXzbH73SifA2uAb1Naly6ryr0DZTTEWZTPhVur+u5FuRj/v4j4rVnq89tVGS8CDqQc2+8Aq4CHUc7r927Pe+0Cg35HRcTSiNgzIk4APk75Xzg9M2d+OJ5CuZq+HjgqMw/KzAdk5hrgKOBHlA+Vl9fK3h04o3r5tMzct9rnIODRwCRwHPCU2j47Ax+hnMQfAtZkZmTmvYH9KR9YBwAfri5EFmNv4OmUu/a9MvN+lDui3p3rX1TZ6eOo29Bl5rsyc/2A+2zJzHdn5m3Dqtf2yMw/yMwHz/YFfKva7Dqg76GIoxQRfwj8BeUi+umZuWc1zG8fyv/oOuDlVd7NQmXdkXKXuwvlDnufzHwAsB/wPPprEZlZ5uHAGygXyn8J7J2Z983MIyh3/L2uoVOqID7TfYCvU86Z+wD7Z+Z/VeveQ/lsuRR4QGbuX733OwGvoyTinh8RWxNGq8TjsygXR28F7pyZR2bmPYE7U24oAJ4VETHo++0Cm/e74zMLnANnAH81y88fQbnLe1VmfqW+IjO/EhH/wPTdb08AKylNlP88Y5//jIjTKU159eb9kylN5l8DnpSZm2v7/DgingJcTmldOAn4h/neTB/e0WtirH7H+oj4U+AZlPPiKKbvjEZdt655XkQ8r8kCI+KVwHMod48nZOaPmiwfuHaB8+mvMvPV820QESuBU6uXJ2XmR3rrqu6l8yNiL+AtwN9GxDkLNFm/kNI1cHlV3qZaWWdV3VuznePzeTSlpe6SzHxdfUWVBPwS4EmU5v7DKC0CM708M39Z7XM9QETcD3gy5fg8KjN/XCt3PfCXVTfFbwOvpJyXUFoEllIu5P5sxrl4S0T8OaVFahnlMykHfL87PO/0u+Mytm36/F/KnVDvzu3PgbfMbHKv7phWAu+co9x11XJ17WffpzSX7wGcXU3iUi/zbzPzKTP6AZ9YLT9QP5Fr+0wCH6xenjDXmxzAR2b+oEpo7E1QtPsY69Y1P2HuJvre1yX9FhYRT6dciE4BJ2bm15uuMGWc/nz17Wf0yIMpd7W/AD46xzbnUt7H/pT5NObz+Gp5Xi/gzzDXOTynzHxzZq6mtMzNZl3t+9WzrN8EXDzLz3vn1EX1gD/DOdXycVUiKZl5YWbuCtx1tnOR0gJw4zz16Tzv9LtjrnH6Kyh3p2+jJMYsBf6gvk1mboyIPSLiQZSr+YOr5X0oTWpQu4DMzJ9GxBnAKyhJOs+KiB8DF1HyAz7eu+Kv6Y0aeP5s/XiVu1TLJvrOr5vj55PVsn5ujLpuXfPRAWfkm2+7h1CafyeAl2XmsEYYDDpOfza9/6tVwOfmaTnYTPl/PJzS2jSXXgGXzbYyM38YET+ldG8NamNEPJBS54MpLV/3YNv/99luIn8+R5dQ770/qErGnE0vaO9OOb9+WFu3vrqZOBI4pPq6e1Vu79z1pnYWBv2OqzLo3x0R+wCnAS+IiNMz81qAiNgVeDOlT7Q+a9sGygfQ14HHzFLuKyPiEsqFxG9QTtpnVF+bIuIDwB9V45cBdquWd62+5rP7Auv7sdBsahO170ddt1lVyZJvnWP1WZl51rB+96+Cqjn43ylNzWdn5hkL7DJuvf+rneivv32h/63e+lvm2eZGBgz6EfFcSiLgXWas+h7lAmu+C7bJOX7ee+9791mf3amCfpWH9CbKxUfddZRZIn+zVr5mMOir50OUoL+Ucgd/be3nD6WcvG9lulvgiqoF4PnMEvQBMvPfgH+rEnyOpTQRPo5yd3Ai5cT8zWrzW6vXJ2TmXE2d49KWuu3G3MHh06OsSNtUfd8fp2SHf47Sr9t2t1bLizPzQQ2U93NK5vtsCXU9AyWaVrkWZ1YvPwH8G6Ul4fLM/EWVuDpvK80ceu/9jMx82QD1eSTlM2mCMqTx/ZREwMuzenZIRPxkO+rTGQZ99dQThCYAqub8h1Y/Oz4zPzPLfvvN/EH1QXBXYCIzv5mZN1P60D9CyYx/GWVY3AkRsVt1t5+U5Lm7M0f/ZjU2dzfKWOdRPhyoFXWrumcmFtqua6qEuA9Tmni/R2l6X6glpw16SWYREUtn66Ou+rKPBX4AXJ2Z803jm5Sgfx9KcJ5Z1m7Mcr4u4C+r5VmZOVuy5aDl9SRl6u85p4CuRtAcRsmP+EGVkHgK5Rz4FPDYmX+z6rOn71kmu8g+D/UcXy2nmE6aOqi2/naJVBGxmjJpD2x7AfkCypj2c6upW2eqP6mslzjYS6w7ebZhb9UEQR+iJFD9/dxvYyjaXLdOq/6//oky4dBNwONnyRdpq/+mzF2xOyX3ZTbPpEyAdTlliNx8esPnnl2dmzM9l8E/8w+slnMlUtbv8ge5ieydU4+uumVm83rK8wouYvpit/eZ9I05EvlOqtXDm9pZGPQ7LiImqskuXlH96IO1BKX6U8L+OiKW1/a7G6W5r9fHXf+QuYDSZ34P4I3VOPfefntR+gehNGv+vPr
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZwcdZ3/8dckk8kdEjIJgZzk4JNASOQSUPiBrndERWW9QBFR2dVV13XFgxXcXRRhXVzXAy9AwIt1QRQRFxFQIqBCCISQDznIASHkIOSeZDLTvz++356p6fRM5uju6p56Px+PedRU19Hfrq6uT33PqsvlcoiIiEj/NyDtBIiIiEhlKOiLiIhkhIK+iIhIRijoi4iIZISCvoiISEYo6IuIiGSEgr6IiEhGKOiLiIhkhIK+iIhIRijoi4iIZISCvoiISEYo6IuIiGSEgr6IiEhGKOiLiIhkRH3aCahFZjYNeLqTxTlgK7AW+A1wtbtvqlDSSsbMzgeuA55190mJ1+8FzgAud/dL0kld18zseuB9wH3ufmaF3nM1MLWTxTuA54F7gG+6++JKpKmUCs75We6+Ir5+GXApsNDdT0sndV1LnMu4e113l5Xw/acQjt0AYIm7H1uO95F0mNkx7v5E2unoLuX0+24JsDDx92dgMzAX+Cyw1Mz0I8+OdXQ8Hx4AVgOHAx8E/mpm700tdZKG99N+rZ1rZlV5cyQ9Y8H/Ad9MOy09oZx+3/2Du99b+KKZjQV+CCwAfm5mc9y9tdKJK4P3AsMINzZyoGvd/bLCF81sEPAv8e97ZrbQ3VdWOnFl8A3gp8DutBNSjcysDjg/zt4BvAG4CLg/rTRJyZwHvBq4L+2E9IRy+mXi7lsIRcx7gaOA16SbotJw97XuvszdFfR7wN2b3f0LwF+BBkKuv+a5++Z4PqxNOy1V6pXANOAF4CvxtbfHTIFIxSnol1EM/Evi7Nw00yJVI58r0PmQDe+P0zsJuftngcGJ10UqSsX75TcoTncULjCzeuBdwN8CxwNjgf3AeuD3wH+6+1NFtnst8BHgFGAMsI1wc3Ez8H1331dkm1HAx4G3AjMJN3yrgFsIjQ1f7M6HKdaQL9HI63lC3fUFwIeAo+NmS4DvAte7e65caasRnZ4PAGZ2BnAh8DJgAuE3uhl4EPiWu99dZJvZwKcJucojgD2E43cH8F/uvrHINgOBcwmlUS8BhhPOu7uAq9x9eXc+TGcN+RING+cAh8X0nRLf52nCuXqVu+8sV9rSZmaHEM5pgFvcvdXMfgZ8EviwmX218PdgZjcSPvst7v62Tvb7PuB6wnGckd9HPG7vJRy3ebQft/8DriysTjKzmcBywo3IKcD3gDMJVTV3uPt5cb1hwAeANwPHEq45TcAaws3Mf7r7c0XSORz4u/h5ZgDNwB+BfwWOi+/3A3e/sGC7IYQqkHcSzp+G+F63A//h7huKHZdOjtWrCOfNQuDDhOvQCcB2QlXcZ+J6Y2JaXx/f8xBgF7AC+BXwNXffVnDc8s4wsxyw0t1nJt67R99HpSinX0ZmNoOQo2sl/DiSy4YSvvwbgDcC+4DHCcWAswgn6CNmdlzBdh+L+zqL8CN6lBBAziA0KPltPNmS28wGFhN+bMcSTrzlwGzgC8CjcZ2+qiO0Y/g+oUrjKcJNzCnAtcCXCzeoYNpSF+v13xBnf11k+ZeBewkXyZHAk4ReIOMJweN3Zvahgm1OJVQZvJ9woVpCuIgfC3yOcA5NLthmBOEcuh54BeEi/zjhpvODwGIzeyul8UFCr4VXAs8Am2j/bn9rZh2uQRVOW7m9CxhKuCnPf98/jtOZwKuKbHNdnC4ws9Gd7Pe8OL0+EfBHEYLbtYRrwS7CcWsk3IA/ZmZv7mR/Q+K2rySccxB7apjZYYTGyV+Py7cBjxG+l7nApwjn2OHJHZpZI6FU6ypCwFtDOC/PItzAvqlYQsxsIvAQcDXwUmALsJRQRfJPwOPxnO+pw4C7gflxf0MJ1yfMzAjH6nLgZMI5+hjh2nUCcBnwQLyJgXBTvZDQaBfCDcRCwu8w/zn68n2UlYJ+iZnZQDMba2ZnEXJaA4Avu/uaglUvJlzUNgMvdfcj3f0kd59CONmfI9wZfi6x79G01wu+y90nxm2OBF5LOBnPBM5JbDOccKc6DbgNmOLu5u4vASYTLkZTgV/GG5G+GA+8m5Brb3T3Ewg5/5vi8n8ys3EppS0VZlZnZiPM7GTgl4SL/X2Exm/J9c4EPkO4QbwAmODuJ7r7LOBIws0AwL8VBMqrCefJ1+M2x7v70YSbruXARODzBcn6HiHgPAGc7O6T3P1Ewvf3JcIF8UdmVooqiE8SAvgEd58PTCGUUkEozSi8+FcybeV2QZz+r7s3Abj7w7QH1ouKbHMPobfHYODthQtjUHwFoWvwDxOLfhBffxw4yd0nx+M2DriC0Pj2J2Y2p8h7jo1/89z9eEJp0VVx2VeBYwgBcpa7HxXPywmERsp7CCVSHyvY57cIAXMFMN/d58auisfE184q8tkGEEr35gF/AMzdp8fryIT4eRuBX5jZ+CKfoyszCTcsMxOf8Udx2Q8Iv5OFhGvQnPie4wk30zlC7v9cAHd/NpZq3RC3X+Tup7n7OxPv15fvo6wU9PvuHjPL5f8Id4ebCRf4owhB+l+KbPcqwgX+i+7+l+SCOP/tOJvs7meEu/KtwM8Ktvk/Qk7654RSg7wLCSf8I8Db3H19YpsNhBuENYTShfO7/ak79y13/7q7t8T3aAI+Qfjh1BNuaNJKWyVcWnA+tBJKYh4EXkeotlng7vsLtnsd4Xu71d2vS/b0cPdnCDljCBei5AVvfpxe5+57E9usIuSMbiccQwDMbD6h2HQ38Fp3/3NimyZ3/zyh6H0Ixc/bnloMfCBfNOruOXf/FuFiCPDyFNNWNmZ2DHBSnL2pYHE+2LzJzI5ILog593wwP7fIrt9DuG7fk89ImNkJhBuEXcBr3L0txxmP22cJwXQo0NnYGt9wd4/b7HX3HWbWAJxG+O1+vLA42t3vAP4nzrZdp2IX5XMI5/6b3f3xxDZPEm4Wmoqk4WzC9WEd8PpkNU6s4ruAkJseT8hY9NTl+aoBd9/h7nvj8be4/MJk1YG7t7r79YQqiQ6fsSsl+j7KRkG/7wr76T9IyKXkL8CfBL5eWOQe7xSHANd0st98F6hhideeJtxUjAGujxfJ5D7/zd3PcfdbEi+fHac/zQfigm32EG4UoMjddy/8qsh7bCEUmQEkiywrnbZKKOyn/ydCUeHWuPyVwG3JEg+AWLc4hOIXeujYJS55TuQvjNeY2d/EKoT8Pn/l7me5e7JaJX/M73X3Zzt5rxvj9PWF520v/Lqw3jrK53aLnQ+VSls55XP5z9BeSpP3I9pvgi/kQNfH5f+vsGqG9qL96xKv5Y/b3V3Ud+eP2xsKq1SiA7oQuvs+d59GON9+W7g8dkfMt8lInpP59Nzn7kuL7HcVRa4Tie1udfcDuoDGG+H8DVNvrgfFPuN6dx8HDHP3ZYXLY7ur7XF2WOHyTpTi+ygbNeTru8766TcQcqffAD4KDAT+PrmOuzeb2RgzO4VQKjA9To8j1EFB4sbM3Tea2VcIxbXvBd5rZhsIdVX/R2h8U9iVLl8M+sEu6pAmxGkp6s47u1jvidPkOVfptFVCZ/306whVLzcAfwPcbWbHJW923D1nZq1mdjqhEeR0QknIvDjNS14kPk24gJ4M/A7YaWZ/INQn/toPbPSWP+YnmllnfcXzVSkjCcWefemO15vzoVJpK4t445W/eftx4U2Pu6+On+904EIzu7zgPFhtZvl2EO8mVunF9j1zCUEoeWOfP26ndHHc8gFrNOE3tb5g+QEN8RLpaTKzCbGKahbhvJxNuE7lb9qS52Q+PV2NPPlXEtWQBdu9JeaWizk0Tq2T5V3p6jPusdAg+UTaP+Mc2huSQvczyaX4PspGQb9MPLSg/25s4HIZ8CEz+7K7rwMws5HAfxEuDoMSm+4jFHcvIhT5Fu73EjN7mHAj8f8IJ8x74t9+M/sp8NF8cSqhcRe
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFbCAYAAABfzB2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZhcVZ3/8Xd3Z1/InhCyb3wJChFlCwEJiKjDOAzjMiBBEUVEHVxGxVEHcANRxx3EZXBhU9x+jIqsgbCDrILAlwSysmUPCUmnk+7+/XFOdd/uVHdXd9+qW1X9eT1PP7dv172nTnffuvWpc885t6a5uRkRERGR9mqzroCIiIiUJ4UEERERyUshQURERPJSSBAREZG8FBJEREQkL4UEERERyUshQURERPJSSBAREZG8FBJEREQkL4UEERERyUshQURERPJSSBAREZG8FBJEREQkL4UEERERyatf1hWQVmY2HVjewcPNwCZgFfBX4Dvuvq5EVUuNmZ0O/Bx43t0nJ35+O3A08DV3/2I2teucmf0CeB+wxN0Xlug5VwDTOnh4K/AycBtwibs/Voo6pandMT/H3ZfFn18AnA/c7e5HZlO7ziWOZdy9ptDHUnz+Q4FTgSOBWcBQYDOwGrgV+IW7/6OHZS8kHFcA/d19d4H7nU6e17dULoWE8vUEsCWx3g8YBbwWeB1wppkd6+6PZ1E5KbnVhICYUwsMA2YCZwLvN7MPuPuvsqiclI6Z7Q38FPjn+KMmQtB6BhgBHAgcBHzKzC4DPl7om7xIewoJ5es/3P329j80szHAL4ETgN+Z2Vx3byp15YrgvcAQYH3WFSlTl7v7Be1/aGb9gf+OXz81s7vd/dlSV64Ifgj8GtiedUXKiZlNAu4mtC5tBr4K/NLd1ye2GQt8GPgC8BHC6+r93XyqB4C5AAoYfZtCQoVx9w1m9j7geWBf4Hjghmxr1XvuvqrrraQ9d98FnGdmbwMOJrQqfC7bWvVefNNTYEwwsxrgN4SA8BKw0N29/Xbxb/dVM3sE+DNwupn93N3vKPS53H078HQ6NZdKpo6LFcjdNxAuR0C4/CCyJC51PFSvdwML4ven5wsISe7+F+CPcfWsYlZMqpdaEipX/7jc2v4BM+sHnEI4qbweGAPsBl4AFgPfdvdn8uz3FuCjwOGE/g9bCGHkWuBn7t6QZ5+9gI8D/wbMJgTP54A/EDpXbi7kl8nXcTHRqe1lYCJwBvAhYP+42xPATwgdtJqLVbcK0eHxAGBmRwMfBI4A9ia89tcD9wGXuvutefbZD/gscCywD7CD8Pe7Hvieu6/Ns08dsIjQwfN1hM50LwA3A99096WF/DIddVxMdOScC0yI9Ts8Ps9ywrH6TXffVqy6ZeijcXm/u99Y4D7fBRy4LvnDRCfcswl9Gr4IjCf0fTkzbtZhx0UzOwn4GDAPGAg8BFzYUSXaPd8NwHmEVtBxwLr4s6+6+4oO9n8jcA4hJI0hdOK+F/i+uy/uYJ9TCOeMNxD672wGHgauAK5pf5k2Xso5F3gr4RhriH+Pmwnni7x1q3ZqSahAZjaL8ImxiXaXGsxsMHAT8CtCx6YG4HFgIzCH8IniYTM7qN1+58Sy3g7sAh4lvOEcDVwC3BhPssl99gMeA74MHEA44S4F9iOcBB6N2/RWDaEfxs8Il1ieIYSew4HLgYva71DCumUu9kv4p7j6lzyPXwTcTniDHA48RegEOZ4QoG4xsw+122c+8CDhWvYIQiB7nvC3/DzhGJrSbp9hhGPoF8AxhP4EjxNO6mcCj5nZv/X2943OJLyJHQusIbzR5P63N5pZm3NbieuWOjMbRWsrwnWdbZvk7ne4+3+5+30dbLII+DHhNbaUEMYf7aIulxCC9rGEv+PTwKHAjYQg0JnXE16X74v7LgMmAR8AHmh/TMXn+zqhpewdhEDyd8K570Tg1vh4+32+DVwNHAe8Ep9zF/AW4ErCcZDcfhYhQPwHIRA7IXTOJISTx9qfM/sKhYQKYWZ1ZjbGzN5O+CRXC1zk7ivbbXou4SS4HjjU3We4+yHuPpXwQn6R8Anq84myRwIXx9VT3H1S3GcG4UW1A1gIvCuxz1DgT8B0wklrqrubu78OmEJ4s5oG/F8MLr0xHngPoVVgrLu/gXAyuzI+/p9mNi6jumXCzGrMbJiZHQb8H6GlZAmhs19yu4WEPgpNhE9Ve7v7we4+B5hBCA8AX2n3xvodwnHy/bjP6919f0JIW0o4sX+hXbV+Sjgp/wM4zN0nu/vBhP/fhcBg4CozS+OSyKcIJ/q93X0eMJXWT9pHAP+SYd2KYR6t5+v7Uyx3AaGT6HR3PwCY0VkLm5mdSugM2QCc6u5T3f0Qwhvrbwnnic6cCTwJzHX3fd39NYT/11ZCq8J/tnu+swjntM3AIncfHf9v+wAnA68C55rZBxL7zAU+CdQDx7j79Hg+m0QIJ03AaWZ2eOKpvkY4Fn5HOKYOdPcDCeeJe4C9yPNhpC9QSChft5lZc+6L8Ml5PeENYV/Cm/p/59nvOMKL4Evu/rfkA3H9R3H1gMRDBgwiNOH9pt0+NxFeHL8jnBhyPkh4Y3oYeIe7v5DY5yVCoFhJaL04veDfumOXuvv33b0xPkc98AnC/BH9CAEoq7qVwvntjocmwon1PkLz6GLghDw90d9K+L/90d1/nmxidfc1hE/eEE6Q4xP7zYvLn7v7zsQ+zxFO5H8m/A0BMLN5hJP2duAt7v5AYp96d/8C4VLAIPIft931GPABd98Sn6PZ3S8ltA5A66fuLOpWDHsnvn85xXLrgc8lXlddzb2SC4YXuvvVuR/GYLGI8Am8Mw3AScnLne5+L62f7JP/twHAl+LqGe5+VWKfZnf/DfCZ+KMvxcusEIaAxs3ajhCLQ4R/BFxDaJXIyR3vVyUvVbn7y4QPJzcQwk2fo5BQvp4gDHXKfd1H+BSUO2F/Cvh++0sA8frtIOCyDsrNDSkbkvjZckIIGQX8Ip5Uk2V+xd3f5e5/SPz4pLj8de4E026fHYRgAeESRm/9Kc9zbCA0MwOMzLBupbCatsfDPYRm103x8WOB65ItKgDu/jnC8bCog3KTQwyTx0Tu+vxlZvameEkjV+af3P3t7p78ZJX7m9/u7s938FxXxOXb2h+3PfCXfP1QCJdSIP/xUKq6FUOX52ozW5QMknm+ZufZ7RF3f7WQCpjZTOKwSNo11wPEPkv/20UxD8ag3l6+/9sRhH4nW+n4EstVhMA8iXApA1qP3Xlm9i0zm9Ounh9z9/e4+5LEj3P7fN3MTky2MLr7g+7+Nnf/VBe/W1VSx8Xy1dE8CQMIn35/SOg4VEdo/mvh7rvMbFRsTtuXcF1tX8IEKxPiZrWJ7dea2cWETwnvBd5rZi8RZm27CbjeE+Owo1yz7JlmdmIHv0Pu008a1/47OrnviMvksVzqupVCR/Mk1BCaeH8FvIlwjfagZDhy92YzazKzowidPmcSWloOjMuc5BvRZwnB7DDgFmCbmd1B6MT1lzyd/HJ/84PN7K4OfofciXc44aTem2GvPTkeSlW3Yki+/iYQPjC0t5YQIJMGEobGduTFbtTB4nJrnsucOZ32Z6Bn/7cBwB1mRgcaCcfufsAD7v6wmV1FmI3yPwmXI1cQzmc3Aje4e/sOvucRLtMa8P+AnWZ2D+F4v94rcDbTtCgkVJiY1n9iZhOBC4APmdlF7r4awMyGA98jfHLsn9i1gdD8/gihCbp9uV80s4cIweONhDfRU+PXbjP7NfCxXPMuoTMbhCb7Oe3La2dkF48XYo+RFe0kp74tdd3yih2dftDBw5e7++W9fY74afo2M1tE6F9wAPDvhE5buRDxaUIflOTv2kxoGr4COC1PuTeY2SGE68EnEN48/yl+fSe+2Z7l7rkm2NzfvP1li46MpHdvxD05HkpVt2L4e+L71xAuL7URLw3elPyZdT7VO7S+ORdiVFx21vKwqZPHoGf/t4EkLkN0Inl8n0b4G51JCLrTCZ0jPwDUm9lPgM/E8ynu/mhsQf0vQsvTGEJoOAa40MweBz7i7h2FzKqlkFC
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAFbCAYAAADoceW+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wcdf3H8dflcrlLJySkQHr7JJQEMNL9EUGKRvFn+/1AQCM2/MmPnygqAgoogujvZ0PsUgRBUVGUplKlg/SSfJIAKZRUQkgvd/v74zuzN7fZvbp3s+X9fDzusTe7M7Of3Zmd+cy3TU0mk0FEREQkDb3SDkBERESqlxIRERERSY0SEREREUmNEhERERFJjRIRERERSY0SEREREUmNEhERERFJjRIRERERSY0SEREREUmNEhERERFJjRIRERERSY0SEREREUmNEhERERFJjRIRERERSU3vnn5DMxsPvFTg5QywFlgK3Ap8z91X9VBoRWNmc4ErgFfcfXTi+buBw4Fvuvu56UTXOjO7EvgocI+7z+6h91wMjCvw8npgBXAXcJm7P9UTMRVTzj4/xd0XRc+fD5wH3O/uh6UTXesS+zLuXtPe17rj/bq43o8AnwemAtuAh9z92GKtv9SZWW9gorsvSDw3m/C7Aqhz9x1pxFZNCh0LotfqCMeDE4HdgXXAj6OXu3ycKHReSrw+HZjv7pnOvkdnpV0i8ixwf+LvEWA1sDfwFeB5M9snvfCkhy2j5f7wILAYGAV8EvhXdEIRaTcz+wBwFTATeANYCLyYalA9yMyOJhxr9dspbd8FzgHGE5KVVwjHv25lZoPM7EfA00Btd79fPj1eIpLjv9397twnzWwo4cAxB/iDmU1396aeDq4bfAToR0i2ZGeXu/v5uU9GVwpfjf5+YWb3u/sLPR1cN/gR8FtgU9qBVLj/iB7vA95ehVf+ZwOW5/lHgOkAVfidpOUVou8cWJLzWryffsvdvxI/aWbDKM5x4k/AQ8D2nOf3Bz7bxXV3SdqJSF7uvsbMPkrYaFOBo4Hb0o2q69x9adoxlCN33w58zczeCcwilI6clW5UXefuq1FS2hOGRY/36YTbzN03AfPTjqOaRMeyQt95vJ/enbNMUY4T7r6OUN1TctKuminI3dcQihMhVNWI3BM9an+QjoiLm7emGoVI6+LzcdXtpyVZIpJQFz2uz30hanx1AqE4a39gKLADeBW4E/husmFWYrljCMVQBwFDCBnis8D1wC/dfVueZQYB/wO8H5hM2GFeBG4gNKh9oz0fJl9j1UTjpRWEthCnAJ8C9owWexb4OXBlvkZExYqtTBTcHwDM7HDgE8AhwEjC/r2aUBz5Y3e/I88y04AvAUcQGohtJnx/twA/cPeVeZapBU4iNOrdF+hP2O/+AXzH3Re258MUaqyaaLw7HRgRxXdQ9D4vEfbV77j7hu6KrdR05neSaHgdO8/MzoOWDWHNbAhwOvDvwBTCb2gJcDPwf+7+Wk4scwmN/n4HXApcRthWawjf8ffMLP6t1gEfjNa/D+EY9Shwnrs/aGb9CVUn/wmMIbRh+Rtwlru/mud7mAycBrydsI/0JxzDngauI1RvNubEGTvHzM4BrnL3uW01VjWzWYRjy+GE39OG6H1+Ha2jMWf+u6N53wm8RmjvcDiwC6F0+0bgoo52QDCzEwjb+y3AgOg7ehy4GrguWW2f+Mw3Erb9hcD7COeHl4G/ELbR8gLvNRE4k1AKPxrYAjxDaCpwRe5nTiw3k3BeORLYg3AceRz4ibv/ITHfeHIaq+ZprH+XmUHUYaCtRu1m9h7Cce8twHDCMe9e4Nvu/lie7ybbWDXPe2+P3nsCYX86CLjU3U8v8LnPIXzHt7n7O/PN0x4lWyJiZpMIV75N5FTLmFlf4O+EH8S7Ca3gnwFeJxxIPg08bmb75Sx3erSu9xDqyZ4knNQOJxxM/hYdyJPLTAOeAr5OOJC8SmjsNg34GvBkNE9X1RB29l8SqqMWEA5aBwGXAxfnLtCDsaUuaifyrmjy5jyvX0wo0jwJGAjMI/S+Gk5I0m43s0/lLHMw8C/gY8BgwsnsFcJ3eTZhHxqTs8wAwj50JeFksImw7w0lVBk9ZWbv7+rnjXyScKI4gnAQXUXztv2bmbX4/fZwbGnpyO9kAaHR85vRdLIxNABmNoOw3c8HZhAaBzohqf8C8Fx0ws5nGiFpGA88R7iweS5nnu8RDuiTgUVAPXAU4WTzduBhQsP8XoTf7nDgZOCfZtYvuSIze28U6/8AEwnJ0nyggbC9f044JsZWFPj8O12g5TKzL0WxnUT4bTxFSHgOB35F+D0NLrD4OwnJ1vsIJ8VlhBPb54AHzGxgW++fiOO7wLXAO6LP8RTh2H0McA1hX89nEKFN0GlAI+F4MI7Qc+qxfJ0got/Gs8BnCBcl8wm/ucOAXxB+cwPyLPdf0ef9JLBbtI4NhN/t783sm218zEdJ7JM0d+J4prWFzKzWzH5NSK6OI5T8PQ30JVygPxRVZ7f13s8mpuPfxxbC7wng+OjCP5+4AfQVBV5vl5JKRKIvdmiU4d1CiO9id89t1PNlwg9vNXCAu09w97e6+1jgAEI2Hl9pxOveBbgkmjzB3feIlplA2Kk3A7OBDyWW6Q/8lXCguREY6+7m7vsSrl5uJuzcf4mSo64YDnyYcJAZ5u5vIVz5XRO9/gUz2y2l2FJhZjVmNsDMDiT82CYTqmd+mzPfbEKbkSbCldNId5/l7lMIB8C7o1m/kXPy/h5hP/lhtMz+7r4n4QS3kHBlc05OWL8gHBSfAw5099HuPouw/S4iHAR+Y2bFqD76POFAO9LdZwJjaW5Udgjh4JNWbGlp9+/E3S+KriCfiF673N0Pi68qoxPirYSTzoOEK9S93X0/wtXwXwnJxZ/NbEKeWGYSThbj3H3/aJl/5MxzGmHf3D1a71TCBUM9cDuh8fqB7j7R3fcmXIk3ApNoeSwaQjjY1wM/AUa4+0x334dQavbDaNYPm9le0ee/Nefz/zr6/Be19gVHvYwuIRx/vwEMTxwrjyAkOLNpmfQknU64UBzr7nu5+2TgvdHnmgx8vLX3T8QxHTiDcFJ8u7uPj+LYg1Da0QScbGYH5Vn87YSL0g+7e7x9JhC28+7AdcmTa1SicS0hqbsQGOru+0bHkP0Jx4MjCd99MsZDCKVidcC3ou9qlruPIRyLmoCzzeyoQp/T3T+UU9Lx39F2+u82vqIvEpLWTYTagd2j3/uoKM7ewPXRvlPwvYHk+8yO3ns5zQ1kdwN26uoeXchNJQy5cWMbsbYq7UTkLjPLxH+EK5vVhJPOVMKP4at5lnsHYQNf4O6PJl+IpuOdJZn1GmEnW0soUk0u83fCldQfCKUrsU8QfjiPAx9IFpVGG+pDhKuSKcDcdn/qwn7s7j+Mi//cfQvhKiJD2KkOSDG2nnBezv7QRCixeojwQ7gTmJOnweGxhO32J3e/IllU6+4vE0oQIJzEhieWmxk9XuHuWxPLvEi4Gr6JRMv26GB1POHHeYy7P5JYZou7n0OoNmkg/37bUU8BH48ameHuGXf/Mc1XSoemGFuaOvI7ac1nCSelFYT9Ktul191XEKpUniGUCOQmpLFzEttnTZ7q09vc/ZJ4n432x6ui13oRtm/2GObu/yAUq0M4AcbeRjjZLQdO99DQNF5mI2F/jY9dXR3yIL6C/7m7fy3nt3EXoaQD4DgzyzeuxUrgg8kqLXf/C+HiEhL7bRtmNC/esnelu/+acJy/jpCc5fNFd78uscwrhIRoHbAXYfvGzo/Wc6m7f9XdNyeWewL4ACGROtHM9kws91XCdrze3b8S7YvxclcQSo8gJCVFY2Z9aG6wf6a7/zbe96IYTiOU7A2guTdOh7j7esI5EULCkyuu9rw2uY90RtqJSO44Ig8RrubiD/V54Ie51SVR9tgA/LTAeuMfabJo8yVCojMEuDI6cCfX+Y0oM70h8XT8g/ut56kbjHbWeEO9p9CH7IC/5nmPNYTiQQh1rWnF1hNyxxF5gFDUuDZ6/QjgxmTJEIC7n0XYH04
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAFbCAYAAACux0YUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxddX3/8ddk30NICCEJWUjgCxGIIoJxjUrRX6l1pXUBd9D+2tqf1qq/n7Ziq6J2sdq6FBVXrKJ1FxVFBUFAWcSEkA8EyEJCyAYhC9lm5vfH99w7N8PMZJY7d5l5PR+PPM6cueee+czk3HPf93u+3+9paW9vR5IkCWBEvQuQJEmNw2AgSZLKDAaSJKnMYCBJksoMBpIkqcxgIEmSygwGkiSpzGAgSZLKDAaSJKnMYCBJksoMBpIkqcxgIEmSygwGkiSpzGAgSZLKRtW7AB0upbQAuL+bh9uBh4H1wI+Bj0XE1hqVVjUppdcBXwA2RsTciu//Cng28MGIeG99qutZSumLwGuBayNieY1+5lpgfjcP7wIeAn4JfDIi7qhFTdXU6Zg/MSLWFN+/BHgfcENEPKM+1fWs4lgmIlp6+9gAft5aOo6FFRFxei+ecybwu4pvlf/Gw0VK6RRgdUS017uWZmCLQWNbCdxQ8e+3wDbgVOD/AqtSSqfVrzzV2AYOPx5uBNYCxwEXAbeklF5Tt+pUa6ellFIvtvvzQa+kQaWUpqSU/hP4AzCy3vU0C1sMGttfR8SvOn8zpTQd+BJwHvCtlNIpEdFW6+IGwWuACeTwo8e7PCIu6fzNlNJo4O+Lf59NKd0QEffWurhB8J/A14G99S6kAR0in7/PBz7Q3UYppRbgz2pVVAM6A/jLehfRbGwxaEIRsZ3cnL0fOAk4t74VVUdErI+I1RFhMOiDiDgYEf8A3AKMIbceNL2I2FYcD+vrXUsD+kWxPP8I2z0VmAfcPrjlaCgxGDSpIhysLFZPrWctahjXFkuPh6HvR8Ae4PSU0kk9bFe6jPD1wS9JQ4WXEprb6GK5q/MDKaVRwCvJzYhnANPJzY+byJ82/i0i7u7iec8nN709FZgG7CQHkCuBz0XEgS6eMwX4G+ClwGJy4LwP+Da5g+Qjvflluup8WNEx7SHytfQ3ABcDS4qnrQQuA77YVceiatXWJLo9HgBSSs8G3gQ8DZhFfv1vA24CPhUR13TxnJOBdwLPBWYDj5H/flcBH4+ILV08ZyRwAblV64nARPJx9zPgnyPint78Mt11PqzogHcKcGxR31OLn3M/+Vj954jYPVi1NYC95HDwZ+RWgw923iClNKJ4bDfwA+Aj3e2sL8dGSmk5cA35tfT3EfGBTvs6BbgVGA+8JyI+dKRfJqVUeu3OAv4VeDHQWuzn3Ig41NdzWheddg8WXTIWRsTaiu2eBbwVeHqxz4fJ/Xc+ERG/YBiyxaBJpZQWkT8ZtgE/6fTYeOBq4MvAnwAHgBXADuBE4M3AbSmlJ3V63luLfb0QOAj8nvwm82zgk8BPixNr5XNOBu4A/hE4jfwivQc4GfgH4PfFNgPVQu5X8Tny5ZO7ySeFpwKXA5d2fkINa6u7op/BHxerP+ri8UuBX5HfFCcDd5FHt8wkh6afp5Qu7vScZeTLE68HppJD2Eby3/L/kY+h4zs9ZxL5GPoi8BzyG9gK8gn3IuCOlNJLB/r7Fi4ij8Z4LvAAsJWO/9ufFm+M9aqtFq4slt1dTngGOcx9nxzoutTXY6Po9/Rvxerfp5SWVOxrDPA1cij4BfDhPv5O/wO8CriX/P+zuQgF/Tmn/Y6OVlXo6LS7r6LeD5Nb2l4GjCV3UmwDXgRcUzw+7BgMmkhKaWRKaXpK6YXkT2wjgEsjYl2nTd9FPvFtA86KiIUR8ZSImAecBTxI/qT0/yr2fRQdnyheGRFziucsBJ5PPrEsp+IklFKaSP4ksgD4HjAvIlJEPBE4nvwGNR/4fvHCHoiZ5BPG3wAzIuLJ5BaErxaP/21K6Zg61VYXKaWWlNKklNLZ5JP/YvJJ7uudtlsOvJt8wnsDMCsizoyIE4GF5DcFgH/q9Gb6MfJx8oniOWdExBJyMLsHmAO8p1NZnwXOAe4Ezo6IuRFxJvn/70PkN4wrUkrVuNzxdvKb/KyIWEq+ll7qaPY04E/rWFstXEVuDViaUjqxi8dfUSy7vYwwgGPjPeTQPQa4vOIDw6XklpitwAX96BR9JrC8+P+cA/xV8f0+n9Mi4nzgryv2vTwinhERm4vf/c3Ffh8paj26OB5mk/92e4B3pZTe2MffoekZDBrbL1NK7aV/5E/I28hvAieR38j/vovnnUN+ob8/IirHL1Osf7pYrRzqmIBx5Ga0b3R6ztXkF/y3yEm95E3kN6PbgJdFxKaK52wmh4h15ET/ul7/1t37VER8IiJai5+xD/g/5PkdRpFPEPWqrRbe1+l4aCO36NwEvID8Ce28iDjU6XkvIP+/fScivlB5so6IB8ifsCG/Qc6seN7SYvmFiNhf8Zz7gL8Ffkj+GwKQUlpKPqHuBZ4fEb+teM6+iHgP+VPuOLo+bvvqDuCNEbGz+BntEfEp8idJyE3D9apt0EXEY+T/A+jUalC8Ub+M/Hr+aQ+76dexUVxSfDX50/fZwFtTSs8D3kZ+Pb4uIh7sx691ZURcV/yMtojYUXy/P+e0bhUtG+8vVt8QEVdU7K89Ir4B/F3xrfcXlzGGDYNBY+s8j8FN5E87pZP024FPdG7eL67HjgM+081+S8O/JlR8735y8JgGfLE4kVbu858i4vyI+HbFt19SLL9eerPu9JzHyGEC8uWJgfpBFz9jO/nTCcBRdaytFjrPY/AbctPnw8XjzwW+V9lyAhAR7yYfDxd0s9/K4YCVx0TpevtnUkrPKy5XlPb5g4h4YURUXsIp/c1/FREbu/lZXymW/6vzcdsPP+pmwpq7imVXx0OtaquVUojvfDnhOeQ38u901S+oZADHBhFxJ7m1AfKb7JfIl/w+HhFX9ar6x7u+mzr7c07rydPI/VN2kVsUu3IFOYzMIfdpGDaGVQpqQt3NYzCG/Cn3P8lNbSOB/125TUQcTClNSyk9ldy6cEKxfBL5BQEVwTAitqSUPkJuInwN8JqU0mZyJ6Orgau6GEZYanK9KKX0om5+h1nFshrX8rs7oZeun1Yez7WurRa6m8eghXyZ58vA88jXRp9UGYgioj2l1JZSeia54+YJ5BaV04tlSeWHhXeSw9jZwM+B3Sml68gd9X7URUe90t/8zJRSlyd4cnM95GvZc8jXsvurP8dDrWqrlZ+Q39yemFJaHB0zGvZ6NEI/j42ST5D7tpxL/rvdRm6e769uWxn6ek47gtLxMAa4rod5olqLfZ5MnmBuWDAYNKHiE8BlKaXjgEuAi1NKl0bEBoCU0mTg4+RPAaMrnnqA/MK9ndyE2Hm/700p3UoOG88iv3G+uvh3KKX0deCvSk235A5pkJvju7rGWemoIzzeG91+8ilUTjtb69q6VHSG+o9uHr48Ii4f6M8oPjX/MqV0Afma8GnkN4avFTW0AO8gX3+t/F3bgSB/Ur6wi/3+JKX0FPKJ/jzyif+Pi38fK95g3xwRq4qnlP7mnS9JdOcoBvbm25/joVa11URE7EspfZ/8Gj0fuLRo2XkpsIWO+Q661N9jo+Lnt6eUfkDHXCqre2qh6IUuO0n295zWg9LxMJaKS049GLRzRCMyGDS375GDwUhyat5Q8f3nkF9k/0HHJYh7itR9Ed28iCLiO8B3imF+zyZ/Ev1jcmK+gPyCKnXq2lOsvzAifvj4vdVVo9Q2le5PPD+v5g+KiGtTSjuLn3kmRTAgXye+pPj6G+T7bNxJPonvLjqudXnyj4jfA68s3myeSj4e/oj8Oz2D3GP9xIjYQ/6bA/xrRLyjmr9bFTRybQN1JRXBgHw9/mjyvTMedxmtk34fGwAppRPIHTchN7u/KqX03Yj4Zj9/l+70+5zWjdLxcGvR4VAVDAbNrbLHbwtA0cz2nOJ750XEL7t43tzO3yh65p8ItETEHRHxKLkZ+QfkHv/vJp9
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAFbCAYAAABMG11tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcdb3/8dfuZrPpvVCSkP5JIhB6MSAJzYLgT1EvCCoXxYYdRa54aV5BbCheil7FBqjo1YuKqCQkofciSPJJQkISQkl2U0jfNr8/vmd2z87O9pk5szvv5+ORx8nZc+bsZ2a/55zPfNspS6VSiIiISOkpTzoAERERSYaSABERkRKlJEBERKREKQkQEREpUUoCRERESpSSABERkRKlJEBERKREKQkQEREpUUoCRERESpSSABERkRKlJEBERKREKQkQEREpUUoCRERESpSSABERkRLVL+kAkmBmk4E1bWxOAVuAdcDdwHXuvqlAoeWMmZ0H/AzY4O4TYj9fApwAfMPdv5ZMdO0zs58DHwaWuvv8Av3Ol4AD2ti8HXgdWAzc4O7PFiKmXMoo8zPcfVX08yuAy4EH3f24ZKJrX6ws4+5lnd2Wj9/Xw+N+CPgiMBOoBR5x97fl6vjFzsz6AVPdfUXsZ/MJ5xVApbvXJxFbksxsAvCGu7+RxO9XTQA8DzwY+/cYUA0cCPwH8IKZHZRceFJg62lZHh4GXgL2BS4Anogu5iKdZmZnAr8A5gJbgZXA6kSDKiAzO5VwrdW5EzGz/mZ2FbACGJdUHCVZE5DhM+6+JPOHZjaacNKeBvzezGa7e2Ohg8uDDwGDCImOtHaLu1+R+UMzqwT+M/r3P2b2oLu/WOjg8uC/gd8Au5IOpI97f7R8AFhQgt94vwpYlp8/BswGKMHPZD/C9SRRSgLa4O41ZvZhYAOh+u5U4G/JRtVz7r4u6Rh6I3evAy4zs7cDRxBqBS5JNqqec/dqlBAWwpho+UAJ3uza5O67gOVJx1HK1BzQDnevIVRhQWgeEFkaLVUepCsqouXeRKMQyaCagI5VRsvtmRuiji5nE6r6DgNGA/XAK8C9wPfinWBir3srcCFwDDAS2EZINu4AfuLutVleMwz4HPAeYDohgVsN/IHQeXFrZ95Mto6BsU5jrxPavs8HPgbMiV72PPBj4OfunspXbL1Em+UBwMxOAD4KvBnYh3COVQOPADe6+6Isr5kFXAycSKgi3E34/P4K/MDdN2Z5TQVwLqED5SHAYEK5uwf4truv7MybaatjYKyj5GxgfBTfMdHvWUMoq9929x35iq3YdOc8iXVyTbvczC6Hlp0OzWwk8Fng/wEzCOfQWuAu4Lvu/mpGLOcROi/+FvghcAPhb1VD+IyvM7P0uVoJvDc6/kGEa9TjwOXu/rCZDSZU1/8bMJHQZ+HvwCXu/kqWz2E68GlgAaGMDCZcw/4J/JrQpNaQEWfapWZ2KfALdz+vo46BZnYE4dpyAuF82hH9nl9Gx2jI2H9JtO/bgVeBS6P1EYRa3TuBq7vS2Tt2LswFPkJoUq0EHDjF3TebWRlwerTtSJrb+F8H7iecx09kiTNtpZlBaCpaEttvLqEz6QLCebgDeAL4sbv/b2ffQ3tUE9AOM5tG+MbXSEZTgJkNBP5BKIzvJPT2fQ7YTDiJPw48ZWaHZrzus9GxTgfqgGcIN5QTCCfy36OLaPw1s4BngasIJ/ErhI5Fs4DLgGeifXqqjNAP4ieEJpAVhAvGMcAtwDWZLyhgbImL+gW8I1q9K8v2a4AlhBvgUGAZYZTJOEKCtNDMPpbxmmMJJ/W/A8MJN5INhM/yq4QyNDHjNUMIZejnhIvDLkLZG01opnjWzN7T0/cbuYBwkT4ReBnYRPPf9u9m1uIaUuDYktKV82QFoYNpuud3vOMpAGZ2MOHvfgVwMKEjqhMS6ouAf0U3y2xmEW7Yk4F/Eb5U/Ctjn+sIN+fpwCqgCjgFWGxmC4BHCZ2gywnn7jjgg8B9ZjYofiAze1cU6+eAqYREZTkwgPD3/jHhmpj2ehvvv9WXo0xmdnEU27mEc+NZQrJxAvBTwvk0vI2Xv52Q6LybkISvB6YAnwceMrOhHf3+LG4kJFKvRMfcG0sAbiMkGGcSan2eJyQhE6P4Hzazd8SO9RzhvE97kvC5bIu9/wujn3+I5r/rDkLT9O/N7LbMe0V3KAnIYGYVZjbazE4nfBMrB65x97UZu36FUOirgaPcfYq7H+nuk4CjCAUgnWGnjz0CuDZaPdvd949eMwV4K+Eb4HzgfbHXDAb+TDjJ7wQmubu5+yGEAnYXIUv9U5SY9MQ44AOEE3yMux9O+MZza7T9IjMbm1BsiTCzMjMbYmZHA38iXEiXEjrTxfebT+gj0Ej4hriPux/h7jMIF58l0a5fz7hxXkcoJ9dHrznM3ecQbi4rgf0J32bi/gc4mXBRONrdJ7j7EYS/39XAQOA2M8tFk8UXCTf0fdx9LjCJUIsFobbjjARjS0qnzxN3vzqqYXk62naLux+XrnWJbkZ3E2qAHiYM3zzQ3Q8FJhDOr5HA/5nZlCyxzCXcUA5w98Oi19yTsc+nCWVzv+i4Mwk3sipgIaGj8NHuPtXdDyTcZBqAabS8Fo0kfKuvAm4Cxrv7XHc/iPAt9fpo1w+Y2Zui9393xvv/ZfT+r27vA45GU1xLuP5+HRgXu1aeSEgu5tMy4Yj7LOFL2iR3f5O7TwfeFb2v6YRv9F01DzgrOt5kmsv+hwk1wruB06Iyf6S7TwXeRDgX+gFXpg/k7p8h9tlGxz3O3Z+O3v/bCTU8DYRyNiK6NhxAOL82EsrgFd14Hy0oCQjZcCr9j5DRVxMu+DMJBTFbD86TCRf8K9398fiGaP2maDU+vNAIGfMWQjVe/DX/IHyD+D2hViHto4RC+xRwZrx6zt1fIxSktYTah/M6/a7bdqO7X5+uZnP3PYTsOUUoyEclGFshXJ5RHhoJNTWPAG8jNPOclqVz19sIf7c/uvvP4iNJ3P1lwjdnCDeQ+HCgudHyZ+6+N/aa1YRvgX8hfIZAU/XgWYRv2G9198dir9nj7pcSquoHkJuex88CH3H3bdHvSLn7jYQbD4QLY1KxJakr50l7LiQkAK8TylXTsEF3f51Qjf8c4ZtwZjKYdmns71OTpcnub+5+bbrMRuXxF9G2csLft+ka5u73EKqwITRzph1PqAZ/Dfhs1Kkv/ZqdhPKavnb1dFj1N6Llj939soxzYzHhGz7AGWaWbX6LjcB7480o7v4nwhc7iJXbLrjf3Zuu2x461UJImuoJZeKv8Re4+3Kav/h15TO5mlDjdEm8nEXHXETz9fSiaCRbtykJaD1PwCOEzC1d6L4IXJ9Z7RJltwOAm9s4bvoEiVenrSEUlpHAz6OLZvyYX3f397n7H2I/Thf232S2f0Wv2U1IHCA0MfTUn7P8jhpCNTCEtrWkYiuEzHkCHiK0QW6Jtp8I3BmvEQFw90sI5eHcNo4bH4IXLxPp9vGbzeykqMkhfcw/u/vp7h6vXk5/5kvcfUMbv+tX0fLtOaguvCvLTQVCUwdkLw+Fii1JXTlP2pM+L37h7lsyN3roH/TDaPWMqOo5rpFQg9CeVk1XhCYHCOVyaZbt6YR+WCyWP7n7UMKEP9lGOAwgNIdCyzLeJWY2g+bhhN/Pto+7P0w4NyH0o8i0MErMMmUrt531QBuxfIDw3r+abTvN535VZvNZNlHfk0Oi1Vuz7ePudxO+rA4ETuromO1Rx8C25wnoT8i2/ptQnVYBfCq+j7vXmdlIMzuGUGswNVoeSqgeg1ii5e4bzexaQkb/IeBDZvYasIhQdfXXWHaZlq42vSBqj8tmn2iZi7b3ti7eu6NlvMwUOrZCaGuegDKaqx9PAhaZ2aEZGXrKzBrN7HhCZ7GphJqSg6NlWvxCcDHhhnI0oWp2h5ndR6jSvctbd6JLf+ZHmFnWixLhwgChX8L+hH4J3dWd8lCo2JLUlc+lPenz4sl29klvGwuMInT+S9saJdvtWZ/lZ+lv7DWeff6TumjZasZEd98dfYGZSyjj0wjV3gf
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAFbCAYAAAC0+6aaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xcZd338c/uZpNNT0jvjfBLII3emyiiNMUGghARUB8Lt+W2ImAF9Lkf71tFUZEmKHKriAIiihA6IhBIQvglIaSQ3vuym919/rjOzE42M1tmZ+dM+b5fr32dPTszZ387e+bMd65zXdepaGpqQkRERCSdyrgLEBERkcKloCAiIiIZKSiIiIhIRgoKIiIikpGCgoiIiGSkoCAiIiIZKSiIiIhIRgoKIiIikpGCgoiIiGSkoCAiIiIZKSiIiIhIRgoKIiIikpGCgoiIiGSkoCAiIiIZdYu7gFwzs/HAGxlubgK2ACuAvwI/dPcNeSotZ8xsNnArsMrdR6f8/DHgZOC77n5VPNW1zsxuAy4B5rj7KXn6ncuAcRlu3gGsAx4FbnT3l/NRUy612Ocnu/uS6OfXAtcAT7n7CfFU17qUfRl3r2jvbV3x+7qKmV0MfB44CKgDngWuJ+xzANXuvreTv+Mxsnjtp7w2Lnf3mztTg3QdM+sFDHX3ZXH8/lJvUZgPPJXy9S9gIzAN+CrwqplNj688ybOV7Ls/PAMsA0YAlwP/jg7qIjlhZu8DbgdmAluBxcDSWIuSomJmHwYWAW+Pq4aSa1Fo4TPu/ljLH5rZIMKL90zg92Y21d0b811cF7gY6EUIQ7K/W9z92pY/NLNq4BvR1y/N7Cl3fz3fxXWBnwB3A7vjLqSMfTBaPgmcmmg5iD4hTgXobGuClLzvAaPiLKDUg0Ja7r7JzC4BVhGaA08HHoq3qs5z9xVx11CM3L0euNrM3gUcQWhd+Eq8VXWeu29EoTFug6Plk6mBwN13A6/FU5JIx5T6qYeM3H0T4dQEhFMRInOipfYHyZWqaPlWrFWIdEJZtiikqI6WO1reYGbdgAsITYeHAYOAvcBq4J/A/3P3RWke907gU8AxwEBgGyGQ3APc7O51aR7TD7gSOA84kBDglgJ/JHS43NqePyZdh6aUjm7rCOfiLwWuAA6OHjYf+AVwm7s3dVVtRSLj/gBgZicDlwHHAcMJr5+NhM5pP3X3R9I8ZgrwJeBtwEhgD+H5exD4H3dfn+YxVcBFhE6fs4DehP3u78AP3H1xe/6YTJ0ZUzqwTQWGRfUdE/2eNwj76g/cfWdX1VZoOvs6SbO92wjPUcI1ZnYNhE6UZnYKrXRmNLOZhA6QpxL+RzuBfwO/cPc/dPBvGwF8ATgHGANsIPyPv9WR7UTbGk94nlYBY4FPEFrgDNhFOMXyNXdfaGaDCfvfuYTXyzrgPuDr7r4tzbazOtZ09HWZ8rq4Afi/hFOO5xBen1sJ/5fvuvu8DjwvtxH+358EGoGrgKGEflGXJ06Bm9ks4P8AJxJOJ9QQOti/QDg1+vs0dSb80sx+CXwz9RSqmQ0j/H/PAsYDDYTWqrsJHbRr2/t3ZFK2LQpmNonwybGRFqcdzKwn8DBwB+HJrwPmAZuBycDHgRfN7NAWj/tstK2zgXpgLuFN52TgRuBv0YE29TFTgJcJL9rphIPuYmAKcDUwN7pPZ1UQ+mXcTDjdsogQfI4BbgGua/mAPNYWu6ifwruj1QfS3H4d8BjhTbIvsJAwemYo4cD2DzO7osVjjiUc3D8K9Ce82awiPJdfI+xDY1o8pg9hH7qN8Caxm7DvDSIckF82s/M6+/dGLiccFN8GvEl4A0n8b/9mZvscH/JcW1w6/DrJYBGhw+z2aD21I22rzOxThDeOiwkfNhYQgsLphD5Vd7U8jrSyrZnRtr5ACIevRn/PF4CnCX2aslEJ/C/huDaEcFzoD7wHeCra918mvCnuBpYDowkfov5qZi1HuGR1rMnmdZliHOEY/ZlofSHhVNGHgGfN7LCOPCGRi4CfE/ajxYTQOTeq9ZOE/8XlhPC3BHid8Ly9C/hfM/tuyrZWEPaXRGvUkmg9eYrZzI4n7B//SQhXS6PbDyeEoGfNbHgWf8c+yioomFmVmQ0ys7MJn+gqgevcfXmLu36ZcCDcCBzl7hPc/Uh3HwscBawhfJL6Wsq2BxASKsAF7j4qeswE4J2ET5KnAB9IeUxv4C+EFHgfMNbdzd1nEZL/A4Sd+c9ReOmMocCHCYl9sLsfTtiJ74xu/4KZDYmptliYWYWZ9TGzo4E/E15ocwhJPPV+pxD6LDQSPmkOd/cj3H0yMIFwoAL4dos31x8S9pMfRY85zN0PJrwBLSZ8ovh6i7J+SejdvAA42t1Hu/sRhP/f94CewF1mlovTI58nvOkPd/eZhE+In4puO47wKSuu2uLSoddJJu7+vagV56XoR7e4+wltDVON+sn8mPCp8EpgQLTfjCM89+uj+q5tq4aoVfQ3Uf3/JLyGD3f3iYRQPIbwJp+NEYT9YzYwJtp/DiOEgoGEloV1wBR3nxK9Vi6NHnsscFJKnVkdazrxukw4nxDAEsf4WYQWpDcJAerqLJ6X4wmdiMe7+3RggrtvNbPJwP8Q3nOuAoZF/9ephJaMe6LH/6eZDQRw91ui/WVtdNsN0T50S/T3j4qer0GE1+ZQd5/m7ocQPtA+Rxhtk9h21ko9KDxqZk2JL0KS3kh4UziI8Mb+jTSPezth5/umuz+fekO0/rNoNXVopdHcjPS7Fo95mPBJ5PeE1omEywhvTi8C73P31SmPWUsIFcsJ//TZ7f6rM/upu//I3Rui31EL/AdhfoluhBAUV235cE2L/aGR0OLzLHAG4WB6Zppe6GcQ/m/3uvutqSNk3P1Nmg8oQ6OvhJnR8lZ3fyvlMUsJn+juJzyHQPLT3/mEg+073f1fKY+pdfevE170NaTfbzvqZeBjiWZgd29y958SWgkgHPTiqi1OHXmd5Nr3CJ9Gv5JaQ1THIzS/1r4Qjd5qzXmEN74twPvdfV3Ktv5K8yfpbN3s7rcnTsW4+3zCGxfR3/CB1FNR7n4rYTgyhFCRkO2xJtvXZaoPu/u/Ux7nhIAPKft/B9QS/neJfScxT8/phPefF9z9ux46UCd+52bgi9FqNeG9pD2+SAgJf3b3K1JPzXgYtXUuoUXrxCiAZq3Ug0LLeRSeJXwaShy0Pw/8qGUzXpTiaoCbMmw3MdwstdnuDcKOMBC4LTqwpm7z2+7+AXf/Y8qP3xst7049IKQ8Zg8hXEA4ndFZf0nzOzYRmpwBBsRYWz60nEfhaeAVwoEUQhP8fS0/Mbr7Vwj7w0UZtps6/DB1n0gcJG8ys9Oi0xuJbf7F3c9299Sm7MRz/pi7r8rwu34dLd/V3ubnVjzg6c+3L4yW6faHfNUWp468TnImOv8/K1q9M919ojf4jYTWm9Pa2ORZ0fI+d9+S5vbfEvpQZWu/U3Q0BwH39EOMEyGgX8rPsjrWdOJ1mazF3V9M8/N0+397veTuu1r+0N1vdPdehL4J6bRVazqJ5y3TvrKO0HcIOnmMLvXOjJnmUehOSKY/AT5N6Jn8f1Lv4+71ZjbQzI4htD5MjJaHEs4vQUrQcvf1ZnYDoSn5YuBiM1sLPELo7/Cgh+FqqRJNtJeb2bkZ/obE+aVc9AXIdIDfEy1T94d815YPmeZRqCCcFrqDcPB9xMwObfFprsnMGs3sRMKntImET0EzomVCavj+EuFN52jgH8BOM3uc8OJ9wPfv+Jd4zo8wsycz/A2Jpte+hFMXnRkSm83+kK/a4tSR5yWXUk/Z3GuW8YNlTbRs63WX2MD8dDdGx7gFhNNM2ViZ5meJFtNMM94mPkmn9lHI+liT5esyoSv+z2vauL3OzI4i/M2Toq/p7Pt3tfkBPuovlJht9mozuzLDXcdHy04do0s9KKTlYeTBL6LewNcCV5jZde6+EsDM+hLOJ11Ec094CC+CFwnnHc9Is92rzOwFQvg4ibBzXxh97TWzu4FPe3OP3/7RcnL01ZpcfIrZb8RFC6kv3nzXllbUYfTHGW6
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAFbCAYAAACNnBfBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxcdb3/8VeadN/pQktLW7rwaWnZd1yoC4JWEASuIKggi96fK8oVvaKAirghbihXvIoCCl5FUEAQUEFWkU268GkLdKEt3ei+kDSZ3x/f7yQn00kyyUxyMpn38/HIY3Iyc04+M3PmzOd8v5/v91RlMhlEREREitEr7QBERESk/CmhEBERkaIpoRAREZGiKaEQERGRoimhEBERkaIpoRAREZGiKaEQERGRoimhEBERkaIpoRAREZGiKaEQERGRoimhEBERkaIpoRAREZGiKaEQERGRoimhEBERkaLVpB1AocxsEvByC3dngA3AMuDPwDXuvraLQisZMzsH+AWwwt3HJ/7+d+BY4Ep3vzSd6FpnZjcAHwIedPfZXfQ/lwATW7h7C7Aa+Btwrbs/1xUxlVLOPj/N3RfHv18OXAY84u5vTCe61iX2Zdy9qtD7Svj/5wCnA28AxgB9gFeBJ4Fbgdvcvb6T/vcM4AV3z7RjnTHAd4DjgGHAOuA84POU6LNvZrMJnweA3u6+q8D1ziHPcUm6HzOb6e7z0vr/ZZNQ5JgLbEos1wDDgVnAQcAFZvZWd38+jeCkyy0nJJNZvYBBwGTgAuBcMzvP3X+VRnDSdcxsH+DXwFHxT9uBF+Pvk4FT48/zZnaauy8s4f8eAnwd+AjQHyj0C7sXcA9wYFxnLiEBWlKq2KRnM7OxwNXAm4C904qjXBOKT7j733P/aGYjgF8Cc4DfmdkMd2/o6uA6wQeBAYSzFtndz9398tw/mllv4Evx53oze8TdX8x9XBn6EXAL4ctSIjM7AHgAGEn4Mv5vQkvE6/H+auC9wFeA/YF/mtlJ7v5QiUI4BPhYB9YzQjIB8G53v7fxDjN99qUQxwNnAivSDKJcE4q83H29mX2I8KLuC7yDkPmXNXdf1vajJJe71wFfNrN3AocRWis+n25UxXP3degLppnYOnAbIZl4AniXu7+WfEzs4vg/M/sL8EfgzcBvzGz/3Md2sZGJ3/+evEOffSknPa4o093XE5oMIXSBiDwYb7U/9FyfAqYAW4H3tpYguPsmwtncZmAv4NtdEmHLqrO/ZFtTRMpRj2qhSOgdb7fk3mFmNYSDyX8QmihHEPotVwJ/Bb6br1/VzI4nNGceRajX2ERIXH4L/Mzda/OsM4RwoHsvMJWQwL1EOJO6xt03FvJk8hVlJgr2VgNjgQ8DFwL7xdXmAj8FbshXHFaq2MpEi/sDgJkdC5wPHEMo4KshtAA8DvzY3R/Is8504HPAWwlfSjsIr9/dwPfdfU2edaqBswnFqwcBAwn73X3At919USFPpqWizESR6gxgzxjfUfH/vEzYV7/t7ls7K7Y0mFkV8PG4+Ct3X9nWOu6+0syuBb4AnG1mF7v7hri9Gwivw83ufnae/3cOoUhxqbtPin9bQvMC4TozA9jH3Ze0EPckcgrNzSz7Wb3C3S9vrSDbzPoCHwXOIHzu+xBqie4ivGer2nodcrZ3CuF1PBDoCzxFqAlpt8RreAHwEGF/fRswlPCcf0Y4zmTM7L3Apwn7XTXwLOH53t3Ctt8MfJJQcDuCUJD/GPADd/9rC+sMI7xW7yK8VkOBbYT6mj8RPrMbctbJvhf9gXfG/3kw4XV24FfAj2JLaCGvySSajtmHANcTjh87gHvc/f3xcf0Jx/OTgQMI3zc7Ce/tvcDVyX08ESfAuOxynmLo9xC+Iw4nFP6uJZxsfcfdny7kObSlx7VQmNkUwploAzndHfGN+gthR3g3UAs8D7wGTCMUUz1tZgfnrPfJuK0TgTrCDr+F8EG/Frg3HpCT60wHnqOpv3YlsAiYDnwZeDY+plhVhLqRnxG6eRYSEqSjgJ8DV+Wu0IWxpS7WUbwrLt6V5/6rCM3MZwODgQWED+5oQrJ1v5ldmLPO0cC/gHMJB6a5hG62/Qn99k+b2d456wwi7EM3AG8h1D88TzggXgA8Fw+spXABoZr/rcArhANH9r29NxYBphVbZziA8H5BGOVVqNvibR/g7UXG8CRNLaMAj8Sfna2sszM+Jt96rXZ1xCK8x4HvAUcSjmHzgQnARcBcM3tDocHH5Oo2wj6zHXgBOILwBfahQreTxzHAM8BphFE2GwkJ79XA183s68DvCZ+dRYQRe8cAd5rZCXni/AbhS/BUQtLzb8Kx/j3AA/H+3HWmxcddBRxN+Dz8m3CcPISQ7DwWPwf5fJXw2hxOSAi2EJKf7wI3tuvVCPoSvoeOIxxvGogFuGY2itBl9yNCAraZcKzeBswEPgM8Y2bJ0TaPEF47CN9p2X0o+/xrzOwm4HbCsTATt9mPcHL9TzP7OCXQIxIKM6s2sxFmdiLhDLEXcJW7L8156CWEA+Y64Ah338fdD3f3CYQPzyrCmdl/J7Y9DPhmXDzT3cfFdfYhFMLsAGYThqhl1xlIyHonAXcAE9zd3P0gQgXuXYSzmT/GJKcYo4H3E1obRrr7oYQWi5vi/Z+NO2kasaXCzKrMbJCZHUnoK59KOAjdkvO42YSaigbCGcEYdz/M3acB+9DUn/3VnC/hawj7yQ/iOoe4+36EhG4RMA74Yk5Y1xO+tOYBR7r7eHc/jPD+fZ1wFnSzmZWiW+YzhORgjLsfSPiSyRYLHgOclGJsneGgxO/tGR78LOHgCiEp6TB3Px34ROJPs939je7+aivrvBpbmD6R+Nsb48/PW1ovtsj8jvC8HwZmxGPZoYQWtp8DewC3x+GorTKzs4D/R/gyOsvdJ7j74YSWt/8jHN866lzgaWBiPMaMI+ybEFrQPg9cDIyI8U8kJCBVhON1Ms6PxL9tBM529z3ifroXoZVmG3CJmZ2XE8P1hGPb44Tj3Yz4v0YRCt4bCIWxLSVOFxOSkZHufnD8f9nE5X1mdlAL67VkGOF9OsjdD8nZ3rcJydViwNx9Wvy+GQucQEj2RhOO90DYZ2hqSVqb3YcS/++rwFmEk4sT3H3P+P6OJrS6ZIAfmNlx7XweuynXhOJvZpbJ/hAyzXWEL499CQnAl/Ks93bCznOFuz+ZvCMu/yQu7p+4ywiZ3AbC+PXkOn8h7Gi/I3wYs84nfIk9DZyabJ6KB5jTgaWEVpFzCn7WLfuxu/8gO67e3XcSmhAzhOb7I1KMrStclrM/NBDOIh4nfAj/CszJM+7+BML79gd3/0VyRJC7v0I4o4fwwRudWC9bkf+LZJ+3u78EfBa4k/AaAmBmBxIOeNuB4939n4l1drr7FwndEf3Iv9+213PAebFWAHfPuPuPCa0OEJqK04qtMySLGtcXulLcH7K1FqNae2w3cxIhMVxJ+ILw7B3xPT+fcJY7ktBa0ZZs8vt1d/91YlsbCS13nnetwuwinIi9GrfZQFOraS/gRne/OvvZizVw34/3H5LdiJn1Aa6Iix9295sTcWbc/Vbgv+Kfrohd25jZnoQze4ALkt1Acb0baTpxSB73k/7k7v8dj6vZ4t5LCd8JkPg8tcOP3X1+3F6tu2+OralvJhy3L8rtZvQw+id7UtRSrM3E55/dB97jiRFE7l7v7j8ktLRUAV/rwPNoplwTirk0Nes8QvjimAdkD+6fIWRczbohYtbWD7iuhe1mh+ENSPztZcKHYjhwQzwAJ7f5VXc/3d1vS/z5lHh7i+eZPMfddxCSEAjdKMX6U57/sZ7QtAchI04rtq6wnOb7w6OEJs3sB/6twB3JlhoAd/88YX/YrZ88Sg7LTO4T2Q/6dWb2tnggyG7zT+5+orsnu5qyr/nf3b2lYV3ZptN35u63HXCX559UaUG8zbc/dFVsnaFf4vfdapnakE0yO2WCrU6Sfc9ud/dtuXfG9z7bQtnqZ9jMJhO6IKCp5SC5rVrgfzscKTwXk/OkJYnf89VJZE9yhiT+dgyhLmgLoWU1n5s
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFbCAYAAADfiVd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZglZXnw/2/PMMMw7A6iyL7egAKiKBL0FcUFQ4gaNKIiUaPEqNG4BP1FI4MbLu9PiSjihhpcETW4oEZRiSAuoCCbNyDLjLixiWzTs/X7x1Nn+vSZ0/s5Vc2c7+e6+qo+XVVPP+dUnbrrWWtoZGQESZK04ZvXdAYkSVI9DPqSJA0Ig74kSQPCoC9J0oAw6EuSNCAM+pIkDQiDviRJA8KgL0nSgDDoS5I0IAz6kiQNCIO+JEkDwqAvSdKAMOhLkjQgDPqSJA2IjZrOwP1ZROwC3DDO6hHgDmAZ8C3g/Zl5S01Z65mIeCHwSeDmzNyh7e8/BB4PvCMz39xM7iYWEZ8C/gE4PzMPq+l/3gjsPM7qu4A/Aj8APpSZl9WRp17qOOf3zMzrqr8vBU4ELszMxzaTu4m1nctk5tBU1/Xg/24L/DPwNGB3YEvgdsrn+D/ARzLzd738n3PJ/eHcGCSW9HvnCuDCtp+fAbcCDwP+P+CqiNivueypZssZez5cBNwIbAe8FLg4Io5rLHeqRUQcBVwDLAUOpNz0XUIpEDwKeAtwbXXTIfWdJf3e+ZfM/GHnHyNiCfBp4Ejg7IjYJzPX1p25PjgOWEy5sdH6zsjMpZ1/jIgFwH9UPx+LiAsz8zd1Z64PPgh8Abi36YzMFRGxD3AWsIgS9P//zLy7bf0DgZOBfwQ+ERG/zczvNZFXDQ6Dfp9l5m0R8Q/AzcBewFOAbzebq9nLzGVN5+H+KDNXAW+JiKcBB1FK/W9sNlezl5m34g1gp9dRAv4XM/OkzpWZeUtEHA/sAhxOqQI36KuvrN6vQWbeRqn+h1LdL51fLT0fNlyPqpY/HW+DqtbvE63tI8JrsvrKkn59FlTLuzpXRMRGwHOBvwceASwBVgO/A74PvC8zr+my31OBVwCPAbYG7qTcXJwFfDwzV3bZZwvg1cDfAXtQbvyuB75C6Wz456m8mW4d+do6ef2R0nb9YuB4YN9qtyuAjwKfysyRfuXtfmLc8wEgIh4PvAT4K+DBlO/qrcBPgNMy87wu++wNnAA8EXgIcB/l8zsX+M/M/FOXfeYDx1I6PD4c2JRy3n0XeG9mXjuVNzNeZ622jo37AA+q8veY6v/cQDlX39te7d3rvDWo9f07MiJO6XbOV75GeX+3tTf9tXUuPIfyGbwdeCbl+vDbar/3ZuYfuiUaEbsBr6fULu4ArAAupzQ3fjIz14yz3wHAa4EnUI7Z3cDFwEcz88vj7DOvyuNLGf2+X0hp1piRWVzfXka5lu4BbMzoNeS9mfmXLvscDryc8l1bUv2fi4GPZeZXumx/I+WcPoDSNHMc5fucwJMz8/Zquxl9/v3mXWUNImJ3SoluLR1V+xGxCaUH738Bf0O5UFxO6d27J/BPwC8i4sCO/V5VpXUUsAq4lBJAHg98CPhOddFs32dv4DLgrcB+lAvotcDelA5Fl1bbzNYQ5cT+OKVJ4xrKTcxjgDMo7Zhj1Ji3xlXt+n9dvfxml/UnAz+kBLzNgaspo0C2pdwQfa+qFm7f5xDKhepFlN7hV1CalPYD/p1yDu3Ysc9mlHPoU5QL/L2Uc28J5eJ9WUT83Wzfb+WllFELT6QErFsYPbbf6Szh1py3fvlOtTwc+GFEHB0Rm3ZulJn3ZOZlmfnbcdLZArgAeCWwhnI+7EwJzJd06yBcfTZXUEYNPAT4NeUzfyzwMcpnvlmX/V5B6Wh4HCXQXkkJ+k+h9En6bJfrykLgy5Tv9iGUm9PrgSdTAv+Txnlf45rh9W0f4BfAuymFp5uB6yjXoDcDF0XEVh37nEppUvk7SuC+lHINPgL4ckR8sfq+dnMa8CrKtepWYLgt4M/o86+DQb9PImJ+RCypeu+eS/msT87Mmzo2fQPlonYr8OjM3DUzH5WZOwGPBn5PKeH8e1vaW1FObIDnZub21T67Ak+llPAOA57dts+mwNcp7YfnADtlZmTmw4EdKcFnZ+Br1Y3IbGwLPI9Sat8mMx9JKfl/plr/uqoTUxN5a0REDEXEZhFxMKWEtgeliv8LHdsdRmnjX0upKXlwZh6UmXsCu1JuBgDe1hEo3085Tz5Q7fOIzNyXcsG7FtgeeFNHtj5GuSBfCRycmTtk5kGU4/dOYBPgsxHRiyaI11IC+IMz8wBgJ0opDkoJ628bzFu/vBe4qvr9/wBnA3dExAURcXJEHBERi6eQzhMoBYDnZebOmfkIyrlwESWgfL6qLQTWldQ/R+lP8HZgSWY+vDqHHkE5Hw4HPtz+T6p+JqdSbixeDWxVnUc7U47Fnyjf66Ud+fs34BmUEvKTM3OPKo+7AD8GDp3Ce2zPx0yubwuBL1KGRF4M7JWZD83M/Si1TNdSaiA+1LbP6yg3Uqsp5+K2mfnozNyeUlNwd7X8v+Nk9VDgmOr/7EJ1Ds/086+LQb93fhARI60fyol0K+UCvxflJP6PLvs9iXKBPykzf96+onrdOjHa7+aDckLdQTnR2/f5H0pJ+mxGqxehVBXvQbkTPrp9XHBVPfhs4CbKxeWFU37X4zstMz/QqsLKzBXAv1LmL9iIckPTVN7qcGLH+bCWUlL5CaUU8X3gyMxc3bHfEZTj9tXM/GR7dW9VEnxL9XLb6qflgGr5ycwcbtvnekqHsm9QPkNg3YXpGEoJ+qmZ+bO2fVZk5psY7Xne7bydrsuAf8zMO6v/MZKZp1FK79AWGBrIW19U7/WxlCr6VlXuAsp7fSNl/o5bI+LMiNhpkuT+LTM/35b2zcDTKYH2ocCz2rZdSqnWPjUz/yMz72vb75fA0VV+nh8R+7bt905KLd0b27+71X7nMfrde101KqlVa3VC9fdXt48+qL7HzwRum+S9dZrJ9e2ZlGvkXcDftOaPqPa5ri3vR0fElhGxiFL6B3hLZp7W8V37EqVGCeAVVdNlpx9l5hfb9ml1ZF3KzD7/Whj0e6dznP5PKKWU1gX4tcAHOqukqvbPRcDp46TbGgLVXiK4gXJTsTXwqeoi2Z7m2zLz2R3tUc+sll/o1pZUnZhnVy+PGu9NTsPXu/yP2yhVXADt1Wx1560OneP0fwz8inIhg1LNfU57jQdAZr6Rcj4cO0667UPi2s+JVvv26RFxeHuVZGZ+PTOPysz2ZpXWZ/7DKoB0c2a1fFrneTsD3xynTfvqatntfKgrb32TmXdk5ospNVWvotT6tbcrb0I51ldHxHjV4HdTaj46076F0lYN5QaAiNiYMgkQjNasde53OaUae4jSpNjqj/PwSfb7FqUgswmlpArwOErzwwo6aq2qfdYL3FMwk+tb67rw35n5xy75+DHwSOBB1c3Y4yjn3GraSv8dvkhpIphP9Tl1uKDzDzP9/OtkR77eGW+c/kLKXeYHKVVJ8ymdRtbJzFURsXVEPIZSK7BbtTyQ0pEG2m7QMvNPEfFuSnXtccBxEfEH4DxK/4Bz2+46W1rVoC+NiKeP8x4eXC170XY+3sW6ddfbfu7Vnbc6jDdOf4hSNflflAvneRFxYEepaiQi1kbE4yhVkrtRakL2r5Yt7TftJ1ButA6mtFHeHRH/S+n09s1cv9Nb6zM/KCLWu3hVWk0pm1OaB2YzTHMm50Ndeeu76ublVODU6iblQEqb9/Mo73cx8NWI2LXLd/dXVU1ZN7+qlntVyz0ppUyA0yJieP1dgNFZI1vfp/Zmkq9GxHhvZVHHfq0Nr2uvYepw6XiJdTPD61vrezHuLJeZ+Yu2l638X5tdOvdV249ExC8o51e3D+T3Xf4208+/Ngb9PsvSw/SjEbEdpdrn+Ig4OTOXA0TE5sB/Uu722zuMrKRUd/+SUuXbme6bI+ISyo3E/6EExedXP6sj4gvAK1vVqZTOXVBOyj0nyfZWk6yfivV61nZon+q07rx1VXWWPHW
|
||
|
"text/plain": [
|
||
|
"<Figure size 555x330 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|